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CHAPTER I 

INTRODUCTION 

Definition of the Permanent 

There are many scalar functions which can be associated with 

a square matrix such as the determinant, permanent, rank, etc. Of 

these by far the most important seems to be the determinant function. 

Much is known about the determinant, and a great many papers and 

books have been published stating the properties of this function and 

its applications to practical problems, Very little has been done in 

developing the theory of other scalar functions except in specific cases 

where just enough is done to make them useful in a particular area of 

study. One reason for this is the fact that most of the scalar functions 

do not lend themselves to such rich application as does the determinant 

function. Thus, the other functions have been pushed to the background 

and will make an appearance only occasionally. One such function 

which has received renewed interest in the last few years has been the 

permanent function. 

Let A be an n-square matrix with elements a .. , i, j= 1, ... , n, 
' lJ 

belonging to the complex field. The following definition can now be 

stated, 

Definition 1. 1. The permanent of an n-square matrix A, 

denoted as p(A), is defined as 

1 
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n 
P·.(A) ~ II 

== aiCT(i)' CT i;:: 1 

where the summation extends over all n! permutations CT of the numbers 

1,.,., n, and CT(i) denotes the i-th number in a given permutation'. 

For example, if n:: 4, the expression a 13a 22a 34a 41 is an 

addend in the expansion of p(A). The re would be 24 such addends, that 

is, one addend for each permutation of the numbers 1, 2, 3, 4, The 

sum of the 24 addends would be p(A) for this case. 

Another way of stating Definition 1. 1 is the following. Write 

down all possible products I each of n factors, that can be obtained by 

picking one and only one element from each row and from each column. 

There will be n! such products. The algebraic sum of these addends is 

the value of or the expansion of p(A). Thus, it is easy to se,e that 

p(A) 
n 

= ~ II a (")· = ~ 
CT i:: 1 l CT l . • CT 

n 

II aCT(i)i , 
i:: 1 

It will be advantageous to use both forms of ( 1). 

Notation 

' 

( 1 ) 

An old notation for p(A) given by Thomas Muir [34] in 1882 is 

the following, If A is an n-square matrix then 

+ 

p(A) = a22 

Thu$, 

a nn 
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and 

+ + 
all al2 al3 

= alla22a33 + al2a23a31 + al3a2la32 
a21 a22 a23 

a3 l a32 a33 · +al3a22a31 + alla23a32 + al2a2la33 

A simple computation rule can be used to evaluate both of the 

above second and third order permanents. For the second order per-

manent we have 

+ + 

p(A) = x. 
That is, the permanent can be found by taking the· sum of the products 

of the elements lying on the arrows, For the third order permanent . 
the first two columns of A are written again and then the value of p(A) 

can be found by summing the products of the elements lying on the 

arrows as given below: 

+ + 

p(A) = 

This type of computational device is not valid for n > 3, since 

all of the addends of p(A) cannot be obtained in this manner. 

Some additional notation which will be used throughout this 

paper will now be stated. 
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Define M to be the class of all mxn matrices with elements 
m,n 

I 

in the .complex field. Elements of M will be denoted with capital 
m,n 

letters such as A, B, X, etc., while elements of the respected matrices 

will be denoted with small letters such as a .. , b .. , x .. , etc. In state-
. ~ ~ ~ 

ments involving the matrix A we will sometimes write A:;: (a .. ) where 
lJ 

a .. denotes the element of A in the i-th row and j-th column. We will 
lJ 

reserve the notation E .. to be the element of M with zeros in every 
lJ m, n 

position except the ij-th position in which case ei/ 1. Thus, if M · 
m,n 

is restricted to matrices with real elements, then E .. , i:;:l, ... , m, 
lJ - .· 

j=l, .. , ,n, forms a basis for M and M is isomorphic to 
m,n m,n 

euclidean mn-space. That is, M with the operations of matrix 
m,n 

addition and scalar multiplication is isomorphic to Emn. Also the 

topology of M is induced from Emn, namely, a set is open in M 
m,n m,n 

if it is the image of an open set in Emn. 

If E .. E M then a matrix of the form 
lJ n, n 

n 

p = ~ E. (") 
i=l 10" l 

for some permutation o- of 1, ... , n is called an n-square permutation 

matrix. Multiplying on the left of an mxn matrix A by an m-square 

permutation matrix rearranges the rows of A according to the permuta-

tion o- of 1, .. ,, m. Multiplying A on the right by an n-square permuta-

tion matrix rearranges the columns of A according to the permutation 

o- of 1, ... ,n. 

The notation for the determinant of an n-square matrix A will 

be d(A) and 

n 
d(A) = ~ E(a-) II a. (") 

O" i= 1 10" l 
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where e (er) = ±1 according to whether the permutation er is even or odd. 

The usual notation for rank of a matrix will be used. That is, 

p(A) will denote the rank of A. 

History of the Permanent 

The name for the permanent function seems to have originated 

in a publication by Cauchy in 1812. In that article he considered 

functions which are not changed by permutations of variables calling 

them. symmetric functions. For example, the functions 

are not changed if the variables a. and b. undergo the same permuta-
1 1 

tions. That is, if (a 1, a 2 , a 3 ) is permuted to (a3 , a 1, a 2 ) and (b 1, b 2 , b 3 ) 

is permuted to (b 3 , b 1, b 2 ) then 

Cauchy also noted that functions such as 

may differ by a± sign whenever a permutation is given for the variables 

a 1, a 2 and bl' b 2 . Thus, if it were not for this alternation in sign 

these functions would also be symmetric. He then decides to extend 

his definition of symmetric functions to include those which may 

change sign after a given permutation. Thus, this calls for some way 

of distinguishing between the two basic types of symmetric functions .. 
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The ones which may change sign are called "fonctions symetriques 

alternees", while those which do not change sign are called "fonctions 

symetriques permanentes 11 • His notation for the functions f and g are: 

His definition of the permanent is more general than what is used today. 

Using his notation the only symmetric functions which are regarded as 

permanents at the present time are S 2 (a 1b 2 ),S3 (a 1b 2 c 3 ),S4(a1p2 c 3d41, ... , 

where every term involves the full number of letters. 

From 1812 to 1882 very little was done in developing any theory 

directly connected with the study of the permanent function. Mostly, 

the results in this period involve very special identities between perma--

nents and determinants. Various notation and names for the permanent 

were used. We have already discussed Cauchy's notation. In 1857, 

A. Cayley gave the notation for p(A) as 

a 
nn 

and proved a very special identity for the product of a determinant and 

permanent, (see problem 2, Chapter IV). 

In 1865 1 J. Horner used the notation 

p(A) = 

a 
nn 
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and proved an identity exp{l"essing the product of two determinants as a 

sum of 11 conterminants 11 (permanents). This identity can be found in 

Theorem 2. 20. 

J. Hammond in 1879, published an article in which he proposed 

a problem about permanents, calling them "alternate determinants". 

This seemed to prompt Thomas Muir [34] in 1882 to prove part of 

Hammond 1s problem (see Theorem 2. 17) and to give a summary of 

results about permanents to that date. In Muir 1s article the name and 

notation were standardized, and Definition 1. 1 was introduced. 

From 1882 to 1913 a few interesting identities relating perma

nents to determinants were proved, (see problem 3, Chapter IV and 

Theorem 2. 15). 

In 1913, a problem proposed byG. Polya [39]inwhichthe 

question of whether or not - signs can be affixed to elements of a 

square matrix so that the determinant of this matrix has the same 

value as the permanent of the original matrix has led to an interesting 

generalization by Marvin Marcus and Henryk Mine, (see Theorem 2. 22 

and results which follow). 

The next important event came in the form of another problem 

proposed in 1926 by B. L. Van der Waerden [44]. He wanted to find 

the minimum value of the permanent over a certain class of matrices, 

(see Conjecture 3. 2). His question has resulted in several present 

day research papers but still remains unanswered. 

From 1926 to sometime in the mid-fifties the permanent func

tion seemed to be in hibernation. The awakening came with the 

permanent assuming a more important role in certain combinatorial 

applications and a general concern on the part of several men to solve 
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the Van der Waerden conjecture. 

Synopsis 

This dissertation is an exposition of the properties of the per

manent function.· As we have seen from the section on the history of 

the permanent it is a subject which was f_irst viewed as something 

akin to the determinant but not nearly as useful. This attitude has 

largely been the result of a lack of application of the permanent to any 

practical problems. ·With applications being found in combinatorial 

theory it has caused the subject to assume an .importance which here

tofore it did not have. These applications also bring out a concern 

among mathematicians as to the amount of knowledge that is known 

about the permanent. Thus, in the last ten years the knowledge of the 

permanei;it has increased tremendously and approximately 80 to 90% 

of all publications have occurred in this period. This increase in 

knowledge in such a short tirne brings with it many problems. First, 

there is a notable lack of organization in the published material as a 

whole. In some cases this involves articles which give some interest

ing results but failed to prove the main theorem which the author was 

really after. Then a later article actually proves th~s theorem and 

leads then to some confusion as to how the first results fit into the 

overall picture. This type of situation seems to be especially true m 

many papers involving inequalities for the permanent. Also another 

factor which contributes to the lack of organization is the fact that the 

results are widely scattered and appear in many different mathematical 

periodicals. As should be expected though, research does not come 

in organized form but in bits and pieces with some of the pieces 



seemingly having little to do with each other. Thus, this dissertation 

is an attempt to organize the known results so that study in this area 

will be made easier and can be continued at perhaps an even faster 

rate. 

9 

Secondly, there has been no attempt made in present literature 

to give a fairly complete list of the statements and proofs of many of 

the elementary properties concerning the permanent function. Most 

of the elementary properties which are known usually occur as they 

are needed in the proofs of some of the more complicated results. Of 

course the easier theorems are the logical place to begin a study of the 

permanent so a publication is needed to give the proper beginning for 

this subject. This dissertation is an attempt to fulfill this need since 

it contains a good many of the elementary theorems concerning perma

nents and gives the student a background from which he can prove or 

at least understand the proofs of most results about permanents in the 

literature. 

Thirdly, many articles about permanents begin with the state

ment that permanents have certain combinatorial applications and 

never give an example of how they are used. With the one exception 

of Ryser 1s book [40] almost no examples are given which illustrate the 

usefulness of the permanent. Thus, this dissertation fulfills a need to 

show the student some interesting examples which should leave no 

doubt as to what types of problems the permanent can be of maximal 

use. These examples can be found in Chapter IV. 

The material covered in Chapter II is es·pecially designed for 

the student beginning a study of the permanent function for the first 

time. It begins with elementary theorems concerning the permanent 



and leads to the more difficult question as to how the permanent and 

determinant are related. Several theorems are proved which involve 

some special identities between permanents and determinants, and 

then it is shown that the permanent cannot be transformed in a 

systematic way into the determinant and vice versa. The concluding 

part of this chapter characterizes the types of transformations which 

leave the permanent unaltered. 

Chapter III deals with inequalities concerning the permanent. 

10 

The first part of the chapter gives some elementary inequalities con

cerning non-negative matrices, and then we become more restrictive 

and consider only the class of doubly stochastic matrices, There is a 

great deal known about this class of matrices, and the discussion of 

thern is quite lengthy. The outstanding problem connected with perma

nents is the unresolved conjecture of Van der Waerden concerning the 

minimum of the permanent over the set of doubly stochastic matrices. 

A list of the known results concerning this conjecture is given. From 

here it is shown how the permanent can be thought of as an inner 

product in a certain type of vector space. This expression of the 

permanent as an inner product along with the Cauchy-Schwarz 

inequality enables us to prove certain inequalities of importance for 

the permanent. The last part of the chapter concerns some general 

theorems along with a summary of the better known miscellaneous 

inequalities. 

Chapter IV is concerned with the application of the permanent 

to combinatorial problems, and several examples are given. Also the 

existing methods of computing the permanent are discussed along with 

some inequalities for (0, 1) matrices which give some upper and lower 
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bounds for the permanent in many cases involving problems of applica

tion. The chapter concludes with a list of problems concerning 

permanents of two types. The first type consists of solved problems 

which are usually difficult and interesting but in most cases not 

important enough to be included in the main body of this dissertation. 

The second type gives some unsolved problems and indicates the 

direction of current research. 



CHAPTER II 

PROPER TIES OF THE PERMANENT 

Introduction 

The definition of the permanent function suggests that there are 

a number of properties of the determinant which carry over and give 

similar results for the permanent. In fact, this similarity seems to 

account for the reason that so little has been published concerning the 

more elementary properties of the permanent. Most of the publications 

deal with some rather sophisticated results and assume a knowledge of 

the simpler properties. Thus, we shall begin with a fa~rly c:omprehen

sive list of the elementary results of the permanent along with the 

proofs of these results. While many of these properties are direct 

analogs of results of the determinant function, there are also a good 

many results which are changed considerably or have no analog in 

determinant theory. 

Elementary Properties of the Permanent 

Theorem 2. 1. If A is an n-square matrix and A 1 is its trans -

pose then p(A) = p(A'). 

Proof: Since the products involved in the permanent of A are 

exactly the same products involved when all the rows and columns are 

interchanged this gives p(A) = p(A' ). 

12 
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This theorem is important in that for every theorem in perma

nents concerning the rows of a matrix there is a corresponding theorem 

concerning the columns of the matrix, and vice versa. 

Theorem 2. 2. If A is an n~square matrix and A* is its conjUQ31:e 

transpose then p(A) = p(A*) where p(A) denotes the conjugate of p(A). 

Proof: By Theorem 2. 1 the transpose does not affect the value 

of the permanent, Hence, p(A*) consists of sums and products of the 

conjugates of elements of p(A). From complex analysis the conjugate 

of the sum of two or more complex numbers is equal to the sum of the 

conjugates, and the conjugate of the product is equal to the product of 

the conjugates. Therefore, p(A*) = p(A). 

Theorem 2. 3. If A is an n-square matrix such that A has a 

row (or column) of zeros then p(A) = 0. 

Proof: By the definition of the permanent it consists of the sum 

of the products of elements one from each row and from each column. 

Since one row is zero then each of these products contains a factor of 

zero and thus is zero. Hence the sum of the products is zero and the 

theorem follows. 

Theorem 2. 4. If in the square matrix A one row (or column) 

is multiplied by the constant c then p(A) is multiplied by c. 

Proof: Let B be the matrix identical to A except the i-th row, 

which is the i-th row of A multiplied by c. In the expansion of p(B) 

every addend must contain a factor from the i-th row. Thus, every 

addend contains the factor c. If the factor c is left out then the 
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resulting addends are just addends from p(A). Hence, p(B) = cp(A). 

Theorem 2. 5, If A is an n-square matrix and c is a constant 

n 
then p(cA) = c p(A). 

Proof: Since cA multiplies every row by c and there are n 

rows it follows from Theorem 2. 4 that p(cA) = cnp(A) and the proof is 

complete. 

We note here that the first few theorems we have proved are 

direct analogs of theorems in determinant theory. The next theorem 

and its corollary are examples of results which are distinctly different 

from those obtained in determinants. 

Theorem 2. 6. If A is an n-square matrix such that every row 

( or column) is the same then 

p(A) ::: n! 
n 
II a .. 

11 
i= 1 

Proof: Since every row is the same, A can be written as 

a 
n 

a 
n 

a 
n 

In the expansion of p(A) we must have an element from each row and 

column. This implies that every addend must be a 1 a 2 ... 

there are n! addends, 

a 
n 

Since 



n 
p(A) = n! IT a .. 

i= 1 1 

But a .. = a. for every i and the theorem follows. 
11 1 

Corollary 2. 7. If A is an n-square matrix such that every 

entry is a, then p(A) = n!a n. 

Proof: This is a direct consequence of Theorem 2. 6. 

15 

We now state a theorem which gives us the value of the perma-

nent of certain special types of matrices. The proof of this theorem 

is just a direct consequence of the definition of the permanent. 

Theorem 2. 8. Let D be an n-square diagonal matrix, P an 

n-square permutation matrix, and T an n-square triangular matrix. 

Then 

(a) p(D) 
n 

= II d .. 
i= 1 11 

(b) p(P) = 1, 

n 
(c) p(T) = IT t.. 

. l 11 
1= 

Theorem 2. 9. If A is an n-square matrix, D and L are n-

square diagonal ma.trices then 

p(DAL) = p(D)p(A)p(L) 
.n 

= p(A) IT d .. 1 .. 
. 1 11 11 
l,= 

Proof: Consider the matrix DAL. Since D and Lare diagonal 

matrices, the i-th row of A is multiplied by d .. of D while the i-th 
11 

column of A is multiplied by 1 .. of L. Therefore, using Theorem 2. 4 
11 

we have 



p(DAL) 

Now using Theorem 2. 8, 

n 
= p(A) IT d .. 1.. 

i= 1 11 11 

p(A) ; d .. l .. = (; d .. ') p(A) (.; 1 .. ) = p(D)p(A)p(L) 
i=l ll l1 i=l ll i=l ll 

and the proof is complete. 

16 

Theorem 2. 10. If P and Q are n-square permutation matrices 

and A is an n-square matrix then p(PAQ) = p(A). 

Proof: Multiplication by permutation matrices P and Q 

rearranges the rows and columns of A but leaves the addends in the 

expansion of p(A) unchanged. Therefore, 

p(PAQ) = p(A). 

Theorem 2. 10 gives us an important result about permanents. 

Namely, that interchanging rows or columns of a matrix A does not 

change the value of the permanent of A. This res ult is not true for 

determinants and gives a good example of how these two scalar func-

ti.ans differ. 

We now introduce some notation which will be used in the 

theorems that follow, If A is an mxn matrix then let the p-th row of 

A be denoted by A(p). Let Q be the totality of strictly increasing 
r,n 

sequences of r integers chosen from 1, ... , n. Thus if n=3 and r = 2 

then Q 2 3 = {(1,2), (1, 3), (2, 3)}. 
' 

Next, let G be the totality of non-
r, n 

decreasing sequences of r integers chosen from 1, ... , n. Then 

G 2 3 = {(l, 1), (2, 2), (3, 3), (1, 2), (I, 3), (2, 3)}. It is also useful to 
' 

as sign an ordering to the sequences in Q and G 
r,n r,n 

This is called 



the lexicographic ordering and is defined as follows.· 

Definition 2. 11. If a and 13 are sequences in, Q '- (or· G ), r,n: · r,n 

a = (a 1, ... ,ar) and 13 = (13 1, ... ,13r) then a is said to precede 13 or 

a < 13, if there exists an integer t, (1 < t < r), for which 

For e,xarr,q:He~, (1,.1, 2; 5) .prec,ed,es, 0,;2, z·,;~):i:ri G4 , 5 . 
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Now if a e Q and 13 e Q then let A[a /13] be the submatrix 
r_, m r, n 

obtained from A by using the rows in the sequence a and the columns 

in the sequence 13. Also let· A(a /13) be the submatrix obtained from A by 

deleting the rows in the sequence a and columns in the sequence 13. For · 

example, if A is a 3x4 matrix and a= (1, 3), 13 = (1, 2, 4) then A[a./13] is 

the 2x3 matrix obtained from A by using rows 1 and 3 and columns 

1, 2, and 4. We can also extend the definition of A[a /13] to the case 

where a and 13 are sequences in Gr n by simply allowing repetitions 
' 

in the choices for the rows and columns of A. 

Definition 2, 12. If from an n-square matrix A we delete the 

i-th row and the j-th column the permanent of the (n-1)-square matrix 

will be called the major of the element aij' and is denoted by p(A(i/j)). 

Theorem 2. 13, If A is an n-square matrix then p(A) is equal 

to the sum of the products of the elements of any row (or column) of 

A, each by its major; that is, 

p(A) 
n 

= ~ a .. p(A(VJH 
j= l lJ 

n 
= .~ a .. p ( A ( i I j ) ) . 

i= l lJ . 
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Proof: To prove p(A) can be expanded by rows, consider the 

addends of p(A). Each of these addends contains an element from 

every row of the matrix A. Hence, for the i-th row each addend of 

the permanent of A contains one of the elements a. 1 , a. 2 , ... , a. . 
1 1 1n 

Therefore the permanent of A is a linear combination of these elements; 

that is, 

n 
p(A) = ~ 

j=l 
C.a .. 

J lJ 

Consider C. for some j = 1, ... , n. Then C. is the coefficient of a .. and 
J J lJ 

there are exactly (n - 1 )! terms which have a .. in them. This is true 
lJ 

since the definition of the permanent allows only one element from 

each row and column to appear in each term. Thus the terms involving 

a .. are 
lJ 

(n-1)! n 
~ II 

k=l 
k:;ti 

,. 

where o- is some permutation of the numbers 1, ... ,j-1,j+l, ... ,n, and 

the summation extends over all (n-1)! permutations. But this is the 

same as 

a .. 
lJ 

(n -1) ! 
~ 

n 

k~ 1 ako-(k) 

k;t i 

which is just the permanent of the matrix A with the i-th row and j -th 

column deleted times the element a... Hence 
lJ 

and 

C. = p(A(i/j)) 
J 

n 
p(A) = ~ a .. p(A(i/j )) . 

j = I lJ 
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The above expression is called the expansion of the permanent of A 

according to its i-th row. The expansion according to the i-th column 

is established in the same way. 

Theorem 2. 14. If A is an n-square matrix such that 

then 

p(A) = p(B) + p(C) 

where 

and 

and the remaining rows of B and C are the same as the corresponding 

rows of A. 

Proof: Expanding all three permanents by the p-th row we see 

that 

n 
p(A) - ~ (a . + b .) p(A{p/i)) 

i= 1 pl pl 

n n 
= Z: a .p(A(p/i)) + Z: b . p(A(p/i)) 

i= l pl i= 1 pl 

= p(B) + p{C). 

Theorems 2. 13 and 2. 14 are both direct analogs of theorems 

in determinant theory. We now show by example that one of the more 

important properties of determinants, that is, invariance of the 
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determinant under addition of a multiple of a row (column) to another 

row ( column) fails in the theory of permanents. Let 

A= [: :J and B = [: :J 
Then B is the matrix A except that the second row of B is the sum of 

the first and second rows of A. Now p(A) = 13, but p(B) = 17. 

The reason for the failure of the above mentioned theorem in 

permanent theory is the fact that a permanent of a matrix with two or 

more rows the same is not necessarily zero (see Theorem 2. 6). This 

prompts the following theorem which is a variation of an early result 

given by F .. Ferber in 1899. 

Theorem 2. 15. If A is an n-square matrix such that A has m 

rows, m ::_ n, (or columns) which are the same, then 

p(A) = ~ 
IJ" 

has at most n! /m! distinct addends. 

n 

II a1.,...(1") 
i= l v 

Proof: If m = n then by Theorem 2. 6, p(A) has only one addend. 

Thus, assume m < n. If the first m rows of A are not the same then 

multiplication by a suitable permutation matrix P will rearrange A 

such that its first m rows are the same. This multiplication has no 

effect on the addends of p(A) since by Theorem 2. 10, p(PA) = p(A), 

Now expanding p(A) by the last row gives n addends each consisting of 

an element in the last row times an (n-1 )-th degree permanent made up 

from the first n-1 rows of A. Again expand each of these (n-1)-th 



degree permanents by their last row. This will give n(n-1) addends 

consisting of an element which is a product of an element in the n-th 

and (n-1)-th rows and a (n-2)-th degree permanent made up from the 

first n-2 rows. Continue this expansion process until there are 

n(n-1 ) ... (m+ 1) addends each consisting of an element which is a 

product of elements from the last n-m rows of A and a m-th degree 

permanent which is made up from the first m rows of A, Since the 

first m rows of A are the same, then the rows of these m-th degree 

permanents are the same. Now applying Theorem 2. 6, each m-th 

degree permanent has one distinct addend. Therefore, p(A) has at 

most n(n-1) ... (m+l) = n!/m! distinct addends and the proof is complete. 

We now prove a theorem which is attributed to the French 

mathematician Laplace since it is analogous to the Laplace ex;pansion 

theorem concerning determinants. 

Theorem 2. 16. (Laplace expansion theorem for permanents) 

Let A be an n-i:;\quare matrix and r an integer such that l < r < n. Let 

a e Q . Then 
r,n 

p(A) = ~ p(A[a /(3]) p(A(a /{3 )). 
{3 eQ 

r, n 

Proof: Let r be given and suppose I< r < n. Let a= (1, •.. , r). 

Now consider the permanent p(A[a /~ ]) in the upper left hand corner of 

A. The addends of this permanent are of the form a li.·, .. ari where 
; l · r 

i 1, ... , iris a permutation of the numbers 1, .•. , r. For the perm.anent 

p(A(a /a)) in the lower right hand corner of A the addends are of the 

form a( +I)" , ... , a . ...-wheie i +l' .•. , i is a permutation of the 
r l(r+l) nin r . , ... 1 n 
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numbers r+l, ••. , n. Consider the product, p(A[a /a] )p(A(a /a)). Since 

all the r! addends of the first element of the product as well as the 

(n-r)! addends from the second element of the product are formally 

distinct, r!(n-r)! distinct addends of p(A) are obtained, 

Next consider f3 e Q such that f3 f. a. Then by multiplying on 
r,n 

the right by the proper permutation matrix the columns associated 

with the sequence f3 can be made to be the first r columns of the matrix 

A. Thus, A[a /(3] is brought to the upper left hand corner. Also at the 

same time the matrix A(a /(3) is brought to the lower right hand corner. 

By the same process as above, r!(n-r)! formally distinct addends of 
' 

p(A) are obtained. These addends are also distinct from the above 

addends since different columns are used. Since there are n!/r!(n-r)! 

ways of forming r!(n-r)! distinct products of p(A), all of then! addends 

of p(A) are obtained. Therefore, Laplace's theorem is established 

whene,ver a = (1, ... , r). 

Next, suppose a ::: (k 1, ... , k ) where\a e Q . By multiplying 
r r,n 

on the left by a permutation matrix the rows associated with the seq -

uence a again :represents the first r rows of A. In the same way as in 

the preceding paragraph we have 

p(A) = ~ p(A[a/f3])p(A(a/f3)). 
f3 E Q r,n 

Thus, Laplace's theorem is completely established except for the case 

r = n. In this case the term on the right in the conclusion of the 

the9rem becomes p(A), and the theorem is true. 

Consider the following exatnple of the Laplace expansion for 

permanents. Let 
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2 l 0 1 

-1 1 4 -1 
A = 

3 1 3 1 

2 -1 2 2 

and r = 2. Let a = (1, 2). Then 

Q2 4 = { ( 1, 2), ( 1, 3 ) , ( l, 4), ( 2, 3 ) , ( 2, 4), ( 3, 4)}, 
' . 

and 

+ + + + + + + + + + + + 
2 1 3 1 2 0 1 1 2 1 1 3 

p(A) = + + 
-1 1 2 2 -1 4 -1 2 -1 -1 -1 2 

+ + + + + + + + + + + + 
1 0 3 l l 1 3 3 0 1 '3 l 

+ + + 
l 4 2 2 I -1 I 2 2 4 -1 2 -1 

= (1)(8) + (8)(1) + (-3)(-1) + (4)(8) + (0)(12) + (4)(-1) 

47. 

Laplace 1 s theorem and the expansi0n of the permanent by rows 

or columns gives two ways to find the value of any permanent besides 

that of using the definition. Another way of thinking of the value of a 

permanent was given by Thomas Muir [34] in 1882, It is the following 

theorem. 

Theorem 2. 17. If A is an n-square matrix then p(A) is equal 

to the coefficient of x 1 x2 ... Xn in the expansion of 

.n n 
II ~ 

i=l j=l 
a .. x. 

lJ J 



Proof: The proof is by induction. For n=l, A= (all) and 

p(A) = all. Also 
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and the coefficient of x 1 is the permanent of A, Hence the theorem is 

true for n= 1. 

Now assume the theorem true for n = k. Consider the following 

product, 

k k+l 
B = II :E 

i=l j=l 
a .. x. 

lJ J 

By grouping and using the assumption that the theorem is true for n=k 

the coefficients of 

(2) 

can be obtained. These are p(A(k+l/k+l)), p(A(k+l/k)), ... , p(A(k+l/1)) 

respectively. Thus 

k+l k+l 
II :E a .. x. = 

i=l j = 1 lJ J 

To find the coefficient of x 1, x2 ... Xk+l the first term of (2) must be 

multiplied by ak+lk+lXk+l" The second term of (2) must be multiplied 

by ak+lkXk. Finally, the last term of (2) must be multiplied by 

ak+ 11 X 1. This gives the following coefficient of x 1 x 2 . ~ . Xk+ 1, 
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k+l 

i !\ ak+lip(A(k+l /i)). 

But this is just the expansion of the permanent of A by the (k+l)-th row. 

Therefore, the theorem is true for k+l. Thus, by induction it is true 

for all positive integers. 

A clever way of obtaining the coefficient in Theorem 2. 17 is 

given by Herbert S. Wilf [46]. Let 

Then 

n n 
= n ~ a .. x. 

i=l j=l lJ J 

fPf 

is the coefficient of x 1 x2 ... Xn, and thus the permanent of A by the 

above theorem. 

Product Theorems 

I. 

Let us now prove a theorem concerning the permanent of the 

product: of two matrices. This theorem is an analog of the Binet-

Cauchy theorem. for the determinant of the product of two matrices 

which states that if A e M and B e M with 1 < m ~ n, then 
m, n n, m 

d(AB) = 
a eG 

m,n 

d(A[l, , .. , m/a] )d(B [a /1, ... , m]). 

We shall need this theorem later. 

Theorem 2. 18. (Binet-Cauchy theorem for permanents) Let 

A e M and B e M with 1 < m < n. Then C = AB e M and m,n n,m m,m 



p(C) = ~ 
aeG m,n 

p(A[l, ... , m/a ])p(B[a / 1, ... , m]) 

u(a) 

where u(a) is the product of the factorials of the multiplicities of the 

distinct integers appearing in the sequence a. 

Proof: The product matrix C can be written as 

26 

where each t., i= 1, ... , m, is summed from 1 to n. Since each of the 
1 

columns is a sum of n elements,· Theorem 2. 14 says that the permanent 

of C can be rewritten as a sum of nm permanents, each of the following 

form: 

+ + 

(3) 

After the common elements have been factored out of the 

respective cohznns, (3) can be written as 

+ + 

( 4) 



27 

or 

Now let a = t 1 .:::_ t 2 .:::_ ... .:::_ tm be a particular selection of m of 

the numbers 1, ... , n. Then consider the sum 

(5) 

where the summation extends over the m! permutations of the numbers 

t 1, ... , tm. Since the permanent is unaltered by interchanging columns, 

( 5) can be rewritten as 

p(A[l, ... ,m/a]) ~bt 1 
1 

But ~ bt. 1 ... b. is just the value of the permanent given by 
l tmm 

p(B[a/1, ... , m]). 

Now consider the terms of the product matrix C like those of 

(4) which contain the permanent p(A[l, ... , m/a ]). If the numbers 

t 1, ... , tm are distinct then them! permutations of these numbers are 

distinct. But if t. = t. for some i and j then there are not m! distinct 
1 J 

permutations. Thus the~ bt 11 ... btmm counts some factors more 

than once. For example, if a = (1, 1, 2, 2, 2, 3) then there are 6! permu-

tati.ons of a of which only 60 = 6!/2!3! are distinct. Therefore, define 

u(a) to be the product of the factorials of the multiplicities of the 

distinct integers appearing in the sequence a; e.g., u(l, 1,2,2,2,3) = 

2!3!. Then the sum 

~ btl 1 ... btmm 

u(a) 

is precisely the coefficient of p(A[l, ... , m/a]) in the product matrix C. 
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Thus, if G is the totality of non-decreasing sequences of m integers 
m,n 

chosen fro:t"?- l, ... , n we have 

p(C) = ~ 
aeG m,n 

p(A[l, .•. ,m/a])p(B[a/1, ... ,m]) 

u(a) 

As an example of the Binet-Cauchy theorem let 

-2 0 

B = l [
l 

A = 
-1 

3 :J and 
1 

4 -1 

Then n = 3 and m = 2 while 

G2 3 = {(l, 1), (2, 2). (3, 3), (1, 2), (1, 3), (2, 3)} . 
. ~ 

Therefore, 

p(AB) = p(A[l,2/1, l])p(B[l, 1/1,2]) + p(A[l,2/2,2])p(B[2,2/l,2]) 

+ p ( A [ I , 2 / 3 , 3 ] ) p ( B [ 3 , 3 / l , 2 ] ) + p ( A [ l , 2 I I , 2 ] ) p ( B [ 1, 2 /1, 2 ] ) 

+ p(A[l, 2/1, 3])p(B[l, 3/1, 2]) + p(A[l, 2/2, 3]) p(B[2, 3/1, 2] )> 

and 

p(AB) = (-2)(0) /2 + (6)(2)/2 + (0)(-8) /2 + (-2)(-2) + (-2)(2) + (2)(3) 

= 12. 

Theorem 2. 19. The product of two permanents of the n-th 

order is expressible as the sum of n! permanents of the same order. 

That is, 

p(A)p(B) = ~ 

a lb. 1 n 1n 

+ 
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where the surri.mation extends over the n! permutations i 1, ... , i of the 
n 

numbers 1, ... , n. 

Proof: Consider a given addend of the permanent on the right 

hand side. This gives 

a. b. 
J n 1 n 
n n 

where j 1, ... ,j is a particular permutation of 1, ... ,n. The summat:kn 
n 

then of i 1, ... , in over then! permutations of 1, •.. , n gives the follow-

ing product: 

b. 

Thus we see that p(B) is the coefficient of 

a. 
J n n 

1 n 
n 

for the given permutation j 1, .•• ,jn. To find the other addends of the 

permanent on the right, the n! permutations of j 1, .•. , jn over l ,· ... , n 

are taken. This gives 

a. p(B ), 
J n n 

or p(A)p(B). Thus the theorem is established. 

If A and B are m-square matrices then the results of the Binet-

Cauchy theorem and Theorem 2. 19 implies that the permanent of the 

product is not equal to the product of the permanents, that is, 

p(AB) f: p(A)p(B). Since this result is true for determinants this again 

shows that even though many analogous results from determinant theory 

are true for permanents many other properties do not follow. In 
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general, any property from determinant theory which depends on the 

change of sign inherent in the definition of the determinant will not be 

true for permanents. 

Theorem 2. 20. (Horner, 1865). The product of two determi-. 

nants of the n-th order is expressible as the sum of n! permanents of 

the same order. Thus, 

d ( A )d ( B) = ~ ( -1 ) q 

a b. 
nn 1 n n 

+ 

where the summation extends over the n! permutations i 1, . , , , in of the 

numbe.rs 1, ... , n and q is the number of inversions of i 1, ... , in from 

the normal order 1, ... , n. 

Proof: Consider the principal addend of the permanent on the 

right hand side, that is, 

a b. 1 nn · 1 1 
b. . ' 

1 n 
n 

where q is the number of inversions of i 1, ... , in from the normal 

order 1 1 ••• , n. Taking the sum over the remaining permutations of 

i 1 , ... ,in gives 

a nn b. 
1 n 
n 

a d(B). 
nn 

This is just the main diagonal addend of the determinant of A times 

the determinant of B. 
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In like manner consider any other addend of the permanent on 

the right hand side. 

a. b. 
J n 1. n 
n Jn 

a. b. 1 J n L 
n J1 

b. 
, L n 

Jn 

( 6) 

The part of the product in (6) which involves the a' s is an addend of the 

determinant of A if the factor ( -1 )p where p is the number of inversions 

of j 1, ... , jn from the normal order 1, ... , n is placed with the product. 

Now to put i. , ... , i. into the order i 1, ... , i requires another p 
J l Jn n 

inversions. Since i 1, ... ,i is then some permutation of 1, ... ,n, and 
n ' 

it requires q inversions to place the i's in normal order, this means 

p+q a. (-1) b. 1 J n l. 
n J1 

(7) 

is an addend of the determinant of A multiplied by an addend of the 

determinant of B. When the sum is then taken over all possible permu-

tations of the i I s with respect to the, j's an addend of d(A) is multiplied 

by d(B). The sum then taken over all possible permutations of the j's 

yields d(A)d(B). Since 

the expression given by (7) is the same as the expression given by (6), 

and the proof is complete. 

Theorem 2. 21. The product of a permanent and a determinant 

both of then-th order is expressible as the sum of n! determinants of 

the same order. Thus, 



p(A)d(B) = ~(-l)q 

a b. 
nn 1 n 

n 
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where the smnmation extends over the n! permutations i 1, ... , in of 

the nmnbers 1, ... ,n, and q is the number of inversions of i 1, ... , in 

from the normal order 1, ... , n. 

Proof: Consider an addend of the determinant on the right hand 

side, that is, 

a. b. 1 J n 1. 
n J 1 

where p is the number of inversions of j 1, .... , jn from the normal 

order 1, ... , n, and q is the number of inversions of i 1,.,., in from 

the normal order 1, ... , n. But this can be written as 

p+q a. (-1) b. 1 J n 1. 
n J1 

b. • 
1. n 
J , n 

where the a's constitute an addend of the permanent of A while the b's 

together with the element (-1 )p+q cons ti tut~ an addend of the determi-

nant of B. To show the last statement observe that there are p 

inversions required to place iJ· , , •• , i. into the order i 1, ... , i and 
1 Jn n 

then q inversion to place i 1, ... , in into the order 1,.,. ,n. Therefore 

when the summation is taken over all n! permutations of the i's for a 

given permutation of the j's, the following is obtained: 

a. d(B). 
J n n 
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Considering the remaining addends of the determinant, that is, the 

permutations of the."j I s, then p(A)d(B) is obtained, and the proof is 
J 

complete. 

Notice that in Theorems 2. 19 and 2. 20 the conclusions are very 

similar except for the respective signs. Also Theorems 2. 20 and 2. 21 

differ only in the fact that permanents are used in one+:case whereas 

determinants are used in the other. For example, if 

then 

whereas, 

A = [3 
-1 

+ 
3 ( -1) 

+ 
2(-3) 

p(A)p(B) = 
-1 (2) 4 ( 1) 

= -12 + 12 - 72 + 2 

= -70 

+ 
3 ( -1) 

+ 
2(-3) 

+ 

d(A)d(B) :.:: + ( -1) 
-1(2) 4( 1) 

= -12+12-[-72+2] 

= 70. 

+ + 
3 (2) 2 ( 1) 

-1(-1) 4(-3) 

+ 
3 (2) 

-1 ( -1) 

2 ( 1) 

4(-3) 

+ 

Relationship Between the Permanent and the Determinant 

At this point several similarities between the permanent and the 

determinant have been mentioned as well as some properties which are 



not common to both. Let us now examine this relationship in more 

detail. . At first appearance the relationship seems to be a close one. 

In fact, the question might be asked, and rightly so, if there exist any 

transformations on n-square matrices that change the permanent into 

the determinant or vice versa. That is, does there exist an onto func -

tion 'Y: · M .... M such that for every A E M . , p(A) = d()'(A))? We 
n, n n, n n, n 

shall say the function. 'Y changes the permanent into the determinant. 

If such a function 'Y exists, then all the theorems which hold for 

determinants would hold for permanents under this transformation, 

and there would be no need to examine permanents as a separate 

entity. For example, let 'Y be a ring homomorphism on n-square 

matrices such that for A E M , p(A) = d()'(A)). Then from deter-n, n 

minant theory it is known that the product of the determinants is equal 

to the determinant of the product. Thus, if B e M then 
n,n 

p(AB) = d(\l(AB)) = d()'(A))'(B)) = d()'(A))d(y(B)) = p(A)p{B), 

and the product of the permanents is equal to the permanent of the 

. product. Thus, we have a theorem concerning permanents which 

parallels a theorem of determinant theory. Since we already know 

this is not true (see remarks after Theorem 2. 19), there must not 

exist such a ring homomorphism. Now it cannot only be shown that 

no such ring homomorphism exists such as -:y, but also no linear trans -

formation of M into its elf exists which changes the permanent into n,n 

the determinant. This is a fairly recent discovery of Marcus and 

Mine [18 ]. 

As ea~ly as 1913, G. Polya [39] was conce~ed with the problem 

of converting the permanent into the determinant by affixing ± signs to 
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the elements. He found that this could be done in the 2-square case by 

considering the following mapping: let y: M2 2 ->M2 2 be such that 
' ' 

if A e M 2 2 then 
' 

y(A) ball all (8) = 

-a2 l a22 

Thus, 

p(A) = d('Y (A)) or p(y(A)) = d(A). 

The answer to Pol ya I s problem was given by Gabor Szego [ 40], 

He proved that if n > 2, then there exi.sts no uniform way of affixing 

± signs to the elements of an n-square matrix so as to change the 

perm.anent into the determinant. This is stated in the following 

theorem. 

Theorem 2. 22. If n > 2, then there does not exist a function 

F of M into itself such that for A e M , B = F(A) with b .. =±a .. 
n,n n,n lJ lJ 

and p(F(A)) = d(A). 

Proof: The proof is by contradiction. Suppose the theorem is 
e .. 

false and that by affixing the signs (-1) lJ to the element a .. of A the 
lJ 

permanent of the matrix thus formed is the determinant of A. For this 

to be true the addend 

e li 
( -1) 1 

+ ... + e . 
Ill 

n 

must be an addend of the determinant of A. Thus 

eli + · · · + 
( -1) 1 

e . 
Ill 

n 

a . 
Ill 

n 
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where q is the number o.f inversions of i 1 , ... , in from the natural order 

1, ... , n. That is 

= q mod 2. (9) 

There are n! such equations as (9), and the contradiction comes from 

showing the incompatibility of this system. Consider 

n-3 

~ ekk + e(n-2)i, + e(n-l)i + eni = q mod 2 • 
k= 1 a f3 'I 

( 10) 

where i , iP., i is some permutation of the numbers n-2, n-1, n, and 
a t-' 'I 

q is the number of inversions required to put 1, ... , n-3, ia, if3, 1'1 into 

natural order, There are six such equations like ( 10 ), and their sum 

is as follows: 

n-3 n 

6 k~-l ekk + 2 .. ~ 2 eij =3 mod 2. 
1, J =n .. 

But this is impossible, since an even number can never be congruent 

to an odd number n1odulo 2. Hence the theorem is true. 

Before showing the result mentioned by Marcus and Mine, some 

background definitions and theorems are needed. 

Definition 2. 23. Let A be an mxn matrix and r be an integer 

such that 1 .:::_ r .:::_ min(m, n), then the r-th permanental compound 

matrix, denoted as P (A), is the ( m) X (n) matrix whose entries are 
r r r 

p(A[a /f3] ), a e Q , f3 e Q arranged lexicographically in a and f3. 
r,m r,n 

Note, that P n (X) = p(X) and P 1 (X) = X if X e Mn, n" As an 

example, let A be a 2x3 matrix and r=2, then 

P 2 (A) = (p(A[l,2/1,2]), p(A[l,2/1,3]), p(A[l,2/2,3])). 
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It is useful to have a notation for the entry of P (A) in the (a,13) 
r 

position. Define Aal3 to be this element. Then Aal3 = p(A[a /13 ]). 

Some results about permanental compounds that will prove to 

be useful are contained in the following theorems. 

Theorem 2. 24. Let A be an mxn matrix and r an integer such 

that 1 ~ r ~ min(m, n). Then P (A 1 ) = (P (A))'. 
r r 

Proof: Let a e Q and 13 e Q . For the given sequences r,n r,m 

a and 13 consider the term A~l3 of P r(A 1 ). Thus A~l3 = p(A' [a /13] ). But 

by the definition of transpose, 

But Al3a is the entry of P r(A) in the position given by 13 and a. Thus 

the entry given bya and 13 in (P (A)) 1 is AP. , and the theorem is proved 
r '"'a 

Theorem 2. 25. Let A be an mxn matrix and r an integer such 

that 1 < r ~ min(m, n). Then if D is a diagonal m-square matrix then 

P (DA) = P (D)P (A). 
r r r 

Proof: Notice that for an m-square diagonal matrix D the 

entries of P (D) are 
r· 

Dal3 

D 
al3 

= 0 

= d 
al 

if a # 13' 

d if a = 13' a r 

where a = (a 1 , ... , a r). Thus, consider an entry corresponding to a 

fixed a e Q . , 13 e Q of DA. Then r,m r,n 

(DA) ,..,13 = p[ (DA) [ a /13 ]] = d ... d p(A[a /13]) = D, A. 'P.. 
"' a 1 a aa a'"' r . 



38 

Hence P (DA) = P (D)P. (A), and the proof is complete. 
r r r 

Theorem 2. 26. If Q is an m-square permutation matrix, A is 

an mxn matrix,. and r is an integer such that 1 ~ r.< min(m, n) then 

P (QA) = P (Q)P (A). 
r r r 

Proof: Let Q be an m-square permutation.matrix such that 

= 1 

where i 1, ... , im is some permutation of 1, ... ,m. Then QA is the 

matrix whose k-th row, k= 1, ... , m is the ik -th row of A. Thus Pr (QA) 

is the (m) X (n) matrix whose a-th row for some a e Q ni., 
r r r, 

where j , ... , j is a rearrangement of i , ... , i such that 
al ar al ar 

L, 1 < ... < j . Now P (Q) is the (5 X (m) matrix whose a -th row is 
"" ar r r r 

Q (' 
Q! J ' 

a 1 
= 1 

. • • ' ja ), 
r 

that is, P (Q) is a permutation matrix. Consider P (Q)P. (A), Since 
r r r 

P (Q) interchanges rows of P (A), the a -th row of P . (Q)P (A) 
r r r r 

becomes 

A(. 
Ja • •••. ' 

1 
J. )P.,.P.eQ 
a I" I" r,n 

r 

and P r(QA) = P r(Q)P r(A) as was to be shown. 
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In order to help understand the proof of Theorem 2. 26 consider 

the following example where m = n = 4, r = 2, and Q is a permutation 

matrix such that q 12q 23 q 31 q 44 = 1. Then i 1 = 2, i 2 =3, i 3 = 1, i4 =4 

is a permutation of 1, 2, 3, 4. Thus QA is the matrix whose 1st, 2nd, 

3rd, and 4th rows are just the 2nd, 3rd, 1st, and 4th rows of A. If 

a= (a 1,a2 ) = (2,3) then the a-th row of P 2 (QA) is justA(l, 3 )l3' 13 E o2 ,4 

where (j ,j ) = (1,3) is a rearrangement of (i ,ia) = (3, 1) so that 
a 1 az a1 2 

ja 1 < jaz which then is a term of Q 2 , 4 . Now P 2 (Q) is the matrix whose 

(2,3)rowis 

Q(2, 3 )(1, 3) = I 

and 

Q(2, 3)13 = 0 

if 13 1 ( 1, 3), 13 E Q 2 4 . Thus P 2 (Q) is a permutation matrix. Consider 
' 

P 2 (Q)P2 (A). Under this product the (2, 3) row becomes 

A(l,3)13' BE Q2 4 
' 

and 

Theorem 2. 27. Let A be an mxn matrix, Q an n-square permu-

tation matrix, and D an n-square diagonal matrix. Let r .be an integer' 

such that l ~ r ~ min(m, n). Then 

(a) P r(AQ) = P r(A)P r(Q), 

P (A)P (D). 
r r 
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Proof: 

P (AQ) = (P ((AQ)'))' = (P (Q'A'))' = (P '(Q')P (A'))' r r . r r r 

= (P (A'))'(P (Q'))' = P (A)P (Q) r r r r ' 

by Theorems 2. 24, 2. 26, and properties of the transpose. The pro0f 

of (b) is similar. 

Definition 2. 28. Let A be an rnxn matrix and r be an integer 

such that 1 < r < min(m, n), then the r-th determinantal compound 

matrix; denoted as C (A), is the (m) X (n) matrix whose entries are 
r r r 

. . 

d(A[a /13] ), a e Q , 13 e Q arranged lexicographically in a and 13. r,m r,n 

D~fine IA 1al3 to be the element in the (a ,13) position of Cr(A). 

Theorem 2. 29. Let A be an mxn matrix, B an nxk matrix and 

r an integer such that 1 < r < min(m, n, k). Then C. (AB) = C (A)C (B). 
r r r 

Proof: Let D = AB and let a and 13 be sequences such that 

a e Q , 13 e Q k' Then the, element in the (a, 13) position of Cr(D), r,m r, 

is ID la l3. . But by the Binet-Cauchy theorem for determinants 

d(D[a /13] ) = :E d(A[a / 6])d(B[6/l3 ]). 
6eQ 

r,n 

Consider the a-th row of C (A), d(A[a/6]) where 6 e Q ,; and the 
r r,n 

13-th column of C (B), d(B[o/13]), where 6 e Q . Thus the (a,13) r r, n · 

element in the product C (A)C (B) is 
r r 

:E d(A[a I 6 ])d(B [ 6 /13 ]) 
6eQ 

r,n 

and C (AB) = C (A)C (B), and the proof is complete, 
r r r 



Definition 2. 30. The mapping T which takes the set of mxn 

matrices into mxn matrices is said to be linear if 

T(aX + l3Y) = aT(X) + l3T(Y) 

for all mxn matrices X and Y and complex scalars a and 13 • 

or 

Thus we see that 'I defined in (8) is linear since 

["'xii +~yll 

-ax:2 I - 13 y 2 I 

axl2+13yl2] = 

ax22 + 13 y 22 

In the proofs that follow some special notation will be used. 

We now define this notation. If a e Q , 13 e Q then the symbol 
r,m r,n 

41 

E P. will denote the (m) X t) unit matrix with 1 in the position (a,J.3) and 
a~ r r • 

zero elsewhere. If u 1, ... , un are vectors in some vector space V, 

then< u 1, ... , un> will denote the subspace of V spanned by these 

vectors. If x = (x 1 , . , . , xn), y = (y 1, , , . , y n) are members of an 

arbitrary n-dimensional vector space V then x ..Ly will denote that 

n 
~ x. y. = o. 

i= 1 1 1 

That is, the vectors are orthogonal. Also if B is an sxt matrix and 

A is an kxq matrix then 

will denote the direct sum of A and B. If A is the kxq matrix all of 



whose entries are zero, then A = Ok . . If k= 0 or q = 0, then ,q 
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The proof that there is no linear transformation which converts 

the permanent into the determinant will be given as a corollary of the 

following more general theorem. 

Theorem 2. 31. There is no linear transformation T of M 
m,n 

into itself such that 

P (T(X)) = C (X) 
r r 

( 11) 

for all X e M , where r is an integer such that 2 < r. < min(m, n) 
m,n 

and m + n > 4. 

The proof of Theorem 2. 31 is by contradiction. Assume 

m + n > 4 and Tis a linear transformation satisfying (11). Then the 

proof will be accomplished in a series of lemmas. 

Lemma 2. 32. T is nonsingular. 

Proof: Assume T(A) = 0. Then. for every X e M 
m,n 

Cr(A + X) = P r(T(A + X)) = P (T(A) + T(X)) r 

= P (T(X)) = C (X), 
r r 

Let Y be the r -square matrix 

-t -al2 .... -a 
lr 

0 -t ... -a2r 
y = 

0 0 -t 



and consider the m.xn matrix X such that 

X = Y + 0 
m-r,n-r 

Then in the ( 1, 1) position of C (A +X) one finds 
r 

r 
II (a .. - t) 

i= 1 11 
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whereas in the (1, 1) position of C (X) is found (-l{tr. Since these two 
r 

polynomials must be the same, this implies a .. = 0, i = 1, ... , r. Now 
, 11 

for any permutation matrices P and Q Theorem 2. 29 implies 

C (P(A + X)Q) = C (P)C (A+ X)C (Q) 
r r r r 

Now as X varies over M , so does PXQ. Therefore any element · m,n 

can be brought to be in the (i, i), i=l, ... , r, position by appropriate 

permutation matrices, and we can conclude in the same way as above 

that a .. = 0 for every i and j. Hence A = 0 and T is nonsingular. 
lJ 

Lemma. 2. 33. If (11) holds, then there exists a nonsingular 

linear transformation Sr- l of M( m }, ( n ) into itself such that 
r -1 r.-1 

P 1(T(X)) = S ···1tc·····,. 1,(X)), 
r- r-· r-

Proof: Let Y = T(X). Since T is nonsingular this implies 

( 12) 

Thus there exists consGants gu,v ands?·~, i,u,p=l, ... m 
P, q . 1' J 

andj,v,q=l, ... ,n, such.that 

x = 
UV 

m n 
u,v 

2: 2: gp, q ypq 
p=l q=l 

m n 
and Y ...... ...... SP. 'q_ 

Pq. = "-' "-' 1 J x .. 
i= L j = 1 ' 1J 

(13) 
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where the scalars gu' v and s?• ~ are the entries in the matrix repre-
p, q 1 ' J 

. ·.:: .· -1 
sentation of T and T with respect to the natural basis in M . 

m,n 

Also (11) asserts that 

where a E Q , 13 E Q . r,m r,n 

Now ( 14) can be regarded as a polynomial identity in the 

variables y .. by using equation (13). 
lJ 

( 14) 

If in ( 14), s is an integer in the sequence a, t is an integer in 

I 

the sequence 13, then denote a as the sequence of Q · with s deleted 
s r,m 

and 13t1 as the sequence in Q with t deleted. Thus r,n 

But ( 13) implies 

~x la13 m n olx/aj3 ox 
I; I; 

UV 
= 

O Y st u=l v=l 
ox 0Yst UV 

while 

o Ix I a@ ox u,v 
x 

UV 
= Q! I 13 I = gs t ox and oyst UV u v ' 

Thus, 

m n 

y I 13' I; I; x 
u,v 

= a/ 13 I gs t ' 
Q! s t u=l v=l u v ' 

and the (r-1)-th order permanental majors of Y= T(X) are fixed linear 

homogeneous functions of the (r-1)-th order determinantal minors of 

X. That is, there exists a linear mapping Sr-l of M( ), ( n ) into 
r121. r-1 

itself such that (12) holds. 



To complete the proof S 1 must be shown to be nonsingular. 
r-

By ( 14) we have 

o/x I a@ cSY 
a@ 

m n cSYa@ 0Yuv 
/x /a' 13' ~ ~ = cSx = cS x - ay\ .. ~ 

p q pq pq u=l v=l 1:1;v,.,. pq 

m n 
= ~ ~ 

u= 1 v= 1 

S u, v y 
a' P.' P, q u'"'v 

Thus, we obtain Cr_ 1(X) = Rr_ 1(Pr_ 1(Y)) where Rr-l is a 

mapping of M( m )• ( n ) into itself. Since Pr_ 1(Y) = Sr_ 1(Cr_ 1(X)), 
r-1 r-1 

we have 
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(15) 

Now there exists a basis inM( m) ( n )of the form C 1 (X), Xe M . 
r-1' r-1 r- :m,n 

For let 

r-1 
x = ~ 

t= 1 

w he re 'TT = (i l' . . . ' i r - l ) E, Qr - 1 ' m and '{ = (j I ' . . . ' j r - 1 ) e Qr - 1 ' n . 

Then Cr-I (X) = ±E 1n( Hence by (15), Rr-ISr-l is the identity map 

on the bas is of M( m ) ( n ) and S 1 is nonsingular. 
r-1 • r-1 r-

We observe that Lemma 2. 33 implies that P 2 (T(X)) = S 2 (C 2 (X)) 

for every X e M Thus we have the following lemma. 
m,n 

Lemma 2. 34. If p(X) = I then P 2 (T(X)) = 0. 

Proof: If p(X) = 1 this implies that all second order determi-

nants are zero. Hence c 2 (X) = 0 and S 2 (C2 (X)) = 0 since any linear 

transformation always takes the zero element to the zero element. 

Therefore, 



46 

and the lemma is proved. 

Lemma 2. 35. If P 2 (Y) = 0 and Y # 0 then . 

(a) Y has exactly one non-zero row, 

(b) Y has exactly one non-zero column, 

(c) by permutation of rows and columns Y may be brought to 

the form 

Proof: If there is just one row or column of Y which is not 

zero then (a) or (b) holds respectively. 

Now assume there exists elements y and y . , r < u, s < v rs uv 

such that y y # O. Since P 2 (Y) = 0 this implies y y # 0. By rs uv rv us 

permuting rows and columns these four entries may be taken to be in 

the top left 2-square submatrix of Y. Let y 11 = a, y 12 = 13, Yzi = y, 

and y 22 = 6. Then since P 2 (Y) = Q this implies for j > 2 that 

ay2. + 'YY1. = 0 
J . J 

(16) 
13Y2 j + 6ylj = 0. 

Since ab+ l3y = 0 and these entries are non-zero, we have a6 -13y # 0. 

Hence the solution of (16) must be y 2j = ylj = 0. Similarly yil = yi2 = 0, 

if i > 2. If both i > 2 and j > 2, then 6yij + y 2jyi2 = 0 since P 2 (Y) = 0. 

But y 2j = yi2 = 0 implies yij = 0. Hence 
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Lemma 2. 36. Let X and Z be rank l matrices such that 

p(X + Z) = 1. Also assume T(X) is of the form (c) of Lemma 2. 35. If 

then W = T( Z) is spanned by the vectors G 1, G 2 , G3 . 

Proof: By Lemmas 2.34 and 2.35, T(Z) is a row, column, or 

2-square matrix. Suppose W = T(Z) is a row matrix and the i-th row 

is non-zero. Then since 

P2(T(X + Z)) = P2(T(X) + T(Z)) = 0 

this means w .. = 0, j > 2. Thus 
lJ 

while the other entries are zero. Also if i cf. 1, 2 then P 2 (T(X + Z)) = 0 

implies 

-y w, 2 + 6w. 1 = 0 
!. l 

and 

yl3 + 6a= 0. 

In order for these equations to be consistent since 6,'11 0 is for 

awi2 -13wil = 0. But also awi2 + 13wil = 0. Thus wil = wi2 = 0. That 

is, W = 0. This contradicts the fact that W was a row matrix. Hence 

Suppose then that W = w 11 E 11 + w 12E 12 . Then (a+ w 11 )6+(13 +w 12 )'1=0, 

implies w 11 6 + w 12'1 = 0 since a6 + 13'1 = 0. But these equations imply 



that {3w 11 - aw 12 = 0 or w 11 = ma and w 12 = m{3 for some number m. 

Hence W is a multiple of G 3 . 

By similar arguments if W is either a row or column matrix, 

it is in the space generated by G 1, G2 , and G 3 . 
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Next assume W = T(Z) has the form given in (c) of Lemma 2. 35 

to within permutation. Since P 2 (T(X) + T(Z)) = 0 this means 

and 

implies 

[
a +wll {3 

T(X) + T(Z) = y + w21 6 

0 m-2, n-2 

0 m-2, n-2 

(17) 

Now let 't /a = c and w 2 /w 11 = d. Then 't = ac implies 6 = -c{3 since 

a6+ f3't = 0, and w 21 = w 11 d implies w 22 = -dw 12 , since 

Substituting in (17) and factoring gives 

(18) 

Hence if c = d, then 
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implies the vectors (w 11 ,w2 1') and (a,y) are linearly dependent as well 

as (w 12 , w 22 ) and (13, 6). Thus W e < G 1, G2 > C < G 1, G 2 , G3 >. Next 

if aw 12 = 13w11 in (18) then (w 11 ,w12 ) and (a,13) are linear~y dependent. 

Also since 

and 

this implies -w21 /w22 = a /13 or aw22 + 13w21 = 0. That is, 

(w2 l,w22 )L (13,a). Also (13,a) ..L (y,6) which implies (w2 l'w22 ) and 

·(y,o) are linearly dependent. Hence W~e < G3 ,G4 >C <G 1,G2,G3 > 

since G4 ; G 1 + G2 - G 3 , and the proof is complete. 

Lemma 2. 37. If p(X) = I, then p(T(X)) = 1. 

Proof: By Lemma 2. 34, P 2 (T(X)) = 0. Since X and T are non-

singular Lemma 2. 35 implies T(X) is a row, column; or 2-square 

matrix. Thus if T(X) is a row or column matrix then p(T(X)) = 1, and 

the proof is complete. Now assume T(X) is a 2-square matrix. Since 

the concern is for the rank of T(X) no generality is lost by assuming 

where a 6 + l3y = 0 and al3y 6 /:; 0. 

Now if p(T(X)) = 1 then the proof is complete. Thus assume 

p(T(X)) = 2. Next let x 1, ... ,Xn-l and z 1, ... , Zm-l be matrices such 

that 

are of dimension n and m respectively, consist of rank 1 matrices, 

dim(V 1 + V2 ) =dim< X,X 1, '.,. ,Xn-l' z 1, ... , Zm-l > = n + m - 1, 



and moreover, 

p(X + X) = 1, i=l, .•. ,n-1 

p(X + Z.) = 1, i=l, ... ,m-1. 
l 

Therefore if A e V 1 , B e V 2 then 

and 

Thus, 

where by Lemma 2. 36, 

Hence dim (T(V 1 + V2 )) = n+m - 1 < 4 or n+m < 5. This contradicts 

the fact that m + n > 5. Therefore p(T(X)) = 1, and the lemma is 

proved. 
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We now state a lemma proved by Marcus and Moyls.[27] in 1959. 

The proof is omitted. 

Lemma 2. 38. Let T be a linear transformation on the space of 

mxn matrices. If the set of rank 1 matrices is invariant under T then 

for every X e M if m -/:. n, T(X) = AXB where A e M .. , B e M . , 
m, n m, m n, tr 

and d(A)d(B) -/:. 0. If m = n then T(X) = AXB or T(X) = AX 1B where A 

and B are nonsingular n-square matrices, 

We are now ready to apply the above lemmas and prove 

Theorem 2. 31. 
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Proof of Theorem 2. 31. By Lemma 2. 37, T is a linear trans -

formation which preserves rank 1. Therefore applying Lemma 2. 38 

P (AXB) = C (X) r r 
or 

P (AX'B) = C (X) 
r r 

for every X e M • Since d(A)d(B) -j O we can choose X <SO that 
m,n o · 

AX B = L where Lis the mxn matrix.with 1 in every position. Then 
0 

p(L)=landX =A- 1LB-l. Since 
0 

1 and C (X ) = 0. . r o But 

P (AX B) = r! E 
r o aEQ 

r,m 

E 
f3 eQ 

r,n 

This contradiction tells us no such T exists wh1ich satisfies (11), and 

thus the theorem is proved. 

For the case m = n = r > 2, Theorem 2. 31 states that there is 

no linear transformation on n-square matrices that converts the 

determinant into the permanent. This is proved in the following 

corollary. 

Corollary 2. 39. There is no linear map T on M . , n > 2, · n,n 

into itself such that for all X e M p(T(X)) = d(X). 
n,n 

Proof: Suppose there exists such a mapping. Then 

p(T(X)) = P (T(X)) = d(X) = C (X), 
n n 

and this contradicts the theorem. 
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Theorem 2. 31 is a special case of the more general theorem 

proved by Marcus and Mine [18]. It is as follows. 

Theorem 2. 40. There is no linear transformation T of M 
m,n 

into itself such that P (T(X)) = S (C (X)) for all Xe M where S 
r r r m, n r 

is a linear nonsingular map of M(1¥)• (¥-) into itself if m + n > 4 and r 

is an integer such that 2 ~ r < min(m, n). 

Considering the linear transformation '( of M 2 2 into itself , 
defined in (8), Theorem 2.40 takes on a more positive tone. Thus, we 

have the following theorem. 

Theorem 2. 41. If T is a Unear transformation of M 2 , 2 into 

itself such that P 2 (T(X)) = S 2 (C 2 (X)) for every X e M 2 2 and S 2 is a 
; 

nonsingular linear map of M 1 1 into itself then '((T(X)) = AXB or 
' 

'((T(X).) = AX 1B where A, B e M 2 2 and d(AB) f. O • 
• 

Proof: From the definition of'( we see that d('({T(X)))=p(T(X)). 

Also since Xe M 2 2 , P 2 (T(X)) = p(T(X)) and c 2 (X) = d(X). Thus 
' 

p(T(X).) = S 2 (d(X)), 

Since s 2 is a nonsingular linear map from the complex field to the 

complex field, S 2 (x) = ax for some non-zero constant a. Hence 

p{T(X)) = ad(X). Now if p(X) = 1 then d(X) = 0 and (16) implies 

( 19) 

d(-y(T(X))) = 0. That is, the rank of '((T(X)) is O or 1, From Lemma 

2. 32, Tis nonsingular and thus '((T) is nonsingular. By Lemma 2. 37, 

p('({T(X))) = 1. Since '({T) preserves rank 1 matrices we:'p:~ve by 

Lemma 2. 38 that .. '({T{X)) = AXB or '({T(X)) = AX 1B where A, B e M .2,2 

and d(AB) f. 0, as was to be shown. 
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Consider the following example: Let T be the linear map of 

M 2 2 into itself such that if X e M 2 2 then 
, ' 

T(X) = 

~
x22 

y (T(X)) = 

x21 

= AX 1B 

where 

and B = [: :] and d(AB) # 0, 

Characterization of Invariant Transformations 

The results of Theorem 2. 31 and Corollary 2. 39 might bring 

up the following question to the interested student: What types of linear 

transformations leave the permanent unaltered? That is, if T is a 

linear transformation such that for all X e M p(T(X)) = p(X) then 
n,n 

how can T be characterized? We know such transformations exist 

from the results of theorems like 2. 1 and 2. 10. The answer to this 

question will be given after the following important theorem. 

Theorem 2. 42. Let T be a linear transformation of M into 
m,n 

itself and r be an integer such that 2 < r .:::_ min(m, n) .. Assume that 

P (T(X)) = P (X) 
r r 

(20) 
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for all X e M and m + n > 4. Then if m f n, there exist permuta-
m, n 

tion matrices P E M , Q e M and diagonal matrices D e Mm m· , m, m n, n , 

L e M such that 
n,n 

T(X) = DPXQL ( 21) 

for all X e M If m = n then T has the form (21) or T(X) = DPX'QL 
m,n 

for all Xe M 
m, n 

The proof of this theorem will be done in a series of lemmas. 

The first part of the proof is similar to the proof of Theorem 2. 31 and 

we will be able to use some of those results. 

Assume m + n > 4 and T is a linear transformation satisfying 

( 2 0). 

Lemma 2. 43, T is nonsingular. 

Proof: By changing C to P in the proof of Lemma 2. 32 and 
r r 

using the results of Theorems 2. 26 and 2. 27 the proof is complete. 

Lemma 2. 44. If (20) holds then there exists a nonsingular 

linear transformation Sr-I of M(/:\)• (/:\) into itself such that for 

every XE M 
m,n 

(22) 

Proof: By changing IXI f3 to X f3' C to P, s = r-1 or r, and a a s s 

the words determinantal minors to permanental majors in the proof of 

Lemma 2. 33, we have the proof of Lemma 2. 44. 

By using (22) we proceed to reduce r-1 to r-2, etc., finally 

arriving at 

(23) 
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Lemma 2. 45. If X e Mm, n such that p(X) = l. and P 2 (T(X)) = 0 

then p(T(X)) = .1. 

Proof: The proof of Lemma 2. 37 did not depend directly on the 

fact that T was required to be a linear transformation satisfying 

P (T(X)) = C (X) but rather on the fact that P 2 (T(X)) = 0 and Twas 
r r 

nonsingular .. By Lemma 2. 43, T is nonsingular and the hypothesis 

tells us that P 2(T(X)) = 0. Hence using the proof of Lemma 2. 37 w~ 

have p(T(X)) = 1 as was to be shown. 

Corollary2.46. If F .. = T(E .. ) then p(F .. ) = 1. 
lJ lJ lJ 

Proof: Since p(E .. ) = 1 and 
lJ 

then Lemma 2.45 implies p(F .. ) = 1. 
lJ 

Lemma 2. 47. If P 2 (Y) = 0 and p(Y) = 1, then Y is a row or 

column matrix. 

Proof: From Lemma 2. 35, Y is a row or column matrix or Y 

can be brought to the form aE 11 + !3E 12 + yE21 + 6E 22 where a6 + j3y = 0 

and a6l3y 1 0. If Y has this last form and p(Y) = l this implies that 

a6 - l3y = 0. These equations a6+ 13'1 = 0, a6- 13'1 = 0, and af{3y :I O a:t"e 

all three impossible, thus Y is a row or column matrix. 

Corollary 2. 46 and Lemma 2. 47 tells us that F .. is either a 
lJ 

row or column matrix. If A is a row or column matrix then. let h(A) 

denote the number of non-zero elements of A. 

Lemma 2.48. If F .. = T(E .. ) then h(F .. ) = 1. 
~ ~ ~ . 
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Proof: No generality is lost if we assume i = j = 1 and F 11 is a 

row matrix with its non-zero row in row 1. Also since we are inter-

ested only in the number of non-zero elements, no generality is lost 

by assuming that the first row of F 11 is (a 1 , a 2 , ... , ah, 0, ... , 0). That 

is, h(F 11 ) =h. Supposeh:::..2. Consider Flt' t=l, ... ,n. Then 

p(E 11 +Elt)= land 

P2(T(Ell + Elt)) = S2(P2(Ell + Elt)) = Sz(O) = 0. 

Thus, by Lemma 2. 45, 

Hence, by Lemma 2. 4 7, F 11 + F 1 tis a row or column matrix. 

Suppose first that F 11 + F 1 t is a row matrix. Then the non-

zero row is the first row since F 11 is a row matrix with non-zero first 

row and F 1 t is a row or column matrix. For suppose the k-th row, 

k 1 1, contains a non-zero element. Then this implies a. = 0 for i = 1 
1 

or 2 or F 1 t is not a row or column matrix both of which gives a 

contradiction. Thus, 

FI t = ( F 11 + F 1 t) - F 11' t= 2 ' · · . ' n 

is a row matrix with a non-zero first row. 

Next suppose F 11 + F 1 t is a column matrix and the k-th 

column contains at least one non-zero element in the j -th row, j f:. l. 

This implies either a 1 = 0 or a 2 = 0 which is a contradiction since 

h > 2 or F 1 t is not a row or column matrix which contradicts Lemma 

2. 4 7. Thus F 11 + F 1 t is a column matrix with the only non-zero 

element in the first row. That is, F 11 + F 1 t is a row matrix with 

non-zero first row. Thus F It is again a row matrix with a non-zero 



first row. 

Next consider Fsl' s=2, ... ,m. Then p(F 11 + Fsl) = 1, and 

P 2 (F 11 + F s 1 ) = 0 implies F 11 + F s 1 is a row or 
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column matrix. By arguments similar to the above F 11 + F s 1 is a row 

matrix with non-zero first row. Therefore F s 1 = (F 11 + F s 1 ) - Fl l is 

also a row matrix with non-zero first row. Now the vector space 

spanned by the matrices Elt' t=l, ... ,n and Esl' s=l, ... ,m has 

dimension m + n - I. Under the transformation T the vector space 

spanned by Flt' t=l, ... ,n and Fsl' s=l, ... ,m has at most dimension 

n. Since a nonsingular linear transformation preserves linear indepen-

dence and m + n - l > n, this leads to an impossible situation. Thus, 

h(F 11 ) = l or h(F ij) = l which was to be proved. 

Notice that: Lemma 2.48 tells us T(E .. ) = c .. E.,., for some 
lJ lJ 1 J 

constant c ... Moreover c .. f. 0 since Tis nonsingular. 1£ i' = .r(i,J') 
lJ lJ 

and j' = o(i,j) then 

Lemma 2. 49. 1£ ( i, j ) f. ( s , t) then T ( E .. ) f. T ( E t). 
lJ s 

Proof: The result follows since T is nonsingular. 

Definition 2. 50. If C, X e M , then let C>:<X be the Hadamard 
m,n 

product of C and X defined as C>~X = Y e M such that y .. = c .. x .. , 
m, n lJ lJ lJ 

i=l, ... ,m, j=l, ... ,n. 

We are now ready to prove an important lemma. 

Lemma 2. 51. There exists an H e M , h .. :/:: 0 for every i 
m, n lJ 

and j, and permutation matrices P e M , Q e Mn n' such that if 
m,m , 



m -:/:. n then for all X E M 
m,n 

T(X) = H*(PXQ). 

If m = n then T has the form (24) or else 

for all Xe M 
m,m 

T(X) = H>:<(PX 1Q) 
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(24) 

Proof: To fix the notation let us assume m < n. Let X e M m,n 

Then 

Now by a suitable permutation of T(X) we can make 'IT( 1, 1) = 1 = 6( 1, 1). 

That is, there exists permutation matrices P 1 and Q 1 such that 

+x c PE Q. 
mn mn I .r(m, n) 6(m, n) 1 

Now P 2 (E 11 + E 1t) = 0 for t=2, ... ,n implies 

Hence 

Thus F 11 and Flt must have their non-zero elements in the same row 

or column. That is, ;r(l, 1) = ;r(l, t) or 6(1, I)= 6(1, t). Under the 

permutations P 1 and Q 1 they end up in the first row or column. Thus 



,r(l,t) = 1 or 6(1,t) = i. Also P 2 (E 11 + Esl) = 0, s=2, ... ,m implies 

F 11+ F s 1 must have their non-zero elements in the same row or . 

column. That is, 

,r( s, 1 ) = ,r( 1 , 1 ) = 1 or 6 ( s, 1 ) = 6 ( 1, 1 ) = 1. 

and F 22 do not have elements in the same row or column. That is, 

,r( 1 , 1 ) I- ;r( 2, 2) and 6 ( 1, 1 ) -:f. 6 ( 2, 2). 
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Under the permutations P 1 and o 1 these results remain true which 

means ,r(2, 2) > 1 and 6(2, 2) > 1.. Now there exist permutation matrices 

P 2 and o2 of the last m-1 rows and n-1 columns such that ,r(2,2) = 2 

and 6(2, 2) = 2. These permutations have no effect on the first row or 

column. Thus, 

+x c PPE 00. mn mn 2 1 ,r(m, n) 6(m, n) 1 2 

Again P (E + E 
2 22 2 t) = 0 for t=3, ... , n and P 2 (E22 + Esz) = 0 for 

s = 3, ... , m implies that ;r(2, t) = 2 or 6(2, t) = 2, t = 2, ... , n and 

,r(s,2) = 2 or 6(s,2) = 2, s=2, ... ,m. 

Now P 2 (Ell + E 22 ) I- 0 and P 2 (E22 + E 33 ) I- 0 implies that 

,r(3, 3) I- ;r(2, 2) and ;r(3, 3) I- ;r(l, 1). Also 6(3, 3) I- 6(2, 2) and 

6(3, 3) I- 6(1, 1). Thus under the permutations P 1, P 2 , o1 , o2 we have 

,r(3, 3) > 2 and 6(3, 3) > 2. Continuing in the same way as above we have 

the following conclusions: 

(a) ;r(i, i) = o(i, i) = i for i = 1 •... , m, 
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(b) ,r(a, t) :;:a or 6(a, t) =a, a.:::_ t .:::_ n, a .:::_ m, 

(c) ,r(s,f3) =f3 or 6(s,f3) = f3, f3 < s < m. 

Therefore for a .:::_ m, f3 < m, a -:# f3 we have 

,r(a ,f3 ) ;: a and 6(a, f3) ;: f3 (25) 

or 

,r(a, f3) ;: f3 and 6(a, f3) ;: a (26) 

since ,r(a,f3)-:# 6(a,f3) by Lemma 2.49. 

Suppose (25) holds and m < n. Then the p-th row of 

is 

+ x c E . pn pn p6(p, n) 

If k > m then 6(p, k) > m by Lemma 2. 49. Also if p f; q then 

P 2 (Epk + Eqk) = 0 implies 6(p, k) = 6(q, k). Thus by a suitable permu

tation Q of the last n-m columns we can make 6(p, k) = k, m < k < n. 
0 

Thus 

-1 -1 
By letting P = (Pm· .. P 1) and Q = (Q 1 ... QmQ0 ) we have 

T(X) = P(C*X)Q = (PCQ)*(PXQ) = H*(PXQ) 

where H = PCQ and h .. f; 0 since c .. f; 0 for every i and j. . y y 

Next suppose (25) holds and m = n. Then 

Pm ... P 1T(X)Q 1 ... Qm = C*X 

-1 -1 
and letting P = (Pm· .. P 1) , Q = (Q 1 ... Qm) , and H;: PCQ we have 



T(X) = H*(PXQ) 

where h .. -/:. 0 for every i and j. 
lJ 

The case where (26) holds and m < n is impossible since 
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,r(a, 13) < m. That is, ,r(a, 13) -/:. k, k > m since there are only m rows in 

the matrix. 

For the remaining case suppose (26) holds and m = n. Then the 

p-th row of 

is 

Thus, 

p 
m 

+x c E 
pm pm mp 

Qm = C*X'. 

·-1 
By letting (Pm' .. P 1) = P, 

-1 
(Q 1 · .. Qm) = Q and H = PCQ, we have 

T(X) = H*PX 1Q, 

where h .. -/:. 0 for every i and j. Thus, the lemma is proved. 
lJ 

Lemma 2. 52. The matrix H defined in Lemma 2. 51 is such 

that p(H) = l. 

Proof: Let l ~ i < s ~m, l < · < t < n. _J If T(X) = H*(PXQ) 

then choose X so that 

PXQ = E .. + E.t - E . + E t' 
lJ 1 SJ S 

If T(X) = H*(PX 1Q) then choose X so that 

PX'Q = E .. + E.t -· E . + Est' 
lJ 1 SJ 

In either case, 
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Thus by Theorems 2. 10, 2, 26, and 2. 27 we have P 2 (X) = P 2 (X') = 0. 

Since s 2 is a linear transformation and must map O to O then 

P2(T(X)) = P2(h .. E .. + h.tE.t - h .E . + h tE t) 
lJ lJ 1 1 SJ SJ S S 

Thus h .. h t - h.th . = 0. That is each second order determinant of H 
lJ S 1 SJ 

is zero which implies p(H) = 1 since H # 0 and the lemma is proved. 

Proof of Theorem 2. 42. Lemma 2. 51 tells us that T(X) has 

the form (24) if m # n and (24) or else T(X) = H*(PX'Q) if m = n. 

Hence consider the matrix H. Since the rank of His 1 and the elements 

are non-zero then the rows are multiples of the first row. If 

(q 1, ... , qn) denotes the first row of H then let the p-th row be 

denoted as (d q 1 , ... , d q ). Note that if d 1 = 1, then h .. = d.q.. If 
p p n lJ 1 J 

we let D be the diagonal matrix with main diagonal (d 1 ,d2 , ... ,dm) 

and L the diagonal matrix with main diagonal (q 1 , q 2 , ... , qn) where 

D E M and L EM then 
m,rn n,n 

T(X) = H*(PXQ) = DPXQL 

or 

T(X) = H>:<(PX'Q) = DPX'QL 

as was to be shown. 

Theorem 2. 42 is a special case of a theorem given by Marcus 

and May [17] where the equation (20) is changed to read 

P (T(X)) = S (P (X)) 
r r r 

for a nonsingular linear map Sr of MG), (n) into itself. 
r 
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We are now able to characterize the type of linear transforma-

tion which leaves the permanent unaltered. This characterization is 

given in the following theorem. 

Theorem 2. 53. Let T be a mapping of M . , n > 2, into itself. 
n,n 

Then T is linear and p( T(X)) = p(X) for every X e M if and only if 
n,n 

T(X) = DPXQL 

or 

T(X) = DPX 1QL 

where P and Q are n-square permutation matrices and D and L are 

n-square diagonal matrices such that p(D)p(L) = 1. 

Proof: First suppose T is linear and p(T(X)) = p(X). Then by 

letting m = n = r in Theorem 2. 42 we have 

Thus 

T(X) = DPXQL 

or 

T(X} = DPX 1QL. 

But Theorems 2.25, 2.26, and 2.27 imply that 

P (T (X)) = P (DPXQL) = P (D)P (P)P (X)P (Q)P (L) n n n n n n n 

= p(D)p(P)p(X)p(Q)p(L) = p(X). 

Using Theorem 2. 10 we have p(D)p(X)p(L) = p(X) which implies 

p(D)p(L) = 1. 

Next, suppose T(X) = DPXQL. Then 

T(aX + 13 Y) = DP(aX + 13 Y)QL = aDPXQL + l3DPYQL = aT(X) + 13 T(Y). 



Thus, Tis linear. Also 

p{T(X)) = p(DPXQL) = p (D)p(P)p(X)p(Q)p(L) = p'(D)p(X)p(L) = p(X) 

since p(L)p(D) = 1. 

Finally if T(X) = DPX'QL then because of Theore~ 2. 1 the 

same result as above follows, and the proof is complete. 
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Consider the following example of Theorem 2. 53. Let n = 3 and 

T be the nonsingular transformation such that if Xe M 31 3 then 

T(X) = 

Then it is easy to see that 

T(aX + f3 Y) = aT(X) + f3 T(Y) 

and 

p(T(X)) = p(X). 

Hence T(X) = DPXQL or T(X) = DPX'QL. Finding D, P, Q, and L we 

have 

. 5 0 0 0 1 0 xl 1 xl2 Xl3 1 0 0 

T(X) = 0 1 0 1 0 0 x21 x22 X23 0 ,2 0 

0 0 1 0 0 1 x31 x32 X33 0 0 1 

where Q = I and p(D)p(L) = 1. 

We notice that Theorem 2. 42 when restricted to n"square 

matrices gives a much stronger result (Theorem 2. 53). · Thus, the 

question might be asked as to what are the possibilities of making 
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Theorem 2. 42 into an if and only if statement. This situation seems 

rather hopeless because it is generally not true that 

P (DPXQL) = P (X) 
r r 

even when D and L are identity matrices. 

There is one piece of unfinished business before we are through 

with the characterization of linear transformations which leave the 

permanent unaltered. This concerns the case when n = 2. Since 

Theorem 2. 53 depended heavily on Theorem 2. 42 and Theorem 2. 42 

did not cover the case when m = n = 2 we will not be able to achieve 

the same type of result as Theorem 2. 53. We can however, prove 

some results for the linear transformation 'IT'Y where 'Y is the mapping 

defined in (8). To simplify the notation let ST(X) = S(T(X)). We thus 

have the following theorem. 

Theorem 2. 54. If T is a linear transformation of M 2 2 into 
' 

itself such that p(T(X)) = ap(X) for every XE M 2 2 and a is a non-zero 
• 

constant then 

-yT'l(X) = AXB 

or 

where A, B e M 2 , 2 , d(AB) f- 0. 

Proof: From the definition of 'Y we know that p('{(X)) = d(X). 

Thus 

But 
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Since T'I is a linear transformation and QI i- 0 then the hypothesis of 

Theorem 2. 41 is satisfied for T)', Thus, 

or 

where A, B e M 2 2 , d(AB) i- 0, and the proof is complete. 
' 

Again this cannot be an if and only if theorem by the following 

example. Suppose 

for all Xe M2 2· Then 
• 

and p(T(X)) f:. Qlp(X) for any non-zero constant QI, 



CHAPTER III 

INEQUALITIES FOR THE PERMANENT 'FtfNCTION 

Introduction 

Much of the modern interest in the permanent function has been 

due to two questions proposed in the first part of thi~ century. The 

first of these consisted of trying to relate the permanent function in 

some simple fashion or otherwise to the more widely known determi-

nant function. This question has been answered in a fairly conclusive 

form in· Chapter II. 

The second of these questions concerned a matrix inequality. 

It is known as the Van der Waerden conjecture since it has not been 

proven true or false. It was propo.sed by Van der Waerden [44] in 1926. 

It is concerned with the minimum value of the permanent function over 

the set of doubly stochastic matrices. 

Definition 3. 1. Ann-square matrix A with elements in the real 

field ia said to be doubly stochastic if a .. > 0 for every· i and j, and the 
lJ -

row and column sums are 1. 

For example then-square matrix Jn with every eritry·l/n is:a: 

doubly stochastfc matrix .. .Also Jm n""'square .permuta:tion_-matrix u;· 

doubly stochastic •. 

We are now able to st~te the conjecture given by Van der 

Waerden. 

67 
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Conjecture 3. 2. If A is an n-square doubly stochastic matrix, 

then 

n! 
p(A) ~ n 

n 

with equality if and only if A = J . 
n 

(2 7) 

n'· It is easy to see that if A = J then p(A) = ~, and therefore at 
n n 

least one matrix can be found for which the conjectured lower bound is 

attained. That is, there cannot be a "better" lower bound. Thus it is 

surprising that this rather simple looking conjecture would remain in 

doubt. This seems to be basically the story behind many matrix 

inequalities involving the permanent function. Even though the 

inequalities themselves may portray rather simple results, the proofs 

in many cases involve very complicated mathematics and are not 

restricted to any particular area of mathematics. In the theorems 

that involve matrix inequalities we shall follow the course of introduc -

ing definitions and theorems which fall outside the basic results of 

linear algebra as they are needed to prove various inequalities concern-

ing the permanent function. Also in most cases we will not deal with 

general mxn matrices but rather with square matrices with some 

special properties such as being doubly stochastic. 

Inequalities for Non-negative Matrices 

We shall begin this chapter with some simple inequalities 

involving non-negative matrices. That is, matrices with non-negative 

elements. 

Theorem 3. 3. If A and B are n-square matrices with non-

negative elements then 
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p(A + B) > p(A) + p(B). 

Proof: Every addend of p(A) and p(B) occurs as an addend in 

the expansion of p(A + B). In addition, the expansion of p(A + B) con-

tains some non-negative terms not in the expansion of p(A) or p(B). 

Thus 

p(A + B) :::_ p(A) + p(B) 

as was to be shown. 

Theorem 3. 4. If A is an n-square matrix with non-negative 

elements then for any permutation CT of the numbers 1, .... , n, 

n 

p(A) > II a. (') > 0. 
- i= 1 lCT 1 -

Proof: For every CT, 

n 

II a. (') 
i= 1 lCT 1 

is non-negative and occurs in the expansion of p(A). Thus 

then 

n 
p(A) > II a. (.) > 0. 

- i= 1 lCT 1 -

Theorem 3. 5. If A and B are n-square non-negative matrices 

p(AB) > p(A)p(B). 

Proof: Consider the addends of p(AB). They are of the form 

where jk' k= 1, ... , n can take on any value between 1 and n and CT 
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denotes a permutation of 1, ... , n. 

Now consider an addend of p(A)p(B). They are of the form 

where er and a" denote permutations of 1, ... , n respectively. Thus, all 

the addends of p(A)p(B) are included in the addends of p(AB ). Since 

they are all positive we have 

p(AB) ~ p(A)p(B), 

as was to be shown. 

Inequalities for Doubly Stochastic Matrices 

Let us now look at some inequalities involving the permanents 

of doubly stochastic matrices. In order to do this some background 

material will be needed. We proceed with these results. 

Definition 3. 6. A set S C En is said to be convex if for each 

pair of points x, ye S the line segment joining x and y is a subset of S. 

That is, 

Z = { z z = ax + ( 1 - a )y, 0 .:::_ a < l} 

is such that Z C S. 

For example the set S C E 2 such 
2 2 

that S = { ( x, y) : x + y < l } 

is convex since for each pair of points (xpy 1) and (x2 ,y2 ) in S the line 

segment joining these two points is a subset of S. 

The set of matrices M with real elements is isomorphic to 
n,n 

2 
En . If K denotes the set of n-square doubly stochastic matrices 

n 
2 

then K is a subset of En 
n 

Thinking of the set K . in this way has 
n 

considerable merit as we shall see in the theorems that follow. 



Theorem 3. 7. 
2 

The set K is a convex subset of En 
n 
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Proof: Let A, B e K and suppose a is a real number such that 
n . 

O < a < 1. Then consider 01.A + ( 1 - a)B. The elements of this matrix 

are non-negative since the sum and product of non-negative numbers 

are non-negative. Thus consider the row sum of the i-th row: 

n n n 
I: (aa .. + (1-a)b .. ) = a I: a .. + (l-01.) I; b .. =a+ (l;;,a) = 1. 

j = l lJ lJ j = l lJ j = l lJ 

Similarly the column sums are L Therefore, aA + (1-a)B e K for n 

every a, 0 < a < 1 and K is convex, 
n 

Definition 3. 8. The convex hull of a finite set of points in En, 

x 1, ... , xp, is denoted as H(x 1, ... , xp) and 

p p 
= { ~ a.x. I: a.= 1, a.> O, for every i}. 

i= 1 l l . i= 1 l l -

In addition there exist points y., i=l, ... , r such that y_. e H(x1, ... , x ), 
l l p 

y. r/. H(y 1, .... , y. l' Y·+l' ... , y ) and H(x1, ... , x ) = H(y 1, .... , y ). 
1 1- 1 r p . r 

These points yi, i=l, ... , rare called vertices of the convex hulL · 

Thus in E 2 , H((l, 2), (3, 4), (2, 0)) is the triangle with vertices at 

(1,2) (3,4) and (2,0). Also from Definition 3. 8 we see that for any 

point x in this triangle, 
0 

where 01.i ::'.'. 0, i = 1, 2, 3 and a 1 +01. 2 +a3 = 1. 

We now state an important theorem given by G. Birkhoff [2]. 

An English version of the proof can be found in [22], page 97 -98. 

Theorem 3 .. 9. The set K is the convex hull of the set of 
n 



permutation matrices. Moreover, the permutation matrices are the 

vertices of K . 
n 

This theorem means that if A is a doubly stochastic matrix 

then A can be expressed in the form 
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m 
A= ~ 

i= 1 
a.P . 
. 1 1 

(28) 

where 
m 
~ a.= 1, 

i= 1 1 

a. > 0 and P. are permutation matrices i::;::.l, .•• , m. The right hand 
1 - 1 

side of ( 28) is called a convex combination of the P., i= 1, ... , m. 
1 

· Notice that there are at most n! permutation matrices which implies 

m < n! . Actually m is smaller than n!, n ::f:. 2, as can be seen in the 

following results. 

Definition 3. 10. The dimension of a convex set is the dimensicn 

of the smallest euclidean n-space containing it. That is, it is the 

maximum number of linearly independent vectors contained in the set. 

Thus, the triangle in the example above has dimension 2 since 

the smallest euclidean n-space conbaining it is E 2 . 

Theorem 3. 11. The dimension of the convex set K · is (n - 1)2 . 
n 

For the proof of this theorem see Marcus and Mine, [22], page 99-101. 

Theorem 3. 12. Every point x in the convex hull of dimension 
0 

m of a finite set of points in En, m < n with vertices y 1, .... , y can be 
- r 

expressed as a convex combination of at most m + 1 vertices. 

The proof of this theorem is omitted. 
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We can now state a corollary of Theorem 3. 12 which gives the 

maximum number of permutation matrices p.eeded to express any 

doubly stochastic matrix as a convex combination of perrp.utation 

matrices. It is the following. 

Corollary 3 .. 13. If A e Kn then A can be expressed as a convex 

combination ofat most [ (n-1) 2 + 1] permutation matrices, 

Proof: This follows from Theorems 3. 11 and 3. 12.. · - -

For an example.of Core>llary 3.-13.suppos·e A E K 3 such that 

1/6 2/6 3/6 

A= 3/6 2/6 1/6 

2/6 2/6 2/6 

Then if P. 'k denotes the permutation matrix with l's in the positions 
lJ 

i, j, k of rows 1, 2, and 3 respectively, then we have 

A =2/6P312 + l/6P321 + l/6P231 + l/6P213 + l/6P123 . 

. Definition 3. 14. Let a = (a 1, ... , an) be a fixed non-zero 

n n 
element of E and x = (x1, ... , xn) E E . Then the set 

where 13 is a real number is called a hyperplane in En. The sets 

{xeEn:a1x 1 + ... +ax <!3} and {xeEn:a1x 1 +.,.+ax·>l3} nn- nn-

are called closed half-spaces. If the equality is left out in the above 

sets, then they are called open half-spaces. 

Thus, a hyperplane in En divides· En into three disjoint comple-

mentary sets: the hyperplane itself and two open half-spaces. 
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. . n 
Hyperplanes are closed convex sets 1n E . For example in 

E 2, if a= (3, 2) and (3 = 5 then the set {(x,y)':: 3x+ 2y = 5} is a hyper-

plane. That is, in E 2 hyperplanes are lines. 
3 . 

In E , hyperplanes are 

two-dimensional planes. 

We can now prove the follow:ing important theorem. 

2 
Theorem 3.1 5. Let X = (x .. ) E En and A be the intersection of 

lJ . 2 

the closed half-spaces definedby the sets {XE .Ef: ~j > O}, i, j = 1, ..• , n. 

Also let H be the intersection of the hyperplanes defined by the sets 

{XE E 
2 

n 
n 
E x .. = 1}, i=l, ... , n, 

j= 1 lJ 

and G be the intersection of the hyperplanes defined by the sets 

Then K = A (') H n G. n 

n 
E. x .. = 1}, j = 1, ... , n. 

i = 1 lJ 

. Proof:. First let XE K . Then x_ .. > 0 which implies·X EA. 
n 1J - · 

Also the row and colwnn swns are 1 which means XE Hand XE G. 

Thus X E A(') H (') G and K C A (') H (') G. Next suppose 
n 

x E A n H n G and x is written in matrix ·notation. Then, x E. A 

implies Xis a non-negative matrix and X ~ H n G implies.Xis 

doubly stochastic. Thus A(') H (') G C Kn and Kn= A('). ;H (') G. 

We now collect the last few results and are able to make some 

important observations on the nature of the set of doubly stochastic 

matrices and the permanent function defined on this. set .. T_he· results 

for the set K are: n . 



1) It is convex; 

2) It is the convex hull of permutati.on matrices; 

3) The permutation matrices are the vertices; 

. 4) It.has dimension (n-1)2; 

5) It is the intersection of a finite number of closed 

sets and hence closed; 

6) It is bomded (consider the euclidean n 2 -sphere of 

radius n). 

7.5 

(29) 

Properties (29. 5) and (29. 6) tell us that Kn is compact. From 

the definition of the permanent function it is continuous. Thus we have 

a continuous function defined on a compact set when we consider the 

permanent function over -K . Hence it must assume· its maximum and 
n 

minimum value· on K . This fact makes the Van. der Waerden inequality 
n 

more interesting since the minimum must occur at a doubly stochastic 

matrix. The maximum is not quite so,difficult to.find as can be seen 

from the following theorem. 

Theorem 3.16. If A E Kn then p(A) < 1 with equality if and only 

if A is a permutation matrix. 

Proof: By definition 

Consider 

IT n 
p(A) = ~ II a. (.). 

i=l llT 1 

n n 
II ~ 

i=I j=l 
a ... 

lJ 

Then every addend of p(A) occurs in this product •. Since all the 

addends are non-negative and the row and column sums are 1, we have 



n n n 
p(A) < II E a .. = II 1 = 1. 

- i=l j=l lJ i=l 

lf A is a permutation matrix then by Theorem 2. 8, p{A) = 1 and 

7-6 

equality holds. Next assume A is doubly stochastic and p{A) = 1. Then 

n n n 
II a. (") = II E a .. 

i=l lO" l i=l j=l lJ 

implies that A is a permutation matrix. The details are· omitted. 

Thus, the proof is complete. 

Let us now .examine in more detail the problem of finding the 

minimum value of the permanent function over·K.. Several lower 
n· 

bounds have been computed and are continuing to be improved~ For 

example, if A E Kn then using Theorem 3. 4, p(A) ::::_ 0, and zero is a 

lower bound. A more interesting lower bound is contained in the 

following theorem. 

[ 2 ]1-n Theorem 3.17. If A E Kn, then.p(A) ::::_ (n-1) + 1 • 

Proof: By Corollary 3.13, A can be expressed as a convex 

combination of at most (n-1) 2 + 1 pennutation matrices. Thus 

where 

k 2 
A = E a.P., k < (n-1) + 1 

i=l 1 1 

k 
E a. = 1, a.> 0 

i=l 1 1 

for every i and P. are permutation matrices. Then 
1 

k k k 
n n p(A)=p( E a.P.) > E a.p{P.)= Ea., 

. i=l l l i=l . l l i=l l 



by Theorems. 3. 3, 2. 5, and 2. 8. 

Define 

k 
n 

f(a1, •.• ,a k) = ~ a. • 
i=l l 

Then the minimum off subject to the constraints given above occurs 

whenever a 1 = .•• = ak = 1/k. Thus 

k n k / n 1-n 
~ a . > ~ (1 k) = k • 

i=l l - i=l 

But 1/k~ 1/[(n-1/ + 1] since k~ (n-1) 2 + 1. Therefore 

[ 2 .J.-n 
p{A) ~ (n -1) + 1 J , 

and the proof is complete. 

Some additional background material concerning doubly 
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stochastic matrices will now be stated. For a good reference as to 

what is known. about this type of matrix see Marcus and Mine [22 ). We 

proceed with the results which will be useful to us. 

Theorem 3.18. If A E K then A has 1 as a characteristic root. 
n 

Theorem 3.19. If A E K then there exists n-square permuta
n 

tion matrices P and Q such that 

h 
PAQ = ~ · A. 

j=l J 

where ~ • denotes the direct sum (defined on page 41 ),. A. is a doubly 
J 

stochastic matrix for every j, and h is the number of characteristic 

roots of absolute value 1. 

Theorem 3. 20. If A E K then 
n 



n 
{ max II a. (.) : CT rrms over all permutations of 1, ••• , n} > 

i=l l(J" 1 

with equality if and only if A = J . 
n 

-n 
n 

Note that the theorem is misstated for the case of equality in 

Marcus and Mine [ 22] page 131. 
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Theorem 3. 20 gives us another lower bound for the permanent 

function over the set K • Namely, p(A) > n -n since 
n 

n 
p(A). > II a. (.) 

i=l 10- 1 

for every permutation a- of 1, ..• , n by Theorem 3. 4. This result will 

not be stated formally as it is a special case of the next theorem which 

gives what is believed to be the best lower bound for the permanent 

function over K . 
n 

Theorem 3. 2 L If A e K and has at least h characteristic roots 
n 

of absolute value 1, then 

p(A) ~ (n - h + 1)-(n-h+ l) (30) 

with equality if and only if A is a permutation matrix. 

In order to prove Theorem 3. 21 the following lemma is needed. 

then 

Lemma 3,. 22. If 

h 
l:: n. = n, 

]. 
i=l 

n. > 1, 
1-

i = 1, ... , h 

h 
II 
i=l 

n. 1 
n. 1 < (n - h + 1t-h+ 

]. -

with equality if and only if n. = 1 for h - 1 values of i. 
]. 



Proof: The proof is by induction on h. It is easily seen to be 

true for h = 1 and the proof is quite instructive for the case h = 2. 

Hence consider h = 2. 

function 

Then 

Then n 1 + n 2 = n, n. > 1, i = 1, 2. Define the 
1-

f 1 (x) = f{x)ln 
x 

n-x 
and f 1 (x)= 0 

when and only when x = n/ 2. But 

2 

£11 (x) = f(x) r1(1n n-~x) + n . J ~ - . x(n-x) 
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and £" (x) > 0 for all x, 1 < x < n - L Thus f(x) is concave upward with 

a minin1urn occuring at x = n/2, and the maximum value must occur at 

the endpoints of the interval, 1 2- x 2- n - 1. That is, max f(x) = £(1) or 

f(n-1). But f{l) = f(n-·l) = (n-l)n-l and hence 

x. n-x n-1 
x (n - x) :'.::. (n - 1) • 

Thu.s, when x "' n.1 we have 

EquaJity occu.rs only at the endpoints since the curve 1s concave upward 

That is, only when n 1 ,,: l or n 2 --== 1. 

Next suppose the lemma is true for h - 1. We consider the case 

for h. Now 

nl[ ( ) _ (h-l) + J_][(n-n1)-(h-l)+l] 2- n 1 n-n1 . 
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~[(n-h+2) - I][(n-h+2)--1] 

n-h+l = (n-h+l) . ( 31) 

In (31) the first inequality is true because of the induction hypothesis, 

and the second inequality is true since it is the case h = 2 proved 

above. Now equality holds in the first case of {31) if and only if h - 2 

of the n 2 , ... , nh are 1. Equality holds in the second case of (31) if 

and only if either n 1 = 1 or n 1 = n-h+l. In either event of the second 

case there is exactly h - 1 of the ni' i=l, ..• , h equal to 1. Hence, the 

lemma is true for h, and therefore true by induction for all positive 

integers. 

Proof of Theorem 3. 21: By Theorem 3. 19 there exist permu-

tatiop. matrices P 1 and a1 such that 

h 
·- ~ . A. 

j=l J 

where Aj is nj-square doubly stochastic. Applying Theorem 3. 20 to 

each Aj j=l, ... , h we have 

n. 
J -n. 

max Il (A.). (') > n. J 
CJ" . i= 1 . J l(J" l - J 

where er runs over all permutations of 1, ... , n .. 
. J 

products ( 32) together gives 

n h -n. 

(32) 

Multiplying the 

max IT a. (") > II n. J (33) 
. l l(J" 1 - • 1 ·J 

CJ" l= J= 

where er runs over all permutations of 1, ... , n. But by Lemma 3. 22, 

h -n. 
TI n. J > (n - h + 1)-(n-h+ l), 

j=l J - . 



and Theorem 3. 4 implies 

n 
p(A) > max II a. (')" 

- . (T i= 1 l(T l 

n-h+ l 
Thus p(A) ~ (n - h+ 1) . 

For the case of equality we have 

n 
p(A) = max II .a. (') 

(T i=l lQ" l 
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if and only if A is a permutation matrix. Thus the only possibility for 

equality in (31) is for permutation matrices. Since for this type of 

rnatrix n = h we see that (n - h+ l) ~(n-h+ l) = 1 and equality does result. 

This concludes the proof. 

The above theorem can be improved somewhat if the matrix A 

is indecomposable. 

Definition 3. 23. An n-square matrix A is said to be decompos -

able if there exists a permutation matrix P such that 

PAP' .[B OJ 
- C D 

where B andD are square matrices. If A is not decomposable, then 

it is said to be indecomposable. 

If A is indecomposable then Theorem 3. 19 can be improved so 

that PAQ can be written as the direct sum of h, n/h-square doubly 

stochastic matrices. That is, each of the A.'s has ·the·1:1ame orde,r, and J .. 

h divides n [22], page 130 .. With this remark we are able to prove the 

follow:ing theorem. 



Theorem 3. 24. If A is an indecomposable doubly stochastic 

matrix that has h characteristic roots of absolute value 1, then 

p(A) ~ (h/n)n 

with equality if and only if A is a permutation matrix. 

Proof: By Theorem 3. 19 and the above remark there exist 

permutation matrices P and Q such that 

h 
PAQ = ~ 

j=l 
A. 

J 
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where each A. is n/h-square doubly stochastic. Now applying Theorem 
J 

3. 20 to each A., j=l, .•• , h we have 
J 

·max 
cr 

n/h -n/h 
. II (AJ.)icr(i) > (n/h) 
1= 1 ' 

where O' denotes a permutation of 1, .. , , n/h. Thus 

p(A)> max 
(J'·1 

n h n/h 
II a. ( . ) = II max II (A.) . { . ) 

i=l icrl 1 j=l er i=l J icr 1 

> ~ (n/h)-n/h 
j=l 

:= (h/n)n 

where <rl denotes a permutation of l, ••• , n. 

Equality again results since 

n 

p(A) = m::x II ai!T(i) 
.... i=l 

if and only if A is a permutation matrix and h = n in this case. 

At this point several lower bounds have been given for the 
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permanent function over the set K . In order to compare these bounds 
n 

let us consider the 4-square matrices A, B, and J 4 where 

and 

A= 12 + [1/3 
2/3 

2/3] 

1/3 

1/6 

B = [1]+ 3/6 

2/6 

2/6 3/6 

1/6 2/6 . 

3/ 6 1/ 6 

Then h = 3, 2, and 1 in A, B, and J 4 respectively,. and the lower 

bounds given by the above theorems and Conjecture 3. 2 for the perma-

nents of matrices A,. B and J 4 are exhibited in the followingtable. 

A B J4 

Theorern 3. l 7 . 001 • 001 . 001 

Theorem 3. 21 . 250 . 037 . 004 

Theorem 3.24 . 004 

Conjecture 3. 2 . 094 . 094 .094 

Value of the Permanent . 556 . 250 .094 

Theorem 3. 24 does not give bounds for A and B since they are 

decomposable matrices. In general we -see that as n becomes larger 

all of our lower bounds approach 0. Also the bounds given by Theorems 

3. 21 and 3. 24 depend heavily on h. That is, these bounds become 

better as h approaches n. 
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· In the last few years considerable effort has been made to find 

a solution to the Van der Waerden conjecture. As a result of this 

research many interesting theorems have appeared, and some special 

cases have been proved. For example, it is known to be true·whenever 

n = 2 or 3, [28], and it is also known for the special class of positive 

semi-definite symmetric matrices, [30]. We shall now demonstrate 

the proofs for the special cases n = 2 and 3 .. For n = 2, the proof 

reduces to the problem of finding the minimum of a polynomial. 

Theorem 3. 25. If A E K 2 then p(A) > 1/2 with equality if and 

only if A= J 2 . 

Proof: Let A E K 2 and suppose 

A = [: :J 
Then a + b = 1, c + d = l, a + c = 1, and b + d = l. Thus a = d and 

b = c. Therefore p(A) = a 2 + b 2 subject to the constraint b = l - a, or 

p(A) = a 2 + (1 - a) 2• Consider the function 

2 2 
f (x) = x + ( l - x) , 0 < x < 1. 

Then the mini.mum occurs at x.= 1/2, and the curve is concave upward 

which implies that this mini.mum is uniquely obtained. Thus whenever 

a = 1/2 the minimum value of the permanent function occurs, and this 

minimum is unique if and only if A = J 2 . Therefore 

p(A):::_ p(J2) = 1/2. 

The proof for the case n = 3 is a. little more complicated, and 

we will state some·of the main results which are given by Marcus and 
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Newman [28] in the general situation before we proceed with case. The 

proofs of these theorems are lengthy and will be omitted. 

Theorem 3. 26. If A E K such that p(A) = mm {p(S) S e K } 
n n . 

then A is indecomposable. 

then 

Theorem 3. 2 7. If A E K such that p(A) -- min {p(S) S e K } 
n n 

(a) p(A(i/j)) ·-· p(A), if a .. I o, 
lJ 

(b) p(A(i/j}) p(A) + 13, if a .. = 
lJ 

O where 13 > 0 and is independent 

of i, j. 

Notice that the matrix J satisfies conditions (a) and (b). 
n 

Theorem 3. 28. If A ~ K has positive entries and p(A) == min 
n 

{p{S) : S ,r K } then A ::c. J . 
n n 

This is an important theorem and tells us that the minimum is 

obta.ined uniauelv at J for matrices with positive entries. This does - . n 

not, hovreve1, help us jn case some entries are zero. In this case 

the :Cf:.S 

ThE: If A E K such that p(A) = mm {p(S) : S e K } 
n n 

a~n.cl ./~ ... then all its zeros cannot occur in a 

fixed row, 

Thus if A <E K with only one zero entry then Theorem 3. 29 tells n . 

us p(A) is not the minimum of the permanents over the set Kn. 

We now state and prove Conjecture 3.2 for n = 3. 

Theorem 3. 30. If A e K 3, then p(A) > 2/9 with equality if and 

only if A = J 3 . 
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Proof: Let B e K 3 such that p(B) = min { p(S) : S e K 3} . Then 

the proof consists of showing B cannot have any zero entries. First 

suppose B has at least 4 zero entries. By considering all possible 

cases then B must be a permutation matrix or else p(B) = 1/2. In 

either case it cannot be a minimizing matrix since p(J) = 2/9. 

Secmdly, assume B has 3 zero entries. Then no 2 of these can 

occur in the same row or column since this would imply B has more 

than 3 zero entries. Therefore without loss of generality assume 

Now by Theorem 3. 27 

Thus 

and 

b . . ;:.~ 0, i= 1 , 2, 3 
1.1 

B 

b .. > 0, iij. lJ 

0 x 

y 0 

x y 

y 

x 

0 

where x + y:: L Then p(B} .::: x 3 + (1 -· x) 3 , 0 < x < l, and the 

rr)inin1l.1.m occu.:rs ctt 2(. :~ 2. This gives p(B) ::: 1/ 4 as the minimum. 

But p(J 3) :::: 2/9 < pi(B}, a contradiction. 

Next assume B has 2 zero entries. Again they cannot occur in 

the same row or column so without loss of generality assume they are 

b 11 = b 22 = 0. Then by Theorem 3. 27 



and 

Then 

O x x 

B = y 

y 

0 

x 

and x = y = 1/2 implies b 33 = 0, a contra'diction. 
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Finally B cannot have just one zero since this contradicts 

Theorem 3. 29. Thus the only possibility for Bis a.matrix with 

positive entries. Therefore using Theorem 3. 28,. B = J 3 and p{B) = 2/9. 

Hence if A E K 3 then 

p(A) > p(J 3) = 2/9, 

and the proof is complete. 

The Permanent as an Inner Product 

We ·shall now investigate a new approach which has been used 

to prove many matrix inequalities involving the permanent function. 

This approach is a difficult one, but it has the· saving grace of yielding 

some rather significant results in which other methods of proof have 

not succeeded. The main idea is to exhibit the permanent as an inner 

product on a special kind of vector space. This then enables us to use 

the- Cauchy-Schwarz inequality as one of our main tools. 

We begin by introducing the preliminary material necessary to 

prove these results. 

Let V be an n-dimensional vector space with elements in the 

complex field .. Usually a and b will denote complex scalars with x.and 



y vectors. 

Definition 3. 31. An inner product in a vector space V is a 

complex valued function of ordered pairs of vectors x and y whose 

value at x and y is denoted as {x, y), such that 

(a) (x, y) = {y, x), 

(b) (axl + bxz, y) = a(xl' y) + b(xz, y), 

(c) (x,ayl + by2) =a(x,yl) + b(x,y2), 

(d) (x, x) ::::._ 0 and (x, x) = 0 if and only if x = 0. 

The inner product defined on V which we will want to use is 

given as 

n 
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(x, y) = :E x.y. (34) 
i= 1 1 1 

where x = {x1, ... ,xn) and y = (y 1, ... , yn). It is easy to see that (34) 

satisfies the conditions of Definition 3. 31. An inner product space is 

a vector space with an inner product. Thus the vector space V with 

the inner product (34) is an inner product space a:q.d is called a unitary 

space. The norm of x E Vis defined to be (x, x)l/Z and is denoted as 

JlxJJ. 

The Cauchy~Schwarz inequality can now be stated. 

Theorem 3. 32. If x and y are vectors of the unitary space V 

then 

with equality if and only if x and y are linearly dependent. 

Definition 3. 33. Let M (V) denote the space of n-multilinear 
n 

functionals defined on V. That is, g E M (V) if and only if g is a 
n 
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complex-valued function defined on the cartesian product of V taken n 

times with itself such that g satisfies the following property: 

I 
g(x 1, ... ,x. 1,ax.+bx., x. 1, ... ,x) 

1- 1 1 1+ n 

I 

=ag(x1, ... ,x., ... ,x )+ bg(x1, .... ,x., ... ,x) 
. 1 n 1 n 

for each x., x'. E V, i=l, ... , n. 
1 1 

( 35) 

Thusifx.=(x. 1, ... ,x. ), i=l, ... ,n, thenthen-multilinear 
1 1 1n 

functional 13 defined as. !3(x1, ... , x ) = p(X) is an element of M .(V) n n 

where p is the permanent of the matrix X with rows x., i=l, ... , n. 
- 1 

The fact that f3 satisfies condition (35) is a consequence of Theorems 

2. 4 and 2, 14. The fact that M (V) forms a vector space using the 
n 

definition of vecto:r. addition and scalar multiplication defined as 

follows: 

with f, g E M _(V) a,:r.1.d b a complex scalar is easily seen. We now form 
n 

the du.al space of Mn(VL that is, the space of all complex-valued 

1. f' .,, ·1 -~If (V) d d . V(n) C . 1 V{n) 1near . unct:10na. s on .w.1. . an enote 1t as . erta1n y (3 E 
n 

if 13(f) :::: 0 for every f c M (V). For non-trivial examples of elements 
n 

of V(n) consider the functionals defined by using elements of V. That 

is, if x 1 , ... , xn E V then define a ::::! x 1 ® · • · ®xn such that if f E Mn(V) 

then 

Certainly we see that a is defined for each element of Mn(V) and for 

scalars a and b with g 11: M (V) we have 
n 



a (af + bg} = (af + bg}(x1 , ... , xii} 

= aa(f) + ba(g}. 

Thus a is linear and belongs to V(n). We will use the notation 

x ® · · · ® x since it has the advantage of specifying the set of 
1 n 

vectors from V. 

For a more specific example, let n =- 3 and consider the 

element x 1 ® x 2 ® x 3 of y( 3) defined by x 1 = (2, 1, 0,}, x 2 = (-1, 4, 5), 

and x 3 = (1, 1, 2). Then the value of x 1 ® x 2 ® x 3 at [3 E. M 3 (V} where 

!3 is defined above is 

x 1 ® x 2 ® x 3({3) = [3(x1 , x 2 , x 3} = 29. 

The following theorem gives the full nature of y{n}. 

Theorem 3. 34. Every element of V(n) is of the form 

x 1 ® · • · ® xn for some set of vectors x 1, ... , xn from V. 

For the proof of this theorem and a moredetaileddiscussion 

of V(n) see [33]. 

We now define an inner product on V(n) in terms of the inner 

product (34). 

90 

Let x 1 , ... xn' y 1 , ... , yn EV then x 1 ® · · · ® xn, y 1 ® • • • ®yrieV(,:1) 

and define 

n 
y l ® • • · ® y ) = II (x., y.}. 

n i=l 1 1 
(36) 

We now define two operators on the space V(n}. By an operator 

we mean a linear mapping of V(n) into itself. 

First we define the permutation operator P.{O"} on V{n} s.uch that 
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(37) 

where o- denotes a permutation of the numbers l, ... , n. 

Next we define another operator T on V(n) such that n . 

T (x ® · · · ® x ) ~ 1/n~ ~ P(ir)(x ® · · · ® x ·.) (38) 
nl n o- l n 

where·o- ranges over all permutations of 1, ... , n. 

Lemma. 3, 35. If o- 1 denotes any permutation of 1, ... , n then 

P(o-')[T (x ® · · · ® x ) ] = T (x ® • • • ® x ) . n 1 n n 1 n 

Proof: By (38) and linearity we have 

P(o- 1 }[T (x ® ··· ®x·)] = P(o- 1)[1/n'.i :EP(a:)(x ® ••• ® x )] 
nl n o- 1 n 

= 1/n~ :E P(o-)(x1 ® · · · ® x ) 
<T n 

= T (x ® • • • ® x ) n 1 n 

since P(o-) operating on the sum rearranges the elements in that sum 

but does not change it. 

Lemma 3. 36. The operator T is such that T 2 = T . 
n n n 

Proof; By (38) and linearity we have 

® x ) = T [l/n~ :E P(<r){x ® • • • ® x ) ] 
n n <T 1 n 

= 1/n~ ~ 1/n~ :E P{o- 1 )[ F(O")(x1 ® · · · ® xn)] 
CT, O" I 

(3 9) 
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But 

1:: P(er')[P(er){x ® • • · ® x )] = 1:: P(er')(x ® • • • ® x ) , 1 n , 1 n 
er . er 

and there are exactly n~ such sums since there are n'.i permutations er 

of the numbers 1, ... , n. Thus (39) reduces to 

1/n~ 2: P{er')(x ® • • • ® x ) 
I 1 n er 

2 
and T n = T n as was to be s·hown. 

Let V be a unitary space. Then for each y E V there exists a 

linear functional y' defined as y' (x) = (x, y) for every x E V. Now if A 

is an operator on V then for each fixed y there exists a linear functional 

y>:' with the defining property that for each x E V, 

y>:' (x) = y' (Ax) = (Ax, y). (40) 

If we now allow y' to vary over all linear functionals of V then this 

makes correspond to each y' a y*, depending on y'. We will use the 

notation 

y* = A*y'. 

The defining property of A* is 

A*y' (x) - (x, A*y). ( 41) 

Now from (40) and (41) we have 

(x, A*y) = A*y'(x) = y*(x) = (Ax, y). (42) 

We now state two useful properties about linear operators. 

Lemma 3. 3 7. The operator A is such that A =A**. 

Lemma 3. 38. The operator A is hermitian (A= A~:<) if and only 

if (Ax, y) = (x, Ay) for all x, y e V where V is a unitary space. 



lemma. 

Another property of the operator T is given in the following 
n 

Lemma 3. 39. T is hermitian. 
n 
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Proof: By Lemma 3. 38 we must show that(T a, f3) = (a, T f3) for 
n n 

all a,f3 e V(n). Using linearity and definitions (38) and (36) we have 

(T (x ®· · · x) y @ .. • ®y) = 1/n! ~(P(CTXx ®· · ·®x) y ®· · ·® y) 
n I n ' 1 n CT 1 n ' 1 n 

n 
= 1/n! ~ II (x<T(Ty.) 

CT i= 1 
1 . 1 

n 
= 1 /n! ~ II (x.,y<T() 

CT i= 1 1 1 

= 1/n! ~ (x ®· · · ®x P(CT)(y ®· · · ®y )) 
CT 1 n' 1 n 

= (x.®···®x T (y ®···®y )) 
1 n' n 1 n ' 

and the proof is complete. 

At this point we are ready to see how the last few results are 

connected to the permanent. Thus let us prove an important theorem. 

Theorem 3. 40. Let x. and y., i= I, ... , n, be arbitrary vectors 
1 l 

in V and define a .. = (x., y. ). If A = (a .. ) then 
lJ l J lJ 

(43) 

Proof: Using Lemma 3. 37, result (42), Lemmas 3. 39, and 
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3. 36, and Definitions (38), (36), and 1. 1 in that order we have 

(T (x ® · · • ® x ) T fy. ® • · · ® y )) 
p. 1 n' n' l n 

2 
= (T (x 1 @ ••• ®x ), y ®· · ·®y) 

n n 1 n 

= I /n! 2:(P(o-)(x ® • · · ®x ) y ® • · ·®y:) 
er 1 rr'l rr 

n 

- 1/n! 2: II (x (')' y.) 
er i= I er l l 

n 

- 1/n! 2: II a,..1')' 
er i=l v1l l 

= l /n! p(A) 

where 1J" ranges over a.U permutations of 1, ... , n. Thus the proof is 

complete. 

Notice that Theorem 3. 40 states that given any set of vectors 

x. and Y;, i=-1, ... , n., from V a matrix A can be found such that the 
1 .l. 

permanent: of this matrix represents an inner product of two vectors 

in the space V No,;s;r the question naturally arises as to whether or 

not the permanent of a.ny n-square matrix A can be expressed as the 

inner product of tvva vectors from V(n). By a reversal of the steps in 

the proof of Theorem 3.40 we see that this can be done if there exists 

vectors x. and v, i=l, ... 1 n, from V such that A= (a .. )= ((x., y.)). 
l " 1 lJ l J 

To find such vectors of V it is the same a.s finding n-square matrices 

X and Y such that A = XY*, since the ij-th element of A is just 

n 

k~l x;ik yjk' 
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This can always be done by letting A = X and Y = I. Then there exist 

vectors x. = A(.) and y. = I(.)' i=l, ... ,n, such that A= ((x., y.)). 
l l l l l l 

We 

state this result formally in the next theorem. 

Theorem 3. 41. Given an n-square matrix A then there exist 

vectors x. and y., i= 1, ... , n. from V such that 
l l 

p(A) = n!{T (x ®·· ·®x) T (y ®·· · ®y )). 
n 1 n' n 1 n 

In order for Theorems 3. 40 and 3. 41 to be of maximum use 

something about the vectors x. and y. usually needs to be known. Thus 
l l 

we have the following theorem. 

Theorem 3. 42. If A is an n-square positive semi-definite 

hermitian matrix then there exist vectors x 1, ... , xn from V such that 

a .. = (x.,x.) for every i and j. 
lJ l J 

The proof is omitted, but can be found. in [26], page 184. 

We now state and prove an interesting theorem given by Marcus 

and Mine [23] and [25], which is a generalization of the Van der Waerden 

inequality for the class of positive semi-definite symmetric matrices, 

Theorem 3. 43. If A is an n-square positive semi-definite 

hermitian matrix with row sums r,, i=l,, .. , n, and if 
.L 

then 

n 
r = ~ r. -:/. 0 

i= 1 1 

p(A) ::::_ n! 

n 2 
IT Ir. j 

i= 1 1 

n 
r 

(44) 



Equality holds in (44) if and only if 

(a) p(A) = 1, or 

(b) A has a zero row. 

Proof: By Theorem 3. 42 there exists vectors x., i=l, ... , n 
1 

such that A= (a .. )= ((x.,x.)). Now using (43) and Theorem 3. 32 we 
lJ 1 J 

have 
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l /n!p(A) = (T (x 1 ® · · · ® x ), T (x 1 ® · · · ®x )) n n n n 
(45) 

= (T (x 1®··•®x ),T (x 1®···®x ))(u/lJuJJ,u/JJuJI) 
n n n n 

where u is any non--ze ro vector from y(n). Next let 

Then 

n n 
(v, v) =- ~ ~ 

i:::: l j = l 

n 
v = ~ x .. 

i= I 1 

n 
x,) - ~ 

' J i= I 

n 
~ 

j=l 

') 11 II ·1 2 Now r -:/: 0 implies II v II -/: 0 since v I = r. 

u = T (v ®· · ·®v). Then by (43) 
n 

n 
a .. - ~ r. = 

lJ i= I 
l 

Also r > 0. 

r. 

Let 

where B = (b.,) = (v, v) = r for all i and j, i,j = 1, ... ,n, But by 
lj 

Corollary 2. 7, p(B)::. n!rn Thus !lull 2 = rn. Now using (45) we have 

I T (v ® · · · ® v) 2 
l /n:p(A) > __ I fT (x ® · · · ® x ), _n __ ~--

1' n l n rn/2 

1
2 n 

= I ( T (x 1 ® .. · ® x ) , T ( v ® · .. ® v)) / r 
n n n 



But 

(x., v) 
1 

= /l/n!p((x.,v))/ 2 /rn. 
1 

n n 
= (x., 2::: x.) = 2::: (x.,x.) = 

1 j=l J j=l 1 J 

n 
~ a .. = 

j = 1 lJ 
r .. 

1 
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Thus we are interested in finding the permanent of a matrix whose i-th 

row is (r., ... , r.). By Theorem 2. 6 
1 l 

n 
p((x.,v)) = n! II r. 

i i= I i 

and therefore 

and 

n 2 
l/n!p(A)~/1/n!·n! II r./ /rn= 

i= 1 1 

p(A) ~ n! 

n 
II / r. / 2 

1 
i= I 

n 
r 

The proofs for the cases involving equality are quite involved and will 

be omitted. 

As a direct consequence of this theorem the Van der Waerden 

inequality can be proved for the case of positive semi-definite symmet-

ric matrices. 

Corollary 3. 44. If A E K is positive seini~definite symmetric, 
n 

n then p(A) ~ n! /n , with equality if and only if A = J . 
n 

Proof: Since A E K then the row sums are 1 and r = n in 
n 

Theorem 3. 43, Thus using (44) we have p(A) ~ n!/nn. Certainly if 

A = J equality occurs. Next assume B is a matrix satisfying the 
n 

hypothesis such that p(B) = n!/nn. Then Theorem 3. 43 implies p(B) = 1. 

Therefore, every row of B is a multiple of the first row. Let 



n 
!: b 1. = 1 

j=l J 

and consider row i of B, i=2, ... ,n. Thus B(i) = (db 11 , ... ,db 1n) 

where dis a non~zero scalar. But 

implies cl. = 1. Hence 

B = 

n 

!: dbl. = 1 
j=l J 

But the columns sum to 1 which implies nb lj = 1 or b lj = 1 /n and 

B = J . Thus the ca.se of equality is proved. 
n 
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The usefulness of expressing the permanent of a matrix as an 

inner product of two vectors from V(n) has been demonstrated in the 

proof of Theorem 3. 43. This particular technique of proof is not 

restricted to the permanent function only. For example, if T 1 is 
n 

defined to be 

T 1 (x ® · · · ® x ) = n l n l /n: !; e (<T)P(o-)(x 1 ® · · · ® xn) 
(T 

where e (<T) = ±1 according as <Tis even or odd, then 

(T 1 (x 1 ®, · · ®x ), T' (y 1 ®· · ·® y )) = 1/n!d((x.,y .. )). (46) 
n. n n n IJ 

Using the result (46) the classical inequality known as the Hadamard 

determinant theorem has been proved by Marcus and Mine [21 ]. This 

theorem was done by J. Hadamard in 1893, [9] and will prove to be 



useful to us. We state it without proof. 

Theorem 3. 45. If A is an n-square positive semi-definite 

hermitian matrix then 

n 
d(A) < II a .. 

i::::: l 1l 

with equality if and only if A has a zero row (or column) or A is a 

diagonal matrix. 
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We now state a theorem given by Marcus [14] in 1964 which will 

allow us to prove the so called Hadamard theorem for permanents. 

Theorem 3. 46. If A is an n-square positive semi-definite 

hermitian matrix then 

na.,p(A(i/i)) > p(A) > a,.p(A(i/i)), 1 < i< n. 
11 - - 11 

(4 7) 

Equality holds in (4 7) if A has a zero row (or column). If A has no 

zero row (or column) then the lo,,Fer inequality holds if and only if aii 

is the only non-zEro e::ect:ry in :rov,/ and column i of A; the upper equality 

holds if and only if the rank of A is 1. 

The proof of this theorem uses techniques similar to the proof 

of Theorem 3. 43, but is rnuch longer, Hence, it is omitted, 

We are now ready to state and prove the permanent analog to 

the Hadamard determinant theorem. 

Theorem 3. 47. If A is an n-square positive semi-definite 

hermitian matrix then 

n 
p(A) > II aii' 

i= l 



with equality if and only if A has a zero row (or column) or A is a 

diagonal matrix. 

Proof: By Theorem 3. 46 the lower inequality gives 

p(A) > a p(A(n/n)). 
- nn 

Now :consider the matrix A(n/n). This matrix is an (n-1)-square 

positive semi-definite hermitian matrix. Therefore applying (47) 

again we have 

Thus, 

p(A) > a, l)( l)a. p(A(n-l,n/n-1,n)). - ln- n-· nn 

Now applying (4 7) (n-1 )-times yields 

n 
p(A) 2: II 

i:.:.: l 
a .. 

11 
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Using the results of Theorems 2. 3 and 2. 8 equality occurs if A has a 

zero row ( o:r column) or A is a diagonal matrix. Now suppose 

n 
p(A) - II 

ic:l 
a .. 

11 

and A does not have a zero row (or column). Then 

n n 
II a .. 

11 
i=l 

- p(A) 2: 3.llp(A(l/1)) 2:. allazzP(A(l, 2/1, 2)) > ... > II 
i= 1 

which implies 

n 
II a .. 

11 
- a 11 p(A(l/l)) = p(A). 

a .. 
11 

Now by Theorem 3. 46 this 1s true if and only if a 11 is the only non-

zero entry in row and column l of A. Next we have 
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n n 

i~Z aii = p(A(l/1)) > a 22p(A(l,2/1,2)) >, .. > i~Z aii 

which implies a 22 is the only non-zero entry in row and column 2 of A. 

Using this technique (n-1)-times we have a .. as the only non-zero entry 
11 

in row and column i of A, i= 1, •.. , n. Thus A is a diagonal matrix, 

and the proof is complete. 

Corollary 3. 48. If A is an n-square positive semi~definite 

hermitian matrix then p(A) > d(A) with equality if and only if A has a 

zero row (or column) or A is a diagonal matrix. 

Proof: This is a direct result of Theorems 3.45and 3,47, 

Most of the inequalities we have investigated thus far deal with 

special types of matrices. The reason for this is probably clear since 

most of the results place restrictions which can only be obtained by 

certain kinds of matrices. There are very few results which can be 

proved for permanental inequalities in the general case. One such 

inequality is the following. 

Theorem 3. 49. Let x. and y .• i= 1, .. , , n be vectors from the 
1 1 

n -dimensional unitary space V. Then 

I p((x., y.)) I 2 < p((x., x. ))p((y., y. )), 
lJ - lJ lJ 

(48) 

with equality if and only if 

(a) 

(b) 

the zero vector occurs in one of the sets x. or y., or 
1 1 

the zero vector does not occur in either set x. or y., and 
. 1 1 

there exist non-zero scalars d., i= 1, .. , , n, and a permu-
1 

tation c,of 1,; .. ,n such that y. = d.x (')' i=l, ... ,n. 
1 1 CT 1 
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Proof: By using the result (43) and the Cauchy~Schwarz 

inequality we see that 

I 1/n!p((x., y.)) I < [l/n!p((x.,x.))]1 / 2 [1/n!p((y., y.))] 112 . 
lJ - lJ lJ 

Thus by squaring both sides (48) is obtained. The cases for equality 

involve argum.ents about the vectors of V(n) being linearly dependent 

and are omitted. 

Theorem 3. 50. Let A and B be n-square complex matrices. 

Then 

jp(AB) j 2 :::_ p(AA*)p(B*B), (49) 

with equaUty in (49) if and only if 

(a) a row of A or a column of B is zero, or 

(b) A and B are nonsingular and there exists a diagonal matrix 

D and a permutation matrix P such that A* = BDP. 

Proof: Let e. denote the basis vector of V with 1 in position i 1 . 

and zero elsewhere. Then by using (42) the ij-th element of the matrix 

AB is 

{AB) .. = (ABe., e.) = (Be.,A*e.). 
. lJ J 1 J 1 

Now by applying (48) and (42) we have 

I 2 2 
p(AB)j = /p((Be.,A*e.))/ <p((Be.,Be.))p((A*e.,A*e.)) 

J l - l J l J 

= p{(B*Be.,e.))p((AA*e.,e.)) = p((B*B) .. )p((AA*) .. ) 
l J l J Jl Jl 

= p(B*B)p(AA*). 

Using the results of Theorem 3.49 we see that if (a) or (b) holds then 

equahty holds. Thus suppose equality holds in (49). Then by Theorem 
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3.49 the zero vector must occur in the sets Be.,A*e., i=l, ... ,n . 
. l l 

That is, among the rows of A or columns of B, or there exist: scalars 

di, i=l, ... ,n, and a permutation CT of 1, .•• ,n such that A*e1 = diBea(i)' 

But this is the same as saying A* = BDP which was to be shown, 

Definition 3. 51. A nonsingular n-square matrix A is said to be 

unitary if AA* = A*A = I. 

Theorem 3. 52. If A is unitary then I p(A) I ~ 1, with equality 
l 

if and only if A has exactly one entry of modulus 1 in each row and 

column. 

Proof: From (49) it follows that 

jp(A)j = jp(AI)j < [p(AA*)p(I*I)]l/Z. 

But p(AA*) = p(I) = 1 which implies I p(A) I < 1. 

Now suppose jp(A) I = 1. Then Theorem 3. 50 implies I= DPA 

where D and Pare diagonal and permutation matrices respectively. 

Also A*A = 1 implies A* = DP. Thus A*A = DPP*D* = DD* = I and 

d .. d .. = 1. This means /d .. / = 1, and therefore A= P*D* and has 
11 11 11 

exactly one entry of modulus 1 in each row and column. If A has only 

one entry of modulus 1 in each row and column, it is easy to see 

IP(A)i = 1. 

Some General Inequalities 

Several techniques of proof have been demonstrated in proving 

some of the inequalities encountered thus far. Of course these tech-

niques do not cover all the various methods of proof which have been 

used or can be used. They do serve to illustrate the fact that many 
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times the proofs are of a non-trivial nature and involve background 

material which can be found in a variety of different mathematical 

branches. There are many inequalities involving the permanent 

function which have not been touched upon at this point. In order to 

give an awareness of the more important results we will resort to 

stating these inequalities and giving some illustrative examples. Most 

of the results which follow is current research in the sense that it has 

been done in the last few years. 

On~ of the more easily applied results which has been obtained 

recently is the following theorem. 

Theorem 3. 53. Let A be a n~square matrix and for i= 1, ... , n, 

let 

and q. = max 
1 

I a .. 1. lJ l < j 

n 
lp(A) I < II 

i= 1 

r. = 
1 

n 
~ 

j= 1 

< n. Then 

(r. + q.)/2 
1 1 

I a .. I, lJ 

= 1/Zn 
n 
II (r. + q.). 

i= 1 
1 1 

( 50) 

This theorem was proved by Jurkat and Ryser [12] in a lengthly 

article in 1966. It is a generalization of a theorem of Mine [32] given 

in 1963, which was p;oved for (0, 1)-matrices. That is, matrices all 

of whose elements are either O or l, Minc 1 s theorem is the following. 

Theorem 3. 54. Let A be an n-square (0, I )-matrix and let 

n 
r 1. = ~ a .. , i= I, ... , n. 

j= 1 lJ 

Then 



n 
p(A) < IT (r. + 1)/2 

- i= 1 1 

n 
= I/2n II (r. + 1) 

i= 1 1 

with equality if and only if A is a permutation matrix. 

As an example of Theorem 3. 53 consider the matrix A where 

2 -1 0 1 

4 0 2 -4 
A = 

0 1 1 0 

2 0 5 -1 

Then p(A) = ,..8 and using (50) we have r 1 = 4, r 2 = 10, r 3 = 2, and 

r 4 = 8, while q 1 = 2, q 2 = 4, q 3 = 1, and q4 = 5. Thus 

and 

n 
II (ri + qi)/2 = (3)(7)(3/2)(13/2) = 819/4, 

i= 1 

/p(A) I = 8 2- 819/4. 
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Thus it can be seen from this example that the inequality ( 50) is some -

what weak in general, but equality does occur for permutation matrices. 

Another upper bound for the permanent of a general n-square 

matrix which has been obtained by Beasley and Brenner [l] in 1968, 

but which is not quite so easy to use is given in the next theorem. 

Theorem 3. 55. Let A be an n-square matrix such that a i: 0. 
nn 

Then 

where B is the (n-1 )-square matrix such that 
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b .. = ja .. j + 
lJ lJ 

la · II a. I nJ 1n 

lannl 

for i= 1, ... , n -1, j = 1, , .. , n -1. 

For the 4x4 example A given above we have 

jp(A)j =8< ja jp(B)= j-lj(160)= 160, 
~ nn 

where 

4 1 5 

B = 12 0 22 

0 1 1 

Beasley and Brenner, in the same paper as above, have also 

generalized an inequality of Jurkat and Ryser which again uses the 

elements of the matrix to obtain an upper bound for the permanent 

function. It is easier to apply than that of Theorem 3. 55. 

Theorem 3. 56. If A is an n-square matrix then 

I p(A) I < 
n 
II S~i) 

i= 1 1 

where S~i) is defined to be the sum of the i largest absolute values of 
1 

the elements from row i of A. 

For the matrix A defined above this upper bound gives 

/p(A) I = 8 < :ci s~i) = (2)(8)(2)(8) = 256. 
i= l l 

Thus Theorem 3. 55 gives the lowest upper bound for the matrix 

A, but none of them is very sharp. For the matrix J 3 , the upper 

bounds given by Theorems 3. 53, 3. 55 1 and 3. 56 are . 296, . 296, and 

. 222, respectively. Thus, in this case Theorem 3, 56 gives the lowest 
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upper bound. In general it appears difficult to tell which will give the 

best upper bound for a given matrix with the possible exception that 

Theorem 3. 55 seems to give as good as or better results than Theorem 

3. 53. The ease of finding the bound given by Theorem 3. 53 still makes 

it quite useful. 

Some other upper bounds which were obtained in 1964 by Marcus 

and Mine [23] relate the permanent to some of the more usual matrix 

invariants. This is done though at the expense of requiring the matrix 

A to be normal. 

Definition 3. 57, Ann-square matrix A is said to be normal if 

AA* = A*A.. 

The: inequality is now stated. 

Theorem 3. 58, If A is an n-square normal matrix with 

characteristic roots a 1 •...• an then 

I p(A) I < 1 /n 

For an example of Theorem 3. 58 consider the matrix C such 

that 

-1 -2 1 

C = -2 2 -2 

1 -2 -1 

Then C is symmetric which implies it is normal and has characteristic 

roots 4, -2, -2. Thus 

I p( c) I = 4 ~ 1 I 3 ( 14 13 + I -2 13 + I -2 13 ) = 8 0 I 3 . 
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Using Theorems 3. 58 and 3. 50 the following two upper bounds 

have been obtained for doubly stochastic matrices using the rank of the 

matrix, [23 ]. 

Theorem 3. 59. If A e K is normal then 
n 

p(A) ~ p(A)/n. ( 51) 

Equality holds in (51) if and only if A is a permutation matrix or n = 2 

and A= J 2 . 

If the condition that A is normal is dropped the following 

inequality can be proved. 

Theorem 3. 60. If A e K then p(A) < [p(A)/n] 1 / 2 , with equality 
n -

if and only if A is a permutation matrix. 

The inequalities proved and stated in this chapter represent 

some of the more important results which a comprehensive study of 

this subject would reveal. They do not, however, cover all the results 

such as some theorems and corollaries which led to the development of 

the stated inequalities and usually involve very special cases. Also no 

attempt has been made to cover all the inequalities which are not 

directly connected with the bounding of the permanent of a matrix. For 

example, inequalities involving subpermanents, [5, 6, 16]; inequalities 

involving the direct product of matrices, [4, 15]; or inequalities 

involving the square root of a matrix, [30]. With'the exception of 

Theorem 3. 54 no mention has been made of some important inequalities 

for (0, 1 )-matrices. This type of matrix will be examined in more 

detail in the next chapter. 



CHAPTER IV 

APPLICATIONS AND PROBLEMS OF THE 

PERMANENT FUNCTION 

Introduction· 

In the presentation thus far we have not given any real need for 

the study of the permanent function. To some, just the fact that it is 

there and has some interesting properties is enough. To others some 

type of motivation is needed. This motivation usually centers around 

the idea of its usefulness in either some future application, or else 

some physical situation exists in which this study can play a part in 

explaining this situation. Fortunately a study of the permanent function· 

has something to offer to both needs. The usefulness of the permanent 

can be found mainly in a branch of mathematics known as combinatorial 

theory. Combinatorial mathematics consists essentially of the study 

of the arrangement of elements into sets. Usually two general types 

of problems present themselves in this area. The first of these is 

concerned with the existence of a prescribed arrangement of elements 

of the set; while in the second problem a prescribed arrangement is 

known, but the exact number of distinct arrangements is not known. 

Thus a study is attempted to count the number of these arrangements. 

A simple example will help explain these concepts. Suppose we are 

given five rectangles of dimension l 11 by 2 11 , and six l 11 squares. The 
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problem is to arrange the rectangles and squares so that they form a 

4 11 square. Whether or not this can be done is called an existence 

problem. In this example, the existence question can be solved by 

putting the six 111 squares together to form three 111 by 2 11 rectangles 

to yield eight 111 by 2 11 rectangles which can be arranged into a 4 11 

square, (Figure 1). Now the second question is how many different 

. arrangements exist, That is, how many distinct arrangements can we 

have k.nowing that there exists at least one arrangement of the rectan -

gles and squares into a 4 11 square. This second problem is the one in 

which the permanent function has made a contribution. 

Figure 1. 
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Applications of the Permanent 

We now explain the type of situation where the permanent 

function can be used. We begin with the definition of a system of 

distinct representatives. 

Definition 4. 1. Let S be an n-set with distinct elements 

a 1 , . . . , an . ( That i s , S = { a 1 , a 2 , . • . , an} ) . Let S 1 , . . . , Sn be n sub -

sets of S and suppose for some permutation o- of 1, .•. , n, a (') e S. 
0- 1 1 

fori=l, ... ,n. Then the element a (') represents the set S., and the 
er 1 1 

subsets are said to have a system of distinct representatives. 

Notice that if i :f. j, then a. :f. a., but the subsets S., i=l, ... ,n, 
1 J 1 

are not required to be distinct. Consider the following example of this 

concept. Let S = { 1, 3, 5, 7, 9} with subsets s 1 = { 1, 5}, s2 = {3, 7}, 

S 3 = { 1, 5}, S 4 = { 1; 3, 5, 7}, and S 5 = { 1, 3, 5, 9} . Then a system of 

distinct representatives is given by B = (5, 7, 1,3, 9) for 

(S 1,s2 ,s3 ,s4 ,S5 ), The system Bis not the only one since (5,3, 1,7,9), 

( 1, 3, 5, 7, 9). and ( 1, 7, 5, 3, 9) will also do the job. If we replace S 5 by 

s5 = {l, 3, 5}, then no system of distinct representatives exists since 

there are only four elements and five subsets. 

means of a (0, 1 )-matrix called an incidence matrix. 

Definition 4. 2, Let S be an n-set with distinct elements 

a 1 , ... , an. Let S 1, ... , Sn be n subsets of S and define the n -'square 

matrix A such that a .. = 1 if a. e S. and a .. = 0 if a. t/ S.. Then the 
lJ J 1 lJ J 1 

matrix A is called the incidence matrix of the subsets S 1, ... , Sn of S. 

Notice that the l's of row i of the incidence matrix A specifies 

the elements of set S., while the 1 1 s in c::olumn j of A specifies to what 
1 
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sets the element a. belongs. The incidence matrix of the above exam-
J 

ple is 

1 0 1 0 0 

0 1 0 1 0 

A = 1 0 1 0 o· 

1 1 1 1 0 

1 1 1 0 1 

By trial we found for this example that there were four systems of 

distinct representatives for the subsets (S 1,s2 ,s3 ,s4 ,S 5 ), The perma

nent of the incidence matrix A is also 4, which suggests that there may 

be some connection between the permanent of the incidence matrix and 

the number of systems of distinct representatives. The following 

theorem by H. J. Ryser [40] shows that this is indeed the case. 

Theorem 4. 3. Let s 1 .... ,Sn be subsetEJ of an n-set S. Let A 

be the incidence matrix for S 1, ... , Sn. Then p(A) is the number of 

systems of di.stinct representatives for s 1, ... , Sn. 

Proof: The proof follows from the definition of the permanent 

function since the only non~zero addends are +l and represent a system 

of distinct representatives. Also such system of distinct representa~ 

tives is represented by a +1 addend since it is just some permutation 

CT in the sum of p(A). Therefore, all systems of distinct representatives 

are counted, and p(A) is the sum of them, 

Thus, we see that the permanent function appears in any 

combinatorial setting where a co1+nt of the number of systeme of 

distinct representatives is required, 
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Theorem 4. 3 is illustrated by the following examples. 

The representatives of five groups of people, French, English, 

Negro, Spanish, and German are sponsoring a meeting with some 

famous baseball players in, New York City. Milltown, U. S. A., can 

send five boys, one from each of its five baseball teams, as represen

tatives to thi$ meeting. Milltown wants to be fair and represent not 

only the five teams but also the five groups as well (which we will 

abbreviate as F, E, N, S, G). It is found that each team does not 

represent all of the above groups. The various groups represented 

by the teams Ti, i=l, ... ,5, are: T 1 = {F,E,N,G}, T 2 = {E,N}. 

T 3 = {E,G,S}, T 4 = {F,E,N}. and T 5 = {F,S}. Rather than force 

one particular team to send a boy representing one group it is 

suggested that all the possibilities be written down and put in a hat 

from which one possibility will be drawn and then the teams will abide 

by this selection. Now, how many ways can a representative be chosen, 

one from each team and one from each group? The number of ways 

this can be done is just the number of systems of distinct representa

tives for the subsets, T 1, ... ,T 5, of the set {F,E,N,S,G}. The 

incidence matrix is 

1 l 1 0 1 

0 1 1 0 0 

A = 0 1 0 1 1 

1 1 1 0 0 

1 0 0 1 0 

and p(A) = 7. Thus the number of ways this can be done is 7. These 

possibilities are then computed and one is drawn. 
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For another example consider a projective plane of order 2. 

We define these concepts. 

Definition 4. 4. A projective plane ,r is a mathematical system 

composed of two entities called points and lines that satisfies the 

following postulates: 

(a) Two distinct points of ,r are on one and only one line of rr; 

(b) Two distinct lines of ,r pass through one and only one point 

of rr; 

(c) There exist four distinct points of rr, no three of which are 

on the same line; 

(d) There exist four distinct lines of rr, no three of which pass 

through the same point. 

A projective plane is said to be finite if it contains only a finite 

number of points. The order of a finite projective plane ,r is said to be 

n if given any line L, the total number of points on L is n t 1. The 

totality of lines and points in a projective plane of order n is n 2 + n + 1. 

The smallest projective plane is of order 2. Thus it has seven points 

which can be represented by the numbers { 1, 2,_3., 4, 5, 6, 7}. The lines 

of this plane can be represented by the following subsets: L 1 = { 1, 2, 4}. 

L 2 = { 2 , 3 , 5}. L 3 = { 3 , 4, 6}. L 4 = { 4, 5, 7}, L 5 = { 5, 6., 1 ) , L 6 = { 6, 7, 2}, 

and L 7 = {7, 1,3}, This system of sets and subsets can be described 

by an incidence matrix of order 7. It ifi as follows. 
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1 1 0 1 0 0 0 

0 1 1 0 1 0 0 

0 0 1 1 0 1 0 

p = 0 0 0 1 1 0 1 (52) 

1 0 0 0 1 1 0 

0 1 0 0 0 . 1 1 

1 0 1 0 0 0 1 

Each line of the projective plane of order 2 has three points on 

it. Thus each point could be a representative of one of these lines. In 

fact, the number of distinct ways of representing the lines L 1,, .. , L 7 , 

by the points 1, ... , 7, is given by p(P). The number of ways this can 

be done is 24 1 That is, p(P) = 24, The matrix P will be useful to us 

later. 

Theorem 4. 3 is a c;orollary of a theorem of H. J. Ryser [40.). 

In order to write it in a more general form a new definition of the 

permanent function is required which includes matrices which are not 

square. The definition includes the case of square matrices. It is as 

follows.' 

Definition 4. 5. Let A be an mxn matrix such that m < n. Then 

the permanent of A, denoted as p(A), is defined as 

m 
p(A) = ~ II a. (') 

CT i= 1 10- 1 

where the summation extends over all ( n )m! permutations er which can 
m 

be found from choosing m distinct integers from the numbers 1, ... , n. 

Using this definition Theorem 4. 3 can be written as follows. 

Theorem 4. 6. Let s 1, ... , Sm be subsets of an n-set S with 

m < n, Let A be the incidence matrix for S 1, ... , Sm. Then p(A) is the 
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number of systems of distinct representatives for s 1, ... ,Sm. 

Proof: The proof is a direct result of Definition 4. 5. 

Theorem 4. 6 has a little broader application than Theorem 4. 3 

in that the number of subsets does not have to be the same as the 

numl;>er of elements in then-set. The following example illustrates 

this point. 

Five stocks (S 1,s2 ,s3 ,s4 ,S 5) are to be sold in blocks. There 

are four corporation$ interested in buying these stocks but due to 

government regulations they can buy only one stock each. Each of the 

corporations (C 1, c 2 , c 3 , c4 ) is not interested in all five stocks, but 

their interests are listed as: S = {S 1,s2 ,s 5}, c2 = {S 1,s2 .s3}, 

c 3 = {S 2 ,s4}, and c4 = {S 1,s2 ,s3 ,s4 ,s 5}. The corporations have 

agreed among themselves to each buy one stock of their interest .. How 

many distinct ways can this be done? The incidence matrix is 

1 1 0 0 1 

1 1 1 0 0 
A = 0 1 0 1 0 

1 1 1 1 1 

Using Definition 4. 5 we have p(A) = 20. Thus, there are 20 distinct 

ways this can be done. 

The permanent function has also been used in solving several 

interesting problems in combinatorial theory where the problem is 

essentially unaltered by a reLabeling of the items under consideration. 

The following material is basic in stating this type of problem. 

Let S be a set of n elements. If a e S then assign to each 

element of S a unique weight w(a.) which is a complex number. Let 
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P = { P 1, ... , P q} be q properties concerned with the elements of S. · If 

Pi , ... , Pi denotes an r-subset of P then let W(Pi , ... , Pi ) be the 
1 r 1 r 

sum of the weights of the elements of S which satisfy each of the 

properties Pi , s=l, ... , r. If no elements of S sath:1fy all the proper
s 

ties Pi I s=l, ... , r, then let W(Pi 1 ••• , Pi ) = 0, Next let 
s 1 r 

W(r) = I: W(Pi , ... ~ Pi ) where the summation extends over all the 
1 r 

r-subsets of P. Let W(O) be the sum of the weights of the elements of 

S. We are now ready to prove the following fundamental theorem. 

Theorem 4, 7. If E(m), m=O, 1, ... , q, denotes the sum of the 

weights of the elements of an n-set S which satisfy ex~ctly m of the 

properties P = { P 1, . , . , P ·} then . q 

E(m) = W(m) "' (m+l)W(m+l) + (m+Z)W(m+2) -
m m 

(53) 

Proof: Let a e S and suppose a satisfies exactly t of the 

properties of P. First consider the case where t < m. Then w(a) is 

not an addend of W(j) for any j > t. Thus w(a) does not contribute any 

weight to the right hand side of (53 ). 

Next consider the case where t = m. That is, a satisfies 

exactly m of the properties of P. Then w(a) is an addend of W{m) and 

not an addend of W(m+j ), j > 0. Hence a contributes w(a) to the right 

hand side of (53). 

Finally consider the case t > m. 
t 

Then a contributes ( )w(a) 
m 

to W(m), (rr:+ 1 )w(a) to W(m+ 1 ), . , . , and finally w(a) to W(t), Thus the 

amount a contributes to the right hand side is just 

[( t ) _ (m+l)( t ) (m+2)( t ) ( l)t-m( t )(t)] ( ) 
m m m+l + t m+2 - "· + - m t w a· (54) 
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But 

for m < k < t. Hence rewriting (54) we have 

( 5 5) 

But in the binomial expansion of (x+y)n we have 

Thus if x = 1, y = -1, then 

Hence the expression in the brackets of ( 55) is 0. Thus a. contributes 

Oto the right hand side of (53). Therefore, for eac;h a e S, a contri-

butes to the right hand side only if a satisfies exactly m of the 

properties of P. Hence the right hand side of ( 53) is the sum of the 

weights of the elements of S that satisfy exactly m of the properties 

of P, and the proof is complete. 

An example will help clarify the concepts connected with 

Theorem 4. 7. 

Let S = {O, l, 2, 3, 4, 5, 6, 7, 8, 9} and P = {P1, P 2 , P 3 , P 4 } where 

P 1 is the property that the numeral is O; P 2 is the property that the 

numeral is odd; P 3 is the property that the numeral is even; and P 4 is 

the property that the numeral is 0, 2, 4, or 8. For each element a of 

S assign the weight w(a) = 1. Then E(2) denotes the sum of the weights 

of the elements of S which satisfy exactly 2 of the properties P 1, P 2 , 

P 3, P 4 . Now W(2) = 6, W(3) = 1, and W(4) = 0 so that by (53) 
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E(2) = Vlf(2) - (~)Vlf(3) + (!)Vlf(4) = 3. 

This example is simple enough so that the answer can be verified by 

trial since the only elements that satisfy exactly 2 of the properties 

are 2, 4, and 8. Hence the sum of their weights would be 3. 

Corollary 4. 8. Let E(O) denote the sum of the weights of the 

elements of S that satisfy none of the properties of P. Then 

E(O) = Vlf(O) - Vlf(l) + Vlf(2) - ... + (-l)qVlf(q). 

Proof: This is the special case of Theorem 4. 7 whenever m = 0. 

Corollary 4. 8 can be applied to solve a classical problem by 

Montmort, known as, 11 le probleme des recontres 11 which asks for the 

number of derangements of ordered items from their natural order. 

Definition 4. 9. Let (a 1, ... , an) be a permutation of n elements 

labeled 1,. , . , n. Then the permutation is said to be a derangement if 

a.-:#i, i=l, ... ,n. 
1 

Let d denote the number of these derangements. To evaluate 
n 

d consider the following. Let S be the set of permutations of the 
n 

numbers I, .•. , n. If (a 1, ... , an) denotes one of these permutations 

then for each i= l, ... , n, let P. be the property that the permutation 
1 

has a. = i. Let the weight of each permutation be I. It is noted by the 
1 

definition of E(O) that d = E(O). Then Vlf(P. , ... , P 1, ) = (n-r)! and 
n 11 r 

n. 
Vlf(r) = ( )(n-r)! = n! /r! . 

r 

Now by using Corollary 4. 8 we have 
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d = E(O) = W(O) - W(l) + W(2) - ... + (-l)nW(n) (56) 
n 

= n! - n! + n!/2! - , .. + (-l)nn:/n! 

= n! [ 1 - I I 1 ! + 1 /2 ! - . . . + (.., 1 t 1 In!]. 

Theorem 4. 10. Let J denote the n-square matrix with every 

entry equal to 1. Thend =p(J-I ), 
n n 

Proof: Each of the addends in the expansion of p(J - I ) corres -
n 

ponds to one of the permutations CT of I, ... , n. If the addend is such 

that <T(i) = i then the product is O since it contains an element from the 

main diagonal which is zero. If <T(i) -f. i for every i= 1, ... , n then the 

product is 1, and thus the sum counts all of the derangements which 

. was to be shown. 

Theorem 4. IO can be used to find the number of derangements 

in some interesting problems. For example, suppose five letters are 

written and five envelopes are prepared for the letters. A two year 

old child puts the letters in the envelopes and seals them. What is 

the probability that no one receives the correct letter? The number 

of ways the letters can be put in the envelopes is 5!. The number of 

ways the letters can be put in the envelopes with no one receiving the 

correct letter is p(J-15). Thus the probability is given by 

+ 0 I 1 1 1 + 

. 1 0 l 1 l 

1 I 5! 1 1 0 1 1 = 11/30 = . 367. 

1 1 1 0 1 

1 l I 1 0 
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This problem is interesting in the sense that it does not really 

matter whether there are 5, 10, or 100 letters and-envelopes for the 

probability that no one receives the correct letter is essentially the 

same. If there were 10 letters, for example, the probability is 

= . 368. 

The reason for this follows from (56) which shows that 

dn = n! [1 - 1/1! f, 1/2! - .. , + (-l)n/n!] ~ n!e- 1 . 

Thu1;1 the probability that given n letters no one of which is put in the 

right envelope is approximately 1/e, n > 2. 

Another example of the use of the permanent function in prob-

ability can be seen in the following. Suppose the distinct points 

a., i=l, ... ,n, have distinct particles q,, i=l, ... ,n, one located at 
l l 

each of the points. These points are connected to one another in some 

fashion so that the particles can move from one point to another. The 

following information is known about the motion of the particles. The 

probability that particle q. moves from point a. to a, is given by P .. 
1 . l J y 

Thus we can form an n-square matrix P = (p .. ). Now,. what is the 
. y 

probability that the ultimate arrangement of the particles is such that 

there is one and only one particle at each of the points a., i= 1, .... , n? 
l 

If er denotes a permutation of 1,, .. , n, then the probability that 

qer(l)• .. ,, qer(n) move to the points a 1, ... , an is given by 

.n 

n P (. ) .. i= 1 . er 1 1 

Thus the probability that the partides distribute themselves one at each 
n 

point in some order ·is given by ~ .Il p (")" which is.just p(P). 
er i= 1 er 1 1 



122 

Evaluation of the Permanent 

In the applications involving the permanent function that have 

been presented in the :previous section it has been necessary to evaluate 

the permanent of several matrices. The evaluation of some of these 

such as the incidence matrix of the projective plane of order 2 has not 

been easy. Essentially the method which has been used is. the definition 

coupled with the expansion theorem for permanents using rows or 

columns {Theorem 2. 13). This method is good if n is small, say n < 6, 

but becomes long and tedious if n is larger. Certainly the applications 

we have given are not restricted to small values of n, so that one of the 

main problems connected with the theory of permanents is a simple 

procedure for the evaluation of the permanent of a matrix. So far such 

a procedure does not exist, but recently several attempts have been 

made to solve this problem. A method proved by H. J. Ryser [40] 

seems to be effective when used with the aid of a computer but not of 

much help when the computation is done by hand. It is given in the next 

theorem. 

Theorem 4. 11. Let A be an n-square matrix. Let A denote 
r 

the matrix A with r columns rep laced by zeros. Let S(A ) denote the 
r 

product of the row sums of A and :2:: S(A ) denote the sums of S(A ) 
r r r 

over all the t) choices of the r columns of A. Then 
r 

Proof: Let T = { 1, ... , n} and S = TxTx ... xT where T appears 

as a factor n times. Let the weight of each element (j 1, ... , jn) of S be 
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where A = (a .. ). 
lJ 

Let P., i= 1, ... , n, be the property that the element 
l 

(j 1, ... ,jn) does not contain the integer i. Now W(P. , ... , P. ) is 
11 lr 

equal to. the sum of the weights of the elements of S which satisfy each 

of the properties· Pi , ... , Pi . Letting A denote the matrix obtained 
,1 r r 

from A by replacing the columns numbered i 1, .•. ,ir' by 0 1s, then 

W(Pi , ... , Pi ) = S(A ) 
1 r r 

and hence as used in Theorem 4. 7, 

W(r) = ~ S(A ). 
r 

Now p(A) is the function which is equal to the sum of the weights of the 

elements of S which consist of all permutations a- of the numbers 

1, ... ,n. But if (j 1,, .. ,jn) is a permutation of 1, ... ,n then (j 1, ... ,jJ 

does not satisfy any of the properties P., i=l, ... , n, since the integer 
l 

i, i=l, ... ,n appears in each permutation of 1, ... ,n. Thus, p(A) is 

the function which is equal to the sum of the weights of the elements 

which do not satisfy any of the properties P., i=l, ... , n. Hence, by 
1 . 

Corollary 4. 8 we have p(A) = E(O) and 

But S(A ) = 0. Hence (57) is proved. 
n 

One of the advantages of using (57) is that it reduces the 

number of addends in the expansion of the permanent from n! to 2 n -1. 

As an example of Theorem 4. 11 let us find p(B) where 

2 0 1 5 

B 
-2 1 1 2 

= 
0 1 5 -3 

-1 2 0 1 
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Then by (57), 

p(B) = S(B) - E S(B 1) + E S(B 2 ) - E S(B 3 ) 

= (8)(2)(3)(2) - [(6)(4)(3) 2 + (8)(1)(2)(0) + (7)(1)(-2)(2) + (3)(0)(6)(1)] 

+[(6)(3)(2)(1) + (5)(3) 2 (-2) + (1)(2?(6) + (7)(0) 2 (-3) + (3)(-1) 2 (5) 

+(2)(-1)(1) 2 ] - [(5)(2)(-3)(1) + (1) 2 (5)(0) + (0)(1) 2 (2) +(2)(-2)(0)(-1)] 

= 96 - 188 - 17 + 3 O 

= -79 

Paul Nikolai [37] has computed the permanents of some rather 

large incidence matrices which represent a (v, k, X.)-configuration using 

(57). 

Definition 4. 12. Given a set S with v elements and v subsets 

S 1, ... , Sv' of S each containing k elements such that every distinct 

pair of subsets has X. elements in c;ommon is called a (v, k, X.)-configura

tion. In statistics this is called a balanced incomplete block design, 

One of the amazing facts about (v, k, X.)-configurations is that 

the determinant of the incidence matri~ A representing the configur

ation is such that 

(58) 

That is, the determinant is a function of the parameters v, k, and X., 

Using (58) enables one to compute the value of the determinant rather 

easily. 

Equation (58) also suggests the possibility that the permanent of 

an incidence matrix representing a (v, k, X.)-configuration might be a 
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function of the parameters v, k, and A. If so this might be the first 

break in trying to find a simple formula for the permanent of incidence 

matrices. Nikolai answered this question in the negative whenever he 

computed the permanents of two nonisomorphic (15, 7, 3)-configurations 

and found them to be different. By nonisomorphic it is meant that one 

(15, 7, 3)-configuration cannot be transformed to another by permuta

tions of rows and columns. It is known to be true that for v < 15, all 

(v, k, A).-configurations are isomorphic, hence his reason for using v:;: 15. 

To give an example of the magnitude of the problem of computing the 

permanent of an incidence matrix consider a (21, 5, 1 )-configuration 

associated with a projective plane of order 4. It took better than four 

hours using a UNIVAC scientific computer and what Nikolai describes 

as a very efficient program which used formula (57) to compute the 

permanent of this matrix in 1960. 

In 1966, Jurkat and Ryser~ [12], found another method of 

evaluating the permanent function. It is called the economy equation 

for permanents but could just as well be called the factorization 

method since it expresses the permanent of an n-square matrix as a 

product of n matrices. It is based on a recurrence formula which 

means it is a special type of relationship involving a quantity with 

integer parameters. This relationship is such that it may be used to 

evaluate the quantity from given initial values and from previously 

computed values., For example, Pascal's triangle method for finding 

binomial coefficients is a recurrence formula, Before stating the 

theorem, we will give examples of how the factorization is used for 

the cases n = 2, 3, and 4. If A is a 2-square matrix then 



If A is a 3-square matrix then 

a22 

p(A)::; [all'al2'al) a21 

0 

If A is a 4-square matrix then 

a22 a23 

a21 0 

p(A) = [all'al2'al3'al4] 0 a21 

0 0 

a33 a34 0 0 

a32 0 a34 0 

0 a32 a33 0 

x 
0 0 a31 a34 

0 a3 l 0 a33 

0 0 a31 a32 

a24 

0 

0 

a21 

The result is now stated for the general case. 

0 

a23 

a22 

0 

a44 

a43 

a42 

a41 

Theorem 4. 13. If A is an n-square matrix then 

12.6 

0 0 

a24 0 

0 a24 

a22 a23 

( 59) 

where Pi(A(i)) is a matrix with elements from row i of A and zeros. 

The dimension of P.(A(.)) is (.n 1) x (~) and is defined as 
l 1 1- 1 



P. 1 (a. 2 , ... , a. ) 1p l 1n 0 

P. (a. 2 , ... , a. ) 
1 1 1n 

for i=2, ... , n-1, and where 

0 

P. ( a . k.' . • . , a. ) = J 1 · 1n 

j =i, i-1,, .. , 2, k=2, ... ,n-2. The initial values are given by 

and 

P 1(a. , ... ,a. ) = [a. , ... ,a. ], m=2, •.. ,n-1 
1m 1n 1m 1n 

P.(a.( ·+l)' ... , a. ) = J 1 n-J m 

a. 
1n 

ai(n-j+l 

For the cases where i = 1 or n we have 

Now 

The proof is omitted. 

a 
nn 

As an example of (59) we shall find the permanent of 

2 -1 3 

A= 1 4 0 

2 5 6 

127 



Pl(a22'a23) O 

p(A) = P 1(A(l)) P 3 (A( 3))' 

a211z Pz(azz,az3) 

where P 1 (a22 , a 23 ) and P 2 (a22 , a 23 ) are computed from the initial 

values. Thus 

4 

p(A) = [2, -1, 3] 1 

0 

0 

0 

1 

0 

0 

4 

6 

5 = 81. 

2 
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The dimensions of the matrices which are factors of p(A) can 

be computed by using Pascal's triangle. In the above example the 

dimension of A is 3. Thus using the 1,4ow of Pascal's triangle .. fo:r n:= 3 

we obtain the coefficients 1, 3, 3, 1. The dimensions of the matrices 

of p(A) are lx3, 3x3, and 3xl. 

Formula (59) gives us another way to evaluate the permanent 

of a matrix. Research into the effectiveness of this procedure needs 

to be done to determine the advantages or disadvantages of this method 

over that of Theorem 4. 11. Jurkat and Ryser have suggested that 

formula (59) is more efficient than formula (57) in evaluation of perma

nents. Seemingly, the argument could just as well go the other way, 

since if n is very large then the dimensions of the matrices of the 

factors of (59) become large. For example, if A is a matrix of order 

8 then the dimensions of the factors of p(A) are lx8, 8x28, 28x56, 

56x70, 70:x:56, 56x28, 28x8, and 8xl. This would rule out computation 

by hand except in the smallest cases. A computer programer possibly 

could devise an efficient program using the recurrence relationships 

in (59) to bring out its effectiveness. 



129 

The two methods we have discussed a.re not the only recent 

attempts which have been made to evaluate the pe:rmanent of a matrix. 

In 1960, M. F. Tinsley [42] determined for a certain class of (0, 1)-

mc:ttrices those matrices for which the permanent and determinant are 

equal in absolute value. For such matrices the permanent could be 

evaluated by the determinant. Before stating this result we first give 

an extension of one of Tinsley' s theorems~ 

Theorem 4. 14. Let A be an n-square matrix such that the only 

non-zero addends found in the expansion of p(A) are those representing 

an even (odd) permutation er of 1, ... , n, then p(A) = d(A), (p(A) = -d(A)). 

Proof: If all the non-zero addends are those belonging to even 

permutations then 

n 
d(A) = E II e (er)a. (i) 

er i= 1 ler 

n 
= E II a. (') = p(A), 

.er i=l 10- 1 

since e (o-) = 1 for all non-zero entries. The other case follows since 

e(o-) = -1 for all odd permutations. 

The importance of Theorem 4. 14 as a tool to evaluate perma-

nents is minimal since knowing that all the non-zero addends are even 

or odd is about the same as expanding by the definition in the first 

place. 

If the hypothesis of Theorem 4. 14 is satisfied for (0, 1)

matrices then p(A) = J d(A) J since p(A) > 0. Tinsley [42] extended this 

result a bit further and found the following theorem for (0, 1)-circuJants. 

We first define a circulant. 

Definition 4. 15, Ann-square matrix A of the form 



a a 
n-1 0 

A= 

is called a circulant. 

a 
1 

a 
n-1 

a 
n-2 

a 
n-3 
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The incidence matrix (52) of the projective plane of order 2 is 

a circulant. 

Theorem 4, 16. Let A be an n-square (0, !)-circulant with k 

ones, k > 3, in each row and column. If k > 3, then p(A) > I d(A) j. If 

k = 3, then p(A) = I d(A) I if and only if after suitable permutations of 

the rows and columns A can be reduced to the direct sum of the matrix 

Pin (52) taken e times where e is a positive integer. In this case 

e 
n = 7e and p(A) = (24) . 

The proof is omitted. 

This theorem does help evaluate certain (O, 1)-circulants such 

as P of (52). In this case we have by (58) 

p(A) = jd(A) I = k(k - X.)(v-l)/ 2 = 3(3 - 1)(?-,l)/2 = 24. 

Since the permanent of (0, 1 )-matrices plays a role in combin-

atorial applications and is usually not easy to compute, it causes some 

of the permanential inequalities of Chapter III to assume a more useful 

status. In particular, Theorems 3. 54, 3. 55, and 3. 56 can be used to 

give upper bounds for permanents of incidence matrices. The only 

lower bound that we have at this point is the obvious one given by 
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Theorem 3. 4 which is zero. This situation can be improved somewhat 

with the following inequality whic::h gives both an upper and lower bound 

for the permanent of ( 0, 1 )-matrices. It is proved by Jurkat and Ryser 

[ 12 ]. 

Theorem 4. 17. Let A be an n-square (0, 1)-mi:l-trix. 

the sum of the elements in row i of A. Then 

n n 
II max( r. + I - i, 

i= 1 1 
0) < p(A) < II min(n + 1 - i, 

- - i=l 
r. ). 

1 

Let r. be 
1 

To illustrate Theorem 4. 17, let us compute upper and lower 

bounds for the matrix 

I 0 0 0 

1 1 0 0 
A = 

1 1 1 0 

1 1 1 1 

The matrix A is triangular and thus p(A) = 1. The lower bound is 

4 
II max ( r . + l ~ i, 0 ) = ( 1 )( 1 )( 1 ) ( 1 ) = 1. 

i= I 1 

The upper bound is 

4 
II min(4 + I - 1, r) = (1)(2)(2)(1) = 4. 

i= 1 

Thus 1 ~ p(A) < 4. 

Another upper bound for the special class of (O, !)-matrices 

which are (v, k, X.)-configurations was proved by Marcus and Newman 

[30] in 1962. We state it without proof. 

Theorem 4. 18. If A is the incidence matrix of a (v, k, X.)-
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configuration, then 

v 
p(A) < v! [(k-t)/vt ~ [(kt+t2 )/X.f /r!, (60) 

r=O 

where t =~. 

As an example of this theorem consider the matrix Pin (52) 

which is a (7, 3, 1)-configuration. Then p(P) = 24 while the upper 

bound given by (60) is 56. 346 when rounded off to three decimals. 

Thus 

p(P) = 24 < 56, 346. 

The upper bound given in (60) is difficult to compute but does have the 

advantage of giving some upper bounds smaller than pervious theorems. 

for some cases. For example, the upper bound given for P by 

Theorem 4. 17 is 486 which is more than eight times that of (60). 

Problems 

Connected with the comprehensive study of any area in mathe-

matics are a number of interesting problems. The permanent function 

is no exception to this rule, Thus no study would be complete unless 

some attempt is made to examine the problems in this area and to 

indic:ate the direction of current research. There are two types of 

problems which will be of concern in the concluding part of this chapter. 

The first type will be called solved problems, while the second type 

will be termed advanced problems. Solved problems will denote 

problems which have a known solution and either follow from theorems 

already established or appear in print somewhere .. Advanced problems 

will denote statements whose validity or exposition has not been 
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established. Thus, advanced problems should indicate what is now 

current research, and the solution of any of these problems could be 

considered a contribution to mathematical knowledge. 

Solved Problems 

Problem 1. (Thomas Muir, [34]) Show that if k=2ir/2n+l then 

for odd positive values of n, 

+ 
cos k cos 2k 

cos 2k cos 4k 

cos nk cos 2nk 

cos nk 

cos 2nk 

2 
cos n k 

Problem 2. (Cayley, [34]) Let 

a b c 

A = d e f 

g h k 

+ 

Suppose the elements of A are non-zero and d(A) = 0. Using 

Theorem 2. 21 prove that if 

then 

1/a 

B = I /d 

1/g 

l/a2 

p(B )d(B) = I/d2 

1/ g2 

1/b 

1/e 

1/h 

1 I c 

1 /f 

1/k 

l/b2 

l/e2 

l/h2 

l/c 2 

1 /£2 

l/k2 
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Problem 3. (Thomas Muir, [35]) Prove by induction that if A 

is an n-square matrix then 

n 
~ ~ (-l)jp(A[QI/Ql])d(A(a/a)) = 0, 

j=O aeQ. 
J • n 

where p(A[a /a]) = 1 and d(A(a /a)) = d(A) when a e Q0 . , while ,n 

p(A[a /a]) = p(A) and d(A(a /a ) ) = 1 when a e Q . 
n,n 

Problem 4. (Perfect, [38]) A real valued function f(x) defined 

on a convex set U is said to be convex if 

f(ax + (1 ~ a)y) ~af(x) + (1 - a)f(y) 

for all x, y e U and O ~ a ~ 1. Prove that the permanent is not a convex 

· function on the convex set K . 
n 

Problem 5. (W. B. Jurkat, [25]). H. J. Ryser has conjectura:l 

that if A, B e K then p(AB) < min {p(A). p(B)}. Show that this state-
n -

ment is not true. 

then 

Problem 6. (Brualdi and Newman, [5]). If O <QI< 1 and A e K 
n 

p(aI + (I - Ql)A) <QI+ (1 - a)p(A). 
n -

Problem 7. (Marcus and Mine, [ 20]) Prove that if A e K and 
n 

A:/; J , then at most (n-l)(n-1)! terms in the expansion of p(A) have a 
n 

common non-zero value. 

Problem 8. (Marcus and Mine, [20]) Prove that if A e K 
n 

then there exists a permutation o- of 1, ... , n, such that 

n 
n 

II s. (.) > 1 /n . 
i= 1 l<T 1 -
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This is a direct consequence of Van der Waerden's conjecture. 

Problem 9. (Marcus and Mine, [25]) A positive semi-definite 

hermitian n-square matrix A can be factored such that A= TT>:~, where 

T is an n-square upper triangular matrix. Using this fact together 

with Theorem 3. 50 show that p(A) ~ d(A). 

This is a different technique of proof than the one used in 

Corollary 3. 48. 

Problem 10. (Mine, [31 ]) Let H denote the set of positive 
n 

semi-definite hermitian n-square matrices which have e = (1, 1, .. ,, 1) 

as a c:;haracteristic vector. 

A are all equal to y then 

Prove that if A e H and the row sums of 
n 

n 
p(A) > n!(y /n) , 

with eq1,1ality if and only if either a row of A is zero or A is a non-

negative multiple of J . 
·n 

Note that thi,s is an extension of Corollary 3. 44. 

Problem 11. (Peter M. Gibson, [8]) A matrix A is said to be 

substochastic if it has non-negative entries with each row sum no 

greater than 1. Prove that if A is an n-square subs tochastic matrix 

then 

p(I - A) > 0, 
n -

using Theorem 4. 11. 

This problem was first proposed by Marcus and Mine [30] for 

the case of doubly stochastic matrices. It was proved by Brualdt>, and 

Newman [7] for the case of row stochastic matrices, 
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Advanced Problems 

Problem 12. (Marcus, [25]) Prove or disprove that if A is 

an n-square matrix with all positive entries and the n! terms in the 

expansion of p(A) take on at most r different values then p(A) < r. 

This has been proven for n < 5 by H. Mine and R. Westwick , 

but these results are unpublished. 

Problem 13. (Van der Waerden, [44]) Prove or disprove that 

if A is an n-square doubly stochastic matrix then 

n 
p(A) :::_ n! /n , 

with equality if and only if A = J . 
n 

Problem 14. (Marcus and Newman, [28]) Prove or disprove 

that if A is a doubly stochastic matrix then there does not exist a 

positive number 13, independent of i and j such that 

and 

p(A(i/j)) = p(A), 

p(A(i/j)) = p(A) + 13, 

a .. -:/. 0, 
lJ 

a .. = 0. 
lJ 

This result is false with additional hypothesis, (Theorem 3 .. 27). 

Problem 15. (Marcus and Newman, [25]) Prove or disprove 

that if A is a positive semi-definite n-square hermitian matrix and 

1 < k < n then 

p(A) :::_ p(A[l, ... , k/ 1, ... , k])p(A[k+ 1, ... , n/k+l, ... , n]). 

This is true whenever k= 1, (Theorem 3. 46), 

Problem 16. (Marcus, [25 ]) Prove or disprove that if A is an 



mk-squa:re positive semi-definite hermitian matrix partitioned as 

follows:' 

A = 

in which each A .. , i,j =l, ... ,mis k-square and Bis them-square 
lJ 

matrix Sl+ch that B = (b .. ) = (p(A .. )) then p(A) > p(B). 
lJ lJ --

13 7 

Problem 17. (Mine, [32]) Prove or disprove that if A is an 

n-square (0, 1 )-matrix and 

then 

a .. f. 0, 
lJ 

i=l, .... ,n, 

n 
p(A) ~ II (r.!)l/ri, 

i= 1 1 

with equality if and only if there exist permutation matrices P and Q 

such that PAQ is a direct sum of matrices all of whose entries are 1. 

This inequality is known to be true for all (0, 1 )-matrices with 

r. < 7, i= 1, ... , n. 
l 

Problem 18, (H. J. Ryser, [25]) Prove or disprove that if U 

is the set of v-square (0, 1)-matrices with k ones in each row and 

column, then the minimal value of the permanent over the set U occurs 

for one of the incidence matrices of a (v, k, }..)-configuration; 

Problem 19. (Herbert Wilf, [46 ]) Prove or disprove that if 

A is an incidence matrix of a (v, k, }..)-configuration with k >· 3, then 
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p(A) > I d(A),. 

If k = 3, then p(A) = I d(A) I if and only if after suitable permutations of 

the rows and columns A can be reduced to the direct sum of the matrix 

P of (52) taken e times where e is a positive integer;~ 

This is a generalization of Theorem 4. 16. 

In addition to the above mentioned unsolved problems there are 

two studies which arise from the results of this paper that would be of 

some benefit i£ they were carried out. The author states these as 

problems 20 and 21. 

Problem 20. A comparison of the two computational formulas, 

Theorems 4. 11 and 4. 13 needs to be made to determine which formula 

is the shortest and most effective for computer use. 

Problem 21. In Chapter III:-'s:e~·ral inequalities have been given 

which specify upper and lower bounds for the permanents of various 

classes of matrices. Some attempt has been made to compare these 

bounds with examples, but no rigorous effort has been made to deter

mine 11 best11 upper and lower bounds in the various cases. Possibly 

by a thorough comparison of these bounds to each ether, some could 

be eliminated, and others could be classified to enable the user of 

these inequalities to select the best one .for his pci:rticular problem. 
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