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CHAPTER 1

INTRODUCTION

1.1 General Discussion. Recently, there has been an increased

interest in integrated and thin-film circuifs because of possibie re-
ductions in size, cost, and power requirements and because of improved
reliability (1). One of the major problems in thin-film and integrated
circuits is that the well developed lumped parameter theory cannot be
used directly since the elements of the thin-film and integrated net-
works must in general be treated as distributed networks. However,
many of the distributed components used in thin-film and integréted
networks can be modeled accurately by the uniform transmission line of
finite length (URC elementsj (2). Figures l.l.la‘aﬁd l;l.lb show two
possible forms of the URC element used in thin-film and integrated cir-
cuits respectively (2).

The URC element of Figures 1.1.la and 1.1.1b 'is normally represent-
ed by the symbol in Figure 1.1.2 with the terminals as shown. If the
URC element in ?igure 1.1.2 is considered to.be a two;port network, the
open circuitvimpedance.matrix has the form
I R R —T
/oRC tanh vVpRC /ER—C- sinh vpRC

Lz2] = (1.1.1)
- R R
VpRC sinh VpRé vVpRC tanh vpRC
L -
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Figure 1.1.1, Examples of Distributed RC Networks Which -
Can Be Modeled by the URC Element

Where C is the total capacitance of the line, R is the total resistance
of the line (2). The irrational hyperbolic forms that appear in
Equation 1.1.1 cause great difficulty in the analysis, synthesis, and
particularly in the synthesis approximation problem for networks with

URC elements (URC network). The problem becomes .even more complex if

¢
i



each of the RC products (product of R and C from Equation 1.1.1) has a

different value for each URC element.

. Iy 12
— R -———
1 ® AAAA & 2
A&
A )|
Ey £,
® ® <
3

Figure 1,1.2. Symbol for URC Element

1.2 Review of the Literature. If terminals 2 and 3 of the URC ’

element in Figure 1.1.2 are open-circuited (no load), the driving point

impedance looking into terminals 1 and 3 is

R
)

Z (p) = A v
¢ VpROCO tanh VpROCO

(1.2.1)

where Ro is the total resistance of the line, and Co is the total
capacitance of the line (1), Similarly, if terminals 2 and 3 are

short-circuited the driving point impedance looking into terminals 1

and 3 is

RS tanh VpRéCs
Zsc(p) = (1.2.2)
VPR C

S 8

-where RS is the total resistance of the line, and CS is the total capa-

__.cltance of the line.



The symbolic representation for these two cases is given in Figures

1.2.3a and 1.2.3b respectively.
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Figure 1.2.3.  Networks for Zoc(p) and Zsc(p)

The following definitions are given to aid in the subsequent discussion.

Definition l.1l.1 Zy--Element: A Zoc—element is a distributed element

having the driving point impedance given in Equation 1.2.1 for Zoc'

Definition 1.1.2 Zgc-Element: A Zsc—element is a distributed network




element having the driving point impedance given in Equation 1.2.2 for
VA
sc
To further simplify notation, a URC element will now be defined to
be either a Zoc—element or a Zsc—element, and a URC network will be
defined to be a network of URC elements.

Wyndrum (3) has given a synthesis procedure for URC networks. He

approached the problem by the use of the positive real transformations

_ 2
ZLc(p) = (ZRc(p ))p (1.2.3)

s = tanh a p (1.2.4)

where a = VRSCS (or a = VROCO ) ZRC is the impedance of the URC ele-
ment (Zoc(p) or Zsc(p), ZLC is the impedance of ZRC under the trans-

formation (in Equation 1.2.3). Using these transformations in Equations

1.2.1 and 1.2.2 Zoc(p) and Zsc(p) become

Z (s) = - = (1.2.5)
oc VROCo s C s

Z (s) = = = Ls (1.2.6)
sSC /'——‘Rc

s’s

where C = Vﬁ;E;VRO and L = RS/V§;E;: Thus the transformations reduce
Zoc(p) and Z Sgp)_tb fhe impedance of a capacitor and an‘inductor
(respectively) in the s-domain when each RC product is the same for
each URC element. Wyndrum gave a suffiéieﬁf‘condition for the driving
point‘impedaﬁcé.function Z(p) of a URC network with elements having the

same RC product to be realizable,



The sufficient condition is that Z(p) be transformed to a realiz-
able lumped LC function by the transformations of Equation 1.2.3 and
l.2.4,

0'Shea (4) gave a set of necessary and sufficient conditions --
using a different transformation -- for Z(p) to be realizable (RC prod-
uct is the same for each element). Giguere, Swamy, and Bhattacharyya.
(5) later showed that the two classes of impedances realized by Wyndrum
and 0'Shea are identical. Further, they have shown that any realizable

"URC impedance function can be synthesized by a cascade synthesis proce-
dure given by Wyndrum.

Wyndrum has given a rpocedure to realize the driving point imped-

ance given as

KO K n Ki tanh vpRC (1.2.7)
Z = + tanh v pRC + ¥ 5 5
v tanh v pRC b i=1 vp (tanh” (YpRC)+R.")
P i

where KO, K Ki, Bi are positive constants and n is an integer (3).

o0

Very little has been reported on the use of Equation 1.2.7 or the
impedance of other distributed networks to approximate a rational im-
pedance function or an impedance specified in a Bode plot. Wyndrum has
given a series of Bode plots which can be used to approximate a given.
impedance function, but the procedure is a graphical one and inherently
inaccurate. The approximations are further limited by the assumption
that each element has the same RC prbduct.

Heizer (6) has approached the problems of synthesis with distrib-
uted elements by constructing a distributed network with a rational
driving point impedance. Unfortunately, the networks are very diffi-

cult to fabricate and offer almost no freedom of choice in the loecation



of the poles for the driving point impedance.

Still another approach is taken by Rohrer, Resh, Hoyt (7). Here
the given impedance function is approximated by using a single distfib—
ufed RC network, with an arbitrary taper. The taper is adjusted to
minimize the difference between the impedance of the distributed net-
work and the given impedance function. The procedure also acplies to
transfer functions. Although the method appears.tc hcld great.promise,
the erfor fﬁnction that is minimized in the method_ie expfeseed ih in-b
tegral fofm which may not haveva practicalvform in some‘epplications.'
In those caees where the error can be mimimized, the taper may be too
complex for pfactical fabrication. | V

Recently there has been a great deal of interest in multivariable
impedance functions (8), (9), The most recent paper, by Koga (8),
gave the necessary and sufficient conditions fom the synthesis-of
finite passive n-ports wifh pfescribed positive reai:matricee of several
vdriables. However, in general the method requires transformers in the
realization. In this thesis multivariable funciions_wili he dsed
extensively in connection with the reelizaticm cf.ﬁﬁﬁ hetwofks (without
transformers) with elements having differeht RC productsib Therefcre,‘
some of the important definitions concerning the multivariable functions
are given in Appendix B;

1.3 Motivation and Objective. It is evident from the previous"

section that very little has been?done with TRC networks with elements
having different RC products. A synthesis procedure does not exist

for this type of network, and no practical and accurate .procedure has -
beenigiven which can be used in the approximation problem (even in#the

case where the RC products are assumed to be equal). Furthér, it is



evident that URC networks with elements having the same ﬁC products is
a subclass of URC networks with elements having different RC products.
This wider class of networks should provide more flexibility in the
approximation problem and yield more accurate results. A natural
approach to the synthe51s of these networks appeared to be the use of
multivariable impedance functlons; Therefore, a study of URC networks
with different RC products and their relatlonshlp with multlvarlable,
functions appeared to be an excellent topic for research.

In the analysis problem, rational'approkimations exist for Zoc(p)
and Zsc(p) Whichvare based on infinite product expansions and could be
used to study URC networks having elements with different RC products,
but apparently the possibility of improving these approximations has not
been considered, and therefore, isvanother topic for research.

The primary objectives in this thesis will be to:

(1) Improve existing rational'approximafions‘for Zoc(p)

| and.Zsc(p)-. |

(2) Develop a synthesis procedure for the driving point

impedance . Z(p) of URC networks“with elements having
different RC products, and to,findfsome of the imporfant
properties of Z(p).

(3) Develop procedures for the approximation of.rational.

‘ impedance functions and impedance functions (rational-
or irrational) which are specified in a magnitude plot
(Bode plot) with URC networks with elements hav1ng ‘

different RC products.

1.4 Orgaﬁization of the Thesis., The analysis problem is consid-

ered. . in Chapter II and new rational approximations for Zoc(p) and Zsc(p)



are derived that arebvalid over a wider range of frequencies than con-
ventional approximations for the same number of terms. A lumped RC
network is derived from these approximations and can be used to model
each Hﬁ?elemént°

Chapter III gives a relatively simple procedure which can be used
to approximate a given rational driving point impedance with-a network
of URC elements. A method to realize é given rational fransfer function
using operational amplifiers, URC elements, and gyrators is also-given,

Chapter IV .deals with a method to remove the restriction that
each URC element have the same RC prodﬁct. Wyndruﬁ'svtransformations
are generalized and the result is a class of multivariable driving
point impedance functions which are uséful in analysis, synthesis, and
in the approximation problem. éome basic‘propértiés éf the multivari-
able impedance. functions are derived, and some necessary conditions foer
realizability are given. | | B | |

>Chapter V gives a new method for the synthesis of any realizable.

driving point function of a URC network with elements having different
RC produc‘;s° In the realization transformers and gyrators are not used.
The method can also be used to find the graph for the classical topo-
logical formuia for the driving peoint admittance. (10), (il). Therefore,
its a?plication is.not ﬁecéssariiy restricted to the syntheéis of URC
networks. |

Chapter VI considers the gentral problem of approximating an
impedance function specified ih ; magni tude blot (Bodé §i0t5 with a
ﬁﬁE,netWork having elements with different RC products. The results of
Chapter IV .and V are used as a toél'to develop thé general form of the

impedance function Z(p) for a URC network having elements with
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different RC products. Several properties given by Wyndrum for the
impedance of URC networks are extended for the case of different RC
products., A computer program is given which can be used as a tool in
the approximation problem where a least squares. approach is used; The
program is a modification of a method given by Fletcher and Powell (12) -

for the minimization of nonlinear functions.



CHAPTER II
OPTIMAL MODELS FOR THE: URC NETWORK

2,1 Introduction. In Chapter I the driving point admittance of a

URC network with the -output short-circuited and with the output open-

circuited were given as

R tanh VR C p
s s’s

ZSc = (2.1.1)
’ VR C p
S S
RO
Z (2.1.2)

¢ /ETp tamh /RCp
oo 4 o o
respectively. The irrational, hyperbolic functions in ZSC and Zoc make
analysis of.ﬁEE networks rather difficult and provide very little in-
sight. Therefore, it is desirable to find approximations for ZSC and
ZOC that are simple, ratiohal functions. In this chapter new épproxi-'
mations are féund for zoc and Z;C‘that ére rational functions and are
valid over a wide range of frequencies. The approximationé are useful

in the analysis problem and can be used to find RC networks which

approximate the corresponding distributed networks. .

2.2 Simple Rational Approximations.for Zsc and Zge. One way of-
obtaining a_ratioﬁal~approximation is by expanding ZOC and Zsb into a

ratio of infinité.products (2), (13). These expansions have the form

4

11.
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T RSCSP
R, o1 (1 + — 2)
Z_, = - (2.2.1)
ﬁ 4 Rscsp
n=1 (1 + 5 2)
(2n-1)°"
T ‘uRoCop :
R, (1+ ' )
o] n-l (2n—l)2 T]'2 ,
2. *® — - ~ (2.2.2)
RC.p I (i N RoCoP
n=1 ‘ 2 2
n m™

In most applications, these functions are approximafed by iéc and Zéc
where each of fhése funétions are'obtained by trﬁncating the products
such that they have a finite number of terms. If the approximations
iéc and zéc are derived for ZOC and\ZSC in this manner, they can be
made as adcurate as desired by inecluding a sufficient number of terms
invthe products. Unfortunately,.the driving point,impedéﬂce (frénéfer
function) of a URC-network with k elements Qheré éacﬁ elemént is approx-
imated by Eéc and Eéc has a complexity‘which grows rapidly with the
number of ferms used in the approximations %éc and Eéc. Therefore, it
igs desirable to minimize the number ofitermé used. to approximate ZOC
and ZSC such that the approximations meet some,specified standard for
accuracy. To study this problem Bode pléts~of fhe appfoximatidns given.
by Equations 2.,2.1 and 2.2.2 can be ﬁade (truncated producfs) for
various numbers of terms with RC = 1 (normalized).

A given approximation Zéc (ﬁéc) for ZOC (ZSC) is very good for lbw
frequencies. However, for high frequencies'thé-accuracy of the approx-
imation depénds on fhe number-of;terms used. <This foilows sincé»the

high frequency aéymptOte of the Bode plét,of‘Zoc (ch)'has a slope of
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-10db/decade while the high frequency asymptote of the Bode plot for
the rational function Eéc (Zéc) must have a slope of n(20)db/decade
where n=0 or n=-1. This point is illustrated by the Bode plot for Zéc
and Z  in Figure 2.2.1 and the Bode plot for Z' and Z2 . in Figure

sc oc oc
2.2.2 where the dashed line in each plot corresponding to ZSC and ZOC
respectively and the solid line corresponds,to the asymptotic magnitude
characteristic of the approximations Z;C and Zéc respectively. The
plots are given for RS=RO=1 and the frequency axis scaled so that the
plots apply for ZOC and ZSC with arbitrary RC products (see Figures
2.2.1 and 2.2,2).

The number of break-points is equal to the number of terms in Z;
(i' ). Thus, if Z' and Z' are required to meet some standard of

oc sc oc
accuracy specified in terms of error in db of the Bode plot over the
specified range of frequencies 0 < wRC < g where w is . the maximum
max max

frequency, then the number of terms.necessary for the required accuracy
can be.found by trial and error.

In the next section new approximations iob and %sc will be found
that have fewer terms.thanvZ(')C and Z;C respectively and meet the

assumed - standard of accuracy.

2.3 Optimal Rational Approximations for Zoc and Zgc. In this
section the form. of the apﬁroximétions’%;c and ééc will be usea_té
obtain new approximations ésc and %éc exceﬁt»thatAthe poles and zeros
of iéc and ééc will be adjusted from their original values to give a
higher degree . of accuracy for the same nuﬁbef of»terms; for a given
range . of frequencies. |

At this point a criterion must be selected that can be used in

judging the merits of the approximatidns. One frequently used criterion
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For error. in magnitude approximation problems is to require that the -
magnitude of the error in db be less than t.idb for any frequency in
some specified range of frequencies. This criterion is adequate for
most applications in network synthesis and specifically for the approxi-
mation of ZOC and Zsc° The range of normalized frequencies to be used
here given in radian per second is 0 < wRC < 100. At the present state.
of the art the RC product is very small for most thin—fiim and integrat-
ed URC elements. It is difficult to give an upper bound that applies in
every case, but usually RC << lO_u ohm-farads and RC << lO"6 ohm-farads
for thin-film and integrated networks respectively. Therefore each zoc
and Zsc satisfying the given criterion for accuracy are valid for a
wide band of frequenéies,v

Since Zoc‘and Zsc are minimum phase functions the close approxima-
tion of the magnitude funétions (see Equations 2.2.1 and 2.2.2) is
sufficient to guarantee the phase of ZOC and Zsc will be closely approx-
imated by the phase of Zoc and Zs .

c

Since the criterion for judging the relative merits of the approxi-

mations Zoc and Zéc has been selected, a method of adjusting the poles

and zeros. of zoc and Zsc must also be selected that is compatible withw'

g

the criterion. The least squares method of fitting curves (see Appendix
A) was found to be an effective way to adjust the poles and zeros of

Zoc and zsc such that the approximations give minimum error. As a first
step in the least squares analysis an expression that gives the real and.
imaginary parts of ZSc (jw) and 2o (jw) must be found. The derivations

for the expressions are lengthy but are straight forward. The express-

ions are -
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R W [cosh W sinh W - cos W sin W ]

Re {Z (3w} = (2.3.1)
oe 2 W2 [sinh2 W 0082 W+ cosh2 W si% W]
-R W [cosh W sinh W + cos W sin W ]
Im {Z_ (jw)} = = EEN— . (2.3.2)
oc 2 W2 [sinh2 W cos2 W+ cosh2 W sin2 W ]
RO W [sinh W cosh W + cos W sin W ]
Re {Z_  (jw)} = ' (2.3.3)

s¢ 2 W2 [cosh® W cog2 W+ sinh? W sin® W ]

RO W [cos W sin W - sinh W cosh W ]
Im {Z. (Gw)} = (2.3.14)
sc 2 W2 [cosh2 W cos2 W o+ sinh2 W sin2 W]

"

where W = (sin II/4)VRCw

Then lzoc (jw)| and IZéC (jw)| can be found from Equations 2.3.1-2.3.%4.
Since !Zoc (jw) | and-lzSC (jw)| are functioﬁs‘of w, 41 eéually spaced
points log Ws s i=1,2,¢..,41 were selected on the log w axié whefe

01 < we < 100. Then if w, are the frequency values of the
normalized frequency plot of ZOC (jw) and ZSC (jw) (wi = wRC), a

squared error function for the least square analysis Foc can be defined

as
41 - )
Fo = igl [zoC (jwi)l - ]zoc (jwi)D (2.3.5)

Similarly, error function Fsc can be defined as

41 - )
Fog ° lgl |zSC (jwi)[ - ]zSC (jwi)[> (2.3.6)
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Now the squared error functions Fsc and Foc can be minimized by adjust-
ing the parameters (the poleé and zeros of Esc and 250) and a éompufér
progrém was written to do this minimization. The program is é modifica-
tion of some éf the more recent techniques to minimize nonlinear func-
tions (12), The modifications were necessary to solve convergénceb
problems caused by the nature of Fsc and Foc'- The program and its
description are giveh in Appendix A. |

Tokfind.the fﬁnctions isc and 260 that satisfy the criterion given
above; the numbef of terﬁs in'zSc and Zoc‘was-incfeésed after éach
computer run until the error;criterion was éatisfieda The end result

of this work is given in Equations 2.3.7 and 2.3.8,

R R (t,p+ 1)(t,p+ 1) -
z__ = °_ R o 1 2 =z (2.3.7)
VpRoCo tanh VpROCo pRoCo (T3p + l)(qu + 1)
where
T, 7 ROCO (.40006)
T, = R C_ (.03267)
2 e}
Ty = Roco (.09253)
T, = ROCo (.01098)
R_ tanh vDR_C. R (Tlp + l)(T2p + 1) -
z = 2 2 —2= = Z_, (2.3.8)
" Yp RC (t.p + )(t,p + 1)
- s s 3 L ’
where _
T, T RC, (.09253)
T, = RSCS (.01098)
T, = R.C_ (.40006)
3 s s
Tq = Rscs (.03267)
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Equation 2.3.7 and 2.3.8 can be written in a different form by using

partial fraction expansions and are given below.

_ 1 R (.22568) R, (.10340)
5 - + + (2.3.9)
oc Co? R C_ (.09253)p+1 * R C_ (.01098)p+l
_ R_ (.81408) R, (.07777)
Z5c T Bg (10818)4 R_C_ (.40006)p+1 ¥ R,.C, (.03267)p+1 (2.3.10)

Equations 2.3.9 and 2.3.10 give insight into the behavior of-Zoc andeSc

and these functions can be synthesized by lumped RC netwérks and are
given. in Figurés 2.2.3a and 2.2.3b respectively.

The approximatioﬁs zoc and Zsc are éompared to the approximations
2éc and Zéc giveh by.Equafiohs 2}2.l‘and 2.2.2 for thé same humber of
terms inATables 2.3.1 and 2.3.2, In Tables 2.3.1 and, 2.3.2 the fre-.
Quency wRC. is given~in thé first column, and the remaining columns are

given in db. The errors in'the approximations are defined by

Error lZéc (Fw)| = 20 Log, 4 IZoc

(3w)| - 20 Log, ]Zéc (Jw)| (2.38.11)
Error IZOC (Gw)| = 20 Logy, |z (Gw)| - 20 Logy Jiocv(jw)| (2.3.12)
Error.liéc (jw)| = 20 Log, |z (Gw)| - 20 Log,, ]Z;c (Jw)| (2.8.13)

Error lzsc (jw)]‘= 20 LoglO lzsc (jw)l - 20 LoglO lZsc (jw)l (2.3.14)

It can be seen by Table 2.3.1 that the largest error in the magnitude

of Z over the range .0l < w R C < 100 is -.096db at w R C = 64,
oc o o o o
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1 11
I\ A
C (.49142) C  (.43450)
S . S
Z
sSC
&

(b)

Figure 2.2.3., Equivalent Networks for the Zy -Element
and Zgc-Element Which Are Valid Over
the Range 0 < p RoCo < 100 and
0 < p R;C, < 100 Respectively
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COMPARISON OF TWO APPROXIMATIONS FOR ZOC

TABLE 2.3.1

ERROR ERROR

@ R_C_ Iz, Gl (@) |z, (G| (@) izl G| @) Hz o Gl (@) |z, Gl ()
.0100 ~-,00006 ~,00007 ,00000 ~.00006 -.00000
.0126 ~,00010 -,00011 .00000 ~,00010 . ~,00000
.0160 -.00017 -.00017 .00000 ~.00016 -~.00000
.0200 -.00027 -,00027 ,00000 -.00026 -.00000
.0250 -.00042 ~,00042 .00000 ~.00041 -.00000
.0320 ~.00089 -.00069 .00000 -.00067 -.00001
. 0400 ~,00108 ~-.00108 .00000 -,00105 -.00002
.0500 -,00189 ~.00189 ,00000 -.00165 -.00003
L0640 -.00276 ~,00278 .00000 -.00271 ~.00004
.0800 -.00432 -,00432 .00000 ~,00423 -.00008
.1000 ~,00675 -,00674 -.00001 ~,00661 -.00013
. 1260 -,01071 -,01070 -.00001 ~.01049 -.00021
.1600 -,01725 -.01724 -.00002 ~,01691 ~,00033
.2000 -.02693 -,02690 ~,00003 -,02639 -.00053
.2500 -.04199 -.04195 -.00005 -.04116 ~,00082
. 3200 -.06857 -.06849 ~-.,00008 -.06721 -,00135
L4000 -,10662 -.10650 -.00012 ~.10452 -.00209
.5000 ~-.16534 -.16515 ~,00019 ~.16213 -,00320
<BL400 -.26734 -.26702 -.00032 -.26225 ~-.00508
.8000 -.41001 -.40952 ~.00050 -.hk0o2y2 -,00758
1.000 ~-.62292 -,62214 -.00078 -.61186 ~.01056
1.260 -.94693 -.94569 -.00124 ~.93120 ~-.01520
1.600 -1,4290 ~1.4270 -.00199 ~1.4077 -.02136
2,000 -2.,045% -2.0424 -.00312 ~2.0191 ~,02641
2,500 -2.8397 -2.8349 -.00487 ~2.8102 -,02955
3,200 -3.9192 -3.9112 ~.,00797 -3.8911 -.02808
4,000 -5.0430 ~5,0306 -.01245 -5,0231 -.0199y
5.000 ~6.2540 -6,2346 -.01942 -6.2497 -, 00433
6.400 ~7.6218 -7.5900 ~.03174 ~-7.6416 +.01976
8.000 ~-8,8229 ~8,7735 -.04942 -8,.8864 +.04193
10,00 -9.9527 -9.8759 -.07679 -10.,007 +.05513
12.60 ~11.0384 ~10,917 -.12083 -11.087 +.04884
16.00 -12.090 -~11.8998 ~-,19201 -12.106 +.01601
20.00 ~13,041 -12.747 ~,29376 -13,011 ~,03025
25,00 ~13,989 -13.545 ~. 44468 ~13.920 -.06961
32.00 -15.050 -14%,35% -.69104 -14.976 ~.07432
#0.00 ~16.018 -15.011 ~1.0069 -15.987 -.03079
5¢.00 -16.989 -15,560 ~1.4281 ~17.029 -.04064
64,00 ~18.,061 -16,036 -2.0254 -18.158 -,09695
80.00 -19.030 -16.353 -2.6778 -19.,095 ~-.06474
100.00 -20.000 -16.579 -3.4206 -19,903 -.09621

20



TABLE 2.3.2

COMPARISON OF TWO APPROXIMATIONS FOR Zsc

21

ERROR ERRCR
Pl | . . o .

w RC, |2, (jw)| (db) iz, (Jw)] (ab) |z;)C (Jw)| (db) }zoc G| () (]2, (G| ()
.01000 40.00006 40,00006 0.00000 40,000 ~.00000
,01260 37.99826% 37.99269 0.00000 . 37.992 ~-,00000
.01600 35,91776 35.91777 0.00000 35.917 +.00000
.02000 33,97966 33.87966 0.00000 33.97¢ +.00000
.02500 32.04161 32.04162 0.00000 32,041 +.00001
.03200 29.,89768 29.89768 0.00000 29.8387 +.00001
.04000 27.95987 27.95987 0.00000 27.959 +.00002
.05000 26.02228 26.02228 0.00000 26.002 +.00003
.06400 23.87916 23.87916 0.,00000 23.879 +.00005
.08000 21.94251 21,94251 0.00000 21.942 +.,00008
.10000 20.00674 20.00674 0.00000 20.006 +.00013
.12600 18.,00329 18.00328 .00001 18.003 +.00021
.16000 15.93485 15,93483 .00001 15.934 +,0003%
.20000 14.00632 14,00629 .00002 14,005 . +.00053
.25000 12,0831% 12.08314 00004 12,082 +.00083
.32000 9,96556 9.96549 .00007 3.96u42 +.00135
.H0000 8,06541 8.06529 ,00012 8.0633 +.00209
.50000 6.18593 6.18574 .00019 6.1827 +.00321
,64000 4,14373 4.,14342 .00031 4,386 +.00509
. 80000 2.34821 2.34771 .00049 2.3406 +.00759
1.00000 .62291 62213 .00077 .61186 +.01106
1.26000 -1.06048 -1.06171 .00123 -1,0762 +.01572
1.60000 ~2.65331 -2.65530 ,00199 ~2,6746 +.02137
2.00000 -3.97501 ~3.97813 .00311 ~4,0014 +.02643
2,50000 -5.11901 ~-5,12388 .00487 -5,1485 +.02357
3,20000 -6,18376 -6.19173 .00797 -6.21185" +,02809
4,00000 -6.99813 ~-7.01058 .01244 ~7.0180 +.01995
5,00000 ~7.72531 -7, 74473 01942 -7.72396 +.00433
6.40000 -8.50176 -8,53350 03174 -8.4820 -.01877
8,00000 ~9.,23884 -9.28826 .0h9u2 ~9.1869 -.0u4195
10.00000 -10,04721 -10.12400 .07679 ~9,9820 -.05516
12.60000 ~10.96897 -11.08978 .12082 -10.920 ~.04887
16.00000 -11.99203 -12,18403 .19200 -11.976 -.01603
20.00000 -12.97920 -13.27295 .28375 -13.009 +.03024
25.00000 -13.96899 ~-14.41366 T -14.038 +.06861
32,00000 ~-15,05234 ~15,74338 .B3104 -15.126 +.07434
40.00000 ~16.02260 -17.02952 1.0068 -16.053 +.03081
50.00000 ~16.99036 ~18.41853 1.4281 -16.949 -.04063
64.00000 -18.06173 -20.08714 2.,0254 -17.864 -.09695
80.00000 -19.03084 -21.70869 2.6778 -18.966 -.06475
100.00000 -19.983899 3.4206 -20.0886 +.09618

J ~23.42068
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The largest error of Zéc can be seen to be + 3.42 db at w ROCo = 100
over the range .01 < w ROCO < 100. Simiiarly, from Table 2,.3.2 the
largest error in the magnitude of Zsc in Equation 2.3.8 over the range
0l < w RSCS < 100 is +.,096 db at w RSCS = 64, The largest error in the
magnitude of the corresponding approximation Z;c over . the range
.01 <lw‘RSCS < 100 ié —3;4 db at w Rsés = 100. The values for error in
the approximations are not given in.Tables 2.3.1 and 2.3.2 for
wRC < .01 (or w ROCo < .01) but tests showed that there was no signi-
ficant error for w RS.CS < ,01 (or w ROCo < ,01) in any of.the approxima-
tions. Alsb note that the absolute value of the error in the approxima-
tions Zéc (or Z;C) is greater than .l db for
10 < w ROCo (or w RSCS) < 100. Therefore, with the same number of
terms, the new approximations are valid over.a widerlrange of frequen-
cies than Zéc and 2éco

The methods of this section can also be applied to find an optimal

approximation for the open circuit voltage transfer function for a URC

network. The approximation and detalls are given in the next section.

2.4 Optimal Rational Approximation for the Open Circuit Voltage

Transfer Function of a URC Element. Consider the URC element in

Figure 2.4.1. The open circuit voltage transfer function of the URC

element in Figure 2.4.1 is

E
G (p) = == I (2.4.1)
S - 71  cosh VRC p ’

Then using the methods identical to those in Section 2.3 for ZOC and

Zsc’ Equation 2.4.1 can be approximated by the rational function



G (p) & G (p)

where

The error defined by

1l

(1, p+ (1, p + Dty p + 1

T, 7 RC (.40753)
T, = RC (.0u260)
Ty = RC (.01436)
e= |l (Gw] - 8 (Gw)|

23

(2.4.2)

is less than .16 db for .01 < 'w RC < < 100. The error is not signi-

ficant for 0 < w RC

- 2 ...0l. Even though .16 db is more than the

assumed. standard of .1 db, it is felt that the -approximation is good

enough using four terms in the approximation.

Figure 2.4.1 URC:Element




CHAPTER III

APPROXIMATE SYNTHESIS OF RATIONAL
DRIVING POINT IMPEDANCES WITH

URC NETWORKS

3.1 Introduction. In Chapter I three. methods were given that can

be used to approximate rational driving point impedances. However, all
of these methods are difficult to apply for the reasons given in
Section 1.2, In this section a new method will be derived that is
rather simple to apply and gives an accurate approximation for a given
rational impedance.

3.2 Synthesis of Rational RC Driving Point Impedances. The two

driving point impedances of the URC netwqu ZOC and ZSC were given in
Equation 2,1.1 and 2.1.2 respectively, and the infinite product ex-
pansions for ZSC andeOC were given in Equations 2.2.1 and 2.2.2,
respectively. In the discussion to follow infinite product expansions
for Zoc and Zsc are used instead of the optimal approximations since
they are exact for all frequencies and no computation is required in
the discussion. An examination of the finite product expansions show
that ZSC behaves as a resistor of value RS when Cs becomes: very small
and similarly, ZOC behaves as a capacitor of value ROCO/RO (or CO) when
RO becomes very small, Thus, it is clear that lumped RC functions can
be approximated if CO and RO can be made very small. In general, how-

ever, RO and CS cannot be made arbitrarily small for applications where

24



25

URC networks would be applicable. This is especially true for inte-
grated circuit applications where resistors cannot be made much smaller
than 2 ohms/square (1l). A more conservative estimate is 5 ohms/square.
There is also a limit on how large resistors can be made. They can be
made with a resistance as high as 300 ohms/square  and be connected in
series to form a resistor as large as 30 K ohms (1). Thus it is
reasonable to restrict RS and RO to be in the range

5 ohmsii_RO (or Rs) < 20 K ohms; The resistors in thin-film URC ele-
ments can be made smaller and also larger than they can be in integrated
circuits., However, for the work in this section the value of Rs and RO
will be restricted to the range 5 ohms <Ry (or RS) < 20 K ohms. The
capacitance CS can be controlled by reducing the width of the URC-ele-
ment, but there is alsc a practical limit to how small the width can

be made (3).

Now again consider the infinite product expansions for zoc and
zéc° An examination of the expansions shows that they have the same
properties as RC impedance_functioﬁs exéept thaf they have an infinite
number of poles and zeros. Therefore, it is reasonable to restrict
this work to the approximation of rational RC impedance functions. In
general a rational RC impedance function Z(p) can be.expanded in

partial fraction form as

Koo n Ki
Z(p) = K_+ ——+ Z — (3.2.1)
o) P 521 3; P + 1

where each Ki and a; are positive and real constants, and n is a posi-
tive integer. The synthesis of Z(p) in Equation 3.2.1 by a lumped RC

network is classical (14). As explained in Section 3.1, each of the
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resistors (capacitors) of a lumped RC network can be approximated by a
Zsc—element (Zoc—element)° The synthesis of Z(p) (First Foster form)
in terms of these URC elements is shown in Figure 3.2.1 where the
capacitances CS for the ZSC—elements and the resistances RO for the

Zoc—elements are set to the smallest possible practical values.’

R =K
‘[___~ 5 0
1 »
& i v_l b .
Rs™% %7 K
' Ol—a
< ¥
Z(s)— C = fﬂ
o K
n
&

Figure 3.2.1. Approximation for Z(p)

The network of Figure 3:.2.1 can be used in many practical applications
where the high frequency behavior is not, important. However, the
parameters of the network in Figure 3.2.1 can be adjusted to give
minimum error over some assumed range of frequencies and significantly
improve the approximation by the same methods used in Chapter II. This
will be the approach taken here except that optimal approximatiénsuwill

be found only for terms of the form
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K,
i

3;--13—-+—J-_- (3.2.2)

Zi(p) =
The terms KO and K _/p will be approximated as shown in Figure 3.2.1.
Note that the approximations are given term by term instead of for the
entire function Z(p) (see Chapter VI) so that the results can be
applied to an arbitrary function Z(p) which can be written in the form
of Equation 3.2.1.

In Chapter VI it will be shown that the magnitude plate (Bode plot)
of an impedance function for a network with URC elements having differ-
ent RC products has a slope of -10 db/decade for high frequencies.

Then it is clear that any approximation found will be valid only in a
band of frequencies less than some finite maximum freguency. For the
work here the maximum frequency will be wRC = 100 where RC is the
largest RC product in the approximating network. The justification for
this assumption is the same as for the similar assumption made in
Section 2.3,

The least square approach used in Section 2.3 will be used here
with the exception that some of the parameters will be constrained.

The method used to constrain the parameters in the compufer program. is
given in Appendix A. The impedance of a parallel circuit consisting of
a Zoc—element and a Zsc—element is

Zoc(p) Zsc(p)

(3.2.3)
Zoc(p) * Zsczp)

?i(p) =

where R , R , R C , and R C_ are the parameters in the impedance Z,(p)
o> 7's®> oo " g8 1
of the parallel circuit. Note that if the parameters of Zi(p) are

adjusted to give an optimal approximation for
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K.
1

! D ——
z:(p) = 35 D+ 1

(3.2.4)

then Zi(p) can be made to approximate Zi(p) with an arbitrary value of
a; by scaling all RC products in the approximation_zi(p). Then the
squared error function F, to be used in least squares analysis is de-
fined by

41 _ )
F= ) 12} G| - 1%, (jwk)[> (3.2.5)
k=1

where the constraint for RO and RS is given by

5 ohms §=Ro (or Rs) < 20 K ohms, k=1,2,...5,k 1s such that Loglo Ws

i=1,25...,41 are 41 equally spaced points on the Loglow axis, and
.01 hH < 100. The program in Appendix A can be used to minimize F

subject to the constraints for a given value of Ki"
The results of the computer analysis for several values of K indi-

cate that F takes a minimum value when

R = K, ohms
s 1
RO = 5 ohms , ~ (3.2.6)"
RC = EQ ohm-farads
o 0 R

s -
and ngs is selected from the design curve given in Figure 3.2.2. The
design curve for RSCS was determined empirically as a function of K,
from the data obtained in computer runs for a range of values of Ki

1x 10° K o215 x 103a When K, > 15 x 103, a value of RSCS = .02 ohm-
farads is an optimum value for Rscs° The plots of Zi (jw) (in db)
for‘a wide range of values of_Ki are given in. Figure 3.2.3.

Now let Ei be the error defined by



29

3 3
1x10 3x10 5x10 7x10 9x103 llxlO3 13x10 15x10

K.
i

Figure 3.2.2. Optimal Value of RsCs as a Function of Ki
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K,
1

EE“?Z‘?"I (3.2.7)

= 71 3 -
E; = 20 Log, [Z' (jw)| - 20 Log,,

Plots of error Ei’ for a range of values of Ki are given in Figures
3.2.4 - 3.2.7,

It is clear from these plots that the error Ei_is small for large
values of Rs = Ki fér 01 < w ROCo < 100, and Ei becomes larger. for the
higher frequencies (10 < w ROCo < 100) as Ky becomes smaller. The error
plots in Figures 3.2.4 - 3.2.7 cannot be used to find the error of the
total approximation Z(p) for Z(p), but do provide useful data on each
term zi(p)e If the error Ei for some Z (p) of Z(p) 1is too large for a
particular application, it may be necessary to use a hybrid of thin-film
and integrated cilrcuit devices where the parameters can be adjusted over
a wider range of values (1). The more general procedure for approxima-
tion given in Chapter VI may. also give better results when the methods
of this section are not adequate. The hethod of Chapter VI may in
general use less elements and has the added advantage of avoiding cumu-
lative error inherent in this method. However, the simplicity of the-
method in this section, where an optimal approximation for'Equation
" 3.2,4 is obtained makes its use particularly attractive when the errors
can be kept below the acceptable level.

The results of this section can now be illustrated by an example.

Example 3.2.1l: Consider the function Z(p) given in the partial fraction

form

5000 + 8000

lxlO_Sp + 1 2xlO_4p + 1

Z(p) = = Zl(p) + Z2(p)

First consider Zl(p) where Kl = 5000. Then the parameters for Zi(p)

can be found from Equation 3.2.6, and are: Rs = 5000 ohms, Ro = 5 ohms,
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ROCo = 50/RS = .,01l. Figure 3.2.2 can be used to find the value of
RSCS = .118 ohm-farads. Now since the approximation Zi(p) is for the
function
5000
' T ——

2'(P) = o T
the frequency has to be scaled by some factor T such that T * 10 = 10-3.
Then T = lO_‘1L and ROCO and RSCS have to be scaled by the same amount.,
Then R'C' =R C =+ T = (001)(10'“) = 107° ohms~-farads, and

oo o o

RéCé = RSCS e T = ullBXlO_u = ,llelO_u ohm~farads. In the same way
the parameters for Z can be found as Ro = 5 ohms, RS = 8000 ohms,

6

2(s)

n

RéCé = (0625x10~2)(10— ) = .625%10 50

, R'C' = (asqulo'l)(lo'“)=.624x10'

The network is given. in Figure 3.,2.8.

RS:5000?4 (~—~_ﬂ [ Rgmo0008
R C =,118x10 Q-f£d. L___ﬂ@ , }___4@R C =.624x10 ~Q-fd.
S s | S S

a_‘
Z(p)——
Ry=51 Rozsﬂ
R C =107 004, R C =.625x10 Cf-fd,
o O o O
@

Figure 3.2.8. Network for Example 3.2.1

The largest error in the approximation for the terms zl(s) and 22(8)

is E, = -.6db and E2 = .24db respectively, at ROCOw = 100 (see Figure
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3.2.5). Note that |E;| (or|E,|) <.1db for w R C_ < 40.

i

3.3 Synthesis of Rational Transfer Functions With Distributed

Elements Using Operational Amplifiers. Recently there has been a large

amount of interest in synthesis using operational amplifiers (15). In
this section operational amplifiers will be used with Zoc-elements and
Zsc-elements to obtain a realization procedure for any rational transfer
function with constant coefficients.

First consider the network frequently used in analog computation

and shown in Figure 3.3.1

Zf(p)

Zi(p)

Operational
Amplifier

Figure 3.3.1. Network Used in Analog Computation

where Zf(p) and Zi(P) are the impedance functions of the elements shown
and the operational amplifier has a very high gain. It is well known

that the transfer function for the network shown in Figure 3,3.,1 is

e, Zf(p) :
EE.N 7;557— (3.3.1)
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= = ! !
Now let Zf(p) Zsc(p) and Zi(p) Zsc(p) where Zsc(p) and Zsc(p) are

impedances of the form given in Equation 2.1.1 with different parameters

RO, ROCO and Rl, RlCl respectively. Then
s’ "s’s s’ "s's

—RO tanh p ROCO

s S-S

Y 0,0

s P Rscs
=~ (3.3.2)

1 gl tann Yp rYet
S S S

1

S

P Ric

When Rgcg = Rici (same RC products), Equation 3.3.2 reduces to

e RO -
E.O_z_._i (3.3.3)
i R
s

Thus, it is possible to build the summing amplifier network shown in
Figure 3.3.2 where Rgcg = Rici = ... = ch: and each block shown in the

figure corresponds to a Zsc-elementq

The output voltage e, for Figure 3.3.2 is

o

=
(M VE JUN

e - RO
o) S

(3.3.4)

ne~13

In the following, an integrating amplifier will be constructed
using Zoc—elements, Zsc-elements and a gyrator (16). The ideal gyrator

is shown symbolically in Figure 3.3.3, terminated by ZL'

The open circuit parameter equations of a gyrator are

El 0 +1 Il

E2 -1 0 I2
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Zl Zo
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°n
Figure 3.3.2. Summing Amplifier
Il 1 1,
& —_— - ——————
A A l

Figure 3.3.3. Gyrator Terminated by ZL;

Note that Zin = l/ZL, for Figure 3.3.3. Now consider the network shown
in Figure 3.3.4 where the Zoc—element and Zsc—element are labeled. The

transfer function for the network in Figure 3.3.4 is
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e -7, Vp R C -R.
O SC S S S
— = — = — = == (3.3.5)
i =— VpRC tamh pRC_ P>
Z o 0 [e}e)
ocC -
R
(o]

where RC =R C .
o o s’s
Then since an integrating amplifier and a summing amplifier can be
built using distributed elements, the methods used in analog computation

can be used to realize any given rational transfer function with con-

stant coefficients.

ocC SC

Figure 3.3.4. Integrating Amplifier
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CHAPTER IV

MULTIVARTABLE IMPEDANCE FUNCTIONS FOR
URC NETWORKS WITH ELEMENTS HAVING

DIFFERENT RC PRODUCTS

4.1 Introduction. This chapter deals with the definition of a

multivariable impedance function which can be used for URC networks with
elements having different RC products. Some new properties are derived
for the multivariable impédance function which are useful in the synthe-

sis problem.

4.2 Multivariable Impedance Functions. In Chapter I Wyndrum's
method of synthesis was briefly discussed where all the URC netowrk
elements were restricted to have the same RC pfoducts. This restriction
can be removed by using the theofy fecently developed by Koga (8) on the
synthesis of impedance functions of se&eral variables. Impedance func-
tions of several variables are obtained for URC networks when‘the trans-
formations uéed by Wyndrum are generalized (3). The traﬁsformations fér

URC networks when the RC product is the same for each element are

2
ch(p) = (ZRc(p ))p (4.2.1)

s(p) = tanh (ap) (4.2.2)"

where a = RC, Z__ is the impedance of a URC network, Z._.is the impedance

RC LC

of ZRc under the transformation in Equation 4.2.1 p is the frequency

variable of a URC element, and s is the transformed domain. -
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The open-circuit and short-circuit impedance of a URC element are

RO
7 = (4.2.3)

o¢e YR C_p tanh /ROCOp

R tanh vR C P

_S S's

sc e
R.C.P

(4.2.4)
C .
s's
Now assume that a URC network with k elements has a different RC product
for each element. Each of the RC products is denoted by B§ = chj where
j=1,2,...,k. - Note that some of the RC products may be equal in magni-
tude but for simplicity each RC product B? will carry a different sub-
script., It is evident that no generality is lost by this assumption.

Now, the open-circuit and short-circuit impedances of Equations 4.2.3

and 4.2.4 become

R,
Zoy = = - (4.2.5)
B?p tanh B?p
1 1
2.
R. tanh B.p
Z g = ] — (4.2.6)
”B]?'p

Using the transformations given in Equation 4,2.1 in Equations 4.2.5

and 4.2.6
R,
Zog = — S (4.2.7)
B? tanh p B?
1 ) 1
R. tanh p. B?‘
z,, = — ] (4.2.8)
/52
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Since each RC product is different, the transformation given in Equation
4,2,2 must be changed to

si(P) = t;nh (B,p) (4.2.9)

Using this transformation in Equations 4.2.7 and 4.2.8, the result is

Ry
Zoc ~ B.s. (4.2.10)
i°i A
R.s.
7 = e (4.2.11)
sc B

Therefore, the driving point impedance of a circuit with k URC elements
with different RC products is transformed into a multivariable driving

point function of k variables Sj’ §=1,2,... k.

4.3 Propeftieé of URC Multivariable Driving Point Functions. In
this section the nofation ﬁﬁEMVDPF will be used to denote aIUﬁﬁ'multi;
vafiable driving point function. Existing theorems énd definitions
dealing'with multivariable driving poiﬁt fﬁnctions which relate to this
sectioﬁ are given - in Appendix B. | | |

Theorem 4,3.1 Topological Formula Reactance Property: A necessary con-

dition that the topological formula for the driving point admittance

(see Appendix B)

to correspond to a network with k elements without transformers is that
Y be é'réactance function of k variables.

Proof: Consider an arbitrary graph G with k elé;ents and let each
branch.have an édmittance'y s i=l‘2,...,k. Now u81ng Theofem B.2.3 the

derlng p01nt admittance Y(¥.s¥nse-+,y, ) can be computed for the -graph
1722 K P

G. It follows from Theorem B.1.1 that Y(y,sV.s+«+sy, ) is a positive
1°72 43 P
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real function. This can be seen by setting y; = Ais + Bi/s, where Ai
and Bi are positive, real, and arbitrary constants. Now the correspond-
ing network only has inductors and capacitors. From conventional net-
work theory, Y must be a positive real function of s for every set of

positive constants Ai and Bi' Y can be shown to satisfy
Y(yl,yQ,...yk) z —Y(—yl,—yz,...ryk) (4.3.1)

by considering Theorem B.2.4. It follows that Y is a reactance function

of k variables.

Lemma 4.3.1 URCMVDPF Reactance Property: A necessary condition that a
ﬁﬁEMVﬁfFvwlwith k variables be realizagle as a network with elements‘of
the form Lisi or l/Cisi where Li and Ci are positive and real constants
is that W be a reactance function df k variables.si, i=1,2,....k.
Proof: To be realizable, the URCMVDPF ﬁust corfespond.to scome graph G,
and it follows from Theorem B.2.3 and 4.3.1 that the~driving point
function can be obtaiﬁed in terms of the branch admittances and is a
reactance‘fﬁnction of k vafiables. If y; = Lisi ory, = l/Cisi, depend-~
ing on the admitfancé of the branch, for i=1,2,...,k the ﬁﬁEMVDPF is
obtained. Since Lisi and l/Cisi are feactance functions when Li.and ;i
are positive and real and since the reactance function of a reactance
function is again a reactance.function, it followé that the URCMVDPF
musf be a reactance function.

In the previous theorem the URCMVDPF was obtained from the topo-

logical formula Y = = where each y. = C.s, of y, = 1/L,s,. It
All- =7 ivi i 171

follows from Theorem B.2.4 that if the numerator and denominator of Y
are multiplied by Lisi for every term of the form l/LiSi in the numera-

tor or denominator'that the result will be of the form
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Y(Sl,SQ,.. (4.3.2)

where a, and bj are positive and real constants and PNi and PD, are

products of the elements from a subset of the set {sl,s2,..,,sk,lI.

Definition 4.,3.1 Normal Form of the URCMVDPF: A URCMVDPF is said to

be the normal form if it has the form of Equation (4.3.2).

Example 4.3.1: Consider the graph shown in the Figure 4.3.1.

Figure 4.3.1. Graph for Example 4.3.1

The graph corresponds to the topological formula for the driving point
admittance given below
VYo T V) Y3 T VY3

Y= = _ (4.3.3)
' YQ+.V3

If = l/LlSl’ Y, =‘l/L232, and Vg = C3s3, the result is
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Y = (4.3.4)

Rearranging in to the normal. form

C.,L,s,s,.+LC.s.s. + 1
y = 37272°3 A 173 1‘3 ‘ (4.3.5)
L1L2CBSlSQS3 + Llsl

To aid in the proof of subsequent theorems and discussion, the
following definitions are given.

Definition 4.3.2 URC-Product: A URC-product is defined to be a product .

of elements from a.subset of the set {s ,,sk;l}.

12822

Definition 4.3.3 Degree of a URC-Product: The degree of a URC-product
is defined to be the integer equal to the number of variables s in the
Tﬁ(—f—productn If there are no variables s in the product, the degree is
defined to be zero..

Definition 4.3.4 Iprpeducible Function: A function F = N/D is said to

be irreducible if the numerator and the denominator have no common
factors.

Theorem 4.3.2 Reducibility of the URCMVDPF and A/Aq7: ‘Given a graph G,

the topological formula Y = A/All and the URCMVDPF for graph G are

reducible functions if and only if the graph G is separable.

Proof: Assume that A/All (or URCMVDPF) corresponds to some graph G and

there are common: factors in the numerator and the denominator. The
common factors may be canceled and A/All (or the URCMVDPF) is no longer

a functien of at least one Variableyi (or Si)' This is' true since the
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maximum degree of each variable in the numerator or denominator is equal
to one. Since the driving point function Y = A/All (URCMVDPF) does not
depend on some of the variables, G must be a separable graph.

Now assume that -G corresponds to a separable graph with components
Gl’GQ"°°’Gﬁ wheré Gi is a nonsepafable graﬁh, Then Theorém B,2;7
implies thé determinant of the node—admittanée matrix for graph G can be

written as
LA (4.3.6) -

where Ai is the determinant of the node-admittance matrix corresponding
to graph Ginv Let Gl be the graph that becomes nonseparable when the
input vertices are identified. Now a 2-tree for G must have each of the
input vertices in a separate component part of the graph by definition.
Since Gl is the component containing the input vertices, every node in

Gi’ i=2,3,...,n and the node common to Gl and Gi must be joined by a

path of elements from any 2-tree of G. Hence, every 2-tree of G has

the elements of a tree from each graph Gi’ i=2,3,...,0. It follows that

- 1
b1 A11°A2°A3"°An_ (4.8.7)

where Ai is the 2-tree for graph G, and

1 1

By (A hy..d ) A |
Y = 1 2 3 n'= 1 (4.3.8)

1 : Yy 1
All(A2°A3°°'An) All

and Y is a reducible function. The URCMVDPF corresponding to Y must
also be reducible. |

Since. a graph is either a separable or a nonseparable graph,
Theorem 4.3.2 implies.A/All(ﬁﬁﬁMVDPF) is irreducible if and only if the
graph corresponding to A/All (URCMVDPF) is nonseparable. The example

given below illustrates Theorem 4.3.2.
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Example 4.3.2: Consider the separable graph shown in the figure below.

Figure 4.3.2. Graph for Example 4.3.2

.

A for the graph in the Figure 4.3.2 has.the fofm‘im““?m@wh
A= (y Y, * Y ¥q T YY)y, y5 + ¥y t ¥y (4.3.9)

and All for the graph has the form

b1y = 5y + y)(yyg + ¥y + Vi3g) (4.3.10)
Then

A VYo * Y,Y4 + V.Y
Yy = S P2 s Tl (4.3.11)

A1 Yot Y3

Theorem 4.3.3 Uniqueness Property for A/A;;: If-a given graph is non-

separable when the input vertices are identified, the topological.
formula Y = A/All corresponding to the graph is unique. If a given

realizable topological formula Y = A/ is irreducible, the graph

All

corresponding to Y has a form unique within a 2-isomorphism (see: Defini-

tion B.2.4).
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Proof: Assume that G is a nonseparable graph when the iInput vertices
are identified. It is known (Appendix B) that A is equal to the sum of
all possible tree-admittance products for graph G where a tree-admit=
tance product is the product>of_the branches of a tree. It is obvious
that A must be unique in form. Similarly,_.All is unique since it is
computed as the sum of all.possible é—trée products &here the input
verticeé are in different connectéd barts éf the‘graph. Theorem 4,38.2
states that Y = A/All is an irreducible.function when the graph is non-
separable. Hence, Y = A/All is unique.» | | |
Assﬁme that the topologiéal:formula for the DPF (driving point
function)vis realizable and irreducible, Then Y must corresﬁond to a
nonseparablé gréﬁh (Theorem 4.352).and no terms can be canceled ffom Y.
Since Y is;realizabie; the set of ail possible trees can be obtained

from A. When all of the elements of each tree are known, the graph is

determined to within a 2-isomorphism. (10), (11).

Lemma 4.3,2 Uniqueness Property forbthe URCMVDPF: If a given graph is
nonseparable when the inputAvertices are identifiéd, the corresponding
TRCMVDPF in normal form is unique. if é given-ﬁﬁﬁMVDPF is in the normal
form, is irreducible, and is realizable, the graph corresponding to the
URCMVDPF is unique to within a 2-isomorphism.

Proof: That tﬁe graph ié unique for a given nonseparable graph follows
from Theoreﬁ 4.3;3 since tﬁere is only one normal form of the TRCMVDPF

which can be obtained from the topologiéal formula Y = A/ (corres-

b1
ponding to the given graph). '
Assume that a realizable URCMVDPF is given in. the normal form and

is irreducible. The normal form of the URCMVDPF can be obtained from

A/All for a given graph by setting vy equal to the DPF for each element
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e, and by multiplying numerator and denominator by Lisi when an element
of the form l/LiSi is in the numerator or.denominator, it is evident
that given the normal form, the form of the topological equatien can be
obtained by dividing the numerator and denominator by the proper Vafi-
aEles s such that the fesulf.has the correct form when yi is set equal
té s, or l/si"(Theofem B.2.4). The consténfs associated with the‘vari-
ables s; are not needed to find the form of the topological formula and
may be conside?ed to have a value of one. Thé variables whiéh are used
in the division of nﬁmerafor and denominator cannot be identified by |
inspection, but ‘there are only a finife number of possible divisiohs
that.could be made éE (?) for k.variables in the URCMVDPF). Now since-
the topologiéal formiii-has a nﬁmerator with preducts all having a
degree of (V;Q) (see Theorem B.2.4), and each product has variables vy
'ofidegreé oné, there can be only one possiﬁle’set of divisoers that give

the correct form for A/Al This implies there is only one possible

10
topological formula Y = A/All for the given URCMVDPF in nérmal form,
Hence, it follows from-Theorem‘uosoa that every realization of:the
URCMVDPF must correspond to graphs unique to within a 2-isomorphism..
It is' apparent from Lemma 4:3.2 that there is no single network.
which realizes all possible URCMVDPFs. A given graph with k arbitrary
elements of the form s (or\l/si) gives only ék possible norﬁal forms |
for the URCMVDPF. The constants of the URC-products can be varied by

changing element values (in the URCMVDPF) but are interdependent.

Theorem 4,3.4 Degree and Ordering of the URC—Products of a,URCMVDPF:_

Every realizable URCMVDPF in the normal form must have the following
properties:

i) The numerator or denominator have URC-products of only even
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or only odd degree, and further, if the denominator has only
5§E;products of even degree, then the numerator always has URC-
products of only odd degree and vice versa.

ii) The highest degree of the numerator URC-products and highest
degree of the denominator URC-products must differ by one.

iii) The numerator (or denominator) with URC-products of even degree.
or odd degree (odd or even degree) has all URC-products of de-
gree r, m <r <u and no others where r is either even or odd, m
is the degree of the URC-product with maximum degree, and u is.
the degree of the URC-product with minimum degree. The integer
u for the numerator must differ by one from the integer u of the
denominator.,

Proof: It has been shown that the normal form of a realizable URCMVDPF

W with k variables can be written in the general form as

e Z aiPNi
.PD.
R N

where PNi and PDj are URC-products and as and bj are positive constants.
A necessary condition for W to be realizable is that W be a reactance
function (Lemma 4:3.1). Then by the definition of a multivariable

reactance function (see Appendix B)

W(sl,SQ,onn,sk) = —W(—sl,—s2,..,,—sk)

If N denotes the numerator of W and. D denotes the denominator of W, then

either N(sl,SQ,oo.,sk) = N(—Sl,—S2?e.o,—Sk) and D(sl,s2,;.?,sk) =
—D(—sl,-SQ,oeu,sk) or N(sl,SQ,oo.,sk) = —N(—sl,~s2,°.,,—sk) and

D(sl,s2,aea,sk) = D(—sl,—s “,-sk)u Now if D = D% (®indicates each

2°°

variable S5 is replaced by —si), then D = Z bj PDj implies each PDj is
\

of even degree, Similarly if N = N%, then each PNi is of evén degree.



52

Further if D = -D#, then each.fDi is of add degree, and if N = -N#*, then
each PNi is of odd degree; This gives propérty (1).

Now letvsi = p for i=1,2,...,k in W. Since W is a reactance func-
tion of k variables, it foilows frém the definition of a multivariable
reactance function that the function obtained,is a reactanceifunétioﬁv
of oné vériable (an.LC fucntion). If there are no caﬁceilafiéﬁs.of
some f(ﬁ) when s; =p for e&ery i, ﬁféperties (1ii) and (iii) foliow
directly. If a funﬁtion £(p) Egg;be‘canceled from W wﬁen $;. =P

i=1,2,...,k, then W can be written

q =D £(p)
d £(p)

where n/d is an LC function of p. Let m, be the highest power.of p in
n f(p), and let m, be the highest power .of p in d f(p), then from the -
properties of LC functions it follows that iml—mzl =.1, and therefore
property (ii) follows. Now using property (i) and using the -properties-
of LC functions it follows that f(p) is a polynomial with only odd or
even powers of p. Let the highest and lowest powers of p in f(p) be

q; and a4, respéctivelyo Note that n has only odd (or even) powers of
D, and d has only even (or odd) powers of p. Now let uy be the lowest

power of p in n and u, be the lowest power of p in 4. For n (or 4d)

2

with even powers of p, all even. powers must be present between

m. and u, = 0 (m, and u

1 1 2 5 = 0). Similarly, for n (or d) with odd powers

of p all odd powers of p must be present between my and uy =1

(mé and u, = 1). Now the highest power of p in n f(p) must be

m' =m tq and the lowest power must be u' = u; g, Similarly, the

highest power of p in d f(p) must be m" = m, + q and the lowest must be

2

u" = u, t g, All even or odd powers (which ever is applicable) are
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present between m' and u' (m" and u"). That |u' - u"| = 1 can be shown

in the same manner used to establish (ii). Thérefore (iii) follows.
Example 40503 below is uéed to illustrate Theorem 4.3.4. Thié

example illustrates éome of the differences between multivariable re-

actance functions and one variable reactance functions.

Example 4.3.3: Consider the realizable URCMVDPEF function (reactance

function) given below in normal form

S.S.S
W o= +l 23 — (4.3.12)
8083 78153 152

Note that there is no URC-product of first degree in the numerator or

of zero degree (a constant) in the dencminator. Let s, = P. Then

DPp _
pp + Pp + PP

Note that the equation above does not have LC function form until after
the cancellation of p2, and Eqﬁation 4.3.12 satisfies'(i), (i1), (iii)
of Theorem 4.3.4.

'The conditions in Theorem 4.3.u4 may be thought of as necessary
conditions for a URCMVDPF in normal form to be a reactance function or
to be realizable. However, the conditions are not sufficient for a
function‘to be a reactance function as can be shown by the féllowing
example,

Example 4.3.4: Consider the multivariable function -

W= —————— (4.3.13)

which satisfies Theorem 4.3.4, It wlill now be shown that W is not
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positive real (see Appendix B for a definition). Let s, = .01 /s80°,
: -6 . .
5, = .01 /-20°, and S5 = 10 /~89°. Thén rearranging Hquation 4.3.13.
s.8
l2+S
S3 - 1
W = i (4.3.14)
8182 +.1
Substituting the values for 813853 and 84
(1072 /60°) (1072 /=200) + 1072 /800
10;6 /=89°
W = — (4.3.15)

(1072 {600)(10*2 /-20°) + 1
In Equation 4,3.15
-2 -2
|(107% /60°)(107° f-20°)| < < 1

and
< < |(1072 L@QS)(10'24-299)
(10“6 /-83°)

‘(10"2 /60°)

Therefore W can be approximated by

-2 -2
(10 = /80°)(10 © /=20°) .
W = = 100 /129°
10 ~ /-89°

which has a negative real part. This implies W is not positive real

and cannot be a reactance function.



CHAPTER V

SYNTHESIS OF DRIVING POINT FUNCTIONS OF URC
NETWORK WITH ELEMENTS HAVING

DIFFERENT RC PRODUCTS

5.1 Introduction, This chapter deals with a new method for the

synthesis of the driving point function of ﬁﬁé'networks having elements
with different RC products. In the realization,trassformers and gyra- -
tors are not used. One by-product of this method can alsoAbe used in
finding the graph corresponding to the.classical topological formula for
the driving peint admittance (11).

5.2 Basis for the Synthesis of URCMVDPFs. Koga (8) has given a

general synthesis procedure to realize multivariable functions.

Further, he has given the necessary and sufficient conditions for the
realization., Unfortunately, the synthesis procedure in general requires
transformersav Since transformers caﬁnot'bé used in most applisatioﬁs
where URCMVDPFs are applicalbe, a mefhod that does not requife.trans—
formers 1s desirable. Further, it is desirable that the metﬁod be easi-
ly brogrammable on the digital computer. To dsvslop a procedﬁre having
these properties, if is necessary to csnsider some fundamentél propsr;
ties of circuits of a graph since the synthesis msthod to be devéloped

consists of finding a circuit matrix corresponding to the URCMVDPF.

Theorem 5.2.1 Placement of Elements in a Circuit: A necessary and

sufficient condition that'any.two elements in a graph can be placed in a

55
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circuit is that the graph be nonseparable.
Proof: Assﬁme any two elements of a connected graph G can be placed in
some circuit. Then no cut vertex can exist in G since any two vefticés
caﬁ be joinéd by.at least two different paths containing differentlver-
tices, and G 1s nonseparable by definition (10).

Assuﬁe graph G is nonseparable. Thén no cut vertex exists by
definitién° Since the graph 1s connected, any two vertices v and v

b

can be joined by a path of elements e» © e , e (ea incident

1° 62,.-a,n b

with Va’ e. Incident with Vb)° Let v be a vertex incident with ea and

b
different from vao Then since v cannot be a cut verfex there must be

another path connecting v, and v, not containing v (10). Therefore, a

b

circuit exists that contains any fwd elemeﬁts e, and ey

The importance of Theorem 5.2.1 is ‘that it insures fhat any element
of a nonseparabie one port network N with gfaph G can be placed in a>
circuit with the driver of the‘network° It féilowé thét each elemént e,
can be seen as the driving point functioen of the networkle obtéiﬁed
from N‘by;taking é circuit which has a set of elemeﬁts iﬁcluding e, and.
the driver, by short-circulting each element in this circuit éxéept thé
driver and e and by open-cifcuiting the rémaining elemehté of N.

Assume that W is a URCMVDEF which can be realized by a network N,
Then ﬁﬁEMVDPf W. can be written in the form.(see Section 4.3)

z aiPNi |

Y = —— (5.2.1)
} b.PD,
3]

where a; and bj are positive constants and PNi and PDj,are URC-products.
Since -each s. in each of the URC-products has a degree of one, it

follows that every‘URCMVDPP with k elements can be written in the form
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W = ] (5.2.2)

where A, C, B, and D are polynomials with (k-1) variables Sj’

j=1,2,0..i-1,141,...,k, Some of the polynomials A, B, C. and D may be

identically zero. The possible cases are: A, B, C, D £ 0; A 0,

B, C, DZO0y A

1t
(@}
[}
(1]
(@)
-
o
“
(@]

20, C=0, A, B, D£0; C=0,B=0,
A, C,DZ0;B=0,A, C, DEO3; D=0, A, B, C#%O0. All other cases
either give an undefined W, a W = 0, or a-W that is not a function of
all k variables, |

Since it is known that W corresponds to a network with elements

having the impedances of the form s, or l/Si’ each of the limits

1im W =-%» (5.2.3)"
S,> 0

i

lim W = %- (5.2.4)
5., ©

must correspond. to either short-circuiting (open-circuiting) or open-
circuiting (short-circuiting) the element corresponding to the variable
S5 respectively. At this point the type of element (Lisi or l/cisi') is
unknown. This information must be obtained before the limits of
Equations 5.2.3 and 5.2.4 can be related directly to an open circuit or
to a short circuit operation on the network., It ié important to note
that when a URCMVDPF is written in the form of Equation 5.2.2 thé limit.
as s, goes to zero or infinity can be obtained b& inspection, and if.the
URCMVDPF W has k elements, the limit of W as s; goes to zero or infinity
is equal to either zero (a short circuit), or infinity (an open circuit)

or a function of (k-1) variables.
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Previously it was shown that each element ei can be placed in a
circuit with the driver, and as a result, the impedance of each e, is
given when the proper elements are open-circuited or short-circuited.
Then if the limit is taken of W as s; goes to zero for (k-1) of the k
variables, and if the proper limits are chosen (si+ 0 or Si+ ®); the
result will be a function equal to the driving point function of any
chosen. element ej of the network. It will be evident from the example
given below that there may be more than one set of limit operations that:
give a result.equél to the driving poiﬁt function of an eieﬁent even
when ' there is only one circuit containing‘fhe drivef and the element.
The following definition will be made as an.aid in the example and sub-
sequent work.

Definition 5.2.1 Set of Open-Circuits and Short-Circuits S;s: Let G be

a graph with k elements e.. Then let éi denote that e is shert-cir-
cuited, Ei denote that e; is open-circuited, (ei) denote that e is not-
open-circuited or short-circuited. Then Sij is defined to be a set of
operations ém (or e,) where i identifies the element e; given as the
driving point function (DPF) and . identifiés one such set, |

Example 5.2.1: Consider the graph shown in Figﬁre 5.2.1.

ep0(eg)s8y0855(eg) )5 Sy

Then S3l =‘{el,_ {gl,e2,(e3),§u,e5,(ed)},

2=

S35 = lepaegaleglag egleg)d, Sg = {ey.e),(eg),e  e5.(ep) ),

835 = {91’92’(63)’94’55’(ed)}’ give a network having the driving point
function (DPF) of e Similarly, Sll = {(el),§2,§3,gu,e5,(ed)},
819 = tle))seyseqe seq,(e)l, ?nd S15 = {legplsegiegse seq,(e )} give

a network having the DPF of e,

All possible sets S3j (or Slj) have been given in Example 5.2,1

(for elements e_ and el), Therefore, any circuit. containing the driver

3
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and eq (or el) must corfespond to at least one of the sets SBj (or Slj)'

Further, the sets S 813, and Sll correspond to the rows of the c-cir-

33>
cult matrix (see Appendix B) for the graph of Figure 5.2.1 given in the

matrix

= O o N
o O = o w
o o o
o B O W,

1 d
- T
1 1
1 1

Some of the Sij's have short circuits which may not be needed to obtain

the DPF of e In Example 4.4.1 the set S, = {e

32 epseysleg)ie seq,(e )}

gives the DPF of e but elements e, and e, need not be shorted to give

3° 2 5

the DPF of e_. since S e

3 33 = (815855(8g)s8

—4’§5’(ed)} also gives the DPF of

e Figure 5.2,.2 illustrates this particular point.

3°

driver {

Figure 5.2.1. .Graph for Example 5.2.1

As can be seen, the graph shown in Figure 5.2.2 is separable when the

element e, is open-circuited. The DPF W'is not a function of e, and e.

and therefore, S and 833 give the same result.

32
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driver

Figure 5.2.2. Graph of Figure 5.2.1 With e
Open-Circuited

1

Example 5.2.1 and the related discussion were developed in terms of
open circuits and short circuits, but the same results can be obtained
in terms of sets of limit operations (si+no or s, -+ w) for (k-1) vari-
ables. The principle difference is that the limit operations pertain
to a DPF W instead of direétly fo the graph. Now the‘reiétion Between a
set of (k-1) limit oﬁerations and a‘circuif will be derived by cénsider-
ing a one-port network (having a driver and k elementsj-with graph G and
correspondihg to the URCMVDPF W. .First seleét.the set of circuits {Sij}
of graph G having element e and e; in each circuit. Then select the
circuits from {Sij} having a minimum number of elements (there may be
more than one circuit having the number of elements equal to the mini-

mum). Each of these circuits can be denoted cij where i corresponds to

one of the circuits having e; and the driver and a minimum number of.

elements (j=0,l,2,ou,ni where n. is the number of such circuits for
each 1), Now a subset of the set of circuits {cij’ 1=1,2,...,.k;
j:l,2,,oo,ni} must be the set of all circuits having the driver as an

element since each element ei i1s included in some circuit C“j’ This
1

subset will be dehoted by Fc for use. in the subsequent discussion in
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this chapter. Note that the word subset is used because some of the
cj’.r’cuj’.tsej._j may be identical (be the same cifcuit). Now a subset of
Fc containing e-v+l circuits will be shown to be an independent set 6f-
circuité where e is the number of elements and v is the number of ver-

tices (of G).

Theorem 5.2.2 Independence of Circuits: Let G be the nonseparable
graph of a one-port network, and leF FC be the set of all circuits for
graph G having the driver as. an element. Then a subset of the circuits
of_FC is a set of e-v+l independent circuits (the subset of F_ corres-
ponds to a circuit matrix of maximum rank). -

Proof: Let FC be the set of all circuits containing the driver for
graph G (corresponding to a one-port network). Now assume there exists
a circuit C, independent of the set of circuits FC not coentaining the

driver. Then there exists a circuit c, of the set FC having at least.

1

one of the elements,K contained in . (any element can be placed in a

circuit with the driver). Let le be a path of»elements_thatvcl and c.

have in common, and let 4 and v, denote the vertices incident at each

end of path Px Then there exists a path Pl connecting v. and v_ and

1’ 1 2

containing the driver (using elements from < which are not contained in

P_.). Since C, is'a circuit, there éexists a different path from P

x1 x1?

P connecting v, and v, and containing the elements of c, not contaln-

x2° 1 2

ed in Px Then the driver, and elements from Pl and PX2 form.a cir-

1’

cuit <, (which is one of the circuits of FC) and the driver and elements

from P. and P
X

1 form the circuit c

Now it follows that the ring sum

1l 1

(mod. 2 sum) of ¢, and <, is c, (10). Therefore, Cy is not. independent

of the set of circults Fc, and‘FC has e-v+l independent circuits., Al-

though FC has e-v+1l independent circuits, the number of circuits in Fc



62

may be greater than e-v+l. Thus a subset of FC has e—v%l circuits which:
are independent and correspond to a circuit matrix of maximum rank.

It will be shown that the set of circuits FC (defined earlier) can
be found from the sets of (k-1) limit operations thét give the DPF of
each element e; . Earlier it was shown that the DPF of each element e
can be found for a given realizable URCMVDPF W of k variables by taking
some set of (k-1) successive limits (sj+o or sj+wvfor each j, 3§ # 1) of
W. Therefore, the type Lisi (or l/Cisi) and value Li (or Ci) can be
found for each element e, and each of the (k-1) limits can be identified
as eithef corfesponding to a short circuit or an open circuit in the
network correspondihg to W. From Example 4.4.1 one can observe that it
is possible to obtain the DfP of some element eq from:several différent
sets of (k-1) limit operations. Now consider all possible sets of (k-1)
limit operations that might give thé DPF for some eqo ‘There are é(k;l)
possible ways to take (k-1) limits ksi+o or s#»w for each i¥ g can be
represented by a binary bit 0 or 1 and the set of (k-l).iimif operations
can be represented by a binary humber) and each set must be . tested to
see if it will give the DPF of the element equ Some of these 2(3_1)
sets of (k;l) limit operations may give a result equal to zero (a short
circuit),:of infinity (an open circuif) and_thereforé, do nat’give the
DPF of equ Furtﬁer, some of theLQ(k;l) sefs of (k-1) limit,operétions
may give the DPF of eq (see EXample 4.4,1)s However, when the sets of.
(k-1) limit o?erations.having a minimum number of limits correspending
to shorts and giving the DPF of eq are selected from ithe Q(k_l)
possible sets of (k-1) limit opérations for e , each of the limits

corresponding to a short circuit corresponds to an element in one of

the circuits qu’ j=l,2,c.a,nq (qu is defined above). Thus, the set of
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circuits {Ci°’ i=1,2,...,K; j=l,2,,,.,ni} can be found by considering

(k-1) (k-1) for each element).

the k 2 sets of (k-1) limit operations (2
Now let FC again be defined as the subset of {cij i=1,2,...,k;
j=l,2,,oo,ni} such that each circuit is not identical to any other:
circuit and all circuits having the driver are in the set. Then the
circuit matrix B of e-v+l rows wifh maximum rank where é, the number of
elements and v, the number of vertices,‘cén‘be found ffom Fo by finding
e-v+l independent. circuits 5f Fcc Note that if the given 3§EMVDPF hés
k elements and a driver, then e = k+1l. Also ﬁote that the.number of
vertices v can be found by uéing Theorem B.2.4, The>e-v+l independent
circuifs éan be found by finding the iargest.ﬁonsingular,determinant

(mod 2) of the matrix correéponding to FCo Without losing any general-

ity the circuit matrix B given earlier can be written in the form

B =. ESl B%] (5.2.5) -

where Bl is a nonsingular matrix (mod 2) of order (e-v+1l) x (e-v+1l) and

B2 is a matrix.of order (e-v+l) k¥ (v-1). Since Bl is a nonsingular

matrix, B can be premultiplied by Bil (mod 2) to give the fundamental
c-circuit matrix (see Definition B.2:6): Then premultiplying by Bil,

the result is

B = Bt [B] = ]:U i gT1 BJ = [U ! E] (5.2.6)
c 1 : vl T2 !

where U is a unit matrix of order (e-v+l) x (e-v+l) and E = Bi% B2 is a
matrix of order (e-v+1l) x (v-1). Each column of U corresponds to a
chord. of some tree T and each column of E corresponds to a tree branch
of T (10).

Finally, the graph corresponding to Bc.can be found by using the

well-known methods (17). Therefore, the procedure given above is one



BL4

method of realizing a realizable URCMVDPF and is summarized in the

following steps where W is assumed to be a realizable URCMVDPF:

1. Find the element values and types by using all k e(k_l)

sets of (k-1) limit operations on W.

2, Find the set of circuits {Cij’ 121,240 0.04K3 j=l,2,e.,,ni}
by locating the sets of (k-1) limit operations having limits
corresponding to a minimum number of short circuits and
giving the DPF of e for every 1,

3. Fiﬁd Fc fr'omv{cij 1=1,2,.00,K3 j=l,2,eoi,ni} by inspection.

4, Find (e-v+1l) independent circuits in Fc and write in matrix

form B = [Bl E B2] where bi is of rank (e-v+1l).

- i N
and then find B =|U | BIT B_|.
1 c | 2

5, Flpd B | 1

6. Realize'Bc as a graph of k elements with a driver,
The synthesis method above can be used to find the network to real-
ize any giveh realizable URCMVDPF, but it is clear that the method would

not be practicai for a URCMVDPF having a large number of variables s;
(k-1)

since k 2 sets of (k-1) limit operations need to be found. A much

more efficient method will be derived in the next section. However, the

work here does form a basis for all subsequent work and the above syn-

thesis procedure 1s illustrated by the following example.

Example 5.2.2: Consider the realizable URCMVDPF Z given below

} 6 818283 + Si
Z "B s.s.+* 2s.s.+ 1 (5.2.7)
273 173

(k-1)

Since there are three variablés, there are 12‘( 2 = 3-22) sets

of (k-1) limit operations. The notation illustrated by the equations

below will be used to simplify the notatioms.
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—~
mni
e
9]
[
n

1im (1lim Z)
g, 3,
i

LZ(§i§j) = 1im (1lim 2Z)
5.0 S. =0
1 ]

L (s,s.) = 1im (lim Z) -
Z° 1=
S,%® 5,70
i
L (s.s.) = 1lim (1im 2Z)
Z" =1

S.,70 S ,7>%®
1 J

Then the 12 sets of (k-1) limits are

LZ(Sl’SQ) = o

1]
=
~
N
03]

Ly(s08))
Ly(s,s8,) = 0
L,(s,58,) =0
LZ(EZ,SS)
Ly(sposy) = 54

LZ(§2,83) =0

LZ(§2,§3) = s

il
w
72}

Ly(s1:85) 2
Ly(s1s85) = =
LZ(S

S1585)

LZ(§1,§3) =0
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The sets that give the DPF of €15 €5 and e, are
LZ(S2’SB) =8,
Ly(sgesg) = 8

Ly(8p08g) = 8
LZ(sl,ss) f 3 s

LZ(SL’§2) = 1/2 S

Since the type and value of each element is how. known, the limits in the
above equations can be identified as corresponding to either open cir-
cuits or short circuits. The equations giving the DPF of e and having

a minimum number of short. circuits can be found for each e; to be
LZ(§2,§3) = 3
LZ(El,Es) = 3s
3

LZ(Sl?§2) = 1/2 s

Then the set of circuits corresponding to Equation 5.2.8 written in

matrix form is

1 2 3 4
ey 1 0 0
C
21l =f 0 1 1 1 (5:2.9)
“31 0 1 1 1
L _ -

Note that CH1 and cg, are the same circuits. The duplication occurs

becuase the DPF of each element in a circuit can be given by short-

circuiting all other elements in the circuit and open-circuiting the
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remaining elements in the network. So for a circuit with n elements-in
some graph (excluding the driver), there will be n duplications. Now
from Equation 5.2.9 the matrix FC corresponding to the set FC (eliminate

duplications) can be written as

1 2 3 a4

1 010 1
Fo= !
© Jo 111

Note that Fc in the above equation has two Independent circuits which
can be found by inspection and further, FC already has the form of. the
fundamental c-circuit matrix Bc = [U:E]. BC can now be realized as a
graph G and the result is given in Figure 5.2.3a. The network corres-
ponding to G is given. in Figure 5.2.3b. Where the schematic symbols for
an inductor and capacitor are used to distinguish between the two types

of elements.

Figure 5.2.83. Realization for Z

5.3 Synthesis of Realizable URCMVDPFs. The synthesis method

developed in the previous section can be simplified by the next theorem
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which eliminates much of the unnecessary checking of limits. The
theorem applies to a general class of functions including the URCMVDPF.
For simplicity the following notation will be used in the theorem.

Let L. be a function of n variables x., i=1,2,...,k where x, = s, or s,.
W T : i’ - ‘ ‘ i i

Further, let

L. (s.) = Lim. W
W 1
S, >
1
L s,) = Lim W
W (-1
si - 0

and let

LW (Si’§j) = Lim { levW 1
S; 2™ s, 20

]

Note the order in which the limits are taken.

Theorem 5.3.1 URCMVDPF Limit Theorem: Let W be an irreducible function

of k variables which can be written in the form

Z aiPNi’
W= ——— (5.3.1)
) b.PD,
1]
where a, and bj are positive and real constants and PNi and PDj

(PNi # PDj) are URC-products. Then:

i) W can be reduced to one of the forms a,/b.s or.ais‘/b. for

A A MR u 7 ﬂ

each u=1,2,...,k by a set of (k-1) limit operations if and
only if there exists at least one pair PNi and PDj with their

respective coefficients such. that

a PNi ai su al
b.PD. = b. T 5. s (5.3.2)
J 3 J J u

ii) When a pair PNi and PDj exists which satisfies Equation 5.3.2,
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a set of (k-1) limit operations that gives aisu/bj or ai/bjsu is defined
by

OQ,Xk)

Ly (xl,x2,°°°x

x .
u-1""u+l?

where s, = s, if s, is in both URC-products PN, and PD., and x, = s, if
i i i e i 5 i =i

S5 ié not in béth.ﬁﬁtlproducts PNi ér PDj.for-i=l,2,°;°u—l,u+l,}.u,k,
Ezgéiz Assume there exists a pair éf URC-products PNi énd‘PDj with
their respective coefficients éi and bj inquuation 593;l thét satiéfy.
Bquétion 5.3.2, A limit of (k—l) variablesxﬁill.ndw be shown to exist
such that L W aisu/bj‘or ai/bjsuf\iNow lef Y bg the ﬁﬁalproductvof
elements which are common to PNi and PDj (PNi = ¥ and PDj = Ys or
PNi ¥ Ysu and PDj = Y), Since some\of.the other ﬁ?ﬁlprﬁducts.PNq_and
PDr in Equation 5,3.1 may have Y as a factor, then Equation 5.3.1 can be

written in one of the two forms

ai? + ) a PN} Y+ L a, Pn,

e : (5.3.3)
b.Ys + ) b PD'' Y+ } b_PD
Ju T r _ m. m

a,Ys + ) a PN' Y+ ) a PN
1 u q q n n

b.Y + J b PDEY + ] b PD
3 r Tp mTm-
where PN = PN' Y and PD_ = PD! Y and PN_ and PD_ are URC-products not
v q q r T n m
having Y as a factor in Equation 5.3.1. Now conéidering the unit of W
as Y - », there are two possible. cases corresponding to Equafion 5.3.3
and 5.3.4.
a, + ) a_ PN
g g

W' = Lim W = — ' (5.3.5)

b.s_ + ) b_ PD!
ju T r
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aisu + a PN!
W' = Lim W =. .. 4 (5.3.6)

Y - b. + b_ PD!
3 r r

Let Z be the set of elements which are not in the URG-products PNi and
PDj and take the limit of W' in Equatioﬁs.5;3.5 and 5.3.6 as each of the
s: in Z go to zero. (Note that the seﬁ of elémeﬁts in PNé and PD; is a
subset of the set Z). Then W' in Egquation 5.3.5 and 5.3.6 feduces to

one of the forms indicated by W" below.

a; _
| | —
W" o= bjsu‘ \ (5.3.7)
aisu
" -
W o= bj (5.3.58‘)

Therefore, it follows from Equations 5.3.5 - 5.3.8 that the limit LW of
(k-1) variables where xi = §i for each element si in the set Y and

J

X, = §j for each element in the set Z is equal to either aiéu(bj (or
ai/subj)a‘ Thus, part (ii) of the theorem is proven (and the‘"sufficien—
cy" in part (1)),

Now assume that a limit LW of (k-1) variables 1s equal to either
aisu/bj (or ai/subj)° Tt will no& be‘shoWn that.there exiétsAa ?air of
URC-products PNi énd PDj with theif respective doefficientsiai.and bj

such that they satisfy Equation 5.3.2. First consider Equation 5.3.1.

Since each variable S is of degree one, W can be written in the form

A S + C

W= = = (5.3.9)
B s + D
o m @]

where Ao’ Bo’ Co’ and Do have at most (k-1) variables and are not

functions of S0 Now assume xmyis a variable corresponding to the first
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limit taken in the sequence of limits in the assumed limit Lw of (k-1)

yarlables (m # u). Then note that Lw (sm) = AO/Bo and Lw (§m) = CO/DO

S
m

1

where AO/Bo (CO/DO) must be defined, finite, and nonzero if x

(xm = §m) is the form of the variable x of the assumed limithw of
(k-1) variables since Lw of (k-1) Qariables is defined, finite and non-
zero., Now Wl = AO/Bo (CO/DO) can be written in the form of Equation
5.3.9 as
' Ao Co Ai s, + Cl
Wl = 3 (or 5—-) = T s T o (5,3.10)
o , o} 1l r 1

where r # m and r # u and Al’ B Cl’ and Dl are a function of at most

l’
(k-2) variables. Now since the assumed limit Lw is defined, finite, and
nonzero at each step of the sequence of limits it represents, the pro-

cess can be repeated until the function W is given as

k-1
a;s, a;
wk—l = =5 or (5.3.11)
J ju

where the assumed limit of (k-1) variables Lw is equal to wk—l'

In the above discussion, it was shown that the form given in

Equation 5.3.9 can be used in each étep to obtain wk—l from W = Wo

and that wk—l is equivalent to the assumed limit of Lw of (k-1) vari~

ables, It will now be shown that the process can be reversed and the

form of each Wi (i=0,1,2,...,k-1) can be reconstructed starting from

the assumed limit Lw of (k-1) variables.

First consider the function wk-l which ‘can be written in one of

the two forms

+
W = ===l \ , (5.3.12)
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W .k = - (5.3.13)
k-1~ b.s F + H ' ©e
ju -1 -
where £, = a;s (or ai), Fi_q = bﬁ (or bjsu), G, = H =0 (Note

that Ek_l/Fk_l = aisu/bj or ai/subj)° Then let X T #-u,” correspond to

the last limit taken in the sequence of limits L, or (k-1) variables.

where Wk-1 = lim W can be written

Then if X, =S Wk_2 =D
-8 >0
T
syt G B TG st 6, B ot 6, |
M2 % 5 T - (F + H_ )s H - F + H (5.3.14)
k-2"pr k-2 k-1 k-1""r k-2 k-2 k-2
where Ay o = Bt Gl Brlo T For P Gelo TG00 Pep T Hon
Ek—2 = Ek—l * S, and Fk—2 = Fk—l TS Further Gk—2 and,Hk_2 are not
functlons‘of s, énd may be zgro@ If X, 7 8. Wk_2 where wk—l = ilzowk_Q
can be written in one of the forms given below g
S T G MSp TE TG B TG,
"2 "B s FD . B TF, . +H . F, ,+H_ (5.3.15)
1-2%2 7 k-2 Pk-2%p T fk-1 T k-1l TK-2 TOTK-2
where Ak-2 and Bk—2 are equal. to the sum of URE~products,
Ck-2 F Brer T Gk Do T Fpan T ns Beo T Eps Fio T Rep
Gk-2 = Ak—2sr + Gk-l and Hk-2 = Bk—2sr + Hk—l
it e o O ot e Ui Wil o RO Wi MU
k=2 By psp v D, (B v s P, R T, ,
where A o T B T G Beeo T Tker TR G2 T G2 7 0
Dk-2 = Hk-2 = 0, Ek—2 = Ek—l * S, and Fk-2 = Fk;l . Sr° Néte that
Ek—l’ Gk—l’ Fk—l’ and Hk—l are not functions of sr‘and therefore
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i;m. Wk 5 = Ek-2/Fk-2° Also note that Ek-2 and Fk—2 of Equation 5.3.14-
5.3.16 are such that E,._ 2/ koo = 358 /ba'(or ao/s bo)° Since Equation

5.3,12 has the same form as Equatlons 5,3.14 - 5.3.16, the process can
be repeated and every W , 1=0,1 2,qoo,k-l has the form

E, + G,
1 i

Wi =m (503017)
1 1

where Ei and F. are URC-products (with coeefficients a; and bj) such that
E./F. = a.s /b (or a, /b .S ), and G, and H, are equal to the sum of URC-
i1 iu i i i .
products. Since W= W o the "necessity'" of part (i) is proven,
To simplify subsequent work the following definition is given.

Definitien 5.3.1 URC-Product Ratio Piﬁ: If W is .a function of the form

glven in Equatlon 5,3, 1, a URC product ratio P, i3 will be defined to be
the ratio Pij = a, PN /bjPDj where PN and PDj are URC-products of W with
coefficients a; and bj respectlvely°

Theorem 5.3.1 will now be illustrated by following examples.

Example 5.3.1l: Consider the function W which has the form of Equation

5.3.1,

S i - 17 (5.3.18)
blsls2 + b2 bl PDl +‘b2 PD2

Then the URC-product ratios satisfying part (i) of Theorem 5.3.1 are

. ) al PNl i} alsl ) al (5.3.19)
11~ b PD,  bis;s;  b,s, T

P, = mmmmmm = i (5.3.20)
2 "2 2 -

Part (ii) of Theorem 5.3.1 gives the limits whlch correspond to

Equatlons 5.3.19 and 5.3. 20 as
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- 1
L. (s.) = (5.3.21)
W 1 blSQ
d, s
_ 917
Lw (§2) = b2 (5.3.22)

respectively,

Example 5.3,2: Consider the function W which has the form of Equation

%yg;mw PNE; PNE, Pﬂﬁ“ €§5
aE;‘s S ;1 + arsJ\sE + ar; sg + a[; s} +[a 1
W= Ll 1234 2°1°2 ‘3 273 47374 5 (5.3.23)

The URC-product ratios that satisfy part (i) of Theorem 5.3.1 are given
with their corresponding limits L of (k-1) variables in Table 5.3.1.
- Note that the URC-product ratios that correspond to limits LW of (k-1)

variables which are egual to zero or infinity are not shown.

Lemma 5,3.1 URC-Product Ratlo Rule for URCMVDPFs: Let W be the

realizable URCMVDPF of k elements

a,PN,
i1

b.PD,
J 3

et B I e

where a; and bj are positive constants and PNi and PDj (PNi # PDj) are
URC-products. Then there exists at least one URC-product ratio such
that
a.PN, a.s . a
1771 1 u

Pi5 585, - 5. s
S 3
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for every u, u=1,2,...,k. Further, if there are more than one such Pij
giving ai/bjsu or aisu/bj for a particular u, then each of thése'Pij
gives the same function.
Eﬁégiz Earlier it was established in Section 4.4 that a realizable
SﬁEMVﬁPF can be reduced to the DPF of each element e, by some set of
(k-1) limit operétionse |

If there are more than one such set of limits for e each set must
give the Same DPF - for ei; Therefofe, the lemma follows directly from
Theorem 5,3.1.

The following example illustrates Lemma 5.3.1.

Example 5,3.3: The URCMVDPF Y given below 1s known to be realizable for

some set of positive constants: aS’bl’ and b2°

al’a29

Consider the set of all possible URC-product ratios which give a

function of one variable.

P =
“11 b.s. s.s b.s

b . 825153 %
21 b1513253 blSQ

5 i} a28183 _ a233
22 bysy by

P = : = a3
32 -b,s b.s



TABLE 5.3.1

URC-PRODUCT RATIOS FOR W

URC-PRODUCT RATIO

P

LIMIT OPERATION

i3 g
Pay = s2s 3 L. (8,55,,5,) = 7
- ’ - 5 [ ed -

31 b1818283 blsl AW ‘2 3°-4 blsl

p =3 T Lo (55,08, =
- s [ - )
L1 ]3.251835‘)+ bQSl W‘ 3°-4°%=2 b2§l

a a

5 5
P = L. (s sS 535 ) .= .
53 bSSl .W =223 5& bSSl
IS 6 N S M LGy . 2%

- . - ] 3 - TR

l2>: bQSls sy, b2 W 1°73°7y b2
. i aQSls2 ) ass, . (5 ] ) ass,

- 3 T g 98458 ) = 3~

23 bSSl - b3 W ' 1 ‘3_ y b.3

P = %1% % Ly (5158558,) = =2
=N s 3 - -
21 bl§l8233 bls3 .;. 2’ u bl83
. _ alsls2s3su _ als4 L GID - as,

- s 3 -
11 blSlSQSa | bl W "T1°72°73 bl
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Note that if a3/b2 = a2/b2 the equation satisfies Lemma 5,.3.1.

Theorem 5,3.1 can also be used efficiently in finding the circuits
in a graph corresponding to a realizable URCMVDPF and thereforé will
form the basis for a neQ synthesis procedure. .Theorem 5.3.1 gives the
necesséry-and sufficient conditions that a function W; having the‘form
of a EﬁEMVDPP, be reducible to the form Lisi or.l/Cisi (where Li énd Ci
are positive constants). Nowvlet.w bela realiéable ﬁﬁEMVDPfa Then the
thgorem also gives a direct way to determine sets of (k-1) limit oﬁera—
tioﬁs that give'the DPF of each element eiu. Then since the type of
element (Lisi or l/Cisi) for each élement is known, each of the sets of
(k~l) limit'operations can be reiated to a corrgéponding set Sij of
(k-1) elements which are either open;circuited or shbrt—circuited, where
i denotés the element whose DPF is given and j denotes one such set>(see
Section 4n4); Now the element e; whose DPF is obtained from W and some
but not all of the short-circuited elements of Sij (for some j) form a
circuit with the driver (see Section 4.4) -in the graph corresponding to
W. The unnecessary shorts in Sij occur because Theorem 5.3.1 does not
take into account any cancellations of variables. The cancellations can
be detected when the set of (k-1) limit operations.given by the theorem
are computed in the conventional way (not using Theorem 5.3.1). To
further explain this problem, consider Theorem 4.3.2 which states that a
URCMVDPF W' is reducible if and only if the graph corresponding to W' is
a separable graph where the element corresponding to each canceled
variable cannot form a circuit including the driver. Let W' be a DPF--
which is a function of at least two variables--obtained from W when less
than (k-1) limits are taken (the limits of W correspond to open-circuit-

ing or short-circuiting some elements of the graph). Let eq be an
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element in the component part (see Appendix B) of the grapn G' (corres-
ponding to W') not containing the dereP; Then the limit of W' as s |
goes to zero is equal to the limit of W'bas sq goes to infinity (eq can
bevopen—circuited or short-circuited with no effect on the DPF W').
Thus, 1t is clear that Theorem 5,301 cannot be used to find the circuits
unless a procedure is found. to eliminate the unnecessary short circuits
thatdmight be given in each S, ﬁo Thisrproblem can be completely soived

(k 1

without resortlng to flndlng all 2 sets of (k-1) limit operations

for a given URCMVDPF W w1th k\elements as was done in Section i, u,

First let W be a given realizable ﬁEEMVDPP.with k elements. W has
sets of (k l) limit operatlons giving the DPF of each e which are gi&en
by Theorem 5.3, l, and these sets correspond to the sets S, 550 -Sinceﬂw is
a realizable function there is a corresponding topologlcal formula

= A/A _ of k variables where A and All are deflned in Appendlx B. Note

that the multlvarlable functlon Y has the form of Equatlon 5.,3.1, and
Theorem 5.3.1 can be applied to find the sets of (k- l) llmlt operattons
glmlng the DPF of each A These sets correspond to the same sets Sij
given by W. W and Y have the same sets Sij because there is a oneeto—
one relationship between W and Y (see Section 403); Now let T be a
tree of graph G (note that the drlver 1s not 1ncluded in G), and let Q

be the set of 2-trees in Ali which can be found from Tl be deletlng one

element at a time from the tree such that the input vertices of G are

in different component parts of the graph correspondlng to tree Tl

Then if. vy is an element in Tl and is given as the- DPF by a URC- product

ratio PN /PD:1 satlsfylng Theorem 5.3.1 (where PN. is equal to the tree

1

product for T ), then y corresponds to the element deleted from Tl to

give the 2-tree product PD:1 Also if yj is not in tree T then for

l’
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each URC-product ratio PNl/PDq = yi,,i Z 3, g=1,2,...,0 Where n is the
number of 2-trees in Q, yj must be open-circuited (limit as yj > o) to
give the DPF of a single element Vi If the elements of G not in tree.

T. are open-circuited, then the result is a graph G' =T

1 Let G" be

l@
the graph consisting of G' and the driver. There is only one circuit-in

G" and it contains the driver and some of the branches of the tree Tl'

Since all branches of Tl may not be included in the circuit, G" may be a
separable graph and each element in the component part of G" containing
the driver.is a circult element. NOW'consider,the set of URC-product

ratios P = PNl/PDq’ g=1,2,...,0., There exists a 2-tree product PDq from

the set Q that does not have element ys if v is circuit element and

therefore the DPF of each circuit element ys is given by Theorem 5.3.1.

Let Ti consist of the set of elements which is a subset of the elements

in Tl such that the elements are not the circuit elements in G". Then

the elements of TE are in the component of G" not containing the driver.

Now each element of the set Ti is an element of PNl and an element of
every 2-tree product correspéﬂding to the set Q. Therefore, every URC-.

product ratio of the set P gives the DPF of some element of the circuit

and a set of unnecessary shorts corresponding to.all the elements of T!. -

1 1 1 .,..1

°

1
Then the set of short circuits and open circuits Sij found by Theorem
5.3.1 for G and giving the DPF of each element of the circuit can be
written in matrix form as
d 1 2 3...n ln+l n+2 ...ntm n+n+l ...ntntk
RS I R E S R W S R R
Fpo= (1 1(1) ...171 1 ...1 0 vv. 0 (5.3.24)
. |
1 (1 01 ...1 0 ... O
|
|
[
|

11 ,.,(1yy1 1 ...1

F e
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where columns d, 1, 2,...,n correspond to the eléments in the circuit

for T., the parenthesis identify the element v given as the DPF for a

1°
URC-product ratio columnsy nt+l, n+2,...,n+tm are the m elements of the set
Ti, n+mt+l, n+m+2...,n+tm+tk are the elements of G which are not in the
tree Tl’ and each row corresponds fo a'ﬁﬁﬁeproduct ratio of the set P.

A set of equafions similaf to Equation 5,3.24 can be found for evefy
tree T end its correspondlng circuit formed when the driver is added to
the input vertlces of graph G. Therefore, if all the sets Sij given by
Theorem 5.3.1 for the topological formula Y = A/All are written inb
matrix form (like Equation 5.3.24), the sets Sij for each tree can be
foenda Then since the form of the matrix cerrespoﬁding to the sets ng
15 kﬁown, all unnecessary shorts can be identified as correspondlngAto

columns (n+1), (n+2)°,o(n+m) of Equatlon 5,3,24,

Example 5.3.4: Con81der the reallzable topological formula

Tl T2 T3 Tu T5 T6 T7 T8

__l, r,= /\..m.l _1\_.‘“”] ! !_./\._..ﬁl I_._/\

Y YeVsty 1y3y4+y1y2y5+y1y2yu+y2y3y5+y2y3yu+y3yuy s

Y =

where Ti identifies the set of elements in each tree. Then Theorem
5.3.1 can be used to find the set of URC-product ratios that give the

DPF of each Vs These URC-product raties are

Y1935 g
Vo¥s 71

M
Yo¥y

I1



Y1¥5Y5
Yo¥s

Y1¥oly
oYy

Yo¥3¥s
Y3¥5

Yo¥a¥s
Yo¥s

Yo¥a¥y

A

YoV s

Y3YuYs

VoYY

Yo¥iys
BT

274
These URC-product ratios give the sets of short circuits and open

circuits Sij which give the DPF of each element.yi, and are expressed

in the matrix given previously as

81



= 3 3 3
F @ N

n r”f*ifir“r 117

3
»

A

2l

21 2 0,000
Lo 1. 6.0:06:0
J10 .0 00
1 0 1 1 0 0
21011 0 0
101 1 0 0
A0 1 1. 0.0
1 0 0 0 1 1
i 0.0 0 11
1L 0.0 0 1 1
(1.0 0.0 11

d 1 2 38 4 5

1.(1) 0 {1} 0 {1Y]
1) o Do
110 o &
(I o i o
1 0(11 o1
. )
1.0_1(1)0 11}
1 0(1)1 :ﬁ% 0
1 0 1(1)ill o
""""""" Sruiaiie
1 0 011(1)1
R [ )
(100 411 (1)
1 0 ;1\ 0 (1) 1
4
101130 1(1)

—
—
o .
o
o
(@

O @ N O Ul FE ow N e

T
N = O

from the above matrix and be written as the matrix of circuits

W o ~3 O g £ w N

B
- O©

12

82

(5.8.25)

Now the unnecessary shorts,K (circled by dotted lines) can be eliminated

(5,3.26)

The rows of the above matrix which are identical to some other row. can

be eliminated to give the matrix of circuits Fc defined in Section 4.4,
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I
1 o000l (5.3.27)
F = o1 6'1 0 1
C | . .
o0 1o 11_].

Note that Fc hae full rank and therefore the circuits are an independent
set of circuits. Further, F_ has.the form of the fundamental c—eireuit<
matrix Bc and therefore the non—orientea grephﬂcorresponding to Bclcanb
be found (see Section 4.4). The greph correspending ne Bc‘; FC of
Eqnation 5.3.,27 is given in Figure 5,3.l”where vy and vi are the input

vertices and the admittance for each element e is-given by y;-

Figure 5.3.1. Realization fer Y

In the development of this synthesis method, a given URCMVDPF W of
k variables is assumed to be realizable and the topological formula
Y = A/A corresponding to W is.found. Since W and Y have the same sets

Sij giving the DPF of each element, the method alse applies to any
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realizable URCMVDPF, In the following example a URCMVDPF is realized by
this method.

Example 5.3.5: Let Z be the realizable URCMVDPF (impedance) given as

alsls2sus5+aQSlS2S385+a38lsu+a48185+a58183+a68285+a7
b.s.s

187 2sSSL\LS5+b2sls3sl++bssls385+b‘+s’28485+b584+b68_5

7 =

The URC-product ratios are

171727475

11 bl818283§485' blSB

a,s,8,8,8 a

aA,8,8,8,8 a

P - 271727375 - 2
‘21 blslSQSSSuSS b184
. i aSSlSH . ag
32 1328‘18«3311L b2Sé
b - 9s°1%3 %
52 bzsls?)s]1L b2s11L
. i ‘azsls2sss5 i 2,8,
23 bSSlSSSS b 3
. ) ausls5 ) a,
43 bSSiSSSS bss3
. i aSSls3 i ag
53 b.s.,s.s b.s
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5 3 alSlS2SL¥SS ) alsl
14 bus2suss bu
b - %6°2°s %
‘_64 b4828485 . bqsq
b - @3%1% _ 93%)
- &7 _ %
75 . JJSSL+ oo b-SSL+
5 3 auslss, i} ausl
46 b685 b6
b ._82% _ %2
66 b685 b6
- 4y _ %
76 b6s5 b685

Note that Lemma.5.3.1 implies the impedance of each element must satisfy

the following conditions.

a a a

1 4 s 3
.8, = == S. = == ] = = S..
171 bg 1 b6‘ b5 1
L.s =La£s :_a—6—S
272 b3 2 ?6 2
S - T
C,s b.,s,  b,s, b_s



1 _ % %
Cusu blsL+ b2sL+ b s
-
CSSS' bqss‘ b6-s5

-

~~

0 J1i(1)-1 0
0

- —— e o ——

1(1)o0 o0 1 1
1-1 0 o0¢(1)1

s
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(5.3.28)

Eliminating the duplicate row and unnecessary short circuits the matrix.

S reduces to'

F o w N

H O O
H O F ©
o o - -
o B O B
|—-. © = O

R

(5.3.29)
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There are four vertices in the graph G corresponding to Z as can be seen

by finding the number of elements in one tree product of the topological

formula. Y A A

11 corresponding to.Z (see Theorem B.2.4). Then there

are e-v+l = 3 indipendent circuits in graph G where e eqﬁals the number
of variables in Z (corresponding to the element ei) plus one (corres-
ponding to.the driver) and v equals the number of vertices. . It has been
established, (see Theorem 4.4,2) that Fc has e-v+1=3 indépendent POWS.
1

The three independent rows in FC can be found by finding a submatrix B

of order three from FC such that the .determinant of Bl (mod é) is not

zero. Consider the determinant of the submatrix B, of F given as

1

1
1 0
o
1

o H O w

2
0
1
0
Then the adjoint matrix of B, (mod 2) can be defined toybe
|
i

0
APJ Bl = 1
1

o = O
o O

1

Then Bf' = ADJ B/lIBll = ADJ B Now consider the matrix B which re-

1
sults when row four is deleted from the matrix Fc. B can be partitioned
as
bg ]
RN
Then the c-circuit matrix can be obtained. from B be premultiplying B by

B 7 and is given below.

1 1 2 3 4 5 4
{o 0 f[ro 0 1;1 0
cs i ieg-l11 g o
Bc—Bl [Bl:BQJ- 11 0fjo 1 1,0 11
1 ol [1 © O:l 0o 1}
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and

1
1
0

o = O N
= o o w
= = = £
S o ow»

Lo
Now BC can be realized as the graph G shown in Figure 5.3.2a and the

network corresponding Z is shown in Figure 5.3.2b.

(a) _ (b)

Figure 5.3.2. Realization for Z.

In the development of the synthesis method.of this section the.
URCMVDPF is as;uﬁed fo be realizable. It should be emphaéized that'if
a multivariable funﬁtioﬁ W has‘the»fdrm of a URCMVDPF but is not‘kﬁown
to be realizable then the syntheéis-méthod itself can be used as a test
for reélizability, If no graph can be>f6und (5y thé s&nthesis methéd) 
that correspoﬂdsvto the multivariable function W, then i1t is evident‘
‘that W is not fealizable, There is aisévénothér important point‘which

has not been emphasized. It has been shown that a URCMVDPF exists for

every URC network with elements having different RC products. It can be
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recalled from Chapter IV that when the RC products for any two elements
of the same type (Zo element or Z sc element) are equal, the RC products
are.assumed to be different so that a.new variable S5 is introduced by
the transformations (see Equatlon 4,2, 9) for every element The result
is the URCMVDPF for a given network of- URC elements. Now consider the
.case where there are elements of the same type hav1ng the same .RC prod;
uct in the URC network. Ifbthe same transformation is used for each of»
these elements (si“= tanh'aip), then the result ls a multivariablep
functionbnot'having the form of the-'L-IEEMVDPF° In particular each of the
yariables s, may not be of order one. The synthesis procedure in this
section is- not applicable to this type of multivariable function and
appears‘to be an excellentbtopic for furtherresearch° Finally, note
dthat the»synthesis method applies to a ﬁﬁEMVDPF‘which correspends to
either anuadmittance or an‘impedance (see Example 5.3.4 and Example

5.3.5),

5.4 Ladder Synthesis and Reduction of a Class of ﬁﬁ@MVDPFs. The
method developed in Section 4.5 can be used to reallse any reallzable‘
URCMVDPFE In this section a simple method of reduc1ng a glven URCMVDPF
to a slmpler functlon will be glven for a certain class of URCMVDPFs.d

| Assume that a. reallzable URCMVDPF Z is given and that the type of

each element has been found from the set of URC product ratlos. Now

assume that a limit is taken of Z with respect to some variable s

(si >0 or s, > ). When the limit. corresponds to 4pen c1rcu1t1ng the‘
element e. in the network N correspondlng to Z. and further, the limit
of Z is equal to 1nf1n1ty (open 01rcu1t) then it.is evident that the .

network can be drawn in the form glven in Figure 5.4.l.
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8-

Figure 5.4.1. Network N

where Ni is the network correspoending to Zi given when the limit-is tak-
en of Z with respect to the variable s; such that the limit corresponds

to short-circuiting e Since Ni corresponds to a realizable URCMVDPF

Zi with (k-1) elements, the process can be repeated if there exists an

element ej satisfying the conditions given for e, . Therefore, in

general the network N has the form given in Figure 5.4,2.

T vy

Figure 5.4.2. Network N
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where Ni is the network corresponding to N when the elements SRS EREREL !
are short-circuited. Now assume that the limit is taken of ZR (ORCMVDPF
correspondiﬁg to NR) with respect to some variable sS4 (u & 1,5,0..,93

indicated in Figure 5,4,2)’(3u >0 or s, -+ ) such that the limit corres-

poind to short-circuiting e, in- the network NR, and the limit of ZR goes
to zero, Then the network'Nz must have the form given in Figure 5.4.3.

Note that unlike classical ladder synthesis e, of Figure 5.4.3 corres-

ponds to an impedance.

Figure 5.4.3. Network Ng

Then 1f the assuméd conditions are met in each step, then in
general Ng héé the form of:Figuré 5.4;4. Note unlike classical ladderi
éynthesis e:s i=i',3"',...,q" all correspond to impedances in Figure
5.4, 4, .Tﬁegefore, in general a realizable ﬁﬁEMVDPF W hés é network N of
the form given in Figu@ev554.5, where NSi and NPi are defined in Figﬁre

5.4,6a and Figure 5.4.6b and N' is a network with less than k elements.
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1 1 |

Figure 5.4.4, Network NE

NSl N82 NSn

Sl A
] L

Figure 5.4.5. Network N

The conditions necessary for a given URCMVDPF Z to have a network
of the form given in Figure 5.4.5 can be checked by inspection. If no
ladder elements can be obtained (céﬁditioné for removal aré not met), -
then m = n = 0 (see Figure 5.4.5) and thé given ﬁﬁEMVDfF W correspéndsv
té network N' (figure 5;4,5). It is important to note that the ﬁﬁEMVDPF

corresponding to N' of Figure 5.4.5 is always realizable.

Example 5.4.1: Consider the URCMVDPF Z which is realizable by a network

N. Let
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J - SlSQS3SM+Slsz+SQS3+S384+l
. sl_szss+sls3su+sl

The element types can be found from the URC-product ratiocs as l/sl, Sy

1(53, Sy Now no#e thaﬁ

lim 2 = =

Sl i gite]
1 1 1
C C s
Lisi Ljsj quq S lu 0 C§St
0000 00000+~ 00099 ) — -+ ———
(a)
l &
N
z f“n», l B e l ——— l
L.ts. L.SI""‘] ve o [, s < ] et ¢
1 ]g ]:_:/J q' q'< crvsrv Cuv u' Ctvstv
éé 33
o

(b)

Figure 5.4.6. Networks NSi and NPj



Then N has the form given in Figure 5.4.7.

Figure 5.4.7. Network N

9y

The URCMVDPF Z' corresponding to N' can be found from Z by taking

the limit
- S2SSSH+S2

zZ' = 1lim 7 = —————————
s, o s2§3+§3sg+l

Now note that:

1im Z!
S, 7 0

i
o

Therefore the network N' has the form given. in Figure. 5.4.8.,

Figure 5.4.8. Network N
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where the URCMVEPF Z" corresponding to N" is given by

s,s, +1
1lim Z' = Z" = —.9._..”-__-
82. > 0 S3
Similarly,
lim 2" =
83-—> 0

and the procegs can be continued to give the network in Figure 5.4.9.

|-

|-

~d
e |5
b )
W

Figure 5.4.9. Network N

The method given here can be used ﬁo simplify a certain class of
URCMVDPFs before applying the synthesis methods‘of Section 4.5, but it
should be emphaéized that in general the network given as N' in Figure

5.1.1 cannot be reduéed further by applying these methods.



CHAPTER VI

APPROXIMATION OF DRIVING POINT IMPEDANCES WITH
URC NETWORKS HAVING ELEMENTS WITH DIFFERENT

RC P RODUCTS

6.1 Introduction. In an earlier chapter the driving point func-

tion of a URC network with elements.hating different RC products was
discussed in terms of a URCMVDPF W, It is important to note that W can
be related to the p-domain by the transformatlons that were made to
obtain W (see Equatlons 4.2.1 and k.2, 9) The properties that were de—
rived for W in Chapter IV will be used to obtaln properties for W in the
p-domain. |

After some properties are derived, a general method will be given
which can bebused to approximate an lmpedance snecifiedlin a Bode plot;

6.2 General Form of the Driving Point Impedance for a URC Network.

In Chapter IV it is shown that.a URCMVDPF W of K elements can be written

in the form given below
‘ L a BN, :
Z = 55 (602‘,1’)
B e

where a; and bj are positive constants and PNQ and PDj are URC—products
that satisfy the necessary condltlons glven in Section 4.3. Therefore,
us1ng Equation 6.2.1 and the transformatlons given in Equatlons h.2.1

and 4.2.9, the general form of the dr1v1ng p01nt 1mpedance of a URC net-

work hav1ng elements w1th different RC products can be given.as"

96
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Z a, TN,
z(p) = S (6.2.2a)
) b, TD,
or
Z a, IN,
/b 2(p) = S (6.2.2b)
b. TD,
) 373

where TNi.(TDj) are equal to the product of elements from a subset of
the set {1; tanh V?IE; tanh V?;E;...,tanh /?;5 } (Ti = RiCi). Since
Equations 5.3.1 and‘/5~2(p) in Equation 6.2.2b are very similar in form,
many of the properties developed for the URCMVDPFs can be applied
directly to /5 Z(p) in Equation 6.2.2b. The most important properties
which are directly applicable are given by Lemma 4.3.1 and 5.3.1 and

Theorem 4.3.4.

6.3 Properties of |Z (jw)|. Before the function Z(p) given in

Equation 6.2.2a can be used to approximate an impedance functien Z'(p)
specified in a Bode plot, it is necessary to consider some general
properties of IZ (jw)l to insure that the approximation will be suc-
cessful. Some of these properties are given by Wyndrum (3) for a net-
work of URC elements with elements having the same RC product, and the
properties are given below for netwerks consisting of elements with
different RC products.

Theorem 6.3,1 Asymptotic Behavior of d |2 (jw)|/dw: The asymptotic

slope d |Z (jw)|/dw for the driving point impedance Z(p) for any URC
network with elements having different RC products as w - « is

-10db/decade.
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Proof: It has been shown that the asymptotic slope d|Z (jw)|/dw of the

driving point impedance for any URC network where each element has the
same' RC product.as w » ©» is -10 db/decade (3). This result can be ex-
tended to the case of URC networks with elemeﬁts having different RC
products, by considering the driving point impedance of two Zoc-elements

# T,). Letp = jw. Then for

with different RC products 7. and 1, (1 5

1 2
the Zbc—elements it follows that

1

R R
lim o = lim o

W >® ijTl tanh ij'rl' W o ijT2 tanh ij'r2

(6.3.1)

since Tl and T, are finite positive constants. Similarly, for two Zsc_

elements having different RC products T! and T! (Ti # Té) it follows

1 2
that
R_ tanh Vjwt! R tanh Yj0t!
L S 1. i s 2 (6.3.2)
ot e wve g

since Ti and T, are finite positive constants. Therefore, the asympto-

tic slope d |Z (jw)l/dw as W > ® for the driving point impedance. of any

URC network with elements having different RC products is the same as a
URC network with elements having the same RC products and therefore the

theorem follows.

It is also important to note that for finite frequencies the Zoc—

element and. the Zsc—element can be approximated to any desired degree- of
accuracy by a finite lumped RC network obtaiﬁed from the truncated in-
finite product expansions for Zéc(p) and Zsc(p) respectively. The num-
ber of terms in the truncated infinite product expansions can be in-
creased until the desired accuracy is achieved. Then any URC ne?work

having elements with different RC products can be approximated to any
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degree of accuracy for finite frequencies by a finite lumped RC network.
Thus the properties of [Z (jw) | are known for 0 < w < w where w is a
finite frequency.

6.4 Approximation Problem. In this section a general method will

be given that can be used to approximate driving point impedance Z'(p)
specified by a magnitude plot for a band of frequencies. Note that the
asymptotic approximation of Z'(p) must have the properties given in the
previous section.

In an earlier section several necessary conditions for a multivari-
able impedance function to be realizable as a URC network were given,
and sufficient conditions were given in the form of a syntheéis proce-
dure (see Section 5.3).

There are two general approaches that can be used in the approxima-
tion problem, The first appreach is to assume a function Z'(p) having
the form of Equation 6.2.2a with arbitrary constants ass b., andji, such
that all necessary conditions for realizability are satisfied. Lemma
5.3.1 can be used to find the relationshiP that must exist between the
coefficients ai_and bj for redlizability %see Example 5.3.3): Then

Z' (jw can be found by using

Vjut, = t Yo 1 (cos W4 + J sin W) (6.4.1)
and
tanh Vv wT. = * sinh @COSh ¢+ j sin d}COS (6.4.2)

cosh2 ¢ cos2 ¢+ ] sinh2 ¢sin2
where ¢ = + Vwri cos II/4. Note that part (i) of Theorem 4.3.4 guarané
tees that Z' (jw) is single valued for a particular value of w and that

the plus sign may be used in the right hand sides of Equations 6.4.1 and

6.4.2 without loss of generality. Since most computers use lahguages



100

(such as FORTRAN IV) that have built in complex number subroutines,
IZ' (jw)l can easily be found by using Equatioég 6.4:3.and 6.4.4 for any
set of parameters {ai}, {bj}; and {Ti}. A least squares approach can
now be used which is identical to the one used in Chapter II and III.

A set of frequencies Wy i=1,2,...,n need to be selected so that
they cover the band of frequencies over which the approximation Z'(p) is

to be valid. Then a squared.error function can be defined as
g ' 2
S = izi |z (jwi)| - |z (jwi)]> (6.4.3)

The function S can be minimized with respect to the parameters {ai},
{bj}, {Ti}, and constraints can be imposed on these parameters so that
Lemma 5.3.1 is satisfied. Note that the constraint for T4 is T, 0
for every i. If some of the parameters converge to a value such that
the impedance of scme of the elements (Lisi or-l/Cisi) are very large
or very small compared with the other elements, these elements can be
open-circuited or short-circuited respectively. The resulting network
has fewer elements and has a driving point impedance which can be found
by inspection from Z'(p) using the corresponding URCMVDPF. Note also
that additional constraints can be imposed on the range of values for
the element values (and RC products Ti) so that the network for Z(p) is
practical. However, in this case when an element value (or RC.product
Ti) is driven into a constraint, the constraint must be relaxed to see
if it will become very large or very small when it is desirable to min-
imize the number of elements in the approximation by the procedure given
above where no constraints are used other than those to insure realiza-
bility. In the approximation procedure above the realizability of the

chosen URCMVDPF must be tested, and if it is not realizable, a new
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function must be found.

One way to avoid the trial and error method is to approach the
problem by assuming some topolog& and finding the corresponding URCMVDPF.
In this way the URCMVDPF is known to be realizable. The realizable
URCMVDPF can be given arbitrary coefficients ass bj satisfying Lemma
5.3.1. The methods used in the first approaﬁh can then be used to find
the proper element values and RC products. Examples of the procedures
for using the least squares program have already been given in Chapter
IT and III.

In conclusion it should be noted that a URC network may be found,
in some cases, that has fewer elements. than a corresponding lumped.
element RC network.which approximates a given functien. A good example
of this is illustrated by the RC networks approximating the single Zo -

e}

element and Zsc—element shown in Figure 2,.2.3.-



CHAPTER VII

SUMMARY, CONCLUSIONS AND SUGGESTIONS

FOR FURTHER RESEARCH

7.1 Summary and Conclusions. This thesis deals with the analysis,

synthesis, and the approximation of driving point impedances of URC net-
works Z(p) where each element has a different RC product. The rational
approximations for the elements of a URC network, which are based on the
infinite product expansions, are improved by finding new approximations
which are valid over a wider band of frequencies. The synthesis of URC
networks with elements having different RC products is solved by gen-
eralizing Wyndrum's transformations which transform Z(p) into & multi-
variable impednace function (URCMVDPF). Some necessary conditions for
the realizability of Z(p) (URCMVDPF) are given. Sufficient conditions
are given in terms of a new synthesis procedure which applies to any
realizable driving point impedance Z(p). 1In the realizatiéh transform-
ers and gyrators are not used. The impedance dunctions of‘lumpéd RC
networks are approximated by URC networks and a rather simple method is
developed which minimizes the error in the approximations. Design .
curves are given to aid in the approximations. Finally, the general.
problem of approximating a driving point impedance function specified in
a magnitude plot with URC networks having elements with different RC
products is approached by using the necessary conditions derived for

URCMVDPFs. The procedure is basically one of a least squares . approach
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and a program is given that is well suited to the nonlinearities that
occur from the application of least squares methods.

In conclusion, it 1s felt that the URCMVDPF is an effective tool
for analysis, synthesis, and approximation with URC networks, and may
have application in other areas in network theory.

7.2 Suggestions for Further Study. The use of the URCMVDPF has

produced some new and interesting problems. The most important problem
is one of finding the sufficient conditions to realize a given URCMVDPF,
Perhaps the assumption that the URCMVDPF be a reactance function mighf
be a sufficient condition. This author could not find a counter-example
to disprove this statement. If this conditien is sufficient, it would
also be applicable to synthesis of the classical topological formula for
the driving point admittance.

Another interesting problem is the synthesis of multivariable
impedance functions which result when some, but not all of the URC
elements have RC products which are equal. The introductien of the
generalized transformations will produce.a multivariable impedance func-
tion which does not have the form of the URCMVDPF, but appears to be
related to the URCMVDPF. It may be possible te find the existing rela-
tionships. If this synthesis problem can be solved, the problem of
finding a realizable topological fermula for the driving peint admit-
tance from a given realizable lumped RC (LC) driving point admittance

might also be solved.
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APPENDIX A

PROGRAM FOR THE LEAST SQUARES ESTIMATION

OF NONLINEAR PARAMETERS

A.1l Introduction. It is frequently necessary to represent by some

functicnal relationship data that is given as a set of order palrs
(Yi,wi), i=z1,2,...,0, One very powerful methed of finding a functional:
relationship is by the method of least squares curve fitting (18). The

method of least squares consists of minimizing S, defined as

n
= 2
S (bysby,enesby) = )oY (bysbyseecsby s w,) - Yl> (A.1.1)
i=1

where Y (b1,b2,goo,bk; wi) is some function with parameters bi’
i=1,2,...,k and n is some integer. Let {bi} be the set of parameters

that gives a minimum value for S, Théh

A ~

Y (ﬁl,bz,ooo,bk; wi) Y Yi
for every i=1,2,...,0. Ih this thesis, S is a nonlinear function and
the numerical method given in the next section can be used to minimize
S,

A.2 Minimization of Nonlinear Functions. Fletcher and Powell (12)

have given a powerful method to minimize nonlinear functions which has
gquadratic convergence, but does not require the computation of second
order partials. This method was used with some modifications in the
minimization of the squared error function S in Equation A.1.1 for dis-

tributed network synthesis problems to insure convergence and
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practicalityy Fletcher and\Perll aésumed that the first order partial
derivatives of the function S (bl,b2,noo,bk) to be minimized are defined
analytically at each point. Since it is not practical to find analytic
expressions for the partial derivativés the applications of this thesis,
the needed partials were cemputed by the well-known methods of finite
differences (18). In general the Fletcher-Powell method converges fast-
er than the method of steepest descent, whenever the method converges
and this is especially true near the minimum value of the function being
minimized (12).

When the Fletcher-Powell method was found to diverge at any itera-
tlion, the steepest descent method was used for one or more iterations
(since the gradient 1s computed in each iteration as part of the
Fletcher-Powell method).

The advantage of the quadratic convergence of the Fletcher-Powell
method is not lost by this modification since the method is reinstated
as soon as there is convergence. In the Fletcher-Powell method each
~iteration is defined by

B2 F 40t gt (A.2.1)

where“gl = (gi,g;,ooo,gi) is a vector computed by the method, 2t is a

scalar to be determined, and B* =,(bi,b;,eoo,bi) is the previous value

of the iteration. The scalar AT is determined such that S

i i 2 . - . .
(bi+l,b;+2,ooo,bt+ ) is a minimum. In practice it was found that con-
vergence of the method depends on the accurate determinatien of At At

can be found by combination of systematic searching and cubic interpala-
. tion, and the methed is given in the flew chart in Figure A.2.2, where
the variables in the flow chart are defined in Figure A.2.1, M is a

positive constant, and the standard mathematical symbels fer union and
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~1+1

intersection are used (Note S (b 1

N . ’ i . -1 .
) is a function of )\ since b is

a function of A" in Equation A.2.1).

S(§i+l) \

|
|
i
M

min 2M

Figure A.2.1. Definitien of Variables in the
Flew Chart of Figure A.2.2

A.3 Constraints., This section gives an effective method that has

been used frequently to constrain variables in least squares curve. fit-
ting problems. Consider Equation A.l.l1 and let each paraﬁeter bi be
constrained by Li E?Bi E?Ui where Li and Ui are constants and

i=1,2,...,k. Now let S be redefined such that

3 /- 2 ko
S = DZ Y (bl’b2’°°°,bk§ wi) - Y;) + »Z ¢if (A.3.1)
i=1 . ‘ i=1
where
¢. =0 1if L, <b, < U, (A.3.2)
1 1l — 1l - 1
_ 8

¢, = (b, - U,)” if b, > U (A.3.3)
6, = (b, - L) if b, <L (A.3.4)
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for 1i=1,2,...,k. The use of the power of eight is arbitrary in Equa-
tions A.3.3 and A.3.4%, but in any case when the constraints are not
satisfied, S in Equation A.3.1 becomes large. There are also other ways
of defining each ¢i which may be better suited for a given problem (19),

A.4 Least Squares Program. The program used for the least squares

problems in this thesis is given in Td@le Ak, 1,

The user must supply the subroutine FCODE (Y,X,B,F,I,RES) with the
dimensioned variables being Y(200), $S(200), B{(50). The relationship
between Equation A.l.l1 and the variables in FCODE is given.in Table
A.4.2. The user must also supply the subroutine SUBZ(Y,X,B,N) and
GENF(N,K,NCON,X,Y). SUBZ may be used to alter the input data Y(I) and
X(I) before beginning computation. GENF may be used to generate Y(I)
and X(I) if they are not read into the program (IOPTL = 1). If either
one or both of these subroutines are not needed, they still must be sup-
plied since they will bé called by the main program. In this case they
will consist of only a DIMENSION, a RETURN, and an END statement.

An example of subroutines SUBZ, GENF, AND FCODE is given in Table
A.u4.4, Note for FCODE in Table A.4.5 there are three constrained param-
eters., In this case the number of data points is 43 and each variable
RES corresponding to I = 44, 45, 46 are the constrain squares correspon-
ding to ¢i (the square of RES = ¢i) in Equation A.3.1 for B(1l), B(2),

and B(3) respectively.



151
152

999

150

301
40
300
140
29

101

100

700

111

TABLE A.4.1

PROGRAM FOR THE LEAST SQUARES ESTIMATION OF NONLINEAR FPARAMETERS

PROGRAM FOR THE LEAST SQUARES ESTIMATION OF NONLINEAR PARAMETERS
DIMENSION DBG(50)sDFG(50)
DIMENSION X(2003»Y(200)»B(50)sSB(50)sGD(50) syG(5039SPH(50) »
1SM(50)

DIMENSION GG(50+50)45G(50}
IDAM=0

KICK=0

READ(5,900) I0PT1

READ (59900) NsKsMINsMAXsNCONsZETADEL
IF(IOPT3.EQe0) GO TO 151

CALL GENF(NsKsNCONsX»Y)

GO TO 152

READ(5+901) (Y(I)eX({I} sI=1sN)
CONTINUE

READ(5+902) (B(I)sI=14K)
WRITE(69903) N2KsMINsMAXsNCONSZETASDEL
PHI=0.

DO 1 I=1,4N

CALL FCODE(YsXsBsFsIaRES)
PHI=PHI+RES*#2

S$0=pPHI

IT=0

DO 41 I=1,K

DO 41 J=1.K

IF{I«EQsJ) GOTO 42

GG{I+J)=0e

GO TO 41

GGlIsdlr=1e

CONTINUE

CALL SUBZ(YsXsBsNj

WRITE(6+915)

WRITE(6+904) ITs(B(I}yI=1sK}
WRITE(6+908) ;

DD 999 I=1,N

CALL FCODE(Y+XsBsFsIsRES)
"WRITE(69911}) Y(I)sFsRESaX(I)
WRITE(6+907) PHI

NTIL=N+NCON

NN=N+1

IF(NCON-EQs0} GO TO 440
WRITE(65910)

DO 301 I=NNsNTIL

CALL FCODE(YeXsBsFslsRES)
I1I=]-N

WRITE(6+909) IIIsRES
IF(KICK«NEe1) GO TO 140

CALL EXIT .

BEGIN COMPUTATION OF GRADIENToonoooesaouosoaoooo«oascaoooasaaeooooeaoao"
IF(IT«EQs0) GO TO 101

DO 29 J=14K

SGIJY=G(J)

CONTINUE

DO 100 J=1,.K

SB{Jr=BtJ)

PHIN=Qe

DO 26 Js1sK
BlJ)=SB(J)+ABS(SB(J) }*DEL

DO 700 JJ=lsNTIL

CALL FCODE (YsXsBsFsJJsRES)
PHIN=RES*%2+PHIN
G{J}={PHIN-PHI )}/ (ABS(SB(J})*DEL}



26

28

30

31

32

111

202
556

550

12
11

112

A,4.1 (Continued)

PHIN=0.
B{J)=8R(J)
WRITE(6+912) (G(I)sI=1sK)

END GRADIENT COMPUTATXON S0 06 00C0 000000000 PRINOIRNERBLIERIBIRECEEIODLOBC966008 .

BEGIN FLETCHER-POWELL ITERATION..-ooo--occ-cn.o.-ono.t.o.aan-ua-soooooow
IF(IT+EQsQ) GO TO 111
DENA=0'

DO 28 1=1,K
DFG(I)=G(1)~SG(I)
DENA=DENA+DFG(1)*SVXM*GD (1}
DO 30 I=1,K

DBG(I)=0.

DO 30 J=1l,K
DBG(I3}=GG(I+J)%DFG(J)+DBG(]}
DENB=0Q.

DO 31 I=1,K
DENB=DENB+DBG(I)*DFG( I}

DO 32 1I=1,K

DO 32 J=1,K '
GG(IsJ)=GG(IsJ)+GD(1)#GD{J)*¥SVXM*%*2/DENA~DBG(])*DBG(J) /DENB
WRITE{6+955)

DO 202 I=1+K

WRITE(65911) {(GG(Isd)sd=1,yK)
DO 27 I=1,X

GD(I)=0.

DO 27 J=1,K
GD(I1)=GD(I)~GG(IsJ}*G( )
COMPUTE STEP SIZE...'...a‘ﬂ.&‘.oﬂ.o’”...QDO‘.O..‘.OQ&.'QOCOQUQOQ’B
XNU=0+

DO 550 I=1,K
XNU=XNU+G({I)*GDI(1)
XNU=ABS(2+.%PHI /XNU)
XM=AMINLI(XNU»ls)

IN=0

I1B8=1

IK=0

DO 2 J=lsK
B(J)=SB(J)+XM*GD(J)

I18K=1 )

GO TO 4

S51=SS

DO 6 J=1sK
B(J)=SB(J)+2.*%XM%GD(J}

I1BK=2

GO TO 4

5$2=8$

IF(S2eGE0SO) GO TO 12
IK=IK+1

SMIK)=20%XM

SPH(IK)=S2
IF(S1eLTeS00AND4S26LToS0) GO TO 13
IN=IN+1

IF(S1eGE«S0) GO TO 9

IK=IK+1

SM(IK)=XM

SPH(IK)=S1
IF(S51alLTeS5S26ANDeS2sLT4S0) GO TO 19
IF(S2+4L.ToS1eANDeS1eLTeS0) GO TQ 200
IF(INsNEL20) GO TO 302 -
WRITE(6+914)

IDAM=IDAM+1

IF{IDAMsEQs2) GO TO 555

DO 551 J=1,K
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A.4,1 (Continued)

DO 551 I=1,K
IF(1.NEeJ) GO TO 552
GG(IsJ)=1. .
GO TO 551
552  GG(IsJ)=0.
551  CONTINUE
GO. TO 556
555  WRITE(6913)
KICK=1
GO TO 130
302 XM=XM/2e
DO 23 J=1,K
23 B(J)=SB(J)+XM*GD(J)
18K=3
GO TO &
T4 $2=51
$1=5S
GO TO 11
13 IK=IK+1
SM(IK)=XM
SPH(IK)=S1
IK=1K+1
SM{IK)=XM*2,
SPH(IK) =52
IF(S1elTsS2sAND0526LT«50) GOTO 19
16 XM=XM*2
DO 14 J=1,K
16 B(J)=SB(J)+2e*¥XM2GD(J)
1BK=4
GO TO &
15 $1=82
$2=85
IF(S2.GE«S0) GO TO 200
IK=1K+1
SMIIK)=XM%2,
SPH(IK)=S2
IF(SLeLTeS2eAND#S2aLT«S0) GO TO 19
GO TO 16
C CUBIC INTERPOLATION-aoonsoouonaooonuoaagsuo-oga.aooooe.oqo.ennanoooooo.ev
19 C=(34%50-44%S1452) /{2 %50~ e*¥S1+2 4 %52

C END CUBIC INTERPOLATION..«cocuot-aoeou.oao-ae-eoeaeeseaoaooeseoooono.._'ﬁ..’~

IK=IK+1
C=C*XM
DO 17 J=1,K
17 B{J}=SB(J)+C*GD(J)
I1BK=5
GO TO 4
18 SPH(IK)=SS
SMUIK)=C
200 PHMIN=SPH(1)
IMIN=1
DO 21 J=2,1K
IF(SPH(J)eGEsPHMIN) GO TO 21
PHMIN=SPH(J)
IMIN=J
21 CONTINUE
PHI=PHMIN
S0=PHI
XM=SM({IMIN)
SVXM=XM
C END STEP SIZE COMPUTATIONOC00..0.0'00!0.0-.C.o..loooooooc..‘.....d.l.."
C COMPUTE NEW VALUES FOR B(I)I.Q..o00!0'.90.!I.l'-llo..&..c.."op.l.....
DO 22 J=1,sX
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66

20

900
901
902
903

004
906
907
908
909
910
911
955
912
913
914

915

11

A.4.1 (Continued)

B{J)=SBlJ)+SMIIMINI*GD(J) .
END COMPUTATION FOR NEW VALUES OF B(l)sesscoesseocoseosssscvcasensncosse
END OF FLETCHER-POWELL ITERATION....’..’.......’.‘...........‘...'..‘
GO TO 66 )
BEGIN COMPUTATION OF SUM OF SQUARESO'O.o‘..t.o!...ont‘oo...l‘loaooll...
55=0.

DO 2 J=1,NTIL

CALL FCODE(Y>sXsBsFsJsRES)

SS=RES#%2+SS

END OF SUM OF SQUARES COMPUTATIONSeesesescesoosncsncstnccenscasncsoncanss:
GO TO (5+7+24425,18),18K ‘

IT=1T+1

I1DAM=0Q

IF{ITSLE«MIN} GO TO 130

IF{ITeGE«MAX) GO TO 20

WRITE(69915)

WRITE(63904) ITs(B(I)sI=1sK)

WRITE(6s907) PHI

GO TO 150

KICK=1

GO TO 130

FORMAT(515+E15489E1548)

FORMAT(2F1046)

FORMAT(8F1046)

FORMAT(2Xs4HN = 5sI545Xs4HK = sI545Xe6HMIN = »I535Xs6HMAX = 91545Xs
16HNCON = 51595X/2X»48HMINIMUM PERCENT IMPROVEMENT IN SUM OF SQUARE

1S = 4yE15e83s5X+25HDEL = 4E1548)

FORMAT (/2H (I3,13H) PARAMETERS 5E1848/(18X»5E1848))
FORMAT(4(5X+sE1548))

FORMAT (/72X 17HSUM OF SQUARES = »E1548)
FORMAT(8X93HOBS» 16X s4HPRED» 16X »4HDIFF » 16X+ 4HFREQ)
FORMAT(8Xs[5+4XsE1548)

FORMAT(/2X»1OHCONSTRAINT +3Xs» THSQUARES )

FORMAT(6({5XsE1548))

FORMAT(/2X+s17HG MATRIX BY ROWS )

FORMAT(/2X» 16HGRADIENT BY ROWS /6(5XsE1548))

FORMAT(/2X+36HSCALED 30 TIMES WITH NO IMPROVEMENT /)
FORMAT(/2X»58HQUADRATIC METHOD FAILEDs RESETTING G MATRIX TO UNIT
IMATRIX/)

FORMAT(/IZOH 0ooooo.coooo.ocf.0cooool.o.0-.lnoooilo0000..0....0‘0.

l........l....l’...C.!.......l.....l..l'C...'.'.0'.‘.'.............

1)
END
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TABLE A.4.2

VARIABLES OF SUBROUTINE FCODE

Mathematical Symbol FORTRAN Variable

v, . Y(I)

w, X(I)

i

bi’ i=1,2,...,k B(I)

Yi, (Bysbysevesby s ) F

i I
l,b2,eou,bk; wi) - Yi RES



TABLE A.4.3

INPUT DATA
Input Mathematical FORTRAN Card
Item No. Symbol Label Format Columns Comments
1 - IOPTI 15 1-5 = 0 Read in Y(I), X(I)
= 1 Compute Y(I), X(I) by subroutine
GENF
2 n N 15 1-5 ’ No. of data points Y(I)
k K 15 6-10 Total number of parameters B(I)
- MIN 15 11-15 No. of detailed print outs desired
(MIN < MAX)
- MAX 15 21-25 No. of constrained parameters
- ZETA E15.8 26-40 Minimul allowable percent improvement
in squared error function "
Mo DEL E15.8 41-55 Initial value for Mo in Table A.2.2
: (DEL = 1.E-5 is adequate in most cases.)
3 Y. Y(I) F10.6 1-10 Omit if IOPT = 1. Use as many cards as
. . needed (one pair of data points per
ws X(I) F10.6 11-20 Teard).
g bi B(I) 8F10.6 1-80 Initial values of B(I), eight per card

9TT
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TABLE A.u4.u

EXAMPLES OF SUBROUTINES USED IN PROGRAM

SUBROUTINE FCODE(YsXsBsFsIsRES)

DIMENSION Y(200)+X(200) +B(50) sPRNT(5)
IF(1eGT+45) GO TO 12

IF(1sGTe44) GO TO 11

IF(l.GT+43) GO TO 10

COMPLEX 20C»2Ss2

RO=B(1)

RS=B(2)

XKS=8(3)

WS=ABS(X(1))

WO=ABS(X(1)%*XKS)

SK=SQRT(WS)*.70710678

RNS=RS*SK# (SINH(SK)*COSH{SK)+COS(SK)*SIN(SK))
XIS=RS*SK*(COS(SK)*¥SIN(SK)~SINH(SK)*COSH(5K))
DS=24¥WSH (4 70710678%%2 )% ( (COSHISK)*#COS(SK) ) *#*#2+(STNH(SK)*SIN(SK))

CIxx2)

RNS=RNS/DS
X15=X1s/DS
SK=SQRT(WO)*e70710678
RNO=RO*SK#* (COSHSK)#SINH(SK)=COS{SK)*SIN(SK))
XT10=-RO#*SK* (COSH{SK)*SINH(SK)+COS (SK)*SIN(SK))
DO=24#WO*(470710678%%2 )% ((SINHISK)*¥COS(SK) ) **2+(COSH(SK)*SIN(SK))
1%%2) :
RNO=RNO/DO
x10=X10/D0
2S=CMPLX(RNSsXIS)
ZOC=CMPLX(’RNO»X10)
Z=ZS*Z0C/(25+20C)
XMAG=CABS(2)
F=20«#ALOG10 (XMAG)
RES=Y(1})~F
RETURN
IF(B(1)elTa5¢) GOTO 1
IF(B(1)+GT«20000s) GO TO 2
RES=04
RETURN
RES=(B(1)~54)%%4
RETURN
RES=(B(1)-20000¢)*¥%4
RETURN .
IF(B(2)sLT450+) GO TO 3
IF(B(2)+GT+20000.) GO TO 4
RES=0.
RETURN
RES=(B(2)=504) %%6
RETURN
RES=(B(2)~200004) *¥4
RETURN
IF(B(3)eLT+e005) GO TO 7
IF(B(3)+GT«100.) GO TO 8
RES=0.
RETURN
RES=(1000e*(B(3)-s005)) %6
RETURN
RES=(B(3)-100s)#%6
RETURN
END
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A.4.4 (Continued)

SUBROUTINE SUBZ(YsXsBsN)
DIMENSION Y (200)sX(200)+B(50)
RETURN i :
END

SUBROUTINE GENF{NsKsNCONsXsY)
DIMENSION X{2001:Y1200)
RETURN

END



APPENDIX B

MULTIVARIABLE IMPEDANCE FUNCTIONS

B.1l Introduction. Positive real functions of several variables

were introduced in the problem of designing a passive network having
variable parameters (9). The theory has recently been developed by
Koga (8). This appendix is a collection of theorems and definitions
which relate directly to this thesis.

Definition B.1l.1 Complex Plané Ck: If a complex plane is denoted by C

then Ck = CXCX... C is the Cartesian proeduct of k copies of the complex

plane.

Definition B.l.2 Open Polydomain DrCEk: If D]._CCk (i=1,2,...,k) is any

connected open subset of the complex plane, the product set

D = Dl X D2 X ,.oDk Ck will be called an open polydemain. If an open

polydomain is defined by Dlr X D2r XOMDkr where Dir = {Aie Cs

Re (Ai) >0 , then it will be denoted by Dro

Definition B.1l.3 Positive Function of k Variables: If a raticnal

function f of k variables satisfied Re(f) > 0 in the open polydomain
Df;ck, then f is called a positive function of k variables.

Definition B.l.4 Positive Real Function of k Variables: If a positive

function of k variables W(Al,k cosaA ) is real for Ay (1 < i < k) real,

2’

then W is a positive real function of k variables.

Definition B.1.5 Reactance Function of k Variables: If a positive real

function of k varigbles W satisfies W(Al,AQ,...,Ak)+w(—kl,rk2,...,-Ak)EO

119
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then W is called a reactance function of k variables.

Theorem B.1.1 Positive Real Function Test: A function of k varilables

WA, LA Ak) is a positive real function if and only if W is a posi-

PEEERE
tive real function of p after substitution of->\i =a.pt Bip-l for every
real, positive, value of the constants oy and Bi (1 <i<k)

Proof: See reference (8).

Theorem B,1.,2 Right Half Plane Properties: The numerator and denomina-

tor of a positive function of k variables prescribed in the irreducible
form have no zeros in the open polydomain Dézcka
Proof: See (8),

Theorem B.1l.3 Decomposition Theorem: If a positive real function

W(Al,kz,ooa,kk) has poles on the imaginary Ai—axis including infinity on
each complex plaine 1=1,2,...,k independently of the other variables,
then W can be decomposed as

k
WA shpseeeahy) = igl Zo () + W (LA, ei,0)

where Zi(ki) is a reactance function of Ai alone which has the above

mentioned poles and W. is a positive real function of k variables.

1
Proof: See (8).

Theorem B.l.4 Necessary and Sufficient Conditions for W to be a Reac-

tance Matrix: Let an n x n matrix W(Al,k2,,,o,kk) be prescribed as

where Bki + D is the least common denominator of W, B # 0 and D Z 0
being polynomials in Ai(l <1i<k), and A, C are polynomial matrices of
Ai(l < i < k). Then the necessary and sufficient conditions for W to be

a reactance matrix of (k+l) variables are:
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i) D/B is a reactance function of Ai(l <i<kx),
ii) A/B, C/D are reactance matrices of Ai(l <i<k),
iii) (BD—AD)/B2 is non-negative Hermitian for Re(Ai) =0 (1 <1ic<k)
except at singularities.,
Proof: See (8),

B.2 Topological Formulas for the Driving Point Function. Material

on topological formulas and the synthesis of topological feormulas can be
found in works by Seshu (10), (11).

Definition B.,2.1 Tree-Admittance Product: The tree-admittance product

is the product of the admittances of the branches of a tree for some
network,

Theorem B.2.1 Determinant A: The determinant A of the node-admittance

matrix Y of a passive network N without mutual inductance is

A = Z (tree-admittance product"
all of tree t, of N)
trees

Proof: See (10).

Definition B.2.2 2-Tree T2i,j: A 2-tree is a pair of unconnected,

circuitless subgraph, each subgraph being connected, which together in-
clude all the vertices of the graph. One (or in trivial graphs, both)
of the subgraphs may consist of an isolated vertex. The symbol T2i,j

denotes a 2-tree with vertices i and j in different connected parts.

Definition B.2.3 2-Tree Product: A 2-tree product is the preduct of
the admittances of the branches of a 2-tree. The product fer an iso-
lated vertex is defined to be 1.

Theorem B,2.2 Co-facter Ajji: If r is the reference vertex of node

equations, the co-factor of an element in the (i,i)-positien pesition

is given by
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Ay, = ) (T

all
2-trees

2i,r products)

Proof: See (10).

Theorem B.2.3 Topological Formula for the Driving Point Admittance:

The driving point impedance for a network which contains no magnetic
coupling is given by
A
Y (y NPT ERENN ) = ———
1*72 k All
Proof: See (10).

Theorem B.2.4 Form of A/Aii: The driving point admittance given in

Theorem B.2.3 as Y = A/Aii will have A as a homogeneous polynomial of
degree (v-1) and Aii is a homogeneous polynomial of degree (v—2) in the
variables A CYRERI N where v is the number of vertices of the graph
corresponding to Y and each ys is of degree one.

Proof: See (11).

Theorem B.2,5 Parallel Element Removal: If the elements yi (1l <iz<m

have the two input vertices of a one-port as endpoints then

A A'
Y(s) = - = Lyt ——
11 3=1

where A' and Ail are not functions of yj (1 <j<m).

Proof: See (11).

Theorem B.2.6 Parallel Element Condition: Every element y; appears in

A, but an element y; appears in A,. if and only if v does not have the

11
two input vertices of the one-port as endpoints.
Proof: See (11).

Definition B.2,5 2-Isomorphism: Two graphs Gl and G2 are 2-isomorphic

if they become isomorphic under (repeated application of) either or both
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of the following operations:
1. Separation into components.

2., If the graph consists of two subgraphs H, and H2 which have

1

only two vertices in common, the interchange of their names

in one graph.

Definition B.2.6 c-Circuit Matrix: The c-circuit matrix Bc for a given
tree of a connected graph G is the matrix corresponding the set of

e-v+l circuits formed by each chord and its unique tree path where e is
the number of elements and v is the number of vertices in G.

Theorem B.2.7 A for Separable Graphs: If a graph G is separable into

nonseparable graphs G G °’Gn then A=A_*A

1 2"“"An where A is for

1> Gosee

graph G and Ai is the A for graph Gi for every 1.

Definition B.2.8 Component Parts of a Graph: If a separable graph G is

separated into maximal connected subgraphs which are nonseparable, then
each subgraph Gi is known as a component part or component of the graph:

G.
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