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CHAPTER I 

I NTROOUCTI ON 

Condensation heat transfer has been a subject of theoretical and 

experimental investigations for many years. In this thesis, conden­

sation is considered to be the process which describes the transition 

of a substance from a vapor state to a liquid state. The mechanisms 

of condensation and the parameters important to the phenomenon are 

generally accepted as being well known. Yet, whenever a fluid or con­

dition different from those of previous investigations is considered, 

a study is initiated to determine useful relationships to predict the 

heat ( and mass) tr ans fer rate of the 11new11 situation. The 1 arge number 

of technical papers concerned with condensation attests to this obser­

vation. The reason is simply that no universally applicable model has 

been devised to account for the 2-phase flow conditions, various body 

forces, relative importance of possible mechanisms, intermolecular 

forces and multitude of geometries which may exist, for a given 

condensing situation. 

Many industrial applications of condensation processes involve 

systems with some degree of pulsation in the vapor, or relative 

vibration motfon between the conden~ing fluid and the surface. In 

recent years a number of investigators have considered the effect of 

vibration of surfaces and pulsations in the fluid on heat transfer 

coefficients. The results of these investigations cover a range of 
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slight decrease to several hundred percent increase in heat transfer co-· 

efficients. Although considerable experimental work on the effect of 

sound on heat transfer has been performed, the mechanisms which 

determine the particular results do not appear to be completely 

understood. 

The purpose of this study is to determine the parameters which 

influence condensation heat transfer when acoustic pressure pulsations 

are imposed on the condensing vapor and to establish the controlling 

mechanisms for this process. 



CHAPTER II 

BACKGROUND INFORMATION AND LITERATURE REVIEW 

Filmwise Condensation Heat Transfer 

The primary item of interest is the condensation heat transfer rate 

which may be attained on a cooled surface exposed to an abundant supply 

of vapor. For utility in designing a condensing heat exchanger, it is 

desirable to obtain a simplified expression relating the heat transfer 

rate (Q) to the difference in temperature between the saturated vapor 

(T) and the cooled surface (T ). Preferably an expression of the form, 
v w 

Q = hA(T -T ), where A is the exchanger surface area, and his the 
v w 

appropriate proportionality--the heat transfer coefficient. Review of 

the literature has revealed a number of parameters which may influence 

the heat transfer coefficient. 

Considering filmwise condensation, it has been found that for water 

and most pure organic fluids, the heat transfer rate is governed pri-

marily by the conduction of thermal energy across the condensate film, 

with negligible resistance to heat transfer being offered by the vapor-

liquid interface or the liquid-exchanger interface. The film thickness 

depends upon the flow situation experienced by the condensate film. 

Factors which constitute the flow situation include the vapor flow, 

body forces, viscous effects and surface forces. These factors depend 

upon geometry and orientation. The state (and corresponding transport 

3 



properties) of the vapor and liquid as well as the temperature of the 

cooled surface are also ;nvolved. It is generally assumed that the 

thermal resistance offered by the cooled wall and the heat transfer 

rate on the coolant side of the cooled wall do not limit the conden­

sation heat transfer rateo The validity of this last assumption must 

be verified for any given condensing situation. 

Before consider;ng how sound imposed upon the vapor might affect 

4 

the filmwise condensation process, a review of the literature concerned 

with filmwise condensation heat transfer will be presentedo The purpose 

of the review is to consider theoretical model's, which delineate the 

mechanism of filmwise cond~nsation and characterize the relative 

importance of various parameters~and to consider experimental resultso 

Nusselt (40) published his theory for condensation of a saturated 

vapor on a cold surface in 1916. The success of his model in predict-

ing condensation heat transfer rates is such that it continues as a 

standard comparison for more involved modelso The idealized model which 

N4sselt presented embodies the following assumptions: (1) An abundant 

supply of saturated vapor with steady temperature T condenses on a cold v 

wall of steady uniform temperature T. w (2) The saturated vapor con-

denses in a manner which completely wets the cold surface, thereby form-

ing a liuqid film. (3) The condensate film flows due to the influence 

of gravity. (4) The acceleration terms in the momentum equation are 

negligible. (5) The vapor shear effect of the condensate film is neg­

ligible. (6) The viscous shear effect at the wall is included, with 

the liquid behaving in a Newtonian manner. (7) The temperature profile 

across the condensate is linear. (8) Saturation conditions prevail at 

the liquid-vapor interface. (9) Only the thermal energy associated 



with the latent heat of condensation is conducted through the condensate 

filmo (10) The fluid and vapor properties are assumed constanto A 

schematic representation of the physical model employed by Nussett is 

shown in Figure lo 

co 1 d wa 11 
maintained 
at a constant 
temperature, T ----.. 

w 

saturated vapor, 
at rest 

condensate thickness, 
6(x) 

Figure 1. Nussett•s Physical Model of Film Condensationo 

Considering a vertical cold wall, the following results can be 

obtained from the Nusselt 

Condensate velocity, 

model: 
( P"'Pv)g 

u(y) = --­
ugc 

2 
(6y - ~y ) 

Film thickness, 6(x) = [ 49cukATx h J ~ 
gp(p-p) fg 

p(p-pv)g 3 
Mass flow rate, r (x) = 3 6 (x) 

J.lgc 

LocaU heat transfer coefficient, h(x) = k/a(x) 

Average heat transfer coefficient 9 'ii= j k/6(L) 

where 6T = T - T, and Lis the plate length. v w 

(2.2) 

(2.3) 

(2.4) 

(2.5) 



If the wall is inclined at an angle cp with the horizontal plane, 

the (p -pV} should be replaced by (p - pv) sin cp. If the effect of 

subcooling the condensate is included, then hfg is replaced by 
I 

hf = hf +(3/8)c 6T. Rohsenow (46) considered the effect of cross-g g p 

flow of liquid in the condensate and solved the resulting equations by 

a successive approximations technique to obtain a correction to the 

Nusselt heat transfer expression. The correction amounts to replacing 

hfg by the term (hfg + 0.68 cpAT). Bromley (6) had earlier arrived at 

essentially the same result by considering the effect of heat capicity 

on laminar condensation, as Bromley noted in his discussion of 

Rohsenow•s paper (8). McAdams (35) and Kutateladze (32) recommend that 

Nusselt 1 s h should be increased by a factor of 20 percent to yield 

predictions more comparable with actual coefficients. 

The basic contribution of Nusselt's work was his perceptive 

observation that the condensation heat transfer rate is control led pr.e-

dominantly by the thermal resistance of the condensate film, and that 

the film thickness is coupled with the heat transfer rate and flow 

situation. These considerations yield a predicted heat transfer rate 

that is proportional to (x6T)3/ 4, which is in agreement with 

experimental results. 

The analytical efforts dealing with laminar filmwise condensation 

6 

heat transfe~ since Nusselt 1 s successful model, have been directed toward 

relaxing Nusselt•s assumptions. Each assumption which is dropped com-

plicates the resulting mathematical model; and considerable effort, 

insight and ingenuity have been brought to bear in order··to o-btai-n 

solutions for the differential equations evolved. Rohsenow (46) was 

able to show that inclusion of condensate cross-flow effect does not 
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appreciably alter .the validHy of the linear temperature profile 

assumption. 

Sparrow and Gregg (55) presented a boundary-layer theory type 

analysis for laminar film condensation on an isothermal vertical plate. 

Energy-convection and fluid-acceleration terms were retained in their 

model. The equations representing conservation of mass, momentum and 

energy of the condensate film are, respectively, 

and oT oT pc (u - + v -) p ox oy • 

The boundary conditions are: 

at the wall, y = O; u = O, v = 0 and T = T. w 

at the liquid-vapor foterface, y = &; ~~ = 0 and T"'" 

By definition: Stream function, 1: u = of and v = o,Y ax oy 

T • v 

Independent similarity variable: 
11+ [ gc (p-p) ]11+ 

~ = Cyx- , C = 4v k v 

Dependent variables: F(T1) : 374 
x 

where a: p~ • 
p 

1 1iac and 8(11) 
T - T v 

- T T w v ' 

The momentum and energy equations can be transformed to the 

following ordinary differential equations: 

F 1 " +-1 f3F 11·F-2(F•)2] + = 0 Pr ·· 

e • • + 3Fe• = o , 



where Pr represents the Prandtl number, and the prime denoted differ-

entation with respect to '11• The transformed boundary conditions arei 

at '11 = o, F• = O, and 9 = 1 
1 

at n = ~ = C6X-~9 F 0 ' = 0 and e = o. 
& 

The solution of these differential equations depends upon two para-

meters 9 Pr and ~6• By invoking an over-a11 energy balance, Sparrow 

and Gregg show that for a given Pr 9 there is a unique relation between 

'l"l~ and c AT/hf. The heat-transfer results can be written in terms of '\,: p· g 

the local Nusselt number (Hux = ~x h 

[ gcp(p - pv) x-3 ]-~ ... (d. S) .... (· c .AT) Nu - - - - .f Pr 9 _L 
x 4k d11 . hf O . 0 g 

The soluti-on (f) 11 which is a function of Pr and cpAT/hfg' was deter­
'11 0 

mined numerically from Prandtl numbers of 1, 10 and 100 for the range 

0 < cpAT/hfg ,::£ 2. The representative results presented by Sparrow and 

Gregg are shown in Figures 2, 3 and 4. 

The results of Sparrow and Gregg indicate that a linear tempera-

ture profile is a reasonable approximation, and that the effect of 

the fluid-acceleration terms are negligible for Pr~ 1 coupled with 
.. 

c AT/hf < 0.4. Matin (37) demonstrated that a similarity solution p g. 

employing the techniques of Sparrow and Gregg is possible for a gra-

vity field [G(x)] which varies along the vertical plate such that 

8 

G(x) = constant x", where n is also a constant. This particular gravity 

field does not represent a realistic situation 9 and the similarity does 

not extend to G(x) = n· x ,. A. and n. are constants for given i. 
, 1 

Koh, Sparrow and Hartnett {29) analyied laminar film condensation 

by solving the liquid and vapor boundary-layer type equations 



1.2 

U-~-i-L~~~~ 1.0 Pr=lOO,also forno 
acceleration terms 

)( 

a. 0.6 
- ::> 
u 
cr..!..J o.4 

<O 

0 o. o. .2 

Figure 2. Dimensionless Film Thickness. (Ref. 55) 

o.B 

c 6T _e:_ 
0. 6 1------4- hf g-1------#.,1 

T - T 
"' T - T sat w 

0.2 

2. 
1.32 

.60 

0 ._ ______ ..,_~~~-'-------------~--'--------
0 0.2 o.4 o.6 a.a 1.0 

y/5 

Figure 3. Representative Temperature Distribution from 
Solutions of Complete Boundary-Layer Equations; 
Pr=l. (Ref. 55) 

9 



u 
'f_:_J 

x 
:::, 
z 

I 

2.4 

-~ 
-

2.0 

-\ 
1.6 

- \ 
~ 

-
1.2 

'-

-
o.B 

0 

' 

I 

I I I I I I I l -, 

re (p-p)x3 J [ ~r 
Nux 4 v k • O.GS + c 6T 

p 

~ Pr=lOO, Also for no 
Acceleration tenn;,:7 

~ 
~~ Pr =~ Pr=107 . 

--.::::::: / I I ~ 

I I I I I I I I . 
o.4 o.s 1.2 1.6 

c t,T/hf p g 

Figure 4. Local Heat Transfer Results from Solutions of 
Complete Boundary-Layer Equations. (Ref. 55) 

10 

-

-

-

-

-
-
-

-

-

2.0 



n 

simultaneously~ This analysis i~eiuded the effect of vapor drag forces 

in addition to the energy-convection and fluid-acceleration terms. 

Their resultsshowedthat for large liquid Prandt1 numbers, and for small 

Prandt1 numbers coupled with sma11 c AT/hf 9 the interface drag p g 

exerted on the liquid by the vapor is negligibly sma11o They also con-

cluded that terms containing (pµ)/(pu)v have no significant effect on 

film condensation heat transfero Koh (27) used the integral method to 

solve the problem considered above. The resulting approximate solution 

was shown to have a maximum deviation of less than 5 percent from an 

exact solutiono The vapor at infinity was assumed to be at rest in 

both cases considered by Koh. 

Chen (10) considered the same physical situation as descdbed in 

the preceeding paragraph. Using the dimensionless groups (cpAT/hfg) 

and (kAT/µbfg) as perturbation parameters, he employed a perturbation 

procedure to solve the integral type co~servation equationso Chen 

demonstrated that terms containing (pµ) /(pµ) are an order of magni­v 

tude less than the wall shear-stress term and consequently neglected 

these terms in the so1ution. His results also confirmed that only 

slight deviation from a linear temperature occurs across the condensate 

film. However for (kAT/µhfg) > 0.5, the velocity profile is signifi­

cantly affected, with a negative velocity gradient at the interface 

due to vapor drago The heat transfer results are compared with those 

of Sparrow and Gregg 9 and with some liquid metal condensation datao 

Chen 1 s results are similar to those of Sparrow and Gregg, but 

consistently lower. 

Koh (28) considered the case of forced flow of vapor condensing on 

a horizontal isothermal p1ateo The problem was formulated as an exact 
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!.:: 
boundary-layer solutiono The parameters involved are Pr, [(pµ)/(pµ)v] 2 

and t~PAT/Pr· hfg)o Numerical solutions of the governing equations led 

Koh to the conclusion that the energy transfer by convection is negli-

gible for low Prandtl number liquids, but quite important for high 

Prandtl number liquidso 

Shekriladze and Gomelauri (50) discount Koh's (28) conclusion, cit-

ing the work of other authors. Shekriladze and Gomelauri present the 

argument that the condensation process constitutes a vapor ''suction'' 

effect, and the magnitude of this effect is sufficient to cause the 

vapor boundary layer to remain laminar. Assuming the condensate flow 

is laminar, and that the shearing stress (cr) the vapor exerts on the 

condensate film depends mainly on the momentum transferred by the 

11suction11 mass, the authors obtain cr = r(x)(u°' - u6 ). 

Superimposing a uniform free stream velocity (u ) on the physical 
a:, 

model shown in Figure 1, the following set of equations resultg 

and 

d ( J S(x) ) k AT 
dx pudy = 6{xj h ' 

O fg 

- k 
hx - Tii1' • 

The boundary conditions are: 

For y = O· u = o, T = T 0 ' w 

For 6 (x); du = r(x) (u y = dy µ Cl) 

At x = O; S(x) = Oo 



13: · 

The solut;on can be wr;tten: 

1 

h = k[ pu co J ~ [ 1 + I 1 
x ~ 2 

+ ix' J ~ . (2'..6,)' \ 

where: 

h = ff !5. [ pu• J ~ ~2 + ( 1 + NL\" 
. . 3 µ.L [ 1 + .r-.. , .... + ....... NL-') 2 

• 

(2~ 7) : 

Employing the same appr-oach to determine the liquid-vapor interface 

shearing stress, tbe authors have determined expressions for heat 

transfer coefficients for a horizontal isothermal flat plate, a hori-

zontal plate with.constant heat transfer rate, and a cylinder in trans-

verse vapor flo~. These last three models were shown to-compare 

favorably with data from condensing situations involving significant 

vapor velocity. 

The problem of combined body force and forced convection has also 

been analyzed by Jacobs (19). Jacobs employed an integral method to 

reduce the coupled liquid layer and vapor governing equations to a 

tractable differential equation form which was then numerically inte-

grated to obtain results which were presented in a graphical manner. 

Jacobs made the following equivalent definitions: 

pumx - 1 --,Z-r,:-, 
µ. x 

h x c AT x p Nux ::: -k ' H = ,,,,..P ........ h­
r 'fg • 

Comparison of the equation developed by Shekri ladze and Gomelauri (50) 

for the same physical situation reveals that their relatively simple 
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approx;mation for shearing stress is in agreement with Jacobs' model. 

The result of Shekriladze and Gomelauri given by Equation 2.6, can be 

expressed in Jacobs• terminology as 

(2.8) 

Jacobs gave a graphical presentation showing his results for 

·: ·.~ 

Nu (Fr /Ret· .. :) verus Z, for H = 0.02468, (p/pv) = 210.29, and x x x 

Cvyl'v) = 4.495. Jacobs' results for these parameters (which corres­

ponds to Freon 113 condensing with AT= 40°F) along with the results of 

Equation 2.8 are shown in Figure S. The asymptotic slope of the curves 

at low Z values (corresponding to a forced convection predominant s;tu-
. . ' 

at;on) is -0.SO. This was observed by Jacobs as be;ng a result of his 

numerical solution. Cons;~ering the asymptotk result for Z .... o of 

Equetion 2.8, 

( Fr x )lt . !( 1 )1i .!1i !(· 1 )1i 
Nux Relx • 2 T + H ~ 2 T (2.9) 

So that for values of Z such that 16 Z < < H, the asymptotic slope is 

-OlSO on log-log coordinates. If 16 Z < H, then the curve could be· 

approximated by the first expression given in Equation 2.9. For the 

case of predominant forced convection effect, the results can be 
1 

reduced to Nu = ~(Rel )~. x x 

The asymptotic value for 16 Z >>Hof Equation 2.8 is 

. (. Fr )1i ( )11+ Nux x = .J._ 1 , 

. . Relx /2' M' 

can be written as 
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( Frx )~ ~ _ 1 (1)~ 
Nu -- H - - -

x Rel ~ Z 
{2~10) 

x ,/ " 

Jacobs (19) presented a graphical comparison of his mode1 with 

Freon 113 condensing data [Jacobs (20)], in which he used the dimen-

1 . ( Fr )~ ,~ as a function of Z to correlate the ess grouping Nu x H ~ 
x , Relx 

data. These results are shown in Figure 6, along with the asymptotic 

curves predicted from the resu 1 ts of Shek ri 1 adze and Gome 1 auri. It is 

evident that the simplified method of determing shear stress is valid 

for these conditions. It is of particular interest to note that the 

equations of Shekriladze and Gomelauri appear to be valid for the com-

bined force region as well as for the predominately forced convection 

region where they demonstrated validity. 

A number of the authors have extented their analytical techniques 

to include the case of laminar condensation on the outside of horizontal 

tubes; among these are Nusselt (41), Bromley (7), Sparrow and Gregg (56 

(56), and Chen (11). Laminar film condensation on inclined cylinders 

was also considered by Hassen and Jakob (17), with assumptions basi-. 

ca11y the same as those of Nusselt. They compared their analytical 

results with data for mean heat transfer coefficients. The actual film 

coefficients obtained from their experiments were found to be 28 per-

cent to 100 percent higher than theoretical predictionse These devi-

ations were attributed to non-wetting conditions, non-isothermal tubes, 

contamination and primarily to ripples at the condensate-film surface. 

Sparrow and Siegel (58) considered the situation in which the 

plate temperature, initially the same as that of the vapor, is suddenly 

dropped. They presented results of their analysis in terms of transient 
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heat transfer coefficients and time required to achieve steady state for 

the condensation process. 

Chung (12) analyzed laminar film condensation on a vertical plate 

when subjected to either an arbitrarily time dependent (but continuously 

differentiable with respect to time) uniform wall temperature or 

acceleration field parallel to the plate. Utilizing boundary-layer type 

equations to describe the behavior of the condensate film, non­

dimensional variables to implement transformation, and the generalized 

Taylor series expansion about steady-state solutions, perturbation type 

equations resultedo A discussion of the effects of various parameters 

on the results is presented. Utilization of tables and graphs presented 

would enable the reader to calculate the ratio of unsteady local heat 

transfer to the hypothetical instantaneous steady-state heat transfer. 

After attempts to generalize Chung's approach to consider body force 

fields (g) which were space dependent [i.e., g(x, t)J, it was found 

that g expressed as a function of time (t) only was the sole conceiv­

able dependency whereby the equations could be reduced to tractable 

form. From consideration of the zeroth and first-order perturbation 

terms, Chung noted that the time lag was inertia dominated for Pr< 0.1 

and viscous dominated for Pr> 10. Unfortunately, most fluids of 

interest fall in the intermediate Prandtl number region where both 

effects are significant. 

The numerous articles which have been concerned with laminar con­

densation can be attributed in part to the relative ease of mathemati­

cally modeling the physical situations. The success of Sparrow and 

Gregg (55) in expressing the laminar condensation problem in boundary-

1ayer theory type equations led the way for many investigators, since 



mathematical techniques developed for boundary-layer problems could be 

equally well applied to the laminar condensat;on problem. From these 

analytkal studies, a number of simp1Hyfog assumptions have emerged, 

as well as identification of the mechanisms which govern the heat trans-

fer rate; yet, most investigators are very happy if their results are 

witbin 20 percent of the actual case. 

The deviation of actual laminar condensation heat transfer co-

effidents from the theoretical predictions are frequency·attributed 

to ripples, non-wetting, or turbulent film flow, if higher than 

predicted--and to the presence of non-condensable gases or surface 

contamination, if lower than predicted. The presence of even a small 

amount of non-condensable gases has been shown to decrease the heat 

transfer rate significantly. Literature concerned with the effect of 
.,. 

non-condensable gases on condensati-on beat transfer include the work of 

Othmer (42), Smith and Robson (51 ), Votta and Walker (60), Akers et al. 

( 1), Sparrow and Eckert ( 54), Hampson ( 16), Sparrow and Lin ( 57) and 

Minkowycz and Sparrow (39). An excellent review of condensation heat 

transfer has been compiled by Wilhelm (61). Wilhelm's literature 

review includes articles from 1916 through the early part of 1964, and 

encompasses the areas of kinetic theory, liquid-vapor interfaces, 

nucleation, dropwise and filmwise (laminar and turbulent) condensation, 

film flow, contact resistance, and condensation inside horizontal tubes. 

A somewhat more practice oriented review of condensation heat transfer 

was presented at the 14th Annual Heat Transfer Conference at Oklahoma 

State University (15). The intent and accomplishment of the review was 

to present what we do know for certain and to b;ghlight areas where our 

;gnorance ;s greatest. 
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Recently, Soliman et al. (53) proposed a model, which includes 

friction, momentum and gravity effects for annular flow condensation 

heat transfer processes. The predicted forces are incorporated in a 

correlation to predict local heat transfer coefficients. The resulting 

correlation is reasonably good--when one notes that the Prandtl number 

range is from 1 to 10 and that the data reflect diverse flow condi-

tions. However 9 the significant scatter of the data presented serves 

to emphasize the difficulties which may result from oversimplifying the 

problem. Kunz and Verazunis {31) presented a simplified analysis of 

film condensation inside tubes, and for falling films condensing on 

vertical surfaces. The comparison of results with data as presented in 

their paper is reasonably good. The correlations proposed do indicate 

the proper trend, thus possessing qualitative merit. The ability to 

predict performance of condensers accurately from the correlations 

generally available is not too good. Most of the difficulty stems from 

an inadequate representation of the flow situations. 

The assumption of constant properties is made by most investi-

gators. Since the condensate in film condensation is assLmed to have 

a linear temperature distribution between the wall temperature (T) and w 

surface temperature (T ), then the question arises as to the proper 
v 

temperature(Tf)touse in property evaluation. Kern (23) and Kreith (30) 

recommend evaluation of properties based on Tf = ~(Tv + Tw), while 

Rohsenow and Choi (48) recommend Tf = T + li;(T - T ). The effect of w v w 

variable fluid properties on laminar condensation is considered in 

Appendix A. 

The methods of irreversible thermodynamics were recently applied 

to the liquid-vapor phase change by Bornhorst and Hatsopoulos (S). 
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The condensation process was considered to be a simultaneous flux of 

energy and mass across the interface, consequent1y three transport co-

efficients result. The usual technique involved in determining the 

coefficients is to conduct experiments. These hypothetical experiments 

were proposed, primarily to illustrate the physical meaning of the 

transport coefficientso Employing kinetic theory results to approxi-

mate the transport coefficients, it was demonstrated that the surface 

temperature at the condensate surface may be either higher or lower 

than the saturated vapor temperature. The results of this analysis 

are useful primarily in considering the interfacial resistance effect on 

condensation processes. Interfacial resistance does not appear to be a 

problem except at ve,ry low pressures or for liquid metal condensation. 

One area of utilization for the methods of irreversible thermodynamics 

might be the problem of non-condensable gases. 

The literature review of laminar condensation has revealed that 

the local heat transfer coefficient can be determined reasonably well 

by the relationship, h = k/&(x), which simply implies that for a given 
x 

fluid, the heat transfer coefficient depends upon the condensate thick-

ness. Consequently, methods have been proposed to cause thinner films 

to occur. Kern and Karakas (24) developed equations for the design of 

machines to implement phase changes. These mechanically aided heat 

transfer devices are required when very viscous or foamy materials 

undergo a change of phase; therefore, n9n-newtonian fluids were con-

sidered in their development of equations. Lustenader et al. (34) 

used wipers to expedmenta11y maintain thin condensate films. Addi-

tiona11y, they investigated fluted surface tubes, which gave high 

heat transfer coefficients. Their experimental investigation with 



water indicated over-all heat transfer coefficients as high as 8000 

BTU/hr ft 2 °F were obtained by utilizing mechanically thinned films 

both in evaporation and condensation. An investigation of the effect 

of strong electric fields on condensation heat transfer was reported 

by Choi (13). The effect was a significant increase in the condensing 

heat transfer coefficients, which was attributed to the appearance of 

instability waves and a reduced average film thickness. Increase in 

the heat transfer coefficient was as much as 100 percent with 30 KV 

applied voltage. 

Acoustic Phenomena 

The terms sound and acoustic are o,ften used interchangeably. 
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Sound, as defined by Beranek (3), is an alteration in pressure, stress, 

particle displacement or particle velocity which is propogated in an 

elastic material, or the superposition of such propogated alterations. 

Acoustics is the science of sound. In this investigation, the propa­

gation as pressure alterations imposed upon a vapor is considered and 

this is the imp ti cation of "sound" in the thesis tit 1 e. 

The assumptions normally involved in defining the acoustic wave 

equation are: (1) The fluid transmitting the disturbance (or wave) is 

homogeneous and isotropic. (2) No dissipation occurs (i.e., an isen­

tropic process). (3) Gravitational forces are negligible. (4) The 

waves are of small enough magnitude, so that only first order terms in 

the describing differential equations need be considered. Utilization 

of these assumptions, and application of the conservation laws for mass, 

1TI0111entum and energy allow the derivation of the acoustic wave equation. 
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Where~ ¢=velocity potential 

a= speed of sound 

Defining the instantaneous property as being the sum of the time average 

value (bar superscript) and the instantaneous deviation from the time 

average value (superscript1' ), the following relations can be written 

for the instantaneous density (p) and pressure (P )g 

p(x, y, Z:, t) = I I 

p lX, y, z, t) + p{x:, y, z) 

P(x, t) I y, z, = p ,x, y, z, t) + P(x, y, z) 

The pressure deviation from the time average value is the acoustic 

(sound) pressure. The independent variables (x, y, z) are the rectan-

gular coordinates and the independent variable tis time. Relation-

ships that allow other acoustic variables to be expressed in terms of 

a wave equatio~ similar to Equation 2.11 are: 

'::. p' 
pl = - -2! D p' --P at , - 2 

a 

and w' = o¢ oz 

I 

' u 
-M - ox 

I 
' v 

where u1 
11 v1' and w'" and the particle velocities due to the acoustic 

waves in the x, y and z directions, respectively. 

The velocity of sound for acoustic waves of ordinary intensity 

can be predicted with good accuracy by assuming that the compression 

(and expansion) of the fluid occurs in an isentropic manner. Conse­

quently, the speed of sound is defined as a = ~s • 

For an ideal gas a =. (. l< f =. r-:-:;1 k R T ' J l<"P j k:VRV T 9 
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where~ k - ratio of specif;c heats (c /c ) v- p v 

Rv= gas constant 

T = time average temperature 

s = entropy 

Derivations of the acoutic wave equation and the speed of sound expres-

sions can be found in most acoustics texts, in particular see Kinsler 

and Frey (26) or Beranek (4). 

A plane acoustic wave is the simplest case of wave motion pro-

pagation in a fluid media. If the plane wave is considered to be 

propagated only in the x direction, the three-dimensional wave equation 

reduces to 

2 l a--© 
2 aX 

, 

which has the well known solution©= f 1(at - x) + f 2(at + x). A simple 

harmonic wave has the specific solution, expressed in complex form: 

where: 

!P. = ~ej(wt - Kx) + Bej(wt + Kx) = 1 + + ! 

~ __ Aej(wt - Kx) ~+ _ = velocity potential of wave traveling 
in+ direction 

-
¢_ = _Bej{wt + Kx) = velocity potential of wave traveling 

in - direction 

A= complex amplitude of wave traveling in+ direction 

B = complex amplitude of wave traveling in - direction 

UJ = 2'1Tf 

f = frequency of vibration 

K =wavenumber= w/a • 

The complex forms ofthe acoustic variables are 
01 

p' =-pat= -jwp(f ++!A_> (2.12} 
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.9.' .f. I 
• K (p_ P. = = -J- + 
a + (2.13) 

2 -
a 

u' = a~ = -jK (p_ + + P. ) .. 
ax 

The equations which physi ca 11 y correspond to measurable acoustic vad -

ables are the real parts of Equations 2.12, 2.13, and 2.14--with the 

complex constants determined from specified boundary conditions. 

Purdy et al. (43) have shown that the criterion for neglecting 

second order and higher terms is that the Hach number, M = U /a<< 1, 
0 0 0 

where U is the maximum acoustic particle velocity, and a is the stag-
o O 

nation speed of sound. This corresponds to the definition that acoustic 

waves are such that u •<<a, p 1 < < p and P1 < < P. 
0 

The speed of sound for a mixture of liquid and vapor phases, such 

as a 11wet 11 vapor is not as easily determinable as for a single phase 

substance. Karplus (21) presented an equation for the determination of 

the speed of sound for steam, which takes into account the quality of 

the steam. His results are shown in Figure 7. 

Since the propagation of acoustic waves is not entirely isentrop~c, 

a loss of acoustic energy occurs whenever the waves are transmitted 

through a fluid media. This aspect of acoustics is generally described 

as absorption of sound waves. This loss can be attributed to viscous 

dissipation, heat transfer and molecular exchanges of energy--occurring 

in the fluid itself. Normally the loss of energy within the fluid is a 

minor contribution to the overall loss when boundaries are present. 

Since the velocity of the fluid i? zero at solid boundaries, signifi-

cant velocity gradients exist near the walls, causing viscous dissi-

pation of the acoustic energy~ Additionally, heat conduction from 
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the fluid medium to the bounding walls cause losses in the acoustic 

energy. Another source of energy loss is the absorption of acoustic 

energy by the walls themselves, such as occurs with acoustic insula-

tion. All of the boundary losses depend upon the geometry and wall 

materials involved, as well as the sound field characteristics. 

Accurate estimates of these losses rely heavily upon empirical 

data, with most of the analytical work yielding primarily qualitative 

results. 

The effect of a resonant acoustic field on a liquid layer in a 

horizontal cylinderical tube has been investigated by Howartson (18) 

and Barfield (2). Both investigators observed that as the sound pres-

sure level increased, the free surface of the liquid layer assumed a 

pronounced curvature, as shown schematically in Figure Sa. When the 

sound pressure level increased to a certain level, an abrupt change 

in the surface occurred. A thin film of liquid normal to the tube 
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axis was ejected at a velocity antinodal point. A sketch of this is 

shown in Figure Sb. Both authors reported that multiple ejection sites 

became active as the sound pressure level was further increased. 

These ejected thin films were termed spouts by Howartson and curtains 

by Barfield. 

By considering the time average of the resonant sound field, 

Howartson (18) developed an expression for the time mean pressure 

difference between the velocity node and the velocity antinode. The 

resulting equation was p - p 
n a 

1 - 2 = - p u 2 o ' 
where: p 

n 
p 

a 
= time-mean difference in pressure between the 

velocity node and antinode. 

(2.15) 



N indicates velocity node and A indicates velocity antinode. 
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(a) Liquid assumes a si nu soi da 1 shape for moderate sound intensities • 

• T'~\ . 
• • . . · . 

(b) Liquid is ejected at a velocity antinodal location when the sound intensity exceeds a 
critical value. 

Figure 8. Sketch Showing the Effect of a Resonant Air Borne Sound Field on a Horizontal Liquid 
Layer in a Cylinderical Tube. 
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Acoustic intensity of a sound wave is defined as the time-average 

rate of flow of acoustic energy through a unit area normal to the dir-

ection of wave propogation. The acoustic intensity (I) of a plane 

wave traveling in the +x direction can be expressed mathematically as 

I = .!. I ,. p u I dt 
,. 0 

where,- is a time period much larger than the acoustic time period. 
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The intensity is normally expressed in terms of an Intensity Level (IL) 

which is defined as 

I IL= 10 1og10 y- , 
0 

where I is a stated reference Intensity. The value of I generally 
0 0 

used in acoustics employing an air medium is 10- 16 watts/cm2• Sound 

pressure level 

where 

(SPL) is 

SPL = 20 

defined as 
p' 

log 10 -p- ' 
ref 

1.-.: 

? = [ ~ J
0

T (P 1
) 2 dt] 2 = therms sound pressure 

P f = a specified rms reference pressure. re 

Two commonly used values of P fare 0.0002 dynes/cm2 for noise level re 

measurements in air, and 1 dyne/cm2 for underwater acoustic measure-

ments. Although identical values for IL and SPL measurements will occur 

for progressive plane waves in air (with the above noted reference 

values), the equivalence is not generally valid for more complex sound 

fields, nor for fluids other than air. Although Howartson could only 

obtain an order of magnitude agreement due to his method of measuring 

the maximum particle velocity, Barfield {2) was ab1e to measure and 
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confirm Howartson 1 s predicted results. Barfield noted that the pressure 

distribution along the tube, as reflected by the liquid surface height, 

appeared to be sinusoidal--before the curtains were formed. Barfield 

also presented a correlation for the threshold of the curtain formation 

as a function of the liquid properties, the wavelength and the sound 

pressure level. Barfield noted that the curtain behavior is indepen-

dent of the liquid depth (over the liquid depth range investigated), 

depending only upon the actual sound pressure level in the tube. 

Barfield presented a good review of Kundt 1 s tube literature. 

The effect of a resonant acoustic field on laminar flow in a cir-

cular tube was studied by Purdy et al. (43). A mathematical model was 

formulated in terms of boundary-layer type equations. By employing an 

order of magnitude analysis, with the assu~ption that the variables of 

interest could be represented as the sum of a time-dependent term and 

a time-average term, the conservation equations were reduced to a tract-

able form. Appropriate relaxation of boundary conditions along the way 

allowed the solution to be achieved. The analytical results appear to 

agree well with experimental results for air. The techniques employed 

followed those of Purdy et al. (44), for a two dimensional model of the 

same situation. A masterful solution of the problem yielded results 

indicative of the secondary flow induced by the resonant acoustic field. 

The results for the dimensionless time-mean stream function, as deter-

mined by Purdy et al. (43), are shown for conditions of no through flow 

in Figure 9, and for a through flow condition of M/M2 = 0.3 in Figure 
0 

10. The terms involved with Figure 10 are defined as: 
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M =TI/a 
V O 

M = U /a 
0 0 0 

a0 = stagnation speed of sound 

U = average through flow velocity v 

U = maximum amplitude of the z component of the time­
o dependent velocity for an inviscid fluid undergoing 

resonant acoustic vibrations 

; = y/(TI R2/2}, a dimensionless time-mean stream function 
v 

V = time-mean stream function 

R = tube radius 

b = main vortex thickness 
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The time-mean stream function in the region near the wall is shown in 

Figure 11 for the through flow condition M/M2 = 0.3. The A.C. boundary 
0 

1 ayer thickness is defined as 6 = /2v /w' ac o ' 
where v is the kinemati~ 

0 

viscosity of the fluid at stagnation conditions. 

The size of the main vortex was expressed as 

with n = b/R. The analytical expression results and the comparative m 

experimental data of Purdy et al. (43} are shown in Figure 12. This 

gives an indication of the extent of secondary flow induced by the 

resonant sound field. Purdy sunmarized the region of applicability by 

noting that the flow situation must satisfy the following conditions: 

M < < 1, IMJ < M2 and R/A < < 1 • 
0 - 0 

It was the opinion of Barfield (2) that the analytical results of 

Purdy et al. (43) were inadequate to explain the effect of a resonant 
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sound field on a horizontal thin liquid layer. He proposed a qualita-

tive sketch of the time-mean stream lines in which only one large vortex 

in each 1/4 wavelength existed, instead of the two predicted by Purdy 

(Figure 9). However, the difficult task of obtaining a mathematical 

model for the deformable liquid boundary and its coupling effect with 

the resonant sound field has not been accomplished. 

The effect of a standing sound field on a slow stream discharged 

from a porous wall was reported by Kestin and Persen (25). The flow 

field was obtained as a simple superposition of the uniform flow field 

on the flow field about an oscillating cylinder determined by 

Schlichting (49). The solution requires that the discharge velocity 

v < < u, where u is the maximum velocity 
0 0 0 · 

value of the oscillating 
. 2rru 

stream. Additionally AO 
. !tJ 

< < 1 (whioh is equivalent to M < < 1) 
0 

is required. The solutAon formulated for the stream function (t) was 

given in dimensionless form as: 

where by definition: 

v 
K=4_l,_....!_! & u u ac o o 

n·• = y/6 · ac 

A= wavelength= a/f, 

with h(n1 ) given as 

h ( '11-') = ; ,, .. + Tl I exp ( -.,, ' ) s i AT! ' - { 1 - exp (- 211 •· ) J 
+ exp(-,i I) ( 2sf "T'l f + JCOST'\ 1 ) - 3 • 
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These results are of interest if the condensat;on process ;s cons;dered 

to provide a uniform suction superimposed on a sound field, because the 

above solution can be employed with v taking on a negative value as 
0 

dictated by the condensation rate. 

The Effect of Sound on Heat Transfer 

A considerable amount of work has been reported in recent years 

concerning the effect of sound or vibration of surfaces on free convec-

tion, forced convection and boiling heat transfer. An excellent liter-

ature survey and bibliography on the effect of sound and vibrations on 

heat transfer phenomena is presented by Larson (33) and by Soehngen and 

Holman (52). Therefore, it would be superfluous to present a comp,tete 

survey here. It should be noted that the interest in this area, as 

reflected by publications, has dropped significantly in the last 3 

years. Consequently, little additional information is available above 

that covered in the reviews mentioned. 

Some general observations regarding the results of the investi-

gations of the effect of sound on heat transfer can be made. Host of 

the work has been experimental due to the complexities involved in 

attempting analytical solutions. The results of these investigations 

cover a range of slight decrease to several hundred percent increase in 

heat transfer coefficients due to imposing sound or vibrations on the 

heat transfer situation. In most cases, the results have been explained 

by a change in the flow field in the region of heat transfer. 

This literature survey discovered one article concerning the effect 

of sonic pulsations on condensation. Mathewson and Smith (38) reported 

some experimental results for the effect of strong sonic pulsations on 
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condensation heat transfer rates with isopropano14 The vapor was con-

densed on the inside walls of a vertical 1 1/8 inch BWG copper tubing 

jacketed for 6 feet with 1 5/8 inch BWG copper tubing. The sonic pres-

sure pulses were generated by a motor-driven flat plate siren installed 

at the inlet to the condensing section. The pulse frequencies ranged 

from 50Hz to 330Hz and the pulsed pressure amplitude ranged from 20 

lbf/ft2 to 250 1bt/ft2. The graphical results presented by Matthewson 

and Smith (38) are shown in Figures 13, 14, 15 and 16. 

The experimental average heat transfer ceefficient with no sonic 

pulsation (ii) is shown in Figure 7, along with the predicted coeffi-' 
0 

cients calculated by Matthewson and Smith from the methods of Nusselt 

(35) and Carpenter and Colburn (9). The average heat transfer coeffi-

ci ent with sonic pu 1 sati on is represented as h • No information was 
p 

available to determine the amplitudes corresponding to the data shown 

in Figures 14 and 15. Matthewson and Smith employed a simplified model 

based on penetration theory in an attempt to correlate the heat transfer 

data. Although they were successful in correlating their results when 

considering air forced convection results, th, model does not enable a 

correlation of the condensation heat transfer data. Their predicted 

curve h shown in Figure 14. In summary, Matthewson and Smith reported: 

(a) for a highly turbulent vapor stream, a critical pulse amplitude 

was required before any increase in the heat transfer rate was observed; 

(b) for pressure amplitudes larger than the critical value, heat trans-

fer rates increased rapidly wHh pressure amplitude; (c) at very high 

amplitudes the'heat transfer rate was almost independent of the pres-

sure amplitudes; (d) the heat transfer rate is only moderately affected 

by the frequency. They also noted that the effect of sonic pulsation 
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decreased sharply as the natural turbulence of the stream increased. 

Matthewson and Smith attempted to explain the effects of sonic 

pulsation on condensation heat transfer rates in terms of eddies being 

generated in the condensate film which penetrate to some depth. They 

noted that their simplified model and resulting equations were inade­

quate to explain the results and suggested that the mechanism of heat 

transferdiffers from the model proposedo It should be noted that their 

flow situation was such that turbulent film flow was expected, and 

apparently obtained. They reported that no measurable attenuation of 

the pulse from top to bottom of the exchanger tube was observed. It 

was not clear whether this included the isopropanol condensation tests 

or not, since they were also investigating sonic pulsation effects on 

forced convective heat transfer to air. Matthewson and Smith were able 

to show that sonic pulsations could increase the turbulent film 

condensation heat transfer rate; however, the mechanism was not 

established. 



CHAPTER III 

THEORETICAL MODELS 

The physical situation considered is the condensation of saturated 

vapor on the inside walls of a constant temperature vertical tube, with 

a resonant sound fteld along the tube axis imposed upon the vapor. 

This model is shown schematically in Figure 17. 

~R---i / r 
x 

cooled cylinderical 
tube maintained 
at a constant 
temperature, T 

w 

gravHy field 

i 
& condensate thickness, 

6. 

R = R - 6 

x 

Figure 17. Physical Hodel for the Effect of Vapor Borne Sound on 
Filmwise Condensation Heat Transfer. 
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The saturated vapor is assumed to have a temperature (T) greater 
v 

than the wall temperature (T ). The condensate film is assumed to w 

behave in a Newtonian manner and to possess constant properties. The 

condensate film flows under the influence of the gravity field and the 

forces imposed upon the condensate layer by the vapor. Additionally, 

it is assumed that the rate of condensation is controlled by the con-

densate layer and not by the kinetics of the condensation process. 

With the above assumptions, the following boundary-layer type 
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equations govern the laminar condensate film for axially synmetric flow. 

Continuity equation: 

2£ + 2- (pu) + ! E- (rpv) = 0 
at ax r or 

Momentum equations: 

and 

( au au+ ou) = F 
pot+~ v or x 

oP 
- - + oX 

2 2 2 
(! ~ + ! ! (IV + ~ AJ! + .2.,.!;!. + ! °") 

U J oroX 3 r dX ) oX2 or2 r ar 

P(~vt + u oV + v oV) = F _ oP + 
o oX or r or 

2 2 2 
( 4 O V + 4 1 oV 4 O V + 1 OU) 

µ ) ar2 3 r or - 3 or2 3 orox 

Energy equation (neglecting viscous dissipation): 

o T + u oT + v o T = l( o 2T + o 2T + ! ~) 
at ox ar pc ~ 2 ~. 2 r or p oX or 

(3.1) 

(3.2) 

(3.3) 

(3 .4) 

These equations are applicable for R < r < R. Properties and dependent 

variables applying to the condensate are without subscripts; whereas 

those applying to the v~por are subscripted with av. 
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The boundary conditions which apply for the condensate are given: 

for r = R; u = 0 

for r = R; 

v = 0 

T = T w 

T = T s 

(a& +u o6 - ) h k(.a!) Pat ax v fg = or R 

u(ff>] 

(3.5) 

(3.6) 

(3.7} 

(3.8) 

{ 3.9) 

(3.10) 

Equation 3.5 asserts that there is no slip between the condensate 

film and the wall. Equation 3.6 reflects the fact that the solid tube 

allows no radial throughflow. Equation 3.7 implies that a good thermal 

contact exists at the tube wall-liquid interface. The assumptions 

involved in Equation 3.8 are that the shearing stress exerted on the 

liquid is composed of the frictional effect of the vapor on the sur-

face, plus the average momentum change resulting from condensing the 

vapor. The importance of the momentum term has been noted by 

Shekriladze and Gomelauri (SO). Equation 3.9 appears to be a valid 

assumption for a pure vapor, whenever hT is not too large. Equation 

3.10 results from the consideration that the thermal energy released 

by condensation at the liquid vapor interface is conducted through the 

cooled wall. 

The assumption of a resonant sound field in the axial direction 

imposed upon the vapor allows the pressure imposed upon the condensate 

by the vapor to be written as 

P = P + P0 sin(2~x) sin(wt) • (3.11) 
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The super bar represents a time-average value. The time-average pres­

sure, P, of Equation 3.11 is assumed to be equal to the saturation 

pressure. The next term of Equation 3.11 is sound pressure, where P 
0 

represents the maximum pressure variation from P. The circular fre-

quency of the sound field is w, and the wavelength is i. This pressure 

description assumes that Pis independent of r. 

Other reasonable assumptions are that the liquid condensate behaves 

incompressibly, F is negligible, and F = pg. r x 

The problem can be envisioned as a superimposition of the time-

dependent effects on a time-average situation, with the time-dependent 

variation much less than the time-average value. Following this reason-

ing, one might then assume that the variables can be written as the sum 

of the time-dependent and time-average values: 

u(x, r, t) = 
I 

u (x, r, t) + u(x, r) (3.12) 

v(x, r, t) 
I 

= v (x, r, t) + v(x, r} (3.13) 

T(x, 
I 

+ f(x, (3.14} r, t) = T (x, r, t) r) 

Substitution of these expressions (Eq~ations 3.11, 3.12, 3.13 and 

3.14} and the previous assumptions into Equations 3.1, J.2, 3.3 and J.4 

would allow a separation of the time-dependent governing equations and 

the time-average governing equations. Performing an order of magnitude 

analysis would allow a reduction in the complexity of the problem, if 

higher order terms are neglected. Ultimately, one might be able to 

justify the further assumptions required to linear;ze the equations or 

one might attempt a computer solution of the complete set of equations. 

However, the considerations thus far do not yield a complete problem 

statement. 



45 

A set of equations like Equations J.1, 3e2 and J.3 can be written 

to describe the vapor behavior for O < r < R. 

Continuity equation: 

0Pv a 1 o 
-· + - (p u ) + - - (rp v ) = 0 ot ax v v r or v v (J.15) 

Momentum equations: 

OU oU OU 
P(__;!_ + u __:f.. + v __y_) - F at v ox v or x 

_ oP + 
ax 

2 2 2 
1 0 VV 1 1 oVV 4 0 UV O UV 1 OUV) 

p (- --. + - - - + -- + - + -- ,(3.16) VJ oraX Jr OX J oX2 or2 r or 

and 

(ov oV . gV) oP 
_..;!_ + u __y_ + v ~ = F - - + 
ot V oX V or r or 

2 2 
4 O V V 4 l oV V 4 V V 1 O UV) 

Uv(3 :-r- +Jr 7 -12 + J orox 
or r 

• (3.17) 

The energy is released by the vapor at the liquid-vapor interface 

due to the condensation process, without the requirement of a tempera-

ture gradient in the vapor to transfer the thermal energy. Conse-

quently the energy equation does not appear, but rather the conden-

sation process yields a boundary condition. That is, the effect of the 

condensation process on the vapor flow field can be considered as a 

' suction process at R. (Equation 3.18 below). The boundary conditions 

for the vapor equations can be written: 

for r = R; df - -
( oU) - (ouv) dx ( UV,»- u(R)] 
µ- -µ - +-------or R v or R TT R 

df 

{v ) = dx 
v R TTRP 

v 

(3.8) 

(3.18) 



46 

for r = O• ' (:~v) = 0 (3.19) 
0 

(vv) = 0 (3.20) 
0 

The condition of axially syrrvnetrical flow is given by Equations 3.19 

and 3 ,.'20~ 

The mass flow rate can be expressed as a function of the indepen-

dent variables x and t[r = r(x, t)J, and the liquid and vapor equations 

are coupled by satisfying boundary conditions which i1nvotve i . Con­

sequently, the solution of each set of equations must satisfy boundary 

conditions which are dependent upon x and t. It is not difficult to 

envision the complexity involved in attempting to solve this problem. 

A logical approach is to simplify the problem much further in order to 

obtain approximate solutions which ·may yield valid qualitative results. 

Simplified Liquid Condensate Model 

The time-average pressure axial distribution resulting from a · 

resonant acoustic field has been described by Barfield (2) as appearing 

to be sinusoidal, with a maximum'pr.essure difference between the veto-

city antinode and velocity node of 

as predicted by Howartson (18). The relation between the maximum sound 

velocity (U} 
p O 

u -~ 
0 

and the maximum sound pressure (P ) can be expressed as 
0 

Therefore, ~p can be expressed as 

( pao)2 
b,P -~ 

v (3.21) 
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The time-average pressure distribution which the vapor imposes upon the 

liquid condensate can be approximated as 

P = ~p sin2~ + P • (3.22) 

Although these results are for an ideal gas media with no through flow, 

it is assumed that the time-average effect of a resonant sound fjeld 

imposed on the condensing vapor can be represented by this simple 

pressure distribution. 

If this is assumed to be the only time-average effect the vapor 

imposes upon the liquid condensate, then the problem can be reduced to 

that of considering the Nusse1t problem with a sinusoidal pressure dis-

tribution superimposed. This is shown schematically in Figure 18, as 

a two-dimensional model. 

cooled 
isothermal 
wa 11 

p 

saturated vapor 

gravity I 
fl~ld t 

Figure 18.. Simplified li,.quid Condensate Model of the Effect of a 
Resonant Acoustic Field on Condensation. 

The two-dimensional model has the simplified governing equations: 

Continuity equation: 

(3 .23) 



Mpmentum equation: 

With the boundary conditions: 

for y ::: O; u = 0 

v = 0 

for y = 6(x); (~)a= 0 • 
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(3.24) 

(3.25) 

(3 .26) 

(3 .27) 

The momentum equation is linear and can be integrated with the given 

boundary conditions (Equations 3.25 and 3.27) to obtain the results 

au = fill ( 1 _ _1 aP) c 6 _ Y > , ~y u pg ax (3.28) 

and u = Mµ ( 1 _ _1 oP) ( y-6 _ i_) . 
pg ax 2 

(3.29) 

By use of the usual assumptions for a steady state laminar condensation 

process, an energy analysis of an element of condensate flow 6 by dx by 

unity yields: 

I d [ 6(x) -J b,T 
hfg dx Jo pudy = k 6Ti1' • 

Substitution of Equation 3.29 for u, performance of the indicated 

operations and rearrangement yields: 

d 1 1 1 aP) 
46 3 ~ + !± Tx( ~ pg ~ 

dx 3 ( 1 _ _1 oP) 
pg oX 

A solution for this equation can be written as 

4 

64 ::: (l _ ~1 aP)-J { 4kµ.¢.T 
pg oX 2 hi 

pg fg 

1 

1 oP) J } --- dx+C g ax 

(3.30) 

(3.31) 

(3.32) 
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C is a constant of integration which must be determined with the 

boundary condition: 

at x = O; 6:: 0 • (3.33) 

The pressure is given by Equation 3.22 as 

6P • 2TTX -
p :':: 2" s 1 ""T + p • 

Using Equation 3.21 for 6P and defining 

p 2 
_ TT ( o ) c = 2pg>..o a 

v 

and x :::: 2nx 
).. 

allows 1- oP to be written as 
pg c\X 

-1 oP :: ,. cos x pg ox ~ • 

(3.34) 

(3.35) 

(3.36) 

The magnitude of C will be considered before attempting the integral 

portion of Equation 3.32. 

Assuming saturated steam at atmospheric pressure is being con­

densed, then from Keenan and Keyes (22): ! = 0.01672 ft 3/1bm and 
p 

1/p = 26.80 ft 3/1bm. The speed of sound as given by Beranek (3) is v 

1328 ft/sec. Assuming the maximum sound pressure deviation (P ) is 
0 

2 
1 psi for an acoustic wavelength(~) of~ ft, and g = 32.174 ft/sec, 

then the value forC obtained using these values represents the maximum 

c value to be considered. 

r = 0.537 "max 

Therefore, a reasonable approximation of the cube root term in Equation 

3 .,32 is 



so 

1 

(1 _ ..!.._ oP) 3 ...., 1 _ .!.(_1 aP) _ ~(.!.... oP)2 _ 1· 2_·-51_1 oP)3 
pg oX """ 3 pg ax 3 O pg oX ~pg oX 

(3.37) 
1 

Using this approximation of (1 - ~g ~:) 3 , and neglect;ng terms 

involving Cm with m > 4 allows an approximate solution for Equation 

3.31 to be written as 

1 
-3 

1 - , cos x} { c 2_C_4 
-TB"-m 

3 , 2 4 
1[(~ 3 2 _K:) ·...., ( 2L) · 2""' - i' 3 1292 C + lrr"" sin x + ~ + ljBg' s1n x 

1 
2 · 4 ~ -rfu sin 3x + -fu sfo 4x]} • (3. 38) 

The first bracketed term raised to the 11+ power on the right hand 

side of Equation 3.38 is the Nusselt expression for f;tm th;ckness 

(6Nu) with vapor density neglected. Dividing both s;des of Equation 

3.38 by 6Nu will allow a dimensionless film thickness (r) to be defined: 

6 { ,..,, }-t { . i 5C4 
~ = 6 = 1 - , cos x 1 - TB' - m 

Nu . 

1[(-' ~ ~). (i_ ~) - :. 3 + 1292 + lrr"" s,n sr+ Jg-+~ 
x 

sin 2x 

1 

L . ,4 =i} ~ - 1292 s,n 3x + Jlm sin 4xJ • (3.39) 
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The average heat transfer coefficient (h) for a plate length L can 

be written as 

- 1 L k 
h = - J ...-r.:-T dx l 6 \XI 

0 

Substitution of Equation 3.38 for 6(x) and utilizing the approximation 

given by Equation 3.37 in the above equation yields: 

1 

} 1i { r;.2 sc4 1 [(-' ]£__ SC:3) 1 - ~ - ~ - = 3 •1292 + ~ 
x 

2 4 2 4 3 
+ (i + ~) sin 2x - rfu sin 3x + jffg sin 4x]} 4• (3.40) 

A dimensionless average heat transfer coefficient can be defined: 

h = _ii = { 1 -~ - ~c~ - ~ [ (f- + ~~:2 + &r3) sin x 
hNu x 

2 4 2 4 3 
+ (~ + ~) sin 2x - rfu sin 3x + Jffg sin 4x J} 4 • (3.41) 

Calculated results for 6 and h with C = 0.5 are shown in Figure 19. 

As may be observed from Equation 3.39 and Figure 19, the term (1 -

C cos x)-l/3 dominates the film thickness deviation. As xbecomes 

large, h approaches a value of (1 - c2/18 - 5C4/324), indicating a 

slight decrease in the average heat transfer coefficient for large 

vel ues of x. 

The simplified liquid condensate model for determining the effect 

of sound on laminar condensation heat transfer rate indicates only 

slight deviation from Nusselt 1 s average heat transfer coefficient. The 

simplified liquid condensate model resulted from assuming a time-

average solution for the vapor equations, which provided boundary con-

ditions for the liquid condensate problem. Another approach to the 
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problem is to assume a time-average solution for the laminar condensate 

film equations, thereby extablishing workable boundary conditions for 

the vapor equations. 

Simplified Condensing Vapor Model 

The time-average solution for the condensate film is assumed to be 

the results given by Nusselt 1 s expressions. It is assumed that the 

effect of condensation on the vapor can be treated mathematically as 

though a suction process occurs at the tube walls. Additionally, the 

film thickness is assumed to be much less than the tube radius; and 

consequently the 11suction" boundary conditions can be applied at the 

tube wall. That is, the radial boundary of the vapor is assumed to be 

at the tube radius R. The vapor is assumed to behave as an ideal gas 

with constant viscosity. The vapor flow is assumed to be laminar, 

axially synwnetric, time-dependent and compressible--with a resonant 

acoustic field superimposed. The pressure node is assumed to be at 

x = O. This model should provide a qualitative description of the 

vapor flow field, and perhaps an insight into the coupling that may 

exist between the condensate liquid film and the vapor at the liquid­

vapor interface. 

Purdy et al. (43) have considered the problem of a resonant acous­

tic field superimposed upon laminar flow of an ideal gas in the cir­

cular tube. Their governing equations are the same as those given by 

Equations 3.15, 3.16 and 3.17. Assuming that the variables of interest 

could be represented as the sum of a time average component and a time 

dependent component (like Equations 3.11, 3.12 and 3.13), they expressed 

the governing equations as time-average and time-dependent equations. 
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The pressure variations were assumed to be the same as for an inviscid 

gas, and the compression-rarefaction process was assumed to be isen-

tropic to eliminate the time-dependent density term in favor of the 

pressure term. Additionally they neglected time-mean density and 

pressure variations, and assumed that the average through flow velocity 

(U) was small in comparison with the maximum amplitude of the time-

dependent velocity, U. 
0 

With these assumptions, Purdy et al. performed an order of magni-

tude analysis to reduce and linearize the governing equations. Their 

reduced time-dependent and time-average equations, expressed as vapor 

quantities, are shown below. 

Time-dependent continuity equation: 
I I op au 
v - ( v ) ~+pv~ + .!. .2-(rv 1 ) = 0 r or v 

Time-dependent momentum equations: 

= 0 

I 

: UV .!. .£..(/~UV ) 
- r or ar . p 

v 

Time-average continuity equation: 

• 

au -- -
!-2- (rv ) = - _v_ -1 [.!.E-(rp 1 v 1

) + .2- (p 1 u 1
) J r or v ox - r or v v ax v v • 

Dv 

Time-average momentum equation: 
I 

'(oUV) v -- + v ~r 

(3.42) 

(3.43) 

(3.44) 

(3 .45) 

I 

u~(o:~) J 
(3.46) 
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They obtained solutions to these equations for the boundary conditions: 
I 

I oU ou 
O· o, v O, - o, v 

0 at r = v = or - v = and- = , v v or 
I I -at r = R; v = o, u = o, v = 0 and u = 0 v v v v 

R 
for all x; J 2n p u rdr = constant 

O V V 

Employing the assumptions made by Purdy et al, Equation 3.42, 

3.43, 3.44, 3.45 and 3.46 are applicable for the simplified condensing 

vapor model. The appropriate boundary conditions for the simplified 

condensing vapor model are as follows: 
I 

I l:)UV 

At r = O; v = O, --- = 0 v or 

At r = R; 

ou 
O, 

v v = and-= v or 
I I 

v = OJ UV = 0 v 

v v = -2TT_p_R_ (:) 
v 

R 

0 

and u v 
k = B x 2 

J, 

For all x: j' 2n rp u dr = r - r(x). 
V V O 

0 

Where by definition: 

r(x) 
3 

2TTRA /i 
- 9 

1 3 

- 1 L~ p(p - P) J 4 [ 4k6T J 4 
A -- g -t - 3 µ hfg 

1 

= [ kl\Tg(p - P) J 2 
s,, - puhfg ' 

(3.47) 

(3 .48) 

(3.49) 

(3.SO) 

(3.Sl) 

(3.52) 

(3.53) 

(3.S4) 



and r ~ Vapor Mass Flow rate at x = O. 
0 
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The boundary conditions given by Equations 3.47 and 3.48 are 

required by synvnetry. The conditions given by Equation 3.49 imply that 

there is no slip at the liquid vapor boundary. The conditions given by 

Equation 3.50 result from assuming the radial "suction" velocity and the 

interface surface velocity in the axial direction is specified by 

Nusse1t's solution for the liquid condensate equations. 

The problem as stated is essentially the same as that considered 

by Purdy et al., with the exception of the time-average boundary condi-

tions. Since the time-dependent equations and boundary conditions are 

the same as those of Purdy et al., their time-dependent solutions are 

valid for the simplified condensing vapor model. These solutions are 

expressed as a function of Bessel functions of argument r i"'1° of the 

first kind, where i = +;:T"". 

Time-dependent axial velocity: 

I 

u Cr, x, t > v 

u 
0 - --- cos (2TTX) * 

.A 

{ [ M!{R)- ber 0 (R)ber0 {r) - bei 0 {R)bei 0 (;-) J cos(wt) 

+ L- ber (R)bei (;') - bei (R)ber (;:')] sin{wt)} 
0 0 0 0 

Time-dependent radial velocity: 

I ...., 

v (r, x, v sin(2~) ~'( 

{ L ber O (;)bei ~ (;') - be\ (R)ber ~ (;') J cos{wt) 

+ [ ber (;)ber I(;) + bei {R)bei I c::-,J sin(wt) 
0 0 0 0 

(3.55) 
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t M1 (R)M0 (R) sin [ut + e 1 ( R) 9 (R) - n/4] } (3. S6) 0 

Where by definition: 

M2( ;) 
2...., 2 ...., 

(3. 57) - ber ( R) + bei (R), 
0 0 0 

M~(;) 
2 ....., 

+ bei~(;), (3.S8) - ber 1 { R) 

-1 
bei ( R) 

9 ( R) tan 0 
(3 .59} - --- J1 

0 ber (R) 
0 

e.1 ( R) tan -1 
bei 1(R) 

(3 .60) - ,0 ' ber 1(R) 

,._, r (3.61) r -
/µvlwov 
....., ......, 

and ~ = r/R = r /R (3.62) 

It should be noted that the boundary conditions at r = 0 and r = R 

can not be satisfied simultaneously. To alleviate this difficulty, 
....., .-.J ".:"2 

Purdy replaced 1/r by r/R • This permitted both boundary conditions to 

be satisfied, and the approximation in the A.C. boundary layer was 

exce11ent--according to Purdy et al. A detailed account of the order of 

magnitude analysis, assumptions and method of solution are presented by 

Purdy et al. (43); consequently, the interested reader should consult 

this reference for details. 

Solutions for the time-average equations (3.4S and 3.46) with the 

boundary conditions given by Equations 3.48 3,SO and 3.Sl can be 

obtained by employing the same techniques as used by Purdy et al. 

Utilization of these techniques, information on Bessel Functions as 

presented by Dwight (14) and Mclachlan (36), and perserverance yielded 
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the time-average results which follow. The time-average axial velocity 

is determined from Equation J.46 and the specified boundary conditions. 

Time-average axial velocity: 
1 3 

u (r9 x) ~ (2t2 - 1)B 8 x2 + _ 2 2 (1 - r2 ) (I'0 - 2TTRAJ,x4 ) 
v X, TTpR 

,...., 

M (r) 
3 0 .,.._. 

M (R) 
0 

v 

sin [ e (r) - 0 (R)] 
0 0 

M1 (r)M 1 (R) 
~ '{-M~2(_R_)_ cos [01 (r) - 91 (R )] + 

0 

+ ~- [r2 - f: J Ml(~_) ·- ~ ·- cos [0,(R) - eo(R) - TT/4J 
R M (R) 

0 

Ml (R) 
4 [- 2 J 

+ ~ '{ - l M (R) 
0 

(3.63) 

The time-average radial velocity can be determined from Equation 3.45. 

Time-average Radial Velocity: 

- (- ) . r ( -~ 3 A J, '{ 2 -1.r; 
v v r 9 x = - 4 "62 _ 1 )B x + 4 =-- ( 2 - '{ )x + 

J, Pv 



u2 
o R + TT - - COS 

a l (4"ro<) * { ..1__ c,2 - 2> + t c,2 -
~ 2~ 4 

2 ,.., 
~ M ( r ) 2 M ( r )M 1 ( r ) [ ,.., ,.., J 

+ - _o __ -,.;;r 0 2 ,_ sin e1(r) - e (r) - n/4 
~ M2(R) R., M (R) o 

0 0 

'( 2 ) Mt (R) [ - . ,.,, J 
+ ~ (t - 2 ,_ sin e1(R) ~ e (R) -n/4 

R M (R) o 
0 

2 -
TTll 4 ) Mt(r) r, - ,.,, 

- ao e {cos(;:" M (R) cos Le1(r) - 90 (R) -
0 

[ 4 )] [ M 1 ( r ) - ,_ 
- 1 - cos( rx ,..,, cos [ e1(r) - 9 (R) - n/4] 

M (R) o 
. 0 -M1 (R) 

- Y ,_ cos [ e1(;) - e (;) - 4/nJJ} + f(x) 
M (R) o r 

0 . 

/µ/wp~ 
where: e = A , 
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(3.64) 

(3.65) 

and, f(x)/r~ a function to be determined from boundary conditions. 
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It is of interest to note that€<< 1 and the terms multiplied by 

€ represent the contribution of 

1~L121 1 1 o --r-T J - - - - (r p v ) + - (P. u ) 
- r or V V oX y V 
pv 

from the time-average continuity equation (3.45}. Since all other 

terms multiplied bye are less than 1, then the contribution of this 

term is of the order of magnitude€, in comparison with the term result­

ing from -( ::v). Consequently, the time-average continuity equa-

tion (3.45} can be reduced to 

.! -.£ [r v J + ouv = 0 , r or v ox (3.66} 

and the time-average radial velocity as determined from Equation 3.66 

is as fo 11 ows. 

Time-average Radial Velocity: 

u2 
+ n ~~cos( 4TTX) 'le { _j_ ( ¥' 2 -)} +·i (1 2 -

a X X 2~ ~ 

cos( e1 { r) - 9 ( R) - rr/4] 
0 

-'( MO { r )Ml ( R) 
cos[91{R) - 9 ( r) - n/4] 

4 M1 ( r)M 1 {R} 
- -

M2 (R) - i2 M2{R) 
'If """' 0 R 

0 0 
,..., 

sin [9 1(R} - a1(r)] 
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sin 

'{ ( 2 7) Ml (R) ""' "" 
+ ~ 't - 2 ,.., cos [9 1(R) - e1(R) - TT/4] 

R M (R} 
0 ,.., 

+ 1. (12_ 1' _ L) M 1 < R) s ;n [ e 1 c R) - e O c R) - TT/4 J } 
R ~ M (R) 

0 

(3.67) 

The reduced time-average continuity equation (3.66) allows a t;me-

averagestreamfunction (y) to be defined by the following equations: 

v = - ! o'l' 
V r c\X 

(3.68) 

u = l c'l' 
v r or 

(3.69) 

Nctethat '¥(0,x) = 0 and define a dimensionless stream function ('I.') as 

; = ___ '!!..._,,__ 
(IT R2/2) , 

0 

where U is the time-average vapor velocity at x = o. (i.e., 
0 

(3.70) 

- ;- 2 ,...,( ~ ,.., ""' U = r p TTR ). Then YR, 0) = 1 and for O < r < R, 0 _< t _< 1 for all 
0 0 V - -

x values. The dimensionless stream function can be written in polar 

form as shown below. 

2 
Y (r,x)= ! {'{2 

u 
0 

u2 
o . ( 4m<) --=-- s1n -

4u a >.. 
0 

y Ml (r) f" ,..., M (r) 
+-.::::. _, L6 cos [e (r) - 9 (R) - TT/4] + o,.., cos[91(r) 

RM (R) 1 o M (R) 
0 0 

- e (r) - n/4] - 2 
M en 

0 
""' ,..,, 8 Ml(R) 

[8 1(R) - 9 (r) - TT/4] - ;::::, ,.., * 
0 rJ 

M (R) 
0 

cos 
o RM (R) 

0 
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+ 2i c,2 
~ -·· 

R 
0 (R) - TT/4] 

0 

!£_ ( 2 2 ) Ml (R) - ,.,, } 
+ ,_ °t - 1 - ~ ..., [91 (R) - 9 (R) - TT/4] . 

R R. M (R) ~ 
0 

(3.71) 

In the following discussion of the equations developed for ihe sim-

plified condensing vapor model, secondary flow induced by the resonant 

sound field is considered to be the mechanism whereby the sound can 

affect the condensate liquid layer--and the condensation rate. Signi-

ficant effects should be demonstrated to warrant further analytical 

considerations directed toward the determination of the liquid-vapor 

interface boundary conditions and the solution of the C()fflplete problem 

statement. 

The third term of Equation 3.71, 

u2 
·o . (4nx). {F<""'>} --=- s1n ~ r , 
2aU 11. 

(3.72) 
0 

is the contribution of the superimposed sound field to the time-average 

stream function. Some observations about this term will serve to 

emphasize its salient features. 

The bracketed portion of the third term is a function of rand is 

less than one for the range of r considered. That is, {F<r1} < 1, for 

O < r < R. Since r ; r//µ/wpv , then the order of magnitude of r being 

considered is 102 to 103• The term, sin (4nx/i), indicates that the 
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influence of the superimposed sound field on the time-average stream 

function is repetitive each half wavelength axial distance. 

The magnitude of Equation 3.72 can be expressed as 

• (3.73) 

The vapor properties which enhance the effect are obviously the ratio 

of density to acoustic velocity. If the vapor can be approximated as 

an ideal gas (as assumed for this development), then a =IR:o P/p • 
V'"'C V 

The results indicate th~t a high density of 1tbe vapor increases the 

effect of sound on the time-average stream function. The parameters 

which can be controlled--once a condensing vapor and condensate rate 

(which establishes r) is specified--are U and R. The maximum sound 
0 0 

velocity (U) is determined by the sound intensity imposed upon the 
0 

vapor. Increasing the sound intensity and/or the flow area increases 

the effect of sound on the vapor flow field. 

The size of the region affected by secondary flow for a non-

condensing vapor through-flow situation was shown by Purdy et al. to 

decrease as the through flow increased. This is shown in Figure 12. 

Qualitatively, the same result is observed for the simplified condens-

ing vapor model; in that, as the axial through flow decreases, the 

relative magnitude of the term represented by Equation (3.72) increases. 

To demonstate the time-average stream function for a physical 

situation similar to the experiments which were conducted, the follow-

ing set of property and parameter values are considered: 

w = 2n • 500 ft/ft.sec 

R = 0.200 in 

p = 60.1 1bm/ft3 

Pv = .0372 lbm/ft3 



p = 
0 

ro = 
[lT = 

1.0 lbm/in2 

8.o lbm/hr 

5.0°F 

-4 I u = 2.1 x 10 lbm ft-sec 

u = 8.72 x 10-61bm/ft-sec 
v 

k F 0.394 BTU/hr.ft.°F 

a= 1328 ft/sec hfg = 970 BTU/lbm 

Quantities calculated from the given values are: 

. 1 

• [ kATg(p - Py) "12 = 0.0086 ft-~ 
pµhfg J 

2TIRA 1, 2TIR [ gp C P - P) J 1t+ [ 4k6 TJ. 314 - 3/4 
-- = - -h- = 0.282 ft 
r 3r 1-1 fg 

u2 
0 

0 0 

4aTI 
0 

R R = = 
/uv!tupv 

Re = p U 2R/u 
V O V 

60.92 

= 1951 • 
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The time-average stream function for this particular case can be written 

in the following manner: 

'!'(r, x) = 0.0006 i 2c,2 - 1> 
k 

x 2 + 

- 0.0485 sin 4~ • F(;) • 

The dimensionless time-average stream function was calculated for this 

combination of values, and the results are shown in Figure 20. This 

combination of parameters and variables is considered to be the most 

favorable to demonstrate any induced secondary flow for the experiments 

conducted. As evidenced by Figure 20, the condensation process domi-

nates the flow situation and no significant regions of sound induced 
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secondary flow ex;st. The value of M/M2 for the case under cons;der­
o 

ation is 5. :6 at- the inlet and comparison of the results depicted by 

Figure 20 with the results of Purdy et at. (43), as shown in Figures 

10 and 12, reveals the overriding effect of the condensation process. 

The primary mechanism whereby the resonant sound field can alter 
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the condensation rate has been assumed to be an alteration in the liquid 

condensate thkkness resulting from induced secondary flow in the vapor. 

This simplified condensing vapor model was proposed to determine the 

conditions which would favor sound induced secondary vapor flow. These 

have been noted. If a backr-flow vortex pattern similar to that shown 

in Figure 10 did exist in the vapor, then the possibility of increasing 

the heat transfer rate would depend upon the liquid condensate becom-

ing turbulent up-stream of the transition point without sound. 

The results from the two simplified models proposed indicate that 

the effect of a resonant sound field on condensation heat transfer is 

not significant for the conditions considered. The simplified liquid 

condensate model predicts a decrease in the heat transfer coefficient 

for tube lengths greater than 2l. The simplified condensing vapor 

model shows that the through flow vapor velocity and the sound inten-

sity are the most significant parameters influencing the region of 

sound induced secondary flow. The most significant fluid properties 

which would favor an effect are low values of hfg and a. No signifi­

cant effect was evident for the case considered. 

The approach with the two simplified models which have been pro-

posed has been to assume the solution for either the vapor governing 

equations or for the liquid condensate governing equations, thereby 
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establishing the liquid-vapor interface boundary conditions for the 

other set of equations. The results of these simplified models have 

not demonstrated that significant effects would be expected from super­

imposing a resonant sound field on the condensing vapor flow. Conse­

quently, attempts to solve both sets of equations simultaneously with 

the time and position dependent liquid-vapor interface coupling boun­

dary condition were not pursued. 

One aspect of this problem which has not been explored h the 

possible effect of the condensing process on the sound field. The 

time dependent sound pressure fluctuations are assumed to be imposed 

upon the incoming vapor and propagated by the vapor in the axial direc-. 

tion. If the molecules which condense are considered to possess sound 

energy, then the removal of these particles by the condensation pro­

cess should reduce the amount of sound energy {and intensHy) propa­

gated. If this is a correct assessment of the physical situation, 

then the effect of imposing a sound field on condensing vapor would 

be even less than that predicted by the proposed models. 



CHAPTER IV 

EXPERIMENTAL INVESTIGATIONS 

Theoretical and experimental results reported in the literature 

indicate that condensation heat transfer rate is governed predominantly 

by the ratio of the condensate thermal conductivity to film thickness, 

when the film flow is laminar. If the condensate film flow is turbu­

lent, the condensation heat transfer rate is related to the thickness 

of the laminar sublayer. Improvement in the rate of condensation heat 

transfer can generally be traced to a decreased thickness of condensate 

which experiences laminar flow. The experiments which have been con­

ducted were designed to determine the parameters which are required 

to determine the effect of a vapor-borne resonant sound field on 

condensation heat transfer rate. 

Several of the experiments conducted were exploratory in nature 

and yielded only qualitative results. These exploratory type experi­

ments are presented solely as background information with some 

discussion of the qualitative results obtained. 

68 
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Exploratory Experiments 

Experiment to Determine the Feasibllity of Coupling a Sound System with 

a Condensing System. 

A f1at=p1ate siren was used as a sound generating device in the 

experiments reported by Matthewson and Smith (38). Although the sfren 

has the capability of generating high intensity sound, the intensity 

is dependent upon the vapor flow rate and the frequency range is some-

what limited. The use of commercially available electronically gener-

ated sound system was considered advantageous for the following 

reasons g ( 1) A wide frequency range capabi 1 i ty. ( 2) A wide intensity 

range capability. (3) A capability of generating various pressure 

waveforms. (4) In event of a component failure, replacement parts 

would be readily obtainable. (S) The horn driver units were the only 

components which would need to be bought. 

Water was selected as the condensing fluid due to the wealth of 

information available on its properties and results from various con­

densing situations. The saturaHon temperature (212°F) of water at 

normal atmospheric pressure is considerably above the design conditions 

for commercially available horn-driver units. One problem encountered 

is that the driving coils located on the horn diaphragm dissipates, as 

heat, about 80 percent of the energy required to drive the horn unit; 

0 consequently, the coils will reach temperatures well above 212 F when 

coupled with steam at atmospheric pressure. Another problem is that 

the characteristic acoustical impedance (pa) of saturated steam at 1 

atmosphere pressure is about 0.67 times pa of air at standard 



t~perature (70°F) and pressure (1 atm.). This impedance difference 

ftom that of the driver unit design condition could appreciably a1ter 

the amount of acoustical power transmitted to the vapor. In order to 

determine the magnitude of the difficulties noted above, an experiment 

was conducted. 

The apparatus arrangement for this experiment is shown schemati­

cally in Figure 21. The boiler was electrica11y heated by a 3.75 KW 

heater composed of three elements. The power supp1ied to the boi1er 
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was controlled by a powerstat. Due to the physical size and shape of 

the boiler, the vapor which was generated emerged with time-dependent 

pressure pulsation. Since the experiment was undertaken to study the 

effect of sound on condensation, the pu1sation of the vapor flow from 

the boiler was an undesirab1e characteristic. To correct this. situation 

a baffled pulsation damping tank was constructed and insta11ed between 

the boiler and test condenser. The pulsations in f1ow of the vapor to 

the test condenser were negligible after this modification. 

The vertical test section was constructed from 3/4 galvanized 

steel pipe with a 1/4 inch stainless steel tube positioned in the 

center. A stainless steel annulus plug with a 0.339 inch diameter 

hole in the center was press fitted in the 3/4 inch pipe at the lower 

end of the test section. The purpose of the plug was to serve as a 

surface to partially reflect the sound waves, and yet allow the con~ 

densate to flow out of the condensei: to be collected. This arrange­

ment left an annular space immediately below the test condenser in 

which the condensate could acct.mulate and flow out into a condensate 
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collection flask. The boiler, pulsation damping tank and test condenser 

were covered with 1 inch thick fiber glass insulation. 

The excess steam which was not condensed in the test condenser 

flowed out through a tee connection 3 inches above the top of the 

annulus plug. This excess steam was piped to an auxiliary condenser, 

condensed, and collected in a flask. 

The temperature of the coolant water was controlled by circulating 

the coolant water, with a pump, through a coolant temperature regulator. 

This regulator was equipped with a variable (0 - 2KW) electric heater to 

bring the coolant up to the desired operating temperature, then the 

heater was turned off and a flow of city water was mixed with the cocl­

ant water to hold the coolant temperature at the specified level. The 

total water level was maintained by an overflow drain. The inlet coot~ 

ant temperature was maintained at the desired value by regulating the 

flow of city water which was mixed with the coolant water. This 

arrangement for controlling the inlet temperature of the coolant worked 

sathfactori ly. 

The line connecting the condensation collection flask to the excess 

steam line was provided in an effort to obtain system pressure in the 

condensate collection flask. The first arrangement designed to establ­

lish system pressure in the condensation collection flask provided for 

a tine connecting the flask to the upper portion of the accumulation 

section of the test condenser (physically, just below the plug in the 

annulus). The undesirable result was that whenever the stopper with 

the condensate line and pressure equalizing tine was removed from the 

condensate collection flask, a sudden flow of condensate occurred. 
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Severa1 physical arrangements were tried and the final arrangement (as 

shown in Figure 21) seemed to work best, with no sudden flow of 

condensate occurring when the stopper was removed. 

Copper-constantan thermocouples were clamped to the surface of 

the coolant tube at entrance and exit from the test condenser. An 

iron-constantan thermocouple was positioned such that the steam leaving 

the damping tank flowed across it. Copper-constantan thermocouples 

were attached to the outer wall of the inlet steam pipe, the condenser 

test section steam pipep and the outlet steam pipe. A copper-constantan 

thermocouple was installed so that the condensate leaving the test con-

denser f1owed over it. The readings from this last thermocouple flue-

tuated quite a bit, even under steady-state conditions, indicating that 

the thermocouple was not installed properly. 

Knowing the condition of the steam at the inlet to the test section 

and measuring the amount of condensate that occurs in the test section 

allows the heat transfer rate (Q) to be estimated as the mass conden-

sation rate re multiplied by the difference in enthalpy of the incoming 

steam and the collected condensate (h. - h ). Since the average dif-
1 C 

ference in temperature (6T) between the vapor and the condensing sur-

face (with area A) can be measured with the thermocouples, then the 

average condensing heat transfer coefficient (h) can be calculated: 

h = Q/(A~T) = r (h. -h )/(A6T). 
C 1 C 

The sound was imposed upon the vapor in an axial direction by a 

60 watt horn driver unit (University Sound, Model 60T). The horn driver 

unit was connected directly to the 3/4 inch pipe of the test condenser 

with an adapter~ The power to the driver unit was supplied by co4pling 
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an audfo osci 11 a tor with a 30 watt audio amp Hf i er. The foput vo 1 tage 

to the horn driver unit was monitored on an oscilloscope to insure that 

the sinusoidal wave pattern was not distorted. The apparent resonant 

condition was noted to yield peak voltage input, so that the approxi­

mate point of resonance could be detected from the oscilloscope display 

of the input to the driver unit. 

A number of operating conditions involved in utnizfog a horn 

driver unit in this experiment are detrimental to the driver unit. At 

atmospheric pressure the saturation temperature of the steam is 212 °F 

which is well above the temperature which the driver unit was designed 

to operate. To alleviate this problem, several 1 inch diameter holes 

were dr i 11 ed in the back of the driver unit body so that the unit could 

be air cooled. A blower continuously forced air through the back side 

of the driver unit while the test condenser was being used (for tests 

with and without sound). The driver unit has a phenolic and fiber 

structure diaphragm, and after approximately 25 hours of use, no detri-

mental effects on the diaphragm were observed from a visual inspection. 

The driver unit specifications indicate that the unit is capable of 60 

watts continuous duty operation if integrated program material is used. 

Operation at high intensities, high temperature and constant frequency 

is suspected as being the reason for a failure of the diaphragm after 

30 hours of operation. The particular mode of failure was that the 

coil support became separated from the diaphragm, apparently due to 

excess.ive driving force. 

At the time of operation, a suitable pressure transducer was not 

available to measure the actual sound pressure generated. The horn 



driver unit was normally operated at the h;ghest und;storted input 

available from the oscillator and ampl;fier, for a g;ven resonant 

frequency condition. 
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A complete set of heat transfer and sound data was not obta;ned 

from this experiment. Collection of condensate from the test condenser 

for a measured period of time for steady-state conditions without sound 

and with the resonant sound field imposed upon the vapor indicated only 

modest increase in the heat transfer rate. The maximum increase 

observed was approximately 30 percent. No trend in this limited data 

was observable, and several considerations (quite unrelated to the 

effect of a vapor-borne resonant sound field on condensat;on heat trans­

fer) peculiar to the physical arrangement would account for the observed 

increase. Among these considerations are: (1) The d;aphragm was air­

cooled on the back side; consequently, condensation would be expected 

to occur on the vapor side of the d;aphragm. However, when a resonant 

sound field was ;mposed on the vapor, the d;aphragm then acted as a mov­

ing wall on which condensat;on occurred. (2) The condensate formed ;n 

the test section flowed, due to gravitational attraction, through a 

inch long annular space with 1/4 inch I. D. and 0.339 ;nch o. D. If 

the con~ensate wetted both the inside and outside walls of the annular 

space, then some condensate m;ght accumulate in the bottom of the test 

section rather than in the accumulator. This may have caused the fluc­

tuations of the condensate temperature thermocouple readings noted 

earlier. The effect of the resonant sound field may have been to pump 

the condensate into the condensate collection flask. 

The difficulty with this experimental configuration was that too 

many unknown parameters existed, which further instrumentation could 
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not easily overcome. Modifications of this apparatus to achieve a more 

complete set of data was not judged to be worth the effort required due 

to a number of deficiencies. The significant posit he information 

obtained from this experiment was that the horn driver unit could be 

effectively sealed so that air leaks into the system would not occur, 

and the diaphragms could withstand the adverse operating conditions for 

a useful period of timeo The feasibility of coupling a conmercially 

available sound system with a condensing system was establishedo 

Since the primary objective of this work was to determine the para-

meters which influence condensation heat transfer when acoustic pressure 

pulsations are imposed upon the condensing vapor, it was felt that a 

visual observation of the liquid condensate film would be advantageous. 

The following experiments reflected this thought, since all permitted 

visual observation. 

Experiment to Determine the Possible Effect of Vapor-Borne Sound on a 

Vertical Liquid Film Flow. 

The works of Howartson (18) and Barfield (2), as reviewed in 

Chapter II, show that a resonant air-borne sound field can cause liquid 
I 

I 
to be ejected from a thin horizontal layer ~f liquid. The purpose of 

this experiment was to determine if a similJ.r phenomenon occurs for a 

thin liquid film flowing down a vertical surface. 

The apparatus arrangement for this experiment is shown schernati-

cally in Figure 22. The sound generating system was composed of two 

75 watt horn driver units (University Sound» Model 10-75), a 75 watt 

audio amplifier (Mcintosh 75) and an audio oscillator {Hewlett-Parkard, 
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Model 200-CD)o A pressure transducer (Kistler, Model 606L), a Kistler 

charge amplifier and an oscilloscope (Tektronix, Type 502) were used to 

determine the amplitude of the sinusoidal pressure wave which was gene­

ratedo The inside diameter of the glass tube was 1 inch and the out­

side diameter of the copper tube was~ inch. Water flowed inside the 

copper tube to the top where it then flowed out through a small, adjust­

able~ axial gap and down the outside of the copper tube in a.thin film. 

The experimental procedure was to establish film flow along the 

length of the copper tube, then decrease the flow rate to obtain a 

desired film thickness. With a thin film liquid flow established, a 

resonant sound field was generated in the air in the annulus space. 

Visual observations revealed that high enough sound intensity could be 

generated to cause ejection of liquid from the thin film. The ejection 

sites appeared to occur at half-wavelength locations corresponding to 

the acoustic pressure nodes (acoustic velocity anti-nodes). The ejec­

tion sites were not all simultaneously active. An ejection site would 

occur close to the first acoustic pressure node when the liquid film 

was present. This appeared to remain active until the inflow of liquid 

was insufficient to support the ejection mechanism, at which time the 

first ejection site would cease and an ejection site 1/2 wavelength 

further down the tube would be activated. This cessation and activa­

tion of sites would proceed in succession of 1/2 wavelength ejection 

sites a11 the way down the four foot length of the annular region. 

After exhausting the last ejection site, the first ejection site would 

normally be reactivated almost immediately. Occasionall~, an ejection 

site would be skipped in the progression of the ejection phenomena from 



one pressure node to the next. A noticeable "blowing" effect was 

observed when the ejection mechanism occurred at the lower end of the 

tubep with drops of water being thrown in many directions. 

No further attempts were made to obtain quantitative data from 

this experiment. At this point it appeared that the vapor-borne sound 

could cause the average film thickness to be decreased. If this ejec­

tion effect occurred in a condensing system, then it is reasonable to 

expect that the heat transfer rate would be appreciably affected. 

In addition to the visual observation of a possible mechanism 

whereby sound might affect the condensation heat transfer rate, the 

pressure transducer proved to be capable of yielding reliable pressure 

measurements at the acoustic pressures under consideration. During 
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this series of experiments, the first failure in attempting to utilize a 

membrane between the sound generating region and the region of interest 

was experienced. A latex rubber membrane was stretched across the 

outer tube just below the horn coupler. Considerable vibr,ation from 

the excited membrane was superimposed on the sinusoidal pressure wave, 

as was observable from the resulting distorted sinusoidal pressure wave 

form displayed on the oscilloscope. 

The membrane was desirable since it would allow the horn driver 

/ unit to operate under favorable conditions, and thereby improve the 

life of the horn and reduce the effect of the additional surface area 

in the condensing test section. Further evaluation of the latex rubber 

membrane revealed that it would not withstand the steam temperature and 

acoustic pressure requirements. Attempts to use a thin teflon membrane 

were pursued in the exploratory experiment described in the following 

section. 
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Condensation in a Helmholtz Resonator~ 

An acoustic Helmholtz resonator can be described as a cavity (with 

volume V ) with a neck opening of length a and radius r • If a sinu-c hn n 

soidal pressure {time-wise) is exerted on the opening such that the 

acoustic wavelength is much less than any system dimension, then the 

acoustic system can be mathematically modeled as lumped parameters. 

The mass of gas in the neck opening is assumed to move as a unit, with 

the pressure of the gas in the cavity being alternately compressed and 

expanded by the influx and efflux of gass through the opening. The gas 

in the cavity is thus considered to provide the system stiffness. At 

the opening, sound is radiated into the surrounding medium, and thereby 

causes a dissipation of the acoustical energy in the cavity. Viscous 

dissipation is neglected. 

A complete presentation of the Helmholtz resonator, derivation of 

acoustical equations and limitations of the analytical results are pre-

sented by Kinsler and Frey (26). One result of interest in this experi-

mental design was the natural frequency of the Helmholtz resonator, 

which is: f ar n j . . 1 . 
o = T v (~ + o.85r ) 

c n n 
( 4. 1) 

The basic motivation for conducting this experiment was to obtain 

a uniform acoustic pressure variation tbr.oughout the cavHy containing 

the condensing vapor. From this experiment the effect of sound pres-

sure variation on the condensing vapor could be determined without the 

presence of the ejection of Hquid mechanism. The vapor folet ports to 

the test section were design,ed to have a very large acoustical inert-

fance, and the cavity was then treated as though it behaved acoustically 
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as a Helmholtz resonator. The neck opening which connected the cavity 

to the acoustical transmission tube was 0.1 inch radius by 1 inch 

length. The calculated natural frequency of this assumed Helmholtz 

resonator is 445 Hz. The system was designed to operate acoustically 

as though the Helmholtz resonator were a side branch of the tube 

transmitting acoustic energy. 

The cavity was a sight glass modified to allow pressure and tem-

perature measurements to be made. A .pressure transducer (Kistler 

Hodel 606L) and a film chromet- constantan thermocouple (Heat Technology 

Lab Model No. TCS - 102 - ChC) were used in an attempt to measure the 

acoustic pressure and temperature variations in the cavity. Copper-

constantan thermocouples were installed to measure the coolant tempera-

ture at the condenser section inlet and outlet, the condensate tempera-

ture, and the vapor temperature in the cavity. Provisions were made to 

measure the mass flow rate of the coolant, the mass flow rate of the 

condensate, and the cavity pressure. A heat exchanger was constructed 

to allow control of the inlet coolant temperature. A schematic 

diagram of this experiment is shown in figure 23. 

Any observed difference in the heat transfer rate for steady-state 

operation with sound and without sound would be attributable to an 

increase (or decrease) in the time-average condensation driving force. 

If thermodynamic equilibrum for the states constituting the sound pres-

sure fluctuation process is a valid description, then this effect will 

be quite small. From Nusselt•s theory, the heat transfer coefficient 

is proportional to the 1/4 power of the difference between the satu­
, 

rated vapor temperature and the wall temperature (i.e., h oc:(6T)11i). 
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Whether one cons;ders the sound pressure variation to occur isentropi­

ca11y or as a saturated liquid-vapor system (Claus;us-C1apeyron Rela­

tionship), the time-average temperature difference deviates from a 

constant value by an extremely sma11 amount. If ;mposing a uniform 

pressure variation on the vapor resulted in a time-average change in the 

condensat;on heat transfer rate, then one would be led to investigate 

the rates of the condensation and evaporation processes ;n more detail. 

No results were obtained from this experimenta1 arrangement. 

Attempts to utilize a teflon membrane (.003 ~nch thickness) indicated 

that a significant reduction in the transmission tube sound level 

resulted. Remova1 of the membrane still did not allow a measurable 

sound pressure to be acheived in the cavity. Dropwise condensation 

occurred on the 1/4 inch condenser tube and persisted for an extended 

period of time (about 2 hours). The results d;d not permit an evalu­

ation of the film thermocouple response time. Apparently the high flow 

rate of vapor ;nto the cavity eliminated the expected He1mholtz reso­

nator type acoustic behavior. Since it was estimated that results 

from this possible mechanism for sound to affect condensation heat 

transfer were an order of magnitude less than those of the ejection 

mode, further attempts to investigate condensation in a Helmholtz 

resonator were abandoned. The efforts ;n the later experiments were 

directed toward obtaining more information about the 1iquid ejection 

mechanism. 



Experiments to Determine the Effect of a Vapor-Borne Resonant Sound 

Field on Filmwise Condensation of Steam 

Two experimental configurations were used to determine the effect 

of a vapor-borne resonant sound field on fitmwise condensation heat 

transfer. Both configurations employed a vertically oriented glass 

tube, with condensation occurring on the inside walls. The configu­

rations were basically the same, with the minor differences between 

them representing attempts to increase the sound intensity. 

A schematic diagram of experimental configuration A is shown fo 

Figure 24. The sound pressure generation system is composed of two 

horn driver units (University Sound, Model ID 75), two Mcintosh 75 

Audio, amplifiers, and a wide range audio oscillator (Hewlett-Packard, 

Model 200 CD). The acoustic pressure measurement included a Kistler 

pressure transducer (Model 606L), a Kistler charge amplifier and a 

Tektronix Dual-beam Oscilloscope (Type 502). The oscilloscope display 

of the acoustic pressure trace was recorded with an Oscilloscope 

Polaroid camera. Alt thermocouples were copper-constantan, with an 
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ice point reference junction. The vapor pressure was measured with a 

Statham pressure transducer (Model PA707 TC-15-350), with the input 

voltage to the strain-gage resistance bridge supplied by a Harrison 

Laboratories Power Supply (Model 865C). The outputs of the thermo­

couples and the Statham pressure transducer were read with a digital 

voltmeter (Non-Linear Systems, Series 2900, Model 29175) to +.002 milli­

volts. The coolant mass flow rate was determined with a venturi tube. 

Calibration curves from the Statham pressure transducer and the venturi 
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tube are presented in Appendix C. The test section condensate and the 

excess vapor condenser condensate was collected in flasks for a measured 

period of time and weighed. The time period of condensate collection 

was measured with a Standard Timer which could be read to +.0002 

minutes, and the collected condensate was weighed on a Harvard Trip 

Balance with an estimated accuracy of _:.025 grams. An EPUT Meter 

(Beckman/Berkley, Model 52100) was used to measure the frequency of the 

audio amp ti f i er output. 

The earHer exploratory experiments indicated that significantly 

better acoustic coupling occurred without a membrane installed to sepa­

rate the sound generation and condensing sections. Consequently, the 

horn driver units were modified for exposure to the vapor condensing 

system. RTV silicone rubber was used to seal around the diaphragm to 

prevent air leakage into the condensing sectfon, or vapor leakage·iAto 

the back cavity of the horn driver unit. Water circulating copper coils 

and forced air cooling lines were installed in the back cavity of the 

horn driver units to provide some cooling, and thereby prolong the life 

of the horn palate diaphragm. The cooling became necessary when the 

average lifetime of the palate diaphragm unit was fou"d to be approxi­

mately one hour without the cooling effect. The palate diaphragm 

failures observed were, in most cases, the result of overheating of 

the electrical coil insulation. 

Since the born driver units were exposed to steam, a vertic~l 

position for the driver units was required to avoid collection of con­

densate in the driver units. To accomplish this, a horn coupler was 

constructed. The details are shown in Figure 25. The incoming vapor 
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was ported directly into the horn driver compression and expansion 

region, with the palate diaphragm assembly modified to receive the pro­

jecting steam inlet tube. The alternate steam inlet ports were used in 

experimental configuration B. 

The supply steam line, hydroclone separator, superheater, lower 

portion of the horn driver unit, horn coupler and all connecting lines 

between the steam tine and test condenser were insu1ated with 1 inch 

thick fiber glass insulation. 

The test condenser for experimental configuration A was a JOOHM 

Sargeant glass condenser. The only modification made to this commer­

cial laboratory-type condenser was to cut the glass condenser tube 

normal to its axis with a diamond saw, and to fire-polish the cut to 

achieve a square end. The acoustic pressure transducer holder was 

machined to have a contour approximately the same as that of the flared 

end of the glass test condenser. A representation of the lower part of 

the test condenser, including the acoustic pressure holder and conden­

sate temperature thermocouple, is shown in Figure 24. The advantage of 

this lower test section design was that the flow of condensate about 

the transducer could be observed. Particularly interesting was the 

possible effect of a layer of liquid on the acoustic pressure trans­

ducer surface, and the possible effect of acoustic pressure variations 

on the flow of liquid in this confined region between the pressure 

transducer holder and the flared portion of the condenser. 

The procedure employed with experimental configuration A is out­

lined below. The power to all electrical units was turned on to allow 

stabilization to be achieved before a test was begun. The 50 psig 
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supply steam line was warmed up by allowing steam to flow through the 

hydroclone separator and auxiliary condenser for about 30 minutes. 

Steam was then allowed to enter the test condenser. The rate of steam 

admission to the test condenser was controlled with the pressure regu­

lator adjustment, the test condenser valve, and the auxiliary condenser 

valve. A moderate throttling process was desired across the steam 

inlet valve to allow a slightly superheated steam to enter the super­

heater. However, the inlet vapor temperature, as measured by a thermo­

couple installed in the horn coupler, never indicated that more than 

several degrees superheat was attained. 

After steady-state operating conditions were established, as deter­

mined from periodic readings of the thermocouple and pressure trans­

ducer output, a test would be inaugurated. The normal procedure was to 

collect the condensate from the test condenser and from the excess con­

denser for a measured time period, and weigh the condensate collected. 

During the collection period, readings from the instrumentation devices 

were obtained at approximately 2 minute intervals and averaged for the 

entire collection period. The interval readings were very consistent 

over the collection period. Tests were conducted for the same steam 

admission rate with no sound, and with maximum sound pressure level for 

several of the harmonic resonant frequencies. The harmonic resonant 

frequency was determined by operating the sound generation system at a 

reduced level, and varying the oscillator frequency until a maximum 

sound pressure level was indicated from observation of the oscilloscope 

display of the sound pressure transducer output. The maximum sound 

pressure level was obtained by increasing the power input to the horn 

driver units to a level just below that causing distortion of the 



sinusoidal voltage input wave. This was determined by displaying the 

voltage from the amplifier output terminals, (along with the pressure 

trace) on the osci11oscopeo The input voltage to the two horn driver 

units was balanced by use of the oscilloscope dual input featureo 
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The experimental configuration A employed 16 ohm horn driver unitso 

Even with cooling, the horn palate diaphragm life-time was much shorter 

than desired. The lif~-time of the horn palate diaphragm ranged from 

one minute to approximately 10 hours for the University Sound Model 

ID 75 horn driver units. Consultation with factory representatives did 

tittle to alleviate this problem. One suggestion they offered as the 

cause of the numerous failures was that the hornswerenot acoustically 

coupled. Although the horn driver units coupled welt with air in the 

same physical system, perhaps the characteristic acoustic impedance of 

steam was low enough (as previously noted) to account for the ••non­

loading'' of the horn driver unit. It was noted that the maximum 

sound pressure obtained with steam was approximately 1/3 of that for 

air in the same physical system. Differences in flow field and acoustic 

impedance for the two media obviously exist, but the expected reduction 

in maximum sound pressure was approximately half the magnitude observed. 

No satisfactory method was found to overcome this difficulty, although 

experimental configuration B was an attempt to increase the maximum 

attainable sound pressure. 

Difficulty in obtaining the standard 16 ohm palate diaphragm 

assemblies for the horn driver units, and the above mentioned horn 

driver units led to the decision to use 8 ohm palate diaphragm assem­

blies. This was of no consequence electronically, since the Mcintosh 75 
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amplifiers are equipped with multiple output impedance terminals to 

facilitate impedance matching. It was felt that the overall mechanical 

impedance offered by the steam atmosphere might couple better with the 

8 ohm electrical impedance. These 8 ohm palate diaphram assemblies 

were used in experimental configuration Bo 

A photograph of the test section used in experimental configuration 

Bis shown in Figure 260 

figuration A and B areg 

Additional changes between experimental con­

(a) The alternate steam admission ports (shown 

in Figure 25) were used, with the other inlet ports sealed flush with 

the interiQr walls of the couplero (b) The horn driver units were not 

cooled due to the amount of condensation occurring in the horn section 

as evidenced from experimental configuration A results. (c) A different 

condenser tube and lower section were used, since no unusual flow con­

ditions were observed t~ occur in experimental configuration A. A 

photograph of the test facility, with experimental configuration B, 

is shown in Figure 27. 

The test procedure for experimental configuration B was essenti­

ally the same as that for experimental configuration A, with the excep­

tion of the duration of the tests with sound. Due to previous experi­

ences with diaphragm failures, and since cooling of the diaphragm con 

was not provided, the duration of the tests with sound were limited to 

approximately 4 to 10 minutes. The output of the thermocouples which 

indicated the coolant inlet and outlet temperatures was monitored with 

a digital voltmeter during the period of operation with a given sound 

frequency. Any change in the heat transfer rate would cause a change 

in the coolant temperature rise, with the constant coolant mass flow 



Figure 26. Experimental Configura­
tion B Used in the 
Effect of Sound on 
Condensation Heat 
Transfer Experiments. 
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Figure 27. Overall View of the Test Facility with 
Experimental Configuration Bin Place. 
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rate cond;tiono Using th;s technique 9 tests for three different steam 

admission rates with two or three different frequenc;es each were con­

ducted in a total time of 1 hour and 7 minutes, which was the lifetime 

of the diaphragms. 

The condensate was collected for the entire duration of a given 

steam admission rate test. Thus, the condensate heat transfer rate 

results reflect an average value for a given steam admission rate for 

all frequencies considered. Results of the experimental determination 

of the effect of a vapor-borne resonant sound field on filmwise 

condensation of steam are presented in Chapter V. 
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Experiments to Determine the Effect of an Air-Borne Resonant Sound Field 

on Thin-Fi 1m Water Flow on the Inside Wal 1 of a Vertical Tube 

An experimental investigation was conducted to gain some insight 

into the mechanism whereby a resonant sound field can cause liquid to 

be ejected from the surface of a thin-film of flowing liquid. In order 

to obtain a situation somewhat analogous to the condensation process, 

tests were conducted with no air through flow and then with different 

values of air flow rate--with a thin film of water flowing down the 

inside walls of a vertical glass tube. These tests were conducted with 

different sound levels and different water film flow rates. A photo­

graph of the test section for this experiment is shown in Figure 28. A 

cross-section of the upper portion of the test ass~mbly which provides 

for the inlet of water, the inlet of air, and coupling with the horn 

driver units, is shown in Figure 29. The lower section of the test 

assembly is the same section used in experimental configuration B for 

the condensation tests. 



Figure 28. Test Section Used in 
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the Effect of an Air­
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Water Flow on the 
Inside 1~al l of a 
Vertical Tube. 
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The water flow rate was regulated with an over-flow arrangement 

whereby a constant pressure head could be maintained on the inlet water 

line. The air flow rate was controlled with a pressure regulator on a 

100 psig air supply line. The mass flow rate of the water film flow 

was obtained by collecting the water for a measured time period and 

weighing it. The air flow rate was measured with a flowrator. A cali­

bration was performed for the ftowrator and is presented in Appendix c. 

The outlet water temperature was measured with a copper-constantan 

thermocouple and a digital voltmeter. The acoustic pressure measure­

ment was accomplished in the same manner as noted for the condensation 

tests. 

The procedure for conducting this series of experiments was to 

establish a thin-film flow of water along the length of the inside 

walls of the vertical glass tube and then to adjust the water flow rate 

to obtain a desired value. With no air flow, a harmonic resonant fre­

quency was selected. The sound pressure amplitude was then set at a 

constant value. The data was recorded and photographs (16 nm motion 

pictures and 35 nm stilt pictures) were taken of the interesting flow 

situations. The active ejection sites were noted, and visual observa­

tions of the flow situation were obtained. For a given water-film flow 

rate, air flow rate and resonant frequency--zero, low, moderate and high 

sound pressure levels were imposed upon the flow situation. These 

· results are also presented in Chapter V. 



CHAPTER V 

RESULTS OF THE EXPERIMENTAL INVESTIGATIONS 

The use of horn driver units as a means of generating a sound 

field in the vapor did not prove to be as effective nor as versatile 

as had been anticipated from the exploratory experiments. The maximum 

sound pressure amplitude (P ) measured in the condensation heat transfer 
0 

experiments was 0.5 psi. The range of frequencies for which a useful 

sound pressure level could be achieved was from 300 Hz to 1300 Hz for 

the steam vapor system. The maximum sound pressure amplitude experi-

mentally achieved for a given harmonic resonant frequency was the vc.lue 

used in each experiment involving condensation heat transfer; these 

va 1 ues are 1 i sted in Tab 1 e 1. One part i cu 1 ar 1 y troub 1 esome aspect of 

using the horn driver units in the condensation experiments was the 

short life of the horn driver palate diaphragm assemblies which 

resulted from the adverse operating conditions. The horn driver units 

were much more servicable and effective in the thin-film liquid vertical 

flow experiments. 

The pressure transducer used to measure the sound pressure ampli-

tude was satisfactory. The sound pressure amplitude measurement was 

achieved by photographing the oscilloscope display of the sound pressure 

transducer (coupled through a charge amplifier) output. A photograph 

of a typical pressure curve is shown in Figure 30. The heavy trace is 
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Figure 30. Osei 11 oscope Di sp 1 ay of Acoustic 
Pressure and Voltage Input to 
the Horn Driver Units. 
Recorded During Experiment 
Number 8; Frequency=739 Hz. 
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the sound pressure curve. The oscilloscope scale is equal to 20 MV/cm 

and the pressure transducer output scale is equal to 100 MV/psi. The 

pressu!"e amplitude (Po) is equal to 1/2 the peak to peak pressure 

difference represented by the curve and was measured as 0.25 psi for 

this caseo The second trace shown in the photograph is the voltage 

input to one of the horn driver units. The oscilloscope scale was 20 

V/cm for the horn driver voltage input curveo Although this voltage 

input was not used in calculating results, it was useful in determining 

the upper operating limit of the horn driver units. The horizontal 

time scale for the oscilloscope display is Msec/cm. Each major grid 

division shown in Figure 30 corresponds to cm on the oscilloscope 

grid. 

It was desirable to experimentally determine the axial sound field 

description in the condensation heat transfer experiments. The physical 

constraints imposed upon the condensation experiments (and the size of 

avai 1 ab 1 e sound pressur-e transducers) did not permit a me1asurement of 

the axial sound pressure amplitude to be obtained. Future experiments 

involving th~ effect of sound on condensation heat transfer should 

include instrumentation to allow an accurate sound field description. 

This is required since the condensation process may modify the resonant 

sound field. 

The test condenser was a water cooled cylinderical glass tube with 

a wall thickness of 0.050 inch and an inside diameter of o.412 incho 

The axis of the tube was vertical with condensation occurring on the 

inside wallso The glass tube was cooled for a length of 10-5/8 inches 

by water flowing through annulus region between the outer glass tube 
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jacket and the condensing tube. Pyrex glass has a thermal conductivity 

of approximately 0.6 BTU/hr•ft•°F and water has a thermal conductivity 

which varies monotonically from 0.347 to 0.394 BTU/hr"ft•°F over the 

0 0 temperature range of 70 F to 212 F. The maximum rise of the coolant 

0 was 3 F for the experiments conducted. An analysis of this test con-

denser indicated that the actual test conditions can be considered to 

closely approach a constant heat transfer coefficient situation rather 

than a constant wall temperature situation. 

A prime consideration involved in the selection of the glass con-

denser tube and glass tube jacket was the desire to visually observe the 

condensate film. Since film condensation heat transfer rate is strongly 

dependent upon the film flow situation, it was felt that any effect of 

the vapor-borne sound field would be observable as an effect on the 

condensate film flow situation. The relatively low heat transfer rate 

was viewed as favorable to yielding an observable effect, since analy-

tical considerations indicated that a low through flow is required to 

allow sound foduced secondary time-average flow to be significant, 

Water has a very high latent heat of evaporation in comparison with most 

other organic fluids; consequently, water was not a good fluid choice to 

yield low vapor flow rates for a given condensing tube size. A com-

plete documentation of all factors considered in selecting the test con-

denser, flow situation, sound generating equipment and instrumentation 

would only serve to emphasize that the experiments conducted represent a 

compromise between desired experiment criteria and economic (time, money 

and effort) realities. 
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Data Reduction for Experiments Involving Condensation Heat Transfer 

The heat transfer rate for tt,e condensation test section (Q.) was 

considered to be the thermal energy absorbed by the coolant. 

Q. = r c AT c .p,c c (S.t) 

The specific heat of the coolant (c ) was assumed to have a value of p,c. 

1.0 BTU/1bm°F. The coolant flow rater was determined from the ven-c . . 

turi meter flow data and a calibration equation for the venturi meter 

which is presented in Appendb c. Tbe coolant temperature dse (ATC) 

was determined from the copper-constantan thermocouple emf output data 

obtained from the coolant inlet and outlet thermocouples. A least-

square method of curve fitting was applied to tabulated standard thermo-

couple emf values as a function of temperature to obtain an expression 

. for temperature in terms of the thermocouple emf. The resulting least-

squares curve fit equation (Appendix C) was used to calculate the 

temperatures 'indicated by the thermocouples. 

The condensate collected in the test condenser flask included any 

condensation which might have occurred in the born driver section, the 

inlet to the test condenser section, and the connecting flow passages 

between the test condenser and the collecting flask. The steam side 

heat transfer rate was calculated as the thermal energy given up by the 

steam from the vapor inlet condition to the condensate and vapor outlet 

condition. The steam was assumed to enter as saturated vapor, so that 

the enthalpy (h .) of the inlet steam was taken to be the saturated g, 1 

vapor enthalpy evaluated at the temperature indicated hy the copper-

constantan thermocouple located at the steam inlet section. The 
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enthalpy of the condensate exiting from the test section was assumed to 

be the saturated liquid enthalpy hf corresponding to the temperature ,e 

indicated by the thermocouple located in the connecting flow passage 

between the test condenser and the collection flask. The enthalpy 

change multiplied by the condensate mass flow rate from the test con­

denser section Cr) was calculated as the steam-side heat transfer s 

rate (Q. ). 
s 

o. = r (h • - hf > s s 9,1 ,e (5.2) 

The calculated test condenser and steam-side heat transfer rates 

are shown in Table I. As evi.dent from the results, a signifkant 

amount of condensation heat transfer was occurring outside of the test 

condenser section. Although the horn section, port of the steam folet 

section, and the test section condensation collection flask were insu-

lated with flberglass type insulation, a P.ortion of the glass tube and 

lower section of the experimental apparatus was exposed directly to 

toom temperature air. Since the test section heat transfer rate was 

considered to be that calculated from the coolant data, the steam-side 

heat transfer rate served only as a qualitative check of the coolant 

results. One detrimental factor was the increased vapor flow rate 

required by the unwanted heat transfer. 

In order to provide sufficient vapor flow rate for any increase in 

heat transfer rate that might result from the effect of sound on con-

densation heat transfer, a quanity of vapor exceeding the amount con-

densed fo the test section was purposefully admittec:f. The excess vapor 

was condensed in the excess steam condenser, and the excess vapor mass 

flow rate (r) is tabulated in Table I. Again the increase in vapor x 



TABLE I 

RESULTS FROM EXPERIMENTS TO DETERMINE THE EFFECT OF SOUND ON CONDENSATION HEAT TRANSFER 

Exp .. f 
p f'c Tc Q rs Qs .. r 

M/M2 0 x 
No., (Hz) 1bf/in2 tbm/min OF BTU/hr 1bm/hr BTU/hr tbm/hr Re Re 

v 0 

12 .. 7 2.25 1715. 2.72 2644. 0.30 36850 141 .. 

2 474. 0 .. 25 12 .. 7 2.30 1754. 2.50 2432. 0 .. 35 34860 130. 82.5 

3 633. 0.21 12 .. 7 2.96 2257. 2 .. 47 2407. o.44 35620 129 .. 119. 3 

4 - - 12 .. 6 3;00 2268. 2.63 2561. 0.94 4370 .. 137. 

5 562. 0 .. 12 12 .. 7 2.87 2187. 2 .. 54 2469 .. 0 .. 99 4310 .. 132 .. 459.5 

6 11 oo. 0 .. 125 n~a 2 .. 91 2241 .. 2.49 2422. 0.,95 4202 .. 1300 410 .. 8 

513~ o.495 25~5 
7 14.3 2 .. 16 1853. 2 .. 63 2559. 0.76 4150 .. 137., 

990. 0 .. 25 100.1 

1047. 0-24 95.4 
8 739. 0.25 14 .. 2 1.,94 1653. 2o58 2514 .. o .. 43 3691 .. 134~ 88.o 

529. 0.32 53.7 

529. 0.22 164.7 
9 14.2 2.21 1883 .. 2.44 2374. 1.78 5162. 127. 

1261~ 0.13 471.6 

M /M2 
e o 

10 .. 2 

17 .. 9 

128 .. 5 

113~ 1 

5.7 

22.5 

13.7 
12.6 
7.7 

69.,5 

199 .. 0 

0 
,t:-
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flow rate wh;ch resulted from the adm;ssion of excess steam was an 

unwanted s;tuat;on, but was requ;red to assure a ptent;ful supply of 

vapor. 

The ;ntet vapor velocity (TI) was calculated from the total vapor 
0 

mass flow rate Crtot), steam inlet saturate vapor specific volume 

(v .) and tube flow area (At): g, 1 

where: • 

The maximum acoustic velocity lU) was calculated from the sound 
0 

pressure amplitude ('P ) data, the inlet saturated vapor specific volume 
0 

(v .), and the acoustic velocity g,1 

p v • 
U = 0 g, 1 

o a 

for saturated steam (a). 

• (5.4) 

The ratio of inlet through flow Mach number (M) to the maximum acoustic 

Mach number 2 squared (H) was calculated 
0 

H U /a 
- 0 

H2 - U2/ 2 
o o a 

U •a 
- 0 -r 

0 

from the expression 

• (5.5) 

The ratio of the vapor through flow Mach number at the test condenser 

exit (Me) to the maximum ~coustic Mach number was also calculated. 

M r v . •a 
e = x g, 1 

H2 •t A u2 o ex, t o 
(5.6) 

The inlet vapor Reynolds number was calculated from the total steam flow 

rate (rtot> and the inlet vapor viscosity (~) data: 

Re 
4rtot 

(5.7) = v llv 
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The condensate Reynolds number (Re) was calculated, using the test con­

denser mass flow rate Cr) and the viscosity of the condensate (u): s 

'+r s Re=-
fJ 

The condensate mass flow rates were calculated from the weight of con-

densate collected during a measured time interval. These calculated 

results are presented in Table Ia 

Discussion of the Results from Experiments to Determine 

the Effect of Sound on Condensation Heat Transfer 

Experiments 1, 2 and 3 were conducted with unchanged valve settings 

on the inlet steam line and inlet coolant line. The intent was to main-

tain constant steam inlet flow rate and constant coolant mass flow rate. 

Experiments 4, Sand 6 were conducted with the same coolant inlet value 

setting with an increase in steam flow rate. The coolant mass flow rate 

for experiments 1 through 6 varied from 12.63 lbm/min to 12.79 lbm/min, 

indicating that the coolant flow rate was reasonably constant. It is 

of interest to note that the steam-side heat transfer rate was fairly 

constant for experiments 1 through 6, while the test condenser heat 

transfer rates (coolant) for experiments 1 and 2 were markedly dif-

ferent from those for experiments 3 through 6. The steam-side heat 

transfer rates are from 7 percent to 13 percent larger than the test 

condenser heat transfer rates. Re-examination of the data revealed no 

discrepancies or possible physical explanation for the apparantly low 

test condenser heat transfer rates of experiments 1 and 2. 

Visual observation of the condensate film flow revealed that the 

liquid surface was very smooth for the initial 1.5 to 3 inches of the 
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cooled test condenser, then ripples began to appear. From about the 

middle of the test condenser on down, the flow appeared wavy. The ca1-

cu1ated liquid Reynolds number for all of the experiments was between 

127 and 141. The transition from laminar to turbulent condensate film 

flow is normally considered to occur for a Reynolds number between 100 

and 600. No clear indication of transition to turbulent flow was 

manifested during the experimental observations. 

Experiments 7, 8 and 9 were conducted with a constant coolant 

inlet valve setting to maintain a constant coolant flow rate, and 

experimental configuration B was used. The coolant temperature rise 

did not deviate by more than 0.1°F for each experiment (7, 8 and 9) 

with the several frequencies and sound pressure amplitudes imposed upon 

the condensing vapor. Visual observation of the test condenser section 

during experiment 7 revealed that with no sound the liquid condensate 

film flow was very smooth for about 3/4 of the cooled section, with 

slight waviness occurring in the last quarter length of the condenser. 

With a frequency of 513 Hz and a sound pressure amplitude of 0.495 psi, 

waviness was generated near the top of the test condenser, which pro­

pagated down the entire length of the tube. Only slight waviness 

occurred with a frequency of 990 Hz and a sound pressure amplitude of 

o.25 psi. No significant change in the heat transfer rate was observed 

during experiment 7, even with an observed waviness apparently generated 

by the sound field. This indicates that the time average thickness was 

not sufficiently affected to cause a change in the heat transfer rate. 

As noted earlier, the glass condenser tube substantially controls the 

heat transfer rate. This means that very strong effects would have to 
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be manifested before an observable change in the test condenser heat 

transfer rate would be observable. 

Visual observation confirmed that large acoustic pressure ampli-

tudes are required to affect the condensate film flow. Experiments 

8 and 9 did not reveal any additional information. Initially the 8 

horn driver palate diaphragm assemblies were capable of delivering an 

acoustic pressure amplitude (P 0 ) of 0.495 psi. During the duration 

of experiments], 8 and 9, the maximum achievable acoustic pressure 

amplitude deteriorated rapidly. It was observed that the achievable 

P0 decreased with an increase in frequency. Above 2000 Hz, the maximum 

attainable P was less than 0.1 psi. 
0 

In order to obtain some qualitative indication of the magnitude 

of induced secondary flow, the ratio of through flow mach number (at 

inlet and outlet) to the maximum acoustic Hach number squared was cal-

culated (Equations 5.5 and 5.6). These values are presented in Table 

I. A qualitative indication of the region of flow affected by the 

sound field can be gained by considering these Hach numbers ratios and 

the results of Purdy et al. (43) for air as presented in Figure 12. 

The obvious inference is that the region of flow affected by the reso-

nant sound field is extremely small. This is the same result pre-

dieted by the simplified condensing vapor model presented in Chapter 

III. The through flow rate must be such that H/M2 is small in order 
0 

that the region of secondary flow can become significant. 

Two out-standing defects in the experimental design are obvious. 

First, the coupling of the test condenser section and sound generat-

ing system did not achieve a good acoustic coupling. Perhaps some 
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geometry modifications would overcome some of the observed difficultiese 

A more effective and versatile sound generating system is desirable. 

Second, the glass test condenser dominated the heat transfer rate s~ch 

that modest changes in film thickness would not be reflected in the heat 

transfer rate. This second limitation was recognized, but enough empha­

sis was placed on achieving visual observation that this defect was 

over-ruled. Visual observations indicated that a resonant sound field 

could modestly affect the condensate film flow at high enough sound 

pressure amplitudes. In turn, the heat transfer rate for a condensate 

film thickness dominated condensing situation can be expected to be 

modestly increased. 

To obtain a spectacular increase in condensation heat transfer 

rate, the condensate must be removed from the condensing surface. This 

was the purpose of maintaining the ability to visually observe the con­

densate film flow. If the resonant sound field caused an ejection of 

liquid condensate from the surface (a phenomenon similar to that 

observed by Howartson (18) and Barfield (2) for air and a horizontal 

liquid layer), then a mechanism could be clearly established. 

To further explore the proposed mechanism of ejecting the liquid 

condensate film and to determine the effect of vapor through flow, 

an analogous air and water film flow situation was considered. The geo­

metry, the description of the experimental hardware and the procedure 

are presented in Chapter IV for the experiments to determine the effect 

of an air-borne resonant sound field on thin-film vertical water flow. 
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Data Reduction for Experiments Involving Thin-Film Water Flow 

• 
The volume flow' rate of air {V) was measured with a rotameter. 

The calibration curve and least-squares equation used to determine the 

volume air flow rate from the rotameter data are presented in Appendix 

c. The through flow velocity of the air (TI ) was calculated as o,a 

fo 1 lows g 

• u - v 
o,a - At • 

The thin-film water flow rate (rf), air Reynolds number (Rea), 

thin-film Reynolds number (Ref) and air Mach numbers ratio, (M/M2) • o a1r 

were calculated for comparison with the condensing experiments. These 

calculated results are presented in Table II. 

Discussion of the Results from Experiments to Determine the Effect of 

Air-Borne Sound on Thin-Film Vertical Water Flow 

The first set of thin-film flow experiments, identified by the TF 

(thin-film) notation in TableII, were conducted with no air through 

flow. The thin-film Reynolds number was approximately ten times the 

condensate Reynolds number calculated for the condensing experiments. 

In experiment 1 TF, it was found that an occasional thin disc of water 

was formed momentarily across the tube when the sound pressure ampli-

tude (P) was approximately o.4 psi. Increasing P to o.45 psi resulted 
0 0 

in regularly occurring discs at specific axial locations. The later 

experiments with no air flow revealed that the sound pressure amplitude 

required to cause an occasional ejection of liquid from the thin-film 

was approximately 0.4 psi for the thin-film Reynolds numbers of these 

experiments. 
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TABLE II 

RESULTS FROM EXPERIMENTS TO DETERMINE THE EFFECT OF AIR-BORNE 
SOUND ON THIN-FILM VERTICAL WATER FLOW 

Expedment f p rf uo,a Re Ref (M/M!) . H 0 

Identification z 1bf/in2 lbm/hr ft/sec q air 

lTF 933. o.46 68.92 0 0 1195. 0 
2TF 941. 0.59 113.50 0 0 1968. 0 
3TF 1350. 0.72 119.40 0 0 2071. 0 
4TF 1350. 0.56 81.1 O 0 0 1406. 0 
5TF,'<' 1718. o.48 69. 12 0 0 1199. 0 
6TF-I( 658. 0.16 69.·12 0 0 1199. 0 

. lTF&A(a) 0 26.03 0 0 451. 0 
lTF&A(b) 933. 0.11 25.59 0 0 443. 0 
lTF&A(c) 933. 0.315 25.44 0 0 441. 0 
lTF&A(d) 933. 0.55 26.20 0 0 454. 0 
lTF&A(e) 933. 0.57 25.63 7.46 1637. 444. a.a 
lTF&A(f) 933. o.49 25.29 16.42 3604. 438. 26.3 
lTF&A(g) 933. 0.60 25.84 0 0 448. 0 

2TF&A(a) 0 3.90 0 0 67.7 0 
2TF&A(b) 933. 0.185 3.90 0 0 67.7 0 
2TF&A(c) 933. 0.71 3.90 0 0 67.7 0 

3TF&A(a) 0 86.16 0 0 1494. 0 
3TF&A(b) 933. 0.19 84.74 0 cf 1469. 0 
3TF&A(c) 933. 0.35 86.20 0 0 1495. 0 
3TF&A(d) 933. o.42 87.54 0 0 1518. 0 
3TF&A(e) 933. 0.36 84.18 6.82 1497. 1460. 20.2 
3TF&A(f) 933. 0.275 83.50 14.08 3090. 1448. 71.5 
3TF&A(g) 933. o.ao 81.56 23.51 5160. 1414. 14. 1 

4TF&A(a) 0 12.86 0 0 223. 0 
4TF&A(b) 933. 0.18 12.97 0 0 225. 0 
4TF&A(c) 933. 0.36 12.71 0 0 220. 0 
4TF&A(d) 933. 0.60 12.74 0 0 221. 0 
4TF&A(e) 933. 0.57 12.93 o.41 1407. 224. 7.6 
4TF&A(f) 933. 0.63 12.69 12.29 2698. 220. 11.9 
4TF&A{g) 933. 0.585 12.46 23.51 5160. 216. 26.4 

* Non-resonant frequencies 
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An acoustic velocity ant;node was expected to occur reasonably 

close to the horn dr;ver throat, and a velocity node (acoust;c pressure 

antinode) was assumed to occur at the pressure transducer location for 

resonant sound f;etd cond;tions. The pressure transducer did not com-

pletely fill the lower tube and the pressure transducer has a f;nite 

complex acoust;c impedance; however, ;twas assumed that the acoustic 

impedance offered by the pressure transducer was large enough to allow 

the transducer end of the tube to be treated as a solid termination. 

Consequently, the sound pressure amplitude as indicated by the pressure 

transducer was assumed to be equal to P. The fundamental resonant 
0 

frequency (f) for the tube was calculated from the apparent resonant 
0 

conditions observed in the experiments. The frequency of 933 Hz was 

assumed to be the third odd harmonic frequency (f3 = 9f0/3 = 933 Hz) 

and the frequency of 1350 Hz was assumed to be the fifth odd harmonic 

frequency (f5 = 13f0 /3 = 1350 Hz). The fundamental frequency (f) was 
0 

calculated to be 311 Hz and the velocity antinode locatfon near the 

horn driver throat was calculated to be 32.9 inches above the pressure 

transducer l~cation. 

The axial location of the range of ejection sites is shown in 

Figure 31. Also shown in Figure 31 is the water inlet location and 

the pressure transducer location. As evident from Figure 31, the ejec-

tion sites range about ~he acoustic pressure nodes. A similar sketch 

for experiments 3TF and 4TF is also shown in Figure 31, for the fifth 

odd harmonic frequency (1350 Hz). 

The time-average pressure distribution for a resonant sound field 

AP 2rrx -with no through flow can be written as P =~cos -r- + P, with x = 0 
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at the acoustic velocity antinode nearest the horn driver units, in 

accordance with Equation 3.22. This time-average pressure distribution 

is such that any resultant flow of the thin-fllm liquid would be toward 

the acoustic pressure nodes. Purdy et al. (43) considered a constant 

time-average axial pressure in a rigid tube with resonant sound condi­

tions and obtained a description of the sound induced flow. These 

sound induced flow stream-lines are shown in Figure 9.--Consj_deration 

-of___the viscous effect of air on the thin-film liquid indicates that 

thin-fi1m flow, which resulted from the sound induced air flow, would 

be toward the pressure nodes. Both simplified models indicate that the 

effect of an air-borne resonant sound field upon a thin-film of liquid 

is to cause the liquid to flow toward the pressure node locations. 

Photographs of the liquid ejection process are shown in Figure 32. 

The liquid is ejected from the tube wall toward the center of the tube, 

and has the appearance of a disc, normal to the tube axis. The disc 

appeared to break up into droplets as li-qu-id continued to be ejected. 

Some of the smaller droplets in the center of the tube in the region 

above the disc moved upward slowly. Other droplets in this region 

appeared to float. This droplet behavior is interpreted as a quali­

tative confirmation of the sound induced air flow pattern predicted 

by Purdy et al. (43). Many droplets of varying size and degrees of 

activity were seen above and below the ejection site. These droplets 

are visible in Figure 32. 

In the following descriptions of experimental observations, the 

locations are expressed as distance from the calculated acoustic 

velocity antinode location as shown in Figure 31. 



(a) Experiment Number 2TF 
Disc at 24.4 inches. 

(b) Experiment Number 2TF 
Disc at 30.0 inches. 

(c) Experiment Number 3TF 
Disc at 19.9 inches. 

(d) Experiment Number 4TF 
Disc at 16.3 inches. 

Figure 32. The Liquid Ejection Process Observed in the Experiments to Determine the Effect of Air-Borne 
Sound on Thin-Film Vertical Water Flow. 

v, 



The discs would normally form near the highest acoustic pressure 

nodes location. In experiments lTF and 2TF an ejected liquid disc 

would form at 14.9 inches, remain continuously active as it drifted 
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down to about 16.2 inches, then disappear. Almost immediately, a disc 

would be formed at 21 inches, which then drifted down to 24.4 inches 

and disappeared. Another disc would form at 28.2 inches, drift down to 

30.4 inches and disappear. This sequence of events would repeat itself, 

with the time elapsed between formation and disappearance of each disc 

varying from a fraction of a second to several seconds. The downstream 

ejection sites generally were of shorter duration than the first active 

ejection site. Movie film of some experiments show that the disc dis­

appearance and appearance from one location to the next is almost 

instantaneous. Very seldom did two discs occur simultaneously, and 

in no case did simultaneous ejection sites persist. The location of 

each disc formation was not fixed, but rather occurred normally in the 

location ranges noted above. Occasionally, an ejection of liquid would 

occur outside the above noted ranges. It is believed that these off 

pressure node ejection locations resulted from large disturbances 

caused by droplets impinging upon the film-flow. 

The sound pressure amplitude as indicated by the pressu~e trans­

ducer reflected the fact that sound energy was being absorbed by the 

ejection process. Several individual traces of the acoustic pressure 

were recorded on a single polaroid film to obtain an estimate of the 

sound pressure amplitude. Aphotograph of 5 traces of the sound pres­

sure transducer output from experiment 4TF and A(d), as displayed on 

an oscilloscope screen, are shown in Figure 33a. The max;mum amplitude 
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(a) Five Individual Acoustic Pressure Transducer 
Output Traces and a Single Trace of Voltage 
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Transducer Output. 

Figure 33. Sound Pressure Amplitude Variation vdth 
Time, Resulting from the Liquid 
Ejection Process in Experiment 
LffF&A(d). 
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of the 5 traces was recorded as the sound pressure amplitude (Tab1eII). 

Since the variation of sound pressure amplitude at the transducer loca­

tion is a function of time 9 an increase in the time scale yielded a 

better indication of this timewise variation, as shown in Figure 33b. 

The visual observation of experiments 3TF and 4TF was qualita­

tively the same as those for experiment 1TF. The regular ejection 

sites occurred at approximately 11 to 11.4 inches, 15.3 to 16.3 inches, 

19.6 to 20.9 inches, 24.4 to 26.5 inches and 30 to 30.9 inches. The 

calculated acoustic pressure node locations for the fifth odd harmonic 

frequency (1350 Hz) were O, 5.06, 10.12, 15.19, 20.25, 25.31 and 30.37 

inches. The water inlet location (6.75 inches) was below the location 

of the first two acoustic pressure nodes. In these experiments, ejec­

tion seldom occurred at the 11 to 11.4 inch location, but a thin-film 

disturbance was evident at this location. Occasionally, the downstream 

ejection sites were not sequentially excited, with one or more sites 

being skipped before the following downstream ejection sites were 

activated. 

The seventh odd harmonic frequency was calculated to be 1762.3 Hz. 

With a slightly off resonance frequency of 1718 Hz, an interesting 

situation presented itself. The liquid ejection process was quite 

active,. with a disc forming at 13.6 inches drifting down to 15.3 inches, 

disappearing, then reforming almost immediately at 13.6 inches again. 

A photograph of the ~ection activity occurring in exp~riment 5TF is 

shown in Figure 34 with the disc located at 14.3 inches. This cyclic 

action continued until the sound pressure amplitude was intentionally 

lowered 30 minutes tater. Movie film of the ejection region was 



Figure 34. Liquid Ejection Process Observed at a 
Slightly Off-Resonance Frequency in 
Experiment 5TF. Disc at 13.6 Inches. 
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obtainedo The movie film was taken at a speed of approximately 500 

frames per second. Some of the previously noted observations were con­

firmed, and the action of the ejection process is quite interesting; 

however, very tittle additional quantitative data were obtained from 

viewing this film. 

The experimental conditions associated with experiment 5TF were 

obtained by holding a high input to the horn driver units and varying 

the frequency. Later attempts to obtain the situation again proved 

futile. 

Another interesting phenomena occurred at a non-resonance fre­

quency of 658 Hz with the same thin-film water flow rate as in experi­

ment 5TF. In experiment 6TF, the liquid was ejected from the thin-

film surface at such a rate that plug flow could occur. As the ejection 

process began, it would appear to form a disc as in the previous experi­

ments; but instead of a shower of droplets, a plug of liquid would 

suddenly form across the tube. This plug grew in length until it was 

approximately 6 to 8 inches long, then the plug of liquid flowed down 

the tube. The top of the plug flow remained at about the same location 

during the plug growth period. A photograph of the plug flow observed 

in experiment 6TF is shown in Figure 35. The upper and lower end of 

the plug appear frothy, since small bubbles appeared in the liquid near 

the upper and lower liquid plug surfaces, and small droplets were 

emitted from both the upper and the lower liquid air interface. 

The experiments identified by TF&A {Thin-Film and Air) in Table II 

denotes that air through-flow was incorporated as a parameter in the 

thin-film experiments. All of the experiments with TF&A included in 



Figure 35. Plug Flow Caused by Imposing 
Sound on Thin-Film Vertical 
Water Flow, as Observed in 
Experiment 6TF for a Non­
Resonant Frequency. 
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the identification were conducted with a harmonic resonant frequency of 

933 Hz. The experiments were conducted to determine the effect of a 

resonant sound f;eld and air through-flow on thin-film vertical liquid 

flow. 

Experiment 1TF&A(a) was conducted with no sound and no through 

flow. The thin-film water flow appeared smooth down to lOol inches, 

slightly wavy from 10.1 to 15.3 inches, and very wavy from 15.3 inches 

down to the outlet. The film-flow was quite similar for a low sound 

pressure amplitude [1TF&A(b) ], except that occasionally a slight surge 

in the inlet flow would result in an occasional ejection of liquid 

from the film as the surge wave passed a pressure node location. 

Increasing the sound pressure amplitude to 0.315 psi [lTF&A(c)] did 

not further alter the visually observed flow situation. Increasing 

the sound pressure level above 0.315 psi resulted in regular ejection 

of liquid from locations in the range of acoustic pressure nodes. In 

experiment lTF&A(d), liquid ejection discs initiated at 20.5 inches, 

moved to 21.5 inches and remained there for periods of approximately 

' 10 seconds before vanishing. Discs also formed at 13.6 inches, dis-

appeared from 13.6, and reappeared almost instantly at 21.5 inches, 

disappeared from 21.5, and reappeared at 29.6 inches, ran to 28.3 

inches, and then vanished. Two ejection sites were observed to be 

active simultaneously, but one would quickly disappear. The liquid 

ejection mechanism occurred about equally in the 13.6 to 16.2 inch 

location range and in the 20.5 to 23.1 inch location range, with only 

occasional liquid ejection occurring in the 28.3 to 30.4 inch location 

range. 
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With an air through-flow rate of 0.41 cfm superimposed upon the 

conditions of experiment 1TF&A(d)., it was found that the liquid ejection 

mechanism was suppressed except for an occasional ejection of liquid 

occurring at 29.6 inches. The thin-film liquid flow was extremely wavy, 

appearing quite turbulent in experiment 1TF&A(e). Increasing the air 

through=f1ow rate to 0.91 cfm [experiment lTF&A(f)] did not alter the 

appearance or behavior from that described for lTF&A(e). Experiment 

1TF&A(g) was conducted with essentially the same conditions as occurred 

in experiment 1TF&A(c)., so that movie film of the entire tube could be 

obtained. Movie film of various aspects of all the thin-film and air 

experiments were obtained. 

The thin-film water flow rate was decreased for the 2TF&A experi­

mentsG Considerable difficulty was encountered in obtaining a thin-film 

flow which would remain attached to the glass tube walls at the desired 

low flow rates. The thin-film would remain attached down to 10.2 inches 

and then would run in a trickle-meandering down the remainder of the 

tube length. High sound pressure amplitude was required to affect this 

flow. When ejection occurred, al 1 of the inflowing liquid was ejected 

with the surface becoming dry below the ejection site. Droplets of 

water resulting from the ejection process were thrown about in many 

directions and would cling to the glass tube when they struck the 

walls. When enough particles would collect near the acoustic pressure 

node, ejection would occur momentarily. The liquid ejection process 

occurred at the same location ranges as in the lTF&A experiments. At 

a location of approximately 30 inches, relatively large drops of water 

(estimated to be 0.020 to 0.060 inches in diameter) were observed to 



be projected upwardo A sharp II p;p11 sound was heard each time one of 

these large drops was formed and projected upward. 
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For a short period of time a thin-film of water remained attached 

to the glass walls over the entire length of the tube. At high acoustic 

pressure amplitudes ejection would occur instantaneously at the acoustic 

pressure node locations--each location sequentially activated as the 

ejection process seemed to run down the tube. Multiple ejection sites 

also occurred for these conditions. Attempts to reestablish the 

attached film flow at the low flow rates of experiments 2TF&A were 

futile. 

The liquid flow rates for experiments 3TF&A were large enough to 

provide sufficient liquid for plug flow conditions to occur. The film­

ftow appeared wavy for the entire length whh no sound L3TF&A(a)J, low 

sound conditions [3TF&A(b)J, and medium sound conditions [3TF&A(c)J. 

When the sound pressure amplitude was increased to the maximum attain­

able value, liquid ejection occurred at the acoustic pressure node 

locations. In experiment 3TF&A(d), double ejection sites occurred 

approximately one inch apart, and led quickly to plug flow conditions. 

When the length of the plug grew to a sufficient length, the entire 

plug would flow, as a plug, down the tube. As the top of the liquid 

plug passed a normal acoustic pressure node location, liquid ejection 

occurred at upstream acoustic pressure node locationso After the 

liquid plug had flowed out of the tube 9 the entire process would repeat 

itself. With the air through-flow rates of experiments 3TF&A(e), 

3TF&A(f) and 3TF&A(g), no liquid ejection was visible; however, the 

liquid film-flow appeared more wavy and turbulent than that of 

experiment 3TF&A(a). 
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The 4TF&A series of exper;ments were conducted with the lowest 

liquid film-flow rate which could be maintained for the sequence of 

sound and air through-flow conditions imposed upon the thin-film flow~ 

The water flow in experiment 4TF&A(a) was smooth down to 13 inches 

below the calculated acousti~ velocity antinode nearest the horn driver 

unit. Slight waviness was evident on the liquid surface from 13 inches 

down to 18.8 inches, where the flow appeared very wavy on down to the 

exit. The visual observation of experiment 4TF&A(b) revealed condi­

tions similar to those of 4TF&A(a). The sound pressure amplitude 

recorded for experiment 4TF&A(c) was the threshold value for continuous 

liquid ejection, as judged from the fact that occasional liquid ejection 

occurred, and further increase in the sound pressure amplitude caused 

sustained liquid ejection. The range of liquid ejection locations for 

experiment 4TF&A(d) were the same as those previous noted for this 

third odd harmonic resonant frequency (933 Hz). The movement from one 

liquid ejection site to the next occurred much more rapidly than for 

the TF, lTF&A and 3TF&A experiments. No single ejection location 

dominated the activity. 

Visual observation of experiment 4TF&A(e) revealed that the air 

through-flow rate did not completely eliminate the effect of the sound 

field on the liquid film flow. Some wave generation occurred at the 

acoustic pressure node locations, and momentary liquid ejection 

appeared to occur over a distance of approximately one inch--rather than 

the very localized ejection which occurs with no through-flow. The air 

flow rates of experiments 4TF&A(f) and 4TF&A(g) were large enough to 

eliminate the liquid ejection phenomena. It was observed that the 
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water film flow did appear much more turbulent for the entire tube 

length in the last two experiments than in experiment 4TF&A(a). 

The results of the thin-film water flow experiments demonstrate 

that air through-flow rate effectively eliminates the liquid ejection 

phenomena. The inlet and exit values of M/M2 for the condensing steam 
0 

experiments is larger than comparable values in the air-water film 

experiments. The observed lack of an effect of vapor-borne sound on 

condensation heat transfer rate can be explained by the argument that 

the vapor through-flow rate was large enough to eliminate the possible 

liquid ejection mechanism. Additionally, the flow of vapor toward the 

condensing surface, as required by the condensation process, also acts 

to suppress the secondary flow which might be induced by the sound 

It was observed that the duration of liquid ejection at a given 

location was dependent upon the thickness of the film-flow. Qualita-

tive1y, as the film-thickness increased, the duration of the liquid 

ejection process at a given location increased. If enough liquid flow 

rate is available to supply the ejection process, plug flow can resu1t5 

The minimum sound pressure amplitude required to cause liquid ejection 

was found to be approximately 0.315 psi to 0.36 psi for the air-water 

film-flow experiments conducted. A correlation of flow parameters and 

minimum sound pressure amplitude required to cause liquid ejection was 

not obtained from the limited experimental results. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The objective of this investigation was to determine the para­

meters which influence condensation heat transfer when acoustic pres­

sure plusations are imposed on the condensing vapor, and to establish 

the controlling mechanisms for this process. Due to various reasons, 

the experimental investigation was limited to the condensation of steam 

at atmospheric pressure. Experiments with air-borne sound imposed on 

liquid film flow down the inside wall of a vertical tube aided in the 

establishment of a possible mechanism for the effect of sound on con­

densation heat transfer. Theoretical investigation of simplified 

models of the effect of sound on condensation heat transfer led to a 

delineatfon of the pertinent parameters. The objectives have been 

realized. 

Conclusions 

The conclusions which have been reached as a result of the 

theoretical investigatfon are: 

1. The simplified model for the shearing stress at the liquid­

vapor interface proposed by Shekriladze and Gomelauri (50) is useful 

and reasonably accurate for condensation conditions involving body 

force and/or forced convection forces. 

127 



128 

2o Consideration of the effect of temperature dependent viscosity 

on laminar condensation heat transfer (Appendix A) yielded the conclu-

sions that (a) a linear temperature proflle across the condensate film 

is a very good approximation, even with fluids having strongly tempera-

ture dependent viscosities; and (b) the proper temperature (Tf) to use 

in evaluating the condensate viscosity for use in Nussett type heat 

transfer equations is 

T f = T w + 6 T , if [ ~ v ( l - ~i '). 1 n (~) ... J :5. 1 
4 w w · ~v 

• 

3o The effect of an axially resonant sound field on vertical 

condensing surfaces will be to decrease the heat transfer rate, if 

rippling or liquid condensate ejection do not occur. 

4. The condensation process dominates the vapor flow pattern if 

(U2/aU) < 1 or, equivalently, if (M/M2) > 1. 
0 0 0 

5. The most significant parameter in determing the effect of 

vapor-borne sound on condensation heat transfer is M/M!. All para­

meters which influence the condensation process or describe the sound 

field--individually--were found to be involved. Low values for hfg 

and a would favor an effecto 

The conclusions which have been reached as a result of the experi-

mental investigations involving the condensation of steam on the inside 

wa11 of a vertical galss tube, with an axially resonant sound imposed 

on the vapor, are~ 

1. A significant sound pressure amplitude is required to affect 

the condensate film flow. 

2o The sound generating system used in these experiments was 



129 

inadequate, due to the detrimental effect of the steam atmosphere on the 

horn driver unitso 

3. The imposed sound field had no effect on the condensation heat 

transfer rates in these experiments. This was due in part to the 

thermal resistance of the glass condenser tube; however, the primary 

reason is that the high vapor flow rate eliminated any sound induced 

secondary flow. 

4. The range of experimental conditions was too limited to obtain 

results which would encompass possible condensing situations which 

might realize some effect due to superimposing a sound field on the 

condensing vaporo 

The conclusions which have been reached as a result of experi­

mental investigation of liquid film flow down the inside wall of a 

vertical tube with an air-borne axially resonant (or near-resonant) 

sound field superimposed are: 

1. liquid can be ejected from the thin liquid-film toward the 

center of the tube at axial locations near the acoustic pressure nodes, 

if the acoustic pressure amplitude Exceeds an experimentally obser­

able threshold value. 

2o The ejection mechanism threshold value of the acoustic pressure 

amplitude depends upon the thickness of the film flow, with very thin 

films; but, appears to have little dependence on thickness for 

relatively thick films. This is a qualitative observation. 

3. The ejection process at a given active site will continue 

until the supply of liquid from the film flow can no longer meet the 

ejection flow requirements. 
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4. The sound induced secondary flow predicted by Purdy et al. 

(42), as shown in Figure 2.9, is qualitatively correct for the air, 

with no through-flow. This conclusion was inferred from observing 

the behavior of small liquid droplets in the region above the ejection 

sites. 

5. The imposed sound field can cause plug flow to occur if the 

liquid film thickness is large enough. 

6. The ejection process and the droplets formed absorb a signi-

cant portion of the sound energy, when the ejection mechanism is active. 

7. Through-flow of air can eliminate the ejection mechanism. 

This was observed to occur for (M/M2) > 7.6, which was the smallest 
0 -

value used in the experiments. 

It is proposed that the mechanism whereby a vapor-borne sound 

field can measurably affect the condensation heat transfer rate, is the 

ejection of liquid condensate from the condenser walls. 

Recommendations for Future Studies 

The areas of effort related to this thesis which are worth pursu-

ing include: 

1. Further experimental investigation of the effect of a resonant 

sound field on liquid film flow is needed to quantify the parameters 

which control the ejection mechanism. Particularly, a correlation of 

threshold pressure amplitudes, fluid properties (such as density, vis-

cosity and surface tension), acoustic wavelength, and film thickness 

is desirable and attainable with equipment commercially available. 
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2. A theoretical investigation of the ejection mechanism should 

be considered in the light of instability analysis techniques. A solu-

tion for the non-condensing case of·air-borne sound imposed upon liquid 

film flow appears to be a realistic first step. 

3. An investigation of condensing situations in which a low value 

of M/M2 can be attained, with sufficient sound intensity to cause the 
0 

ejection of liquid condensate from the condenser surface, would allow 

a quanitative evaluation for the effect of sound on condensatron heat 

transfer. These results should also establish the limits of the effect 

of sound. 

4. The development of a sound generating system which would permit 

a wide range of frequency and acoustic pressure amplitudes and would 

allow the utilization of several condensing vapors, without detrimental 

effects on the generator, is highly desirable. 
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APPENDIX A 

THE EFFECT OF TEMPERATURE DEPENDENT VISCOSITY ON 

LAMINAR CONDENSATION HEAT TRANSFER 

Consideration of the fluid properties involved in laminar con-

densation heat transfer reveals that the liquid viscosity exhibits 

the greatest variation with temperature. In order to evaluate the 

effect of temperature dependent viscosity on condensation, Nusselt's 

model (shown in Figure 36) and assumptions as listed in Chapter II 

will be made--with the exception that viscosity is assumed a function 

of temperature only. The element of condensate considered for a 

force balance is also shown in Figure 36. 
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[ P - ! (dP) dx l [6 - (~) dx - YJ 2 .dx . ox 2 
I: -v---·- - ------·-· ........ - ........ _________ =:) 

~- (6 - y) ------~ 

~ 

pg( 6-y) •dx 

Figure 36. Nusse1t 1 s Model and Element Considered for a Force Balance. 
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Assuming a unit width normal to the plane of the model shown in 

Figure 36, a'force balance can be written as 

( du) \f dy dx + pvg(6 - y) dx = pg(6 - y)dx, (Ao 1) 

when the higher order differential products are neglected, 

A dimensionless length is defined by the relationship: 

(A.2) 

Viscosity can be expressed as a function of z, since temperature is 

assumed to be a function of z. Employing the definition of z, Equation 

Ael can be rearranged and integrated to obtain 

Jz g (p - P)62 
u = u(z) (1 - z)dz 

z=9 
(A.3) 

A dimensionless viscosity can be defined in terms of a reference value 

;(z) = ~ 
1,.1.(T(z)] 

(A.4) 

Since all other properties are assumed to be independent of temperature, 

Equation A.3 can be expressed 

2 u(z) = Cu6 (x) F2(z) 

where the terms are defined: 

g(p - P) 
c -----u - /Jw 

F1(z): [(z)(l - z) 

F2 (z) = ~ F1(z) dz 
z = 0 

(A.S) 

(A.6) 

(A.7) 

(A.8) 
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At any x distance along the plate, the mass flow rate per unit width 

can be expressed as 

where: 

z=t 
r(x) = p6 J udz 

z=O 

1 
cm s J F 2(z)dz 

z=O 

-dQ,+-1 
O I 

Figure 37. Condensate Element 
Model for Energy 
Analysis. 

pC C e, 3(x) u m 

The energy analysis for the unit width element of condensate, 

enclosed by the dashed lines in Figure 37, yields 

(A.9) 

(A.10) 

Enthalpy has an assumed datum (h = 0) at T = T arbitrarily established v 

by the above expression. With the definition, 

fiT :;; T - T - v w (A.11) 

T(z) - T 
and e '··V - AT 

, (A.12) 

the energy analysis can be written in terms of the dimensionless z 

coordinate as 
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+ hfgdI'(x) • (A.13) 

The term c:II'(x) can be evaluated from equat;on A.9 as 

dr(x) = 3pC C a2(x)d6 u m • 

Define 1 
CT E -J 9(z)F2(z) dz , (A.14) 

0 

and note that a: [ a3(x)CT ] = -3cj(x) • 

Subst;tution of these relationships into Equation A.13 and rearrange-

ment leads to 

• (A.15) 

WHh the boundary condition of S = O at x = O., the film thkkness can 

be written: 

[ 4t1Tkllwx r, f,(d9) . 1 1 
6 ( x) = g p ( p - p ) hf L Tz ( CT c AT ) (A. 16) 

v g 3Cm 1 + rF 
m fg 

The first bracketed term is recognizable as the Nusselt result for film 

thickness., with viscosity evaluated at the wall temperature. The 

second term of Equation A.16 exists due to the viscosity variation with 

temper a ture. 



cooled 
i sotherma 1 · 
wa 11 

Y "I~ -6-y--­
- - - ,:· .. 
I -dQ •-r 

dr : --~·~·:1. .. 

Figure 38. Schematic Model of the Cross-Flow Effect 
in Laminar Film Condensation. 
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Conservation of mass for the element enclosed by dashed lines in 

Figure 38 requires 

cJr z = ~6 [JY pudy J d6 = ~6 [pcu& 3 Jz F 2 (z )dz J de • (A.17) 

y=O z=O 

Define 
F3(z) ~ ~F2(z)dz (A.18) 

0 

and perform the indicated mathematical operation in Equation A.16 to 

obtain 

(A. 19) 

An energy analysis of the element enclosed by the dotted lines in 

Figure 38 can be shown to give the following equation: 

-dQ = ~ (d8) dx 
<S\XJ dz 

1 
= - ~6 [ J pcpAT6(x)e(z)u{z)dz] d6 

z 

-c ATS(z)dr + hf dr p z g • (A.20) 



Utilization of Equations A.6, A.lo, A.17 and A.19, the definition 

F4(z): J2e(z)F2(z)dz 
0 

and noting that 

, 

1 1 . J 9(z)F2(z)dz = J 9(z)F2(z)dz - j9(z)F2(z)dz 
z O O 

=•Ct~ j9(z)F2(z)dz , 
0 

allows one to obtain the following expression from Equation A.20: 

Substituting from Eqaution A.15 for~ yields the result 

where by definition: 

B = ~ [1 CT cpf).T J 
- c t:,.T · +Ch 

p m fg 
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(A .. 21) 

(A.22) 

(A.23) 

(A.24) 

Integration of Equation A.23 with the boundary condition of e(z) = 0 

at z = O., yields 

F (z) 
e(z) = (::) [ z + 5 _ J = 1 

o CmB 
z 

with the definition F5(z) = J [F4(z) - 9(z)F3(z)] dz .• (A.25) 
0 
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Also required is that e(z) = O where z = 1, so that 

Consequently: (A.26) 

and 
(A.27) 

with c8 defined by the relationship: c0 = -F5(1). 

The method of solving the equations for u(z), r(z), and 9(z) to 

determine the appropriate solution involves guessing an inHial tern-

perature profile. This assumed temperature profile allows the 

determination of the following terms: 

~ µ(z) =----, F1(z) =O'(z)(l - z), 
u[T(z)] 

F2(z) = f F1(z)dz, F3(z) = r F2(z)dz ' 
0 0 

=f 
0 

CT = -s19(z)F2(z)dz , F5(z) = r(F4(z) - 9(z)F3(z)] dz , 
0 0 

.... ---[z + F5.Cz)J- 1· " c9 = -F5(1), and finally e(z) = 
C9 
-- cme CB 

m 

If the calculated e(z) agrees with th.e guessed e(z), then the solution 

is completed. If the calculated e(z) differs from the guessed e(z), 
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then use of the calculated e(z) as the next guessed 9(z) has been found 

to 11converge11 rapidly to an appropriate temp!ratureprofile. 

This method of solution was used by Rohs~now (46) to obtain the 

effect of cross-fl~w in the condensate layer on the heat transfer 

coefficient. Rohsenow considered the viscosity to be a constant value, 

evaluated at Tf = Tw + 1/4 AT. Rohsenow attributes this particular 

value of temperature evaluation to T. B. Drew. It is the value obtained 

if viscosity is proportional to 1/T. As a check on the solution 

obtained, a constant viscosity was assumed, and the solution of the 

above equations gave the same first approximation as Rohsenow (46) 

obtained. 

In order to establish the correction required to use the simpler 

results of Nusselt's theory, the above results can be rearranged in 

the following manner: 

[ ( d9) , 1 , '11+ 
= dz . ( Ct c AT ) J 

3C 1 + - ....e::_ 
, ·· m Cm hfg 

(A.28) 

• (A.29) 

The average heat transfer coefficient (ii) can be written as 

11 = ~ f-(~)dx =ff c6~6 )N ' (i)odx , 
0 0 w u 

by using Equations A. 13 and A.28. Therefore, 

('h~)Nu(::) 
ii = ,. 0 

c 
6 
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and by definition, the heat transfer coefficient" correction factor is 

(A.30) 

The Nusselt results to be used in connection with these correction 

factors (Ca, 'T, and Ch) are based on evaluating the viscosity at the 

wall temperature, with the other fluid properties evaluated as the 

average values. These can be expressed: 

The resulting equations can also be rearranged to determine the 

proper value of viscosity to use in the Nusselt equations to obtain 

results equivalent to the temperature dependent viscosity analysis. 

Film thickness, Ma= ~Ca 

Mass flow rate per unit width, JJr = ~ 
-~ 

~ Heat Transfer coefficient.,~=-;!+-

h 

(A.31a) 

(A.31b) 

(A.llc:) 

For a specific viscosity-temperature relation.ship., the proper tempera-

ture for the viscosity determination could be obtained by determing 

the corresponding temperature for the viscosity term of interest 

\'-:':·, 



146 

Since the solution was not obtained in closed form, it was neces-

sary to assume some appropriate condensing situations to obtain numeri-

cal results. Reid and Sherwood (45) state: 11At temperatures near or 

somewhat below the normal boiling point the behavior is we11 represented 

by the relation, 

g = AeB/T (A.32) 

where A and Bare positive. 11 Absolute temperature (T) is used. Addi-

tionallyj this relationship is recommended from the freezing point to 

slightly above the normal boiling point as the best simple temperature-

liquid viscosity relationship. The constants A and Bare fluid co-

efficients. Thts relationship was the one used in the numerical 

solutions. 

The solutions requfred a relationship forµ (T) = ~T} so that the 

expression is reduced to: 

• 

The value of B was obtained by using the vapor temperature vis-

cosity and wall temperature viscosity, B = (TvTw/6T)fn(µw/µv). Seven 

different fluids were used, with several values of T and 6T, to obtain 
w 

numerical solutions. 

Properties were obtained from Kreith (30) and Reid and Sherwood 

(45)o The equations were numerically integrated by use of the trape-

zoida1 rule, and Simpson's rule. The numerical procedure was pro-

grammed in Fortran language for the SOS computer (Sigma 7) at Vanderbilt 

University. The results are tabulated in Table III. The computer pro-

gram used for the numerical solution and one set of computer results are 

presented in Appendix B. 



FLUID 'T w 
OR 

.. 

560 
WATER 560 

560 

COMMERCIAL 560 
ANILINE 560 

AMMONIA 440 
440 

FREON-12 420 
420 

-BUTYL 560 
ALCHOL 560 

BENZENE 520 
520 

530 
GLYCERIN 510 

510 

TABLE III 

NUMERICAL COMPUTER SOLUTION RESULTS FOR THE EFFECT OF TEMPERATURE 
DEPENDENT VISCOSITY ON CONDENSATION HEAT TRANSFER 

AT B ch ch Cr c6 -96 -er -eh 
OR OR ROHSENOW 

50 0 1.00828 1.00828 0.98995 0.99664 - - -
50 3075~2 1.03950 1.03900 1.02105 0.96652 0.715 0.027 o.675 

100 2971.1 1.07796 1.07626 1.04020 0.93622 0.707 0.029 0.664 

50 3868.7 1.06045 1.05970 1.01508 0.95375 o.684 0.902 0.608 
100 3782.1 1.12168 1.11882 1.03048 0.91081 0.672 o.899 0.591 

70 407.3 1.03279 1.03306 0.98013 0.98168 o.454 1.502 -0.018 
100 406.4 1.05039 1.05084 0.97096 0.97180 o.460 1.445 -0.018 

60 1014.3 1.05287 1 ~05315. 0.98363 0.96679 0.585 1.186 0.347 
100 995.9 1.09103 1. 09158 0.96829 0.94512 0.558 1.216 0.276 

50 4425.0 1.07082 1.06974 1.01636 0.94653 0.680 0.907 0.598 
100 4459.4 1.15215 1.14771 1.03145 0.89222 0.660 0.812 0.571 

40 1968.8 1.03377 1.03380 0.99956 0.97592 o.656 1.006 0.527 
90 2010.9 1.07814 1.07801 0.99933 0.94585 o.647 1.004 0.512 

30 16534~9 1.13956 1.12452 1.12028 0.88126 0.709 0.739 0.699 
50 14915.9 1.24993 1.20778 1.21801 o.80494 o.688 0.717 o.679 
70 12793.3 1.31532 1 .• 25547 1.26992 0.76642 0.677 o. 711 0.667 

d9 lOO•MAX 9 
-dz 

0 DEVIATION 

1 ;00489 0.22365 
1.00469 0.21680 
1.00921 o.42828 

1. 01140 0.52711 
1.02164 1.00867 

1.01387 o.63483 
1.02077 0.95017 

1.01791 0.82159 
1.03115 1 .42958 

1.01357 0.62781 
1. 02797 1.30599 

l .03377 o.40817 
1.01976 0.91165 

1.00425 0.20172 
1.00612· 0.29829 
1.00809 0.39935 

-'='" ........ 



For comparison purposes, the equivalent Ch that would be obtained by 

using Rohsenow•s (46) recommended corrections, 
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(A.34) 

was also calculated and tabulated. The value of Tf used in Rohsenow•s 

correction factor was Tf = Tw + (AT/4). The ratio of the caluclated 

velocity to a fictitious maximum Nusselt velocity was obtained by 

assuming the average velocity across the condensate thickness was the 

sameo This ratio was reduced to the expression 

u ( z ) = _2F..,..2 ..... < z_) 

u(6)Nu 3Cm 
, (A.35) 

where: u(5)N : -21c 3•C 62 (x) u u m • (A.36) 

The results for very viscous flow conditions shows that the velocity 

profile across the condensate is different from that predicted by 

Nusselt's theory. Two extreme cases are shown in Figure 39. The 

behavior of the velocity proflle is as expected for the temperature 

dependent viscosity, although the results were not as pronounced for 

other less viscous fluids considered. 

The results from the numerical computer solution are presented in 

Table III. It can be seen that Rohsenow•s correction factors agrees 

very well with those calculated. The terms -96, -er ard -eh repre­

sent the value of 9 that sould be used to determine l-l6, ~, and: µh. 

The column labeled 100,i, Max 9 deviation represents 100 times the differ-

ence between the ca 1 cu 1 ated e and a ti near e. It was observed that the 

maximum calculated temperature deviation occurred for 0.6 < z < 0.66 

for a11 of the condensing situations considered. Obviously, the 
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Figure 39. The Effect of Temperature Dependent Viscosity on the 
Velocity Profile of Laminar Condensate Film. 
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deviation from a linear profile is very small, even with the large 

variations of viscosity with temperature which were considered. 

The results of the numerical solution indicate that the temperature 

profile is essentially linear for the condensing situations considered. 

Therefore, a reasonable approximation for the temperature function is: 

8 (z) = z - 1 

The assumed viscosity temperature relationship i slJ.(T) = AeB/T. 

With these two relations, then the dimensionless viscosity relationship 

can be written as a function 6f~the dimensionless coordinate z: 

This function is not too convenient for illustrating the viscosity 

temperature dependency effect. Since ~T/Tw< 1 for most cases, then 

the expression within the exponential brackets can be approximated as: 

B6T ( 6T ) 
T2 z 1 - T z 
w w 

2 
The expression will yield a solution if the term exp(-B~T z2) is 

Tw 

( B6T2 2) approximated as 1 - ---r- z • 
Tw 

The difficulty with this approximation 

is simply that a computer solution is again required, and the effect of 

viscosity is not entirely evident. If the approximation 

µ (z) = exp [ ( B~T)(t -*-) z] 
T w w 

is used, then the resulting approximate solution agrees very well with 

the results of the numerical computer solution, and the viscosity 

temperature dependency effect is clarified. 
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Define: 
0 _ BtiT (t A!...) '"' = 2 - 2T T w w 

(A.37) 

The results, with these assumptions, are presented below: 

+ t's (1 + -k)z3+ ~ (1 + ~)z2 + -t(t + l)z + :*(1 
r 26 ~ ~ , , ~) 

Cm= J1F2(z)dz = F3(t) = .t.. [eB - (1 + J + ~)] 
0 ~3 

1 · 2 3 
CT= -J 9(z)F2(z) = -F4(1) =;[e-8·::~ (t +J) +~+f)] 

O s 

C 9 = -F 5 ( 1 ) = + 4 5 [ ep - ( 1 + ~ + f + ~ + ~) J 
J3 

The quanities Cm'~ and c9 are the results which allow the 

determination of the correction coefficients, c6, ~ and ch:,; for a 

(A.38) 

(A.39) 

(A.40) 

c~ -
given +.. These previous result's can be rewrHten for reference 

fg 
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purposes: 
h . 

CT c 6T ] 
B = c ~f [1 + - ...e.:.... . 

c hf p m g 
(A.24) 

d9 1 
dzo - Ce 

(A.26) 

--
CB m 

c6 
[ (~!\ r = c 6.T 

3 [cm+ 'T \) 
(A.28) 

~= 3C c3 
m 6 (A.29) 

ch = 
(::)0 

c6 
(A.30) 

Thus it becomes evident that a proper determination of Cm, CT and 

c9 will allow an evaluation of the effect of temperature dependent 

viscosity on condensation heat transfer. Additionally, the results for 

13 < 1 can be explored by expressing the previous results for Cm . .; CT and 

c9, as series: 

_ 2 (.a3 Fi!_ i_ L \ _ 1 ( ft i r._ ) 
cm - ~3 b + 24 + 120 + 720 + --, - 3 1 + 1+ + 20 + 120 + --- . 

_ 3 (i!_ L L L ). _ 1( 1 i:. L ) 
CT - "'Ji 24 + 120 + 720 + ~ + --- - ~ l + 5 + 30 + 210 + ---

13 . 

_ 4 (L e6 L 8 ' ) _ Lf 2 3 ) 
Ce - + 5 120 + 720 + ~ + ~ + -- - + Jo\ l+ i + fi + fu+·-

B . 
If viscosity is considered to be a lfoear function of inverse tempera­

ture (µce.t), which corresponds to a small ~ value, then for~<< 1, 

µ ( z ) = esz + 1 + J3z • 



The results can be approximated: 

( d9) 1 c l\T [ L 3 c AT ( -A)] 
dz - 1 + T6 r 1 - 12 - ~ -+- 1 - 20 

O fg . fg 

c t\T 
If _e:_ is also assumed to be less than 1, then 

hfg 

( d9) c !).T 

dz O ... 1 + 1 b hf g 

c AT (11 L) c6 - 1 - & 40 - b(j 
. fg . 

( ·A, r 3c!).T (11 a_\] 
cr .... 1 + :) L1 - 1i ~ mr - bO/ 

ch +(1 + ~o ~PL\T) [1 + ~hAT (-1.!- ~)l 
fg fg -
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c t\T 
If _e:_ = O, which corresponds to neglecting the condensate subcooling, 

hfg 

then c6 = 1, Ch= 1 and Cr= 1 + {. This last result corresponds to 

evaluating the viscosity at Tf = Tw +~,which is T. B. Drew's recom-

mendation. 

correction 

If viscosity is assumed constant (~ = O), the heat transfer 

:£.. term (for small h ) becomes: 
fg 

= 1 + CPA T ( 1 11 ) = 
ch hfg lo + 160 

1 
Cf\T lf+ 

ch= [1 + o.675 ~ J 
fg 

c fl T 
1 + 0.16875 t!-­

fg 

This result agrees with that of Bromley (6) and Rohsenow (46), as it 

1 [ J C (lTJ 
should. The recommendation that hfg be replaced by hfg = hfg 1+-fi h:g 

can be accounted for by the assumptions of a linear temperature profile, 
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constant viscosity., and a finite specific heat. With these assumptions, 

(~~) = 1, Cm=! and CT=~; consequently., 
0 

• 

Thus by considering only the effect of the condensate specific heat 

having a finite value, the Nusselt results should be multiplied by the 

correction terms: 

c_ = 3C c3 = T m5 

[1 

3 c 6T 
+ lJ ..E:_ 

hfg 

3 c ~T] +rr fg 

3 
4 

1 
q 

• 

These corrections are acheived in the practical manner of simply 
, 3 c 6T 

replacing hf by hf = hf (1 + lr ~) --Rohsenow•s recommendation. 
g g g fg 

Another consideration that is possible with the approximate model 

is that of the effect of a large viscosity variation on the temperature 

profile. The asymptotic values of Equations A.JS,' A.39 and A.40 for 

large Sare: 

for ~ +co 

• 



Consequently: 

CB 
m 

(::) ... 
0 

From Equation A.27: 

e(z) = 

( 

Considering the term 

and since O ~ z ~ 1, F5(z) _,.. 0 

CB m 
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• 

Consequently, the asymptotic approximation solution for J3~CO; predicts 

a linear temperature profile. 

e(z) = z - l 
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A comparison of the results predicted by Equations A.38, A.39 and 

A.40 with the numerical computer solution is presented in Figure 40. 

The agreement is quite good, consequently the.:values for Cm., CT and 

c8 predicted by the approximate solution were used to determine the 

heat transfer correction factor for a range of the dimensionless vis-

cosity parameter ~ and for a range of _c,...p_A_T_ 
hfg 

• A comparable Rohsenow 

c AT 
heiat transfer factor was also calculated with r= 

fg 0.2 for comparison 

purposes. The Rohsenow factor was expressed as 

c AT It; 

(ch) = [ eJ/4(1 + o.68 r) l 
Rohsenow fg ~ 

These calculated results are shown in Figure 41. 

The range of validity for assuming that viscosity is a linear 

· 'ldiiction of inverse temperature ;s greater than expected, due pri-

(A.41) 

·marily to the fact that the condensing heat transfer coefficient is 

a function of [ ; J !,;• For values of fl > 1. 1, the effect of consider· 

ing the viscosity temperature dependency begins to show up. As can 

seen in Figure 40, most of the fluids and condensing conditions con­

sidered involved a value of~< 2. Consequently, no marked difference 

between the pre~ent solution ,nd earlier predictions is observable. 

As is obvious f tdm Figure :41:, the effec.:t of viscosity can become 

significatit for high values· of 13· 
.f··/ .. ·,· 
; ,I 

This analytical inves1}:~:ation ,Qf the effect of .:vbcosit·Y: on laminar 

condensation heat transfer ha.~ yieldtd an approximate model which has 

asymptotic solutions (for ~ -..()')\itli1£{,, agree with several previously 
''.\'· 
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proposed models. The appr.oximate solution has reinforced the validity 

of a linear temperature profile assumption, even under conditions of 

large viscosity variation with temperature. The range of validity for 

the simplifying assumption of µcrf (which allows an evaluation of vis­

cosity at Tf = Tw + ~T/4) has been shown. Heat transfer coefficient 

factors have been presented which allow the use of the simpler Nusselt 

analysis. 



APPENDIX B 

SOS SIGMA 7 COMPUTER PROGRAM:: NUMERICAL SOLUTION FOR 

THE EFFECT OF TEMPERATURE DEPENDENT VISCOSITY 

ON LAMINAR CONDENSATION HEAT TRANSFER 
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C NUMERICAL SOLUTION FOR THE EFFECT OF TEMPERATURE DEPENDENT VIS­
COSITY ON LAMINAR CONDENSATION HEAT TRANSFER 
IMPLICIT REAL1c8(A-H), REAL*8(0 .. Z) 
DIMENSION F(5,501),Z(501),THETA(501),TH(3) 
READ(l,lOO)MITER,INCR, LOW,MAX,DZ,F(t,1),F(2,1),F(3,1),F(4.,1), 

1F(5, 1 ),THETA(l ),Z(l) 
DO 10 1=2,501 . 

10 Z(I)=Z(I-l)+DZ 
11 READ(1,101)NSUBS,NDIV,TS,TW,DLT,VISCS,VIStw,c,HFG 

IF{NSUBS-20)12.,12.,120 
12 NCOUN=O 

WRITE{5,508) 
B=(TS*TW/OLT ~LOG(VISCW/VISCS) 
CDTOH=C*DLT/HFG 
BOTW=B/TW 
BDTWl=B*DLT/TW/100. 
BDTW2=B*DLT/(TW*TW) 
TSODT=TS/DLT 
DTDZO=l. 
ROHSN=( (t .+.68*CDTOH)/DEXP(BOTW*.25/(.75 .. TSODT)) )**.25 

C INITIAL TEMPERATURE DISTRIBUTION GUESS 
DO 20 1=2.,NDIV 

20 THETA(! )=-1.+l .21cZ(l)*( 1.-Z(I)) ·. 
21 DO 30 1=2.,NDIV 
30 F{l,I)=(l.-Z{I))*DEXP(BOTW*((THETA(I)+t.)/(THETA(I)+TSODT))) 

F(2,2)={F(1.,l)+F(t.,2))*DZ/2. · . 
F(3,2)=F(2.,2)*DZ/2. 
F{4,2)={F(2,2)*THETA(2))*DZ/2. 
F(5.,2)=(F(4,2)-THETA{2)*F(3,2))*DZ/2. 
DO 40 1=2,3 
DO 40 J=3,NDIV 

40 F{I ,J)=(DZ/3. )*'. .:(F{I-1,J-2)+4.*F{I-1,J-1 )+F(I- t .,J) )+F(l,J-2) 
DO 50 J=3,NDIV . 
F{4,J)=F{4,J-2)+(THETA(J-2)*F(4,J-1)+F(4,J)-THETA(J-2*F(3,J-2) 

4J)*F{2,J))1c0Z/3. . 
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50 F(5,J)=F(5,J-2)+{F(4,J-2)+4.*F(4,J-1)+F(4,J)-THETA{J-2)*F(3,J-2)-
54.*THETA{J-1)*F(3,J ... 1)-THETA(J)*F{3,J))*DZ/3. 

CM=F(3,NDIV) 
CT=-F(4,NDIV) 
CTOCM=CT/CM 
BT=(l./CDTOH)+CTOCM 
CMBT= 1 • / ( CMf(BT) 
DTDZl=DTDZO 
DTDZ0=1./(1.+F{5.,NDIV)*CMBT) 
DO 60 1=2.,NDIV 

60 THETA{! )=DTDZO*(Z(I )+CMBT*F(5,I ))-1. 
WRITE(5,507)CM,CT,CTOCM,CMBT,DTDZO 
NCOUN=NCOUN+l 
IF(NCOUN-MITER)61,62,62 

61 THETF=DABS{DTDZO-DTDZl) 
IF(THETF-.00001)62,21,21 

62 TMU=l.+CTOCM*CDTOH 



DLCO=DTDZ0/(3.*CM*TMU) 
DLCOF=DLC01ri: .25 
CMDOT=3.*CM*(DLCOF1ri:3) 
HTCOF=DTDZO/DLCOF 

63 ADEL=DLOG(l./DLCO)/BOTW 
AHTC=4.*DLOG(DTDZO)/BOTW+ADEL 
AMAS=(OLOG(3 .*CM)+3.*DLOG(DTDZO/TMU) )/BOTW 
TH(l)=(AOEL*TSODT-1.)/(1.-ADEL) 
TM(2)=(AMAS*TSODT-1.)/(1.-AMAS) 
TH(3 )=(AHTC't(fSODT-1. )/( 1 ~-AHTC) 
LOC=l 
FlMAX=l 

66 DO 68 I=LOW,MAX 
IF(F(1,I}-F1MAX)68,67,67 

67 FlMAX=F( 1,I) 
LOC=l 

68 CONTINUE 
IF(LOC-251)72,71,72 

71 LOW=251 
MAX=501 
GO TO 66 

72 LOW=2 
MAX=251 
IF(B-10,)73,73,74 

73 DO 74 I=l ,3 
TH(I)=-1.0 

74 CONTINUE 
CVREL=2./(3.i,CM) 
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WR!TE(5,503) 
WRITE(5,504)NSUBS,TS,TW,DLT,VISCS,VJSCW,HFG,C,COTOH,BDTW1,BDTW2, 

4B,BOTW 
WRITE(5,505)LOC 
WRITE(5,506)NCOUN,ROHSN,HTCOF,OTDZO,CMDOT,DLCOF,F1MAX,TH(1),TH(2), 

6TH(3), THETF 
WRITE(S,501) 
DO 80 1=1,NDIV,INCR 
VRENU=F(2,I)*CVREL 
DLINT=L)) .-f,(THETA(l )-Z{l )+1.) 

80 WRITE(5,502)Z(I),THETA(l);F(1,I),F(2,I),F(3,I),F(4,I),F(5,I), 
7DLINT, VRENU 

GO TO 11 
120 CALL EXIT 
100 FORMAT(4I4,F9.0.7F5.0) 
101 FORMAT(2I5,7F10.0) 
501 FORMAT(6H1 Z(I),2~8HTHETA(I),2X6HF(1,I),4X6HF(2,I),4X6HF(3,I),· 

14X6HF(4,I),4X6HF(5,I),4X7HDEVLINT,3Xl0HVEL/VELNUS) 
502 FORMAT(1XF5.2,8(F10.5)) 
503 FORMAT(42HOSUBS TS TW DLT VISS VISW HFG ,38HC CDTOH 

3. BD/TW B/TW2 B B/TW ) 
504 FORMAT(I4,6F6.0,4F6.3,F8.1,F7.3) 
505 FORMAT(47H IT ROHSN HTCOF DTDZO CMDOT DLCOF F(1,,I3,27H) 

5TH(1) TH(2) TH(3) THETF) 
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506 FORMAT(I3,6F8.5,3F6.3,F9.6) . 
507 FORMAT(4H CM=,F8.5,4H CT=,F8.5,7H CT/CM=,FS.5,7H CM*KT=,F8.5,7H DT 

7DZO=,E14.8) . . 
508 FORMAT( lHl) 

END 

One set of results from the numerical solutien corresponding to 

the condensation of saturated ~lycerin vapor at 70°F, on a constant 

temperature wall at 40°F is shown below and in Table IV. 

CM=0.46212 CT=0.36516 CT/CM=0.79020 CM*KT=0.10612 DTDZ0=0.99896S18E+OO 
CM=0.54420 CT=0.18479 CT/CM=0.33956 CM*KT=0.09215 DTOZ0=0.10042525E+Ol 
CM=0.54562 CT=0.18403 CT/CM=0.33730 CM*KTp0.09192 DTDZ0=0.1004;2482E+01 

SUBS TS TW DL T VI SS· Vl~W HFG C COTO BO/TW B/TW2 B B/TW 
7 560. 530. 30. 188. 1000. 34I.i-. 0.585 0.051 9.359 1.766 16534.9 31.198 

IT ROHSN HTCOF DTDZO CMOOT . DLCOF F(l,;1) TH(l) TH(2) TH(3) 
3 1.2452 1.13956 1.00425 1.12028 o.sa126 1.20048 -0~709 -0.739 -0.699 

THETF 
0.000004 



TABLE IV 

RESULTS FOR Z DEPENDENT FUNCTIONS INVOLVED IN THE NUMERICAL 
SOLUTION OF THE EFFECT OF TEMPERATURE DEPENDENT 

VISCOSITY ON CONDENSATION HEAT TRANSFER 

164 

Z(I) THETA(I) F(l,I) F(2,I) F(3,I) F(4,I) F(5,I) DEVLINT VEl,/VELN 

.oo -1.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

.02 -0.97992 1.01534 0.02015 0.00020 -0.00020 -0.00000 0.00850 0.02463 

.o4 -0.95983 1.03041 0.04061 0.00081 -0.00079 -0.00000 0.01699 0.04962 

.06 -0.93975 1.04516 0.06137 0.00183 -0.00175 -0.00000 0.02548 0.07498 

.oa -0.9J966 1.05956 0.08242 0.00326 -0.00309 -0.00000 0,03397 0.10070 

.to -0.89958 1.07356 0.10375 0.00513 -0.00478 -0.00000 0.04244 0.12676 

.12 -0.87949 l.08712 0.12536 0.00742 -0,00682 -0.00001 0.05090 0.15317 

.14 -0.85941 1.10020 0.14723 0.01014 -0.00919 -0.00002 0;05932 0.17989 

.16 -0.83932 1.11275 o.16936 0.01331 -0.01188 -0.00003 0.06771 0.20693 

.18 -0.81924 1.12471 0.19174 0.01692 -0.01487 -0.00005 0.07605 0.23427 

.20 -0.}9916 1.13603 0.21434 0.02098 -0.01815 -0.00007 0.08433 0.26190 

.22 -0.77907 1.14666 0.23717 0.02549 -0.02172 -0.00010 0.09253 0.28979 

.24 -0.75899 1.15654 0.26021 0.03047 -0,02554 -0.00014 0.10063 0.31793 

.26 -0.73891 1.16560 0.28343 0.03590 -0.02961 -0.00020 0.10862 0.34631 

.28 -0.71884 1.17378 0.30682 0.04180 -0.03391 -0.00027 0.11648 0.37489 

.30 -0.69876 1.18102 0.33037 0.04818 -0.03843 -0.00035 0.12418 o.40367 

.32 -0.67868 1.18723 0.35406 0.05502 -0.04314 -0.00046 0.13170 o.43261 

.34 -0.65861 1.19235 o.37786 0.06234 -0.04803 -0.00059 0.13902 o.46169 

.36 -0.63854 1.19629 o.40174 0.07014 -0.05309 -0.00074 0.14611 o.49087 · 

.38 -0.61847 1.19898 o.42570 0.07841 -0.05829 ;..0.00092 0.15294 0.52014 . 
• 4o -0.59841 1.20033 o.44969 o.087T6 -O.u6361 -0.00113 0.15948 o.54946 
.42 -0.57834 1.20025 o.47370 0.09640 -o.0~905 -0.00138 o.16569 0.57880 
.44 -0.55828 1.19864 o.49760 0.10611 -0.074~7 -0.00167 0.17155 0.60811 
.46 -0.53823 1.19542 0.52164 0.11631 -o.oao15 -0.00199 0.17701 o.63737 
.48 -0.51818 1.19046 0.54550 0.12698 -0.08579 -0.00237 0.18205 0.66652 
.50 -0.49813 1.18368 0.56924 0.13812 -0,09145 -0.00279 0.18661 0.69$53 
.52 -0.47809 1.17496 0.59283 0.14975 -0.09712 -0.00328 0.19066 0.72436 
.54 -0.45806 1.16418 0.61623 0.16184 -0.10278 -0.00382 0.19416 0.75294 
.56 -o.43803 1.15122 o.63939 0.17439 -0.10841 -0.00442 0.19706 o.7a124 
.se -o.41801 1.13596 0.66226 0.18741 -0.11398 -0.00510 0.19931 0.80919 
.60 .0.39799 1.11027 o.68481 0.20088 -0.11947 -0.00585 o.2ooaa o.83674 
.62 -0.37798 1.09800 0.70698 0.21480 -0.12487 -0.00668 0.20169 0.86382 
.64 -0.35798 1.07503 0.72871 0.22916 -0.13016 -0.00760 0.20172 0,89038 
.66 -0.33799 1.04920 0.74996 0.24395 .. 0.13530 -0.00861 0.20090 0.91634 
.68 -0.31801 1.02036 0,77066 0.25915 -0.14029 -0.00972 0.19918 0.94163 
.70 -0.29803 0.98834 0,79075 0,27477 -0.14510 -0.01093 0.19650 0.96618 
.72 -0.27807 0.95300 0.81017 0.29078 -0.14971 -0.01225 0.19281 0,98991 
074 -0.25812 0.91415 o.82885 0.30717 -0.15410 -0.01368 0.18805 1.01273 
.76 -0.23818 o.s7t62 o.84671 0.32393 ~0,15826 -0.01524 0.18216 1.03456 
.78 -0.21825 0.82522 o.86369 0.34103 -0.16216 -0.01693 0.17507 -1.05530 
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TABLE IV (Continued) 

Z(I) THETA(!) F{ 1.,I) F(2.,l) F3.,I) F(4,I) F(5,I) DEVLINT VEL/VELN 

.80 -0.19833 0.77476 0.87969 0.35847 -0.16579 -0.01875 D.16673 1,07486 

.82 -0.17843 0.72005 0.89465 0.37621 -0.16914 -D.02072 D.15708 1.09313 

.84 -0.15854 0.66088 0.90847 0.39425 -0.17217 -0.02284 0.14604 1.11001 

.86 .. -0.13866 0.59704 0.92105 o.41254 -0.17489 -0.02511 0.13355 t. 12539 

.BB -0.11880 0.52831 0.93231 0.43108 -0.17728 -0.02755 0.11955 1.13915 

.90 -0.09896 o.45447 0.94215 o.44983 -0.17932 -0.03015 0.10397 1.15117 

.92 -0.07913 0.37527 0.95046 o.46875 -o.1~100 -0.03294 0.08674 1.16132 

.94 -0.05932 0.29048 0.95712 o.48783 -0.18232 -0.03591 0.06780 1,16947 
,96 -0.03953 D.19984 0.96204 0.50703 -0.18327 -0.03908 0.04708 1,17547 
.98 -0.01976 0.10311 0.96508 0,52630 -0.18384 -0.04245 0.02450 1.17919 

1.00 -0.00000 0.00000 0.96612 o.5L1,562 -0.18403 -0,04602 0.00000 1.18046 



APPENDIX C 

CALIBRATION CURVES FOR MEASURING DEVICES AND EQ.UATIONS 

FROM LEAST SQ.UARES METHOD OF CURVE FITTING 

The temperature (T) ;n degrees Fahrenheit corresponding to an 

experimentally obta;ned ;ce-po;nt reference junct;on thermocouple 

reading (Rt) was calculated with the follow;ng equation: 

. . . 2 · 3 
T = 32.183 + 46.4846 Rt - 1;.24977 Rt +.049044 Rt 

This equation was obtained by applying the method of least squares to 

the data for Copper-Cor,stantan thermocouples tabulated by Leeds and 

Northrup Company, as taken from the Nat;onal Bureau of Standards 

Circula No. 561. Therms error for thh equation h 0.000095 over 

the range of 70 F to 240 F. 

The cal;bration curves and corresponding eq~ations obta;ned by 
.;, i . . . 

app1Y'ing the method of least squares for the two flow measuring dev;ces, 

and for the static pressure transducer are presented in Figures 42, 43 

and 44. 
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