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CHAPTER I 

INTRODUCTION 

1.1 General Discussion. Recently, there has been an increased 

interest in integrated and thin-film circuits because of possible re-

ductions in size, cost, and power requirements and because of improved 

reliability (1), One of the major problems in.thin-film and integrated 

circuits is that the well developed lumped parameter theory cannot be 

used directly since the elements of the thin-film and integrated net-

works must in general be treated as distributed networks. However, 

many of the distributed components used in thin-film and integrated 

networks can be modeled accurately by the uniform transmission line of 

finite length (URC elements) ( 2). Figures 1. ;t.. la and l, l. lb show two 

possible forms of the URC element used in thin-film and integrated cir-

cui ts respectively (2). 

The URC element of Figures 1.1.la and 1,1,lb is normally ~epresent­

ed by the symbol in Figure 1.1.2 with the terminals as shown. If the 

"uRc" element in Figure L 1. 2 is conside.red to be a two-port network, the 

open circuit impedance matrix has the form 

R R 

v'pRC tanh v'pRC v'pRC sinh Ip RC 

[Z] = (1.1.1) 

·R R 

~pRC sinh Ip RC v'pRC tanh · v'pRC 

1 



2 

metal 
(terminal 2) 

layer 

conducting layer 

i-,.-.,,-,-r..,..-:::~-r'?""'.r-,~"7"".,-,.Y-~.:::---....._ _____ (terminal 3) 

\· 

(terminal 1) 

Figure 1. 1. 1. 

substrate 

(a) 

substrate 

n-type 

(b) 

Examples of Distributed RC Networks Which· 
Can Be Modeled by the ·"ITRc Element 

·Where C is the total capacitance of the line, R is the total resistance 

of the line ( 2). The irrational hyperbolic forms tha.t appear in 

Equation 1,1,l c~use great difficulty in the analysis, synthesis, and 

particularly in the synthesis_approximation problem for networks with 

URC elements (URC network). The problem bec<;>mes ,even more comple,c if 
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each of the RC products (product of Rand C from Equation 1.1.1) has a 

different value ·for each URC element. 

R 
l ··---~~~~~---'~~4~~~~~~--· 2 

3 

Figure.l.1.2. Symbol for URC Element 

1.2 Review of the Literature. If terminals 2 and 3 of the URC · 

element in FigurE;! 1.1. 2 are open-circuited (no load), the dFiving point 

impedance looking into terminals 1 and 3 is 

R 
z (p) = 0 

QC lpR c tanh lpR c 
0 0 0 0 

where R0 is the total resistq.nce of the line, and C0 is the. total 

capacitance,of the line (1), Similarly, if terminals 2 and 3 are 

(1.2.1) 

short-circuited the driving point impedance looking into terminals l 

and, 3 is 

z (p) = 
SC 

R tanh lpR C s . s s 

lpR C 
s s 

(1.2.2) 

,where R is the total resistance of the line, and C is the total capa-
s s 

citance of the line. 
' ~ 



The symbolic representation for these two cases is given in Figures 

l.2.3a and 1,2.~b respectively, 

• 
z (p) 
oc 

z (p) 
SC ..... 

Figure 1. 2. 3. 

(a) 

(b) 

R 
s 

c 
s 

Networks for Z (p) and Z (p) 
OC SC 

4 

The following definitions are given to aid in the subsequent discussion. 

Definition 1.1.1 z99-Element: AZ -element is a distributed element oc 

having the driving point impedance given in Equation 1.2.l for Z oc 

Definition 1.1.2 Zsc-Element: AZ· -element is a distributed network 
SC 
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element having the driving point impedance-given in Equation 1.2.2 for 

z . 
SC 

To further simplify notation, a URC element will now be defined to 

be either a Z -element or a Z -element, and a URC network will be 
OC SC 

defined to be a network of URC elements. 

Wyndrum (3) has given a synthesis procedure for URC networks. He 

approached the problem by the use of the positive real transformations 

(1.2.3) 

s = tanh a p (1.2.4) · 

where a = IRsCs (or a = ~ ) , ZRC is the impedance of the URC ele­

ment (Z0 /p)" or Zsc (p), z1C is the impedance of ZRC under the trans-. 

formation (in Equation 1.2.3). Using these transformations in Equations 

Z (s) = oc 

R 
0 

~s 
0 0 

sR 
s 

Z (s) - ----sc r.:-:::-
vR- C s s 

= 1 (1.2.5) 
c s 

= L s (1.2.6) 

where C = ~/R and L = R /~. Thus the transformations reduce 
0 0 0 S S S 

Z (p) and Z <p) to the impedance of a capacitor and an inductor oc SC 

(respectively) in the s-domain when ea9h RC product is the same for 

each URC element. Wyndrum gave a sufficient condition for the driving 

point impedance function Z(p) of a URC network with elements having the 

same RC product to be realizable, 
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The sufficient condition is that Z(p) be transformed to a realiz-

able lumped LC function by the transformations of Equation 1.2.3 and 

1.2.4. 

O'Shea (4) gave a set of necessary and sufficient conditions. 

using a different transformation -- for Z(p) to be realizable (RC prod-

uct is the same for each element). Giguere, Swamy, and Bhattacharyya 

{5) later showed that the two classes of impedances realized by Wyndrum 

and O'Shea are identical. Further, they have shown that any realizable 

URC impedance function can be synthesized by a cascade synthesis proce-

dure given by Wyndrum. 

Wyndrum has given a rpocedure to realize the driving point imped-

ance given as 

K K n 
z = 0 + ~ tanh I pRC + l 

.;;- tanh I pRC vp i=·l 

K. tanh lpRC 
1 

2 ·. 2 
fp( tanh ( lpRC )+8. ) 

1 

(1.2.7) 

where K, K, K., 8. are positive constants and n is an integer (3). 
0 (X)• 1 1 

Very little has been reported on the use of Equation 1.2.7 or the 

impedance of other distributed networks to approximate a rational im-

pedance function or an impedance specified in a Bode plot, Wyndrum has 

given a series of Bode plots which can be used to approximate a given 

impedance function, but the procedure is a graphical one and inherently 

inaccurate. The approximations are further limited by the assumption 

that each element has the same RC product. 

Hei'zer (6) has approached the problems of synthesis with distrib-

uted elements by constructing a distributed network with a rational 

driving point impedance. Unfortunately, the networks are very diffi~ 

cult to fabricate and offer almost no freedom of choice in the location 



of the poles for the driving point impedance. 

Still another approach is taken by Rohrer, Resh, Hoyt (7). Here 

the given impedance function is approximated by using a single distrib­

uted RC network, with an arbitrary taper. The taper is adjusted to 

minimize the difference between the impedance of the distributed net­

work and the given.impedance function. The procedure also applies to 

transfer functions. Although the method appears to hold great promise, 

the error function that is minimized in the method.is expressed in in­

tegral form which may not have a practical form in some applications. 

In those cases where the e~ror can be minimized, the taper may be too 

complex for practical fabrication. 

Recently there has been a great deal of interest in multivariable 

impedance functions (8), (9), The most recent paper, by Koga (8); 

gave the necessary and sufficient conditions for the synthesis of 

7 

finite passive n-ports with prescribed positive real matrices of several 

variables. However, in general the method requires transformers in the 

realization. In _this thesis multivariable functions .will be used 

extensively in connection with the realization of URC networks (without 

transformers) with elements having different RC products. Therefore, 

some of the important definitions concerning the multivariable functions 

are given in Appendix B. 

l. 3 Motivation and Objective. It_ is evident from the previous 

section that very little has been41 done with 'tiRc" networks with. elements 

having different RC products. A synthesis procedure does not exist 

for this type of network, and no practical and accurate procedure has. 

been given which can be used in the appr>oximation pr>oblem (even in,•the 

case wher>e the RC pr>oducts ar>e assumed to be equal). Fur>ther, it is 



evident that URCnetworks with eiements having the same RC products is 

a subclass of URC networks with elements having diffe,rent RC products. 

This wider class 0£ networks should provide more flexibility in the 

approximati9n problem and yield more accurate results. A natural 

approach to the synthesis of these networks appeared to.be the use of 

multivariable impedance functions. Therefore, a study of URC networks 

with different RC products and·their r~lationship with multivariable 

functions appeared to be an excellent topic ~or research. 

In the analysis problem, rational approximations exist for Z (p) oc 

and Zs/p) which .are based. on infinite pr.oduct expansions and could be 

used to study~ networks having elements with different RC products, 

8 

but apparently the possibility of improving th.ese .· approximations has not. 

been considered, and therefore, is. another topic for research. 

The primary objectives in this. thesis will be .to: 

(1) Improve existing rational approximations for Z (p) oc 

and Z (p). 
SC 

(2) Deyelop a synthesis procedure for the driving point 

impedance.Z(p) of URC networks with elements having 

different RC products, al)d to find some.of the important· 

properties of Z(p), 

(3) Develop procedures fqr the approximation of rational 

impedance functions and impedance functions (rational 

or irrational) which are specified in a magnitude plot 

(Bode plot) with URC networks with elements having 

different RC products. 

L 4 · Organizatiqn of. the Thesis. The analysis problem is consid-

ered in Chapter II and new rational approximations for Z (p) and Z (p) 
OC . SC 



are derived that are valid over a wider range of frequencies than con­

ventional approximations for the same number of terms. A lumped RC 

network is derived from these approximations and can be used to model 

each URC element, 

9 

Chapter III gives a relatively simple procedure which can be used 

to approximate a given rational driving point impedance with a network 

of URC elements. A method to realize a given rational transfer function 

using operational amplifiers, URC elements, and gyrators is also given. 

Chapter IV deals with a method to remove the restriction that 

each URC element have the same RC product. Wyndrum's transformations 

are generalized and the res.ult is a class of multivariable driving 

point impedance functions which are useful in analysis, synthesis, and 

in the approximation problem. Some basic properties of the multivari~ 

able impedance functions are derived, and some necessary conditions for 

realizability are given. 

Chapter V gives a new method for the synthesis of any realizable 

driving point function of a URC network with elements having different 

RC products, In the realization transformers and gyrators are not used. 

The method can also be used to find the graph for the classical topo­

logical formula for the driving point admittance (10), (11), Therefore, 

its application is not necessarily restricted to the synthesis of.URC 

networks. 

Chapter VI considers the gentral problem of approximating an 

impedance function specified in a magnitude plot (Bode plot) with a 

URC·network having elements with different.RC products. The results of 

Chapter IV .and V are used as a tool to develop the general form of the 

impedance function Z(p) for a URC network having elements with 
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different RC products, Several-properties given by Wyndrum for the 

impedance of URC networks are extended for the case of different RC 

products. A computer program is given which can be used as a tool in 

the approximation problem where a least squares approac~ is used. The 
; 

program is a modification of a method given by Fletcher and.Powell (12) 

for the minimization of nonlinear functions. 



CHAPTER II 

OPTIMAL MODELS FOR THEURC NETWORK 

2.1 Introduction. In Chapter I the driving point admittance of a 

URC network with the ·output short-circuited and with the output open-

circuited were given as 

z 
SC 

:; 

R tanh IR C p s s s 

IR c p s s ·. 

(2.1.1) 

(2.1.2) 

respectively. The irrational, hyperbolic functions in Z ·· and Z make 
SC OC 

analysis of_URC networks rather difficult and provide very little in-

sight. Therefore, it is desirable to find approximations for Z and 
SC 

Z that are simple, rational functions. In this chapter new approxi­oc 

mations. are found for Z and Z that are rational functions and are 
OC SC 

valid over a wide range of frequencies. The approximations are usefµl 

in the analysis problem and can be used to find RC networks which 

approximate the corresponding distributed networks. 1,. 

2. 2 Simple Rational Approximations. for Zoe and Zsc• One way of. 

obtaining a rati9nal approximation is by expanding Z and Z, into a 
. OC . SC 

ratio of inf~nite .products (2), (l~). These expansions have the form 

lL 
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00 R C p 
R IT 

(1 + s s ) 
s n=l 2 2 

z n 7f (2.2.1) ::; 
SC 

z = oc 

4 R C p 00 

IT 
( 1 + s s 

2) n=l 2 (2n-l) 7f 

00 4R C p 
R 

IT 
(1 

0 0 

0 n=l + . 2 
( 2n-l) · 

00 

R C p IT 
. o o n=l ( 1 + 

R C p 
0 0 

2 2 
n 7f 

2 
) 

7f (2.2.2) · 

In most applications, these functions are approximated by Z' and Z' 
OC SC 

where each of these functions are obtained by tru11cating the products 

such that they have a fini tE: number of terms. If the approximations 

Z' and Z' are derived for Z and Z in this manner, they can be 
OC SC OC SC 

made as accurate as desired by including a sufficient number of terms 

in the products. Unfortunately, the driving point impedance (transfer 

function) of a URC-network with k elements where each element is approx-

-
imated by Z I and Z' has a complexity which grows rapidly with the 

SC OC 

number of terms used in the approximations Z' and Z' • Therefore, it 
OC SC 

is desirable to minimize the number of. terms ·used. to approximate Z 
oc 

and Z such that the approximations meet some specified standard for 
SC 

accuracy, To study this problem Bode plots.of the approximations given 

by Equations 2,2,1 and 2.2.2 can be made (truncated products) for 

various numbers of terms with RC= 1 (normalized). 

- -
A given approximation Z' ( Z' ) for Z ( Z · ) is very good for low 

OC SC OC SC 

frequencies. However, for high frequencies the accuracy of the approx-

imation depends on the number of- terms used. This follows since· the 

high frequency asymptote of the Bode plot of .Z0 c (Zs 0 ) has a slope of 



-lOdb/decade while the high frequency asymptote of the Bode plot for 

the rational function Z' (Z' ) must have a slope of n(20)db/decade 
OC SC 

-
where n=O or n=-1. This point is illustrated by the Bode plot for Z' 

SC 

and Z in Figure 2,2,l and the Bode plot for Z' and Z in Figure 
SC OC OC 

2,2,2 where the dashed line in each plot corresponding to Z and Z 
SC OC 

13 

respectively and the solid line corresponds to the asymptotic magnitude 

characteristic of the approximations Z' and Z' respectively. The 
SC OC 

plots are given for R =R =land the frequency axis scaled so that the 
S O 

plots apply for Z and Z with arbitrary RC products (see Figures 
QC SC 

2.2.l and 2.2.2). 

The number of break-points is equal to the number of terms in Z' 
SC 

(Z' ), Thus, if Z' and Z' are required to meet some standard of 
OC SC OC 

accuracy specified in terms of error in db of the Bode plot over the 

specified range of frequencies O < wRC < w where w is the maximum max max 

frequency, then the number of terms necessary for the required accuracy 

can be found by trial and error. 

In the next section new approximations Z and Z will be found 
OC SC 

that have fewer terms than Z' and Z' respectively and meet the 
OC SC. 

assumed standard of accuracy. 

2, 3 Optimal Rational Approximations for. Zoe and Zsc• In this 

section the form of the approximations Z' and Z' will be used to 
SC OC 

obtain new approximations Z and Z except that the poles and zeros 
SC . OC 

of Z' and Z' will be adjusted from their original values to give a 
SC OC 

higher degree of accuracy for the same number of terms, for a given 

range of frequencies. 

At this point a criterion must be selected that can be used in 

judging the merits of the approximations. One frequently used criterion 
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For error. in magnitude approximation problems is to require that the 

magnitude of the error in db be less than ±. ldb for any frequency in 

some specified range of frequencies. This criterion is adequate for 

most applications in network synthesis and specifically for the approxi-

mation of Z and Z , The range of normalized frequencies to be used 
OC SC 

here given in radian per second is O < wRC < 100. At the present state 

of the art the RC product is very small for most thin-film and integrat-

ed URC elements, It is difficult to give an upper bound that applies in 

-4 -6 I 

every case, but usually RC « 10 ohm-farads and RC << 10 ohm-farads ' 

for thin-film and integrated networks respectively. Therefore each Z 
oc 

and Z satisfying the given criterion for accuracy are valid for a 
SC 

wide band of frequencies. 

Since Z and Z are minimum phase functions the close approxima-
oc SC 

tion of the magnitude functions (see Equations 2.2.1 and 2.2.2) is 

sufficient to guarantee the phase of Z and Z will be closely approx-
oc SC 

- -
imated by the phase of Z and Z . 

OC SC 

Since the criterion for judging the relative merits of the approxi-

mations Z and Z has been selected, a method of adjusting the poles 
OC SC 

and zer.os of Z and Z must also be selected that is compatible with 
OC SC 

the criterion. The least squares method of fitting curves (see Appendix 

A) was found to be.an effective way to adjust the poles and zeros of 

Z and Z such that the approximations give minimum error. As a first 
OC SC 

step in the least squares analysis an expression . that gives the real and 

imaginary parts of Z (jw) and Z (jw) must be found. The derivations 
SC OC 

for the expressions are lengthy but are straight forward. The express-

ions are -



Re {Z 
oc 

Im {Z 
oc 

Re {Z 
SC 

Im {Z. 
SC 

R W [cosh W sinh W - cos W sin W] 
s 

( j(I.))} = -~-----~---~-~--
2 w2 [sinh2 W cos 2 W + cosh 2 W sii W] 

-R W [cosh W si_nh W. + cos W sin W ] 
s (jw)} = ~--~....----~-----,,---,,..-~ 

2 w2 [sinh2 W cos 2 W + cosh 2 W sin2 W ] 

(jw)} = 

(jw)} = 

R W [sinh W cosh W + cos W sin W] 
0 

2 W2 [cosh2 w 2 w·. • h 2 w· -· 2 W J co~ + sin sin 

R W [cos W sin W - sinh W cosh W] 
0 

2 w2 [cosh2 W cos 2 W + sinh2 W sin2 W] 

where W = (sin IT/4)/Rcw 

16 

( 2, 3, 1.) 

(2.3.2) 

(2.3.3) 

(2.3.4) 

Th~n jz0 c (jw)J and Jzsc (jw)J can be found from Equations 2.3.1-2.3.4. 

Since I Z ( jw) I and I Z ( jw) I are functions of w, 41 equally spaced 
OC SC .. 

points log wi, i=l,2,,,, ·,41 were selected ,on the log w axis where 

.01 < < 100. Then if w. are the frequency values of the 
i 

normalized frequency plot of Z (jw) and Z (jw) (w. = wRC), a 
OC SC i 

squared error function for the least square analysis F can be defined 
oc 

as 

F oc 

Simil~rly, error function F can.be defined as 
SC 

F = 
SC 

\ (11 z c ]. w. > I - I z < ]. w. > I 2 41 0 
i~l \: SC i SC i 

(2.3,5) 

(2,3.6) 
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Now the squared error functions F and F can be minimized by adjust-sc oc 
-

ing the parameters (the poles and zeros of Z and Z ) and a computer 
SC OC 

program was written to do this minimization. The program is a modifica-

tion of some of the more recent techniques to minimize nonlinear func~ 

tions (12), Th~ modifications were necessary to solve convergence 

Problems caused by the nature of F and F • The program and its 
. SC OC · 

description are given in Appendix A. 

To find the functions Z and Z that satisfy the criterion given 
SC OC 

above, the number of terms in Z and Z was increased after each 
SC OC 

computer run until the error criterion was satisfied. The end result 

of this work is given in Equations 2.3.7 and 2.3,8. 

R R ( Tlp + l)(T2P + 1) 
z 0 :t 0 z = = oc lpR C tanh lpR C pR C ( T3P + 1)( T4P + 1) oc 

0 0 0 0 0 0 

(2.3.7) 

where 

Tl = Rb Co (.40006) 

T2 = R C (.03267) 
0 0 

T3 = R C (.09253) 
0 0 

T4 = R C (. 0109 8) 
0 0 

lpR c. R tanh R ( Tlp + 1)( T2P + 1) 
z 8 8 8 8 z = % = 

SC Ip R C ( T3p 1)( T4P + 1) SC 
+ 

8 8 

(2.3.8) 

where R C (.09253) Tl = 
8 8 

T2 = R C 
8 8 

(.01098) 

T3 = R C (.40006) 
8 8 

T4 = R C (.03267) 
.8 8 
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Equation 2.3.7 anq 2.3.8 can be written in a different form by using 

partial fraction expansions and are given below. 

R (.22568) R (.10340) 
z = __!,__ + 0 + =-=-0....,..._,,.,,..,,...,,...,,..._..,... 

oc C p RC (.09253)p+l RC (,01098)p+l (2.3.9) 
0 0 0 0 0 

R (,81408) R (.07777) 

zsc ~ Rs (.l0 9l 4 )+ R Cs (.40006)p+l + R Cs (,03267)p+l 
s s s s 

(2.3,10) 

Equations 2.3.9 and 2.3.10 give insight into the behavior of-Z and Z 
OC SC 

and these functions can be synthesized by lumped RC networks and are 

given. in Figures 2.2.3a and 2.2.3b.respectively. 

The approximations Z and Z are compared to the approximations 
OC SC 

Z~c and Z~c given by Equatio~s 2.2.land 2.2.2 for the same number of 

terms in Tables 2.3.1 and 2.3.2. _ In Tables 2.3.1 and, 2.3,2 the fre-

quency wRC- is given in the first column, anq the remaining columns.are 

given in db, The errors in the approximations are defined by 

Error 1:z· c jw) I = 20 LoglO lzoc c jw) I - 20 LoglO 1:z• Cjw) I (2.3.11) oc . oc 

Error jzoc < jw) I = 20 LoglO lzoc c jw> I - 20 LoglO l:Zoc· c jw> I (2.3,12) 

Error. 1:z· Cjw>I = 20 Log10 lz (jw)I - 20 LoglO IZ' Cjw>I (2.3;13) 
SC SC SC 

Error l\c (jip) 1 · = 20 Log10 lz (jw)I 
SC 

- _20 Log10 l:Zsc (jw)I (2.3.14) 

It can be seen by Table 2.3.1 that the largest error iri the magnitude 

of Z over the range .01 < w RC < 100 is -.096db at w RC = 64. oc . 0 0 0 0 



z 
oc 

z 
SC 

• 
c 

0 

I ( 

R (. 2'.2568) 
0 

l-
I __ , 
C (,41005) 

0 

R (.81408) 
s 

C (,49142) 
s 

(a) 

(b) 

R (.0340) 
0 

~ 

C (.10618) 
0 

R ( .07777) 
s 

C (.43450) 
s 

Figure 2.2.3, Equivalent Networks for the Zoe-Element 
and Zsc-Element Which Are Valid Over 
the Range O..:. p R0 C0 .s_ 100 and 
O .:.. p Rs Cs .:.. .100 Respectively 
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w R8 C8 

.0100 

.0126 

.0160 

.0200 

.0250 

.0320 

.0400 

.0500 

.0640 

.0800 

.1000 

.1260 

.1600 

.2000 

.2500 

.3200 

.4000 

.5000 

.6400 

. 8000 
.t.000 
l.260 
1,600 
2.000 
2,500 
3.200 
4.000 
5.000 
6.400 
8.000 

10.00 
12.60 
16.00 
20.00 
25,00 
32.00 
40. 00 
50.00 
5,,.00 
80.00 

100.00 

TABLE 2.3.J. 

COMPARISON OF TWO APPROXIMATIONS FOR Z 
oc 

•--·---vv,1_ I ERROR 

I zsc < jwl I (db) iz• (jwll (db) I Z• c iw> I (db) izsc(jw)I (db) 
SC SC " 

-.00006 -.00007 .00000 -.00006 
-.00010 - .00011 .00000 -· ,00010 
- ,00017 -.00017 .00000 - .00016 
-.00027 -,00027 .00000 -.00026 
-.00042 -.00042 .00000 - .OOOlfl 
-.00069 -.00069 .00000 -.00067 
-.00108 -.00108 .00000 -.00105 
- .00169 -.00169 .00000 - .00165 
-.00276 -·, 00276 .00000 - .00271 
-.00432 - • 00432 .00000 -,00423 
-.00675 -.00674 -.00001 -.00661 
-,01071 -.01070 -.00001 - .01049 
-.01725 - , 01724 -.00002 -.01691 
-.02693 -.02690 -.00003 - .02639 
- .04199 -.04195 -.00005 -.04116 
-.06857 -.06849 -.00000 -.06721 
-.10662 - .10650 -.00012 - .10452 
- , 16534 -,16515 -.00019 - .16213 
- , 26734 -.26702 -.00032 -.26225 
-.41001 -.40952 -.00050 -.40242 
-,62292 -.62214 -.00078 - • 61186 
-.94693 -.94569 -.00124 -.93120 
-1. 4290 -1. 4270 - .00199 -1. 4077 
-2.0455 -2.0424 -.00312 -2.0191 
-2. 8397 -2.8349 -.00487 -2, 8102 
-3. 9192 -3. 9112 -.00797 -3, 8911 
-5.0430 -5.0306 -.01245 -5.0231 
-6.2540 -6.2346 -,01942 -6.2497 
-7.6218 -7.5900 -.03174 -7. 6416 
-8.8229 -8. 7735 - .04942 -8. 8864 
-9.9527 -9.8759 - .07679 -10. 007 

-11.0384 -10, 917 - , 12083 -11. 0 87 
-12.090 -11. 898 - .19201 · -12.106 
-13.041 -12.747 - . 29376 -13.011 
-13.989 -13.-545 -.44468 -13.920 
-15.050 -14.359 -.69104 -14.976 
-16.018 -15. 011 -1. 0069 -15.987 
-16. 989 -15. 560 -1. 4281 -17.029 
-18. 061 -16,036 

I 
-2.0254 -18.158 

-19 .030 -16.353 -2.6778 -19.095 
-20.000 -16.579 -3.4206 -19. 903 

20 

ERROR' 

I z < jwl I 
SC 

( db) 

-.00000 

-.00000 
-.00000 
-.00000 
-.00000 
-,00001 
-.00002 
-.00003 
-.00004 
-.00008 
-.00013 
-.00021 
-.00033 
-.00053 
- • 00082 
-.00135 
-.00209 
- ,00320 
-,00508 
-.00758 
- .01056 
-.01520 
-.02136 
- .026 41 
-.02955 
-.02808 
- , 01994 
-,00433 
-t. 01976 
-t.04193 
-t.05513 
+,04884 
+.01601 
-,03025 
-.06961 
-.07432 
-.03079 
-.04064 
-.09695 
-.06474 
- .09621 
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TABLE 2.3.2 

COMPARISON OF TWO APPROXIMATIONS FOR Z8 c 

ERROR ERROR 

w R C 
0 0 

I Zoe ( jw) I (db) iz' Cjw>I oc (db) I z~c c jw> I (db) I z Cjw> I 
QC 

(db) lz < jw> I oc (db) 

.01000 40.00006 40.00006 0.00000 40.000 -.00000 

.01260 37.99269 37.99269 0.00000 37.992 -,00000 ,01600 35, 91776 35, 91777 0.00000 35.917 +.00000 .02000 33.97966 33. 97966 
I 0,00000 33.979 +.00000 .02500 32.04161 32. 04162 0.00000 32,041 +.00001 .03200 29. 89768 29, 89768 0.00000 29. 897 +.00001 .04000 27.95987 27,95987 0.00000 27.959 +.00002 .05000 26.02228 26.02228 0.00000 26.002 +,00003 .06400 23. 87916 23.87916 0.00000 23. 879 +.00005 .08000 21. 94251 21. 94251 0.00000 21. 942 +.00008 .10000 20,00674 20.00674 0.00000 20.006 +.00013 .12600 18.00329 18.00328 .00001 . 18. 003 +.00021 .16000 15.93485 .15. 93483 .00001 15. 9 34 +.00034 .20000 14.00632 14.00629 .00002 14.005 . + .00053 

,25000 12.08319 12,08314 .00004 12. 082 +.00083 , 32000 9.96556 9.96549 .00007 9.9642 +.00135 .40000 8.06541 8.06529 .00012 8. 0633 +,00209 .50000 6.18593 6.18574 .00019 6,1827 +.00321 .64000 4.14373 4.14342 .00031 4.1386 +.00509 
.80000 2.34821 2.34771 .00049 2.3406 +.00759 1. 00000 .62291 .62213 .00077 , 61186 +.01106 1. 26000 -1. 06048 -1.06171 .00123 -1. 0762 +.01572 1.60000 -2.65331 -2.65530 .00199 -2.6746 +.02137 

2.00000 -3. 97501 -3.97813 .00311 -4.0014 +.02643 2.50000 -5 .11901 -5.12388 .00487 -5.1485 +.02957 
3.20000 -6.18376 -6.19173 , 00797 -6, 21185· +,02809 
4.00000 -6.99813 -7. 01058 . 01244 -7. 0180 +.01995 5.00000 -7.72531 -7. 74473 .01942 -7. 7296 +.00433 
6.40000 -8, 501'/G -8.53350 .03174 -8.4820 -,01977 8.00000 -9.23884 -9.28826 . 04942 -9 .1969 -.04195 10.00000 -10, 04721 -10 .12400 .07679 -9,9920 -.05516 

12. 60000 -10, 96897 -11. 08979 .12082 -10,920 -.04887 16. 00000 -11. 99203 -12.18403 .19200 -11. 976 -.01603 20.00000 -12 .97920 -13. 27295 • 29 375 -13. 009 +.03024 
25.00000 -13.96899 -14. 41366 .44467 -14.038 +.06961 32.00000 -15,05234 -15. 74338 .69104 -15.126 +,07434 
40.00000 -16.02260 -17.02952 1. 0069 ·-16. 053 + ,03081 
50.00000 -16.99036 -18,41853 1. 4281 -16 ,949 -,04063 
64.00000 -18.06173 -20. 0 8714 2.0254 -17.964 -.09695 
80.00000 -19 .03084 -21. 70869 2, 6778 -18,966 -.06475 

100.00000 ..:19,99999 -23.42068 3.4206 -20.096 +.09618 
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The largest error of Z' can be seen to be+ 3.42 db at w RC = 100 oc O O 

over the range ,01 < w RC < 100. Similarly, from Table 2.3.2 the 
0 0 

largest error in the magnitude of Z in Equation 2,3.8 over the range 
SC 

, 01 < w R C < 100 is +, 096 db at w R C = 64. The largest error in the 
s s s s 

magnitude of the corresponding approximation Z' over the range 
SC 

.01 < w.R C < 100 is -3.4 db at w RC = 100. The values for error in s s s s 

the approximations are not given in Tables 2. 3.1 and 2.3.2 for 

w R C < .• 01 (or w R C < . 01) but tests showed that there was no signi-
s s 0 0 

ficant error for w R C < .01 (or w R C < .01) in any of the approxima-
s s 0 0 

tions, Also note that the absolute value of the error in the approxima-

tions Z 1 ( or Z' ) is greater than .1 db for 
OC SC 

10 < w R C ( or w R C ) < 100. Therefore, with the same number of 
0 0 S S -

terms, the new approximations are valid over a wider range of frequen-

cies than Z' . and Z' . 
OC SC 

The methods of this section can also be applied to find an optimal 

approximation for the open circuit voltage transfer function for a URC 
) 

network. The approximation and details are given in the next section. 

2. 4 Optimal Rati<mal Approximation for the Open Circuit Voltage 

Transfer Function of a URCElement, Consider the URC element in 

Figure 2.4.1. The open circuit voltage transfer function of the URC 

element in Figure 2.4.1 is 

G (p) 
= E2 _ 1. 

El - cosh /Re p 
(2.4.1) 

Then using the methods identical to those in Section 2. 3 for Z and oc 

Zsc' Equation 2.4.1 can be approximated by the rational function 
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1 
G ( p) ~ G ( p) = --------,---. ----.,,..2 

(Tl p + l)(T; p + l)(T3 p + 1) 
(2.4.2) 

where 

'tl = RC (. 40753) 

T2 = RC (.04260) 

T3 = RC (.01496) 

The error defineq by 

e = [ I G ( jw) I - I G ( jw) I j 

is less than .16 db for . 01 < w RC < < 100. The error is not signi-

ficant for O < w RC· < .. , 01. Even though .16 · db is more than the 

assumed:standard of .1 db, it is felt that tbe ·approximation is good 

enough using four terms in the approximation. 

R ••1--~~~~~~~~~,,/\/V'---~~~~~~~~---4·· 
c 

Figure 2.4.l URC.Elemeht 



CHAPTER III 

APPROXIMATE SYNTHESIS OF RATIONAL 

DRIVING POINT IMPEDANCES WITH 

URC NETWORKS 

3.1 Introduction. In Chapter I three.methods were given that can 

be used to approximate rational driving point impedances. However, all 

of these methods are difficult to apply for the reasons given in 

Section 1.2. In this section a new method will be derived that is 

rather simple to apply and gives an accurate approximation for a given 

rational impedance. 

3.2 Synthesis of Rational RC Driving Point Impedances. The two 

driving point impedances of the URC network Z and Z were given in 
. QC SC 

Equation 2,lol and 2.1.2 respectively, an4 the infinite product ex-

pansions for Z and Z were given in Equations 2.2.1 and 2.2.2, 
SC QC 

respectively. In the_ discussion to follow infinite product expansions 

for Z and Z are used instead of the optimal approximations since 
OC SC 

they are exact for all frequencies and no computation is required in 

the discussion. An examination of the finite product expan$ions show 

that Zsc behaves as a resistor of value R8 when Cs becomes very small 

and similarly, Z behaves as a capacitor of value RC /R (or C) when 
oc O O O O 

R becomes very small. Th~s, it is clear that lumped RC functions can 
0 

be approximated if C0 and R0 can be;made very small. In general, how­

ever, R and C cannot be made arbitrarily small for applications where 
O S. 

24 
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URC networks would be applicable. This is especially true.for inte-

grated circuit applications where resistors cannot be made much smaller 

than 2 ohms/square (1). A more conservative estimate is 5 ohms/square. 

There is also a limit on how large res is tors can be made. They can be 

made with a resistance as high as 300 ohms/square and be connected in 

series to form a resistor as large as 30 K ohms (1). Thus it is 

reasonable to restrict R and R to be in the range 
S O 

5 ohms< R (or R) < 20 K ohms. The resistors in thin-film URC ele-
o s -

ments can be made smaller and also larger than they can be in integrated 

circuits. However, for the work in this section the value of R and R 
S O 

will be restricted to the range 5 ohms< R (or R) < 20 K ohms. The 
- 0 . S -

capacitance C can be controlled by reducing the width of the URC-ele­s 

ment, but there is also a practical limit to how small the width can 

be made ( 3), 

Now again consider the infinite product expansions for Z and 
QC 

Z · • An examination of the expansions shows that they have the same 
SC 

properties as RC impedance. functions except that they have an infinite 

nurnper of poles and zeros. Therefore,. it is reasonable to r>estrict 

this work to the approximation of rational RC impedance functions.· In. 

general a rational RC impedance functi.on Z(p) can be expanded in 

partial fraction form as 

K n K. 
Z(p) = K +~+ l 1 

o p . i=l ai p + 1 
(3.2.1) 

where each K, and a. are positive and real constants, and n is a posi-
1· 1 

tive integer. The synthesis of Z(p) in Equation 3,2.1 by a lumped RC 

network is classical (14). As explained in Section 3.1, each of the 
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resistors (capacitors) of a lumped RC network can be approximated by a 

Z -element (Z -element). The synthesis of Z(p) (First Foster form) 
SC OC 

in terms of these URC elements is shown in Figure 3.2.1 where the 

capacitances C for the Z -elements and the resistances R for the 
S SC O 

Z -elements are set to the smallest possible practical values. oc 

R =K 
S O 

z(s)----

R =K 
s 1 

Figure 3.2.1. Approximation for Z(p) 

R =K 
s n 

c = o K 
n 

The network of Figure 3,2.1 can b.e used in many practical applications 

where the high frequency behavior is not,important. However, the 

parameters of the network in Figure 3~2.1 can be adjusted to give 

minimum error over some assumed range of frequencies .and significantly 

improve the approximation by the same methods used in Chapter II. This 

will be the approach taken here except that optimal approximations.will 

be found only for terms of the form 
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z. (p) = 
K. 

l 

a. p + l 
l 

(3.2.2) 
l 

The terms K and K /p will be approximated as shown in Figure 3,2,1. 
0 00 

Note that the approximations are given term by term instead of for the 

entire function Z(p) (see Chapter VI) so that the results can be 

applied to an arbitrary function Z(p) which can be written in the form 

of Equation 3.2.1. 

In Chapter VI it will be shown that the magnitude plate (Bode plot) 

of an impedance function for a network with URC elements having differ-

ent RC products has a slope of -10 db/decade for high frequencies. 

Then it is clear that any approximation found will be valid only in a 

band of frequencies less than some finite maximum frequency. For the 

work here the maximum frequency will be wRC = 100 where RC is the 

largest RC product in the approximating network. The justification for 

this assumption is the same as for the similar assumption made in 

Section 2.3, 

The least square approach used in Section 2.3 will be used here 

with the exception that some of the parameters will be constrained, 

The method used to constrain the parameters in the computer program is 

given in Appendix A. The impedance of a parallel circuit consisting of 

a Z -element and a Z -element is 
OC SC 

z. (p) 
l 

z (p) z (p) 
OC SC = ---.----............... -z (p) + z (p) 

OC SC 

(3.2.3) 

where R, R, RC , and RC. are the parameters in the impedance Z.(p) 
O S 00 SS l 

of the parallel circuit. Note that if the parameters of Z. (p) are 
l 

adjusted to give an optimal approximation for 
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Z!(p) = 
K. 

l 

10 p + 1 
(3.2.4) 

l 

then Z!(p) can be made to approximate Z.(p) with an arbitr2ry value of 
l l 

a. by scaling all RC products in the approximation Z.(p). Then the 
l . l 

squared error function F, to be used. in least squares analysis is de-

fined by 

(3.2.5) 

where the constraint for R and R is given by 
O S 

5 ohms .s., R0 (or Rs)..::_ 20 K ohms, wk, k=l,2,,.,,k is such that Log10 wi' 

i=l, 2,.,, ,41 are 41 equally spaced points on the Log10w axis, and 

,01 < w. < 100. The program in Appendix A can be used to minimize F 
- l -

subject to the constraints for a given value of K •• 
l 

The results of the computer analysis for several values of K indi-

cate that F takes a minimum value when 

R = K, ohms 
s l 

R = 5 ohms (3.2.6) 
0 

R C 50 ohm-farads = 
0 0 R s 

and RC is selected from the design curve given in Figure 3,2,2. The 
s.s 

design curve for R C. was determined empirically as a function of K. 
s s l 

from the data obtained in computer runs for a range of values of K, 
l 

3 3 
1 x 10 < K. < 15 x 10 , 

- l 

3 When K. > 15 x 10 , a value of RC = ,02 ohm-
1 S S 

farads is an optimum value for RC, 
s s 

The plots of Z! < jw) 
l 

for a wide range of values of K. are given in Figure 3.2.3. 
l 

Now let E. be the error defined by 
l 

( in db) 
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.lxl0 3 3xl0 3 5x10 3 7xl0 3 9xl0 3 13xl0 3 15xl0 3 

K. 

Figure 3,2.2, Optimal Value of RC 
s s 

as a Function of K, 
l 

l. 
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K. 
Ei = 20 Log10 IZ' (jw)I - 20 Log10 110 j~ + 1 1 (3.2.7) 

Plots of error E., for a range of values of K. are given in Figures 
1 1 

3.2.4 - 3.2.7. 

It is clear from these plots that the error Ei is small for large 

values of R. = K. for • 01 < w R C < 100, and E~ becomes larger. for the 
S 1 - oo- _._ 

higher frequencies (10 < w RC < 100).as K. becomes smaller. The error 
0 0 1 

plots in Figures 3.2.4 - 3.2.7 cannot be used to find the error of the 

total approximation Z(p) for Z(p), but do provide useful data.on each 

term Z.(p), If the error E. for some Z (p) of Z(p) is too large for a 
1 1 

particular application, it.may be necessa:i:y to use a hybrid of thin-film 

and integrated circuit devices.where the parameters can be adjusted over 

a wider range of values (1). The more general procedure for appro:x:ima-

tion given in Chapter VI may also give better results when the methods 

of this section are not adequate. The method of Chapter VI may in 

general use less elements and has the added advantage of avoiding cumu-

lative error inherent in this method. However, the simplicity of the 

method in this section, where an optimal approximation for Equation 

3.2.4 is obtained makes its use particula:rly attractive when the errors 

can be kept below the acceptable level. 

The results of this section can now be illustrated by art example. 

Example 3,2,1: Consider the function Z(p) given in the partial fraction 

form 

Z(p) = 5000 8000 
--_-3-- + -----_-4-- = zl (p) + Z2(p) 
lxlO p + 1 2xl0 p + 1 

First consider z1 (p) where K1 = 5000. Then the parameters for Zi(p) 

can be found from Equation 3.2.6, and are: R = 5000 ohms, R = 5 ohms, 
S O 
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Plot of iz' Cjw) I for Different Values of K. 
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RC = 50/R = .01. Figure 3.2.2 can be used to find the value of 
0 0 S 

RC = ,118 ohm-farads. Now since the approximation z11 (p) is for the 
s s 

function 

Z'(p) = 5000 
10 p + 1 
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-3 the frequency has to be scaled by some factor T such that T • 10 = 10 . 

Then T = 10- 4 and RC and RC have to be scaled by the same amount. 
0 0 S S 

4 -6 
Then R'C' =RC • T = (.01)(10- ) = 10 ohms-farads, and 

0 0 00 

-4 -4 
R'C' =RC • T = ,118xl0 = .118xl0 ohm-farads, In the same way 

s s s s 

the parameters for z2(s) 

R'C' = (,625xl0- 2)(l0-4 ) 
0 0 

can be found as R = 5 ohms, R = 8000 ohms, 
O S 

= .625xlo- 6 , R'C' = (.624xl0-1 )(l0- 4 )=.624xl0- 5 . 

The network is given in Figure 3.2.8. 

R =5000rl 
s -4 

RC =,118xl0 rl-fd. 
s s 

Z(p)---1i;,,. 
R -5rl o-
-6 RC =10 ~-fd. 

0 0 

R =8000SJ 
s -5 

1----miR C =.624xl0 s-2-fd. 
s s 

R =Sri 
0 -6 

RC =.625xl0 fl-fd, 
0 0 

Figure 3.2.8. Network for Example 3.2.1 

The largest error in the approximation for the terms Zl(s) and z2(s) 

is E1 = -,6db and E2 = .24db respectively, at RC w = 100 (see Figure 
0 0 
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3.3 Synthesis of Rational Transfer Functions With Distributed 

Elements Using Operational Amplifiers. Recently there has been a large 

amount of interest in synthesis using operational amplifiers (15), In 

this section operational amplifiers will be used with Z -elements and 
oc 

Z -elements to obtain a realization procedure for any rational transfer 
SC 

function with constant coefficients. 

First consider the network frequently used in analog computation 

and shown in Figure 3.3.l 

eo 
l 

z. (p) 
l 

Operational 
Amplifier 

Figure 3.3.1. Network Used in Analog Computation 

e 
0 

where Zf(p) and Zi(p) are the impedance functions of the elements shown 

and the operational amplifier has a very high gain. It is well known 

that the transfer function for the networ~ shown in Figure 3.3.l is 

(3.3.l} 
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Now let Zf(p) = Z (p) and Z.(p) = Z' (p) where Z (p) and Z' (p) are 
SC 1 SC SC SC 

impedances of the form given in Equation 2.1.1 with different parameters 

Ro R0c0 and R1 R1c1 respectively. Then s' s s s' s s 

-RO tanh 
,/ Roca 

s 
p 

s s 
,/ Raco· e p 

....£.~ s s 
e. 

Rl ,/ RlCl 1 tanh s p s s 

./ RlCl 
p s s 

= R1c1 (same RC products), Equation 3.3.2 reduces to 
s s 

e 
0 -~-e. 
1 

(3.3,2) 

(3.3.3) 

Thus, it is possible to build the summing amplifier network shown in 

Figure 3,3,2 where ROCO 
s s 

1 1 = R C = ••• = s s 
RnCn and each block shown in the 

s s 

figure corresponds to a Z -element, 
SC 

The output voltage e for Figure 3,3,2 is 
0 

e ~ -
0 

O n e. 
R l ~ 

s i=l R1 
s 

(3.3.4) 

In the following, an integrating amplifier will be constructed 

using Z -elements, Z -elements and a gyrator (16). The ideal gyrator 
OC SC 

is shown symbolically in Figure 3.3.3, terminated by z1 . 

The open circuit parameter equations of a gyrator are 



e 
n 

z1 
SC 

2 
z 

SC 

• • • 
n 

z 
SC 

zo 
SC 

--::::--m--·--------------@ e 

Figure 3.3.2 .. Summing Amplifier 

1 
...... 

Figure 3,3,3, Gyrator Terminated by zL; 
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0 

Note that Zo = 1/ZL, for Figure 3.3.3. Now consider the network shown 
in 

in Figure 3.3,4 where the Z -element and Z -element are labeled. The 
OC SC 

transfer function for the network in Figure 3.3.4 is 



e 
0 

e. 
1 

where RC =RC, 
0 0 S S 

-z sc 
l 

z oc 
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-R tanh Ip R C 
s s s 

= 
Ip R C. 

s s (3.3,5) 
Ip R C tanh Ip R C 

0 0 0 0 · 

R 
0 

Then since an integrating amplifier and a summing amplifier can be 

built using distributed elements, the methods used in analog computation 

can be used to realize any given rational transfer function with con-

stant coefficients. 

z oc 
z 

SC 

Figure 3.3,4. Integrating Amplifier 

e 
0 
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CHAPTER IV 

MULTIVARIABLE IMPEDANCE FUNCTIONS FOR 

URC NETWORKS WITH ELEMENTS HAVING 

DIFFERENT RC PRODUCTS 

4,1 Introduction" This chapter deals with the definition of a 

multi variable impedance function which can be used for URC networks with 

elements having different RC products. Some new properties are derived 

for the multivariable impedance function which are useful in the synthe-

sis problem. 

4"2 Multivariable Impedance Functions. In Chapter I Wyndrum's 

method of synthesis was briefly discussed where all the URC netowrk 

elements were restricted to have the same RC products. This restriction 

can be removed by using the theory recently developed by Koga (8) on the 

synthesis of impedance functions of several variables. Impedance func-

tions of several variables are obtained for URC networks when the trans-

formations used by Wyndrum are generalized (3). The transformations for 

URC networks when the RC product is the same for each element are 

(4.2.1) 

s(p) = tanh Cap) (4.2.2) 

where a= RC, ZRC is the impedance of a URC network, z1Cis the impedance 

of ZRC under the transformation in Equation 4. 2.1 p is the frequency 

variable of a URC element, ands is the transformed domain. 
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The open-circuit and short-circuit impedance of a URC element are 

R 
z 0 

= (4.2.3) 
oc IR c p tanh IR C p 

0 0 0 0 

R tanh IR c p 
z s s s = (4.2.4) 

SC IR c· p 
s s 

Now assume that a URC network with k elements has a different RC product 
. 2 

Each of the RC products is denoted by B. = R.C. where 
J J J 

for each element. 

j=l,2, .. ,,k, Note that some of the RC products may be equal in magni­

tude but for simplicity each RC product B~ will carry a different sub­
J . 

script. It is evident that no generality is lost by this assumption. 

Now, the open-circuit and short-circuit impedances of Equations 4.2.3 

and 4.2.4 become 

R. 
z l = oc 1:2 v7 B.p tanh ip l 

(4.2.5) 

R. tanh 
~ 
B.p 

z = J J (4.2.6) 
SC IT' B.p 

J 

Using the transformations given in Equation 4.2.1 in Equations 4.2.5 

and 4. 2, 6 

R. 
z l 

= (4.2.7) 
oc CT v?" B. tanh p 

l l 

R. tanp p ~ 
z = J J 

SC v?" 
(4.2.8) 

J 
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Since each RC product is different, the transformation given.in Equation 

4.2.2 must be changed to 

s.(p) = tanh (B.p) 
J. J. 

(4.2.9) 

Using this transformation in Equations 4;2.7 and 4.2.8, the result is 

R. 
z J. = oc B.s. 

( 4. 2 .10) 
J. J. 

R.s. 
z = _LJ_ 

SC B. (4.2.11) 
J 

Therefore, the driving point impedance of a circuit with k URC elements 

with different RC products is transformed into a multivariable driving 

point function of k variables s., j=l,2, ••. ,k. 
J 

4. 3 Properties of URC Multivariable Driving Point Functions. In·· 

this section the notation URCMVDPF will be used to denote a URC multi-
\ 

variable driving point function. Existing theorems and definitions 

dealing with multivariable driving point functions which relate to this 

section are given in Appendix B. 

Theorem 4.3;1 Topological Formula Reactance Property: A necessary con-

dition that the topological formula for the dfiving point admittance 

( see Appendix B) 

y = 

to correspond to a network with k elements without.transformers is that 

Y be a reactance function of k variables, 
;j 

Proof: Consider an arbitrary graph G with k elements and let each : 

branch have an admittance·y1 , i=l,2, •.. ,k. Now using Theorem B.2.3 the 

driving point admittance Y(y 1 ,y 2 , ••• ,yk) ~an be computed fbr the graph 

G. It follows from Theorem B.1.1 that Y(y1 ,y2, ••• ,yk) is a pesitive 
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real function. This can be seen by setting y. = A.s + B,/s, where A. 
l l l l 

and B. are positive, real, and arbitrary constants. Now the correspond-
1 

ing network only has inductors and capacitors. From conventional net-

work theory, Y must be a positive real function of s for every set of 

positive constants A. and B .. Y can be shown to satisfy 
l l 

(4.3.1) 

by considering Theorem B.2.4. It follows that Y is a reactance function 

of k variables. 

Lemma 4,3,l URCMVDPF Reactance Property: A necessary condition that a 

URCMVDPF W with k variables be realizable as a network with elements of 

the form L.s. or 1/C.s. where L. and C, are positive and real constants 
l l l l l l 

is that W be a reactance function of k variables s., i=l,2, ... ,k. 
l 

Proof: To be realizable, the URCMVDPF must correspond to some graph G, 

and it follows from Theorem B.2.3 and 4~3.1 that the driving point 

function can be obtained in terms of the branch admittances and is a 

reactance function of k variables. If y. = L. s. or y. = 1/C. s. , depend-
1 l l l l l 

ing on the admittance of the branch, for i=l,2,., .,k the URCMVDPF is 

obtained. Since L.s. and 1/C.s. are reactance functions when L. and C. 
l l l l l -l 

are positive and real and since the reactance function of a reactance 

function is again a reactance function, it follows that the URCMVDPF 

must be a reactance function. 

In the previous theorem the URCMVDPF was obtained from the topo-
. !:,. 

logical formula Y = ~A~ where eacp y 1. = C.s. of y. = 1/L.s .. It 
0 11 l l l l l 

follows from Theorem B.2.4 that if the numerator and denominator of Y 

are multiplied by L.s. for every term of the form 1/L.s. in the numera-
l l l l 

tor or denominator that the result will be of the form 
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l a.PN. 
Y(s 1 ,s 2, •• , ,sk) = ---2--2:.... (4. 3. 2) 

l b.PD! 
J J 

where a. and b. are positive and real constants and PN. and PD. are 
1 ) 1 ] 

products of the elements from a subset of the set: {s1 ,s 2, ... ,sk ,iL 
Definition 4.3.1 Normal Form of the u'RcMVDPF: A URCMVDPF is said.to 

. . 

be the normal form if it has the form of Equation (4.3.2). 

Example 4.3.1: Consider the graph shown in the Figure 4.3.l, 

driver 

I 
I 

I 

I y 1 , __ 
I 
I 
\ 
\ 

3 

Figure 4. 3 .1. Graph for Example 4. 3 .1 

The graph corresponds to the topological formula for the driving point 

admittance given below 

y = Y1Y2 + Y1Y3 + Y2Y3 

Y2 + Y3 

(4.3.3) 
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(4.3.4) 

Rearranging in to the normal.form 

y = 
c3L2s 2s 3 + 11c3s 1s 3 + 1 

Ll12C3sls2s3 + Llsl 
(4.3.5) 

To aid in the proof of subsequent theorems and discussion, the 

following definitions are given. 

Definition 4.3.2 URC-Product: A URC-product is defined to be a product 

of elements from a subset of the set {s 1 ~s 2 , ... ,sk;l}. 

Definition 4. 3, 3 Degree of a URC-,-Product: The degree of a URC-product 

is defined to be the integer equal to the number of variables si in the 

URC-product. If there are no variables s. in the product, the degree is 
J. 

defined to be zero .. 

Definition 4,3.4 Irreducible Function: A function F = N/D is said to 

be irreducible if the numerator and the denominator have no common 

factors. 

Theorem 4,3.2 Reducibility of the URCMVDPF and ~/~11: Given a graph G, 

the topological formula Y = ~;~11 and the URCMVDPF for graph Gare 

reducible functions if and only if the graph G is separable. 

Proof: Assume that ~/~11 (or URCMVDPF) corresponds to some graph G and 

there are common factors in the numerator and the denominator. The 

common factors :nay be canceled and ~;~11 (or the URCMVDPF) is no longer 

a function of at least one variable y. (ors.). This is true since the . . J. J. 
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maximum degree of each variable in the numerator or denominator.is equal 

to one. Since the driving point function Y = Mt.11 (URCMVDPF) does not 

depend on some of the variables, G must be a separable graph. 

Now assume that·G corresponds·to a separable graph with components 

G1,G2, ••. ,Gn where Gi is a nonseparable graph. Then Theorem B.2.7 

implies the determinant of the node-admittance matrix·for graph G can be 

written as 

(4.3.6)· 

where A. is the determinant.of the nod~~admittance matrix corresponding 
1 

to graph Q., Let G1 be the graph tha.t becomes nonseparable when the 
1 . 

input vertices are identified. Now a 2-tree for G must have each of the 

input vertices in a separate component part of the,graph by definition. 

Since G1 is the component containing the input vertices, every node in 

Gi, i=2 ,3, .... ,n and the node common to G1 and Gi must be joined by a . 

path of elements from any 2-tree of G. Hence, every 2-tree of G has 

the elements of a tree from e~ch graph G., i=2,3, •.. ,n. It follows that 1 . . 

811 = 8111' 82' 83'' 08n ( 3 ) 4. • 7 · 

where t.i1 is the 2-tree for graph G1 and 

y = (4.3.8) 
Ai/A; .t.3 ••• 1\) . Ail 

and Y is a reducible function, The URCMVDPF corresponding to Y .must 

also be reducible. 

Since. a graph is either a separable or a nonseparable graph, 

Theorem 4. 3. 2 implies . Al t.11 ( URCMVDPF) is irreducible if and only. if the 

graph corresponding to t./t.11 (URCMVDPF) is nonseparable. The example 

given below illustrates Theorem 4.3.2. 
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Example 4.3.2: · Consider the separable graph shown in the figure below. 

6 

Figure 4.3.2, Graph for Example 4.3.2 

.. ,.---.....,-:o.""-

1::,. for the graph in the Figure 4. 3. ~ has . the form ~'"!~--~--~ ... _ 

(4.3.9) 

and Li11 for the graph has the .. form 

(4,3.10) 

Then 

!::,. 

y =·-= (4.3.11) 

Theorem 4.3.3 Uniqueness Property for !::,.//::,.11: If a given graph is non-

separable when the input vertices are identified, the topological 

formula Y = 1::,./t:,.11 corresponding to the graph is uniqu~. If a given 

realizable topological formuia Y = !::,./t:,.11 is irreducible, the graph 

correspondi~g to Y has a form unique within a 2~isomorphism (see Defini-

ti on B . 2 , 4) ._ 
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Proof: Assume that G is a nonseparable graph when the input vertices 

are identified. It is known (Appendix B) that~ is equal to the sum of 

all possible tree-admittance products for graph G where a tree-admit+ 

tance product is the product of .the branches of a tree. It is obvious 

that ~ ml)st be unique in form. Sin:iilarly , .. ~11 is unique since it is 

computed as the sum of all possible 2-tree products where the input 

vertices are in different connected parts of the graph. Theorem 4. 3. 2 

states that Y = ~;~11 is an irreducible function when the graph is non­

separab le. Hence, Y = M ~ll is unique. 

Assume that the topological formula for the DPF (driving point 

function) is realizable. and irreduc;i.ble. Then Y must correspond to a 

nonseparable graph (Theorem 4.3.2) and no terms can.be canceled from Y. 

Since Y is realizable, the set of all possible trees can be obtained 

from ~. When all of th~ elements of each tree are known, :the graph is . 

determined to within a 2-isomorphism (10), (11). 

Lemma 4.3.2 Uniqueness Property for the URCMVDPF: If a given graph is 

nonseparable when the input vertices are identified, the corresponding 

URCMVDPF in normal form is unique. If a given URCMVDPF is in the normal 

form, is irreducible, and is realizable, the graph.corresponding to the 

URCMVDPF is unique to within a 2-isomorphism. 

Proof: That the graph is unique for a given nonseparable graph follows 

from Theorem 4.3.3 since there is only one normal form of the URCMVDPF 

which can be obtained from the topological formula Y = ~/~11 (corres­

ponding to the given graph). 

Assume that a realizable URCMVDPF is given in the normal form and 

is irreducible. The normal form of the URCMVDPF can be obtained from 

~/~11 for a given graph by setting yi equal to the DPF for each.element 
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e, and by multiplying numerator and denominator by L .s. when an element 
]. ]. ]. 

of the form 1/L.s. is in the numerator or denominator, it is evident 
]. ]. 

that given the normal form,: the form of. the topological equation can be 

obtained by dividing the. numerator and denominator by the proper vari~ 

ables s. such that the result has the correct form when y. is set equal 
]. ]. 

to s. or 1/s. '(Theorem B,2.4), The constants associated with the vari-
J. ]. 

ables s. are not needed to find the form of the topological formula an~ 
]. 

may be considered to have a value of one. The variables which are used 

in the di vision of numerator and denominator cannot be identified by 

inspect:ion, but .there are only a finite number of possible divisions 
k 

that could be made (f 
i=l 

( ~) for k • variables in the URCMVDPF) , 
]. 

Now since· 

the topological formula. has a numerator with products all having a 

degree of (v-2) (see Theorem B,2.4), and each product has variables y. 
]. 

of degree one, there can be only one possible set of divisor$ that give 

the correct form for ~;~11. This implies there is only one possible 

topological formula Y = M~ll for the given URCMVDPF in normal form. 

Hence, it follows from.Theorem 4,3,3 that every realization of the 

URCMVDPF must correspond to graphs unique to within a 2-isomorphism. 

It is• apparent from Lemma 4; 3,2 · that there is no single network 

which realizes all possible "uRC"MVDPFs, A given graph with k arbitrary 

k elements of the form si (or l/s1 ) gives only 2 possible normal forms 

for the URCMVDPF, The cons tan ts of the URC-products can be varied by 

changing element values (in the URCMVDPF) but are interdependent. 

Theorem 4, 3, 4 Degree and Ordering of the "GRC"-Products of a URCMVDPF: 

Every realizable URCMVDPF in the normal form must have the following 

properties: 

i) The numerator or denominator have URC-products of only even 

.: :_;~,.-
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or only odd degree, and further, if the denominator has only 

URC-products of even degree, then the numerator always has URC-

products of only odd degree and vice versa. 

ii) The highest degree of the numerator URC-products and highest 

degree of the denominator URC-products must differ by one. 

iii) The numerator (or denominator) with URC-products of even degree 

or odd degree (odd or even degree) has all URC-products of de-

gree r, m .::._ r < u and no others where r is either even or odd, m 

is the degree of the URC-product with maximum degree, and u is 

the degree of the URC-product with minimum degree. The integer 

u for the numerator must differ by one from the integer u of the 

denominator. 

Proof: It has been shown that the normal form of a realizable URCMVDPF 

W with k variables can be written in the general form as 

w = 
a.PN. 

l l 

b.PD. 
J J 

where PN. and PD. are URC-products and a. and b. are positive constants. 
l J l J 

A necessary condition for W to be realizable is that W be a reactance 

function (Lemma 4,3,1). Then by the definition of a multivariable 

reactance function (see Appendix B) 

If N denotes the numerator of Wand D denotes the denominator of W, then 

either N(s 1 ,s 2 ,,.. ,sk) = N(-s 1 ,-s 2 ~ •.. ,-sk) and D(s 1 ,s 2 , ... ,sk) -

-D(-s 1 ,-s 2 ,.,.,sk) ~N(s1 ,s 2 ,,..,sk) = -N(-s 1 ,-s 2,,..,-sk) and 

D(s 1 ,s 2 , ... ,sk) = D(-s 1 ,-s 2 , ... ,-sk). Now if D = D* (*indicates each 

variable s. is replaced by -s. ) , then D = l b . PD. implies each PD. is 
l . l J J J 

of even degree. Similarly if N = N*, then each PN. is of even degree. 
l 
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Further if D = -D*, · then each; PD; · is of odd degree, and if .N _ -,N,'¢, then 
J 

each PN. is of odd degree. This gives property (i). 
1 

Now let s. = p for i=l,2, ••• ~k in. W. Since W is a reactance func.,-
1 

tion of k variables, it follows from the definition of a multivariable 

reactance function that the . function . obtained_ is a reactance: function.· 

of one variable (an·. LC fucntion) •. If there are no cancellationf;l of 

some f(p) whens. = p for every i, properties (ii) and (iii) follow 
1 

directly, If a function f(p) ~be canceled from W when si = p 

i=l,2, •.• ,k, then.W can be written 

W = n f(p) 
d f(p) 

where n/d is an LC function of p, Let m1 be the highest power of p in 

n f(p),. and let m2 be the.highest power.of pin d f(p), then from the· 

properties of LC function~ it follows that l:m1-m2 ! · = .1, and therefore 

property (ii) follows . N 0w using property ( i) and using the propertie$ · 

of LC functi9ns it follows.that f(p) is a polynomial with only odd or 

even powers of p. Let the highest and lowest powers of pin f(p) be 

q1 and q2 respectively. Note that n has o~ly odd (or even) powers of 

p, and d has only even (or odd) powers of p. Now let u1 be the lowest 

power of p in n and u2 be· the lowest power of p in d. • For n (or d) 

with even powers of p, all even powers must be present betwee~ 

m1 and u1 = 0 (m 2 and u2 = 0). Similarly, for n (or d) with odd powers 

of p all odd powers of p must be present between m1 and u1 = 1 

(m2 and u2 = 1). Now the. highest p0wer of p in n f(p) must be 

m' = m1 + q1 and the lowest power must be u' = u1 + q 2• Similarly, the 

highest power of p in d f(p) must be m" = m2 + q1 and. the l0west must be 

u" = u2 + q2• All even or odd powers (which ever is appliqable) are 
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present between m' and u' (m" and u"), That I u' - :u" J = 1 can be shown 

in the same manner used to establish (ii), Therefore (iii) follows. 

Example 4.3.3 below is used to illustrate Theorem 4.3.4. This 

example illustrates some of the differences between ·multivariable re-

actance functions and one variable reactance functions. 

Example 4.3.3: Consider the realizable tiRcMVDPF function (reactance 

function) given below in normal form 

(4.3.12) 

Note that there is no URC-product of first degree in the numerator or 

of zero degree (a constant) in the denominator. Let si = p. Then 

_ __.P....,P ..... P ___ = p 
pp+ pp+ pp 

Note that the equation above does not have LC function form until after 

the cancellation of p2 , and Eq~ation 4.3.12 satisfies .(i), (ii)~ (iii) 

of Theorem 4.3.4. 

The conditions in Theorem 4.3,4 may be thought of as ne~essary 

conditions for a URCMVDPF in normal form to be a reactance function or 

to be realizable. However, the conditions are not sufficient for a 

function to be a reactance function as can be shown by the following 

example, 

Example:4,3.4: Consider the multivariable function 

W-= (4.3.13) 

which satisfies Theorem 4.3.4. It will now be shown that Wis not 
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positive real (see Appendix B for a definition), Let s 1 = .01 /60°, 

-6 
s 2 = ,01 /-20°, and s 3 = 10 /-89°, Then rearranging Equation 4.3.13. 

8182 
--+ 
-83 w = 
8182 + 

Substituting the values for s 1 ,s 2 , and s 3 

w = 

In Equation 4,3,15 

and 

Therefore W can be approximated by 

81 

1 
( 4, 3 .14) 

(4,3.15) 

(lo - 2 ~ )( 10-: 2 l=.2.l22 ) 

(lo- 6 /-89°) 

(10- 2 ~)(10-2 /-20°) 
100 /129° ------------= 

10-6 /-89° 

which has a negative real part, This implies Wis not positive real 

and cannot be a reactance function, 



CHAPTER V 

SYNTHESIS OF DRIVING POINT FUNCTIONS OF URC 

NETWORK WITH ELEMENTS HAVING 

DIFFERENT RC PRODUCTS 

5,1 Introduction, This chapter deals with a new method for the 

synthesis of the driving point function of URC networks having elements 

with different RC products. In the realization, transformers and gyra~ 

tors are not used. One by-product of this method can also be used in 

finding the graph corresponding to the classical topological .formula for 

the driving point admittance (11), 

5.2 Basis for the Synthesis of URCMVDPFs. Koga (8) has given a 

general synthesis procedure to realize multivariable functions. 

Further, he has given the necessary and sufficient conditions for the 

realization. Unfortunately, the synthesis procedure in general requires 

transformers. Since transformers cannot be used in most applications 

where URCMVDPFs are applicalbe, a method that does not require trans~ 

formers is desirable. Further, it is desirable that the method be easi­

ly programmable on the digital computer. To develop a procedure having 

these properties, it is necessary to consider some fundamental proper­

ties of circuits of.a graph since the synthesis method to be developed 

consists of finding a circuit matrix corresponding to the URCMVDPF. 

Theorem 5, 2, l Placement of Elements in a Circuit: A necessary and 

sufficient condition that any two elements in a graph can be placed in a 

55 
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circuit is that the graph be nonseparable. 

Proof: Assume any two elements of a connected graph G can be placed in 

some circuit. Then no cut vertex can exist in G since any two vertices 

can be joined by at least two different paths containing different ver~ 

tices, and G is nonseparable by defini ticm ( 10), 

Assume graph G is nonseparable, Then no cut vertex exists by 

definition. Since the graph is connected, any two vertices va and vb 

can be joined by a path of elements ea, e 1 , e 2 , , , , ,en, eb (e incident 
a 

Let v be a vertex incident withe and 
a 

different from v, Then since v cannot be a cut vertex there must be 
a 

another path connecting va and vb not containing v (10). Therefore, a 

circuit exists that contains any two elements ea and eb. 

The importance of Theorem 5.2.1 is ·that it insures that any element 

of a nonseparable one port network N with graph G can be placed in a 

circuit with the driver of the network, It follows that each element e. 
l. 

can be seen as the driving point function of the network Ni obtained 

from N by, taking a circuit which has a set of elements including ei and. 

the driver, by short-circuiting each element in this circuit except the 

driver and e. and by open-:-circuiting the remaining elements of N. 
l. 

Assume that W is a URCMVDPF which can be realized b:y a network N. 

Then URCMVDPF W can be written in the form (see Section 4.3) 

l a.PN. 
y l. J. (5.2.1) = 

l b.PP. 
J J 

where a. and b. are positive constants and PN. and PD .. are URC-products. 
l. J l. J 

Since-each s. in each of the URC-products has a degree of one, it 
. l. 

follows that every URCMVDPF with k elements can be written in the form 
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w = 
As. + C 

l 

B s. 
l 

+ D 
(5.2.2) 

where A, c, B, and D are polynomials with (k-1) variables s . ' 
J 

j=l,2, ... i-1,i+l, ... ,k. Some of the polynomials A, B, c. and D may be 

identically zero. The possible cases are: A, B, c, D "/:. O; A - o, 

B, c, D t o· ' A - 0' D - 0, B, c t O· 
' c - 0' A, B, D "/:. o· ' c - 0' B - 0' 

A, C, D °F O; B - o, A, C, D °F O D = O, A, B, Ct O. All other cases 

either give an undefined W, a W _ o, or a W that is not a function of 

all k variables. 

Since it is known that W corresponds to a network with elements 

having the impedances of the forms. or 1/s., each of the limits 
l l 

c lim W = i5 
S,-+ 0 

l 

A 
lim W = 

B s.-+ co. 
l 

(5.2.3)· 

(5.2,4) 

must correspond to either short-circuiting (open-circuiting) or open-

circuiting (short-circuiting) the element corresponding to the variable 

s. respectively. At this point the type of element (L.s. or 1/C.s. ) is 
l l l l l 

unknown. This information must be obtained before the limits of 

Equations 5.2.3 and 5.2.4 can be related directly to an open circuit or 

to a short circuit operation on the network. It .is important to note 

that when a URCMVDPF is written in the form of Equation 5. 2. 2 the limit 

as si goes to zero or infinity can be obtained by inspection, and if the 

URCMVDPF W has k e le men ts , the limit of W as s . goes to zero or infinity 
l. 

is equal to either zero (a short circuit), or infinity (an open circuit) 

or a function of (k-1) variables. 



Previously it was shown that each element ei c~n be placed in a 

circuit with the driver, and as a result, the impedance of each e, is 
1 

given when the proper elements are open-circuited or short-circuited. 

Then if the limit is taken of Wass. goes to zero for (k-1) of the k 
1 . 

variables, and if the proper limits are chosen (s.+ o ors.+ 00 ); the 
1 1 

result will be a function equal to the driving point function of any 

chosen element e, of the network, It will be evident from the example 
J 

58 

given below that there may be more than one set of limit operations that 

give a result equal to the driving point function of an element even 

when· there is only one circuit containing the driver and the element, 

The following definition will be made as an aid in the example and sub-

sequent work. 

Definition 5, 2 .1 Set of Open-Circuits and 8hort-Circui ts Sij: . Let G be 

a graph with k elements e., Then let e. denote that e. is short-cir-
1 1 1 

cuited, ~ denote that ei is open-circuited, (ei) denote that ei is not 

open-circuited or short-circuited. Then S., is defined to be a set of 
1] 

operations em (or .::m) where i identifies the element ei given as the 

driving point function (DPF) and j identifies one such set. 

Example 5,2,1: Consider the graph shown in Figure 5.2.1. 

Then 831 = {el,~2,(e3)'~4'~5,(ed)}, 832 = {~l,e2,(e3)'~4,e5,(ed)}, 

833 = {~1'~2,(e3)'~4'~5,(ed)}, 834 = {~l,e2,{e3)'~4'~5,(ed)}, 

S35 = {~1 ,~2 ,(e 3),~ 4,e 5 ,(ed)}, give a network having the driving point 

function (DPF) of e 3 , Similarly, s11 = {(e1 ),~ 2 ,~ 3,~ 4,e5 ,(ed)}, 

812 = {(el),e2,~3'~4'e5,(ed)}, and 813 = {(el),e2,~3'~4'~5'(ea:)} give 

a network having the DPF of e1 . 

All possible sets s3j (or 81j) have been given in Example 5,2,1 

(for elements e 3 and e 1 )~ Therefore, any circuit containing the driver 



59 

and e 3 (or e1 ) must correspond to at least one of the sets s 3j (or s1j). 

Further, the sets s33 , ,s13 , and s11 correspond to the rows of the c-cir­

cuit matrix (see Appendix B) for the graph of Figure 5.2.l given in the 

matrix 

l 2 3 4 5 d 

0 0 l O O l 

l O O O l l 

l l O O O l 

Some of the S, .'shave short circuits which may not be needed to obtain 
l] 

the DPF of ei' In Example 4,4,l the set s 32 = {~ 1,e 2 ,(e 3),~ 4 ,e 5 ,(ed)} 

gives the DPF of e 3 , but elements e 2 and e 5 need not be shorted to give 

the DPF of e 3 since s33 = {~1 ,~ 2 ,(e 3),~ 4 ,~ 5 ,(ed)} also gives the DPF of 

e 3, Figure 5,2,2 illustrates this particular point, 

driver 

I 
I 

I 
I 

1W 3 
\-
\ 
\ 
\ 
\ 

5 

___ 2 7 
/ l 4 

Figure 5,2,1, Graph for Example 5.2.l 

As can be seen, the graph shown in Figure 5.2.2 is separable when the 

element e 1 is open,-circui ted, The DPF W' is not a function of e 2 and e 5 . 

and therefore, s 32 and s33 give the same result. 



5 
I / 

/ 

I / 
/ 

I / 
/ 

driver 1--!'.. 3 4 /']_ 
/ 

I / 
/ 

\ _,,.--\ ---
Figure 5,2,2, Graph of Figure 5,2,l With e 1 

Open-Circuited 
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Example 5,2,l and the related discussion were developed in terms of 

open circuits and short circuits, but the same results can be obtained 

in terms of sets of limit operations (s.-+, o ors.-+ 00 ) for (k-1) vari-
J. ]. 

ables, The principle difference is that the limit operations pertain 

to a DPF Winstead of directly to the graph, Now the relation between a 

set of (k-1) limit operations and a circuit will be derived by consider-

ing a one-port network (having a driver and k elements) with graph G and 

corresponding to the URCMVDPF W, First select the set of circuits {S .. } 
]. J 

of graph G having element ei anded in each circuit, Then select the 

circuits from {S .. } having a minimum.number of elements (there may be 
]. J 

more than one circuit having the number of elements equal to the mini-

mum), Each of these circuits can be denoted c .. where i corresponds to 
]. J 

one of the circuits having e. and the driver and a minimum numb~r of. 
]. 

elements (j=0,1,2,,, ,,n. where n. is the number of such circuits for 
]. ]. 

each i), Now a subset of the set of circuits {c .. , i=l,2,.,, ,k; 
J.J . 

j=l,2,.,,,n.} must be the set of all circuits ha:ving the driver as an 
]. 

element since each element e. is included in some circuit c .. , This 
]. J.J 

subset will be denoted by F for use in the subsequent discussion in 
c 
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this chapter. Note that the word.subset is used because some of the 

circuits e .. may be identical (be the same circuit). Now a subset of 
. 1] . 

F containing e-v+l circuits will be shown to be an independent set_ of -
c 

circuits where e is the number of elements and vis the number of ver-

ti ces ( of G) , 

Theorem 5,2,2 Independence of Circuits: Let G be the nonseparable 

graph of a one-port network, and_ let F be the set of all circuits for 
c 

graph G having the driver as an element. Then a subset of the circuits 

of Fe is a set of e-v+l independent circuits (the subset of F0 corres­

ponds to a circuit matrix of maximum rank). -

Proof: Let F be the.set of all circuits containing the driver for 
c 

graph G _ ( corresponding to a one-,-port network), Now assume there exists 

a circuit ex independent of the set of circuits Fe not containing the 

driver. Then there exists a circuit c1 of the set Fe having at least_ 

one of the elements,contained in ex (any element can be placed in a 

circuit with the driver). Let Pxl be a path of elements that c1 and ex 

have in common, and let v1 and v2 denote th,e vertices incideqt at each_ 

end of path Pxl' Then there exists a path P1 connecting v1 and v2 and 

containing _the d:r;iive:t:1 (using el_ements from c1 which. are not contained in 

Px1 ).· Since ex is·a circuit, there exists a different path .from Pxl' 

P x2 , connecting v 1 and v 2 and containing the e l_ements of ex not contain-:­

ed in Pxl~ Then the driver, and elements from P1 and Px2 form.a cir-

(which ' ) cuit c2 is one. of the circui,ts of F and the driver and elements c 

from pl and P 1 form the circuit c1 • x . . Now it follows that the ring sum 

(mod. 2 sum) of c1 and c2 is c x 
( 10). Therefore, c is not.independent x 

of the set of circuits F, and F has e~v+l independent circuits. Al-
e c 

though. F h.a:s. e-v+ 1 independent circuits, the _number of. circt.1i ts in F 
c c 
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may be greater than e-v+l. Thus a subset of F has e-v+l circuits which . c 

are independent and correspond to a circuit matrix of maximum rank. 

It will be shown that the set of circuits F (defined earlier) can . c . 

be found from the sets of (k-1) limit operations that give the DPF of 

each element e;, Earlier it was shown that the DPF of each element e; 
i i 

can be found for a given realizable TIR'c'MVDPF W of k variables by taking 

some set of (k-1) successive limits (sj+o or sj-+oo for each j, j ii) of 

W, Therefore, the type L.s. (or 1/C.s.) and. value L. (or C.) can be 
i i i i i i 

found f9r each element e. and each of the (k-1) Umi ts can be identified 
i 

as either corresponding to a short circuit or an open circuit in the 

network corresponding to W. From Example 4.4.1 one can observe that it 

is possible to obtain the DPF of some element e from-several different 
q 

sets of (k-1) limit operations. Now consider all possible sets of (k-1) 
. . (k~l) 

limit operations that might give the DPF for some e . There are 2 
q 

possible ways to take (k-1) limits (s.+o or s,-+oo for each ii q can be 
i i 

represented by a binary bit O or 1 and the set of (k-1) limit operations 

can be represented by a pinary number) and each set must be. tested to. 

see if it will give the DPF of the element e . 
q 

· (k-1) 
Some of these 2 

sets of (k-1) limit operations may give a result equal to zero (a short 

circuit), or infinity (an open circuit) and_ therefore, do not give the 

DPF of e , Further, some of the 2(k.:...l) sets of (k-1) limit. operations 
q 

may give the DPF of e (see Example 4.4.1). However, when the sets of 
q 

(k-1) limit operations.having a minimum number of limits corresponding 

to shorts and giving the DPF of e are selected from fuhe 2(k-l) 
q 

Possible sets of (k-1) limit operations fore , each of the limits . q 

corresponding to a short circuit.corresponds to an element in one of 

the circuits c ., j=l,2, ... ,n (c .. is defined above). Thus,. the set of 
qJ q qJ 



circuits {c .. , i=l,2, ... ,k; J0 =1,2, ... ,n.} can be found by considering 
lJ l 

(k-1) . (k-1) the k 2 sets of (k-1) limit operations (2 for each element). 

Now let F i:igain be defined as the subset of {c .. i=l,2, ..• ,k; 
c l] ' 

j=l,2, ... ,n.} such that each circuit is not identical to any other 
l 

circuit and all circuits having the driver are in the set. Then the 
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circuit matrix B of e-v+l rows with maximum rank where e, the number of 

elements and v, the number of vertices, can be found from F by finding c 

e-v+l independent circuits of F, Note that if the given URCMVDPF has 
c 

k elements and a driver, then e = k+l. Also note that the number of 

vertices v can be found by using Theorem B.2.4, The e-v+l independent 

circuits can be found by finding the largest nonsingular determinant 

(mod 2) of the matrix corresponding to F. Without losing any general­
c 

i ty the circuit matrix B given earlier can be written in the. form 

(5.2.5) · 

where B1 is a nonsingular matrix (mod 2) of order (e-v+l) x (e-v+l) and 

B2 is a matrix.of order (e-v+l) x (v-1), Since B1 is a nonsingular 

matrix, B can be premultiplied by B~1 (mod 2) to give the fundamental 

c-circuit matrix (see Definition B.2,6); 

the result is 

-1 
Then premultiplying by B1 , 

Bc = B~l [BJ = [ U l B~l B2] = [U: E] (5.2.6) 

where U is a unit matrix of order (e-v+l) x (e-v+l) and E = B~1 B2 is a 

matrix of order (e-v+l) x (v-1). Each column of U corresponds to a 

chord of some tree T and each column of E corresponds to a tree branch 

of T ( 10), 

Finally, the graph corresponding to B can be found by using the 
c 

well-known methods (17). Therefore, the procedure given above is one 



method of realizing a realizable URCMVDPF and is summarized in the 

following steps where Wis assumed to be a realizable URCMVDPF: 

L 
0 (k-1) Find the element values and types by using all k e 

sets of (k-1) limit operations on W. 

2, Find the set of circuits {c .. , i=l,2,, .. ,.k; j=l,2~···,n.} 
lJ l 

by locating the sets of (k-1) limit operations having limits 

corresponding to a minimum number of short circuits and 

giving the DPF of e. for every i. 
l 

3, Find F from {c .. i=l,2,, ,,,k; j=l,2,,,,,n,} by inspection. 
c l] l 

4. Find 

form 

5' Find 

(e-v+l) 

B = [Bl 

-1 
Bl and 

independent circuits in F and write in matrix 
c 

! B2] where b1 is of rank (e-v+l), 

then find BC=[~ l B~1 B2]· 

6. Realize B as a graph of k elements with a driver, c . 
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The synthesis method above can be used to find the network to real-

ize any given realizable URCMVDPF, but it is clear that the method would 

not be practical for a URCMVDPF having a large number of variables s. 
l 

since k 2(k-l) sets of (k-1) limit operations need to be found, A much 

more efficient method will be derived in the next section, However, the 

work here does form a basis for all subsequent work and the above syn-

thesis procedure is illustrated by the following example. 

Example 5,2.2: Consider the realizable URCMVDPF Z given below 

z = 
6 s 2s 3 + 2 s 1s 3+ l 

(5.2.7) 

Since there are three variables, there are 12 ( 2(k-l) = 3,/) sets 

of (k-1) limit operations. The notation illustrated by the equations 

below will be used to simplify the notations, 
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Lz(s.s.) = lim (lim Z) 
l J s; -+oo s. -+oo 

·i J 

Lz(s.s.) = lim (lim Z) 
-l-J 

s. -+o s. -+o 
l J 

Lz(s.s.) = lim (lim Z) 
l-J s.-+<x> s .-+o 

l J 

LZ(s.s.) = lim (lim Z) 
-l J 

s. -+o s . -+oo 
l J 

Then the 12 sets of (k-1) limits are 

LZ(s l 's2) = 00 

1 z( 81'~2) = 1/2 83 

1z(~l ' 82) = 0 

1 z(~l '~2) = 0 

Lz(s2 ,s 3) = 0 

1z( 82'~3) = sl 

1z(~2' 83) = 0 

1z(~2 '~3) = sl 

1zcsl's 3 ) = 3 82 

1 z( 81'~3) = 00 

1z(~l ' 8 3) = 0 

1z(~l'~3) = 0 
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The sets that give the DPF of e 1 , e 2 , and e 3 are 

Since the type and value of each element is now known, the limits in the 

above equations can be identified as corresponding to either open cir-

cuits or short circuits, The equations giving the DPF of e, and having 
l 

a minimum number of short circuits can be found for each e, to be 
l 

Then the set of circuits corresponding to Equation 5.2.8 written in 

matrix form is 

l 2 3 d 

ell 

=I: 
0 0 l --, 

c21 l l l (5,2;9) 

c31 L a l l l 

Note that c21 and c 31.are the same circuits, The duplication occurs 

becuase the DPF of each element in a circuit can be given by short-

circuiting all other elements in the circuit and open-circuiting the 
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remaining elements in the network, So for a circuit with n elements· in 

some graph ( excluding the driver), there will be n duplications, Now 

from Equation 5,2,9 the matrix F corresponding to the set F (eliminate 
c c 

duplications) can be written as 

F = c 

l 2 3 d 

l O O l 

0 l l l 

Note that F in the above equation has two indepen9,ent circuits which 
c 

can be found by inspection and further, F already has the form of. the 
c 

fundamental c-circui t matrix B = [U : E], B can now be realized as a 
c c 

graph G and the result is given in Figure 5,2,3a, The network corres-

ponding to G is given in Figure 5,2,3b, Where the schematic symbols for 

an inductor and capacitor are used to distinguish betweeri the two types 

of elements , 

2 
d 

(a) (b) 

Figure 5,2.3, Realization for Z 

5, 3 Synthesis of Realizable URCMVDPFs, The synthesis method 

developed in the previous section can be simplified by the next theorem 
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which eliminates much of the unnecessary checking of limits, The 

theorem applies to a general class of functions including the URCMVDPF. 

For simplicity the following notation will be used in the theorem, 

Let LW be a function of n variables xi' i=l,2,o oo.,k wqere xi= 

Further, let 

and let 

LW (si) = Lim. W 
S, -+oo 

l 

Lw ( s . ) = Lim w 
-l. 

S, -+ 0 
l 

Lim { Lim W } 
s. -r00 s. -+o 

l J 

Note the order in which the limits are taken. 

s. or s .. 
l -l 

Theorem 5,3,l URCMVDPF Limit Theorem: Let W be an irreducible function 

of k variables which can be written in the form 

w = 
lb.PD, 

J J 

where a. and b. are positive and real constants and PN. and PD. 
l J l J 

(PN. i PD.) are URC-products, Then: 
l J 

(5.3.1) 

i) W can be reduced to one of the forms a./b.s or ais /b. for 
. l J u u J 

each u=l,2, '·,, ,k by a set of (k-1) limit operations if and 

only if there exists at least one pair PN. and PD. with their 
l J 

respective coefficients such that 

a.PN. 
l l 

b.PD. 
J J 

= 
a. 

l 

b. 
J 

s 
u or 

a. 
l 

b. s 
J u 

(5,3.2) 

ii) When a pair PNi and PDj exists which satisfies Equation 5.3.2, 
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a set of (k-1) limit operations that gives a.s /b, or a,/b,s is-defined 
1 U J 1 J U 

by 

wheres, = s. ifs, is in both URC~products PN. and PD., and x, = s. if 
1 1 1 _ - . _ 1 ] 1 -1 

s 1• is not in both URC-products PN 1• or PD. for i=l,2, ... u-1,u+l, ••• ,k. 
J . 

Proof: Assume there exists a pair of URC-products PN, and PD, with 
1 J 

their respective coefficients a, and b. in Equation 5.3.l that satisfy 
. 1 J . 

Equation 5.3.2. A limit of (k-i) variables, will now be shown to exist 

such that L w= aisu/bj or ai/bj~u'. Now let Y be the URC-product of 

elements which are common to PN. and PD, (PN, = Y and PD, = Ys or 
1 ] 1 ] u-

PN. = Ys and PD.= Y). Since some of the other URC-products PN and 
1 U ] q 

PDr in Equation 5.3.l may have Y as a factor, then Equation 5.3.l can be 

written in one of the two forms 

a.Y +la PN' Y +la Pn w _ 1 q q n n (5.3.3) 
b , Ys + l b · PD' Y + l bm PDm· 

J u r r 

a.Ys + l a PN' y + l a PN 
1 u q q n n w = 

b.Y + l b PD 1· y + l b PD 
J r r m m· 

where PN = PN' Y and PD = PD' Y and PN and PD are URC-products not 
q q r r. n m 

having Y as a. factor in Equation 5, 3, l. Now considering the un.it of W 

as Y + 00 ,. there are two possible cases corresponding to Equation 5. 3. 3 

and 5. 3. 4, 
a. + l a PN' 

1 q q W' = Lim w = (5.3.5) 
b.s 

.. 
+ l b PB' y + 00. J u r r 
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a.s + a PN' 
W' = Lim 

y. 
w - J. u q q (5,3.6) 

b. + 
J 

b PD' 
r r 

Let Z be the set of elements which are not in the UR(:>-products PN. and 
J. 

PD. and take the limit of W' in Equations 5,3.5 and 5,3,6 as each of the 
J 

s. in Z go to zero, (Note that the set of elements in PN' and PD' is a 
J. q r 

subset of the set Z), Then W' in Equation 5,3.5 and 5.3,6 reduces to 

one of the forms indicated by W" below, 

a. 
W" 

J. = b.s 
(5,3,7) 

J u 

a.s 
W" 

J. u = b. 
(5,3,8) 

J 

Therefore, it follows from Equations 5, 3, 5 - 5, 3, 8 that the limit LW of 

(k-1) variables where x. = s. for each elements. in the set Y and 
J. J. J. 

}C = s. for each element in the set Z is equal to either a.s /b. (or 
J -J J. u J 

a./s b.), Thus, part (ii) of the theorem is proven (and the "sufficien­
J. u J 

cy" in part ( i)) , 

Now assume that a limit LW of (k-1) variables is equal to either 

a.s /b. (or a./s b.), It will now be shown that there exists a pair of 
J.U J . J. U] 

URC-products PN. and PD. with their respective coefficients a. and b. 
J. J . . J. J 

such that they satisfy Equation 5,3,2. First consider Equation 5.3.L 

Since each variables. is of degree one, W can be written in the form 
J. 

A s + c 
w w 0 m 0 = = 

0 
B s +· D 

(5.3.9) 

0 m 0 

where A , B , C , and D have at most (k-1) variables and are not 
0 0 0 0 

functions of sm, Now assume xm ,is a variable corresponding to the first 
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limit taken in the sequence of limits in the assumed limit LW of (k-1) 

variables (m -:/ u), Then note that_ LW (s ) = A IB and LW (s ) =CID m o o -m o o 

where A IB (CID) must be defined, finite, and nonzero if x = s o o o o m m 

( x = s ) is the form of the variable x of the assumed limit LW of m ~ m 

(k-1) variables since LW of (k-1) variables is defined; finite and non-

zero, Now w1 

5,3,9 as 

= A IB (CID) can be written in the form of Equation 
0 0 0 0 

A C 
W =~(or~)= 

l B D 
0 0 

Ai sr + cl 

Bi sr + Dl 
(5,3,10) 

where rt m and r-:/ u and A1 , B1 , c1 , and D1 are a function of at most 

(k-2) variables, Now since the assumed limit LW is defined, finite, and 

nonzero at each step of the sequence of limits it represents, the pro-

cess can be repeated until the function Wk-l is given as 

= 
a,s 

l u 
-i;-:-

J 

or 
a, 

l 

E":s"" 
J u 

(5.3.11) 

where the assumed limit of (k-1) variables LW is equal to Wk-l' 

In the above discussion, it was shown that the form given in 

Equation 5,3,9 can be used in each step to obtain Wk-l from W = W0 

and that Wk-l is equivalent to the assumed limit of LW of (k-1) vari~ 

ables, It will now be shown that the process can be reversed and the 

form of each W. (i=O,l,2,.,_,,k-1) can b~ reconstructed starting from 
~~ l . 

the assumed limit LW of (k-1) variables, 

First consider the function Wk-l which can be written in one of 

the two forms 

a,s 
l u 

= = 
~ 

J 

Ek-1 + Gk-1 

F k-1 + Hk-1 
(5,3.12) 
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(5,3.13) 

where Ek-l = a1su (or a1 ), Fk-l = bj (or bjsu), Gk-l = Hk_ 1= 0 (Note 

that Ek_ 1/Fk-l = a"s /b" or a./s b"). Then let x, r "¥ u, correspond to 
lU] l U] r 

the last limit taken in the sequence of limits LW or (k-1) variables, 

Then if xr = sr' Wk_ 2 where Wk-1 = lim Wk_ 2 can be written 

Ak-2sr + ck-2 

Bk-2sr + Dk-2 
= 

s -+oo 
r 

(Ek-1 + Gk-l)sr + Gk-2 

(Fk-1 + 8k-l)sr 8 k-2 
= 

Ek-2 + 8k-2 

Fk-2 + 8k-2 
(5.3,14) 

• s . 
r 

Further Gk_ 2 and Hk_ 2 are not 

functions of s and may be zero. 
r If xr = ~r' Wk_ 2 where Wk-l = lim Wk_ 2 

s +o 
can be written in one of the forms given below 

Ak-2sr + ck-2 

B l-2sr + Dk-2 
= 

Ak-2sr + Ek-1 + 8k-l 

Bk-2sr + Fk~l + Hk_:_l 
= 

Ek-2 + Gk-2 

FK-2 +HK_:_2 

where Ak_ 2 and Bk_ 2 are equal to the sum of URC~products, 

r 

(5.3.15) 

Ck-2 = Ek-1 + Gk-1' Dk-2 = Fk-1 + 8k-l' Ek-2 = Ek-1' Fk-2 = Fk-1' 

Gk-2 = Ak-2sr + Gk-1 and 8k-2 = Bk-2sr + 8k-l 

Ak-28 r + Ck-2 

Bk-2sr + Dk-2 
= 

(Ek-1 + Gk-l)sr + Gk-2 

(Fk-1 + 8 k-l)sr + Hk-2 
= 

Ek-2 + Gk-2 

Fk-2 + 8k-2 
(5.3.16) 

s ' r 
Note that 

Ek-l' Gk-l' Fk-l' and Hk-l are not functions of sr and therefore 
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;im+owk_2 = Ek_/Fk_2• Also note that Ek_ 2 and Fk_ 2 of Equation 5.3.14 .... 
~r 
5,3,16 are such that Ek 2/Fk 2 = a.s /b. (or a./s b.), Since Equation 

- - 1 U ] . 1· U] 

5, 3, l.2 has the same for.m as ':Equations 5, 3.14 - 5. 3.16, the process can 

be repeated and every W., i=0,1,2,, .. ,k-l has the form 
. 1 

w. = 
1 

E, + G. 
1 1 

Fi+ Hi 
(5,3.17) 

where E. and F. are URC·products (with ·coefficients a. and b.) such that 
1 1 1 ] 

E./F. = a.s /b.-(or a./b.s ), and G. and H. are equal to the sum of URC-
1 1 1 U ] 1 ] U 1 1 

products, Since W = W0 , the "necessity" of part (i) is proven. 

To simplify subsequent work the following definition is given, 

Definition 5,3,1 URC-Product Ratio Pij: If Wis a function of the form 

given in Equation 5,3,l, a URC product ratio P .. will be defined to be 
:.· • 1]. 

the ratio P .. = a.PN,/b,PD. where PN, and PD, are DRC-products of W with 
1] 1 1 ] _] 1 J . 

coefficients a. and b . respectively, 
1 J 

Th~orem 5,3.1 will now be illustrated by following examples. 

Example 5,3,1: Consider the function W which has the form of-Equation 

5. 3,1. 
a 1 PN1 -----=---------bl PD1 + b2 PD2 

(5.3.18) 

Then the URC~product ratios satisfying part (i) of Theorem 5,3.1 are 

a1 PN 1 

b. PD. 
1 2 

= 
alsl 

PiS1S2 

a 1 PN 1 
pl2 = b2 PD2 = 

Part (ii) of Theorem 5.3.1 gives the limits which correspond to 

Equations 5.3,19 and5.3.20 as 

(5.3,19) 

(5.3.20) 
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(5.3.21) 

(5.3.22) 

respectively. 

Example 5.3.2: Consider the function W which has the form of Equation 

5,3,L 

w = (5.3,23) 
b1s 1s 2s 3 t b2s 1s 3s 4 + b 3s 1 

L_v-_J 1-v __ l lv-1 

The i:iRG"-product ratios that satisfy part (i) of Theorem 5.3.1 are given 

with their corresponding limits LW of (k-1) variables in Table 5.3.1. 

Note that the URC-product ratios that correspond to limits LW of (k-1) 

variables which are equal to zero or infinity are not shown. 

Lemma 5,3,1 TIR'c"-Product Ratio Rule for URCMVDPFs: Let W be the 

realizable URCMVDPF of k elements 

w = 
b,PD. 

J J 

where a, and b. are positive constants and PN, and PD, (PN, :f. PD,) are 
1 J 1 J 1 J 

URC-products. Then there exists at least one URC-product ratio such 

that 

P .. o = 
1] 

a,PN. 
1 1 

b,PD, 
J J 
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for every u, u=l,2,,,,,k, Further, if there are more than one such P .. 
1. J 

giving a./b.s or a.s /b. for a particular u, then each of these P .. 
. . 1. J u 1. u J 1.J 

gives the same function, 

Proof: Earlier it was established in Section 4,4 that a realizable 

URCMVDPF can be reduced to the DPF of each element ei by some set of 

(k-1) limit operations, 

If there are more than one such set of limits fore., each set must 
1. 

give the same DPF for e.' 
1. 

Therefore, the lemma follows directly from 

Theorem 5, 3, L 

The following example illustrates Lemma 5,3.1, 

Example 5,3,3: The URCMVDPF Y given below is known to be realizable for 

y = 

Consider the set of all 

function of one variable, 

pll 

p21 

p22· 

p32 

als2s3 + a2sls3 + a3 

bl s ls 28 3 :+ b :/3 l 

possible URC-product 

als2s3 al 
= = 

blsls2s3 blsl 

a2s ls3 a2 
= = 

bl8 l 8 :;l3 bls2 

a2sls3 a2s3 
= = -i;;-b2sl 

a3 a3 
= = ··b s 2 2 b2s2 

ratios which give a 
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TABLE 5,3,l 

URC-PRODUCT RATIOS FOR W 

URC-PRODUCT RATIO LIMIT OPERATION 

P,, LW J. J 

p31 
a3s2s3 a3 

LW cs2'83'~4) 
a3 

= = 
blsl 

= 
blsl blsls2s3 

p41 
a4s3s4 a4 

LW cs 3 ,s 4 '~2) 
a4 

= = 
b2sl 

= 
b:l 18 38 4 b2sl 

p53 
a5 

LW (~2'~3'~4) 
a5 

= = 
b3sl b3sl 

p 12 
alsls2s3s4 als2 

LW cs1,s3,s4) 
als2 

= = = ~ b2SlS3S·4 b2 2 

p23 
a2sls2 a2s2 

LW cs1'~3'~4) 
a2s2 

= = -b-. -. = 
~ b s . 

3 l 3 

c. 

p21 
a2sls2 a2 

1w Cs l 's2 '~4) 
a2 

= = 
bls3 

= ~ blsls2s3 1 3 

pll 
alsls2s3s4 = als4 

LW csl's 2 ,s 3 ) 
als4 

= 
~ 

= 
blsls2s3 ~ 
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Note that if a 3/b 2 = a 2/b2 the equation satisfies Lemma 5.3.lo 

Theorem 5, 3.1 can also be used efficiently in finding the circuits 

in a graph corresponding to a realizable URCMVDPF and therefore will 

form the basis for a new synthesis procedure. Theorem 5,3,1 gives the 

necessary and sufficient conditions that a function W, having the form 

of a URCMVDPF, be reducible to the form L,s. or 1/C,s, (where L. and C. 
l l l l l l 

are positive constants), Now let W be a realizable URCMVDPFo Then the 

theorem also gives a direct way to determine sets of (k-1) limit opera-

tions that give the DPF of each element e .. Then since the type of 
l 

element (L.s. or 1/C.s.) for each element is known, each of the sets of 
l l l l 

(k-1) limit operations can be related to a corresponding set S .. of 
l] 

(k-1) elements which are either open-circuited or short-circuited, where 

i denotes the element whose DPF is given and j denotes one such set (see 

Section 4. 4), Now the element ei whose DPF is obtained from W and some 

but not all of the short-circuited elements of S .. (for some j) form a 
l] 

circuit with the driver (see Section 4,4) in the graph corresponding to 

W. The unnecessary shorts in S .. occur because Theorem 5.3.1 does not 
. l] 

take into account any cancellations of variables, The cancellations can 

be detected when the set of (k-1) limit operations. given by the theorem 

are computed in the conventional way (not using Theorem 5 ~ 3. 1), To 

further explain this problem, consider Theorem 4o3,2 which states that a 

URCMVDPF W' is reducible if and only if the graph corresponding to W' is 

a separable graph where the element corresponding to each canceled 

variable cannot form a circuit including the driver. Let W' be a DPF--

which is a function of at least two variables--obtained from W when less 

than (k~l) limits are taken (the limits of W correspond to open-circuit~ 

ing or short-circuiting some elements of the graph). Let e be an 
q 
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element in the component part (see Appendix B) of the grapn G' (corres-

ponding to W') not containing th.e driver, Then the limit of W' ass 
q 

goes to zero is equal to the limit of W' as sq goes to infinity (eq can 

be open-circuited or short-,.circui ted with no effect on the DPF W 1 )'. 

Th~s, it is clear that.Theorem 5.3.l cannot be used to find the circuits 

unless a procedure is found.to eliminate the unnecessary short circuits 

th~t might be given in each S ... 
l] 

This.problem can be completely solved 

without resorting to finding all 2(k-l) sets of (k-1) limit operations 

for a given URCMVDPF W with k ,elements as was done in Section 4, 4,. 

First let W be a given realizable URCMVDPF with k elements, W has 

sets of (k-1) limit operations giving the DPF of each e. which are given 
l 

by Theorem 5.3.1, and these sets correspond to the sets S, .. Since Wis 
l] 

a realizable function there is a corresponding topological formula 

Y = t/t11 of k variables where t and ~ll are defined in Appendix B. Note 

that the multivariable function Y has the form o;f Equation 5.3.1, and 

Theorem 5.3.l can be applied to find the sets of (k-1) limit operations 

giving the DPF of each y. , These sets correspond to the same sets S .. 
l ' . -- l]. 

given by W. Wand Y have the same sets Sij because there is a one-to-

one relationship between W and Y (see Section 4. 3). Now let T 1 be a 

tree of graph G (note that the driver is not included in G), and let Q 

be the set of 2-trees in t 11 which can be found from T 1 be deleting one 

element at a time f~om the tree such that the input vertices of Gare 

in different component parts of the graph corresponding to tree T1 • 

Then if yi is an element in T1 and is given as the DFF by a URC-product 

ratio PN /PDj satisfying Theorem 5. 3 .. 1 (where PN 1 is equal to the tree 

product for T1 ), then yi corresponds to the element deleted from T1 to 

give the 2-tree product PDj' Also if yj is not in tree T1 , then for 



each URC-,.product ratio PN /PD q = y i, .i i j, q= 1, 2,. , , ,n where n is the 

number of 2-trees in Q, y. must be open-circuited (limit as y. + o) to 
J ' J 
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give the DPF of a single element y., If the elements of G not in tree. 
1. 

T1 are open-circuited, then the result is a graph G' = T1 , Let G" be 

the graph consisting of G' and the driver, There is only one circuit in 

G" and it contains the driver and some of the branches of the tree T 1 . 

Since all branches of T 1 may not be included in the circuit, G'' may be a 

separable graph and each element in the component part of G" containing 

the driver is a circuit element, Now consider the set of URC-product 

ratios P = PN 1/PD , q=l, 2,,,, ,n, There exists a 2-tree product PD from 
. q . q 

the set Q that does not have element y. if y. is circuit element and 
1. 1. 

therefore the DPF of each circuit element y. is given by Theorem 5,3,L 
1. 

Let T1 consist of the set of elements which is a subset of the elements 

in T 1 such that the elements are not the circuit elements in G", Then 

the elements of T1 are in the component of G" not containing the driver. 

Now each element of the set T1 is an element of PN1 and an element of 

every 2-tree product corresponding to the set Q, Therefore, every URC-

product ratio of the set P gives th~ DPF of some element of the circuit 

and a set of unnecessary shorts corresponding to all the elements of T1, 
Then the set of short circuits and open circuits S,. found by Theorem 

1. J 

5,3,l for G and giving the DPF of each element of the circuit can be 

written in matrix form as 

d l 2 3, , ,n 1n+l n+2 , , ,n+m n+n+l •. , n+n+k 
I. 

l 0:) l l I l l l I 0. 0 
I I 

FT l l (l) l I l l l O· 0 (5,3.24) = I 
l I 

l l l l I l l l 0 0 
I 
I 

l l l I 
'°"(1), l l l 0 0 
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where columns d, 1, 2?,,, ,n corresl?ond to the elements in the circuit 

for T1 , the. parenthesis identify the element yi given as the DPF for a 

~-product ratio columns, n+l, n+2,,,, ,n+m are the m elements of. the set 

Tl, n+~+l, n+m+2,,,,n+m+k are the elements of G which are not in the 

tree T 1 , and each row corresponds to a URC-product ratio of the set P, 

A set of equations similar to Equation 5,3,24 can be.found for every 

tree Ti and its corresponding circuit formed when the driver is added to 

the input vertices of graph G. Therefore, if all the sets S .. given by 
1] 

Theorem 5,3,1 for the topological formula Y = ~;~11 are written in 

matrix.form (like Equation 5,3,24), the sets S., for each tree can be 
. . . . 1] . . 

found, Then since the form of the matrix corresponding to the sets S .. 
1] 

is known, all unnecessary shorts can be identified as corresponding to 

columns (n+l), (n+2), ... ,(n+m) of Equation 5.3.24. 

Example 5,3,4:. Consider the realizable topological.formula 

Tl T2 T3 T4. TS T6 T7 TB 

.~j r"-, II I~ lj I_J\1 1, 11 
y 1Y 3Y 5 +y 1Y 3Y 4 +y 1Y 2Y 5 +y 1Y 2Y 4 +y 2Y 3Y 5 +y 2Y 3Y 4 +y 3Y 4Y 5 +y 2Y 4Y 5 

y = 
y 3Y 5+Y 3Y 4 +y 2Y 5+Y 2Y 4 

where T, identifies the set of elements in each tree. Then Theorem 1 . 

5,3,1 can be used to find the set of URC-product ratios that give the 

DPF of each y. , These URC-product ratios are 
1 

y 1Y 3Y5 
= Y1 Y3Y5 

Y1Y3Y4 
= Y1 Y3Y4 



y 1Y2Y5 
= Y1 

Y2Y5 

y 1Y2Y4 
= Y1 

Y2Y4 

Y2Y3Y5 
= Y2 Y3Y5 

Y2Y3Y5 
= Y3 

Y2Y5 

Y2Y 3Y4 
= Y2 y y -

3 4 

Y2Y3Y4 
= Y3 Y2Y4 

y 3Y 4Y 5 
= Y4 y y . 

3 5 

y 3Y 4Y 5 
= 

Y3Y4· Y5 

Y2Y4Y5 
= Y4 y Y· 2 5 

Y2Y 4Y5 

·Y2Y4 = Y5 

These URC-product ratios give the sets of short circuits and open 

circuits S. o which give the DPF of each element.yo, and are expressed 
. l] . . l . 

in the matrix given previously as 
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s = 

d l 2 3 4 5 

T 1 c -~-~~L~Ji2_~_ Ci~ 
T C '1 ( 1) 0 {j) (i) 0 

2 . --------- ~ - ~ - ---
T. <:= .1 (1) Ci), 0 0 [j) 

3 ------------------r- ...... , ..... 
T <;_ l (l);l} 0 11) 0 

4 -------------~----1- l O (1) l 0 11' I I 

T5L 
. . I I 

l O l ( l) 0 , 1: _______________ _.__ 

~6[ 1 o c1> 1 r1, o -
I I 

'1 0 l (l): ll O ____________ ,__ ---

l 

2 

3 

4 

5 

6 

7 

8 

1- l O O i'".1i ( l) l 9 
T < I I I 

. 
7 I- ) __ o _ ,01 lk. -~-1- c 1 )J 1. o 

[ 
l O 11, 0 ( l) l 11 

I I 

TB l O :1: 0 l (1) 12 ------~---------, . 
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(5.3.25) 

Now the unnecessary shorts. (circled by dotted lines) can be eliminated 

from the above matrix and be written as the matrix of circuits 

d l 2 3 4 5 

T1C l l 0 0 0 0 l -----------------I 

l TL 1 0 0 ·O G 2 
2 -----------------

TL l l 0 0 0 0 3 
3 -----------------J-

T4L 'l l 0 0 0 0 4 -----------------
I l 0 l l 0 0 5 (5,3.26) 

c = T5~- l 0 l l 0 0 6 -----------------1--
l 0 l l 0 0 7 I 

T6 <'., 
I l 0 l l 0 0 8 -----------------ii- l 0 0 0 l l 9 T !1 

7<L l 0 0 0 l l 10 
------ -- -J- ---- --- -- -

rs{ l 0 0 0 l l 11 

1 0 0 0 l l 12 -----------------
The rows of the above matrix which are identical to some other row. can 

be eliminated to give the matrix of circuits F defined in Section 4,4, 
c 
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1 2 4 3 4 d 

u 
0 0 0 0 

~l (5,3,27) 
F = 1 0 1 0 

c 
0 1 0 1 

Note that F has full rank and therefore the circuits are an independent 
c 

set of circuits, Further, F has the form of the fundamental c-circuit 
c 

matrix B and therefore the non-oriented graph corresponding to B can 
c c 

be found (see Section 4,4), The graph corresponding to B = F of 
c c 

Equation 5,3,27 is given in Figure 5,3.1 where v1 and v1 are the input 

vertices and the admittance for each element e. is given by y .. 
1 1 

I 

1 
( 

;·'-F=~=----

V' 
1 

Figure 5,3,1. Realization for Y 

In the development of this synthesis method, a given URCMVDPF W of 

k variables is assumed to be realizable and the topological formula 

Y = ~;~11 corresponding to Wis.found, Since Wand Y have the same sets 

S. 0 giving the DPF of each element, the method also applies to any 
1] 
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realizable URCMVDPF. In the following example a URCMVDPF is realized by 

this method. 

Example 5.3.5: Let Z be the realizable URCMVDPF (impedance) given as 

z = 
al s l s2s 4s 5 +a'.;l 1 s2s 3s 5+a3s ls 4 +a4s ls 5+a5s ls 3 +a6s2s 5+a7 

,bl sls2s 3s 4s 5+b2s ls 3s4 +b3s ls 3s 5+b4s.2s 4s 5+b 5s 4 +b6s5 
. . 

The TIR'c-product ratios are 

p43 = 

p53 = 

a2s l s2s 3s 5 

b·l 8 1 8 28 33 1+5 5 

a2s l s2.s3s 5 

b3sl.s3s5. 

a4s ls5 

b3s is·3s5 

a5sls3 

b3s is 3s 5· 

= 

= 

= 

= 

a3 
b ·s· 

2 3 

a4 

b3s3 

a5 

b3s5·. 



a1818281+85 

b4s2s4s5 
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Note that Lemma 5.3.l implies the impedance of each element must satisfy 

the following conditions. 

1282 
a2 a6 

= b 82 = b 82 3 6 .. 

l al a3 a4 

C3s3 = bls3 - b~l 3 
= 

b3s3 



Then the sets S .. given by Theorem 5,3.1 are 
1] 

s = 

1 2 3 4 5 d 

0 0 ( 1) 1 •'"i''\ 1 
I I 

.. I l 
0 0 1 (1) 11,1 1 ___________ i...; __ _ 

0 ;'i:'1 (1) l O 1 
I I 

p52 ~-\~~-~-~~2. ~--1 

p~ 0 (1) 1 0 1 1 

p~ 0 1 (1) 0 1 1 

P- (l} (i O 1 (11 1 
14 : l 
P- 1 0 0 (1)111 1 

64 -----------~--

P- (1) r'j_'\. 0 1 0 1 
35 I I 

I I 
P- 1 11 1 0 (1) 0 1 

75 --~-~-----------p~l(l) 1 0 

p~ 1 (1) 0 

p,__:_... 1 1 0 
76 

0 1 1 

0 1 lj 
0 (1) 1 
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(5.3.28) 

Eliminating the duplicate row and unnecessary short circuits the matrix 

S reduces to 

1 2 3 4 5 d 

1 r~ 0 1 1 0 1 

2 1 1 0 1 1 
F = (5.3.29) c 3 ll 0 0 1 0 1 

4 . 1 1 0 0 1 1 
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There are four vertices in the graph G corresponding to Z as can be seen 

by finding the number of elements in one tree product of the topological 

formula Y = M .611 corresponding to Z (see Theorem B. 2. 4). Then there 

are e-v+l = 3 indipendent circuits .in graph G where e equals the number 

of variables in Z (corresponding to the element ei) plus one (corres­

ponding to the driver) and v equals the number of vertices. It has been 

established, (see Theorem 4.4.2) that F has e-v+l=3 independent rows. 
c 

The three independent rows in F can be found by finding a submatrix B1 . c 

of order three from Fe such that the .determinant of B1 (mod 2) is not 

zero, Consider the determinant of the submatrix B1 of Fe given as 

1 2 3 

1 0 0 1 

IB1l 2 0 1 1 1 
0 1 1 = = = 

3 1 0 0 
1 1 

.. 
\ 

Then the adjoint matrix of B1 (mod 2) can be defined to be 

! 

Then B-l = ADJ B/1 IB1 1 = ADJ B1 , Now consider the matrix B which re-

sults when row four is deleted from the matrix F , B can be partitioned 
c 

as 

Then the c-circuit matrix can be obtained from B be premultiplying B by 

-1 
and is given below, B 1 

1 2 3 4 5 d 

~: 0 ~ ro 0 1 '1 0 ~1 I 
-1 I l: I B = Bl [B r B ] = l J 1 1 ,a 1 c 11 2 l1 0 0 0 0 '1 0 lJ I 



and 
l 2 

r~ 0 

B = l c 
LO 0 

Now B can be realized as the graph 
c 

network corresponding Z is shown in 

I 
I 

dl.,-
1 
\ 
\ 

3 
2 

5 

3 4 5 d 

0 l 0 11 
0 l l :J l l 0 

G shown in Figure 

Figure 5.3.2b. 

l 

C3s3 

(a) (b) 

Figure 5.3.2. Realization for Z. 

5. 3. 2a and the 

l 

C5s5 

In the development of the synthesis metp.od of this section the . 

URCMVDPF is assumed to be realizable. It should be emphasized that if 

a multivariable function W has the form of a URCMVDPF but is not known 

to be realizable then the synthesis method itself can be used as a test 

for realizability, If no graph can be found (by the synthesis method)· 

that corresponds to the multivariable function W, then it is evident 

that Wis not realizable. There is also another important point which 

has not been emphasized. It has been shown that a URCMVDPF exists for 

every URC network with elements having different RC products. It can be 
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recalled from Chapter IV that when the RC products for any two elements 

of the same type (Z element or Z element) are equal, the RC products 
OC SC 

are assumed to be different so that a new variables. is introduced by 
l 

the transformations (see Equation 4,2.9) for every element. The result 

is the URCMVDPF for a given network of URC elements. Now consider the 

case where there are elements of the same type having the same RC prod-

uct in the URCnetwork. If the same transformation is used for each of· 

these elements (s. = tanh a.p), then the result is a multivariable 
l l 

function not having the form of the ·URCMVDPF, In particular each of the 

variables s. may not be of order one, The synthesis procedure in this 
l 

section is not applicable to this type of multivariable function and 

appears to be an excellent topic for further research. Finally, note 

that the synthesis method applies to a URCMVDPF which corresponds to 

either an admittance or an impedance (see Example 5.3.4 and Example 

5,3.5), 

5, 4 Ladder Synthesis· and Reduction of a. Class of URGMVDPFs. The 

method developed in Section 4,5 can be used to realize any realizable 

URCMVDPF. In this section a simple method of reducing a given URCMVDPF 

to a simpler function will be given for a certain class of URCMVDPFs. 

Assume that a realizable URCMVDPF Z is given and that the type of 

each element has been found from the set of URC-product ratios. Now 

assume. that a limit is taken of Z with respect to some variable s. 
l 

( s. -+o or s . -+oo ) • When the limit·· corresponds to open-circuiting the 
l l 

element e. in the network N corresponding to Zand further, the limit 
l 

of Z is equal to infinity (open~circuit), then it is evident that the 

network can be drawn in the form given in Figure 5,4,1, 



t 

e. 
l 

Figure 5. 4.1. Network N 

N' 
l 
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where N1 is the network corresponding to z1 given when the limit is tak­

en of Z with respect to the variables. such that the limit corresponds 
l 

to short-circuiting ei. Since N1 corresponds to a realizable URCMVDPF 

z1 with (k-1) elements, the process can be repeated if there exists an 

element e. satisfying the conditions given fore .. Therefore, in 
J l 

general the network N has the form given in Figure 5.4.2. 

eo 
l 

eo 

~e••-

Figure 5.4.2. Network N 

N" 
l 
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where N1 is the network correspondin& to N when the elements. ei ,ej, •.• ,eq_ 

are short-circuited. Now assume that the limit is taken of z1 ('(iRcMVDPF 

corresponding to N1) with respect to some variable su (u =/. i,j, ••• ,q; 

indicated in Figure 5.4.2) (s +o ors -+oo) such that the limit corres-. u u . 

poind to short-circuiting eu in the network N111 , and the limit of Z" goes 
l . 

to zero, Then the network · N1 . must have the form. given in Figure 5, 4, 3, 

Note that unlike classical ladder synthesise of Figure S,4.3 corres-
u 

ponds to an impedance. 

t e 
u 

Figurle 5.4.3. 

N' 
2 

Network N'' 
l 

Then if the assumed conditions are met in each step, then in 

general N1 has the form of .Figure 5. 4. 4. Note unlike classical. ladder 

synthesis e. , i=i' , j' , . , • ,q' all correspond to impedances in Ff.gure 
. l. ·. . 

5,4,4, Therefore, in general a realizable URCMVDPF W haf!l a network N of 

the form given:i.n Figure5.4.5, wh~re NSi and NPi are defined'in Figure 

5. 4, 6a and Figure 5. 4. 6b and N' is a network with less than k elements. 

.. 



tO 

1 

eo I 
l 

e o I• 

J • • 

Figure 5.4,4. 

e I 

q 

Network N" 
l 

NS 
n 

Figure 5.4.5, Network N 

NP 
m 

N" 
2 
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N' 

The conditions necessary for a given URCMVDPF Z to have a network 

of the form given in Figure 5, 4, 5 can be cheoked by inspection. If no 

ladder elements can be obtained (conditions for removal are pot met), 

then m = n = O (see Figure 5.4.5) and the given URCMVDPF W corresponds 

to network N' (Figure 5.4.5). It is important to note that the URCMVDPF 

corresponding to N' of Figure 5.4.5 is always realizable. 

Example 5,4.1: Consider the URCMVDPF Z which is realizable by a network 

N, Let 



z = 
s 1s 2s 3s 4+s 1s 2+s 2s 3+s 3s 4+1 

s ls2s 3+sl s 3s 4 +s l 
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The element types can be found from the URC-product ratios as l/s 1 , s 2 , 

l/s 3 , s 4 • Now note that 

L ,I 
1 

O' •• 

lim Z = 00 

S l -+ 0 

(a) 

l 

(b) 

l l 

I l 
C 1 8 I u u 

Figure 5.4.6. Networks NS. and NP. 
l J 

l 

l l 
•• <: 

ct,st, 



Then N has the form giveh in Figure 5.4.7. 

1 

s1 I t--~~~--11 e,----+ 

Figure 5.4.7. Network N 

The URCMVDPF Z' corresponding t0 ~' can be found from Z by taking 

the limit 

Now note that 

Z' = lim Z = 
s -+ 00 

1 

s2s 3s4 +s2 

s 2s-3+sj's 4+1-

lim Z' = 0 
s.2 + o 

Therefore the network N' has the form given in Figure 5.4.8. 

N" 

Figure 5.4.8. Network N 
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where the URCMVEPF Z" corresponding to N" is given by 

lim 

Similarly, 

z I = Z" = 

lim z!! : OO 

s 3 + o 

and the process can be continued to give the network in Figure 5,4,9. 

l l 

s1 s3 

,____....,)-------11--, 

t 

Figure 5.4.9. Network N 

The method given here can be used to simplify a certain class of 

URCMVDPFs before applying the synthesis methods of Section 4.5, but it 

should be emphasized that in general the network given as N' in Figure 

5,1,l cannot be reduced further by applying these methods. 
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CHAPTER VI 

APPROXIMATION OF DRIVING POINT IMPEDANCES WITH 

URC NETWORKS HAVING ELEMENTS WITH DIFFERENT 

RC PRODUCTS 

6.1 Introduction, In an earlier chapter the driving point func-

tion of a "UR'C network with elements having different RC products was 

discussed in terms of a URCMVDPF, W, It is important to note that W can 

be related to the p-domain by the transformations that were made to 

obtain W (see Equations 4,2.1 and 4,2,9), The properties that were de-

rived for W in Chapter IV will be used to obtain properties for W in the 

p-domain, 

After some properties are derived, a general method will be given 

which can be used to approximate an impedance specified in a Bode plot, 

6,2 General Form of the Driving Point Impedance for a URC Network, 

In Chapter IV it is shown that a URCMVDPF W of K elements can be written 

in the form given below 

l a,PN, 
z ]. ]. 

(6,2,1) = 

l 
b,PD; 

J J 

where a. and b. are positive constants and PN. and PD. are URC-products 
]. J . ]. J 

that satisfy the necessary conditions given in Section 4,3, Therefore, 

using Equation 6,2,l and the transformations given in Equations 4,2,1 

and 4,2,9, the general form of the driving point impedance of a URC net-

work having elements with different RC products can be given as 

96 
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l a. TN. 
Z(p) l l (6,2.2a) = 

Ip l b. TD. 
J J 

or 

l a. TN. 
Ip Z(p) l l (6.2.2b) = 

l b. TD. 
J J 

where TN. (TD.) are equal to the product of elements from a subset of 
l J 

the set {l; tanh /r1p, tanh lr2p, ... ,tanh l-rkp} (Ti= Rici). Since 

Equations 5.3,l and ~Z(p) in Equation 6.2.2b are very similar in form, 

many of the properties developed for the URCMVDPFs can be applied 

directly to Ip Z(p) in Equation 6.2.2b. The most important properties 

which are directly applicable are given by Lemma 4.3.l and 5.3.l and 

Theorem 4.3.4, 

6,3 Properties of jz (jw)j. Before the function Z(p) given in 

Equation 6.2.2a can be used to approximate an impedance function Z'(p) 

specified in a Bode plot, it is necessary to consider some ~eneral 

properties of lz (jw)I to insure that the approximation will pe sue--

cessful. Some of these properties are given by Wyndrum (3) for a net-

work of URC elements with elements having the same RC product, and the 

properties are given below for networks consisting of elements with 

different RC products, 

Theorem 6,3,l Asymptotic Behavior of·d jz (jw)j/dw: The asymptotic 

sloped IZ (jw)j/dw for the driving point impedanceZ(p) for any URC 

network with elements having different RC products as w-+ 00 is 

-lOdb/decade, 
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Proof: It has been shown that the asymptotic slope dlZ (jw)j /clw of the 

driving point impedance for any 1JRC network where each e.lement has the 

same RC product as w -+ 00 is -10 db/decade ( 3), This result can be ex'"' 

tended to the case of URC networks with elements having different RC 

products, by considering the driving point impedance of two Z -elements oc 

with different RC products T 1 and T 2 ( T 1 f. T 2 ), Let p = jw , Then for 

the Z -elements it follows that oc 

lim 
R 

----0----- = lim 
R 

0 

w -+oo ljwT 1 tanh ljwT 1 w -+oo ljwT 2 tanh ljwT 2 

(6.3.1) 

since T1 and T2 are finite positive constants. Similarly, for two Z -
SC 

elements having different RC products Ti and T; (Ti f. T;) it follows 

that 

R tanh ljWT I R tanh ljWT I 

lim s l lim s 2 
= 

(6,3,2) 

w -+ 00 ljwT' w -+ 00 ljWT I 

l 2 

since Ti and T2 are finite positive constants, Therefore, the asympto­

tic sloped lz (jw)l/dW as w-+ 00 for the driving point impedance of any 

URC network with elements having different RC products is the same as a 

URC network with elements having the same RC products and therefore the 

theorem follows, 

It is also important to note that for finite frequencies the Z -oc 

element and the Z -element can be approximated to any desired degree of 
SC 

accuracy by a finite lumped RC network obtained from the truncated in-

finite product expansions for Z (p) and Z (p) respectively. The num-oc SC 

ber of terms in the truncated infinite product expansions can be in-

creased until the desired accuracy is achieved. Then any URC network 
f 

having elements with different RC products can be approximated to any 
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degree of accuracy for finite frequencies by a finite lumped RC network. 

Thus the properties of Jz (jw) I are known for O < w .::_ 1'J. where 1'J. is a 

finite frequency, 

6,4 Approximation Problem, In this section a general method will 

be given that can be used to approximate driving point impedance Z'(p) 

specified by a magnitude plot for a band of frequencies, Note that the 

asymptotic approximation of Z'(p) must have the properties given in the 

previous section. 

In an earlier section several necessary conditions for a multivari~ 

able impedance function to be realizable as a URC network were given, 

and sufficient conditions were given in the form of a synthesis proce-

dure (see Section 5,3), 

There are two general approaches that can be used in the approxima-

tion problem, The first approach is to assume a function Z'(p) having 

the form of Equation 6.2,2a with arbitrary constants a., b ., andT;, such 
i J i 

that all necessary conditions for realizability are satisfied. Lemma 

5,3,l can be used to find the relationship that must exist between the 
: 

coefficients a, and b, for realizability (see Example 5,3.3). Then 
i J 

Z' ( j u.0 can be found by using 

and 

ljw,. = ± ~ (cos IV4 + j sin IV4) 
l i 

tanh ~ 
i 

= ± sinh p cosh cp + j sin cp .cos 
h2 2 0 • h2 . 2 cos cp cos cp + J sin cp sin 

(6,4.1) 

(6,4.2) 

where cp =+;;:;:--cos IT/4, Note that part (i) of Theorem 4.3.4 guaran­
i 

tees that Z' (jw) is single valued for a particular value of wand. that 

the plus sign may be used in the right hand sides of Equations 6.4.l and 

6,4,2 without loss of generality, Since most computers use languages 
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(such as FORTRAN IV) that have built in complex number subroutines, 

iz' c jw) I can easily be found by using Equations 6,4.-3-and 6.4.4 for any 

set of parameters {a.}, {b '}' and 
1. J 

{·r. L A least squares approach can 
1. 

now be used which is identical to the one used in Chapter II and III. 

A set of frequencies wi, i=l,2, ... ,n need to be selected so that 

they cover the band of frequencies over which the approximation Z I (p) is 

to be valid. Then a squared error function can be defined as 

s = I fiZ' (jw.) I - IZ' (jw: )1\ 2 
i=l ~ 1. 1. ';) 

(6.4.3) 

The function Scan be minimized with respect to the parameters {a.}, 
1. 

{b.}, {T.}, and constraints can be imposed on these parameters so that 
J 1. 

Lemma 5.3.1 is satisfied, Note that the constraint for T. is T. > 0 
1. 1. 

for every i. If some of the parameters converge to a value such that 

the impedance of some of the elements (L.s. or 1/C.s.) are very large 
1. 1. 1. 1. 

or very small compared with the other elements, these elements can be 

open-circuited or short-circuited respectively. The resulting network 

has fewer elements and has a driving point impedance which can be found 

by inspection from Z'(p) using the corresponding URCMVDPF. Note also 

that additional constraints can be imposed on the range of values for 

the element values (and RC products T.) So that the networ1k for Z(p) is 
1. 

practical. However, in this case when an element value (or RC product 

T.) is driven into a constraint, the constraint must be relaxed to see 
1. 

if it will become very large or very small when it is desirable to min-

imize the number of elements in the approximation by the procedure given 

above where no constraints are used other than those to insure realiza-

bility. In the approximation procedure above the realizability of the 

chosen URCMVDPF must be tested, and if it is not realizable, a new 



101 

function must be found. 

One way to avoid the trial and error method is to approach the 

problem by assuming some topology and finding the corresponding URCMVDPF. 

In this way the URCMVDPF is known to be realizable. The realizable 

URCMVDPF can be given arbitrary coefficients.a., b. satisfying Lemma 
1 J 

5,3.1, The methods used in the first approach can then be used to find 

the proper element values and RC products, Examples of the procedu~es 

for using the least squares program have already been given in Chapter 

II and III, 

In conclusion it should be noted that a URC network may be found, 

in some cases, that.has fewer elements than a corresponding lumped. 

element RC network which approximates a given function, A good example 

of this is illustrated by the RC networks approximating the single Z oc 

element and Z -element shown in Figure. 2.2.3. · 
SC 



CHAPTER VII 

SUMMARY, CONCLUSIONS AND SUGGESTIONS 

FOR FURTHER RESEARCH 

7,1 Summary and Conclusions, This thesis deals with the analysis, 

synthesis, and the approximation of driving point impedances of URC net­

works Z(p) where each element has a different RC product, The rational 

approximations for the elements of a URC network, which are based on the 

infinite product expansions, are improved by finding new approximations 

which are valid over a wider band of frequencies, The synthesis of URC 

networks with elements having different RC products is solved by gen­

eralizing Wyndrum's transformations which transform Z(p) into a multi­

variable impednace function (URCMVDPF), Some necessary conditions for 

the realizability of Z(p) (URCMVDPF) are given, Sufficient conditions 

are given in terms of a new synthesis procedure which applies to any 

realizable driving point impedance Z(p). In the realization transform~ 

ers and gyrators are not used, The impedance dunctions of lumped RC 

networks are approximated by URC networks and a rather simple method is 

developed which minimizes the error in the approximations. Design 

curves are given to aid in the approximations, Finally, the general 

problem of approximating a driving point impedance function specified in 

a magnitude plot with URC networks having elements with different RC 

products is approached by using the necessary conditions derived for 

URCMVDPFs, The procedure is basically one of a least squares approach 
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and a program is given that is well suited to the nonlinearities that 

occur from the application of least squares methods. 

In conclusion, it is felt that the URCMVDPF is an effective tool 

for analysis, synthesis, and approximation with URC networks, and may 

have application in other areas in network theory. 

103 

7.2 Suggestions for Further Study. The use of the URCMVDPF has 

produced some new and interesting problems. The most important problem 

is one of finding the sufficient conditions to realize a given URCMVDPF, 

Perhaps the assumption that the URCMVDPF be a reactance function might 

be a sufficient condition. This author could not find a counter-example 

to disprove this statement. If this condition is sufficient, it would 

also be applicable to synthesis of the classical topological formula for 

the driving point admittance, 

Another interesting problem is the synthesis of multivariable 

impedance functions which result when some, but not all of the URC 

elements have RC products which are equal, The introduction of the 

generalized transformations will produce a multivariable impedance func­

tion which does not have the form of the URCMVDPF, but appears to be 

related to the URCMVDPF. It may be possible to find the existing rela­

tionships, If this synthesis problem can be solved, the problem of 

finding a realizable topological formula for the driving point admit­

tance from a given realizable lumped RC (LC) driving point admittance 

might also be solved, 
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APPENDIX A 

PROGRAM FOR THE LEAST SQUARES ESTIMATION 

OF NONLINEAR PARAMETERS 

A.l Introduction, It is frequently necessary to represent by some 

functional relationship data that is given as a set of order pairs 

(Y.,w.), i=l,2,, .. ,n. One very powerful method of finding a functional 
1. 1. 

relationship is by the method of least squares curve fitting (18). The 

method of least squar~s consists of minimizing S, defined as 

n 

S (b1 ,b2 , .•• ,bk) = J
1 

~(b1 ,b2 , .•• ,bk; wi)-Yi) 2 (A.l.l) 

i=l,2,.,.,k and n is some integer. 

that gives a minimum value for S. 

Let {b. } be the se't of parameters 
1. 

Th~'h 

for every i=l,2, ... ,n. In this thesis, Sis a nonlinear function and 

the numerical method given in the next section can be used to minimize 

s. 

A.2 Minimization of Nor,linear Functions. Fletcher and Poweli (12) 

have given a powerful method to minimize nonlinear functions which has 

quadratic convergence, but.does not require the computation of second 

order partials. This method was used with some modifications in the 

minimization of the squared error function Sin Equation A.1.1 for dis-

tributed network synthesis problems to insure convergence and 
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practicality. Fletcher and Powell assumed that the first order partial 

derivatives of the function S (b1 ,b2, .•• ,pk) to be minimized are defined 

analytically at each point. Since it is not practical to find analytic 

expressions for the partial derivatives the applications of this thesis, 

the needed partials were computed by the well-known methods of finite 

differences (18). In general the Fletcher-Powell method converges fast-

er than the method of steepest descent, whenever the method converges 

and this is especially true near the minimum value of the function being 

minimized ( 12 )a 

When the Fletcher-Powell method was found to diverge at any itera-

tion, the steepest descent method was used for one or mor.e iterations 

(since the gradient is computed in each iteration as part of the 

Fletcher-Powell method). 

The advantage of the quadratic convergence ·of the Fletcher~Powell 

method is not lost by this modification since the method is reinstated 

as soon as there is convergence. In the Fletcher-Powell method each 

iteration is defined by 

-i+l -i ,i ..... i 
b : b + A g (A.2.1) 

where~ 
i i i i = (g1 ,g2 ,~oo,gk) is a vector computed by the method, A is a 

scalar to be determined, and bi= (bi,b~, ... ,bt) is the previous value 

of the iteration, The scalar Ai is determined such that S 

(bi+l bi+2 bk+2) . . . 
1 , 2 , ... , k is a minimum. In practice it was found. that con-

i vergence of the method depends on the accurate determination of A • 

can be found by combination of systematic searching and cubic interpala-

. tion, and the method is given in the flow chart in Figure A.2.2, where 

the variables in the flow chart are defined in Figure A.2.1, Mis a 

positive constant, and the standard mathematical symbols for union and 
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-i+l i . ~1+1 
intersection are used (Note S (b ) is a function of 11. since b is 

a function of 11. 1 in Equation A,2,1), 

Figure A,2,1, Definition of Variables in the 
Flow Chart of Figure A,2,2 

A,3 Constraints, This section gives an effective method that has 

been used frequently to constrain variables in least squares curve fit-

ting problems, ' Consider Equation A,1,1 and let each parameter b. be 
l 

constrained by L. < B. < U. where L. and U, are constants and i-i-i l l 

i=l,2,,,,,k, Now let S be redefined such that 

k 
I <P. 2 

i=l l 

(A.3.1) 

where 

<P • = 0 if L. < b, < u. 
l l - l - l 

(A.3,2) 

<P • = (b. u. )8 if b. > u. 
l l l .1. l 

(A.3.3) 

<P • = (b' L. )8 if b. < L. 
l l l l l 

(A,3,4) 
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s 1 , ~2 .and pick value of i...~~~~~~~~~~~~~___. 

A1 giving minimum 

Figure A,2,2o Flow Chart for Computation of Ai 
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for i=l,2,,,, ,k, The u9e of the power of eight is ar,bitrary in Equa-

tions A,3,3 and A,3,4, but in any case when the constraints are not 

satisfied, S in Equation A, 3, l becomes large, There are also other ways 

of defining each¢, which may be better suited for a given problem (19), 
l 

A,4 Least Squares Program, The program used for the least squares 

problems in this thesis is given in Ta:ple A, 4, L 
' 

The user must supply the subroutine FCODE (Y,X,B,F,I,RES) with the 

dimensioned variables being Y(200), 8(200), B(50), The relationship 

between Equation A,1,1 and the variables in FCODE is given in Table 

A, 4, 2, The user must also supply the subroutine SUBZ(Y ,X,B,N) and 

GENF(N,K~NCON,X,Y), SUBZ may be used to alter the input data Y(I) and 

X(I) before beginning computation, GENF may be used to generate Y(I) 

and X(I) if they are not read into the program ( IOPTL - 1), If either 

one or both of these subroutines are not needed, they still must be sup-

plied since they will be called by the main program, In this case they 

will consist of only a DIMENSION, a RETURN, and an END statement, 

An example of subroutines SUBZ, GENF, AND FCODE is given in Table 

A,4,4, Note for FCODE in Table A,4,5 there are three constrained param-

eters, In this case the number of data points is 43 and each variable 

RES corresponding to I ::c 44, 45, 46 are the constrain squares correspon-

ding to cp, (the square of RES= cp,) in Equation A,3,1 for B(l), fl(2), 
l l 

and B(3) respectively, 



TABLE A.4,1 

PROGRAM FOR THE LEAST SQUARES ESTIMATION OF NONLINEAR PARAMETERS 

C PROGRAM FOR THE LEAST SQUARES ESTIMATION OF NONLINEAR PARAMETERS 
DIMENSION DBG(50l,DFG(50l 
DIMENSION X(200J,Y(200),8(50),SB(50),GD(501 ,G150J•SPHISO), 

lSM(50l 
DIMENSION GG(50,50l,SG(50J 
IDAM=O 
KICK=O 
READIS,900) IOPTl 
READ (5,900) N,K,MIN,MAX,NCON,ZETA,DEL 
IFIIOPT3.EQ.O) GO TO 151 
CALL GENF(~~K,NCON,X,YJ 
GO TO 152 

151 READIS,9011 (Y(Il,X(II ,I=l,NI 
152 CONTINUE 

READ15,902J (B(Il,I=l,Kl 
WRITE(6,903! N,K,MIN,MAX,NCON,ZETA,DEL 
PHI=O. 
DO l I=l,N 
CALL FCODE!Y,X,B,F.I,RESl 

l PHI=PHI+RES**2 
SO=PH! 
IT=O 
DO 41 I=l ,K 
DO 41 J=l,K 
IF<I.EQ.Jl GOTO 42 
GGII,J)=Oo 
GO TO 41 

42 GG!I,J)=l. 
ll CONTINUE 

CALL SUBZ<Y,XtB•Nl 
130 WRITEJ6,915l 

WRITE(6,904l IT,IBIIl,I=l,Kl 
WRITE(6,908l 
DO 999 I=l,N 
CALL FCODE(Y,X,B,F,I,RESl 

999 WRITEC6,9lll Y(Il,F,RES,X(Il 
WRITE(6,9071 PHI 
NTIL=N+NCON 
NN=N+l 

150 !F(NCON.EQ.Ol GO TO 440 
WRITE(6,9101 
DO 301 I=NN,NTIL 
CALL FCODE(Y,X,B,F,I,RESI 
III=I-N 

301 WRITEC6,9091 III,RES 
(40 IF(KICK.NE.11 GO TO 140 
300 CALL EXIT 

111 

C BEGIN COMPUTATIO~ OF GRADIENTo•••••••••••••••••••••••••••••••••••••••e•, 
140 IF!IT.EQ.O) GO TO 101 

DO 29 J=l,K 
29 SG!Jl=G(J) 
101 CONTINUE 

DO 100 J=l,K 
100 SB(Jl=B(Jl 

PHIN=O. 
DO 26 J=l,K 
B!Jl=SB(Jl+ABSCSB(Jl!*DEL 
DO 700 J.J=l,NTIL 
CALL FCODE !Y,X,B,F,JJ,RESI 

700 PHIN=RES**2+PHIN 
G(Jl=IPHIN-PHil/(ABS(SBIJll*DELl 
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A.4.1 (Continued) 

PHIN=O. 
26 B(JJ=53{J) 

WRITE<6,9121 IGCil,I=l,Kl 
C END GRADIENT COMPUTATION •••••••••••••••••••••••••••••••••·~··~8••••••• 
C BEGIN FLETCHER-POWELL ITERATION•••••••••••••••••••••••••••••·•••••••••• 

IF(IT.EOoOl GO TO 111 
DENA=Oo 
DO 2 8 I= 1, K 
DFG( I l=GC I !-SG( I l 

28 DENA=DENA+DFG(I!*SVXM*GD<Il 
DO 30 I=l,K 
DBG I I) =O. 
DO 30 J=l,K 

30 DBGCil=GGCI,Jl*DFGCJl+DBGIIl 
DENB=Oo 
DO 31 I=l,K 

31 DENB=DENB+DBG(Il*DFGIII 
DO 32 I=l,K 
DO 32 J=l,K 

32 GGCI,Jl=GGCI,JJ+GDCI)*GDIJ)*SVXM**2/DENA-DBG(Il*DBGCJJ/DENB 
111 WRITE(6,955l 

DO 202 I=l,K 
202 WRITEC6,911J IGGCI,Jl,J=l,KI 
556 DO 27 I=l,K 

GDIIl=O• 
DO 27 J=l,K 

27 GD(IJ=GDCIJ-GGCI,Jl*GCJ) 
C COMPUTE STEP SIZE••••••••••••••••••••••••••••••••••••••••••••••••• 

550 

2 

s 

7 

12 
11 

9 

XNu.,o. 
DO 550 I=l,K 
XNU=XNU+Gl!l*GDCII 
XNU=ABSC2o*PHI/XNUl 
XM=AMINllXNUtlol 
IN=O 
IB=l 
I K=O 
DO 2 J=l,K 
B(Jl=SBCJ!+XM*GDCJI 
IBK=l 
GO TO 4 
Sl=SS 
DO 6 J=l,K 
BIJl=SB(Jl+2o*XM*GDIJI 
IBK=2 
GO TO 4 
52=55 
IF<S2.GEo50l GO TO 12 
IK=IK+l 
SM( IKl=2.,*XM 
5PH(lKl=52 
IF<SleLT.SO.AND.S2oLT.SOI 
IN=IN+l 
IF(SloGE.SOl GO TO 9 
IK=IK+l 
SM!IKl=XM 
SPH I I Kl =51 
IFCSloLT.S2eANDoS2.LTo50! 
lF!52oLTo51.ANDe5loLT.50l 
IF!IN.NE.201 GO TO 302 
WRITE!6,9141 
IDAM=IDAM+l 
IF{IDAMoE0.21 GO TO 555 
DO 551 J=ltK 

GO TO 13 

GO TO 19 
GO TO 200 



DO 551 I=l ,K 
!Fil.NE.JI GO TO 552 
GG I I, J l =le 
GO TO 551 

552 GGCI;JJ=O• 
551 CONTINUE 

GO. TO 556 
555 WRITEl6~913) 

KICK=l 
GO TO 130 

302 XM=XM/2. 
DO 23 J=l,K 

23 B!Jl=SB(Jl~XM*GD(J) 
I BK=3 
GO TO 4 

;,4 S2:Sl 
Sl=SS 
GO TO 11 

13 IK=IK+l 
SM!IKl=XM 
SPH!IKl=Sl 
IK=IK+l 
SM( IKl=XM*2• 

A.4.1 (Continued) 

SPHCIKJ=S2 
IF!SloLT•S2oAND.S2.LT.SOJ GOTO 19 

16 XM=XM*2• 
DO 14 J=l,K 

14 B(J)=SB<JJ+2o*XM*GDIJ) 
I t:lK=4 
GO TO 4 

15 Sl=S2 
S2=SS 
IF!S2.GEoSOl GO TO 200 
IK:IK+l 
SM!IKl=XM*2o 
SPH(IK)=S2 
IF(Sl.LT.S2.AND.S2.LT.SO) GO TO 19 
GO TO 16 
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C CUBIC INTERPOLATIONo•••••••••••••••••••••••••••••••••••••••••••••••••••· 
19 C=l3o*S0-4.*Sl+S2!/(2.*S0-4o*Sl+2.*S2l 
C END CUBIC INTERPOLATION•••••••••••••••••••••••••••••••••••••••••••••••. 

IK=IK+l 
C=C*XM 
DO 17 J"'l,K 

17 B!Jl=SBIJJ+C*GD!Jl 
IBK"5 
GO TO 4 

18 SPHCIKJ=SS 
SM( IK l=C 

200 PHMIN=SPH(ll 
IMJN=l 
DO 21 J=2,IK 
IF!SPH(JlaGEoPHMINI GO TO 21 
PHMIN=SPHCJI 
IMIN=J 

21 CONTINUE 
PHI,.PHMIN 
SO=PMI 
XM=SM!IMINI 
SVXM,,XM 

C END STEP SIZE COMPUTATlONo••••••••••••••••••••••••••••••••••••••••••••-
C COMPUTE NEW VALUES FOR Bill••••••••••••••••••••••••••••••••••••••••••• 

DO 22 J:ol,K 
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A.4.1 (Continued) 

22 B(Jl=SBCJl+SMCIMINl*GDCJ) 
C END COMPUTATION FOR NEW VALUES OF Btllo•••••••••••••••••••••••••••••••• 
C END OF FLETCHER-POWELL ITERATION•••••••••••••••••••••••••••••••••••••••: 

GO TO 66 
C BEGIN COMPUTATION OF SU~ OF SQUARES•••••••••••••••••••••••••••••••••••• 
f SS=O. 

DO 3 J=l,NTIL 
CALL FCODE!Y,X,8,F,J,RESl 

3 SS=RES**2+SS 
C END OF SUM OF SQUARES COMPUTATIONS•••••••••••••••••••••••••••••••••••••· 

GO TO (5,7,24,15,18),IBK 
66 IT=IT+l 

!DAM=O 
IFIIT.LE,MINl GO TO 130 
IFIIT.GEoMAXJ GO TO 20 
WRITE(6,915l 
WRITEl6,904l IT,IBIIl,I=l,Kl 
WRITEl6,907l PHI 
GO TO 150 

20 KICK=l 
GO TO 130 

900 FORMAT15!5,E15.8,El5.8! 
901 FORMATl2Fl0o6l 
902 FORMAT!8Fl0o6l 
903 FORMATl2X,4HN = ,I5v5X,4HK = ,I5,5X,6HMIN = ,I5,5X,6HMAX = ,I5,5X, 

16HNCON = ,I5,5X/2X,48HMIN!MUM PERCENT IMPROVEMENT IN SUM OF SQUARE 
15 = ,El5.8,5X,6HDEL = ,E15o8l 

~04 FORMAT (/2H (!3,13H) PARAMETERS 5El8o8/(l8X,5El8o8)) 
906 FORMATC4C5X,El5.8ll 
907 FORMATl/2X,17HSUM OF SQUARES= ,E15o8) 
908 FORMATC8X,3HOBS,16X,4HPRED,16X,4HDIFF,l6X,4HFREQ) 
909 FORMATC8X,!5,4X,El5o8l 
910 FORMATC/2X,10HCONSTRAINT ,3X,7HSOUARES 
911 FORMAT!6C5X,El5o8ll 
955 FORMATC/2X,17HG MATRIX BY ROWS 
912 FORMATC/2X,l6HGRADIENT BY ROWS /6C5X,El5o8ll 
913 FORMATC/2X,36HSCALED 30 TIMES WITH NO IMPROVEMENT /) 
914 FORMATC/2X,58HQUADRATIC METHOD FAILED, RESETTING G MATRIX TO UNIT 

lMATRIX/l 
915 FORMAT(/120H ••••••••••••••••••••••••••••••••••••••••••••••••••••• 

1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
l l 

END 



TABLE A.4,2 

VARIABLES OF SUBROUTINE FCODE 

Mathematical Symbol 

Y. 
l 

w. 
l 

b 0 , i=l,2,,.,,k 
l 

Yi, (b1,b2'"''bk; wi) 

i 

FORTRAN Variable 

Y(I) 

X(I) 

B(I) 

F 

I 

RES 
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TABLE A.4.3 

INPUT DATA 

Input Mathematical FORTRAN Card 
Item No. Symbol Label Format Columns Comments 

l - IOPTI 15 1-5 = 0 Read in Y(I), X(I) 

= l Compute Y(I), X(I) by subroutine 
GENF 

2 n N 15 1-5 No. of data points Y(I) 

k K 15 6-10 Total number of parameters B(I) 

MIN 15 11-15 Noo of detailed print outs desired 
(MIN .::_ MAX) 

MAX 15 21-25 No. of constrained parameters 

ZETA El5.8 26-40 Minimul allowable percent improvement 
in squared error function i,~ 

M DEL El5.8 41-55 Initial value for M in Table A.2.2 
0 (DEL= l,E-5 is ade~uate in most cases.) 

$ Y. Y(I) Fl0.6 1-10 Omit if IOPT = 1. Use as many cards as 
l needed (one pair of data points per 

w. X(I) Fl0.6 11-20 ''bard). 
l 

4 b. B(I) 8Fl0. 6 1-80 Initial values of B(I), eight per card I-' l I-' 
(J) 



TABLE A. 4, 4 

EXAMPLES OF SUBROUTINES USED IN PROGRAM 

SUBROUTINE FCODECY,X,8,F,I,RESl 
DIMENSION YC200) ,XC200l ,BC50l ,PRNTC5l 
IF(leGTo45l GO TO 12 
IF(IoGTo44l GO TO 11 
IF(I.GT.43) GO TO 10 
COMPLEX ZOC,ZS,Z 
RO=BCl) 
RS=BC2l 
XKS=8C3J 
WS=ABS(X( Ill 
WO=ABS(X(ll*XKSl 
SK=SQRT(WS)*o70710678 
RNS•RS•SK*(SINH(SKl*COSH(SKl+COSISKl*SIN(SKll 
XIS=RS*SK*ICOS(SKl*SIN(SKl-SINH(SKl*COSHCSKll 
DS=2o*WS*lo70710678**2l*l(COSH(SKl*COSCSK)1**2+CSINHISKJ*SINCSKll 

l **2 l 
RNS=RNS/DS 
XIS=XIS/DS 
SK=SQRT(WOl*•70710678 
RNO=RO*SK*(COSH(SKl*SINH(SKI-COSISKl*SINISK)l 
XIO=-RO*SK*ICOSHISKl*SINHISKl+COS(SKl*SIN(SKll 
D0=2.*W0*(.70710678**21*((SINHCSKl*COS(SKll**2+(COSHISK)*SINISK)I 

1 **2 l 
RNO=RNO/DO 
XIO=XIO/DO 
ZS=CMPLXCRNS,XISI 
ZOC=CMPLXIRNO,XIO) 

300 Z=ZS*ZOC/CZS+ZOCI 
XMAG=CABS(Zl 

F=20o*ALOG10(XMAGI 
RES=YCI)-F 
RETURN 

10 IF(B(lloLT.5el GOTO 1 
IF<BClloGT.20000ol GO TO 2 
RES=O• 
RETURN 

1 RES=(BCll-5•>**4 
RETURN 

2 RES=CB<ll-20000.)**4 
RETURN 

11 IF<B!2).LT.50ol GO TO 3 
IF(8(2loGT.20000ol GO TO 4 
RES=O. 

RETURN 
? RES•CB(2l-50ol**6 

RETURN 
4 RES=<BC2l-20000ol**4 

RETURN 
12 IF(BC3loLT •• 005) GO TO 1 

IFCBC3loGT,.100ol GO TO 8 
RES=o. 
RETURN 

1 RES=Cl000o*CBC3>-·005ll**6 
RETURN 

8 RES=(8(3)-l00ol**6 
RETURN 
END 
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A.4.4 (Continued) 

SUBROUTINE SUBZCY,X,B,Nl 
DIMENSION Y(200),X(200),B(50l 
RETURN 
END 

SUBROUTINE GENFIN,K,NCON,X,Y) 
DIMENSION Xl2001,Y12001 
RETURN 
END 

118 



APPENDIX B 

MULTIVARIABLE IMPEDANCE FUNCTIONS 

B.l Introduction. Positive real functions of several variables 

were introduced in the problem of designing apassive network having 

variable parameters (9). The theory has recently been developed by 

Koga (8), This appendix is a collection of theorems and definitions 

which relate directly to this thesis. 

Definition B .1.1 k Complex Plane C If a complex plane is denoted by C 

k then C = CXCX •. , C is the Cartesian product of k copies of the complex 

plane, 

Definition B.1.2 Open Polydomain DrCCk: If D.CCk (i=l,2, ••• ,k) is any 
1 

connected open subset of the complex plane, the product set 

D = D1 X D2 X .• , Dk Ck will be called an open polydomain. If an open 

poly domain is defined by D1 X D2 X .•. Dk where D. = 0 .. e: C; · r · r . r ir 1 

Re (A.)> 0, then it will be denoted by D, 
1 · r 

Definition B.1.3 Positive Function of k Variables: If a rational 

function f of k variables satisfied Re(f) .:_ 0 in the open polydomain 

D cl then f is called a positive function of k variables. 
r ' 

Definition B.1.4 Positive Real Function of k Variaples: If a positive 

function of k variables W(A1 ,A2 , •.. ,Ak) is real for Ai (1 < i ~ k) real, 

then Wis a positive real function of k variables. 

Definition B .1. 5 Reactance Function of k Variables: If a positive real 

function of.k variables W satisfies W(A1 ,A2 , •.. ,Ak)+W(-A1 ,-:-A2 , ••• ,-\)=0 

119 
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then Wis called a reactance function of k variables. 

Theorem B,1,1 Positive Real Function Test: A function of k variables 

W(A1 ,A 2 , .. ,,Ak) is a positive real function if and only if Wis a posi­

-1 tive real function of p after substitution of A. = a.p + S.p for every 
l l l 

real, positive, value of the constants a. ands. (l < i < k), 
l l - -

Proof: See reference (8), 

Theorem B.1.2 Right Half Plane Properties: The numerator and denomina-

tor of a positive function of k variables prescribed in the irreducible 

k form have no zeros in the open polydomain D c:::C , 
r 

Proof: See (8), 

Theorem B,1,3 Decomposition Theorem: If a positive real function 

W(A1 ,A 2 , .• ,,Ak) has poles on the imaginary Ai-axis including infinity on 

each complex plaine i=l, 2,,., ,k independently of the other variables, 

then W can be decomposed as 

where Z.(A.) is a reactance function of A. alone which has the above 
l l l 

mentioned poles and w1 is a positive real function of k variables, 

Proof: See (8), 

Theorem B, 1. 4 Necessary and Sufficient Conditions for W to be a Reac-

tance Matrix: Let an n x n matrix W(A1 ,A 2 ,,,, ,Ak) be prescribed as 

A L + C w = ___ i __ _ 

BA. + D 
l 

where BA. +Dis the least common denominator of W, B "f. 0 and D "f. 0 
],. 

being polynomials in A.(l < i < k), and A, Care polynomial matrices of 
l - -

A.(l < i < k). Then the necessary and sufficient conditions for W to be 
l 

a reactance matrix of (k+l) variables are: 



i) 

ii) 

D/B is a reactance function of \.(1 < i _< k), 
1 -

A/B, C/D are reactance matrices of \.(1 < i < k), 
1 
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iii) (BD-AD)/B2 is non~negative Hermitian for Re(\o) = 0 (1 < i < k) 
1 

except at singularities. 

Proof: See (8), 

B,2 Topological Formulas for the Driving Point Function. Material 

on topological formulas and the synthesis of topological formulas can be 

found in works by Seshu (10), (11). 

Definition B.2.1 Tree-Admittance Product: The tree-admittance product 

is the product of the admittances of the branches of a tree for some 

network, 

Theorem B.2.1 Determinant 1::,.: The determinant I::,. of the node-'admittance 

matrix Y of a passive network N without mutual inductance is 

I::,. = l (tree-admittance product: 
all of tree t. of N) 
trees 1 

Proof: See ( 10). 

Definition B. 2, 2 2-Tree T2 o . 
1 'J: A 2-tree is a pair of unconnected, 

circuitless subgraph, each subgraph being connected, which together in-

elude all the vertices of the graph. One (or in trivial graphs, both) 

of the subgraphs may consist of an isolated vertex. The symbol T2i,j 

denotes a 2-tree with vertices i and j in different connected parts. 

Definition B.2.3 2-Tree Product: A 2-tree product is the product of 

the admittances of the branches of a 2-tree. The product for an iso~ 

lated vertex is defined to be 1. 

Theorem B.2.2 Co-factor l::,.ii: If r is the reference vertex of node 

equations, the co-factor of an element in the (i,i)-position position 

is given by 



Proof: See (10), 

/:,. • = I 
ll 

all 
2-trees 

(T2 . products) 1,r 

Theorem B,2,3 Topological Formula for the Driving Point Admittance: 

The driving point impedance for a network which contains no magnetic 

coupling is given by 

Proof: See (10), 

Theorem B,2,4 Form of /:,//:,ii: The driving point admittance given in 

Theorem B, 2, 3 as Y = !:,/ !:, • • will have t, as a homogeneous polynomial of 
ll 
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degree (v-1) and/:,,. is a homogeneous polynomial of degree (v-2) in the 
ll 

variables y 1 ,y2 ,.,.,y where vis the number of vertices of the graph 
- e 

corresponding to Y and each y. is of degree one. 
l 

Proof: See (11). 

Theorem B.2.5 Parallel Element Removal: If the elements y. (l < i < m) 
l 

have the two input.vertices of a one-port as endpoints then 

m 

Y(s) = 

where t,' and ~ll are not functions of yj (1 < j < m). 

Proof: See (11), 

Theorem B.2.6 Parallel Element Condition: Every element y. appears in 
l 

/:, , but an element yi appears in 1:,11 if and only if yi does not have the 

two input vertices of the one-port as endpoints. 

Proof: See (11). 

Definition B.2.5 2-Isomorphism: Two graphs G1 and G2 are 2-isomorphic 

if they become isomorphic under (repeated application of) either or both 
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of the following operations: 

1. Separation into components. 

2, If the graph consists of two subgraphs H1 and H2 which have 

only two vertices in common, the interchange of their names 

in one graph, 

Definition B.2.6 c-Circuit Matrix: The c-circuit matrix B for a given 
c 

tree of a connected graph G is the matrix corresponding the set of 

e-v+l circuits formed by each chord and its unique tree path where e is 

the number of elements and vis the number of vertices in G. 

Theorem B.2.7 ~ for Separable Graphs: If a graph G is separable into 

nonseparable graphs G1 , G2 , .. ,,Gn then ~=~1 ·~2,.,.,~n where~ is for 

graph G and~- is the~ for graph G. for every i. 
l l 

Definition B.2.8 Component Parts of a Graph: If a separable graph G is 

separated into maximal connected subgraphs which are nonseparable, then 

each subgraph G. is known as a component part or component of the graph 
l 

G, 
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