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PREFACE 

An isothermal expansion ratio.apparatus was assembled for the 

precise determination of compressibility facto.rs. Compressibility data 

were obtained for methane, ·ethylene, and four of _their mixtures, and 

virial coefficients were derived.. The compressibility factors. and· 

virial co~fficients. were compared :with values from the -literature·. and 

with three empirical equations of-state.· 
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CHAPTER·!· 

INTRODUCTION 

This project had·three objectives: 1) the design and·assembly of· 

an isothermal.expansion ratio apparatus for the precise .determination 

of compressibility factors for gases, 2) the use of this apparatus to 

obtain compressibility factors for the methane-ethylene system, and 

3) comparison of experimentc;1l compressibility factor and virial 

coefficient data with existing data and equations of state. 

Compressibility data can.be of great value in providing needed 

volumetric data for process design calculatiol').s. · Also, compressibility 

data ar.e used to calculate.· thermodynamic properties, enthalpy and 

entropy., for example, and to provide a basis f9r development of ,methods 

for·estimating thermodynamic properties of gases, 

The. binary system of methane·and ethylene was selected for this 

study because of its importance in the petrochemical ind,ustry and the 

availability of.the pure component data :i,.n previous.literatµre, thus 

providing a convenient comparison. Another important consideration is 

that no .experimental study of compressibility factors. for the methane

ethylene system has been reported in the lite}'.'.ature. The compress

ibility factors were determined for methane, ethylene, and four of 

their binary mixtures at 25, 50, and 75 °C and pressures to 12,000 

psia. 
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CHAPTER II 

PVT MEASUREMENTS 

In :this s.ec:tion, various methods. for obtaining compressibility, 

data,·including the isot:hermal expansion ratio method developed by· 

Burnett (6), are dis(:!ussed. · The basic rel,.ationships for reducing the 

data from the isothermal expansion ratio method are·shown. 

The determination of the PVT properties of .gases involves making 

pressure, . temperature; volume,. mass, and composition measurements, 

Accurate pressure and temperature measurements are relatively easy·to 

make compared.to the other meas"Uretnents~ Commercially available 

pressure .. measuring devices , can measure · pressure to one· part in 10, 000, 

Resistance thermometers are able to measure·temperatures to 0.001 °C 

over a.· wide range. · Special care and. techniques · are required to make . 

accurate. volume; mass, and composition measurements for gases. 'l'he 

volume of the confining vesse,l is usually determined by weighing the 

vessel filled with a liquid of known density, The mass of the gas· 

charged into the confining vessel can be determined by weighing. the 

gas sample" Modern chromatography or mass spectrographic methods can 

be used to measure the composition. · Also, gas samples can. be prepared 

of. known composition by weighing th.e amounts. of each component put into 

the confining vessel. Several techniques have been used by previous. 

investigators to determine the PVT properties of gases. These 

techniques differ usual.ly in the manner in whic;;h the voltime · and mass · 

2 



of the.sample. are detennined. Some.of·these techniques will be 

discussed under the.following.headings: 

l.. Constant Volume .... Variable Mass· 

2. Constant; Mass-Variable Vo:t.ume 

3. Cof!.S tant .. Yolufue.,.Gons tant Mass 

4. Variable Vol\,llne-Variable Mass 

Constant·Volume-Variable Mass 

3 

In 1930, Bean.(2) described a constant volume--variable mass.method 

for PVT·determinations~ A.gas sample of 1.lnknown·maSJs·was charged.into 

a high pressure. bomb of known.volume.i A.portion. of the.gas sample was. 

expanded to a low pressure, where .. the PVT properties of · the gas •were. 

known·, into a calibrated. burette·~ The lllB.SS. of· the ga.s. in· the low 

pressure.burette.was calculated. The·expansions·from the. high pressure· 

bom]? were repeated.measuring the temperature.and pressl.lre a.nd summing 

the masses for ea~h step. 

The·compressibility factors were calculated from the.temperature 

. and pressure measurements, the b.omb volume, and.· the· calculatec;l mass. 

Several runs.werl!;!made along·an.isothenn. 

The.: compressibility factors determined by·. the Bean apparatus are 

dependent.upon.the knowledge of.compressibility factors·near atmospheric 

pressureo.; The· errors in the known compressibility data. will be 

reflect·ed. in the calculated mass· of gas fo:t each expansion and the 

total mass; Bloomer (5) reported compressibility data.for natural 

gasesaccurate·to 0.1% for temperatures nearambient and pressures 

to 1000 psi, 



4 

Amodified Bean apparatus was reported by Solbrigand Ellington. 

(62). The.mass.of the gas sample that was charged.into the high pres

sure.bomb was measured providing an·independent check on the sum·of. 

the incremental masses. Also before each expansion, several constant 

volume·.measurements were tnade at various temperatures. This procedure· 

reduced the. number of runs required. for a given.amount of .data. Data 

(62) have been reported for hydrogen"'.methane and hydrogen-ethane 

mixtures ac.c.ur ate to O .1% for temper a tures from -300 to 300 ci F and 

pressures up to 3000 psi. 

Constant Mass-Variable Volume 

This technique-for determining the PVT properties involves 

confining a gas sample of known mass in a vessel at.constant tempera

ture and.detel'.'mining the change in pressure with change.in volutne. This 

method dates from Amagat's work (1). 

Michels and Gibson (42) described an apparatus·of the constant 

mass-variable. volume type··. in 1928. The gas sample was confined in a 

glass· piezometer .over mercury. The piezometer was .contained in a steel 

pressure vessel filled with mercury and oil; The piezometer consisted 

of a.series.ofglass vessels.connected by capillaries, Platinumwire 

contacts were. placecj. in the capilla;des. The volume · of each vessel 

was calibrated by using mercury. 

An experimental run consisted of charging the piezometer with a 

gas.sample of.known mass and changing the volume of the sample by 

pressuringmercu')::'y into the piezometer, Theplatinum contacts 

indicated the position of; the mercury and hence.the volume of the gas 



sample ..• .'. · 'l'he PVT properties were. determined from" the pressure, 

temperature., volume, . and mass measurements. 

5 

The.·appara1rus described by Michels and Gibso1:t (42) was limited to. 

relatively low pressure, to 50 atmospheres. · The pressure range · of . the 

apparatuscould be·increased by making the final.volume of the pie,.,. 

zometer. smaller or the initial volume larger. A smalle.r final volume 

would· decrease.· the accuracy . of the volume·. measurements t;J,nd a larger 

in;i.tial .volume would require a large apparatus for withstanding high 

pressures. 

An.improved apparatus of the constant mass-variable volume type was 

reported.by.Michels, Michel.a, and Wouters. (46). Thepiezometer was 

designed to befilled to an initial pressure of 20 to 50 atmospheres. 

The amount.of gas charged was determined from previous PVT data. Th:Ls 

apparatus.could be.used.to.3000 atmospheres. The authors clai;med an 

accuracy of.· one part in 2000 at 3000 i;ltmospheres and a higher accuracy. 

at lower pressures. 

Inboth theoriginal and improv1:d apparatus of M:i,.chels, the gas. 

sample was.confined over. mercury. Thus~ the temperature range was 

restricted. to. avoid. freezing th.e mercury or contaminating the gas• 

sample with.mercury.vapor at high temperatures. 

Another coµstant mass-variable volume apparatus was reported by 

Beattie et al. (3) in 1934. A gas sample was sealed in a thin-wall 

vessel-of known volume •. The mass of the.sample was determined by 

weighing. ,· The· sealed vessel was. inverted . in · a high pressure bomb~ . 

Mercurywas pumped into the high pressure bomb·filling the annualar 

space; and· the · seal was. broken. The change . in volume·. of the original 
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gas sample.was determined by measuring the amount of mercury pumped into 

the high pressure· bomb · from a pre~calibtated screw pulllp. · 

The effect.of -pressure and temperature on the volume of the bomb. 

and confiningmercury was made usinga<gaswith known.PVT properties. 

The apparatus can be operated along isochors.as well as along isotherms. 

Dousl:i.n et.al. ·(16) have used a Beattie apparatus recently,for 

detero:iining. the compressibility factors of fluorocarbons, hydrocarbons; 

and their.binary.mi:x;tures over a temperature tangeof O·to 350 °C and 

pressures to 400 atmospheres. The authors.reported that the compress-

ibilityfactors.were accurate.to.0.03% at the lowest temperature.and· 

pressure and to 0.3% at the highest temperature and pressure. 

Constant Volume--Constant Mass 

A constant volume-constaI:).tmass apparatus was developed by Michels 

et al. (39, 45, 4 7) to extend PVT data below O °C from their h:i.gher 

temperature measurements using the constant·mass-variable volume 

apparatus. In this method; a gas sample was charged into a high pres

sure bomb. The gas sample was allowed to equilibrate at O °C or 25 °C, 

where the PVT properties were known, and .the pressure measured. Next, 

the gas.sample was.cooled to various telllperatuI,"es below the reference 

isotherm measuring pressure at each.· temperature. 

In addition to knowing the PVT properties of the gas at a 

reference isotherm, knowledge of the·. change in volume. of the isochoric 

apparatus with pressure and temperature~. was. required. Also since ' the 

diaphragm cell, which separated the gas salllple froi:n the oil of the 

pressuregage was located outside the.thermostat, the isochoric data 

were corrected for part of the gas sample being at a temperature 



other than. the. gas. in the high pressure. bomb".'··- Th:i,s ·. apparatus .was 

operated.:over a temperatu-re. range of 25 to .- ·180 --oc and pressures to 

1000 atmospheres. Michels et al. (39,45,47) reported the accuracy to 

be one:.part in. 10,00Q. Also, Levelt (33) has presented a detailed 

discussion of this apparatus. 

McMath. (38) used an .. isochoric. apparatus to extend the compress

ibility· data .from. this wprk for methane; ethylene;.and four of the:i,.r 

binary· mixtures -below 25 °C. · Also,. a .. detailed discussion of isochoric. 

apparatus ·was. pres.ented by McMath .. 

7 

'Ihe isochoric method of obtaining PVT prope1;ties has.two major 

disadvant;ages ..•... Any. errors it!, the reference. isothernr will,. be reflected·: 

in the· isochoric data. Cbang;!..ng the temperatu",t"e of the·isochoric 

apparatus. takes considet:able.time. · These.disadvantages.are·offset 

somewhat:: by .. the :simplicity .of the apparatus.- Alsa, :i,f the same .tem

peratures: are used.in the-course of a. series of runs, .the method_ 

provides isothermal data as well as isochoric _data, 

Variable Volume-Variable Mass.· 

In-1936, E. s. Bµrnett,(6) reported in a paper a method for 

determining.isothermal.compressibility factors·of .gases.· The method 

consisted of.'mal{ing. a series of isothermal expansions from one .. vessel 

through.: a. valve into an evacuated vessel, measuring the pressure before 

each·expansion. 

The, first vessel v1 is filled to a. :desired pressure with gas· 

(Figure 1). After allowing the :gas to atta.in thermal equilibrium with 
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Expansion Valve 

Fill Vac. 

Pressµre Ves.sels 

Figure 1. Isothermal Expansion Ratio Apparatus 



the thermostat, the initial presi;;ure P is measured/ The following 
0 

equation of state can be.written for the gas in v1 : 

9 

PoVl = z n RT 
0 0 

(II-1) 

The valve between the second vessel v2 and v1 is closed. Vessel 

v2 is evacuated and the gas is expanded from v1 to v2 • The pressure 

P1 , aftel'.' the first e:x:pansion of the gas, in v1 and v2 is measured after 

thermc;1:l equilibrium is·reached~ The following equation of state can be· 

written for the gas in v1 and v2 : 

= z1n.RT ·o 
(II-2) 

Solving Eq. (II-2) for n and.substituting into Eq. (II-1) gives 
0 

the following expression:. 

(II-3) 

The expansion valve is closed and v2 is evacuated. The pressure 

in v1 is still P1 , but the number of moles of gas becomes n1 • Then 

the equation of .state for the gas in v1 is: 

After the second e;x:pansio:p., the following equation of state can be 

written: 



10 

= (II-,.5) 

Similarly; the pressiure ratio can be obtained u,sing Eqs. (II•4) and. 

(II-5). 

(II-,.6) 

Con.tin1.,ling the expanijions, the pressure ratio after the j th 

expansion becomes; 

(II-7) 

The volume ratio in the.above equation ;i.s usually defined as the 

cell constant. 

N = 

Then Eq. (II-7) is written as follows, 

P. 1 
-1.:..:!:. 

P. 
J 

z. 1 
N _.J.:l. 

z. 
J 

(II-8) 

(II-9) 

Another relationship can be developed by solving Eq. (ll-3) for 

P1 and substituting into Eq. (II-6): 
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(II-10) 

Compressibility factorsafter the first·and second.eJ1:pansion are. 

given• by Eqs. (II-3) and (II-10), -respecUvely. Si~ilarly, the com-

pressibility factor after ·the·j:th expansion can.be·expressed as, 

z. 
J. 

j zo 
~. N ·pp· 

O J 
(II-11) 

Th.e cell constant. is defined using }i!q. (II-9) and using the 

definition of the compressibi~ity factor at ze~o pressure (z = 1). 

Limit 

p. -,..-+, 

J 

P. 1 
0 .;..J.:.±. = . N 

P. 
J 

(II.-12) 

The cell constantis usually evaluated by plotting the ratio of the 

b f h . th . h f h . th pressure. e ore t e.J e~pans1on tote pressure a ter t e3 

. ( I ) h . f h . th . . (P ) expansion · P. 1 P. versus t e . pressure . a ter t e J expansion . 
J- J J 

and extrapolating to· zero pressure as .. illustrated in Figure· 2. Alsc;,, · 

the extrapolati()n can be done using·least-mean-square·curve-.fit 

procedures. 

The compressibility factor before the first expansion is.defined 

using Eq. (II-11) by taking the limit as.Pj approaches zero. 

Limit 
p 

j 
= 

p 
0 

z 
0 

(II-13) 



Pressure 
Ratio 

Zero Intercept = N 

.,, .,.,, 

~Extrapolating to Zero Pressur~ 

0 ... --.............. -..----------------------------...... ...,. 
0 ' p 

j 

Pressure After jth Expansion 

Figure 2. Evaluation of Apparatus Constant, N 
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The vaiueof P/z0 can be ca],culated.g:taphica:lly by plotting Nj Pj. 

versus.Pj .and extrapolating to zero pressure.as shown in Figure·3 or 

by curve~fitting. · 

13 

The .. equations. presented 1:1,bov-e. describing .the Burnett method are.· 

basec;l·on.the assµmption that the voluineof the veesels !,lre not functions. 

of pressure • .Vessels which havepressurejackets can·fulfill this 

assumption~. Vessels that do have pressurejackets.shou,l.d be treated 

differently. Canfield (8) has presented relationships for the 

unjacketed case. 

Advantages and Disadvantages 

The most conunonly u,sed methods,foi;- c;leterniining coiµpreesibility 

factors.involve pressure and temperature measuret11ents-of a.known mass 

of a.gas in a known volume.· Volµme measurements can be macle accurately 

at low.pressures, 'but they.are more.difficult at. high pressures. The 

mass of gas.could be.determined by weighing in a bomb. Usu!:llly the 

mass of gae. is· small so that great .. care. mu1?t. be used to. avoid errors. 

Asehown by the relationsh;i.ps presented for the.isothermal 

expansion.method of Burnett, the volume·.and ma.ss meal,lurements can be 

eliminated. Only pressure and temperature measurements are·required. 

The expansion method can.be used over a wide range.of temperatures ·and 

pressur:es. Many of the . othe:t;' methods . use mercury or ·some. othet" liquid 

which would contaminate .the gas sample in the vessel. Canfield et al~ 

(9) reported.a maximum error of 0.15% for 1;:h:i,s method ov,er a wide· 

range of temperatures and pressures. 



["Extrapolate to Zero 

--
'--Zero Inte1;cept , = P· · /Z 

· 0 0 

pf 
th Pressure After j · Expapsion 

Figure 3. Evaluation of Initial Compressibility 
Factor 
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The i.eothermal expansiQn method .is subject· to some disadvantages; 

namelyi,. it is best. suited for measurements abc>ve .. the critical point, 

and·it requires relatively large ,amounts of.gas when compared to other· 

methods. 



CHAPTE~ III 

SURVEY OF PREVIOUS WORK 

In this chapter, previous work using the isothermal expansion ratio 

method is reviewed briefly. In addition, a brief review of methods of 

deriving virial coefficients and of equations of state are·presented. 

For comparison later, compressibility and virial coeffic:j.ent data for 

methane and ethylene are reviewed. 

Isothermal Expansion Ratio Method 

After Burnett (6) introduced the isothermal expansion ratio method 

in 1936 very little work was.reported for several years. The method 

was briefly mentioned in two Bureau .of Mines reports·(l0,11) in 1940 

and 1942. The. bulk of the work done using the Burnett method has been 

done since.1950. Rather, than review each investigator's work, the· 

vci.rious investigators who have used the Burnett.method are summarized 

in Table!. The various methods.of treating the isothermal expansion 

ratio .data .that have been used by various investigators will be 

presented below. 

A large amount of work with the Burnett method has been done by 

Schneider and his associates (34,35,50,58,59,70,71) at the National 

Research Council of Canf!da. Most of their work was done in the tem

perature range of Oto 600 °C with pressures to 80 atmospheres on pure 

component.systems .. The isothermal pressure ratio data were used to 

16 
'"_ ..... 1. 



Temperature 
Range 

oc 

0 
30 

26 to 93 

Oto "600 

Oto 600 

600 to 1,200 

Oto 600 

Oto 400 
Oto 250 

Oto 600 

O to 700 · 

TABLE I 

SUMMARY OF PREVIOUS INVESTIGATIONS USING THE ISOTHERMAL 
EXPANSION RATIO METHOD OF BURNETT 

Pressure 
Range 
psia · 

to 2,200 
to 900 

to 4,000 

to 4,000 

to 1,200 

88-1,200 

88-900 

to 735 

to 735 
to 735 

150-1,200 

to 1,200 

System 

Helium 
Air 

. Apparatus only 

Natural gas 

Helium 

Helium 

Helium 

Carbon dioxide 

Carbon tetrafluoride 
Sulfur hexafloride 

Argon 

Neon 

Investigator 

Burnett 

Cattel et al. 

Stevens and Vance 

Schneider 

Schneider and Duffie 

Yntema and Schneider 

Maccormack and Schneider 

Maccormack and Schneider 

Whalley, Lupien, and Schneider 

Nicholson and Schneider 

Reference 

(6) 

(10,11) 

(63) 

(58) 

(59) 

(71) 

(34) 

(35) 

(70) 

(50) 
I-' 
........ 



TABLE I (Continued) 

Temperature Pressure 
Range Range System Investigat<>r Reference 

oc psia 

-60 to 30 7-37 Carbon dioxide Cook (14) 

25 tol,000 Natural Ga:s Bloomer (5) 

30 to 1,800 . He, N 2 , C02 , · and Pfefferle, Goff., and Miller (54) 
their binary mixtures 

30 to 1,800 He and C02 mixtures Harper and Miller (21)· 

30 to 1;910 He; N2 , and mixtures Kramer and Miller (30) 

175 to 475 to 1,500 He - N2 mixtures Witonsky and Miller (69) 

50 to 200 to 2,000 Apparatus and data Silberberg, Kobe~ and·McKetta (60) 
treatment. 

50 to 200 to 1,000 Isopentane Silberberg, Kobe, and McKetta (61) 

1-0 to 250 15-4,600 Sulfur dioxide Kang et al.. (28) 

-JO·to 150 15-4,600 Nitrous oxide· Hirth and Kobe (24) 

30 to 200 15-1,000 Neopentane Heichelheim et al. (22) 

-200 to 50 to 7,000 Methane·- H2 mixtures Mueller (48) 
I-' 
00 



Temperature 
Range. 

oc 

-128 to 10 

-140 to O .. 

-23 to ·54 
21 

·-10 to 200 

200 to 350 

-130 to O 

-141 to O 

Pressure 
Range 
psia 

to 7,000 

15-7,400 

to 4,000 
to 4,000 

to 5,000 

to 7,350 

to 600 

TABLE I (Continued) 

System 

Methane - H2 mixtures 

He - N2 mixtures 

Helium 
He - N2 mixtures 

C02 - ethylene mixtures 

Methyl chloride 

Data.Treatment 

Nitrogen, Argon, .and 
their mixtures . 

Methane;. ethane, and·. 
their mixtures 

Investigator 

Mueller, Leland, and.Kobayashi 

Canfield 

Stroud, Miller, and Brandt 

Butcher and.Dadson 

Suh arid Storvick 

Hoover, . Canfield·~ Kobayashi, . 
and Leland· 

Crain and Sonntag 

Hoover, Nagata; Leland, and 
Kobayashi · 

Reference 

(49) 

(8) 

(64) 

(7) 

(u5) 

(25) 

(13) 

(26) 

""'"' I.C 
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calcula.te .v:irial coefficients and compressibility factors . by expressing 

the pressure ratios (Pj-:l/Pj) in.terms of the Berlin virial equation of. 

state (see Appendix L). 

P. 1 
....J.:::!:. = 

P. 
J 

BI C' i 
N + (N-l)r, ~j-l + (N-Pj/Pj.;..l)Ar Pj,..l + • · · (III-1) 

where the coefficients refer to the Berlin virial equation of state 

shown.below: 

PV = A' + B'P + C' P2 + •.• (III-2) 

The cell constant·N was determined usually using a gas, such·as helium, 

that would give a linear. relationship of the pressure ratios with 

pressure. The other coefficients were evaluated by curve-fitting the 

pressure ratios using a truncated form of Eq. (III-1). · 

Ano.ther method of treating the isothermal expansion ratios has 

been used by.J. G~ Miller and his associates (21,30,54) at the Univer-

sitrof Pennsylvania. They expressed.the compressibility factor as an 

exponential function of pressure. 

z = exp (aP + SP2 + ... ) (III-3) 

By substituting the above relationsh:i,p into Eq. (II-11), the following 

equation was obtained: 

= exp ( (:tP . + S'.P . + . . • ) 
]. ]. 

(III-4) 



By taking the .nat1,1ral logarithm of Eq. (III--4), a linea.r relationship 

th was derived which related the pressure after the i ·· expansion to a 

power.series in pressure. 

21 

= - ln (z/P 0 ) ,.. i ln N + a.Pi + SF; + •.. (IIJ;-5) 

The cell constant N and the compressibility factor z0 were determined 

by fHting the pressure data using a truncated.form.of Eq. (III-5) as· 

the model. The regtession coefficients (a,a; etc.) were related to the 

virial coefficients by expanding Eq. (III-,3) in a power, series in 

pressure and comparing like terms w;i.th the Ber.).in form bf the virial 

equation of state~ 

z = 1 + a.P + (a.Z /2 + a) P2 ,+ •• 0 · 

Then, the following equations were written: 

B' = a 

etc. 

(III-6) 

(III-7) 

(III-8) 

A treatment of the isothermal expans:i..on data similar to Schneider's 

method was described by Butc;her and Dadson (7). Butcher and Dadson 

derived an equation by expressing the pressure ratio (P .. 1/P.) in terms 
J- J 

of the Lei<;len virial equation of state. 
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N(P. 1-NP.) 
J- J = A(B + Cp (N + l) 

. j~l N + ... 
(N-1)p~ 

j-1 

where p = .molar density 

(III-9) 

and the coefficients. (B, C; etc,) refer to the Leiden virial equation 

of state·shown.below: 

PV· = A (1 + B/y_ + C/V 2 + D/V 9 + ••• ) (III-10) 

The cell constant N was determined from the pressure ratios using Eq. 

(II-12). The values of the densities (pj-l) were related to the density 

at a pressure·of a standard atmosphere and·<1it the temperature T. 

where 

I:). 
J 

= 

PT 1 = density at a standard atmosphere and 
' 

temperatu1;e T. 

r = number of expansions to reduce pressure to 

standard atmosphere. 

(III-11) 

After evaluating r graphically, Eq. (lII-9) was used to derive the virial 

coefficients •. 

Canfield.(8,9) proposed a method of treating the isothermal 

expansion data.that consisted of using the equations.presented pre ... 

viously in Chapter II, Eq. (II-11), (II-12), and (II-13), to establish 

initial values for the cell constant and the compreijsibility factors. 

The value of the cell constant was checked using the following equation 
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based OX\ the Leiden form of.the virial equation of state: 

(z - 1) V = B + C/Y.. + D/V 2 + ..• (III-,12) 

According to Eq. (III-12) , a plot of (z - 1)! versus 1/V becomes linear 

at low pres1:1ures. Canfield adjusted the value of the cell constant 

untiLthe plot of (z - 1)! versus 1/V gave a linear relationship at low 

pressures •. The intercept on thi1:1 plot .is.the secondvirial coefficient. 

The other virial coefficients were derived graphically using the slope.., 

intercept method (slope--intercept method is described in next section). 

Most.of the investigators have used one of the methods presented 

here to treat their isothermal pressure ratio data. Other methods not 

presented here have been described by Silberg, Kobe, and McKetta (60), 

Virial Equation of State 

The Leiden form of the virial equatioµ. of state is an infinite 

series in density shown below: 

z 1 + B(T)/V + C(T)/y__2 + D(T)/V 3 + ... (III-13) 

where the coeffic:ients are functions of temperature only for pure com

ponents. The equation is derived from considering the interactions 

between pairs of particles and higher ordered intera,ctions (23). The 

virial coefficients in Eq. (III-13) are related to these interactions •. 

The derivation is very complicated and lengthly and will not be 

presented here, 
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The other form·of the virial equation of state.known as.the Berlin 

form is an infinite series in pressure. 

z = 1 + B'(T)P + C'(T)P 2 . + D'(T)P 3 + .•. (III-14) 

where th.e coefficients are func.tions of tempetature only . for pure 

components.. The coefficients of the Berlin eq1.1,ation have been related 

to the c;oefficients of the Leiden equation (2;3). 

B' = B/RT 

C 1 = ( C - B 2 ) / (RT)2 

etc. 

(III-15) 

(III-16) 

The Leiden form.has two advantages over the Berlin form. The· 

Leiden form of the virial equation .of state converges more rapidly than 

the Berlin form. The Leiden.coefficients.are·directly related to the 

intermolecular.potential function which d~scribes the interactions 

between molecules •. The remainder.of this section will deal with the· 

Leiden form of the virial equation of state, 

The virial coefficients-for theLeiden form can be derived from 

compressibility data.· Rearranging Eq. (III-13) gives the following 

relationship for the second virial coefficient: 

Limit 

P-O 

(z - 1)! = B(T) (III-17) 
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The second·coefficient can.be determined graphically by plotting 

(z - l)V versus 1/V and extrapolating to zero density. The intercept 

is the second virial coefficient. 

The third virial coefficient is derived in a similar manner. The 

third coefficient can be expressed as follows by further rearranging 

Eq. (III-13). 

Limit 

P-o 
((z - 1),Y - B(T) )V = C(T) (!Il-18) 

The third coef:Eicient is the intercept at zero.density of a plot of 

((z .,.. l)V ... B(T))V versus 1/y. The other coefficients can be derived by 

earring the procedure.further. 

l'his procedure known as the slope-intercept method requiJ;es 

accurate.low pressure.data. Some investigators have based their 

derivationson.curve.,..fitting higher density data using Eq. (III-13) as 

their model..· The coefficients derived by curve-fitting depend upon the 

pressure range of the data as well as the degree of the polynomial used. 

The slope.,..intercept.method has the advantage over curve-fitting of 

giving coefficients that are•functions of temperature only. 

The virial equation of state C/iln be used to describe multi,;-

component mixtures. The coefficients in Eq. (III-13) can be applied 

to the mixture. 

z = 1 + B (T,x1,x2,.,.~x )/V + C (T,x1,x2, •• ,,x )/V 2 + m · n- m · n-

(III-19) 
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where·the coefficients are functions.of col.llposition in addition to being 

functions of temperature. The virial coefficients can be derived.from 

the mixture compressibility data using the slope-intercept method.· 

Limit (z - 1).Y. = 
P~O 

Limit 
p~O 

((z - l)V - B )V = 
- m-

(III-20) 

C (T ,x1 ,x2 , ••• ,:x ) m n 
(IU-21) 

The mixture virial coefficients have been expressed in terms of 

the composition and the pure.ce>mponent coefficients for an-component 

mixture (23). 

where 

for 

for 

n n 

B .(T,x 1 ,x2 , ••• ,~) = l l· x1_x.B .. (T) 
m n J J.J 

i j 

n n n 

C (T,x 1 ,x2 , ••• ,x) = l l l m · n 
i j k 

x. x. ' xk - . mole.fraction 
l. J 

of i, j' and kth 

species in mixture~ 

i = j k 

Bii = pure component second.virial 

coefficient of species i. 

c .. ·. = pure component third vi rial 
l.l.l. . 

coefficient.of species i. 

i 'F j 'F k 

(III-22) 

(III-23) 

B .. = second cross.coefficient between 
:J.J 

species i, j . 
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cijk - . third cross coefficient between 

species i, j' k. 

for i = j ,{, k 

ciik = third cross coefficient between 

species, i, i, k. 

for i ,{, j = k 

cikk = third cross coefficient between 

species i, k, k. 

Applying Eqs. (III-22) and (III-23) to a binary mixture gives the 

following expressions: 

(III-24) 

0:II-25) 

Note that themixture coefficients are·functions of·temperature and. 

compositionwhile the coefficients on the right-hand side of Eqs. 

(III-22), (III-23), (III..,..24), and· (III-25) are· functions of temperat;ure 

only. 

Various empirical schemes.of combining pure component.secondvirial 

coefficients have been used to estimate the value of the cross term and 

$Ubsequently the binary mixture coefficients. These rules allow 

estimation of low pressure compressibility factors.for mixtures by 

truncating Eq. (III-13) after the second virial coefficient.· 
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A lin(;!ar combination of the pure component· coefficients gives· 

(III-26) 

Applying this rule to Eq. (III-24) reduces the mixture value to 

(III-27) 

The linear-square-root combination yields the following expression: 

(III-28) 

Using this value for B12 in Eq. (III-24) gives the mixture second virial 

coefficient. Eq. (III-24) is not simplified as for the linear 

combination rule. 

The following equation gives the square root comb-i.nation: 

= 

SubstitutingEq. (III-29) into Eq. (III-24) gives the following 

relationship for the mixture second virial coefficient: 

(IU-29) 

(III-30) 

The Lorentz combination is given by the following equation: 

= + (III-31) 
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This expression does·not result in a simplified equation when 

sub$tituted into Eq, (III-24). 

Thesecombination rules will be.checked using the experimental 

values for methane, ethylene, and foul:' of their mixtures in Chapter VI. 

Empirical Equations of State 

Therehave.been many empirical equations.of state·used by various 

investigators. Rather than t:'eviewing these numerous·equations, .tpree 

of the most;i.mportantequations were selected for comparing with the 

experimelltal data presented in Chapter VI. The three equations·are: 

1) the Bened;i.ct-Webb-Rubin (BWR).equation, .2) the Edmister-Vairogs-. 

Klekersgeneralized BWR equation (GBWR), an'-1 3) the Redlich-Kwong (RK) 

equation. 

BWR Equation 

The. BWR equation (4) relate.s either the pressure or the 

compressibility factor.to temperature and.specific volume using eight 

constants. +he equation for pressure is 

P = RT/_V.+ (B RT - A - C /T 2 )/V 2 + (bRT - a)/V 3 + aa./V"6 
0 0 0 - -

(III-32) 

For the compressibility factor the equation is written as 

z = 1 + ( B0 - A/(RT) - C/(RT 3 ) )/V + ( b - a/(RT) )/V 2 

(III-33) 
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The constants appearing in the BWR equation are evaluated for specific 

compounds from PVT, critical, and vapor pressure data. The equation 

has been used primarily to describe data for hydrocarbons and the;i.r 

mixtures. The equation works well up to about twice the critical 

density . (1/V ) • 
-c 

The BWR equation is applied to m;i.xt1,1res by using a set of rules 

combining the pure component constants. The combination rules are 

described by the foll.owing equations: 

n 

B = l om 
(Linear) 

i 

n n 

B = l l x.x. ( (B . ) i/ 3 + (B .) 1/3 )3/8 
om 1 J 01 OJ 

(Lorentz) 

i j 

n 

A = C'l x. (A . ) 1 (i )2 
om 1. 01 

i 

n 

c = ( l x. (C . ) ii 2 )2 
om 1 01 

(III-34) 

i 

n 

b = ( l x. (b.) ii 3 ) 3 
m 1 1 

i 

n. 

c = ( l x. (c.) d 3 ) 3 
m 1 1 

i 

n 

a ( l x. (a.) ii 3 ) 3 
m 1 1 

i 
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n 

ym = ( l x. (y •) if 2 )2 
l. l. 

i 
(III-34) 

n 

Ct = ( l x. (o.i) if 3 ) 3 
m l. 

i 

The subscript m refers to the constants for then-component mixture and 

the i or J refers.to.the pu-re component coni;;tants. Th¢ linear.or 

Lorentz combination has been used frequently for B • These r\lles om 

should be regarded.as.being.empirical even though they are-based on 

fundamental considerations~ 

TheBWR eq\lationcan.beexpressed as an infinite series in density 

(1/V) to obtain a form similar to the Leiden viriaLequation of state. 

This fortnis-derived.by .expressing the exponential term in an infinite 

series and rearranging terms. 

z = 1 + ( B0 - A/(RT) .,.. C/(RT 3 ) )/y_+ ( b ..,. a/(RT) + c/(RT 3 ) )/y_2 

(III-35) 

Expressions for the se_cond and third virial coefficients. in: terms of 

the BWR constants are-obtained by comparing the coefficients of like 

t:erms -of density in the above equation to the Leiden equation, Eq. 

(III-13). 

B(T) = B - A/(RT);.. C /(RT 3 ) 
0 0 0 

(III-36) 
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C(T) = b - a/(RT) + c/(RT 3) (III-37) 

. Notice that the BWR equatioIJ. does·not,have any·density terms with powers. 

between two and five. ·. 

TheEdmister-Vairogs-KlekersGeneralized·BWR Equation 
I P ( 

.The eight .. constants in the :BWR .. equation were ... generalized, in terms 

of the.accentric.factor, Eq •. (III-41), by Edmister, Vairogs, and Klekers 

(19). The generalized. equation is -shown below:,. 

z = l:+ ( B' - A'/T ~ C'/T 9)/VI ·+ ( b' - a'/T )/V' 2 
· o o. r, o · r - i-. -

+ a 'a' /(T;J_' 5 ) + c'/ (T;t2) (1 + y'/y_' 2 )exp(·y' /Y,/ 2) . (III-38) 

where. 1/_V'. = RT / (P V) c c- (III-39) 

The generalized.constants.were detendned, by plotting:the.specific-

constants for the .. BWR:.equation versus the accentric.·factor~ The 

following relationships for the general:i,zed constants.were.derived from 

these.plots: 

B~ •. = 0.113747 ·.+ 0.127349w - 0.2.43280w2 . 

A' = 0.343258 - o.121s21w - o.S09131w2 
0 

C' = 0~098224 + 0.401236w - Or0397267w2 
0 

(III-40) 



where, 

b' · = 0.0275404,+ 0.131009w - 0.134924w2 

a' = 0.0235866 + 0.290284ffi - 0.295413w2 

c' ·· = 0.035694 + 0.185297w - Q.230125w2 

a'a' -· 0.0000875 

y' 0.052058 - 0.09064w + 0.10506w2 

0 w = - ( log P + 1.00) r 

P0 = reduced vapor pressure at T = 0.7. 
r . r 
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(III-40) 

(III-41) 

The specific constants are related to the generalized constants by the 

· following equations : , 

A. 
OJ. 

c oi 

bi 

a. 
]. 

a. 
]. 

= B' RT i/P . 
O C Cl. 

= A' R2T2 /P 
o ci ci 

= C' R2T4./p . 
O Cl. Cl. 

=. b' R2T2. /"f!2. 
Cl. · Cl. 

(III-42) 
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C . c'R3TS ./P2. 
i - 1 ci ci 

Since the generalized constants ~ere evaluat.ed in, terms of the 

specific constants,', the combination rules, Eq. (III-34}, ·•· still apply, as, 

well. as the equat;l.o.ns f.o:t the second and\ third virial coefficients, 

Eq. (III"".'36) and· (III-37) r~spectively. 

The RK Equation 

The RK equatioQ. of state.· (18) is a two constant' equation expressing 

pressure·. as a function of specific volU111e and , temperature. 

P = RT/(y_ - b) - a/(Til 2v. (V + b) ) (III-43) 

The constants are expressed in terms.of·the critical pressure and, 

temperature. 

a = 0.4278 R2T2 • 5 /P c c 

(III-44) 

b = 0.0876 RT /P c c 

The RK equation is, usuall.y, applied above th~ critical.: temperature. 

The· RK equation can, be rearranged to give the,:compressibility 

factor in terms of the specific volume and.· temperature. 

z = V /(V - b) · + a/(R~ 1 • 5 (Y, + b)) (III-45) 
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The RK equation-may·be;applied to mixtures using the following 

combination rules for l\1- and b;, 

n 

(am) ii 2 = l xi (ai) 1/ 2 

i 

b 
m 

n 

= l 
i 

xib. -1 

(III'""46) 

The RK equation is wz:itten-·in, the form of the Leiden:vir.ial 
' \ 

equation of state by rearranging Eq. (III-45) as follows: 

z = 1/(1.- b/V) + a/(RT 1 •- 5V(l +.b/V)·) - - (III-47) 

Then, the .terms (1 ~- b/V) and-. (l + b/V) are· expanded in infinite series 

to give the .following expression:. 

z = 1 + (b - a/(RT 1 • 5 ))/'y_ + (b 2 - ab/(RT 1 • 5 ) )/V2 · 

(III'""48) .. 

Comparing the like- terms of Eq. _(III'""l3) with Eq. - (III,;,-48) gives. the 

virial coefficients in_terms .of·the RK equation constants. 

B(T) = b - a/(RT 1 • 5 ) (III-49) 

C(T) = b 2 + ab/ (RT 1 • 5 ) (III-50) 
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The equations of state presented will not be discussed further at 

this point. Several publications are available in the literature 

discussing the application of equations of state, 

Methane and Ethylene PVT Data 

The volumetric properties of methane have been studied by many 

investigators. Amagat (1) reported volumetric data in 1881 and Vennix 

(66) in 1966. Most.of the data cover the temperature range from ambient 

to 350 °C. Some work has been done below ambient. Mueller (48,49), 

Vennix (66), and Pavlovich and Timrot (?3) have reported data below the 

critical temperature. McMath (38) presented a summary.of.methane PVT 

data covering a temperature range of -274 to 650 °F and:pressures to 

15,000 psia. The sources and the ranges of the data are summarized in 

Table II. 

Some of the same investigators shown in Table.II:derived second 

and third virial coefficients from their volumetric.data •. Douslin (15) 

and Mueller (48,49) calculated virial coefficients.graphically using 

the slope~intercept.method. Michels and Nederbraght (44) and Schamp 

et al. (57) used a least-squares fit to the data. 

The volumetric properties.of ethylene have not.been studied as 

extensively.as for methane. Michels et al. (40,41)have reported data 

for pressures to 45,000.psia.and from 32 to 302 °F and.derived the 

virial coefficients •.. Butcher and Dodson (7) determined:the virial 

coefficients from-10:°C to 200 °C. The sources of ethylene volumetric 

data covering.a temperature.range.of -140 to 500 °F and pressures to 

45,000 psia are summarized in Table III. 
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TABLE··II 

SUMMARY OF VOLUMETRIC DATA FOR METHANE 

From McMath (38) 

Temperature.Range Pressure Range. Investigator· Reference OF psia 

57 to 212 575-4,400 .Amagat (1) 

32 .to 650 220-5;900 Douslin (15) 

36 to 392 250-3,150 Fruth and Verschoyle (20) 

32 to 392 470-3,700 Keyes,and·Burke (29) 

'-'94 tq 392 300-15~000 Kvalnes and Gaddy (31) · 

20 to 77 260-2,600 McMath (38) 

-260 to 500.·· 10-1,500 Matthews and·Hurd (36) 

32 to 302 295-1,.175 Michels et al. (43) 

32 to 302 270-5,600 Michels et al.; (44) 

-200 to 50 40-7,000 Mueller et .al. (48,49} 

100 to 460 200-10,000 Olds et al.· (51) 

-274 to 140 150-2,.800 Pavlovich ·and.· Timrot (53) 

32 .to 302. 295-3,400 Schamp.et al. (57) 

-226 to 32 10,000 Vennb: (66) 

-141 to O 0-600 Hoover et al.. (26) 



37 

TABLE··II 

SUMMARY OF VOLUMETRIC DATA FOR METHANE 

From McMath (38) 

Temperature.Range Pressure Range. Investigator· Reference OF psia 

57 to 212 575-4,400 .Amagat (1) 

32 .to 650 220-5;900 Douslin (15) 

36 to 392 250-3,150 Fruth and Verschoyle (20) 

32 to 392 470-3,700 Keyes,and·Burke (29) 

'-'94 tq 392 300-15~000 Kvalnes and Gaddy (31) · 

20 to 77 260-2,600 McMath (38) 

-260 to 500.·· 10-1,500 Matthews and·Hurd (36) 

32 to 302 295-1,.175 Michels et al. (43) 

32 to 302 270-5,600 Michels et al.; (44) 

-200 to 50 40-7,000 Mueller et .al. (48,49} 

100 to 460 200-10,000 Olds et al.· (51) 

-274 to 140 150-2,.800 Pavlovich ·and.· Timrot (53) 

32 .to 302. 295-3,400 Schamp.et al. (57) 

-226 to 32 10,000 Vennb: (66) 

-141 to O 0-600 Hoover et al.. (26) 



There are no gas.phase.PVT d~ta available in; the literature for 

the methane-ethylene system. 
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CHAPTER IV· 

EXPERIMENTAL APPARATUS 

The description of the isothermal·expansion r.!:ltio apparatus is 

presented in this chapter. The.apparatus consisted essentially of .two 

vessels in. an air thermostat,. pressure .. and· temperature measuring 

apparatus, gas compressor, and·auxiliary equipment (Figure 4). · 

Expansion Cell 

The expansion celLconsistedof two high pressure, jacketed vessels 

(bombs) .and .a differential pressure indicating (DPI) cell connected 

together as shown in the sc\}ematic diagram. (Figure 4). · The expansion 

valve and. most of the o.ther valves were 1/8-inch, 15 ,000 psi stainless. 

steel needle valves manufactured by High Pressure Equipment, Inc. ·(Erie, 

Pennsylvania). The two bombs wereconnected to the vacuum system, vent; 

and gas .. compressor through needle valves.. The oil side of the DP! cell 

was connected to the.oil system of.the.pressure measuring equipment, 

The pressure jacket of the two bombs was.also connected to the oil 

system, 

The.bombs.were made of 303 stain.less steel in the·O.S.U. Research 

Apparatus .Development Laboratory. The bombs were fabricated by welding 

three. pieces. together, .. outer shell, inter bomb, and cap. The assembled 

bombs· shown.in cross-section in Figure 5.were cylinders approximately 

4 inches .in diameter by 10 inches long. The internal volume and jacket 
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were provided with seats·for Ruska straight .connectors for connecting 

1/8""'.inch tubing. The assembled bombs were pressure tested using oil to 

15,000 psi, The geometry of the bombs was such that a jacket pressure 

0.80240£ the internal pressure would .provide equal total internal and 

external f.orces . that should minimize volume changes due to pressure 

distortion{38). 

The DPI cell (Cat. No, 2413) was manufactured by Ruska.Instrument 

Corporation of Houston, Texas. The cell is a cylinder with a.stainless 

steel diaphragm separating two internal chambers. The lower chamber 

was connected to the bombs and the upper chamber.to the oil system. A 

pressure differential between the two chambers deflects the diaphragm. 

The deflectionmoves a core relative to a coil in the upper chamber 

creating an electrical signal. An electric null detector (Ruska Cat. 

No .•. 2416) detects the signal and shows. the pressure imbalance on a 

meter. 

The DPI ·. cell is capable. of operating from O. to 15 ,000 psi and can 

withstand an overpressure in either.chamber of 15,000 psi. The DPI 

cell and null detector can sense a 0.0002 psi pressure differential. 

The null.detector has a potentiometer.for setting the zeropoint 

of the indicating meter when the pressure is the same in both chambers. 

A manometer was placed in the oil system with a reference mark for 

zeroing the null detector .at atmospheric pressure. The zero point 

changesas pressure is increased in the DPI cell. Ruska provided.a 

calibration curve for zero shift with pressure for ambient temperatures. 



44 

Air Thermostat 

The air thermostat consisted of a stainless steel dewar containing 

two baffles, a squirrel cage blower for circulating the air, a cooling 

coil, electric strip heaters, and a rack for holding the two bombs and 

DPI cell. The baffles and rack, which were made as a unit, were 

suspended above the dewar. The dewar was raised to.surround the baffles 

and rack. 

The baffles were used to direct the flow of air from the squirrel 

cage blower, powered by an A.C. synchronous motor located outside the 

thermostat. The squirrel cage blower was located above the top baffle. 

The air discharged from the blower passed down a 2-inch tube to the 

bottom of the dewar. Then, the air passed over a cooling coil (a 

condenser coil from a refrigeration unit), through a baffle with four 

25-watt strip heaters attached, across the two bombs and DPI cell, and 

through the top baffle to the squirrel cage intake. 

A 14-inch square piece of 1/2-inch thick Transite attached to a 

piece of 3/4-inch plywood served as a lid when the dewar was raised to 

surround the baffles and rack. A strip of foam rubber provided a seal 

between the lid and dewar. The tubing and electrical leads were passed 

through the lid into the air bath. The dewar was covered with a 1-inch 

layer of Fiberglas. During the 50 and 75 °C runs, the air thermostat 

was covered with rock wool. 

The temperature in the air thermostat was controlled by sub-cooling 

and supplying heat with controlled heaters. Two of the 250-watt heaters 

on the bottom baffle served as control heaters; the other two were used 

as auxiliary heaters. The voltage to the auxiliary heaters was con

trolled manually using a Powerstat. No sub-cooling was provided in 
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the air thermostat at 50 and 75 °C. The laboratory served as the heat 

sink at these two temperatures. 

The control.heaters were regulated by a temperature control system 

manufactured by Leeds and Northrup (Philadelphia, Pennsylvania). The 

temperaturecontrol system.consisted ofa temperature sensing element, 

a setpoint unit, a D.C. null detector, a current adjusting controller, 

and a current controlled A.C. power supply (Figure 6), The sensing 

element was a 100.ohm, platinum resistant thermometer. The platinum 

element was covered with a ceramic material and epoxy resin. The 

setpoint unit was a resistance bridge with a range of 20 ohms (25 to 

75 °C). The imbalance between the setpoint unit and resistance ther

mometer was detected and amplified by the D.C. null detector (Cat. No. 

9834-2). The null detector had a variable sensitivity range and a 

meter display of voltage imbalance. The amplified signal was used by 

the current adjusting controller (Model 60 C.A.T.) to provide an output 

current between O and 5 milliamp. This controller had three modes of 

controlaction, proportional, reset,.and rate. The output current 

controlled the A.C. output voltage from the A.C. power supply (Fincor 

Model No. 1200-,.2.2-llA). The A.C. output voltage could be varied 

between.zero and 95% of line voltage. The Fincor had two potentiometers 

for adjusting.the upper and lower limits of the output voltage. The 

output voltage was applied to the control heaters. 

For the 25 °C runs, sub-cooling was provided by circulating 18 °C 

water through the cooling-coil in the bottom of the air thermostat. 

The temperature of the cooling water was maintained by an auxiliary 

bath. The auxiliary bath consisted of an insulated container, a tem

perature controller, two circulating pumps, electric heaters, and a 
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Blue M.refrigeration unit and insulated tank. One pump circulated water 

throughthe air thermostat, and the other through a coil in a tank con

taining 10 °C water. The temperature in this tank was maintained by 

the Blue :M.unit. Make-up heat was supplied to the bath by two knife

blade, 500-watt electric heaters controlled by a thermister, on-off 

controller. For the 50 and 75 °C runs, the auxiliary bath was not 

required. The laboratory served as the heat sink. 

Pressure Measuring Equipment 

The·pressure.measuring equipment consisted of a dead weight piston 

gage and screw pump manufactured by Ruska Instrument Corporation of 

Houston,. Texas, and a quartz Bourdon tube gage. The Ruska piston gage 

is a dual range instrument {low range 6-2428 psig, high range 30-12140 

psig) •. The Ruska gage was calibrated.by comparison to a Ruska "plant· 

master'' gage which was calibrated by the National Bureau of Standards 

in Washington, D.C. The low range and high range pistons were reported 

to beaccurate toonepart in 10,000 at 25 °C. The effects of temper

ature and.pressure on the piston areas were determined. The specifi

cations and calibrations for the Ruska gage are shown in Appendix A. 

ARuska.screw pump was used.to.generate pressure for the piston 

gage and.oil system •. The screw pump and attached Bourdon gage had a 

maximum,working.pressure of 15,000 psi. The screw pump came equipped 

with two Ruska needle valves. The screw pump was connected through 

one valve.to the Ruska piston gage by.a 3/16-inch stainless steel tube 

and through the.other valve to the oil.system. 

The oil system consisted of a series of valves and 1/8-inch 

stainless steel tubing connecting, the DP! cell, pressure jacket of 
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the two.bombs, screw pump,·zeroing manometer for'DPI·cell, and Ruska 

piston· .gage. .The v,alves were arranged so that any component of the. 

system could be isolated. Also, provisions were made for attaching an 

isochor.i:c )?VT apparatus, The oil used in the sy13tem was purchased from 

Ruska. 

The quartz Bourdon tube gage manufactµred by Texas Instruments 

Incorporated of .Dallas .Texas (Model 141), was used as a barometer, The 

gage was calibrated by Texas Instruments accurate to 0.015% over a 

pressure range of Oto 100 cm Hg. The calibration is shown.in 

Appendix B, 

Temperature Measuring Equipment 

A four lead, platinum resistance th~rmometer (Leeds and Northrup, 

Model 8164) was placed in the center of the air thermostat between the. 

two bombs •. This .thermometer was calibrated by the National Bureau.of 

Standards (the calibration is shown in Appendix C). 

A-calibrated resistance bridge (see Appendix C) was used for 

measuring.the resistance of the platinum thermometer. The bridge 

(Model 8069B,.Type G-2 Mueller Bridge) was manufactured by Leeds and 

Northrup, The temperature of the .bridge was maintained at 34.9 °C by 

an on-off controller. 

Aballastic galvanometer with lamp and scale; manufactured by 

Leeds·and Northrup, provided the needed sensitivity for the G-2 Mueller 

bridge •.. The galvanometer was mounted on a pedestal with a concrete 

base·independent of the foundation and floor of the laboratory 

building. Using the ballastic galvanometer, the G-2 Mueller bridge is 

capable of measuring resistances to the nearest 0~0001 ohm. 
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Auxiliary Equipment 

Gas-Compressor 

A hand~operated gas compressor with .a .maximum operating p1::essure · 

of 15·;,:000. psig was used for charging .the .bombs. The compressor (manu

factured by Autoclave Engineers) consisted of a free-piston hone.;.fitted 

in a cylinder and hydraulic pump. The piston was fitted with two ring 

seals to minimize oil leakage. .The pump farced oil. into the cylinder 

below·.;the. piston compressing. the .gas .above. the piston. The gas com

pressor was.connected to the Burnett apparatus and·gas storage.bottles 

as shown in Figure 4. 

Vacuum-System. 

The vacuum system consisted of a Welch vacuum pump, a diffusion 

pump,· and a tilting McLeod gage." The vacuum system was connected to 

the Burnett apparatus and gas compressor as shown. in· Figure .. 4. · The· 

McLeod gage had a range of Oto 5 mni Hg. 



CHAPTER V 

EXPERIMENTAL PROCEDURE 

In thb chapter, the procedures.used in obtaining the experimental. 

data.are•described. This description includes preliminary procedures, 

checking ice point resistance,of the platinum thermometer .and adjusting 

the temperature controller; preparations for a run, zeroing DPI cell 

and·charging bombs with a gas sample;•and.the methods used in.obtaining 

a datapoint. At the end of this chapter, some·of the difficulties 

encountered during the experimental wor~ are discussed. 

Checking Ice Point Resistance 

The resistance of the platinum thermometer at the ice point should 

be checked periodically, since the resistance c,;1.n·change.with use, The 

resistance was checked by submersing the thermometer in an ice bath 

prepared by freezing distilled water with liquid nitrogen (see Appendix: 

E for' details). Ten measurements .. of. the. resistance were made during a 

24 hLperiod •. The ice point.resistances were corrected for barometric 

pressure·· and the submersion depth. of. the. platinum. thermometer. The 

results are shown in.Appe:ndix.E. 
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Setting Temperature of Air Thermostat 

The settings of the three,modes of. control (proportional band, 

rate, and.reset) and the sensitivity of the D.C. null detector that 

would· give the best control at the desired temperature were achieved 

by using the.procedure outlined in this section. 
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The proportional .band was adjusted starting with a wide band, with 

nite mode of zero and with.reset.of 0.03. The proportional.band width 

was decreased by steps until an optimum value was attained. The pro

portional band should be made as small as possible. A too narrow band 

will cause the controller to "hunt". A proportional bandof 40% was 

used for 25 °C. At 50 and 75 °C, the proportional band was 20% (the 

auxiliary bath was not used at 50 and 75 °C). 

The proper value for the reset mode was·determined by increasing it 

in steps •. The reset (repeats/minute) should be made as large as 

possible. The .proper value of reset should bring the temperature of 

the air-thermostat back to the set point.bvershooting only one or two 

tinies after.a small upset. The temperature will continually overshoot· 

the setpoint if the reset is too large •. The reset was 0.1 repeats/ 

minute at 25 °C and 0.06 repeats/minute at 50 and 75 °C. 

The.proper value of the rate mode was determined by starting with 

a low value and increasing it by steps. If the.rate mode.causes the 

controlled variable to increase its .oscillation about the setpoint, 

the rate mode should not be used. The rate mode.was not used during 

this work. 
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Preparations.for a Run 

A run consisted of zeroing the . DPL cell', c;harging bombs with .. a gas 

sample:,·and.making the isothe:rmalexpansiOns. Three runs wei;emade at 

each temperature (25, 50, and 75 °C) for. ea.ch of the gases (two pure 

and· foul;': mixtures). An additional, run. at .. each isotherm was made·for 

ethylene and.the 2o~so methane~ethylene mixture. 

Before· changing to a different. gas., the ·bombs, gas compressor, and 

connecting lines.were evacuated to SO microns Hg, flushed with the gas, 

and.re-evacuated to.SO microns. Hg. 

The· DP! celL readout was zeroed. before each. run. · At .the conclusion 

of the·previous·run,. the gas.remaining in the bombs was vented.to·the-

atmosphere and the pressure in the oil system was released. The Ruska 

piston·gage.was isolated from theoil·system.and·the valve connecting 

the. oiL manometer. to the system was· opened. The Ruska screw pump was 

used to adjust the oil level in the manometer to the reference point. 

Minor·adjustments.were made over a two to.three hour period allowing 

the_oil:systemtostabilize •. The referenc;e point corresponded to the 

top of: the .. DP! .. cell. There was 2 . inches · of . oil above. the diaphram of 

the DPI cell. Thus, the.zero point of the cell was made with 2 inches 

of oiL.differentiaL pressure'. across. the DP! cell. The 2 inches of oil 

was accounted forwhen.calculating the pressure of the gas sample. 

· The: zero point .. changed froiI1 run to run. Usually the change ·was 

only one: turn. or less. out .. of ten. of· the zeroing potentiometer.:. Also, 

the zero-point was.dependent on the temperature of the DPI cell. 
···:1 

The:.bombs. were. charged using the .. hand-operated(,~as compressor. 
. ~ I 

After-evacuating the bombs and. gas compressor.to 50 microns Hg,:bomb·v1 

of the expansion cell and gas.compressor were filled with gas from the· 
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gas storage bottle. The gas pressure was raised to the desired. 

pressure., indicated by a Bourdon tube gage in the gas charging system, 

While charging. the bomb v1 , the. pressure on the oil side of the DPI 

cell was.maintained at least 500 psig above the gas pressure using the 

Ruska·screw pump •. The jacket pressure of the bombs was set at approx

imately 0 .• 8 of the gas pressure. The. gas sample was allowed to set 

overnight before. starting the isothermal expansions. 

The gas compressor had a large enough volume for two or three 

charges without refilling, 

Isothermal Expansions 

The isothermal expansions consisted of making a series of expansions 

of the gas sample. from bomb v1 into bomb v2 measuring the gas pressure, 

barometric pressure, and air thermostat temperature before each 

expansion, 

With the DPL sensitivity set at three-fourths of maximum, a 

preliminary pressure measurement was made using the Ruska gage. The 

jacket pressure was set at 0,8024 of the gas pressure using the Ruska 

gage. ·The piston and weights were rotated at the preliminary pressure 

for 15 to 20 minutes to allow the gage to come·to equilibrium. At the 

high pressures, the oil is heated by compression •. This heat should be 

dissipated before making the pressure measurements. 

Two pressure measurements were made during a 30 minute period, 

one·with the piston and weights rotating clockwise and the other 

counterclockwise. The two pressure measurements served. as a check 

for leaks and temperature changes. The barometric pressure, gage 



temperature, and room temperature were noted·during'the pressure 

measurements. 
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During the 30 minute period, the temperature of the air thermostat 

was measured every 5 minutes using the platinum resistance thermometer 

and Mueller bridge. If the air thermostat was not·near the desired 

temperature (within ±0.01 °C), the setpoint of the controller was 

reset. After allowing the air thermostat to equilibrate, the pressure 

measurements were made. 

Before the first expansion, the pressure was measured with the 

expansion valve closed and a 50 micron vacuum in bomb v2• The remaining 

pressure measurements before each expansion were made with the expansion 

valve open, less than 1/8 of a turn. 

After the pressure measurements, the expansion valve was closed 

(except-for the first pressure measurement) observing any change in 

pressure on the DPI readout. The change in volume of the expansion 

cell caused by closing the expansion valve was not detected by the DPI 

cell. ·Bomb v2 was vented and evacuated to 50 microns Hg while observing 

the DPI readout for any pressure changes. 

The expansion valve was opened slowly until the pressure in bomb 

v1 started to decrease as indicated by the DPI readout. The pressure 

on the oil side of the DPL cell was maintained slightly higher than 

the gas pressure in bomb v1 • Care.was exercised always to over pressure 

the DPI cell from the oil side. The expansion valve was opened in a 

series of steps. After allowing part of the gas to expand into bomb 

v2, the expansion valve was opened further expanding more of the gas, 

opening·the valve, expanding gas, etc. The steps were repeated until 

movement of the expansion valve ceased to cause a pressure decrease. 



After completing the expansion, the.jacket pressure was set 

approximately 0.8 of the gas pressure as measured by a Bourdon tube 

gage on the. Ruska screw pump. 
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The gas in. the bombs was allowed to reach thermal equilibrium with 

the air. thermostat before making the subsequent pressure measurements. 

The time allowed for attaining. thermal equilibrium after an expansion 

was determined by monitoring the. gas pressure. Eight hours was required 

after the first expansion, 6 hours after the second, 4 hours after the 

third, fourth, and fifth., 2 hours after the sixth, and 1 hour for the 

remaining expansions. These long periods of time after each expansion 

to attain thermal equilibrium was.due to the low heat capacity of air. 

and the slow rate of heat transfer from the air to the bombs. The 

change in the length of these periods after each expansion was. a result 

of the. amount of cooling which occurred during each expansion.. The 

gas sample was cooled less during each expansion as the pressure ratio 

decreased. 

Some Experimental Difficulties 

Before the pressure measurements were started, the bombs and gas 

charging system were pressure-tested to 12 ,000 psi. A liquid deterg.ent 

was placed. on. the connections to detect leaks. This method worked well 

for relatively large leaks, but it was unsatisfactory for small leaks. 

The small. leaks were. eliminated by a trial-and-error procedure, 

tightening and retightening connections and pressure testing. For the 

final·test., the bombs were filled with gas to 12,000 psi. The pressure 

was monitored for 8 hours using the Ruska gage. No loss in pressure 

was observed during this final test. 



The most difficult problem encountered during the course of this 

work was trying to achieve ±0.01 °C or better temperature control in 
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the air· thermostat. Several factors were found that had an effect on 

the temperature control, e.g., blower speed variations, room temperature 

variations, setpoint stability, auxiliary-bath temperature control, 

and auxiliary-bath circulating pump variations. 

The blower shaft had to be aligned properly to avoid drag which 

caused blower speed variations. Using a hysteresis motor with a 

properly aligned blower shaft cured this problem. 

An auxiliary constant temperature bath and circulating pump was 

used during the 25 °C runs to provide cold water as a heat sink for the 

air thermostat. An induction motor was used to drive the circulating 

pump eliminating this variation. The auxiliary bath was controlled to 

±0.05 °C. This method of providing a heat sink for the air thermostat 

worked satisfactorily for the 25 °C runs. 

The Leeds and Northrup temperature control system (Figure 6) 

initially used a thermocouple as the sensing element. The original 

setpoint unit was basically a potentiometer. The difference between 

the emf from the thermocouple and the setpoint unit provided a measure 

of the deviation of the thermostat temperature from the setpoint. This 

differential emf was amplified by the D.C. null detector. The thermo

couple and original setpoint unit proved to be unsatisfactory. The 

setpoint unit was not stable and was very sensitive to fluctuations in 

room temperature. The cycling of the laboratory air conditioner or 

opening of the laboratory door would cause a ±0.1 °C change in the 

setpoint temperature. In addition, the differential emf signal from 

the setpoint unit was very small, a few mircovolts, requiring maximum 



sensitivity of the D,C, null detector, The electronic noise level of 

the D.C. null detector at maximµm sensitivity was approximately a 

mircovolt and added to the instability of the temperature control 

system. 

The thermocouple sensing element and setpoint unit were replaced 

by a 100-ohm. platinum resistance thermometer and a resistance bridge. 
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The new setpoint unit and sensing element provided an electrical signal. 

much larger than the original setpoint unit and-proved to be very .stable. 

Also,· .the new setpoint unit was not as sensitive to room temperature 

changes as the old.one. 

Even with.the. new setpoint unit, the effects of room temperature 

changes were not eliminated. Variations in room temperature were 

reflected·in thecontrol of the air thermostat. The temperature of 

the air conditioned laboratory varied as much as 10 <1F, Even opening 

the laboratory door resulted in an upset of the air thermostat, A 

constant·temperature and controlled access laboratory would help to 

minimize this problem. 



CHAPTER VI 

PRESENTATION AND DISCUSSION OF- EXPERIMENTAL DATA 

In this chapter, the compressibility factors derived from the 

isothermal expansion data are presented, Compressibility factors were 

determined for methane, ethylene, and four mixtures (nominal composition 

of,80-20, 60-40, 40-60, 20-60 mole% methane-and ethylene, respectively) 

at 25, 50, and 75 °C (77, 122, and 167 °F) and pressures to 12,000 psia. 

Also, compressibility fac:tors.for helium at 25, 50, and 75 °C were 

determined. 

The compressibility factors were compared with values from the 

literature. The second and third virial coefficients for the Leiden 

form of the virial equation of state were calculated from the compress

ibil;i.ty factors using the slope""'intercept method adapted to a digital 

computer. The virial coefficients were compared with values from the 

literature. The virial coefficients as derived by the slope-intercept 

method were compared with those determined by.fitting compressibility 

factors to the Leiden form of-the virial equation of state. 

The experimental compressibility factors were compared to the RK, 

BWR, and Edmister et aL GBWR equations of state. Then, the second 

and third virial coefficients calculated from the.constants for the RK, 

BWR, and GBWR equations were compared to the experimental values. 

The experimental second virial coefficients for methane and 

ethylene were used to determine the parameters for the 6-12 Lennard-Jones 
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intermolecular potential function. The experimental mixture data were 

used to check the combination rules for the Lennard-Jones parameters 

for calculating the interaction second virial coefficients (B 12 ). 

Compressibility Data 

The compressibility factors for methane, ethylene, and four of 

their mixtures are shown in Table IV. Included in Table IV are the 

experimental data, the temperature and the pressure measurements, and 

the nominal composition for each gas (see Appendix D for the detail 

compositions). The compressibility factors for helium are shown in 

Table V. 

The derivation of the compressibility factors from the isothermal 

expansion data involved calculating the temperature from platinum 

resistance thermometer readings and the pressures from the Ruska piston 

gage data and the Texas Instruments barometer. The piatinum resistance 

thermometer readings were used to calculate the corresponding temper

atures from the calibration formula, Eq. (C-1) of Appendix C. Since 

the formula was not explicit in temperature, the calculations were done 

using an iteration procedure programed for a digital computer (see 

Appendix F for more details). The pressures were calculated from the 

Ruska piston gage data (loading on the piston, gage temperature, etc.) 

as recommended by Ruska .and corrected for the zero shift with pressure 

of the DP! cell and the other appropriate corrections as shown in 

Appendix F. Barometric pressure was determined from Eq. (B-1) which 

was derived by curve-fitting the calibration data for the Texas 

Instruments gage (Appendix B). The calculations for the gage pressure 



TABLE IV 

COMPRESSIBILITY FACTOR DATA 

·Ex~etimerttal·nata cal~ttlated Data.· 
z ·v ----r/V 

Temp. Run No. 
p 

. 3 3 oc psia ft /lb-mole lb-mole/ft 

99·. 0% Methane. 

25.00 3 11923.988 1.64216 0.7932 1.26.08 
3109.296 ·0.83210 1..5413 0.6488 
1616.426 0.84059 2.9950. 0.3339 

890.810 0.90018 5.8199 0.1718 
480.610 0.94375 11.309 0.0884 
254.139 0.96974 21.975 0.0455 
132.972 0.98596 · 42. 703 0.0234-

68.932 0.99320 82.981 0.0120 
35.590 0.99646 161.25 0.0062 

25.00 4 8992~208 1.35563 0.8682 1.1517 
2805~281 0.82181 1.6872 o.5927 
1491-.430 · 0.84901 3.2785 0.3050 
-820.342 o_.90745 6~3708 0.1570 
441.167 0.94831 12.379 0.0808 
232. 776 0.97230 · 24.056 0~0416 

25.00 5 5931-.589 1.05584 1.0252 0.9755 
2362.153 0.81706 1.9921 0.5020 
1286.617 0.86479 3.8710 0.2583 

704-.404 0.92003 7.5222 0.1329 
376.785 0.95629 14.617 0.0684 a, 

0 



TABLE IV (Continued) 

Experimental Data z· 
Temp. Run No. 

p 
oc psia 

25.00 5 198.069 0.97686 
102.092 0.97842 

53.357 0.99367 
27.532 0.99634 

25.01 10 9164.631 1.37110 
2826. 778 0.82170 
1501.010 0.84795 

826.092 0.90685 
444.578 0.94835 
234.605 0.97247 
122 .389 0.98583 

63.440 0.99297 
32.760 0 .99641 

50.00 61 11963.512. 1.60088 
3463.214 0.89793 
1761.245 0.88481 

951.438 0.92613 
508.174 0.95845 
267.560 o. 97778 
139.575 0.98831 

Calculated Data 
v 

3 

ft. /lb-mole 

28.404 
55.194 

107.25 
208.41 

0.8616 
1.6743 
3.2536 
6.3224 

12.285 
23.873 
46.390 
90.146 

175.17 

0.8353 
1.6184 
3.1359 
6.0762 

11. 773 
22 .811 
44.199 

1/V 

lb-mole/ft 

0.0352 
0.0181 
0.0093 
0.0048 

1.1606 
0.5972 
0.3074 
0.1582 
0.0814 
0 .-0419 
0.0216 
0.0111 
0.0057 

1.1972 
0.6179 
0.3189 
0.1646 
0.0849 
0.0438 
0.0226 

3 

°' I-' 



TABLE IV (Continued) 

Expetimerttal Data 
Temp. Run No. 

p z 
oc psia 

50.00 62 8846.949 1.32188 
3048.801 0.88266 
1588.284 0.89095 

857.587 0.93211 
456.823 0.96206 
240.078 0.97965 
125.126 0.98930 · 

50 .. 00 63 5938.709 1.06768 
2508.558 0.87385 
1337.705 0.90290 

72b.368 0.94210 
382.104 0.96825 
200.238 0.98314 
104~18.8 0.99118 

75.02 44 11843.775 1.55684 
3724.907 0.94753 
1867.391 0.91926 

992.904 Q.94588 
525.466 0.96873 
275.389 0.98249 · 
143.365 0.98981 

Calculated Data 
v 

3 
ft /lb-mole 

0.9327 
1.8072 
3.5016 
6;7846 

13.145 
25.471 
49.353 

1.1222 
2.1744 
4.2132 
8.1635 

15.817 
30.648 
59.383 

0.8840 
1. 7108 
3.3107 
6.4069 

12.398 
23.994 
46.433 

1/V 
. 3 

lb-mole/ft 

1.0722 
0.5534 
0.2856 
0.1474 
0.0761 
0.0393 
0.0203 

0.8911 
0.4599 
0.2373 
0.1225 
0.0632 
0.0326 
0.0168 

1.1312 
0.5845 
0.3020 
0.1561 
0.0807 
0.0417 
0.0215 

°' "' 



TABLE IV (Continued) 

ExEerimerttal Data Calculated Data 
z v 1/V Temp. p -Run NoJ 3 3 oc psia ft /lb-mole lb-mole/ft 

75.02 45 8972.}75 1.32142 0.9904 1.0096 
3266.659 0.93098 1.9167 0.5217 
1674.502 0.92353 3.7092 0.2696 

891.108 0.95109 7.1781 0.1393 
470.809 0.97244 13.891 0.0720 
246.423 0.98497 26.882 0.03'72 
128.258 0.99209 52.022 0.0192 

75.02 46 5962.806 1.08387 1.2225 0.8180 
2606. 722 0.91695 2.3658 0.4227 
1368.692 -0.93171 4.5782 0.2184 

727.712 0.95865 8.8598 0.1129 
383.242 0.97702 17.145 0.0583 
200.132 0.98735 33.179 0.0301 
104.046 0.99336 64.209 0.0156 

78.8% Methane 

24.99 11 11958.295 1.68028 0.8092 1.2357 
2763. 771 0.75408 1.5714 0.6364 
1489-.199 0.78900 3.0513 0.3277 

846..-072 0.87043 5.9250 0.1688 
464 .. .507 0.92794 11.505 0.0869 
247-.867 0.96151 22.340 0.0448 
130.043 0.97955 43.381 0.0231 

67-.-608 0.98887 84.237 0.0119 O'\ 
w 

34. 953 0.99274 163.57 0.0061 



Temp. 
oc 

25.00 

25.00 

50.00 

ExQerimental Data 

Run No. 

12 

13 

68 

p 
psia 

8860.415 
2516.502 
1387.678 

785.944 
429.578 
228.593 
119.745 

62.216 
32.182 

5958.462 
2197.718 
1239.408 

697.152 
378.584 
200.644 
104-.896 

54.438 

11792-.-833 
3137 .596 
1639.056 

906.546 
490.696 
260.143 
136.198 

TABLE IV (Continued) 

z 

1.35430 
0.74690 
0.79976 
0.87956 
0.93351 
0.96459 
0.98117 
0.98990 
0.99428 

1.04258 
0.74671 
0.81771 
0.89313 
0.94179 
0.96922 
0.98392 
0.99153 

1.61922 
0-.83388 
0-.84317 
0.90266 
0.94572 
0-.97046 
0.98345 

Calculated Dat:a 
v 

3 
ft /lb-mole 

0.8803 
1.7094 
3.3192 
6.4453 

12.515 
24.30Z 
47.191 
91.635 

177.94 

1.0077 
1.9568 
3.7997 
7.3783 

14.327 
27.820 
54.023 

104.90 

0.8571 
1.6590 
3.2114 
6.2155 

12.031 
23.287 
45.073 

1/V 
"3 

lb-mole/ft 

1.1360 
0.5850 
0.3013 
0.1552 
0.0799 
0.0411 
0.0212 
0.0109 
0.0056 

0.9923 
0.5110 
0.2632 
0.1355 
0.0698 
0.0359 
0.0185 
0.0095 

1.1667 
0.6028 
0.3114 
0.1609 
0.0831 
0.0429 
0.0222 

O'I 
~ 



Temp. 
oc 

50.00 

50.00 

75.02 

Ex~erimental Data 

Run No. 

69 

70 

47 

p 

psia 

8795.817 
2814.943 
1505.039 

830.972 
448.297 
237.447 
124.133 

5718.180 
2347.104 
1285 .. 858 

706.227 
378.694 
199.561 
104.274 

11991-.894 
3477-.-037 
1774.702 

961.334 
514.382 
271.149 
141. 563 

TABLE IV {Continued) 

z 

1.32816 
0.82273 
0.85144 
0.90993 
0.95017 
0.97413 
0.98572 

1.03061. 
0.81882 
0.86829 
0.92306 
0.95805 
0.97722 
0.98834 

1.60104 
0.89743 
0.88551 
0.92730 
0.95919 
0.97748 
0.98656 

Calculated Data 
v 

3 
ft_ /lb-mole 

0.9426 
1.8244 
3.5314 
6.8353 

13.230 
25.609 
49.568 

1.1251 
2.1777 
4.2151 
8.1588 

15.792 
30.567 
59.166 

0.8979 
1 .• 7358 
3.3557 
6.4873 

12.541 
24.245 
46.870 

1/V 
3 

lb-mole/ft 

1.0609 
0.5481 
0.2832 
0.1463 
0.0756 
0.0390 
0.0202 

0.8888 
0.4592 
0.2372 
0.1226 
0.0633 
0.0327 
0.0169 

1.1137 
0.5761 
0.2980 
0.1541 
0.0799 
0.0412 
0.0213 

"' Vl 



TABLE IV (Continued) 

ExEerimental Data Calculated Data 
z v 1/V Temp. Run No. 

p 
3 . 3 oc psia. ft /lb-mole lb-mole/ft 

75.01 48 8933.873 1.32776 0.9995 1.0005 
3073.772 0.88314 1. 9323 0.5175 
1606.097 0 .892.08 3.7355 0.2677 

869.554 0.93370 7.2215 0.1385 
464.016 0.96321 13.960 0.0716 
244.345 0.98054 26.988 . 0.0371 
127.429 0.98857 52.174 0.0192 

75.02 49 6056~924 1.07607 1.1948 0.8369 
2546.748 0.87468 2.3098 0.4329 
1361.572 0.90403 4.4654 0.2239 

735.151 0.94362 8.6325 0.1158 
39-0.607 0.96925 16.688 0.0599 
205.120 0.98397 32.262 0.0310 
106.919 0.99153 62.369 O .0160 

57. 2% Methane 

25.00 14 11963-.053 1. 72144 0.8287 1.2066 
2360.099 0.65945 1.6092 0.6214 
1335.785 0.72476 3.1248 0.3200 

790.976 0.83335 6.0678 0.1648 
443-.-622 0.90757 11. 783 0.0849 
238-.835 0.94879 22.879 0.0437 
125.448 0-.96770 44.427 0.0225 

64.838 0.97120 86.268 0.0116 °' °' 



Temp. 
oc 

25.00 

25.00 

50.00 

Ex£erimental Data 

Run No. 

15 

16 

71 

p 
psia 

8764.120 
2173.041 
1262.966 

743.873 
z.15 .249 
223.299 
117.594 

61.252 

6086.609 
1972.015 
1168.436 
681. 768 
377.887 
202.353 
102.339 

55.330 

11829.056 
2774.326 
1504.353 

858. 775 
472. 775 
252.944 
132.945 

TABLE IV (Continued) 

z 

1.35676 
0.65323 
o. 73722 
0.84316 
0.91395 
0.95434 
0.97590 
0.98707 

1.04486 
0.65735 
0.75631 
0.85691 
0.92228 
0.95900 
0.94179 
0.98873 

1.63883 
0.74524 
0-. 78351 
0.86722 
0.92611 
0.96025 
0.97856 

Calculated Data 
v 

3 
ft /lb-mole 

0.8916 
1. 7313 
3.3618 
6.5280 

12 .-676 
24.614 
47.796 
92.810 

0.9887 
1. 9198 
3. 7279 
7.2388 

14.056 
27.294 
53.000 

102.92 

0.8648 
l.6768 
3.2511 
6.3035 

12.222 
23.697 
45.946 

1/V 
3 

lb-mole/ft 

1.1216 
0.5776 
0.2975 
0.1532 
0.0789 
0.0406 
0.0209 
0.0108 

1.0115 
0.5209 
0.2682 
0.1381 
0.0711 
0.0366 
0.0189 
0.0097 

1.1563 
0.5964 
0.3076 
0.1586 
0.0818 
0.0422 
0.0218 °' ....... 



Temp. 
oc 

50.00 

50.00 

75.01 

Ex£erimental Data 

Run No. 

72 

73 

p 
psia 

8721.667 
2525 .071 
1400.905 

796.568 
436.657 
233.191 
122.623 

5736.129 
2185.909 
1240.546 

700.215 
381.093 
202.313 
105.923 

50 11931.076 
3144.515 
1650.334 

916.623 
497.431 
264.105 
138.371 

TABLE IV (Continued) 

z 

1.31711 
o. 73935 
0.79532 
0.87682 
0.93193 
0.96496 
0.98384 

1.00185 
0.74024 
0.81453 
0.89142 
0.94066 
0.96824 
0.982-88 

1.60440 
0.81910 
0.83274 
0.89594 
0.94183 
0.96866 
0.98308 

Calculated Data 
v 

3 
ft /lb-mole 

0.9427 
L8277 
3.5438 
6.8710 

13.322 
25.830 
50.083 

1.0902 
2.1139 
4-.0986 
7.9467 

15.408 
29.874 
57.923 

0.9044 
1. 7518 
3.3935 
6.5735 

12.734 
24.666 
47.781 

17V 
3 

lb-mole/ft 

1.0608 
0.5471 
-0.2822 
0.1455 
0.0751 
0.0387 
0.0200 

0.9172 
0.4731 
0.2440 
0.1258 
0.0649 
0.0335 
0.0173 

1.1058 
0.5708 
0.2947 
0.1521 
0.0785 
0.0405 
0.0209 



TABLE IV (Continued) 

Ex2erimental Data Calculated Data 
z v lfV Temp. Run No. 

p 
3 3 oc psia ft /lb.-mole lb-mole/ft 

75.01 51 8910.900 1.31543 0.9928 1.0073 
2829.470 0.8091-0 1. 9231 0.5200 
1519.409 0.84164 3.7252 0.2684 

842.145 0.90363 7.2162 0.1386 
455.388 0.94653 13.978 0.0715 
241.209 0.97118 27.078 0.0369 
126.335 0.98533 52.452 0.0191 

75.00 52 6012.788 1.03886 1.1619 0.8606 
2407.190 0.80565 2.2508 0.4443 
1322.768 0.85757 4.3600 0.2294 

729 .485 0.91612 8.4458 0.1184 
392.181 0.95406 16.360 0.0611 
206.948 0.97522 31.692 0.0316 
108.183 0.98754 61.390 0.0163 

38.4% Methane 

25.00 17 11764.563 1. 72791 0.8459 1.1810 
1955.775 0.55796 1.6431 0.6086 
1189. 713 0.65927 3.1915 0.3133 

737 .574 0.79390 6.1991 0.1613 
423.983 0.88644 12.041 0.0830 
231.381 0.93965 23.389 0.0428 
122.741 0.96820 45.430 0.0220 °' \.0 64.201 0.98369 88.244 0.0113 



Temp. 
QC 

25.00 

25.00 

50.00 

ExEerimental Data 

Run No. 

18 

19 

p 
psia 

8918.879 
1846.074 
1144.849 

705.753 
403.254 
219 .371 
116.274 

60.767 

5868.987 
1693.070 
1070.448 

652.354 
369.452 
199.936 
105. 721 

55.127 

74 11821.134 
2421.685 
1374.401 

812.618 
455.889 
245.982 
130.200 

TABLE IV (Continued) 

z 

1.38610 
0.55728 
0.67129 
0.80381 
0.89211 
0.94267· 
0.97051 
0.98520 

1.00677 
O .56413 
0.69280 
0.82019 
0.90225 
0.94831 
0.97400 
0.98652 

1.65670 
0.65883 
0.72584 
0.83307 
0.90725 
0.95025 
0.97637 

Calculated Data 
v 

3 -
ft /lb-mole, 

0.8951 
1. 7386 
3.3770 
6.5594 

12.741 
24.748 
48 .071 
93.373 

0.9879 
1.9190 
3.7274 
7.2401 

14.063 
27.316 
53.059 

103.06 

0.8748 
1.6982 
3~2966 
6.3993 

12.422 
24.114 
46.810 

1/V 
3 

lb-mole/ft 

1.1172 
0.5752 
0.2961 
0.1525 
0.0785 
0.0404 
-0.0208 
0.0107 

1.0122 
0.5211 
0.2683 
0.1381 
0 .0711 
0.0366 
0.0188 
0.0097 

1.1431 
0.5889 
0.3033 
0.1563 
0.0805 
0.0415 
0.0214 -..J 

0 



Temp. 
oc 

50.00 

50.01 

75.01 

ExEerii1tental Data 

Run No. 

75 

76 

p 

psic!-

8901.203 
2249.571 
1303.366 

766.600 
427.879 
230.156 
121.269 

5843.055 
2002.557 
1185.764 

690.819 
382.411 
205.197 
108_.205 

53 11998.476 
2830.143 
1534.264 
875.862 
482.517 
258.132 
135.893 

TABLE IV (Continued) 

z 

1.33764 
0.65624 
0.73807 
0.84270 
0.91305 
0.95338 
0.97513 

0.99260 
0.66037 
0.75906 
0.85844 
0.92246 
0 .96085 
0.98356 

1.63012 
0.74540 
0.78338 
0.86695 
0.92589 
0.96023 
0.97999 

Calculated Data 
v 

3 
ft /lb-:-mole 

0.9381 
1.8210 
3.53807 
6.8619 

13.320 
25.857 
50.194 

1.0604 
2.0585 
3.9959 
7.7569 

15.058 
29.230 
56.741 

0.9137 
1. 7713 
3.4338 
6.6568 

12.905 
25.017 
48.499 

17V 
3 

lb-mole/ft 

1.0660 
0.5492 
0.2829 
0.1457 
0.0751 
0.0387 
0.0199 

0.9430 
0.4858 
0.2502 
0.1289 
0_.0664 
0.0342 
0.0176 

1.0945 
0.5646 
0.2912 
0.1502 
0 .0775 
0.0400 
0.0206 

" I-' 



Temp. 
oc 

75.01 

75.01 

25.00 

ExQerimental Data 

Run No. 

54 

55 

p 
psia 

8928.785 
2580.997 
1431.200 

814.058 
446.464 
238.165 
125.020 

5977 .800 
2249.283 
1275.179 

720.162 
392.228 
208.346 
109.122 

20 11817 .. 669 
1509.396 
1026.253 

680.590 
403.531 
223.449 
119 .. -359 

62. 677 

TABLE IV (Continued) 

z 

1.31883 
0.73905 
0.79446 
0.87603 
0.93140 
0.96320 
0.98018 

1.01416 
o. 73977 
0.81304 
0.89014 
0.93985 
0.96782 
0.98267 

18.4% Methane 

1. 75251 
0.43552 
0.57615 
0.74343 
0.85765 
0.92403 
0.96037 
0.98123 

Calculated Data 
v 

3 
ft /ib"'."lllole 

0.9934 
1.9257 
3.7332 
7 .2372 

14.030 
27.199 
52.727 

1.1410 
2.2119 
4.2880 
8.3126 

16.115 
31.240 
60.562 

0.8541 
1.6618 
3.2334 
6.2911 

12.241 
23.817 
46.340 
90.164 

1/V 
3 

lb"'."lllole/ft 

1.0067 
0.5193 
0.2679 
0.1382 
0.0713 
0.0368 
0.0190 

0.8764 
0.4521 
0.2332 
0.1203 
0.0621 
0.0320 
0.0165 

1.1708 
0.6018 
0.3093 
0.1590 
0.0817 
0.0420 
0.0216 
0.0111 

" N 



Temp. 
oc 

25.01 

25.01 

25.00 

Ex£erimental Data 

Run No. 

21 

22 

23 

p 
psia 

8876.317 
1446.426 

998.388 
655.320 
385. 729 
212.742 
113.587 

59.599 

5933.063 
1367 .377 

956.220 
618.626 
360.462 
197. 728 
105.093 

54.992 

2894.576 
1233.868 

862. 717 
540.493 
308. 773 
167 .. 615 

88.679 

TABLE IV (Continued) 

z 

1.39174 
0.44110 
0.59219 
0.75603 
0.86554 
0.92849 
0.96421 
0.98401 

1.00438 
0.45039 
0.61282 
o. 77139 
0.87455 
0.93340 
0.96527 
0.98276 

0.58434 
0.48465 
0.65933 
0-.80371 
0.89336 
0.94357 
o. 97131 

Calculated Data 
·v 

3 
ft /lb-mole 

0.9030 
1. 7564 
3.4162 
6.6444 

12.923 
25.136 
48.890 
95.090 

0.9750 
1.8970 
3.6910 
7.1816 

13.973 
27.188 
52.900 

102.93 

1.1626 
2.2622 
4.4015 
8.5640 

16.663 
32.421 
63.082 

17V 
3 

lb-mole/ft 

1.1074 
0.5694 
0.2927 
0.1505 
0.0774 
0.0398 
0.0205 
0.0105 

1.0257 
0.5271 
0.2709 
0.1392 
0.0716 
0.0368 
0.0189 
0.0097 

0.8601 
0.4421 
0.2272 
0.1168 
0.0600 
0.0308 
0.0158 

" l.v 



Temp. 
oc 

50.00 

50.00 

50,01 

ExEerimental Data 

Run No. 

77 

78 

79 

p 

pE,;i~ 

11720.820 
2005.647 
1221. 971 

757.549 
435.012 
237.259 
126.177 

8949.172 
1896.242 
1176.042 

723.956 
413.350 
224.740 
119.008 

5803.481 
1732.272 
1095.235 

665.879 
376.562 
203.627 
107. 492 

TABLE IV (Continued) 

z 

1.66823 
0.55503 
0.65748 
0.79250 
0.88481 
0.93829 
0.97019 

1.34952 
0.55597 
0.67042 
0.80241 
0.89077 
0.94166 
0.96951 

0.97207 
0.56414 
0.69349 
0.81977 
0.90136 
0.94767 
0. 97266 

Calculated Data 
v 

3 
ft /lb-mole 

0.8884 
1. 7274 
3.3586 
6.5301 

12.696 
24.686 
47.996 

o. 9413 
1.8302 
3.5584 
6.9186 

13.452 
26.154 
50.852 

1.0456 
2.0329 
3.9525 
7.6849 

14.942 
29.051 
56.484 

17v 
3 

lb""."mole/ft 

1.1256 
0.5789 
0. 2977 
0.1531 
0.0788 
0.0405 
0.0208 

1.0624 
0.5464 
0.2810 
0.1445 
0.0743 
0.0382 
0.0197 

0.9564 
0.4919 
0.2530 
0.1301 
0.0669 
0.0344 
0 .0177 

-..J 
+"" 



Temp. 
oc 

50.00 

75.02 

75.02 

ExEerimental Data 

Run No. 

80 

36 

37 

p 

Pf?ia 

2866.280 
1444.130 

916.016 
540.335 
299.478 
160.164 

84.341 

11607.333 
2424.357 
1384.376 

818.485 
459.023 
247.663 
130. 715 

68.224 

8953.383 
2269.948 
1348. 992 
775.808 
433.004 
232.974 
122.773 

TABLE IV (Continued) 

z 

0.61757 
0.60497 
0.74610 
0.85569 
0.92211 
0.95884 
0.98171 

1.61803 
0.65593 
0.72697 
0.83421 
0.90803 
0.95090 
0.97409 
0. 98677 

1.33087 
0.65489 
0.75538 
0.84316 
o. 91338 
0.95383 
0.97559 

Calculated Data 
v 

3 
ft /lb-:-mole 

1.3449 
2.6150 
5.0843 
9.8853 

19.220 
37.370 
72. 658 

0.9375 
1.8196 
3.5317 
6.8547 

13.304 
25.822 
50.118 
97.274 

0.9997 
1.9403 
3.7660 
7.3094 

14.187 
27.535 
53.443 

lfV 
3 

lb-:-mole/ft 

0.7435 
0.3824 
0.1967 
0.1012 
0.0520 
0.0268 
0.0138 

1.0667 
0.5496 
0.2832 
0.1459 
0.0752 
0.0387 
0.0200 
0.0103 

1.0003 
0.5154 
0.2655 
0.1368 
0.0705 
0.0363 
0.0187 

'-I 
V1 



TABLE IV (Continued) 

ExEerimental Data Calculated Data· 
z v 1/V Temp. Run No. 

p 
3 3 oc p$:I-~ . ft. /lb"'.'mole lb-mole/ft 

75.02 38 5708.660 0.96797 1.1404 0.8769 
2006.552 0.66036 2.2133 0.4518 
1191.905 0.76134 4.2960· 0.2328 

693.866 0.86023 8.3380 0.1199 
383.882 0 0 92372 16.183 0.0618 
205.467 0.95959 31.410 0.0318 
107. 983 0.97882 60.964 0.0164 

75.02 39 2962.640 0.68315 1.5508 0.6448 
1564.158 0,70003 3.0100 0.3322 

933.498 0.81088 5.8420 0.1712 
529.930 0.89343 11.399 0.0882 
288.083 0.94268 22.007 0.0454 
152.681 0.96970 42. 714 0.0234 

79.845 0.98424 82.904 .0.0121 

99.9% Ethylene 

25.00 6 11858.506 1. 77797 0.8635 1.1581 
1091.035 0.31892 1.6834 0.5940 

870.461 0.49606 3.2821 0.3047 
623.854 0.69313 6.3987 0.1563 
382.474 0.82847 12.475 0.0802 
215.040 0.90812 24.321 0.0411 
115. 714 0.95269 47.416 0.0211 

60.867 o. 97701 92.443 0.0108 
31.699 0.99199 180.23 0.0055 --.J 

°' 



TABLE IV (Continued) 

Ex2erimental Data Calculated Data 
z v 1/V Temp. Run No. 

p 
3 3 oc p$ia ft /lb-mole lb-mole/ft 

25.00 7 8832.565 1.38200 0.9011 1.1097 
1064.389 0.32469 1. 7568 0.5692 

856.693 0.50949 3.4251 0.2920 
606.616 .0. 70335 6.6776 0.1498 
369.174 _o.83452 13.019 0.0768 
206.808 0.91142 25.381 0.0394 
111.073 0.95435 49.483 0.0202 

58.398 0.97823 96.473 0.0104 
30.373 0.99192 188.08 0.0053 

25.00 8 5933.975 0.99100 0.9618 1.0397 
1034.292 0.33676 1.8752 0.5333 

836.047 0.53070 3.6558 0.2735 
581.367 0.71947 7.1274 0.1403 
349.878 0.84417 13.896 0.0720 
194.887 0.91673 27.091 0.0369 
104.373 0.95717 52.816 0.0189 

54.814 0.98003 102.97 0.0097 
28.496 0.99328 200.75 0.0050 

25.00 9 2991. 405 0-.56840 1.0943 0.9138 
991. 945 0.-36746 2.1335 0.4687 
792.281 0.57220 4.1595 0.2404 
532.844 0.75027 8.1093 0.1233 
314.715 0.86395 15.810 0.0633 

....... 

....... 



TABLE tV (Continued) 

Ex2erimental Data Calculated Data 
z v ------T/V · 

Temp. Run No. 
p 

3 - . 3 oc psia ft /lb-mole lb-mole/ft 

173-.6!! 0.92915 30.823 0.0324 
92.578 0.96596 60.093 0.0166 
48.511 0.98683 117.16 0.0085 

50.00 64 11836.604 1.69633 0.8946 1.1178 
1615.373 0.45155 1. 7449 0.5731 
1079.404 0.58852 3.4034 0.2938 

706.116 0.75092 6.6383 0.1506 
415.704 0.86228 12.948 0.0772 
229.335 0.92786 25.255 0.0396 
122.225 0.96453 49.260 0.0203 

50.00 65 8922.033 1.34595 0.9417 1.0619 
.1544.856 0.45457 1.8367 0.5444 
1049.123 0.60212 3.5826 0.2791 

679.997 0.76122 6.9878 0.1431 
397.730 0.86844 13.630 0.0734 
218.670 0.93129 26.584 0.0376 
116.362 0.96661 51.853 0.0193 

50.00 66 5749.098 0.94867 1.0300 0.9703 
1448.005 0.46605 2.0091 0.4977 

996.823 0.62578 3.9187 0.2552 
635.957 0.77872 7.6435 0.1308 
367.959 0.87882 14.909 0.0671 
201.110 0.93687 29.079 0.0344 
107.034 0.97255 56.719 0.0176 -...J 

00 



Temp. 
oc 

50000 

75.02 

75.02 

Ex.E.erimental Data 

Run No. 

67 

40 

41 

p 

psia 

2870.147 
1296. 717 

890.282 
550.570 
312.405 
168.976 

89.408 

11750.645 
2075.015 
1258.918 

775.367 
443.869 
241.871 
128.266 

8782.963 
1952-,500 
1206-.355 
737. 823 
419. 921 
228.078 
120.731 

' 
·'· 

TABLE IV (Continued) 

z 

0.56974 
0.50207 
0.67234 
0.81100 
0.89758 
0.94695 
0.97728 

1.65200 
0.56667 
0.66783 
0.79898 
0.88848 
0.94045 
0.96878 

1.31405 
0.56744 
0.68103 
0.80911 
0.89450 
0.94376 
0.97041 

Calculated Data 
v 

3 
ft /lb-mole 

1.2391 
2.4169 
4. 7141 
9.1948 

17. 935 
34.981 
68.231 

0.9455 
1.8366 
3. 5677 
6.9302 

13.462 
26.150 
50.796 

1.0062 
1.9546 
3. 7968 
7.3752 

14.326 
27.829 
54.057 

1/V 
3 

lb-mole/ft 

0.8070 
0.4138 
0.2121 
0.1088 
0.0558 
0.0286 
0.0147 

1.0576 
0.5445 
0.2803 
0.1443 
0.0743 
0.0382 
0.0197 

0.9938 
0.5116 
0.2634 
0.1356 
0.0698 
0.0359 
0.0185 

-...J 
I.O 



Temp. 
oc 

75.02 

75002 

Experimental Data 

Run No. 

42 

43 

1 ) 
~ 

psic'I. 

58350299 
17900150 
11250214 

680.209 
383. 722 
207.355 
109.475 

3020.494 
15040315 

9480188 
557.636 
308.857 
165.211 

TABLE IV (Continued) 

z 

0 0 96578 
0057553 
0070270 
0.82516 
0.90422 
0.94915 
0.97341 

0.63453 
0.61386 
0.75160 
0.85863 
0.92379 
0.95988 

Calculated Data 
v 

3 
ft /lb-mole 

1.1131 
201622 
402000 
8.1586 

15.848 
30.785 
59.800 

1.4128 
2.7444 
5. 3310 

10.356 
20.116 
39.075 

1/V 
3 

lb-mole/ft 

0.8984 
0.4625 
0.2381 
0.1226 
0.0631 
0.0325 
0.0167 

0.707$ 
0.3644 
0.1876 
0.0966 
0.0497 
0.0256 

co 
0 



TABLE V 

COMPRESSIBILITY FACTOR DATA FOR HELIUM 

Experimental Data Calculated Data 
z v 1/V Tempo 

Run Noo 
p 

3 3 cc psia ft /lb-mole lb-mole/ft 

25000 24 52640456 1.16706 L2768 0.78323 
25140328 1008148 2.4772 0.40368 
1247.166 1.04082 4.8064 0.20806 

6300371 1002071 9.3255 0 .10723 
321.638 1.01048 18.094 0.05527 
1640939 1.00540 350106 0.02848 

840 796 1.00288 680114 0.01468 

25.00 25 5190.713 1.16521 1.2928 0 0 77349 
24800986 1.08058 2.5084 0.39866 
12310224 1.04046 4.8669 0.20547 

622,348 1.02041 9.4430 0.10590 
317.635 1.01047 18.322 0.05458 
1620876 1.00533 35.548 0.02813 
83.744 1.00291 680973 0.01450 

25000 26 5289.379 1.16782 1. 2716 0.78643 
2524.571 1.08147 2.4671 0.40533 
1252.269 1.04083 4.7868 0.20890 

632. 920 1.02067 9.2876 0.10767 
322.975 1.01056 18.020 0005549 
1650605 1.00536 34.964 0.02860 

85.099 1.00238 67.838 0.01474 00 
f-' 



TABLE V (Continued) 

ExEetimerttal Data Calculated Data 
z v - -- ------r/V 

Tempo Run Noo 
p 

3 3 oc psia ft /lb-mole lb-mole/ft 

25000 27 52580182 L16732 1.2786 0078212 
25110251 L08169 2.4808 0.40310 
12450552 L04095 408132 0. 20776 

629,443 1.02066 9.3389 0.10708 
321,222 L01061 18.120 0.05519 
164.703 L00539 35.156 0 .-02844 

84.642 1.00248 68.212 0.01466 

25.00 28 52630354 Ll6796 1.2780 0.78248 
2513.434 L08215 2.4796 0.40329 
1246.697 1.04145 4.8110 0.20786 

630~008 1.02112 9.3346 0 .10713 
321.426 1.01081 18.111 0.05521 
164.804 L00556 35.140 0.02846 
84.704 1.00277 68.181 0.01467 

50.00 56 2375.242 1.07031 2.8129 0.35550 
1187.180 L03543 504444 0018367 

603.047 L01803 10.538 0.09490 
308.866 1.00921 20.397 0.04903 
158.863 1.00469 39.478 0.02533 

CX) 

N 



Temp. 
oc 

50.00 

50.00 

50.00 

50.00 

Ex2etimenta1·nata 

Run No. 

57 

. 58 

59 

60 

p 

psia 

2312.248 
1156.466 
587.660 
301.029 
154 .. 831 

2155.712 
1080.304 

549.531 
281.660 
144.911 

2258.056 
1130.103 
.574.467 
294.334 
151.399 

2360.303 
1179.617 

599.207 
306-.898 
157.847 

TABLE V (Continued) 

z 

1.06895 
1.03480 
1.01778 
1.00911 
1 .00459. 

1.06451 
1.03254 
1.01660 
1.00853 
1.00431 

1.06745 
1.03403 
1.01737 
1.00892 
1.00448 

1.07045 
1.03548 
1..01807 
1.00925 
1.00471 

Calculated·nata 
v 

3 
ft /lb-mole 

2.8858 
5. 5856 

10.811 
20.925 
40.502 

3.0825 
5.9662 

11.547 
22.351 
43.262 

2.9'509 
5. 7116 

11.055 
21.397 
41.4-15 

2.8310 
5.4795 

10.606 
20.528 
39.733 

1/V 
3 

lb-:mole/ft 

0.34652 
0.17903 
0.09250 
0.04779 
0.02469 

0.32441 
0.16761 
0.08660 
0.04474 
0.02311 

0.33888 
0.17508 
0.09046 
0.04673 
0.02415 

0.35323 
0.18250 
0.09429 
0.04871 
0.02517 CX> 

w 



Temp. 
<>c 

75.02 

75.01 

75.02 

Experimental Data 

Run No, 

30 

31 

32 

p 

psia 

4615.196 
2247.927 
1120.420 

569~539 
291. 632 
149.803 

4926.634 
2391.203 
1196.055 

607 .341 
310.842 
159.719 

5115.142 
2477.527 
1237-.976 

628-.379 
321.507 
165.171 

TABLE V (Continued) 

z 

1.13067 
1.06735 
1.03106 
1.01579 
1.00808 
1.00360 

1.13293 
1.06573 
1.03314 
1.01677 
1.00857 
1.00439 

1.13770 
1.06799 
1.03428 
1.01749 
1.00897 
1.00461 

Calculated Data 
v 

3 
ft. /lb-mole 

1.6476 
3.1933 
6~1890 

11.995 
23.248 
45.056 

1.5465 
2.9974 
5. 8092 

11.259 
21.821 
42.292· 

1.4958 
2.8991 
5.6188 

10.890 
21.106 
40.905 

1/V 
3 

lb-mole/ft 

0.60693 
0.31316 
0.16158 
0.-08337 
0.04302 
0.02219 

0.64661 
0.33363 
0.17214 
0.08882 
0.04583 
0.02364 

0.66852 
0.34493 
0.17797 
0.09183 
0.04738 
0.02445 

00 .,... 



Temp. 
oc 

75.02 

75.02 

75.02 

ExEeri.Iilerttal Data 

Run No. 

33 

34 

35 

p 

psia 

4891.454 
2374.970 
1188.300 

603.386 
308.826 
158,,669 

4595.309 
2239.400 
1122.228 

570.536 
292.165 
150.200 

4991.313 
2420.951 
1210.565 

614.687 
314.572 
161.616 

TABLE V (Continued) 

z 

1.13231 
1.06552 
1.03327 
1.01686 
1.00869 
1.00442 

1.12350 
1.06113 
1.03062 
1.01550 
1.00786 
1.00421 

1.13436 
1.06636 
1.03344 
1.01702 
1.00873 
1.00442 

Calculated Data 
v 

3 
ft /lb-mole 

1.5568 
3.0173 
5.8479 

11.334 
21.966 
42.573 

l.6443 
3.1868 
6.1764 

11.970 
23.200 
44.965 

1.5285 
2.9624 
5.7414 

11.127 
21.566 
41.798 

1/V 
3 

lb-mole/ft 

0.64233 
0.33142 
0 .17100 
0 .08823 · 
0.04552 
0.02348 

0.60817 
0 .31379 
0.16191 
0.08354 
0 .04310 
0.02224 

0.65425 
0.33757 
0.17417 
0.08987 
0.04637 
0.02392 

00 
Ln 
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and barometric pressure were done using a digital computer. __ . The 

temperature data and absolute pressure data for each series of 

expansions are shown in Table IV. 

The compressibility;t'actors.were calculated from the isothermal 

expansion data using the relationships previously shown, Eqs •.. (II-11), 

(II-12), and (II-13) •. Plots.of the isothermal pressure ratios, such 

as shown in Figure 7, were made for each gas system. The data points 

below 150 psia were omitted because of the scatter due to the difficulty 

in measuring low pressures with the piston gage. As previously illus-

trated, Eq~ (II-12) defined the cell constant N. The cell constant 

for each series of expansions was evaluated by curve-fitting the low 

pressure data (below.1500 psia in general, depending upon the gas 

system) using the following model: 

p. l /P. 
1- 1 

= a + bPi + ci + Cl e O 

l. 
(VI-1) 

The value of N corresponded to the intercept·~ in the above equation. 

The results of the curve~fit were checked graphically. The values-of 

N used are shown in Appendix H. 

The next step in calculating tl:le compressibility data from the 

isothermal pressure measurements was to determine the value of the 

compressibility factor z corresponding to the pressure. P before the 
0 0 

first expansion. i Plots of NP. versus P. were prepared for each run. 
1 1 

The zero intercept of such p_-lots gave values of P I z as shown by 
0 0 

Eq. (II-13). The value of P./z for each run was-determined by 
0 0 

curve-fitting the data using the following model: 



..,; 
p.. 
........ 

Fi 
I 

..,; 
p.. 

1.95...-~~~~~~~~~~~~~--~~~~~--~~~~~~~~~~~~---~~~~--

1.90 

1.85 

0 100 200 300 400 500 

P., psia 
l. 

600 700 

Figure 7. Isothermal Pressure Ratios for 
Methane 77 °F 
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= a +- bP. + cP~ -- + .. ~-
l. ]. 

(VI-2) 

Then, the value of P /z was used in Eq, (II-11) to calculate -the 
0 0 

compressibility factor for,each pressure measurement. 

During the course of deriving second virial coefficients by the 

slope-intercept method, a dependence of the slope-on P /z was found. 
0 0 

An example of this dependence is shown in Figure 8 for Run 3, The 

change in P /z shown in Figure 8 is ±0.1%. A value of P /z either 
- · 0 0 0 0 

too high or too low caused.the pJ,.ot-of (z-1).Y.. versus 1/V_to be non-

linear at low densities, The plot should become linear as the density 

decreases. Rather than doin~.the adjustments-graphically, the procedure 

wall> programed for a digital computer. 'fhevalue of P /z was adjusted 
0 0 

such that a minimum sum,-of-squares .was obtained when the compressibility 

and density data were fitted to the following model (see Appendix H); 

(z-l)V = B + C(l/,Y) + D(l/V2 ) (VI-3) 

The experimental compressibility fac'tors for methane are: compared 
' :,,_ 

I\ 

with data by other investigators in Figure'9. Only a partof each 

investigator's data_bshown •. The experimental data were curve-fitted 

to the Leiden form of-the virial equation of state_ (see section in this 

chapter.on equationsof.st;itte). The results of this fit.are repre-

sented by the curves in Figure 9. The widfh,of these curves gives the 

95% confidence intervals for.the experimental data~ At the 95% con-

fidence level, the compressibility factor data from the literature 

agree with the experimental values at 25 and 50 °C. Only the low 

pressure data at 75 °C fall within the 95% confidence interval. The 
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estimated errors at the 95% level for the experimental methane data 

are shown in Table VI. 

92 

The experimental compressibility factors for ethylene are compared 

with data by Michels and Geldermans (41) in Figure 10. The wide curves 

represent the experimental data at the 95% confidence level. The data 

of Michels and Geldermans fall within the confidence interval of the 

25 °C experimental data. Only the low pressure data at 50 °C and 

75 °C fall within the band. Also, the difference between the data 

increases with increasing pressure, This increasing divergence with 

pressure could be due to differences in the piston gages used for 

measuring pressure, the method of calculating the compressibility 

factors from the isothermal expansion data, and experimental errors. 

A comparison of the Ruska piston gage and a Hart piston gage, 

which was the same make of piston gage used by Michels and Geldermans 

(41), made at Oklahoma State University showed that the disagreement 

between the two gages increased with increasing pressure. The 

difference at low pressures (below 1000 psi) was about two parts in 

10,000 while the difference at 12,000 psi was five parts in 10,000. 

In addition to the difference in the piston gages, the method 

of calculating the compressibility factors from the isothermal 

expansion data could contribute to the difference. The usual procedure 

for determining compressibility factors from Burnett's isothermal 

expansion method is to evaluate the cell constant N by using a gas 

such as helium. The pressure ratios for helium are linear over a 

relatively wide pressure range. 
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TABLE VI 

ESTIMATED ERROR FOR EXPERIMENTAL COMPRESSIBILITY 
FACTORS AT 95% CONFIDENCE LEVEL 

Estimated Error as% of z 

95 

Temperature 99% 78.8% 57.2% 38.4% 18.4% 99.9% 
~C Methane Methane Methane Methane Methane Ethylene 

25 0.15 0.04 0.12 0.07 0.36 0.68 

50 0.03 0.03 0.05 0.03 0.05. 0.27 

75 0.05 0.06 . 0.03 0.04 0.77 0.04 



The helium data shown in Table V were obtained for the purpose 

of determining N. Shown in Figure 23, Appendix M, is a plot of the 

pressure ratios for helium at 25, 50, and 75 °C. The zero pressure 

intercept on this plot gives the value of N (see Table H-I). In 

principle, the value of N should not change with temperature; thus, 

the three lines should intersect at a common point. As shown, the 

lines do not intersect at a common point with the 50 °Cline being 

much lower. It would appear that the 50 °C data were in error when 

compared to the other two. ~ut, notice that several series of 

expansions were made at each temperature and that the data from each 

temperature were grouped together. 

Rather than choosing a value of N based upon the helium data, 

the procedure presented previously in this section of using the 

pressure ratios to determine the value of N for each isotherm for 

each gas system was used. Again, the N values from the methane, 

ethylene, and the methane-ethylene mixture data should agree, but 

as shown in Table H-I and Figure 22, the N va+ues varied. This 

procedure yielded methane compressibility data that compared favor

ably with literature data as shown previously in this section. The 

ethylene pressure ratio data had the most curvature of the gas 

systems studied and this curvature would make evaluation of N more 

uncertain than for the other systems. 

For comparison, ethylene compressibility factors were calculated 

using the cell constant N determined from the helium data. These 

compressibility data are shown in Table M-I and are compared with 

data by Michels and Geldermans (41) in Figure 24 (Appendix M), The 

96 
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2S and 50 °C data were moved further away from Michels and Geldermans' 

data. The 75 °C data moved closer to the data by Michels and 

Geldermans. 

Apparently, using the cell constant.N as determined from the 

helium pressure ratios instead of the N calculated from the ethylene 

pressure ratios does not solve the problem. For example, if the 

methane compressibility data were calculated'from the isothermal, 

expansion data using the helium cell constant, the resulting 

compressibility factors would not agree with the literature data, 

Since in principle, the helium, metharie, and ethylene pressure 

ratios should yield the same value for the cell constant, the 

discrepancy is probably due to experimental errors. '!hen, the 

disagreement between the ethylene compressibility, shown in Table 

IV and Figure 10, and the data by Michels and Geldermans (41) was 

due t9 experimental errors and the subsequent treatment of the 

isothermal expansion data, 

Virial Coefficients 

The second and third virial coefficients for methane, ethylene, 

and four of their mixtures were derived from the compressibility 

factors using the slope-intercept method. The derivation of the 

second and third virial coefficients was done by a section of the 

program for calculating the compressibility factors from the 

isothermal expansion data. 
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The usual procedure for deriving· virial·. coefficients using· the 

slope"'"intercept method was. adapted to a· digital· c·omput·er •. · Second virial 

coefficients are usually determined by plotting· (z-l)V versus J:./y and 

by extrapolating to zero. density. The interc·ept on this plot is the 

second virial coefficient.· 

Next; the secondvirial coefficient· is·usedto make.a plot of. 

((z-l)V-B)V versus 1/V for determining the third virial coefficient. 

This plot for the third coefficient shouldbecome·linear at. low densi

ties. This linear relationship is very.sensitive to th~ value of B 

used to make the plot. The value of B.is usually adjusted so that the 

plot of ((z-1),!~B)V versus 1/V is linear. Then, the third coefficient 

can be used to evaluate the fourth virial coefficient by making a 

similar plot and adjusting the value of C to give a linear relationship 

on this plot •. 

Instead of making the.plots, extrapolating, and adjusting·the 

values of Band C graphically, the extrapolating and adjustments were 

done on a digital computer using curve-fits, The trial value of B was 

determined from a curve-fit. of the low density data using Eq •. (VI-3). 

Then, the value .of B.was adjusted until a·curve-fit using the following 

model gave a minimum sum-of-squares: 

((z - l)V -- B)V = C + D/y + E/V2 (VI-4) 

The value of C from the above equation was adjusted in a similar manner 

using the following model: 

( ( (z - l)V B)V - C)V = D + E/y_ + F/V 2 (VI-5) 



The above procedure was checked graphically. Also, the range of the 

low density data used in the curve-fits w~s determined graphically. 
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The·second and third virial coefficients for methane, ethylene, 

and their mixtures are shown in Table VII with 95% confidence limits. 

The gases used in this investigation contained impurities; thus, the 

.coefficients shown in Table VII apply only to these.gases (see Appendix 

D for the compositions). The estimated per cent error for the second 

and third virial coefficients at the 95% confidence level are shown in 

Table VIII. 

The second virial coefficients were corrected for the impurities 

using cross-coefficients from the literature and using an empirical 

correlation by Prausnitz (56) as modified by Huff and Reed (27). The 

corrected second virial coefficients are shown in Table IX. The error 

in the corrected second coefficients was not estimated, but they would 

be.about the same as for the uncorrected values but larger. The 

corrections made for the impurities were in general within the estimated 

error for the uncorrected values. 

The second virial coefficients for helium from this investigation 

are compared with other investigators in Table X. The data from this 

work agree closest with the data of Stroud, Miller, and Brandt (64), 

whose data were derived using the isothermal expansion method of 

Burnett. As shown by the values in Table X, there are·variations.among 

the investigators. For example at 25 °C, the highest value for the 

second virial coefficient is 12.80 cc per g-mole and the lowest 11.56· 

cc per g-mole. 

The second virial coefficients for methane from this work.are 

compared with other investigators in Figure 11. The values from 



TABLE VII 

EXPERIMENTAL VIRIAL COEFFICIENTS 
WITH 95% CONFIDENCE LIMITS 

Nominal Composition Temperature B 
OK cc/g-mole 

Methane 298.15 -42 .88±1. 5 
323.15 -33.22±1.0 
348.17 -26.54±1.1 

Ethylene 298.15 -145.60±4.8 
323.15 -120.40±1.3 
348.16 -100. 80±1. l 

80-20 Methane~Ethylene 298.15 -55.39:J:l.3 
323.15 -43.74±0.5 
348.16 -34.07±1.1 

60-40 Methane~Ethylene 298.15 -72. 35±3 .o 
323.15 -60.54±0.4 
348.16 -49.85±0.4 

40-60 Methane-Ethylene 298.15 .,-90,96±1.5 
323.15 -77. 47±0 .1 
348.16 -64.30±0.2 

20-80 Methane-Ethylene 298.15 -116.90±1.4 
323.15 -98.32±0.7 
348.17 -82.03±0.8 

100 

c 
(cc/g-mole) 2 x 10- 3 

2.392±0.80 
1. 785±0. 40 
1. 958±0 0 50 

9.794±2.60 
7.046±0.40 
5.982±0.80 

2.680±0.60 
2.152±0.20 
1.714±0.40 

3.248±1.60 
3.206±0.09 
2.820±0.09 

4.100±0.90 
4.310±0.08 
3.667±0.07 

6.537±0.60 
5, 713±0 .10 
4.696::\:0.40 



Temp. 
oc 

25 

50 

75 

99% 

TABLE VIII 

ESTIMATED PER CENT ERROR FOR EXPERIMENTAL VIRIAL COEFFICIENTS 
AT 95% CONFIDENCE LEVEL 

78.8% 57.2% 38.4% 18.4% 
Methane Methane Methane Methane Methane 

.B c B c B c B c B c 

3.4 32 2.3 22.0 4.1 48.0 1. 7 22.0 1.2 9.2 

3.1 24 1.2 7.9 0.6 2.7 0.1 1.9 0.7 3.4 

4.1 26 3.4 22.0 0.9 3.4 0.4 1.0 1.0 8.4 

99.9% 
Ethylene 
B 

3.3 

1.1 

1.1 

c 

27 

58 

14 

I-' 
0 
I-' 



TABLE IX 

SECOND VIRIAL COEFFICIENTS CORRECTED 
FOR IMPURITIES 

Nominal Composition Temperature 
OK 

Methane 298.15 
323.15 
348.17 

Ethylene* 298.15 
323.15 
348.16 

80-20 Methane-Ethylene 298.15 
323.15 
348,16 

60-40 Methane~Ethylene 298.15 
323.15 
348.15 

40-60 Methane-Ethylene 298.15 
323.15 
348.16 

20-80 Methane-Ethylene* 298.15 
323.15 
348,17 

*No corrections made for these gases. 
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B 
cc/g-mole 

-41.57 
-32.04 
-25.49 

-145.60 
-120.40 
-100,80 

-52.51 
-41.19 
-31.81 

-70.29 
-58.74 
.-48. 28 

-89.85 
-76.51 
-63.46 

-116. 90 
-98.32 
-82.03 



TABLE X 

SECOND VIRIAL COEFFICIENTS FOR HELIUM 

Source 

Stroud, Miller, and Brandt (64) 

Schneider and Duffie (59) 

Holborn and Otto (59) 

Wiebe, Gaddy, and Heins (68) 

Michels and Wouters (47) 

This work 

B 
cc/g-mole 

Temperature, °C 
25 50 75 

11. 79 llo 72 11.69 

11. 71 11.61 11.52 

11.61 11.52 11.45 

11.56 1:J_.48 11.39 

12.80 11.57 ll-. 43 

11.89 11.80 11. 71 
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Figure 11. Second Virial Coefficients foi;- Methane 
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Douslin (15) are represented by the curve; the other investigators' 

data are represented by the symbols shown in Figure 11. The values by 

Michels and Nederbragt (44) and Schamp et al. (57) agree closely and 

are.lower than Douslin's data. The virial coefficients of Michels and 

Nederbragt and Schamp et al. were derived from compressibility data 

determined using the same type of apparatus and pressure measuring 

equipment. As shown, the uncorrected valu~s from this work agreed 

within the estimated error with the other investigators at 25 and 75 °C. 

The values of Schamp et al. (57) and Michels and Nederbragt (43,44) at 

50 °C fell outside the band~ 

The third virial coefficients for methane, with their 95% 

confidence limits, are compared with values from the literature in 

Figure 12. The variations among the investigators' data increased for 

the third virial coefficients as expected. The third viri~l coeffi-

cients from this work agreed within the estimated error with the other 

investigators shown in Figure 12 at 25 and 75 °C. The value at 50 °C 

barely agreed with Douslin's (15) data. 
·-~ ... - ~' 

The second and third virial coefficients for ethylene are compared 

with literature values in Figures 13 and 14, respectively. The experi-

mental second virial coefficient at 75 °C agreed with the value by 

Michels and Geldermans (41) and was lower than the data hr.Butcher and 

Dadson (7). The second virial coefficients from this work at 25 and 

50° C were lower than either of the other investigators. The experi-

mental third virial coefficients agreed within the estimated error at 

50 and 75 °C with values by Butcher and Dadson (7). 

The second virial coeff~cients corrected for i~purities for the· 

methane-ethylene mixtures are shown in Figure 15 (see Appendix G, 
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Table G-V for the compositions). The!. coefficients were used. to derive 

the.cross-coefficients for methane ... ethylene. For a binl:lry mixture, the 

second virial coefficient is related to the pure component coefficients 

and the cross-coeffici~nt by the following expression (23): 

(lII-24) 

The cross-coefficients, B12 , were determined by curve-fitting the data 

shown in Figure 15 and Table IX using Eq.(III-24)as the model. The 

resulting cross-coefficients are shown in Table XI and Figure 16. The 

estimated error based on the curve-fit was 1.1% at 25 °C, 5.5% at 50 

°C, and 9.9% at 75 °C. 

The experimental second virial coefficients and cross-coefficients 

were used to check combination rules for estimating mixt'l,1.re second 

virial coefficients for methane-ethylene.binaries. The combination 

rules, presented in Chapter III, are shown below: 

Linear (III-26) 

B12 = 1/4( (B 1 l) 1 I 2 + (B22)1/2/ Linear-square-root 
(III-28) 

B12 ( 
1/2 

Square (III-~9) = B11 B22 ) root 

1 /3 1/3 3 
(III-.31) B12 = ( (B11) + (B22) ) /8 Lorentz 

The combination rules are compared with the e,c:perimental data in Tables 

XII, XIII, XIV, and XV. Three of the aoml;>ination rules, linear-square-

root, square·root, and Lorentz, gave approximately the same results, 



TABLE XI 

CROSS COEFFICIENTS 

Temperature 
oc 

25 

50 

75 

B~ 2 

cc/g-mole 

-61.15 

-53.99 

-43.75 
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TABLE XII 

LINEAR COMBINATION 

Units: cc/g-mole 

T Mole Mole Ex:2erimertta1· Linear Difference :~P~ Fraction Fraction 
B B B B B -B B -B Methane Ethylene m 12 m 1.2 meal mexp 12cal 12exp 

25 0.792 0.208 -52.51 -61.15 -63.2-0 -93.58 -10.69 -32.43 
0.574 0.426 -70.29 -85.89 -15.60 
0.385 0.615 ...,.89~85 -105.50 -15.65 
0.184 0.816 -116.9 -126.50 -9.60 

15.22 sta. dev. 

50 0.792 0.208 -41.19 -53.99 ·-50.41 -76.22 -9.22 -22.23 
0.574 0.426 -58.74 -69~68 -10.94 
0.385 0.615 -76.51 . -86.38 -9.87 
0.184 0.816 -98.32 ~104.10 ...;.5.80 

10.58 std. dev. 

75 0.792 0.208 -31.81 -43.75 -41.15 -63.14 -9.34 -19.39 
0.574 0.426 · -48.28 -57.57 -9.29 
0.385 0.615 -63.46 -71.81 -8.35 
0.184 0.816 -82 .03 -,86 .94 -4.91 

9.44 std. d.ev. 

I-' 
I-' 
w 



TABLE XIII 

LINEAR SQUARE ROOT COMBINATION 

Units: cc/g-mole 

Temp. Mole· Mole. ·ExEerimental Linear Sguare Root Difference oc Fraction Fraction B Bl 2 B B12 B -B B . -.B 
Methane Ethylene ni. m meal mexp 12cal 12exp 

25 0.792 0.208 -52.51 -61.15 -60.61 -85.69 -8.10 -24.54 
0.574 0~426 -70.29 -82.03 -11. 7-4 
0.385 0.615 -89 • .85 -101.80 -11. 95 
-0.184 0.816 -116.90 -124.10 -7.20 

11.52 std. dev. 

50 0.792 0.208 -41.19 -53~74 -48.09 -69.16 -6.90 -15.1-7 
0.574 0.426 -5.8.74 -"66.23 -7.49 
0.385 0.615 -76.51 -83.04 -,6.53 
0~184 0.816 -98.32 -102.00 ..;..3~70 

7.30 std. dev. 

75 0.792 · 0.208 -31.81 -43.75 -39.10 -56.92 -7.29 -13.17 
0.574 0.426 -48.28 -54.53. -6.05 
0.385 0.615 -ti3.46 ·-68 • .86 -5 .4-0 
0.184 0.816 -82.03 -84.21 ..;.,2~18 

6.50 std. dev. 

I-' 
I-' 
,I:--



TABLE XIV 

SQUARE.ROOT COMBINATION 

Units: cc/g-mole. · 

Temp. MQle· Mole· 
Ex:eerimental · Sguare Root Differertce 

oc Fraction Fraction B B B B12 B -B B -B Methane Ethylene m 12 m meal mexp 12cal 12exp 

25 o. 792 0.208 -52.51 -1>1-.15 -58.01 -77 .80 -5.50 -16.65 
0.574: 0.426 -70.29 -78.17 -7.88 
0.385 0.615 -89~85 -98.07 -8.-22 
0.184 0.816 -116.90 "'.'121.70 -4.80 

7.81 std. dev. 

50 0.792 0~208 -41.19 -53.99 ...;45. 77 -62.11 -4.58 -8.12 
0.574· 0.426 .. -58. 74 ·-62.78 -4.04 
0.385 0.615 -76.51 -79.70 -3.19 
0.184 0.816 -98.32 -99.90 ~1.5s 

4.08 std. dev. 

75 0.792 0.208 -31.81 -43.75 .... 37 ~05 .. -50.69 -5.24 -6.94 
0 .. ·574 0.426 -48.28 -51.48 -3.20' 
-0.385 0.615 -63.46 -65.91 -2.45 
0.184 0.816 -82.03 -83.20 ·~1.11 

3.87 std. dev. 

I-' 
I-' 
VI 



TABLE XV 

LORENTZ COMBINATION 

Units: cc/g-mole 

Temp. Mole Mole ExEerimental Lorentz Difference 
oc Fraction Fraction B B B Bl 2 B -B B -B 

Methane .Ethylene m 12 m meal mexp 12cal 12exp 

25 0.792 0.208 -52.51 -61.15 -59.40 -83.02 -6.89 -21.87 
0.574 0.426 -70.29 -80.74 -10.45 
0.385 0.615 -89.85 -100.50 -10.65 
0.184 0.816 -116.90 -123.8 ·-6.90 

10.30 std. dev. 

50 0.792 0.208 -41.19 -53.99 -47.31 -66.78 -6.12 -12.79 
0.574 0.426 -58.74 -65.07 -6.33 
0.385 0.615 -76.51 -81.91 -5.40 
0.184 0.816 -98.32 -101.30 """3.00 

6.21 std. dev. 

75 0.792 0.208 -31.81 -43.75 -38.41 -54.81 -6.60 -11.06 
0.574 0.426 -48.28 -53.50 -5.22 
0.385 0.615 -63.46 -67.86 -4.40 
0.184 0.816 --82.03 -84.44 ..;.2~41 

5.65 std. dev. 

t-' 
;f-' 
(j\ 
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being better than the linear rule, The square root combination would 

be the best rule to use since it is the simplest of the three, 

Equations of State 

The experimental compressibility factors shown in Table IV were 

curve-fitted to the Le;iden form of the vir;ial equation of 1:;tate, shown 

below: 

z = A + B/J_ + C/Y._2 + D/Y._3 + ... (VI;:-6) 

The compressibility factors tor pressures below 150 pE>ia were not 

included in the curve-fit. Since the model used in the curve-fit is a 

theoretical model, the residual error i,s due to the choice of .the 

number of coefficients in the model and experimental error, Hence, the 

number of coefficients in the model which gave the "best fit" was 

chosen such that the mean res:i,dual sum of squares (standard deviation 

for the fit) was a minimum. The coefficients, their standard deviations, 

the standard deviations for the fit, and the degrees of freedom are 

shown in Table XVI. The coefficients are for density units of lb.-mole 

per cubic foot. 

The second and third virial coefficients derived from the slope

intercept method as described previously are compared with the 

coefficients from the curve-fit of the compressibility data in Table 

XVII. The 95% confidence limits are shown also in Table XVII. In 

general, the second virial coefficients derived by both methods gave 
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TABLE XVI 

COEFFICIENTS FROM CURVE-FIT OF COMPRESSIBILI'l'Y FACTORS TO THE 
LEIDEN FORM OF THE VIRIAL EQUATION OF STATE 

Density Units: lb~mole/ft 3 

i Coefficients sbi s d. £. 

Methane 25 oc 

1 0.9998004 0.00096 0.00086 17 
2 -0.6841890 0.021 
3 0.6297567 . 0.14 
4 -0.1066659 0.41 
5 0.2851700 0.58 
6 -0.1741619 0.40 
7 0.1373626 0.11 

Methane 50 oc 

l 1.0000830 0.00011 0.00016 15 
2 -0.5357476 0,0027 
3 0.4867952 0.017 
4 0.2331225 0.039 
5 -0.02453715 0.038 
6 0.2636876 0.013 

Methane 75 oc 

1 0.9997566 0.00032 0.00027 10 
2 -0.4114680· 0.0081 
3 0.3579997 0.063 
4 0.6263773 0.21 
5 -0.9872723 0.35 
6 0.9677234 0~28 
7 -0.2472527 0.083 
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TABLE XVI (Continued) 

i Coefficients s d.f. 

Ethylene 25 oc 

1 1.003008 0.0040 0.0029 16 
2 -2.442701 0.096 
3 3.671667 o. 71 
4 -5.860483 2.3 
5 9.673038 3.6 
6. -9.066705 2.8 
7 3.841122 0.8 

Ethylene 50 oc 

1 1.001153 0.0022 0.0012 14 
2 -1.955390 0.039 
3 1.934410 o. 22· 
4 0.3396489 0.49 
5 -2.440842 0.48 
6 2.176879 0.17 , ,, 

Ethylene 75 oc 

1 1.000299 0.00021 0.00021 19 
2 -1.62423 0.0073 
3 1.621643 0.069 
4 0.008335 0.27 
5 -0.9184579 0.48 
6 0.8205693 0.41 
7. 0.4367816 0.13 

80-20 Methane-Ethylene 25 °C 

1 1.000335 0.00027 0.00023 12 
2 -0.8959749 0.0056 
3 0.7384177 0.032 
4 0.1726574 0.069 
5 -0.3974254 0.063 
6 0.4374412 0.021 

80-20 Methane-Ethylene 50 °C 

1 1.000191 0.00037 0.00017 9 
2 -0.7027187 0.0063 
3 0.5411860 0.033 
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TABLE XVI (Continued) 

i Coefficients 8 bi s d.f, 

4 ·0.4197359 0.071 
5 -0.5137237 0.066 
6 0.4567650 0.022 

80-20 Methane-Ethylene 75 °C 

1 1.000545 0.00068 0.00032 9 
2 -0.5548790 0.012 
3 0.4706322 0.066 
4 0.4143606 0.15 
5 -0.3922206 0.15 
6 0.3885449 0.051 

60-40 Methane-Ethylene 25 °C 

1 1.001576 0.00097 0.00061 9 
2 . -1.203773 0.022 
3 . 1.201754 0.17 
4 -0.6027667 0.62 
5 0.1992873 1.28 
6 1.366197 1.52 
7 -1.682892 0.95 
8 0.7407407 0.24 

60-40 Methane-Ethylene 50 °C 

1 0.9995680 0.00086 0.00024 7 
2 -0.9530783 0.017 
3 0.6233560 0.11 
4 1.131385 0.34 
5 -2.181761 0.50 
6 1.944805 0.37 
7 -0.4021739 0.10 

60-40 Methane-Ethylene 75 °C 

1 i.000143 0,00040 0,00015 8 
2 -0.8027822 0.0080 
3 0.7602824 0.053 
4 0.1189195 0.16 
5 · -o .0284731 0.25 
6 0.07150422 0,19 
7 0.1782946 0.056 



121 

TABLE XVI (Continued) 

i Coefficients s d.f. 

40-60 Methane-Ethylene 25 °C 

1 1.000813 0.00042 0.00032 8 
2 -1.480609 0.0090 
3 1.202449 0.051 
4 0.3837994 0.037 
5 -1.104405 0.26 
6 0.9528702 0.40 
7 -0.3657801 0.55 
8 ·0.9859571 o. 34 .· 
9 -0.9349593 0,38 . 

10 0.3333333 0.13 

40-60 Methane-Ethylene 50 °G 

·1 1,000113 0.00044 0.00014 7 
2 -1.243214 0.0086 
3 1.107562 0.053 
4 0.0837558 0.15 
5 -0.047522 0.23 
6 -0.7122314 0.25 
7 1.335046. 0.18 
8 -0.3928571 0.053 

40-60 Methane-Ethylene 75 °C 

1 1.000892 0.00044 0.00018 . 6 
2 -1.050767 0.0051 
3 1.100941 0,047 
4 -0.3786515 0.26 
5 0.9651010 0.59 
6 -1.538161 0.63 
7 1,657233 0.30 
8 -0.4575472 0.036 

20-80 Methane-Ethylene 25 °C 

1 1.005993 0.0025 0.0016 "12 
2 -2.055623 0~062 
3 3.224266 0.46 
4 -4.953119 1.31 
5 4. 723271 1.14 
6 1.876036 0.47 
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TABLE XVI (Continued) 

i Coefficients 5bi s d.f. 

7 -2.804135 1.97 
8 -3.959789 1.27 
9 0.7476499. 0.88 

10 6.832463 1.59 
11 -3. 727273 o. 72 

20-80 Methane-Ethylene 50 °C 

1 1.000166 · 0.00022 . 0.00023 14 
2 -1.574925 0.0036 
3 1.413852 0.027 
4 0.2478234 0.19 
5 -0.6061167 0.50 
6 -0.8044623 0.61 
7 2.156738 0.34 
8 -0.7267442 0,72 

20-80 Methane-Ethylene 75 °C 

1 0.999286 0.0027 0.0037 17 
2 -1.306775 0.049 
3 l.23'i%.6 0.098 
4 0.522916 1.13 
5 -2.261494 2.16 
6 2.751295 1.61 
7 -0.611091 O.J8 
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TABLE XVII 

COMP.f\RISON OF VIRIAL COEFFICIENTS DERIVED BY SLOPE-INTERCEPT 
METHOD AND CURVE-FITTING OF COMPRESSIBILITY DATA 

.. SloEe .... Interce:et Curve-Fit 
Temperature 

B G x 10....; 3 l3 c x 10- 3 oc 
cc/g-mole (cc/g-mole) 2 cc/g-mole (cc/g-mole) 2 

99% Methane 

25 -42. 9±1.5 2.39±0,8 -42,7±2,3 2.45±0.9 
50 ....;33, 2±1.0 1. 78±0.4 -33.5±0.3 1.90±0.l 
75 -26.5±1.1 1.96±0.5 -25.7±0.9 1.40±0.4 

78.8% Methane 

25 -55.4±1.3 2.68±0.6 -55.9±0.6 2.88±0.2 
50 -,,43.7±0.5 2.15;t0.2 -43,9±0.7 2.11±0.2 
75 -34.1±1.1 1. 71±0.4 --34,6±1.4 1.83±0.5 

57.2% Methane 

25 -72.4±3.0 3.25±1,6 ..,.75,2;1;2.6 4.70±1.2 
50 -60.5±0.4 3.21±0.1 -59.5±2.1 2.43±0.8 
75 -49.8±0.4 2.82±0.l -50,l±0.9 2.96±0.4 

38.8% ~ethane 

25 -91.0±1.5 4.10±0.9 -92 .4±1.0 4.69±0.4 
50 -77. 5:!;0.1 4.31±0.1 -77. 6±1.0 4.32±0.4 
75 -64.3±0.2 3.67±0.7 -65,6±0.6 4.29±0.4 

18.4% Methane 

25 -116.9±1.4 6.54±0.6 -128.3±3.9 12.60±3.2 
50 -98.3±0.7 5.71±0.1 -98.3±0.4 5,51:!;0.2 
75 -82.0±0.6 4.70±0.1 -81.6±5.2 4.82±0.7 

99.9% Ethylene 

25 -145.6±4.8 9.79±2.6 -152,5:!:6.0 14.30±4.9 
50 -120.4±1. 3 7.05±0.4 -122.0±2.4 7 .50±1.5 
75 -100.8±1.1 5,98±0.8 -101.5±0.8 6 .• 32:!:;0. 5 
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the same values. Most of the third virial coefficients agreed; 

however, the disagreements were more numerous than for the second 

virial coefficients. 

Three empirical equations of state, RK, BWR, and Edmister et al. 

generalized BWR (GBWR), were compared with the experimental 

compressibility factors. 

The two constants in the RK equation were calculated for the p1,1re 

components using Eq, (III-44). The mixture constants were determined 

using the combination rules shown in Chapter III, Eq. (III--46). The 

· compressibility factors· for each of the gases including the impurities 

were calculated. 

The eight constants used in the BWR equation for the hydrocarbon 

components were those recommended by Benedict, Webb, and Rubin (4). 

The values for carbon dioxide were from Eakin and Ellington (17). The 

mixing rules for determining mixture constants shown in Chapter Ill, 

Eq. (III-34), were used including the linear and Lorentz combinations 

for B • 
0 

The constants.for the Edmister et al. generalized BWR equation 

were calculated from the expressions derived by Edmister, Va,irogs, and 

Klekers (19) shown in Chapter III, Eq. (III""'.'40). The values of the 

accentric factors used in calculating the generalized constants were 

taken from Edmister, Vairogs, and Klekers (19) and Huff and Reed (27). 

A summary of the cbmparison of the empirical equations of state 

with the experimental compressibility data are shown in Table XVIII. 

The compressibility factors are compared in detail in Appeqdix J, 

As shown in !able XVIII, the standard deviations for the RK 

equation varied from 0.016 to 0.064 over the range 0£ the e,c;perimental 



TABLE XVIII 

SUMMARY OF COMPARISON OF EMPIRICAL EQUATIONS OF STATE 
WITH EXPERIMENTAL COMPRESSIBILITY FACTORS 

Temperature SRJ.< ·. 8 BwiJl 
QC 

99.0% Methane 

25 0.021 0.076 
50 0.023 · 0 .062 
75 0.024 0.052 

78.8% Methane 

25 0.031 0.127 
50 0.035 0.105 
75 0.037 0.089 

57,2% Methijne 

25 0.037 0.179 
50 0.025 0.137 
75 0.026 0.100 

38.4% Methaµe 

25 0,031 0,227 
50 0.016 0.174 
75 0.021 0.142 

18.4% Methane 

25 0.021 0.288 
50 0.019 0.217 
75 0.021 0.178 

99.9% Ethylene 

25 0.064 0.334 
50 0.054 0.260 
75 0.022 0.221 

J/ L;i.nea~ combination for B 
om 

!/Lorentz combination for B om 

sBWR:2/ 

0.068 
0.062 
0.051 

0.128 
0.105 
0.090 

0.180 
0.138 
0.112 

0.228 
0.199 
0.143 

0.288 
0,218· 
0.179 

125 

8 GBWR 

0.075 
0.064 
0.056 

0.123 
0.108 
0.095 

0.176 
0.138 
0.115 

0.222 
0.171 
0.146 

0.256 
0.185 
0.179 

0.334 
0.241 
0.216 
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data, temperatures of 25 to 75 °C, pressures of 150 to 12,000 psia, 

and six gases. The variations seemed to be ramdon with no dependence 

on composition or temperature except for the ethylene data. 

Examination in detail of the comparison of the RK equation with 

the experimental data was more revealing than considering only the 

standards deviations shown in Table XVIII. The differences between the 

RK equation and the experimental compressibility factors for methane 

(99% methane) and ethylene are shown in Figures 17 and 18, respectively, 

as functions of density. If the RK equation was restricted to densi

ties below 0.65 lb.~mole per cu. ft. (pressures below 3100 psia or 

reduced pressures below 4.6) for methane and below 0.5 lb.-mole per 

cu. ft. (pressures below 1000 psia or reduced pressures below 1.35) 

for ethylene, the RK compressibility factors would fall within ±0.02 

of the experimental data. 

The combination rules used to calculate the RK mixture constants 

worked well as shown by the sununary of the standard deviations in 

Table XVIII. The comparison for the 20-80 methane-ethylene mixture 

shown in Figure 19 reflected the results for the other methane-ethylene 

mixtures. The RK equation and combination rules did a good job of pre

dicting the mixture compressibility data below densities of 0.6 lb.

mole per cu. ft. 

As shown in Table XVIII, the BWR and the GBWR did not do as good 

a job of predicting the experimental data as the simplier RK equation, 

Furthermore, when comparing the BWR and GBWR equations as shown in 

Appendix J and in Figures 20 and 21, these equations did not do as 

well as the RK equation at the lower densities. If the BWR and GBWR 

were restricted to densities below 0.25 lb.-mole per cu. ft. (pressures 
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below 1200 psia or reduced pressures of 1.8) for methane and below 

0.12 lb.-mole per cu. ft. (pressures below 550 psia or reduced pressures 

below 0.74), their compressibility factors would fall within ±0.02 of 

the experimental data. 

As shown in Table XVlII and in Appendix J, there was no difference 

between the BWR and the GBWR equations. Comparing the methane-ethylene 

mixtures with the BWR equations and·combination rules was difficult 

since the BWR equations did not describe the experimental ethylene data 

very well or as well as the methane data. However, as shown in Table 

~iXVIII and in Appendix J, the linear combination rule for B worked as om 

well as the Lorentz rule. 

The second and third virial coefficients were calculated from the 

. constants for the. RK, BWR, and the Edmister et al. GBWR. equations of 

state. The expressions for the second and third virial coefficients 

in terms of these three equations were presented in Chapter III. The 

expressions for the BWR and GBWR were: 

B = B 
0 

A /(RT) 
0 

C If' b - a/(RT) + c/(RT 3 ) 

The expressions for the RK equation were: 

B = b a/ (RT 1 -~5 ) 

(III-36) 

(III-37) 

(III-49) 

(III-50) 



The results are shown in Table XIX and XX and are compared with the 

experimental values as derived by the slope-intercept and curve-fit 

methods. 
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In general, the .second and third virial coefficients calculated 

from the constants for the RK, BWR, and the GBWR equations of state did 

not predict the experimental values within the estimated error of the 

experimental data. Considering that the RK equation has only two con

stants, the equation did a good job in predicting the second virial 

coefficient in comparison with the eight constant BWR equation. 

The mixture data could provide an opportunity to check the 

combination rules for these three empirical equations. However as 

shown in the comparison with the experimental compressibility data, the 

equations inability to predict the pure component values made it 

difficult to draw conclusions. 

The comparisons of the second and third virial coefficients based 

on the RK, BWR, and Edmister et al. GBWR equations of state indicated 

that improvements in these equations to predict compressibility data 

should be made in such a way as to improve their performance in pre

dicting the second and third virial coefficients. No attempts were 

made as a part of this work to make improvements in these equations of 

state. 

Lennard-Jones Potential Function 

Lennard-Jones (32) proposed an intermolecular potential function 

for hard-sphere molecules. The potential function consisted of two 

terms: a term representing the attractive forces (first term) and a 

term representing the repulsive forces (second term). The potential 



Gas System 

Methane· 

80-20 

60-40 

40-60 

20-80 

Ethylene 

Methane 

80-20 

60-40 

Slope
Intercept 

-42.88±1.5 

-55 .39±1.3 

-72.35±3.0 

-90.96±1.5 

-116. 90±1.4 

-145.60±4.8 

-33.22±1.0 

-43.74±0.5 

-60.54±0.4 

TABLE XIX 

COMPARISON OF SECOND VIRIAL COEFFICIENTS 

Units: cc/g-mole 

Curve-Fit BWR 

25 °C 

-42. 70±2 .30 . -43.47 

-55.93±0.62 -56.42 

-75 ... 20±2 ... 60 -77.22 

-9 2 • 40±1. 00 -93.95 

-128.30±3.90 -112.70 

-152.50±6.00 -123.60 

50 °C 

-33.46±0.30 -35.41 

-43.87±0.71 -46.48 

-59.50±2.10 -64.88 

Generalized 
BWR 

-44. 72 

-60.92 

-77 .04 

-95.40 

-i16.10 

-139.00 

-36.92 

-50.96 

-64.55 

RK 

-45.45 

-61.04 

-78.53 

-97.89 

-119.00 

-142.10 

-36.89 

-50.47 
I-' 
w 

-65.74 .i:--



Gas System Slope-
I11-terc;.ept 

-

40-60 -77 .47±0.1 

20-80 -93.32±0.7 

Ethylene -120.40±1.3 

Methane -26.54±1.l 

80-20 -34.07±1.1 

60-40 -49.85±0.4 

40-60 -64.30±0.2 

20-80 -82.03±0.8 

Ethylene -100.80±1.1 

TABLE XIX (Continued) 

Curve-Fit BWR 

-77 .60±1.00 -79.10 

-98.32±0.39 --94.02 

-122 .10±2. 40 -103.80 

75 °C 

-25.69±0.90 -28.77 

-34.64±1.40 -38.37 

-50.12±0.93 -57.80 

-65.60±0.62 -67.05 

-81.60±5.20 -79.10 

-101. 50±0. 80 -87.96 

Generalized 
BWR 

-79.97 

-97.39 

-116.70 

-30.49 

-42~83 

-54.40 

-67.61 

-82.47 

-98.95 

RK 

-82.65 

-101.20 

-121.40 

-29.86 

-41.78 

-55.22 

-70.17 

-86.46 

-104.30 

1--' 
w 
v, 



Gas System 

Methane 

80-20 

60-40 

40-60 

20-80 

Et"b.ylene 

Methane 

80-20 

Slope
Intercept 

2.39±0.80 

2.68±0.60 

3.25±1.60 

4 .10±0 .90 

6.54±0.60 

9.79±2.60 

1. 78±0.40 

2.15±0.20 

TABLE XX 

COMPARISON OF THIRD VIRIAL COEFFICIENTS 

Units: 2 -3 (cc/g-mole) xlO 

Curve-Fit BWR 

25 (IC 

2.45±0.87 3.16 

2.88±0.21 4.51 

4. 70±1.20 6.58 

4.69±0.37 9.61 

12.60±3.20 13.93 

14.30±4.90 19.92 

50 °C 

1. 90±0 .12 2.93 

2.11±0.24 4.02 

Generalized 
BWR 

3.17 

4.55 

6.68 

9,.85 

14.40 

20.SO 

2.94 

4.05 

RK 

3.11 

3.95 

4.93 

5.52 

6.69 

8.85 

2.86 

3.61 I-' 
l,.) 

°' 



Gas System 

60-40 

40-60 

20--80 

Ethylene 

Methane 

80-20 

60-40 

40-60 

20-80 

Ethylene. 

Slope
Intercept 

3. 21±o. 09 

4. 31±o.08 

5. 71±0.01 

1 .os±o.4o 

1.96±0.50 

1. 71±0.40 

2.82±0.09 

3.67±0.07 

4.70±0.40 

5.98±0.80 

TABLE XX (Continued) 

Curv-e-Fit 

2.43±o.81 

4.32±o.40 

5.51±o.19 

7 .50±1.50 

75 °C 

1.40±0.42 

1.83±0.48 

2.96±0.48 

4.29±0.35 

4.82±0.70 
' 

6.32±0.47 

BWR 

5.65 

8.02 

11.38 

16.03 

2.78 

3.68 

5.01 

6.91 

9.59 

13.30 

Generalized 
BWR 

5.74 

8.23 

11~79 

16.75 

2.80 

3.72 · 

5.09 

7.10 

9.94 

13.90 

RK 

4.50 

·5~52 

6.69 

8.02 

2.65 

3.34 

4.14 

5.07 

6.13 

7.34 

I-' 
w 

" 
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function expressed as a function of the intermolecular distance (r) is 

shown below: 

cp (r) 
n · m = )../r - µ/r " (VI-7) 

The potential function is usually expressed in terms of cr where cf> (cr = 

r) = 0 and the .depth of the potential well£"; i,e., cf>= E where d(j>/dr 

= o. 

cp (r) = m (VI-8) 
(n - m) 

Usually, an exponent of .six for the repulsive term (m = 6) and an 

exponent. of twelve for tl'.1e attractive term. (n = 12) works well for 

some simple gases. 

The second virial coefficient shown below (23) as well as the 

others can be related to the intermolecular potential function. 

B (T) = 
27TN 

- 3kT 

00 

I 
0 

def> e- cj,/(kT) dr 
dr (VI-9) 

The above. expression has been integrated for the Lennard-Jones potential 

function (23). The resulting expression in terms of n arid mis shown: 

B. (T) = 

where, 

00 

(i] l 
j=O 

Y. 
c J 

nm 
j 

Yj _. (n - m)j.+ 3 
n 

Y.. 

[t{ r (VI-10) 

(VI-11) 
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n 
- m 

c nm 
= 

m 
n ... m (VI-12) 

The parameters for the Lennard-Jones potential function can be 

determined from second virial coefficient data using Eq. (VI-10). 

Also, Eq. (VI-10) can be applied to second cross-coefficients (B .. ). 
1J 

The pure component second virial coefficient data shown in Table 

IX and the cross coefficient data shown in Table XI were used to deter-

mine the parameters for the Lennard-Jones 6-12 potential function. 

The parameters were determined by a non-linear curve-fit of the second. 

virial coefficient data. The non-linear curve-fit procedure is outlined 

in Appendix K. The resulting Lennard-Jones 6-12 parameters are shown 

in Table XXI with their 95% confidence intervals. 

The second virial coefficients calculated from the Lennard-Jones 

6-12 potential are compared with the experimental values in Table XXII. 

The Lennard-Jones 6-12 predicted the experimental second virial coeffi-

cients within the estimated error. 

The Lennard-Jones parameters for pure components and mixtures can 

be used to check mixing rules for the cross parameters. The following 

rules are generally used for the Lennard-Jones function: 

(J (J 
11 + 22 = 2 

(VI-13) 

(VI-14) 

The confidence limits for the parameters shown in Table XXI were too 

wide for making comp~rtsons of the experimental cross parameters with 



TABLE XX! 

LENNARD-JONES 6-12 PARAMETERS 

Component 

Methane· 

Ethylene 

Methane-Ethylene 

e: x 10 1 3 

0.20±0.04 

0.24±0.03 

0.27±0.30 

0.39±0.08 

0.51±0.05 

0.35±0.30 
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Temperature. 
oc 

25 
50 
75 

25 
50 
75 

25 
50 
75 

TABLE XXII 

COMPARISON OF EXPERiMENTAL AND CALCULATED 
SECOND VIRIAL COEFFICIENTS 

Lennard-Jones 6-12 Potential Function 

Experimental 
cc/g-mole 

-41.57 
-32.04 
-25.49 

-145.60 
-120.40 
-100.80 

Calculated 
cc/g-mole. 

Methane 

-41.33 
-32.56 
-25 .21 

Ethylene 

-145.40 
-120.90 
-100.50 

B - B exp cal 

-0.23 
0.52 

-0.28 

-0.20 
0.50 

-0.30 

Cross-coefficients Methane~Ethylene 

-61.15 -61.86 o. 71 
-53.99 -52.44 -1.55 
-43.75 -44.58 0.83 

141 
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the mixing rules. The Lennard-Jones parameters derived in this work 

were based upon only three data points (25, 50, 75 °C). A wider range 

of temperature with more data points.are required to make a good check 

of the mixing rules as well as a better test of the Lennard-Jones 

potential function, 



CHAPTER VII 

CONCLUSIONS.AND RECOMMENDATIONS 

The three major objectives of this work were: 

1. Design and assembly of an isothermal expansion 
ratio apparatus for the precise determination 
of compressibility factors of gases. 

2. Use of this apparatus to obtain the compressibility 
factors for a binary gaseous.system. 

3. Comparison of the experimental compressibility 
factors and virial coefficient data with previous 
data and equations of .state. 

An isothermal expansion ratio apparatus was designed and assembled. 

This apparatus was used to obtain compressibility factors.for methane, 

ethylene, and four of their binary mixtures. The compressibility 

factors and the derived second and third virial coefficients for 

methane and ethylene were ~ompared with previous work. Combination 

rules for estimating mixture second virial coefficients for the methane-

ethylene syste~ were checked. Three empirical equations of state were 

compared with the experimental. compressibility data.· The·experimental 

second and third viria.l coefficients were compared with coefficients 

derived from the empirical equations of state. In addition, the 

parameters for the Lennard-Jones 6-12 potential function were derived 

from.the experimental second virial coefficients. 

The conclusions and recommendations.from this work are summarized 

in this section. 
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Apparatus 

The isothermal expansion ratio apparatus was capable of.providing 

precise data for determination of compressibility factors and virial 

coefficients. However, the apparatus at the School Chemical Engineering 

needs to be improved. 

1. The temperature range of the air thermostat.needs to be 

widened. Compressibility factqrs and virial coefficients over a wider 

temperature range provide a better basis for improving equations of .. 

state, testing intermolecular potential functions, or making other 

theoretical studies. 

2, The temperature control of the air thermostat should be 

improved. During this work, temperature control of ±0.02 to ±0.01 °C 

was maintained. 

3. The temperature of the air thermostat during this work was 

considered to be that of the gas in the bombs. The bombs should be 

modified so that the temperature of the gas sample could be measured 

directly. 

4. The two high-pressure bombs were of equal and fixed volume. 

Another bomb with adjustable volume would improve the versatility of 

the apparatus. An adjustable volume would allow changing the cell 

constant N to obtain a desired spacing of the pressure measurements. 

The equal volume cells used in this investigation were not very suitable 

for high pressure work for the gases studied. 

5. A general improvement of the laboratory facilities would aid 

in obtaining an apparatus that would be easier to operate and control, 

e.g., a constant temperature laboratory, a controlled access 

laboratory. 
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Experimental Data 

1. The estimated error at the 95% confidence level for the 

experimental compressibility factors varied from 0~03 per cent to 0.68 

per cent depending on the gas composition and temperature. 

2. The experimental compressibility factors.for methane·and 

ethylene were compared with other investigators' data. The experimental 

methane data agreed within the estimated error at the 95% confidence 

level with other investigators' data at 25 and 50 °C, and only the low 

pressure data agreed at 75 °C. The experimental ethylene data agreed 

within the estimated error with data by Michels and Geldermans (41) at 

25 °C, and only the low pressure data agreed at ,50 and·75 °C. 

3. Second and third virial coefficeints were derived from the 

experimental compressibility data using the slope-intercept method. 

In general, one order of accuracy was lost in deriving the second 

virial coefficient and two orders were lost in deriving the third 

virial coefficient from the compressibility data. 

4. The experimental second and third virial coefficients for 

methane and ethylene were compared with literature values. The methane 

coefficients at 25 and 75 °C agreed within the estimated error with 

the literature values; the coefficients at 50 °C agreed with part of 

the literature values. Only the second virial coefficient for ethylene 

at 75 °C agreed with literature values within the estimated error. The 

third virial coefficients for ethylene at 50 and 75 °C agreed wit.bin 

the estimated error with data by Butcher and Dadson (7). 

5. Of the four combination rules checked, the square root 

combination was the best in estimating second virial coefficients for 

binary mixtures of methane and ethylene from the pure component data. 
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6. The experimental compressibility factors were curve-fitted to 

a power series in density. The second and third virial coefficients 

determined by the curve-fit were compared with those derived by the 

slope~intercept method. In general, values of the second and third 

vtrial coefficients calculated using these two methods agreed within 

the estimated error at the 95% confidence level. 

7. The RK, BWR, and Edmister et al. GBWR equations of state were 

compared with the experimental compressibility data. If the RK 

equation was restricted to densities from below 0.65 lb.-mole.per cu. 

ft. (pressures below 3100 psia, reduced pressure 4.6) for methane to 

below 0.5 lb.-mole per cu. ft .. (pressures below 1000 psia, reduced 

pressure 1.35) for ethylene, the RK compressibility factors would fall 

within ;t0.02 of the experimental data. If the BWR and Edmister et al. 

GBWR were restricted to densities from below 0.25 lb.-mole per cu. ft. 

(pressures below 1200 psia, reduced pressure 1.8) for methane to below 

0.12 lb.-mole per cu. ft, (pressures below 550 psia,, reduced pressure 

0.74) for ethylene, their compressibility factors would fall within 

±0.02 of the experimental data. 

8. Second and third virial coefficients were calculated from the 

constants for the RK, BWR, and Edmister et al. GBWR equations of state 

and compared to the experimental values. In general, the second and 

third virial coefficients based on these empirical equations of state· 

did not predict the experimental values within the estimated error. 

The comparison of the three empirical equations of state with the 

experimental compressibility factors and virial coefficients showed 

that these equations need to be improved. 
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9. The experimental second virial coefficients were used to 

determine the parameters (0,E) for the Lennard-Jones 6-12 potential 

function and to check mixing rules for the cross parameters. The 

derived parameters were able to predict the values of the second virial 

coefficients within the estimated error. However, the estimated error 

for the parameters (a,E) were too large for testing the mixing rules. 
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APPENDIX A 

RUSKA PISTON GAGE 

The·Ruska gage (Model 2400 HL) is a dual-range instrument (low 

range 6-2428 psig, high range 30-12140 psig) using two piston-cylinder 

combinations.· 'l'he gage was calibrated by comparison with a "plant 

master" gage (No. 7544) which was calibrated by National Bureau of 

Standards (NBS) to one part in 10,000 at 25 °C. The corrections for 

pressure distortion and therlllal expansion of the plant.master gage 

were also determined by NBS. The specifications for the R.t.1ska gage 

are shown in Table A-I. 

The loading for the Ruska piston gage is provided by a set of 

type 303 stainless steel "weights". The masses for each of the weights 

were measured. by Ruska. The calibrations (see Table A-II) were 

reported to be accurate to one.part in 50,000 for masses greater than 

0.1 lb., one part in 20,000 for masses 0.01 to 0.1 lb., and one part 

in 10,000 for masses 0.001 to 0.01 lb. 
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TABLE A-I 

RUSKA PISTON GAGE SPECIFICATIONS 

Accuracy: 1:10,000 

Resolution: 5:1,000,000 

Low Range Piston-Cylinder (No. LC-142): 

Area@ 25 °C and O psig 

Coefficient of thermal expansion 

Coefficient of di;t:or_tion 

High Range Piston-Cylinder (No. HC-133): 

Area@ 25 °C and O psig 

Coefficient of thermal expansion 

Coefficient of distortion 

0.130219 in. 2 

_s 
1. 7 x 10 /)°C 

_a 
-5.4 x 10 /psi 

0.0260416 in. 2 

-5 
1.7 x 10 /°C 

-3. 6 x 10 _a /psi 
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TABLE A-II 

RUSKA MASS CALIBRATION 

Nominal Pressure, psig Apparent ~ss· 
Designation versus Brass 

High Range Low Range (MA) lb. 

Low tare 6 o. 78107 

High tare 30 0.78107 

A 1000 200 26.03509 
B 1000 200 26.03537 
c 1000 200 26.03571 
D 1000 200 26.03570 
E 1000 200 26.03536 
F 1000 200 26.03592 
G 1000 200 26.03603 
H 1000 200 26.03558 
I 1000 200 26.03568 
J 1000 200 26.03608 
K 1000 200 26.03568 
L 500 100 13.01794 
M 200 40 5. 20714 
N 200 40 5.20715 
0 100 20 2.60359 
p 50 10 1.30181 
Q 20 4 0. 52072 
R 20 4 0.52074 
s 10 2 0.26035 
T 5 1 0.13020 
u 2 0.4 0.05208 
v 2 0.4 0.05209 
w 1 0.2 0.02604 
x 0.5 0.1 0.01302 
A 0.2 0.04 0.005203 
A' 0.2 0.04 0.005202 
B 0.1 0.02 0.002601 
c 0.05 · 0.01 0.001301 
D 0.02 0.004 0.000520 
n· 0.02 0.004 0.000521 
E 0.01 0.002 0.000260 
F 0.005 0.001 0.000130 



APPENDIX B 

TEXAS INSTRUMENTS QUARTZ PRESSURE GAGE 

The Texas Instruments quartz gage (Model 141A) which was used to 

measure barometric pressure consisted of a low-hysteresis quartz Bourdon 

tube and a readout device. 

The zero to 100 cm Hg quartz Bourdon tube was suspended in a glass 

cylinder. The top end of the Bourdon tube.was evacuated and permanently 

sealed. A small mirror was attached to the bottom end of the Bourdon 

tube. The glass cylinder which was open to the atmosphere sat verti

cally in the readout device. As the barometric pressure changed, the 

Bourdon tube rotated. The amount of rotation was calibrated to measure 

pressure. 

The readout device has an optical transducer mounted on a gear 

that travels concentrically around the Bourdon tube. Light reflected 

from the small mirror strikes a pair of balanced photocells which are 

connected to a microammeter. A closed-loop motor-driven servo-system 

automatically positions the gear so that the microa~eter reads zero. 

The Bourdon tube has a full scale rotation of 100 degrees. The 

· amount of rotation is indicated on a.dial. The dial reading is 

multiplied by a scale factor determined by calibration to give the 

measured pressure. 

Texas Instruments calibrated the Bourdon tube against a 0.015% 

air-operated dead weight tester (its calibration traceable to NBS). 
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The calibration was made at a room temperature of 24 °C. · A temperature 

correction factor was supplied with the pressure calibration. The 

calibration data were fitted to an empirical equation. The equation 

was: 

p = 0.019336842 [1 + 1.3 x 10-4 (T - 32 •0 - 24.0)] • 
. 1.8 

[0.03167 + 9.9358826 R - 0.874314 x 10-3 R2 - 0.16175319 x 10-5 R3 ] 

(B-1) 

where p psia 

R scale reading cm Hg 

T temperature at gage, °F 

The first coefficient changes the units of the equation from mm Hg to 

psia. The second term corrects for temperature, and the third (a 

polynomial in R) resulted from the fit of the calipration data. The 

standard estimate of error for the fit and regression coefficients are 

shown below: 

Fit 

Constant 

1st degree coefficient 

2nd degree coefficient 

3rd degree coefficient 

Standard Estimate 
of Error 

0.0047 

0.0051 

0.0004 

0. 9 X 10-5 

0.5 x 10-7 

The standard estimate of error for pressures near 14.7 psia was 0.002. 



APPENDIX C 

PLATINUM RESISTANCE THERMOMETER AND MUELLER BRIDGE CALIBRATIONS 

Platinum Resistance Thermometer 

A four lead platinum resistance thermometer (Leeds and Northrup 

Model 8164, Serial No. 1612800) was used to measure temperatures. This 

thermometer was calibrated by NBS at the triple point of water, the 

steam point, the sulfur point and oxygen point. The calibration was 

made with 2 ma of current passing through the platinum resistance 

thermometer. This thermometer was certified by NBS as being a satis-

factory standard for temperature on the International Practical Temper-

ature Scale. The calibration was given in terms of the following 

formula: 

t 

where 

R R 
t - 0 

a.R 
0 

+ 
3 

o ( 1~0 - l ) 1~0 + S ( l~O - l ) [ 1~0 ) 

t = ~Celsius at outside surface of protective sheath 

Rt Resistance at t °C 

R = Resistance at O °C 
0 

a. 0.003926375 

0 = 1.49241 

a = 0.11027 t below 0 oc 

a 0 t above 0 oc 

R = 25.5446 abs ohms 
0 
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(C-1) 
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Mueller Bridge 

A Leeds and Northrup G-2 Mueller bridge was used to measure the 

resistance of the platinum thermometer. The bridge can measure a 

resistance from 0.0001 ohms to 111 ohms. The bridge has six dials in 

decades from 0.0001 to 100 ohms. The bridge was equipped with a switch 

to select either pair of leads from a four lead resistance thermometer. 

The average of the two readings (switch position Rand N) gives the 

resistance of the thermometer independent of the resistance of the 

lead wires. 

The Mueller bridge was calibrated by Leeds and Northrup. The 

results of the calibration are shown in Table C-I. 
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TABLE C-I 

G-2 MUELLER BRIDGE CALIBRATION 

(Serial No. 1550042)* 

Reading Correction, ohms Reading Correction, ohms 

10 Dial 1 Dial 

0 0.0000 0 0.00000 
10 0.0000 1 0.00001 
20 0.0002 2 0.00002 
20.5 0.0001 3 0.00002 
30 0.0003 4 0.00002 
40 0.0003 5 0.00003 
50 0.0003 6 0.00004 
60 0.0004 7 0.00005 
70 0.0005 8 0.00006 
80 0.0006 9 0.00006 
90 0.0007 x 0.00006 
x 0.0007 

0.1 Dial 0.01 Dial 

0.0 0.00000 o.oo 0.00000 
0.1 0.00000 0.01 0.00000 
0.2 0.00000 0.02 0.00000 
0.3 0.00001 0.03 0.00000 
0.4 0.00001 0.04 0.00001 
0.5 0.00002 0.05 0.00001 
0.6 0.00002 0.06 0.00001 
0.7 0.00002 0.07 0.00001 
0.8 0.00002 0.08 0.00001 
0.9 0.00003 0.09 0.00001 
x 0.00003 x 0.00001 

*Note: No correction for 0.001 and 0.0001 dial settings. 



APPENDIX D 

GAS.COMPOSITIONS AND FUNDAflENTAL CONSTANTS 

The six bottles of gases used in this study were donated by 

Phillips Petroleum Company of Bartlesville, Oklahoma. The donor 

analyzed the gases with a mass spectrometer and were reported to the 

nearest 0.1 mole per cent. A gas chromatographic analyses done at the 

School of Chemical Engineering confirmed Phillips' analyses. The com

position of the gases are shown in Table D-I. 

The value of the universal gas constant used in the calculations 

was 10.731496 (psia-ft 3 )/(lb-mole - 0 R). 

The definition of the absolute temperature was expressed as T(°K) 

= t(°C) +. 273.15. The expression for the Rankine scale was expressed 

as T( 0 R) = t(°F) + 459.67. 
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TABLED-I 

COMPOSITION OF GAS MIXTURES 

(Phillips Petroleum Company Sample Transmittals·No. 44043 through 44048) 

Component Mole% Nominal ComEosition Cylinder 
(Methane% - Ethylene %) Number 

Methane trace 0 - 100 MG-3943 
Ethylene 99.9+ 
Ethane trace· 

Total 100.0 

Methane 18.4 20 - 80 MG-4174 
Ethylene 81.6 
Ethane· trace· 
Propane trace 

Total 100.0 

Methane 38.4 40 - 60 MG-1605 
Ethylene 61.4 
Propane 0.2 
Ethane trace 
Propylene. trace 

Total 100.0 

Methane 57.2 60 - 40 MG-576 
Ethylene 42.4 
Propane 0.3 
Ethane 0.1 
Propylene trace 

Total 100.0 

Methane 78.8 80 - 20 MG-4083 
Ethylene 20.7 
Propane 0.4 
Ethane 0.1 
Propylene trace 

Total 100.0 

Methane 99.0 100 - 0 MG-265 
Nitrogen 0.6 
Propane 0.1 
Ethane 0.1 
Isobutane trace 
Carbon Dioxide 0.2 

Total 100.0 



APPENDIX E 

ICE POINT RESISTANCE OF PLATINUM THERMOMETER 

The resistance of the platinum thermometer should be checked 

periodically since cycling the temperature of the thermometer can 

change its resistance. The resistance of the thermometer was checked 

before using it in this work. 

By definition, the ice point of water (0 °C) is defined as ice 

and water in equilibrium saturated with air under a pressure of 760 

mmHg. An ice bath was prepared keeping the above definition in mind. 

Ice was prepared from distilled water by spraying liquid nitrogen into 

a dewar of water that was stirred vigorously. The ice crystals were 

removed from the dewar and placed in another dewar containing the 

platinum resistance thermometer. 

The first measurements were made after allowing the thermometer 

to stand in the ice bath for 4 hours, The ice bath was stirred before 

each measurement. More ice was added and another series of measurements 

were made the next morning. The barometric pressure and depth of 

submersion of the platinum resistance thermometer were noted. 

The readings from the Mueller bridge were corrected using the 

calibration data (Appendix C). Also, the resistance measurements need 

to be corrected for barometric pressure and the submersion depth. The 

following expressions were used to determine these corrections (3). 
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where 

Lit 
p 

= 

= 

Lit 
p 
p 

Litd 

d 
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Barometric Pressure 

-1.3 x 10- 5 (P-760) (E-1) 

Submersion 

-s -0.072 x 10 d (E-2) 

= change in ice point due.to pressure, oc 

= barometric pressure, mmHg 

= change due to depth of submersion 

= depth of submersion, mm 

The barometric pressure varied from 736 to 737 mmHg and the platinum 

resistance thermometer was submersed 9 inches in the ice bath. The 

total temperature correction was 0.00015 °C. Approximately O.OOOlQ 

corresponds to 0.001 °C for a platinum 25 ohm resistance thermometer; 

hence, the correction to the resistance is very stnall (O.OOOOlQ) and 

can be neglected. 

!he results of ten measurements are sunnnarized below: 

Average Resistance R 
0 

= 25.5486Q 

Sample Deviation s = 0.00009 

Confidence Limits for R 
0 

99% Level 25.5483 < R < 25.5488 
0 -

95% Level 25.5484 < R < 25.5487 
0 -



APPENDIX F 

CALCULATION OF TEMPERATURE AND PRESSURE 

In this appendix the procedures used for calculating temperatures 

from Mueller bridge resistance readings and the absolute pressure from 

the Ruska gage and Texas Instruments gage data are presented. 

Temperature 

During the pressure measurement, the temperature of the air 

thermostat was determined every 5 minutes using a platinum resistance 

thermometer and a Mueller bridge. Resistance readings from the Mueller 

bridge for the Rand N positions were recorded. Readings were corrected 

using the Mueller bridge calibration (Appendix C). Temperature of the 

air thermostat was calculated from the resistances using the calibration 

formula shown in Appendix C and the value of R shown in Appendix E. 
0 

The calibration formula for calculating temperature is not explicit 

in temperature. Temperatures were calculated using an iteration 

procedure programmed for a digital computer (IBM 7040). The iteration 

procedure is described below using the following expressions: 

Rt 
~+~ 

= Average value of resistance = 
2 

R R 
t t - 0 + f(t) Calibration formulae = c R a 

0 
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t = Calculated temperature 
c 

t = Assumed temperature 
a 

1. Assume a value fort. 
a 

2. Calculate t using calibration formula. c 
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3. Compare t and t. If It - t I < 0.0001, stop iteration; if c a c . a 

not, let t = t and repeat. 
a c 

This iteration procedure worked well converging rapidly. 

Pressure 

Two pressure measurements were made after each expansion, one with, 

the piston and weights rotating clockwise and the other counter-

clockwise. The desired pressure in the lower chamber of the diaphragm 

cell was calculated based on the pressure at the Ruska gage reference 

level, barometric pressure, and various col:'rections. 

The following expression rela:t:'~d the desired pressure to the Ruska 
!,f 

gage pressure and the corrections: 

p 

where 

= p 
g p ·1 01 

+ + 

p 
g 

= Pressure at reference level of Ruska gage, psig 

poil = 

PDP! = 

Pb = 

p = 

Pressure correction for head of oil on top of 
diaphragm when setting zero of DP! cell, psi 

Pressure correction for zero .shift of diaphragm 
with pressure, psi 

Barometric pressure, psia 

Pressure of gas in lower chamber of DP! cell, psia 
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The pressure at the Ruska gage reference level was calculated 

using the loading on the piston gage. 

where 

p 
g 

= 

w = Force on pisto"Q. due to the "weights" 

AE Effective area of piston 

The force on the piston was determined using an approximate expression 

recommended by Ruska as being accurate to within one part per million. 

where 

where 

g = Acceleration due to gravity at Stillwater = 

= 

979.777 cm 

sec 2 

Standard acceleration due to gravity 

980.665 
cm 

2 
sec 

= 

p Density of air at Houston = 0.0012 gm/cc 
AH 
p Density of brass 

B 

The effective area was calculated using the following equations: 

A = A [1 + c(t - 25)) o,t 0 

AE = A [1 + bPN] o,t 

A Area of piston at 25 ~C and O psig 
0 

c = Coeff;i.cient of thermal expansion 

t = Temperature of Ruska piston gage 
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A = Area of piston at t °C and O psig o,t 

b = Coefficient of pressure distortion 

PN = Nominal pressure 

When the zero point of the DP! cell was set, the upper chamber 

pressure was higher than the lower chamber pressure by an amouµt 

equivalent to 2 inches of Ruska oil. Thus, the following expression 

was used to make this correction. 

where 

p = 
oil 

h 

0.0022046 x 16.3872 h poil-:
c 

= aead of Oil= 2 inches 

Poil Density of Ruska oil, g/cc 

The coefficients in the above equation are.conversion factors for 

changing units. 

The zero point of the DP! cell changes with pressure. The 

following expression gives the correction as determined by calibration 

by Ruska. 

where 

= p /S 
g 

5 
S = 8/3 x 10 

The expression for calculating the barometric pressure is shown 

· in Appendix B. 

The above calculational procedure was programmed for a digital 

computer. A sample calc~lation is shown below to illustrate the use 

of the equations. The data for the calculation are shown in Table F-I. 



The correction for the head of oil: 

poil = 0.85 g/cc 

p 0.0022046 x 16.3872 = oil 
p = 0.061 psi oil 

For the high range piston, 

A 
0 

c = 

0.026044 

b = -3.6 x 10- 0 

PN = 3100 

The effective area, 

x 2 
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979. 777 
x 980.665 

A = 0.026044 [l + 1.7 x 10- 5 (25.5 - 25)] [l - 3.6 x 10- 8 
E 

·(3100)] 

0.02604131 
2 

AE in. 

'l:he load on the piston, 

w = 979.777 (1 _ 0.0012) 80.68036 980.665 8.4 

w 80. 595796 lb. 

and then 

p 80.595796 
:::; 

0.02604131 g 

p 3094.921 psig 
g 

The correction for the DPI zero shift: 

PDPI 3094.921/(8/3 x 10 5 ) psi 

PDPI 0.012 psi 



The pressure in the lower chamber of the DP! ~ell is: 

P = 3094.921 - 0.061 + 0.012 + 14.422 

P = 3109.294 psia 

. .-~.:---'. ::. 
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TABLE F-I 

DATA FOR PRESSURE CALCULATION 

Run No. 3 
High Range Piston First Exeansion M , lb. Weights a 

Hi tare 0.78107 

A 26.03509 

B 26.03537 

c 26 .03571 

p 1.30181 

s 0.26035 

T 0.13020 

u 0.05208 

w 0.02604 

x 0.01302 

A 0.005202 

B 0.002601 

c 0.001301 

D 0.000520 

M = 80.68036 
a 

t = 25.5 °C 

Pb = 14.422 



APPENDIX G 

CORRECTING SECOW) VIRIAL COEFFICIENTS FOR IMPURITIES 

The gases used in this investigation contained small amounts of 

impurities (see Appendix D), The second virial data were corrected 

using the following equation relating the second-cross coefficients to 

the mixture second coefficients (23): 

n n 

Bm = l l xi xj Bij 
i j 

The cross-coefficient data for the impurities were taken from 

(G-1) 

literature values as listed by Huff and Reed (27). Unavailable data 

were estimated using a correlation by Prausnitz (56) as modified by 

Huff and Reed (27). 

Sample calculations for 25 °C data for methane and the 80-20 

methane-ethylene mixture are shown to illustrate the procedure, 

Methane 

The composition of the methane used in this investigation is 

shown on next page. 
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TABLE G-I 

COMPOSITION OF METHANE 

i Component M.ole % 

1 Methane· 99.0 
2 Nitrogen 0.6 
3 Ethane 0.1 
4 Propane . 0.1 
5 Carbon Dioxide 0.2 

Shown below in Table G-II are.the terms in Eq. {G-I) for the 

methane mixture shown in Table G-I for 25 °C. 

TABLE G-II 

·SECOND VIRIAL COEFFICIENTS FOR METHANE MIXTURE 

Bij' cc/g~mole 

i~ 1 2 3 4 5 

1 Bu -22.0 -92.0 -364 -244 

2 -4.84 -46 -76.9 -44.1 

3 -186.9 -270 -111 

4 -359 -165 

5 -124.6 

All the values shown in Table G-II are literature values except 

B12 , B24 , and B34 • These three cross coefficients were estimated using 

Prausnitz's {56) correlation: 

'B:. =1 Vi" 0 {T/T .. ,wij) 
·1'J - -C J C1J 

{G-2) 
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The mixing rules for the critical volume, critical temperature, 

and accentric factor were those recommended by Huff and Reed (27). 

(G-3) 

fI - 2(1i/rj)
112

1 (1 + r 1/rj) (G-4) 

, ,. [ [ . r ''J f = 2 (Ycu'Ycjj) 1 + Ycii1.Y.cjj 
(G-5) 

s 

~ .. 1/a + v .. '/J v .. .....-Cl.l. --CJ] (G-6) = 2 . . 
--Cl.J 

wii + wjj 
(G-7) wij = 2 

where T ;::: Critical temperature 
c 

v = Critical volume 
--c 

I = Ionization potential 

w = Accentric factor 

For B12 

Il 13.16 I2 = 15.51 

v = 
-Cl 1 

99.0 c;:c/g-mole .Yc2 2 = 84.6 cc/g-mole 

T = 191.l OK T 126.2 OK 
Cll C22 

W11 = 0.010 W22 = 0.041 



Then 

fl 
1 /2 

2(13.16/15.51) I (1 + 13.16/15.51) 

6 6 . . 1/3 6 
f = 2 (99/84.6) I [l + (99/846) l = s 

1/2 
T = (191.1 x 126.2) (0.9966) (0. 9979) 

C12 

v t(99) + (84,6)j 
3 

91.6 2 = -c12 

W12 = 1/2 (0.01 + 0.04) = 0.0255 

From ?rausnitz (56): 

8 (1.93, 0.0255) = -0.240 

B12 = 91.6 (-0.240) = -22.0 cc/g-mole 

For this calculation Eq. . (G-.1) becomes: 

5 5 

B = l l x. x. B .• m 1 J 1J 
i=l j=l 

Solve the previous equation for B11 • 
5 5 

B - l l x. Xo B. o m 1 J 1J 

B11 
i 

2 
Xll 

i 'F j for i = 1 

174 

= 0.9966 

0.9979 

= 154.4 

Substitute the values of B •. 's from Table G-11 into the al;>ove equation 
1J 

(B = -42.88 cc/g-mole). 
m 

-42.88 + 2.14 
0.9801 = -41.57 
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80-20 Methane~Ethylene 

The composition of the 80-20 methane-ethylene mixture is shown 

below in Table G-III. 

TABLE G-III 

COMPOSITION 80-20 METHANE-ETHYLENE MIXTURE 

i Component M;ole % 

1 Methane 78.8 
2 Ethylene 20.7 
3 Ethane 0.1 
4 Propane 0.4 

Shown below in Table G-IV are the terms for Eq. (G-1) for the 

80-20 methane-ethylene mixture for 25 °C, 

. T.t!\BLE G-IV 

SECOND VIR.IAL COEF.FICIENTS FOR 80-20 METHANE-ETHYLENE MIXTURE 

Bi"' cc/g-mole 

~ 1 2 3 4 

1 B11 B12 -90 -364 

2 B22 -158 -224 

3 -186.9 -270 

4 -359 
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Using Eq. (G-1) the following exp-ression can be written: 

B = B' + l l x. x. B .. (G-8) m m 1 J 1J 
i j i=3,4 j=3,4 

where B' 2B 2x 
2 

(G-9) = x + x B + x B m l l l l 2 l 2 2 22 

The term B' is the desired term, corrected for the impurities. 
m 

Solving Eq. (G-8) for B' gives: 
m 

B' 
m Bm - l l xi xj Bij 

i j i=J,4 j=3,4 

Substituting the values of the B .. 's from Table G-IV gives 
1J 

(B = -55.39): 
m 

l l 
i j 

x. x. B,. 
1 J 1J 

= -2.88 

B' 
m 

-55.39 ·+ 2.88 

i=3,4 j=3,4 

-52.51 

The above second virial coefficient corresponds to a methane-

ethylene mixture of the composition shown in Table G-V. 
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TABLE G-V 

COMPOSITION OF MIXTURES CORRECTED FOR IMPURITIES 

Nominal ComEosition Mole% 
Methane Ethylene Methane Ethyl~ne 

80 20 79.2 20.8 

60 40 57.4 42.6 

40 60 38.5 61.5 

20 80 18.4 81.6 

.. , 
~ ......... ' 



APPENPIX H 

CALCULATION OF COMPRESSIBILITY FACTORS·. AND 

VIRIAL COEFflCIENTS 

The calculation of the compressibility {actors from the expansion 

data and the subsequent derivation of the virial coefficients from the 

compressibility data were done using a procedure programed for a digital 

computer. The procedure is outlined in.tqis section. 

The low pressure data from the isothermal expansions were curve-

fitted to the following equation, using the number of coefficients that 

gave a minimum estimated error: 

P. 1 l.-__ .;:: 
P. 

l. 

a 
0 

+ + •.. 

Using Eq. (II-12), the following relationship is written: 

N = a 
0 

(H-1) 

(H.,-2) 

The resulting N's for each gas system are shown in Table H-I. These 

values of N should not be a function of composition since N is the 

ratio of the volume before an expansion to the volume after an 

expansion. The dependence on composition shown in Table H-I and Figure 

22 were due probably at least in part to the procedure used in deriving 

N for each gas system at each isotherm. The cell constant N was derived 
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TABLE H-I 

EXPANSION CELL CONSTANT 

N 
Gas System Tempei-ature, °C 

25 50 75 

Methane 1. 9432 1.9362 1.9352 

80-20 1. 9418 1. 9356 1,9332 

60-40 1. 9418 1. 9389 1. 9371 

40-60 1.9424 1,9412 1.9386 

20-80 1. 9457 1.9443 1. 9409 

Ethylene 1. 9496 1. 9505 1.9425 

Helium 1. 94024 1. 93554 1.93811 



N 
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by curve-fitting the low pressure expansion ratios.· The pressure 

ratio plots for methane had less curvature at low pressures than for 

ethylene with their binaries being in between. In addition, pressure 

measurements below 150 psi with the piston gage were unreliable in 

general. Thus, these values of N reflected these difficulties. 

The values of N for each gas system and the respective pressure 

data for each run were used tp determine the initial value of the 

compressibility factor (z) for each run by curve-fitting using the 
0 

following expression, using the number of coefficients that gave a 

minimum estimated error: 

2 

b + b P. + b P. + ... 
0 1 i 2 i 

(H-3) 

Using Eq, (II~13), the initial value of the compressibility factor is 

related to b in the above equation: 
0 

b 
0 

p 
0 

z 
0 

The cell constant, N, P /z , the pressure measurements, and 
0 0 

temperature for each run were used as input data for a computer 

(H-4) 

program written in Fortran IV for a 7040 IBM digital computer, The 

compressibility factors and the second and third virial coefficients 

were calculated using the foiiowing pro~edure: 

1. Calculate compressibility factors from input data 

using following equation: 

z. 
i 



2, Calculate (z. - l)V. y1. 1 -1 

where V. 
-1 

Note that 

z.RT/P. 
1 1 

2 
(z. - l)V. = B + C/V. + D/V. + ... 

1 --1 -1 -i 

and 

Limit 

P. -+O 
1 

(z. - l)V. 
1 -1 

B 

3. Adjust P /z until a curve-fit of the low pressure data 
0 0 

using the following model gives a minimum sum of squares: 

= 

n 

k 

I a. (1/V.)j-l 
J -1 

i 

minimum 

4. From the compressibility factors and B calculated in 

steps 1 through 3, calculate 

((z. - l)V. - B)V. 
1 -,-1 -1 

Note that 

2 

((z. - l)V. - B)V. 
1 -1 -1 

C + D/V. + E/V. + ... 
-1 -1 

and 

Limit 

P. -+O 
1 

((z. - l)V. - B)V. = C 
1 -i -1 
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5, Adjust the valtie of B until the curve-fit of the low 

pressure data using the followip.g model gives a 

minimum sum of squares. 

k 

'a. (1/V.)j-l 
l J -J_ 

j 

6. The procedure outlined in steps 4 and 5 may be continued 

to calculate the third virial coefficient, the fourth, 

etc. 



APPENDIX J 

COMPARISON OF EQUATIONS OF STATE WITH EXPERIMENTAL 

COMPRESSIBILITY DATA 

In this appendix, the compressibility factors calculated from 

the RK, BWR, and Edmister et al. GBWR are compared in detail with the 

experimental compressibility factors from Table IV in Table J-I. 
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TABLE J-I 

COMPARISON OF EMPIRICAL EQUATIONS OF STATE WITH 
EXPERIMENTAL COMPRESSIBILITY FACTORS 

1/V 
Temp. lb:-mole 

oc cu ft 

25 1.2608 
0.6488 
0.3339 
0.1718 
0.0884 
0.0455 
1.1517 
0.5927 
0.3050 
0.1570 
0.0808 
0.0416 

. 1/ z
·exp_ 

1.6422 
0.8321 
0.8406 
0.9002 
0.9438 
0.9697 
1.3556 
0.8218 
0.8490 
0.9074 
0.9483 
o. 9723 

ZRK 

L5568 
0.8490 
0.8411 
0;8972 
0.9414 
0.9683 
1.3205 
0.8353 
0.8482 
0.9043 
0.9460 
0.9709 

2/ z
BWR 

1.5196 
o. 7220 

. o. 8056 
0.8897 
0.9406 
0.9688 
1.1953 
0.7258 
0.8190 
0.8984 
0.9456 
0.9714 

3/ z
·BWR zGBWR 

99.0% Methane 

1.5194 1.5451 
o. 7219 0.7143 
0.8055 0.8006 
0.8897 0.8870 
0.9406 0.9392 
0.9688 0.9680 
1.1951 1.2069 
o. 7258 o. 7184 
0.8190 0.8144 
0.8984 0.8960 
0.9456 0.9443 
0.9714 0.9707 

I/Experimental compressibility factors from Table IV • 

. ~/Based on linear combi~ation for B , 
om 

~/Based on Lorentz combination for B • 
om 

Differences 
2/ ~'II 

z -z z - -z z - -z z -z · RK · · exp · · BWR · exp · · BWR exp GBWR exp 

-0.085 -0.12 -0.12 -0.097 
0.017 -0.11 -0.11 -0.12 
0.0005 -0.035 -0.035 -0.04 

-0.0030 -0.010 -0.010 -0.013 
-0.0023 -'0.0031 -0.0031 -0.0045 
-0.0014 -0.0010 -0.0010 -0 .. 0017 
-0.035 -0.16 -0.16 -0.15 
0.014 -0.096 -0.096 -0.10 

-0.0008 -0.030 -0.030 -0.035 
-0.0031 -0.0090 -0.0090 -0.011 
-0.0023 -0.0027 -0.0028 -0.0040 
-0.0014 -0.0008 -0.0009 -0.0016 

f--' 
00 
u, 



TABLE J-I (Continued) 

1 V Differences Temp. -oc lb.-mole 1/ 
~RK 

2/ 3/ 
~GBWR z -z 2/ 3/ z- z- z- z ~ -z z - -z z -z cu. ft. exp · ·BWR ·BWR rue ·exp ·BWR_ ·exp BWR. exp · GBWR.. exp 

25 0.9755 1.0558 1.0652 0.8827 0.8825 0.8813 0.0093 -0.17 -0.17 -0.17 
0. 5.020 0.8171 0.8250 0.7440 0.7439 0. 7371 0.0080 -0.073 ..-0.073 -0.080 
0.2583 0.8648 0.8624 0.8422 0.8422 0.8383 · -0.0024 -0.023 -0.023 -0.027 
0.1329 0.9200 0.9165 0.9l29 0.9128 0.9107 -0.0035 -0 .0072 -0.0072 -0.0093 
0.0684 0.9563 0. 953-6 0.9536 0.9536 0.9525 -0.0027 -0.0027 -0.0027 -0.0038 
0.0352 0.9769 0.9752 0.9757 0.9757 0.9751 -0.0017 -0.0011 -0.0011 -0.0017 
1.1606 1.3711 1.3370 1. 2172 1. 2172 1.2298 --0 .034 -0.15 -0.15 -0.14 
0.5972 0.8217 0.8362 0.7254 0.7253 o. 7178 0.015 -0.096 -0.096 -0.10 
0.3074 0.8480 0.8476 0.8119 0.8179 0.8133 -0.0004 -0.030 -0.030 -0.035 
0.1582 0.9068 0.9037 0.8977 0.8977 0.8952 -0.0031 -0.0091 -0.0092 -0.012 
0.0814 0.9484 0.9456 0.9452 0.9452 0.9439 ... Q .. 0027 -0.0032 -0.0032 -0.0045 
0.0419 0. 9725 0.9707 0.9712 0.9712 0.9705 -0.0018 ..:.o~0013 -0.0013 -0.0019 -· 

std. dev. 0.021 0.076 0.068 0.075 

50 1.1972 1.6001 1.5148 1. 4792 1.4790 · 1.4883 -0.086 -0.12 -0.12 -0.11 
0.6179 0.8979 0.904 0.8175 0.8174 0.8069 0.0085 -0.080 -0.080 -0 .091 
0.3189 0.8848 ·o.8827 0.8581 0.8581 0.8517 -0.0021 -0.027 -0.027 -0.033 
0.1646 0.9261 0.9216 0.9165 0.9165 0.9137 -0.0045 -0.0096 -0.0096 -0 .013 
0.0849 0.9584 0.9547 0.9543 0.9543 0.9525 -0.0037 -0.0042 -0.0042 -0.0060 
0.0438 o. 9778 0.9753 0.9757 0.9757 0.9748 -0 .-0024 -0.0021 -0.0021 -0.0030 
1.0722 1.3219 1.2866 1.1834 1.1832 1.1818 -0.035 -0.14 -0.14 -0.14 
0 .. 5534 0.8827 0.8894 0.8156 0.8155 0.8056 0.0067 -0.067 -0.067 -0.077 
0.2856 0.8910 0.8883 0.8690 0.8690 0.8632 -0.0026 -0.022 -0.022 -0.028 
0.1474 0.9321 O-a9280 0 .•. 9242 0.9242 0 .. 9212 -0.0041 -0.0079 -0.0079 -0.011 
0.0761 0.9621 0.9590 0.9588 o .. 9588 0.9572 -0.0031 -0.0033 -0.0033 -0.0049 
0.0393 0.9797 0.9778 0.9782 0.9782 0.9773 -0.0019 -0.0015 -0.0015 ·-0.0023 I-' 

0.8911 1.0677 1.0692 0.9380 0.9378 0.9287 0.0015 -0.13 -0.13 -0.14 
(X) 

°' 



, TABLE J-I (Continued) 

T 1/V Differences emp. . - y 3/ 2/ . 3/ 0 C lb.-mole. 1/ z- ZRK ZBWR ZBWR ZGBWR z· -z zBWR~zexp ZBWR-zexp ZGBWR~zexp cu. ft. · ·exp · RK · ·exp 

50 0.4599 0.8739 0.8769 0.8245· 0.8244 0.8157 0.0029 -0.049 -0.049 -0.058 
0.2373 0.9029 0.8991 0.8865 0.8864 0.8816 ':"'0.0038 -0.016 -0.016 -0.021 
0.1225 0.9421 0.9380 0.9358 0.9358 . 0 .9333 -0.0041 -0.0063 -0.0063 -0.0088 
0.0632 0.9682 0.9653 0.9654 Q.9654 0.9641 -0.0029 -0~0028 --0 .0028 -0.0042 
0.0326 0.9831 0.9814 0.9818 0~9818 0.9811 ..:.o~0018 ....;.0~0014 ....;.0~0014 ....;.0~0021 -

std. dev. 0.023 0.062 0.062 0.064 

75 1.1312 1.5568 1.4680 1.4404 1.4402 1.4380 -0.089 -0.12 -0.12 · -0.12 
0.5845 0.9475 0.9486 0.8890 0.8889 0.8765 0.0010 -0.0010 -0.059 -0.071 
0.3020 0.9193 0.9153 0.8990 0.8990 0.8918 -0.0040 -0.020 -0.020 -0.027 
0.1561 0.9459 0.9412 0.9379 0.9379 0.9340 -0.0047 -0.0080 -0.0080 -0.012 
0.0807 0.9687 0.9656 0.9653 0.9653 0.9633 -0.0032 -0.0034 -0.0034 -0.0054 
0.0417 0.9825 0.9811 0.9814 0.9814 0 .9803 -0.0014 -0.0011 -0.0011 -0.0021 
1.0096 1.3214 1.2761 1.2030 1.2028 1.1937 -0.045 -0.12 -0.12 -0.13 
0.5217 0.9310 0.9310 0.8819 0. 8.819 0.8704 0.0000 -0.049 -0.049 -0.061 
0.2696 0.9235 0.9186 0.9060 0.9059 0.8995 -0.0049 -0.018 -0.018 -0.024 
0.1393 0.9511 0.9460 0.9436 0.9436 0.9401 -0.0051 -0.0075 -0.0075 -0.011 
0.0720 0;9724 0.9689 o .• 9688 0.9688 0.9670 -0.0036 0.0037 -0.0037 -0.005 
0.0372 o •. 9850 o .•. 9830 o .• 9833 o. 9833 0.9824 -0.0019 -0.0016 -0.0017 -0.0026 
0.8180 1.0839 1.0760 0.9874 0 .9872 0.9738 -0.0079 -0.096 -0.097 -0.11 
0.4227 0.9170 0.9154 0.8826 0.8825 0.8728 -0.0015 -0.034 -0.034 -0.044 
0.2184 0.9317 0.9267 0.9189 0.9189 0.9136 -0.0050 -0.013 -0.013 -0.018 
0.1129 0.9586 0.9543 0.9530 0.9530 0.9502 -0.0044 -0.0056 -0.0056 -0.0084 
0 .•. 0583 o .• 9770 0.9742 o .• 9744 o •. 9744 0.9729 .... o .0028 .... o.0026 -0.00027 -0.0041 
0.0301 0.9874 0.9861 0.9864 0.9864 0.9856 ....;.0~0012 ....;.0~0010 -0~0010 ....;.0~0017 --. 

I-' 
std. dev. 0.024 0.052 0.051 0.056 00 

-..J 



TABLE J-I (Continued) 

1 V Differences Temp. -
1/ 2/ 3/ 2/ 3/ oc lb.-mole z- ZRK z- z- ZGBWR z -z z - -z z - -z z -z cu. ft. exp ·BWR· BWR RK exp BWR. ·exp .BWR exp GBWR exp 

78.8% Methane 

25 1.2357 1.6803 1.5726 1.5468 1.5444 1.5575 -0.11 -0.13 -0.14 -0.12 
0.6364 0.7541 0.7560 0.5516 0.5504 0.5503 0.0020 -0.20 -0.20 -0.20 
o .. 3277 0.7890 0. 7766 o. 7179 o. 7173 -0. 7160 -0.012 -0.071 -0.072 -0.073 
0.1688 0.8704 0.8594 0.8463 0.8460 0.8450 -0.011 -0.024 -0.024 -0.025 
0.0869 0.9279 0.9206 0.9188 0.9186 0.9181 -0.0074 ,-0.0091 -0.0093 -0.0099 
0.0448 0.9615 0. 9572 0.9577 0.9576 0.9572 -0.0043 -0.0039 -0.0039 -0.0043 
1.1360 1.3543 1.2998 1.1289 1.1267 1.1361 -0.055 -0. 23 · -0.23 -0.22 
0.5850 0.7469 0.7459 0.5670 0.5658 0.5653 -0.0013 -0.20 -0.18 -0.18 
0.3013 0.7998 0.7871 0.7380 o. 7374 0.7361 -0.013 -0.062 . -0.062 -0.064 
0.1552 0.8796 0.8687 0.8581 0.8578 0.8569 -0.011 -0.021 -0.022 -0.023 
0.0799 0.9335 0.9264 0.9252 0.9251 0.9245 -0.0071 -0.0083 -0.0085 -0.0090 
0.9923 1.0426 1.0348 0.7611 0.7592 -0.7645 -0.0078 -0.28 -0.28 -0.28 
0.5110 0.7467 0.7408 0.5998 0.5986 0.5978 -0.0059 -0.15 -0.15 -0.15 
0.2632 0.8177 0.8045 0. 76 79 0.7674 0.7661 -0.013 -0.050 -0.050 -0.052 
0.1355 0.8931 0.8827 0.8753 0.8750 0.8742 -0.010 -0.018 -0.018 -0.-019 
0.0698 0.9418 0.9350 0.9345 0.9343 0.9338 -0.0068 -0.0073 -0.0075 -0.0036 
0.0359 0.9692 0.9653 0.9659 0.9658 0.9656 ...;.0~0039 ...;.0~0033 ...;.o ~0034 -0.0036 

std. dev. 0.031 0.127 0.128 0.123 

50 1.1667 1.6192 1.5003 1.4489 1.4466 · 1.4473 -0.12 -0.17 -0.17 -0.17 
0.6028 0-.-8.339 0-.-8279 0-.~6830 0.6819 0.6771 -0.0060 -0.15 -0.15 -0.16 
0.3114 0.8432 o_ .. 8291 0_.7890 0 .•. 7883 0 .• 7850 -0.014 -0.054 -0.055 -0.058 
0.1609 0-.-9027 0-.-8903 0-.-8821 0-.8817 0.8797 -0.012 ;..0.020 -0.021 -0.023 
0.0831 C.9457 0.9375 . 0.9368 0.9367 0.9355 -0.0082 -0.0089 -0.0091 -0.010 . I-' 

00 
00 



TABLE J-I (Continued) 

1 V Differences Temp. -
1/ 2/ 3/ . 2/ 3/ oc lb.-mole z - ZRK zBWR zBWR zGBWR z -z z - -z z - -z z -z cu. ft. exp RK exp · BWR exp BWR exp GBWR exp 

50 0.0429 0.9705 0.9661 0.9668 0.9667 0.9661 -0.0044 -0.0037 -0.0038 -0.0044 
1.0609 1.3282 1.2643 1.1107 1.1086 1.1070 -0.064 -0.22 -0.22 -,0.22 
0.5481 0.8227 0.8154 0.6919 0.6909 0.6861 ....,o .0073 -0.13 -0.13 -0.14 
0.2832 0.8514 0.8376 0.8051 0.8045 0 .8013 -0.014 -0.046 -0.047 -0.050 
0.1463 0.9099 0.8983 0.8920 0. 8917 0.8898 -0.012 -0.018 -0.018 -0.020 
0.0756 0.9502 0.9426 0.9423 0.9422 0 .• 9412 -0.0076 -0.0078 "'."'0.0078 -0.0090 
0.0390 0.9741 -0. 9690 0.9697 0.9696 . 0.9691 -0.0051 -0.0044 -0.0045 -0.0050 
0.8888 1.0306 1.0142 0.8023 0.8006 0.7968 -0.016 -0.23 -0.23 -0.23 
0.4592 0.8188 0.8083 o. 7191 o~ 7182 -0.7138 -0.011 -0.10 -0.10 -0.10 
0.2372 0.8683 0.8543 0.8326 0.8321 0.8293 -0.014 -0.036 -0.036 -0.039 
0.1226 0.9231 0.9;22 0.9085 0.9083 0.9067 -0.011 -0.015 -0.015 -0.016 
0.0633 0.9580 0.9512 0.9514 0.9513 OD9504 -0.0068 -0.0066 -0.0067 -0.0076 
0.0327 0. 9772 0.9739 0.9746 0.9745 0.9740 ..;.0~0034 ..;.O ~0027 ..;.o ~0027 -0.0032 

0.035 0.105 0.105 0.108 

75 1.1137 1. 6010 1. 4731 1.4312 1.4290 1.4214 -0.13 -0.17 -0.17 -0.18 
0.5761 0.8974 0.8842 0.7818 0.7807 o. 7728 -0.013 -0.12 -0.12 -0.12 
0.2980 0.8855 0.8697 0.8423 0.8417 0.8369 -0.016 -0.043 -0.044 -0.049 
0.1541 0.9273 0-. 9142 0-.9092 0.9089 0.9061 -0.013 -0.018 -0.018 -0.021 
0.0799 0.9592 0.9506 0.9506 0.9605 0.9490 -0.0086 -0.0086 -0.0087 -0.010 
0.0412 0.9775 0.9731 0.9738 0.9737 -0.9730 -0.0044 -0.0037 -0.0037 -0.0045 
1.0005 1.3278 1.2546 1.1349 1.1329 1.1243 -0.073 -0.19 -0.19 -0.20 
0.5175 0.8831 0.8693 0.7842 0.7832 o. 7758 -0.014 -0.099 -0.10 -0.11 
0.2677 Q .•. 8921 0-.-8763 0..8548 0.8543 o .. 8499 -0.016 -0.037 -0.038 -0.042 
0.-1385 0.9337 0.9211 0.9175 0.9172 0.9148 -0.013 -0.016 -0.016 -0.019 
0.0716 0.9632 0.9552 0.9554 0.9553 0.9540 -0.0080 -0.0078 -0.0079 -0.0093 
0.0371 0.9805 0-.-9757 0.9764 0.9764 0.9757 -0-.0048 -0.0041 -0.0042 -0.0048 I-' 

00 
0.8369 1.0761 L0458 0.8930 0.8914 0.8823 -0.030 -0.18 -0.18 -0.19 I.O 



TABLE J-I (Continued) 

1 V Differences Temp. -
1/ 2/ 3/ 2/ 3/ oc lbo-mole z - ZRK zBWR z- zGBWR z -z z - -z ZBWR~zexp ZGBWR-zexp cu O ft O exp BWR ·RK· .exp ·~WR· exp 

75 004329 0.8747 0.8594 0.7988 0.7979 0.7914 -0.015 -0.076 -0.077 -0.083 
002239 0.9040 0.8884 0.8744 0.8740 0.8702 -0.016 -0.030 -0.030 -0.034 
0.1158 0.9436 0.9318 0.9299 009297 0.9276 -0.011 -0.014 -0.014 -0.016 
0.0599 0.9692 o. 9619 0.9624 0.9623 0.9612 -0.0074 -0.0068 -0.0069 -0.0080 
0.0310 0.9840 0.9795 0.9802 0. 9801 0. 9796 ..;.0~0044 ..;.Q,0038 ..;.0~0038 -0.0044 

std. dev. 0.037 0.089 0.090 0.095 

57.2% Methane 

25 102066 10 7214 1.5889 1.5436 1.5405 1.5319 -0.13 -0.18 -0.18 -0.19 
0.6214 0.6594 0.6547 0.3461 0.3445 0.3560 -0.0047 -0.31 -0.31 -0.30 
0.3200 0.7248 0.7073 0,6161 -0.6153 0.6192 -0.018 -0,11 -0.11 -0.11 
0.1648 0.8334 0.8188 0.7970 0.7966 0.7979 -0.015 -0.036 -0.036 -0.035 
0.0849 0.9076 0.8984 0.8944 0.8941 0.8946 -0.0092 -0.013 -0.013 -0.013 
0.0437 0.9488 0.9454 0.9453 0.9452 0.9454 -0.0034 -0.0035 -0.0036 -0.0034 
1.1216 1.3568 1.2950 1.0586 1.0557 1.0582 -0.062 -0.30 -0.30 -0.30 
0.5776 0.6532 0.6478 0.3726 0.3711 0.3815 -0.0054 -0.28 -0.28 -0.27 
0.2975 0. 7372 0.7200 0.6415 0.6408 0.6442 -0.017 -0.096 -0.096 -0.093 
0.1532 0,8432 0,8294 0,8110 0.8106 0.8118 -0.014 -0.032 -0.033 -0.031 
0.0789 0.9140 0.9049 0.9017 0.9015 0.9019 -0.0090 -0.012 -0.012 -0.012 
0.0406 0.9543 0.9491 0.9491 0.9490 0.9492 -0.0053 -0.0052 -0.0053 -0.0052 
1.0115 1.0449 L0288 0.6476 0.6450 0.6557 -0.016 -0.40 -0.040 --0.39 
0.5209 0.6574 0.6466 0.4154 0.4141 0.4229 -0.011 -0.24 -0.24 -0.23 
0.2682 o .. 7563 o. 7383 0.6750 0.6743 0 .. 6771 -0.018 -0.081 -0.081 -0.079 
0.1381 0.8569 0-.-8437 0-. 8292 0.8289 0.8298 -0.013 -0.028 -0.028 -0.027 I-' 

0.0711 0.9223 0.9136 o. 9113 0.9111 0.9114 -0.0087 -0.011 -0 .011 -0.011 ~ 
0 



TABLE J-1 (Continued) 

1 V Differences Temp. . - 1/ 2/ 3/ 2/ 3/ oc lb.-mole z- ZRK ZBWR zBWR ZGBWR z -z z - -z z - -z z -z 
CUo ft. exp RK· exp BWR ·exp BWR exp GBWR exp 

25 0.0366 0.9590 0.9539 009541 0.9549 0.9541 -0.0051 ...;,o .0049 ...;,0~0050 -0.0049 

std. dev. 0.037 0.179 0.180 0.176 

50 1.1563 1.6388 1.5532 1.4953 1.4923 1.4776 -0.086 -0.14 -0.15 -0.16 
0. 5964 0.7452 0.7449 0.5179 0.5164 0.5204 -0.0003 -0.23 -0.23 -0.22 
0.3076 0.7835 0.7697 0.7051 0.7044 0.7048 -0.014 -0.078 -0.079 -0.079 
0.1586 0 .8672 0.8552 0.8411 0.8407 0.8-404 -0.012 -0.026 -0.026 -0.027 
0.0818 o. 9261 0. 9182 0.9164 0.9162 0.9159 -0.0079 -0.0097 -0.0099 -0 .010 
0.0422 0.9602 0.9559 0.9565 0.9564 0.9562 -0.004 -0.0038 -0.0039 -0.0041 
1.0608 1.3171 L2766 1.0638 1.0611 1.0562 -0.041 -0.25 -0.26 -0.26 
0. 5471 0.7394 0.7349 0.5376 0.5362 0.5396 -0.0045 -0.20 -0.20 -0.20 
0.2822 0.7953 0.7809 0.7272 0. 7265 0. 7268 -0.014 -0.068 -0.069 -0.069 
0.1455 0.8768 0.8650 0.8537 0.8536 0.8530 -0.012 -0.023 -0.023 -0.024 
0.0751 0.9319 0.9244 0.9232 0.9230 0.9227 -0.0076 -0.0087 -0.0089 -0.0092 
0.0387 0.9650 0.9594 0.9600 0.9599 0.9597 -0.0056 -0.0049 -0.0050 -0.0052 
0.9172 1.0018 1.0018 0.6843 0.6819 0.6848 0.0000 -0.32 -0.32 -0.32 
0.4731 0.7402 0.7314 0.5791 0.5779 0.5802 0.0088 -0.16 -0.16 -0.16 
0.2440 0.8145 0.8003 0. 7613 0.7607 0.7607 -0.014 -0.053 -0.054 -0.054 
0.2158 0.8914 0.8805 0. 8729 0.8726 0.8722 -0.011 -0.019 -0.019 -0.019 
0.0649 0.9407 0.9338 0.9334 0.9333 0.9330 -0.0068 -0 .0072 -0.0073 -0.0077 
0.0335· 0.9682 0.9647 0.9654 0.9653 0.9651 ...;.Q ~0036 ...;,o ~0028 -0.0029 -0.0031 

std. dev. 0.025 0.137 0.138 0.138 

75 1.1058 1.6044 L5147 1.4558 1.4530 1.4344 -0.090 -0.15 -0.15 -0.17 
0.5708 0-.-8191 0-.8145 0-.6492 0.6478 0.6466 -0.0046 -0.17 -0.17 -0.17 t-' 

\0 

0.2947 0.8327 0.8193 a. 7743 0 0 7735 0.7717 -0.013 -0.058 -0.059 -0.061 t-' 

0.1521 0.8959 0.8844 0.8756 0.8753 0.8739 -0.012 -0.020 -0.020 -0.022 



TABLE J-I (Continued) 

v Differences Temp.lb - -1 1/ 2/ 3/ 2/ 3/ oc .-mo e z- ZRK ZBWR zBWR zGBWR z ,-z z - -z z - -z z -z cu. ft. exp RK .exp BWR exp BWR exp GBWR exp 

75 0.0785 0.9418 0.9343 0.9339 0.9337 0.9328 -0.0076 -0.0080 -0.0082 -0.0090 
0.0405 0.9687 o. 9644 0.9654 0. 9652 0.9648 -0.0042 -0.0033 -0.0034 -0.0039 
1.0073 1.3154 1.2705 1.0955 1.0929 1.0827 -0.045 -0.22 -0.22 -0.23 
0.5200 0.8091 0.8024 0.6612 0.6599 0.6586 -0.0067 -0.15 -0.15 -0.15 
0.2684 0.8416 0.8282 0.7916 0. 7910 0.7892 -0.013 -0.050 -0.051 -0.052 
0.1386 0.9036 0.8928 0.8861 0.8857 0.8844 -0.011 -0.018 -0.018 -0.019 
0. 0715 0.9465 0.9396 0.9396 0.9394 0.9386 -0.0069 -0.0069 -0.0071 -0.0079 
0.0369 o. 9712 0 .. 9674 o. 9684 0.9683 0.9679 -0.0037 -0.0028 -0.0029 -0.0033 
0.8606 1.0389 1.0284 0.7867 0. 7844 0.7809 -0.010 -0.25 -0.25 -0.26 
0.4443 0.8056 -0.7957 0.6901 0.6890 0.6875 -0.010 -0.12 -0.12 -0.12 
0.2294 0.8576 0.8440 0.8187 0.8181 - 0.8164 -0.014 -0.039 -0.039 -0.041 
0.1184 0.9161 0.9059 0.9019 0. 9016 0.9004 -0.010 -0.014 -0.015 -0.016 
0.0611 0.9541 0 0 9477 0.9482 0.9480 0.9473 -0.0064 -0.0059 -0.0060 -0.0067 
0.0316 0.9752 o. 9720 0. 9729 0. 9729 0.9725 ...:.o ~0032 ...:.0~0023 ...:.o ~0024 ...:.o ~0027 

std. dev. 0.026 0.100 0.112 0.115 

38.4% Methane 

25 1.1819 1.7279 1. 6139 1.5357 1.5329 1.4982 -0.11 -0.19 -0.20 -0.23 
0.6086 0.5580 0.5610 0.1404 0.1390 0.1633 -0.0030 -0.42 -0.42 -0.39 
0.3133 0.6593 0.6433 0.5163 0.5156 0.5249 -0.016 -0.14 -0.14 -0.13 
0.1613 0.7939 0-.7816 0.7495 0.7491 0.7525 -0.012 -0.044 -0.045 -0.041 
0.0830 0.8864 o. 8779 0.8710 0.8708 0.8722 -0.0085 -0.015 -0.016 -0.014 
0.0428 0.9396 0.9345 0.9336 0.9335 0.9341 -0.0051 -0.0061 -0.0062 -0.0056 
1.1172 1.3861 1.3338 1.0525 1.0498 1.0379 -0.052 -0.33 -0.34 -0.35 I-' 
0.5752 0.5573 0.5569 0.1712 0.1699 0.1926 -0.0004 -0.39 -0.39 -0.36 

\0 
N 

0.2961 0.6713 0.6558 0.5423 0.5416 0.5501 -0.015 -0.13 -0.13 -0.12 



TABLE J-I (Continued) 

1/V Differences Temp. - 1/ . 2/ 3/ 2/ 3/ 0 C lb.-mole z- ZRK zBWR zBWR zGBWR z -z z - -z z - -z z. -z cu. ft. exp RK exp BWR exp BWR exp GBWR exp 

25 0.1525 0.8038 0.7916 0.7632 0.7628 0.7660 -0.012 -0.041 -0.041 -0.038 
0.0785 0.8921 0.8841 0.8780 0. 8779 0.8792 -0.0080 -0.014 -0.014 -0.013 
0.0404 0.9427 0.9380 0. 9372 0.9371 0. 9377 -0.0047 -0.0055 -0.0056 -0.0050 
1.0122 1.0068 1.0125 0.5193 0.5169 0.5290 0.0058 -0.49 -0.49 -0.48 
0.5211 0.5641 0.5581 0.2300 0.2288 0.2488 -0.0060 -0.33 -0.34 -0.32 
0.2683 0.6928 0.6777 0.5846 0.5840 0.5913 -0.015 -0.11 -0.11 -0.10 
0.1381 0.8201 0.8083 0.7854 0.7851 0.7879 -0.011 -0.035 -0.035 -0.032 
0.0711 0.9022 0.8942 0.8895 0.8893 0.8905 -0.0081 -0.013 -0.013 -0.012 
0.0366 0.9483 0.9436 0.9431 0.9430 0.9435 ...;.o ~0047 ...;.o ~0052 ...;.0~0053 ...;.o ~0048 

std. dev. 0.031 0.227 0.228 0.222 

50 1.1431 1. 6567 1.6070 1.5367 1.5339 1.4970 -0.050 -0.12 -0.12 -0.16 
0.5889 0.6588 0.6669 0.3501 0.3487 0.3625 -0.0081 -0.31 -0.31 -0.30 
0.3033 o. 7258 o. 7144 0.6223 0.6216 0.6262 -0.011 -0.10 -0.10 -0.10 
0.1563 0.8331 0.8227 0.8014 0.8010 0.8023 -0.010 -0.032 -0.032 -0.031 
0.0805 0.9072 0.9004 0.8969 0.8967 0.8971 -0.0069 -0.010 -0.011 -0.010 
0.0415 0.9502 0.9464 0.9467· 0.9466 0.9467 -0.0038 -0.0036 -0.0037 -0.0034 
1.0660 1.3376 1..3235 1.0695 1.0670 1.0518 -0.014 -0.27 -0.27 -0.29 
0.5492 0.6562 0.6596 0.3760 0.3747 0.3873 0.0033 -0.28 -0.28 -0.27 
0.2829 0.7381 0. 7261 0.6465 0.6458 0.6499 -0.012 -0.092 -0.092 -0.088 
0.1457 0.8427 0.8326 0.8146 0.8142 0.8154 -0.010 -0.028 -0.028 -0.027 
0.0751 0.9130 0.9065 0.9038 0.9036 0.9039 -0.0065 -0.0093 -0.0094 -0.0091 
0.0387 0.9534 0.9499 0.9503 0.9502 0.9503 -0.0035 -0.0031 -0.0032 -0.0031 
0.9430 0.9926 1.0150 0.5999 0.5977 0.6032 0.022 -0.39 -0.39 -0.39 
0.4858 0.6604 0. 6577 0.4279 0.4268 0.4373 -0.0027 -0.23 -0.23 -0.22 I-' 
0.2502 0.7591 0.7471 0.6857 0.6851 0.6883 -0 .012 -0.073 -0.074 -0.071 \0 

w 
0.1289 0.8584 0.8490 0.8357 0.8354 0.8363 -0.0094 -0.023 -0.023 -0.022 



TABLE J-I (Continued) 

Differences 1/V 
Temp.lb.-mole 

oc cu. ft. 
1/ 2/ 3/ 2/ 3/ z - z z - z - z z -z z - -z z - -z z -z exp~~ ~ · · RK BWR BWR GBWR RK exp BWR exp BWR exp GBWR exp 

50 0.0664 0.9225 0.9165 0.9148 0.9147 0~9149 
0.0342 0.9608 0.9555 0.9560 0.9559 0.9560 

-0.0059 
-0.0054 

75 1.0945 
0.5646 
o.i912 
0.1502 
0.0775 
0.0400 
1.0067 
0.5193 
0.2679 
0.1382 
0.0713 
0.0368 
0.8764 
0.4521 
0.2332 
0.1203 
0.0621 
0.0320 

1.6301 
0.7454 

· 0.7834 
0.8670 
0.9259 
0.9692 
1.3188 
0.7390 
0.7945 
0.8760 
0.9314 
0.9632 
1.0142 
Q .• 7398 
0.8130 
0.8901 
0.9398 
0.9678 

1.5551 
0.7487 
o. 7720 
0.8565 
0.9189 
0.9562 
1.2864 
0.7387 
0.7828 
0.8660 
0.9249 
0.9596 
1.0186 
0.7346 
0 .• 8011 
0.8806 
0.9338 
0.9646 

1.4738 
0.5135 
0.7066 
0.8429 
0.9176 
0.9572 
1.0542 
0.5340 
o. 7282 
0.8551 
0.9241 
0.9606 
0.6841 
0.5750 
o .• 1611 
0.8733 
0.9338 
0.9656 

1.4712 
0.5122 
0.7059 
0.8425 
0.9175 
0.9571 
1.0518 
0.5327 
0.7276 
0.8548 
0.9240 
0.9605 
0.6820 
0.5739 
0 .. 7605 
0.8730 
0.9337 
0.9656 

std. dev. 0.016 

1.4366 
0.5185 
0.7072 
0.8424 
0.9171 
0.9568 
1.0362 
0.5383 
o. 7285 
0.8545 
0.9237 
0.9603 
0.6824 
0.5782 
0.7610 
0.8728 
0.9334 
0.9654 

-0.075 
0.0033 

-0.011 
-0.010 
-0.0070 
-0.0040 
-0.032 

· -0 .0004 · 
-0.012 
-0.010 
-0.0065 
-0.0036 

0.0045 
-0.0052 
-0.012 
-0.0095 
-0.0060 
...;.o .0032 

std. dev. 0.021 

-0.0076 -0.0078 -0.0075 
-0.0049 -0.0049 -0.0049 

0.174 0.199 0.185 

-0.16 -0.16 -0.19 
-0.23 -0.23 -0.23 
-0.077 -0 .. 077 -0.076 
-0.024 -0.024 -0.026 
-0.0083 -0 .0084. -0.0088 
-0.0031 -0.0032 -0.0034 
-0 .26 · -0.27 -0.28 
-0.21 -0.21 -0.20 
-0.066 -0.067 -0.066 
-0.021 -0.021 -0.021 
-0.0073 -0 .-0074 -0.0077 
-0.0026 -0.0027 -0.0029 
-0.33 -0.33 -0.33 
-0.16 -0.16 -0.16 
-0.052 -0.052 -0.052 
-0.017 -0.017 -0.017 
-0.0060 -0.0062 -0.0065 
-0.0022 -0.0023 -0.0024 

0.178 0.143 0.179 

I-' 

"° +"" 



TABLE J-I (Continued) 

1/V Differences Temp. -
1/ 2/ 3/ 2/ 3/ oc lb.,...mole z- ZRK z- z- zGBWR z -z z - -z z - -z z -z cu. ft. -·exp 'BWR BWR RK exp BWR exp· BWR exp GBWR exp 

18.4% Methane 

25 1.1708 1. 7525 1. 7411 1.6737 1.6721 1.5917 -0 .011 -0.079 -0.080 -0.16 
0.6018 0.4355 0.4573 -0.1122 -0.1131 -0.0719 -0.022 -0.55 -0.55 -0.51 
0.3093 0.5762 0.5696 0.3940 0.3935 0.4098 -0.0065 -0.18 -0.18 -0.17 
0.1590 0.7434 0.7383 0.6920 0.6918 0.6978 -0.0051 -0.051 -0.052 -0.046 
0.0817 0.8576 0.8542 0.8431 0.8430 0.8455 -0.0033 -0.015 -0.015 -0.012 
0.0420 0.9240 0.9221 0.9197 0.9197 0.9208 -0.0020 -0.0043 -0.0044 -0.0033 
1.1074 1.3917 1.3852 1.0461 1.0445 1.0071 -0.0065 -0.35 -0.35 -0.38 
0.5694 0.4411 0.4545 -0.0698 -0.0706 -0.0318 0.013 -0.51 -0.51 -0.47 
0.2927 0.5922 0.5846 0.4267 0.4263 0 .4413 -0.0076 -0.17 -0.16 -0 .15 · 
0.1505 0.7560 0.7500 0.7086 0.7084 0.7141 -0.0060 -0.047 -0.048 -0.042 
0.0774 0.8655 0.8614 0.8514 0.8513 0. 8537 -0.0041 -0.014 -0.014 -0.012 
0.0398 0.9285 0.9260 0.9240 0.9239 0.9249 -0.0025 -0.0045 -0.0046 -0.-035 
1.0257 1.0044 1.0551 0.4662 0.4647 0.4676 0.051 -0.54 -0.54 -0.54 
0.5217 0.4504 0.4570 -0.0068 -0.0076 0.0278 Q.0066 -0.46 -0.46 -0.42 
0.2709 0.6128 0.6057 0.4700 0.4696 0.4829 -0 .0071 -0.14 -0.14 -0.13 
0.1392 0 0 7714 0.7660 0.7308 0.7306 0.7356 -0.0054 -0.041 -0.041 -0.036 
0.0716 0.8746 0 .8710 0,8627 0.8626 0.8647 -0.0035 -0.012 -0.012 -0.0098 
0.0368 0.9334 0.9314 0.9297 0.9297 0.9306 -0 .0020 -0.0037 -0.0037 -0.0028 
0.8601 0.5843 0.6625 -0.1178 -0.1191 -0.0775 0.078 -0.70 · -0. 70 -0.66 
0.4421 0.4846 0.4818 0.1391 0.1385. 0.1662 -0.0028 -0.35 -0.35 -0.32 
0 .2272 o •. 6593 0.6526 0.5569 0.5566 0.5668 -0.0067 -0.10 -0.11 -0 .• 093 
0.1168 0.8037 0.7991 0. 7748 o. 7746 0. 7786 -0.0046 -0.029 -0.029 -0.025 
0.0600 0.8934 0.8906 0.8850 0.8849 0.8866 -0.0028 -0.0083 -0.0084 -0.0067 
0.0308 0.9436 0.9421 0.9411 0.9411 0.9418 ...:.o ~0015 ...:.o~0025 -0~0025 -0.0017 

..... 
std. dev. 0.021 0.288 0.288 0.256 \0 

Vt 



TABLE J-I (Continued) 

v Differences Temp. - 1/ 2/ 3/ 2/ z 3/_z oc lb.-mole z- ZRK z- zBWR z z -z z - -z z -z cu. ft. exp BWR ·GBWR RK exp BWR_ ·exp ·BWR_. ·exp -GBWR _. -exp 

50 1.1256 1.6682 1. 6701 1.5715 1.5700 1.5013 0.0019 -0.097 -0.098 -0.17 
0.5789 0.5550 0.5788 0.1492 0.1484 0.1748 0.024 -0.41 -0.41 -0.38 
0.2977 0.6575 0.6530 0.5259 0.5255 0.5351 -0.0045 -0.13 -0.13 -0.12 
0.1531 0.7925 0.7869 0.7561 0.7559 0.7590 -0.0056 -0.036 -0.037 -0.033 
0.0788 0.8848 0.8809 0.8749 0.8748 0.8759 -0.0039 -0.0099 -0.010 -0.0089 -
0.0405 0.9383 0.9361 0.9357• 0.9357 0.9361 -0.0022 _ -0 .0025 -0.0026 -0.0022 
1.0624 1.3495 l.3754 1.0687 1.0672 1.0329 0.026 -0.28 -0.28 -0.32 
0.5464 0.5560 0.5737 0.1811 0.1803 0.2050 0.018 -0.37 -0.38 -0.35 
0.2810 0.6704 0.6652 0.5523 0.5519 0.5605 -0.0052 -0.12 -0.12 -0.11 
0.1445 0.8024 0.7969 0.7699 0.7697 0.7725 -0.0055 -0.033 -0.033 -0.030 
0.0743 0.8908 0.8870 0.8819 0.8818 0.8829 -0.0038 -0.0088 -0.0089 -0.0079 
0.0382 0.9417 0.939-6 0.9394 0.9393 0.9397 -0.0021 -0.0023 -0.0024 -0.0019 
0.9564 0.9721 1.0302 0.5047 0.5034 0.5067 0.058 -C>.47 -0.47 -0.47 
0.4919 0.5641 0.5738 0.2442 0.2435 0.2650 0.0096 -0.32 -0.32 -0.30 
0.2530 0.6935 0.6877 0.5966 0.5963 0.6035 -0.0058 -0.097 -0.097 -0.090 
0.1301 0.8198 0.8141 0.7929 0.7927 0.7951 -0.0056 -0 .• 027 -0.027 -0.025 
0.0669 0.9014 0.8975 0.8937 0.8936 0~8945 -0.0039 -0.0076 -0.007 -0.0068 
0.0344 0.9477 0.9454 0.9454 0.9454 0.9457 -0.0023 -0.0023 -0.0023 -0.0019 
0.7435 O. 6176 o. 6726 0.0930 0.0920 0.1216 0.055 -0.52 -0.53 -0.50 
0.3824 0.6050 0.6039 0.3960 0.3955 0.4100 -0.0011 -0.21 -0.21 -0.19 
0.1967 0.7461 0.7399 0.6864 0.6862 0.6909 -0.0062 -0.060 -0.060 -0.055 
0.1012 0.8557 0-.8507 0.8392 0.8390 0.8407 -0.0050 -0.017 -0.017 -0.015 
0.0520 0.9221 0.9190 0.9174 0.9174 0.9180 .. 0.0031 -0.0047 -0.0047 -0.0041 
0.0268 0.9588 0.9572 0.9576 0.9575 0.9578 -0~0016 ....;.0~0013 -0.0013 -0.0010 

std. dev. 0.019 0.217 0.218 0.185 
1--' 

'i 
\0 

°' ~~; 



TABLE J-I (Continued) 

ITV ·Differences Temp. . - 1/ 2/ . 3/ 2/ 3/ oc lb.-mole z- ZRK z- z- zGBWR z -z z - -z z - -z z -z cu. ft. exp ·BWR · ·BWR RK .. exp BWR. exp BWR exp GBWR exp 

75 1.0667 1.6180 1.5473 1.3947 1.3932 1.3412 -0.071 -0.22 -0.22 -0.28 
0.5496 0.6559 O. 6723 0.3543 0.3535 0.3692 0.016 -0~30 -0.30 -0.29 
0.2832 0.7270 o. 7212 0.6316 0.6312 0.6361 -0.0057 -0.095 -0.096 -0.091 
0.1459 0.8342 0.8273 0.8076 0.8074 0.8085 -0.0069 -0.027 -0.027 -0.026 
0.0752 0.9080 0.9030 0.9004 0.9003 0.9005 -0.0050 -0.0076 -0.0077 -0.0075 
0.0387 0.9509 0.9479 0,.9486 0.9485 0.9485 -0.0030 -0.0023 -0.0024 -:-0.0024 
1.0003 1.3309 1.3034 0.9978 0.9964 0.9708 -0.028 -0.33 -0.33 -0.36 
0.5154 0.6549 0.6661 0.3798 0.3791 0.3935 0.011 -0.28 -0.28 -0.26 
0.2655 0.7554 0.7319 0.6536 0.6533 0.6576 -0.024 -0.10 -0.10 -0.098 
0.1368 0.8432 0.8362 0.8194 0.8192 0.8202 -0.0070 -0.024 -0.024 -0.023 
0.0705 0 .9134 0.9085 0.9066 0.9065 0.9067 -0.0048 -0.0068 -0.0069 -0.0067 
0.0363 0.9538 0.9510 0.9516 0.9517 0.9517 -0.0029 -0.0020 -0.0021 -0.0021 
0.8769 0.9680 0.9920 0.5400 0.5388 0.5428 0.024 -i). 43 -0.43 -0.43 
0.4518 0.6604 0.6648 0.4378 0.4371 0.4490 0.0045 -0.22 -0.22 -0.21 
0.2328 0.7613 0.7540 0.6952 0.6949 0.6981 -0.0074 -0.066 -0.066 -0.063 
0.1199 0.8602 . 0.8534 0.8415 • 0.8414 0.8421 -0.0069 -Q.019 -0.019 -0.018 
0.0618 0.9237 0.9190 0.9181 0.9180 0.9181. -0.0047 -0.0057 -0.0057 -0.0056 
0.0318 0.9596 0.9568 0.9577 o. 9577 0.9577 -0.0028 -0.0019 -0.0019 -0.0019 
0.6448 0.6832 .O! 7124 0.3129 0.3120 -0.3298 0.024 -0.37 -0.37 -0.35 
0.3322 0. 7000 . 0.6963 0.5713 0.5709 0.5776 -0.0038 -0.13 -0.13 -0.12 
0.1712 0.8109 o;.8037 o. 7746 o. 7744 o. 7761 -0.0072 -0.036 -0.037· -0.035 
0.0882 0.8934 0.8885 0.8838 0.8837 0.8841 -0.0049 -0.0096 -0.0097 -0.0094 
0.0454 0.9427 o .•. 9393 0-.9397 0-.9396 0-.9397 .. o.0034 ... Q .. 0030 -0.0031 -0.0030 
0.0234 · 0.9697 0. 9679 0.9689 0.9689 0.9688 ..:.o~0018 ...;.0~0008 ...;.0~0008 ...;.0~0009 

std. dev. 0.021 0.178 0.179 0.179 
...... 
\0 
-...J 



1/V 
Temp.lb -mole 1/ 

0 • Z -c cu. ft. exp 

25 1.1581 
0.5940 
0.3047 
0.1563 
0.0802 
0.0411 
1.1097 
0.5692 
0.2920 
0.1498 
0.0768 
0.0394 
1.0397 
0.5333 
0.2735 
0.1403 
0.0720 
0.0369 
0.9138 
0.4687 
0.2404 
0.1233 
0.0633 
0.0324 

1.7780 
0.3189 
('.4961 
0.6931 
0.8285 
0.9081 
1.3820 
0.3247 
t'.5095 
0.7034 
0.8345 
0.9114 
0.9910 
0.3368 
0.5307 
0.7195 
0.8442 
0.9167 
0.-5684 
0.3675 
0.5722 
0.7503 
0.8640 
0.9292 

ZBl{ 

1.9018 
0.3560 
0.4981 
0.6966 
0.8316 
0.9102 
1.5418 
0.3543 
0.5118 
0.7073 
0.'8381 
0.9138 
1.1560 
0.3569 
0.5328 
0.72.30 
0.8476 
0.9190 
0.7200 
0.3757 
0.5738 
0:7522 
0.8649 
0.9285 

z J:l 
BWR 

1.8396 
-0.3745 

0.2695 
0.6346 
0.8155 
0.9062 
1.2102 

-0.3320 
0.3011 
0.6503 
0.8234 
0.9101 
0:5148 

-0.2637 
0.3469 
0.67.30 
O.a347 
0.9159 

-0.2233 
-0.1257 
0.'4289 
0.7136 
0.8550 
0.9261 

TABLE J-I (Continued) 

ZGBWR 

99.9% Ethylene 

1.7010 
-0.3142 
0.2933 
0.6434 
0.8191 
0.9078 
1.1267 

-0.2744 
0.3234 
0.6586 
0.8268 
0.9117 
0.4921 

-0.2103 
0.3670 
0.6806 
0.8318 
0.9173 

-0.1818 
-0.0807 
0.'4455 
0.7199 
0.8557 
0.9273 
std. dev. 

·Differences . H.~···~ 
zRK-z zBWR-z zGBtnCz exp . exp exp 

0.12 
0.037 
0.0020 
0.0035 
0.0035 
0.0020 
0.16 
0.030 
0.0023 
0.0039 
0.0036 
0.0023 
0.16 
0.020 
0.0021 
0.0036 
0.0034 
0.0023 
0.15 
0.0082 
0.0016 
0.0020 
0.0009 

~;0007 
0.064 

0.62 
-0.69 
-0.23 
-0.059 
-0.013 
-0.0019 
-0.17 
-0.66 
-0.21 
-0.053 
-0.011 
-0.0013 
-0.48 
-0.60 
-0.18 
-0.046 
-0.0095 
-0.0009 
-0.79 
-0.49 
-0.14 
-0.037 
-0'..0090 
..;.(J~0030 

0.334 

-0.077 
-0.63 
-0.20 
-0.050 
-0.0093 
-0.0003 
-0.26 
-0.60 
-0.19 
-0.0,45 
-0~0077 
-0.0002 
-o.so 
-0.55 
-0.16 
-0.039 
-0.0063 
o.ooos 

-0.75 
-0.45 
-0.13 
-0.030 
-0.0063 
~~0018 
0.334 

.... 
IO 
CD 



TABLE J-I (Continued) 

T/V Differertces Tempo - 1/ 2/ 2/ 0 C lb.-mole z- ZRK z- zGBWR z -z z - -z z -z 
CUo fto exp BWR · RK.· exp BWR. exp GBWR exp 

50 L.1178 L.6963 1.8119 1. 7208 1.6050 0.11 0.24 -0.091 
0.5731 0.4516 0.4935 -0.0640 -0.-0640 -0.2305 -0.52 -0.47 
0.2938 0.5885 0.5918 0.4248 0.4400 0.0033 -0.16 -0 .. 15 
0.1506 0.7509 0.7514 0.7096 0.7147 0.0005 -0.041 -0.036 
0.0772 0.8623 0.8617 0.8527 0.8546 -0.0006 -0.0096 -0.0077 
0.0396 0.9279 0.9262 0.9249 0.9257 -0.0017 -0.0029 -0.0022 
1.0619 1.3460 1. 4739 1.1385 1.0729 0.13 -0.21 -0.27 
0.5444 0.4546 0.4895 -0.2609 0.0126 0.035 -0.48 -0.44 
0.2791 0.6021 0.6049 0.4541 0.4680 0.0028 -0.15 -0.13 
0.1431 0.7612 0.7618 o. 7244 0.7291 0.0006 -0.037 -0.032 
0.0734 0.8684 0.8681 0.8602 0.8619 -0.0004 -0.0083 -0.0065 
000376 0.9313 0.9297 0.9287 0.9294 -0.0016 -0.0026 -0.0019 
0.9703 0.9487 1.0845 0.4713 0.4628 0.14 -0.48 -0.49 
0.4977 0.4660 0.4903 0.0447 0.0792 0.024 -0.42 -0.39 
0.2552 0.6258 006278 0.5019 0.5139 0.0020 -0.12 -0.11 
0.1308 0.7787 o. 7792 · 0.7485 0.7526 0.0005 -0.030 -0.026 
0 •. 0611 0.8788 0.8786 0.8723 0.8738 -0.0002 -0.0065 -0.0050 
0.0344 0.9369 0.9355 0.9349 0.9355 -0.0014 -0.0020 -0.0014 
o;ao10 0.5697 0.6881 -0.0867 -0.0475 0.12 -0.65 -0.62 
0.4138 0.5021 0.5137 0.1919 0.2182 0.012 -0.31 -0.28 
0.2121 0.6723 0.6740 005878 0.5966 0.0017 -0.084 -0.076 
0.1088 0.8110 0.8119 o. 7916 · 0.7947 0.0009 -0.019 -0.016 
0.0558 0.8976 0.8978 0.8940 0.8952 0.0002 -0.0036 -0.0024 
000286 0.9470 0.9461 0.9459 0.9464 ..:.0~0009 ..:.0~0011 -0.0005 

std. dev. 0.054 0.260 0.241 
I-' 
\0 
\0 



TABLE J-I (Continued) 

r . rrv Differences emp - 1/ 2/ z j)_z oc "lb.-mole z- ZRK ZBWR zGBWR z -z z -z cu. ft. exp RK __ exp BWR_ exp GBWR exp 

75 1.0576 1.6520 1.6243 1. 4409 1.3598 -0.028 -0.21 -0.29 
0.5445 0.5667 0.5999 0.1825 0.2092 0.033 -0.38 -0.36 
0.2803 0.6678 0.6688 0.5489 0.5579 0.0010 -0.12 -0.11 
0.1443 0.7990 0.7963 0.7687 0. 7712 -0.0027 -0.030 -0.028 
0.0743 0.8885 0.8860 0.8816 0.8822 -0.0025 -0.0070 -0.0063 
0.0382 0.9404 0.9388 0.9391 0.9394 -0.0017 -0.0013 -0.0011 
0.9938 1.3140 1.3340 0.9556 0.9155 0.020 -0.36 -0.40 
0.5116 0.5674 0.5946 0.2169 0.2417 0.027 -0.35 -0.33 
0.2634 0.6810 0.6814 0.5760 0.5840 0.0004 -0.11 -0.097 
0.1356 0.8091 0.8065 0.7827 0 .-7850 -0.0026 -0.026 -0.024 
0.0698 0.8945 0.8923 .o. 8886 0.8893 -0.0022 -0.0059 -0.0052 
0.0359 0.9438 0.9423 0.9428 0.9430 -0.0014 -0.0009 -0.0007 
0.7078 0.6345 0.6991 0.1190 0.1495 0.065 -0.51 -0.49 
0.3644 0.6139 0.6205 0.4171 0.4316 0.0066 -0.20 · -0 .18 
0.1876 0.7516 • 0.7491 0.6986 0.7028 -0.0025 -0.053 -0.049 
0.0966 0.8586 0.8556 0.8457 0.8469 -0.0030 -0.013 -0.012 
0.0497 0 .. -9238 0~9215 0.9208 0.9212 -0.0023 -0.0030 -0.0026 
0.0256 0.9599 0.9584 0.9593 0.9594 -0.0014 -0.0006 -0.0005 
0.8984 0 .. -9658 L-0279 0-.4746 0.4747 0.062 -0.49 -0.49 
0.4625 0.5755 0.5944 0.2769 0.2984 0.019 -0.30 -0.28 
0.2381 0.7027 Q.7019 0.6168 0.6234 -0.0008 -0.086 -0.079 
0 .•. 1226 o .•. s252 0 .. -822.3 o ... 8038 0.8056 -0.0028 -0.021 -0.020 
0-.-0631 0-.9042 ©-0·9019 0-.-8994 0-.8999 ... 0 •. 0023 -0.-0048 -0.0043 
0.0325 0.9492 0.9477 0.9483 0.9485 -0~0015 -0.0008 ..;.0~0007 

0 .216. 
N std. q.ey. 0.022 0.221 0 
0 



APPENDIX K 

LENNARD-JONES POTENTIAL FUNCTION 

The second virial coefficient in tertl).s of the Lennard-Jones 

potential function was presented in Chapter VI, Eq. (VI-10). The 

parameters in the potential function (n, m,O,E) can be ~valuated by 

curve-fitting second virial coefficient data. 

Using Eq. (VI-10) as the model, the values of the parameters are 

determined such that the following expression is minimized: 

n 
A 2 

Y = 2 (Bi - Bi) = minimum (K-1) 

i 

where B. is defined by Eq. (VI-10) and B. 's are observed values for the 
i i 

second virial coefficient. 

The values of n, m,cr, and E that minimize Y are determined by 

solving the following equations, simultaneously: 

ay 
0 aY 0 an = am 

(K-2) 

aY 0 
ay 

0 acr a"E" = 

The above equations are non-linear in the parameters. The four 

equations can be linearized by expanding in a first order Taylor 

series, 

201 
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4 

F. F + l clF 
b.x. 0 = 

axj 
= 

J oj J 
j x. = x 

J oj 

(K-3) 

j = 1,2,3,4 

where the subscript j refers to the parameters (n,m,cr,E) and Eq. (K-2). 

The following steps were used to solve Eqs. (K-3) for the values 

of the parameters that minimize Y. 

1. Assume initial values for x.'s. 
J 

2. Calculate Yold' 

3. Set-up the four linearized equations, Eq. (K-3). 

4. Solve the linearized equations.for new values of. 
x. 's. 

J 

5. Let x. = 
J 

+ t(x. 
J new 

6. Calculate Y = Y(t) for -1.75 < t 

7. Determine value oft that minimizes Y(t). 

8. Calculate x. = + 
J 

and Y = Y(t . ). min. 

9. Compare Yold and Y(t . ). min. 

t . (x. - xJ. old) min. J new 

10. Repeat steps 1 through 9 until Y does not change. 

The above procedure was program for a digital computer. 



APPENDIX L 

EXPRESSING PRESSURE RATIOS IN TERMS OF THE 

BERLIN VIRIAL EQUA'l'ION OF STATE 

The ratio of the pressure before the jth expansion to the pressure 

after the jth expansion (P. /P.) for the isothermal expansion ratio 
J-1 J 

method can be expressed in terms of the Berlin virial equation of 

th 
Before the j expansion, the state of the gas in bomb V (see 

. l 
state. 

Figure 1) is described by the following Berlin virial equation of 

state: 

P. 
J-1 = 

2 
A' + B'P. 1 + C'P. 1 + ••• 

J- J-
(L-1) 

n. 
J-1 

where n. 1 = number of moles of gas. 
J-

Af h 'th . h . b b v ter t e J expansion, t e gas in oms 
l 

and V is characterized by 
2 

the following equation of state: 

2 

=A'+ B'P + C'P + ••. 
j j 

Eliminating n, between Eqs. (L-1) and (L-2) gives: 
J-1 

v A' + B'P C'P 
2 

P. + + ... 
_J.=2_ l j-1 j-1 

:;: 

P. v + v 2 
J l 2 A' + B'P + C'P. + ... j J 

203 
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Substituting Eq. (II-8) into Eq. (L-3) gives: 

2 
p j-1 = [A I + BI p. + c I pj + •.. ] J-1-1 

N 2 

pj A'+ B'Pj + C'Pj + .•. 
(L-4) 

Rearranging Eq. (L-4) gives: 

2 
P [A'+ B'P + C'P + ] j-1 j j ... 

2 
= N Pj [A'+ B'Pj-l + C'Pj-l + ..• ] 

(L-5) 
or 

2 
P. A'+ P. [B'Pj + C'Pj J-1 J-1 

2 
+ ] N P A' + N P [B'P + C'P • • • = j j j-1 j-1 

+ ... ] (L-6) 

Transposing terms, 

2 
P A'= NP A'+ NP [B'P + C'P 2 + ] P ·[B'P + C'P j-1 j j j-1 j-1 ° • • - j-"l j j 

Dividing by P. A', 
J 

+ ••• ] 

p 2 

.:..1:.!..=N+4[B'P +C'P + .•• ] P A . j-1 j-1 

P. 1 2 

- p:-d [B'Pj + C'Pj + ... ] 
J j 

Regrouping, 

pj-1 _ !: C' 2 

P. - N +NA' pj-1 + N °A' pj-1 
J 

+ ... 

(L-7) 

(L-8) 

(L-9) 



Collecting terms and factoring, 

B' 
N + (N-1) A! Pj-l + N _ _i] 

p. l 
J-

The above equation is Eq. (III-1). 

205 

C' ~ 
A! pj-1 + ... (L-10) 



APPENDIX M 

ETHYL:ENE COMPRESSIBILITY DATA CALCULATED 

FROM HELIUM CELL CONSTANTS 

In this appendix, the ethylene compressibility data calculated 

from the isothermal expansion data using cell constants determined 

from helium isothermal expansions are shown in Table M-I and compared 

with data by Michels and Geldermans (41) in Figure 24. Also, a plot 

of the helium pressure ratios used to evaluate the cell constant is 

shown in Figure 23. 

206 



TABLE M-I 

COMPRESSIBILITY FACTORS FOR ETHYLENE BASED UPON CELL CONSTANT 

DETERMINED FROM HELIUM PRESSURE RATIO DATA 

Experimental Data 

Temp. 
oc 

25.00 

25.00 

25.00 

25.00 

Run No. 

6 

7 

8 

9 

p 

psia 

11858.506 
1091.035 

870.467 
623.854 
382.474 
215.040 
115. 714 

60.867 
31.699 

8832.565 
1064.389 

856.693 
606.616 
369.174 
206.808 
111.073 

58.398 
30.373 

5933.975 
1034.292 

836.047 
581.367 
349.878 
194.887 
104.373 

54.8l.4 
28.496 

2991.405 
991.945 
792.281 
532.844 
314. 71.5 

Calculatec;l Data 

z 

1.83059 
0.32678 
0.50585 
0.70341 
0.83673 
0.91276 
0.95298 
0.97260 
0.98278 

1.42314 
0.33275 
0.51963 
0.71391 
0.84297 
0.91623 
0.95478 
0.97397 
0,98286 

1.02063 
0,34516 
0.54133 
0.73036 
0.85283 · 
0.92169 
0.95773 
0.97590 
0.98434 

0.58339 
0.37534 
0.58166 
0.75901 
0.86980 

1/y_ 
3 

lb.-mol~/ft 

N = 1.94024 

1.1248 
0.5797 
0.2988 
0.1540 
0.0794 
0.0409 
0.0211 
0.0109 
0.0056 

1.0776 
0.5554 
0.2863 
0.1475 
0.0760 
0.0392 
0.0202 
0.0104 
0.0054 

l..0095 
0.5203 
0.2682 
0.1382 
0.0712 
0.0367 
0.0189 
0.0098 
0.0050 

0.8903 
0.4589 
0.2365 
0.1219 
0.0628 

207 



TABLE M-I (Continued) 

Experimental Data 

Temp. 
oc. 

25.00 

50.00 

50.00 

50.00 

so.oo 

Run No. 

9 

64 

65 

66 

67 

p 

psi,a 

173.611 
92.578 
48.511 

11836.604 
1615.373 
1079.404 

706,116 
415.704 
229.335 
122.225 

8922.033 
1544.856 

· 1049.123 
679.997 
397.730 
218.670 

. 116.362 · 

5749.098 
·1448.005 

996.823 
635.957 
367.959 
201.110 
107 .034 

2870.147 
1296.717 

890.282 
550.570 
312.405 
168.976 

89.408 

Calculated Data 

z 1/y 
3 

lb.-mole/ft 

0.93097 0.0324 
0,96321 0.0167 
0.97930 0.0086 

N = 1.93554 

1. 77024 1.0712 
0.46761 0.5534 
0.60477 0.2859 
0.76575 0.1477 
0.87256 0.0763 
0.93172 0.0394 
0.96112 0.0204 

1.40465 1.0176 
0.47075 0.5257 
0,61878 0.2716 
0.77628 0.1403 
0.87882 0.0725 
0.93520 0.0375 
0.96323 0.0194 

0.99047 0.9299 
0.48285 0.4804 
0.64338 0,2482 
0.79447 0.1282 
0.88972 0.0662 
0.94121 0.0342 
0.96957 0 .0177 

0.59520 O. 7725 
0.52049 0.3991 
0.69166 0.2062 
0.82791 0.1065 
0.90926 0.0550 
0.95192 0.0284 
0.97488 0.0147. 
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TABLE M-I (Continued) 

Experimental Data 

Temp, 
oc 

75.01 

75.02 

75.01 

75,02 

Run No. 

40 

41 

42 

43 

p 
· psia 

11750,645 
2075.015 
1258.918 

775.367 
443.869 
241.871 
128.266 

8782.963 
1952.500 
1206.355 

737.823 
419 .921 
228.078 
120.731 

5835.299 
1790.150 
1125.214 

680.209 
383. 722 
109.475 

3020.494 
1504.315 

948.188 
557.636 
308.857 
165.211 

Calculated Data 

z 1/V 
- 3 

lb,-mole/ft 

N = 1.93811 

1. 67422 1.0436 
o. 57299 0.5385 
0.67376 0.2778 
0,80425 0.1433 
0.89232 0.0740 
0.94238 0.0382 
0.96857 0.0197 

1,33189 0.9805 
0.57385 0.5059 
0.68716 0.2610 
0.81454 0.1347 
0.89848 0.0695 
0.94581 0.0359 
0.97033 0.0185 

0.97881 0.8864 
0.58197 0.4574 
0.70897 0.2360 
0.83064 0.1218 
0.90817 0.0324 
0.97324 0.0167 

0.64303 0.6984 
0.62069 0.3604 
0.75824 0.1859 
0.86426 0.0959 
0.92774 0.0495 
0.96181 0.0255 
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Figure 23, Helium Pressure Ratio Data 
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A 

A' 

A ,A' ,a,a' 
0 0 

a 

A o,t 

A 
0 

B 

B' 

B ,B',b,b' 
0 0 

b 

B •• 
1J 

c 

C' 

NOMENCLATURE 

= First Leiden virial coeffic~ent 

= First Berlin virial coefficient 

= Constants in empirical equations of state 

= Regression coefficient 

= Effective area of Ruska piston at pressure P 
gage temperature!. 

= Area of Ruska piston at zero pressure and 
temperature!. 

and 
g 

= Area of Ruska piston at zer9 pressure and 25 °C 

= Second Leiden virial coefficient 

= Second Berlin virial coefficient 

= Constants in empirical equations of state 

= Coefficient of pressure distortion for Ruska piston 

Regression coefficient 

= Second cross coefficient between species i and j 

= Third Leiden virial coefficient 

= Third Berlin virial coefficient. 

C ,C' ,c,c' Constants in empirical equations of state 
0 0 

c Coefficient of thermal expansion for Ruska piston 

c. 'k 1J 

c 
nm 

= Regression coefficient 

= Third cross coefficient between species i,j,k 

Term in expression for second virial coefficient in 
terms of the Lennard-Jones potential function 
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D' 
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F 

f s 
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h 
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k 

m 

n 

n 
0 

n 
1 

N 

N 

n 

p 

p 
0 
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= Fourth Leiden virial coefficient 

= Fourth Berlin virial coefficient 

= Fifth Leiden virial coefficient 

= Sixth Leiden virial coefficient 

= Correction factor for estimating critical temperature 
for mixtures 

= Correction factor for estimating critical temperature 
for mixtures 

= Acceleration due to gravity at St~llwater, Oklahoma 

= Standard acceleration due to gravity 

= Head of oil above.diaphragm in DP! cell when sitting 
zero point 

= Ionization potential 

= Boltzmann's constant 

= Exponent for repulsive term in Lennard-Jones potential 
function 

Exponent for attractive term in Lennard-Jones potential 
function 

Number of moles of gas in first bomb before first 
expansion 

Number of moles of gas in bombs before second expansion 

= Volume ratio of expansion apparatus 

= Avogadro's number 

= Number of components in mixture 

= Pressure 

Pressure before first expansion 

= Pressure at reference level of Ruska gage 

= Pressure correction for head of oil on top of 
diaphragm when setting zero of DP! cell 

= Pressure correction for zero shift of diaphragm with 
pressure 
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Rt 
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Shi 
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v 
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z 

z 
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Creek Letters 

a.,ot.' 

ex 
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= Barometric pressure 

= Nominal pressure 

= Number of expansions to reduce pressure to standard 
atmosphere 

= Intermolecular distance 

= Scale reading of Texas Instruments baroJ11eter 

= · Universial gas constant 

= Resistance of platim,lill thermometer at temperature.! 

= Resistance of platinum thermometer at 0 OG 

= Coefficient for correcting for zero shift of DPI cell 
with pressure 

= Standard deviation of fit 

= Standard deviation for ith regression coefficients 

= Absolute temperature 

-. Temperature 

= Volume of first bomb 

= Volume of second bomb 

= Molar volume 

= Force on Ruska piston due to "weights" 

= Mole.fraction 

= Compressibility factor 

= Compressibility factor before first expansion 

Constants in empirical equations of state 

= Regression coefficient 

Coefficient in calibration formula for platinum 
resistance thermometer 



y,y' 

r 
0 

bit 
p 

a 

a' e: 

a 'e: 
12 12 

p 

p 
1, T 

w 

= Regression coefficient 

= Coefficient in calibration formul.a for platinum 
resistance thermometer 

= Constants.in empirical equations of state 
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Exponent in expression for second virial coefficient 
in terms of Lennard-Jones potential function 

= Gamma function 

Coefficient in calibration formula for platinum 
resistance thermometer 

= Temperature correction to ice point of water for 
change in barometric pressure 

= Temperature correction to ice point for depth of 
submersion 

= Intermolecular potential function 

= Correlation for estimating B .. 
l.J 

= Parameters in Lennard-Jones potential function 

= Parameters in Lennard-Jones potential funtion 

= Cross parameters for binary mixtures in Lennard-Jones 
potential function 

= Summation 

= Molar density 

= Molar density at standard atmosphere and temperature 
T 

Density of air at Houston 

= Density of brass 

= Density of oil used in Ruska gage 

Accentric factor 
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Subscripts 

c Critical property 

i' j = Number of expansions 

i,j ,k = . th kth . . . J species in a mixture 

m Mixture 



VITA 
'0 

Roy Carlton Lee 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: COMPRESSIBILITY FACTORS AND VIRIAL COEFFICIENTS FOR METHANE, 
E.';I'HYLENE, AND THEIR MIXTURES, USING AN ISOTHERMAL EXPANSION 
RATIO APPARATUS 

Major Field: Chemical Engineering 

Biographical: 

Personal Data: Born in Pampa, Texas, August 14, 1938, the son 
of Roy W. and Velma O. Lee. 

Education; Attended grade school and two years of high school at 
Oilton, Oklahoma; finished.high school at Fort Morgan, 
Colorado; graduated from Fort Morgan High School June, 1956; 
attended Colorado School of Mines from 1956~1958; transferred 
to Oklahoma State University in 1958; received the degree of · 
Bachelor of Science in Chemical Engineering August, 1960; 
received the degree of Master of Science•in Chemical Engineer
ing at Oklahoma State University May,.1962; completed the 
requirements for Doctor of Philosophy degree May, 1969. · 

Professional Experience: . Employed as Teaching Assistant during 
1960-1961 and Research Assistant during 1962-1966 in the 
School of Chemical Engineering at Oklahoma State University; 
employed by Continental Oil Company during summer of 1965 in 
their Research Department; employed by Phillips Petroleum 
Company in their Research and Development Department since 
1966. 

Professional Societies: Associate Member of the American Institute 
of Chemical Engineers. 


