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CHAPTER I 

INTRODUCTION 

L 1 Statement of the Problem. Noise, or random electrical fluctu-

ation set a lower limit to the current and voltage handling capabilities 

of a solid state device. Also 11 it has been shown in the past, that the 

study of fluctuations of a system provides additional insight into the 

physical phenomena underlying the operation of a system or device. 

There are, among others, four distinct sources of noise~ thermal 

noise, shot noise, generation-recombination noise (g-r noise)~ and 

flicker noise. The thermal noise which gives rise to a random voltage 

across a resistor due to the thermal velocity of the current carriers, 

has been calculated by Nyquist (1928). Shot noise has been calculated 

:'-;c;hottky (1918); g-r noise has been shown to exist by Herzog and 

van der Ziel ( 1951). Flicker noise has been shown to exist by Williams 

and Thatcher (1932) and has been thorou$hly studied by Bernamont (1937). 

This dissertation deals with the g-r noise in a double-injection diode. 

Double-injection is the simultaneous injection of holes and electrons 

from opposite contacts on a semiconductor. In a p-n-n (n means slightly 

p doped) double-injection diode holes are injected into the p-n junction 

and electrons are injected into the n-n junction. Since the injected 

holes and electrons can neutralize each other, a large amount of current 

can be obtained. Bilger et al. (1968) experimentally established and 

. ( 1 also made plausible that at high frequencies at f > > 2nT' T = carrier 

1 
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lifetime) Ny qui.st noise .'( thermal noise) prevails., i.oe., 

S. (.f) = 4kTg( f) 
1 

(L1 .. l) 

s1 (f) =ft= noi.se curren.t spect.ra.1 density (A2s) 

. -23 (.VAs) 
k = Boltzmarm constant = L:38 ° 10 °i("· 

T = Temperature ( °K) 

g( f) = high-.frequency comduc;tanc.e ( real part of admittanc,.a) 

( -1) 
' SL 

The MKS system of units is used in this dissertation, unless it is 

stated otherwise. The. majo:c effo:r.·f in this di.ssertat:i.on is, therefore, 

devoted to calculating the. low-.f'.'!'equency po,ction of the noise in a 

double-injection diode. Two problems arise here: a.,) to find a formu-

lation whic.h adequately .describes the iimtcroscopic cause'' of noise, 

b.) to integrate t:hi;i; noise c.omtributions of a volume element over the 

volume of the devi.ce. This h.tter problem i.s made difficult by the fact 

that suc.h a .. devi.ce is nonlin~..iro 

which le&d to the evalua.tion of the conv:;ent:r.ation profile of electrons 

and holes, the field interi.sit.y~ ~i.,d t:he I-V cha.:r&cteristico The solu-

tions are given which were obta.ined by .a numeri.cal method and by an an.-

a1ytica,l methodo 

The theo:!r.y of local f luctu.!!!.tfons in the case of non-equilibrium is 

slightly extendedo Based on a method o.f va.n der Ziel ( 1959) 1 an equa.tio11 

for the g-r noise spectrum of long double-injection diodes is der,ived .. 



3 

This equation predicts the magnitude and the spectral shape of the noise 

of realizable double-injection diodeso The theory includes the effects 

of both electric field and carrier diffusion in the ohmic and in the 

semiconductor regime. Numerical solutions have been obtained through 

a computer program which solves a highly non-linear third order differ

ential equation with three boundary conditions. These solutions are 

compared with simple analytical approximations, which neglect some of the 

fine details of the boundaries. The numerical results are compared with 

experimentally obtained I-V characteristicso Special solutions have 

been obtained in the ohmic regime with small injection and in the 

semiconductor regime. 



CHAPTER II 

THEORY OF HOLE AND ELECTRON FLUCTUATION IN A SEMICONDUCTOR 

lo.l Introductiono This chapter is conce:l'.'ned with the development 

of a ma:themat:ical model of hole .and electrcm fluct:uati.on in a semicon-

ductoro In order to calculate the gt':!r1.era.tion.~r.ecomb:tnatic:i:w1 noise, it is 

necessary to know the fluc.tua.t:!.on ia the number of mobi.le charge c.a:rri-

ers. Burgess (1954 9 1955 9 1956) used both thermodynamical and statisti-

cal approaches to calculate the extent of the fluc:tuation in the numbers 

of mob:i'.le cha.rg~ cai:rfo:es ( i.oe o e lectron.s in the conduct.ion band and 

holes in the valenc.e band) due to the t'Jindomness in the process of' gen-

era.tion and r.ecomb:lnat.:1,o:n., He htdi.,c;at.ed th&t t:ha thermodynamical treat-

ment applies to those c<!!ses in which thermal eqtd.librium is est8.blished; 

the stat:l.st:!.cal approi!i.ch is cill.pttble of a.pplic:ation. to systems in which 

equ:Hib:ritm1 does not exi.sto In this ch.apter t:he statistical method of 

Burgess i.s presented.. A mod:Lfying factor is suggested in the :result of 

· hole an,d electron fluctuation in the case of non-e.qui.li.b:r·:i.um. 

:ts assumed that: there is omly one independeri.tly fluctuating variable, 

,:,;;i::d.ch may bt~ either t.h<? number of holes P in the Vi!Ei.lence band or the 

nt,mbe:ir of el,ec.trons N in the conduction b~ndo When there ar@ N electrons 

in the :conduction ba.nd~ let the p:i::obability th.iil.t a.not.her electron enters 

du:c:h,,g the time dt be g (N)dt, and let the probability that &n electron 
e 
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leaves the band during dt be r (N)dt. It is assumed that the generation 
e 

and recombination rate ge and re depend on only one fluctuating variable, 

in this case N. If W(N) is the steady state probability distribution 

for the number of electrons in the conduction band, we have: 

O = d:~N) = r (N+l)W(N+l) + g (N-l)W(N-1) - W(N)[g (N) + r (N)] 
e e e e 

(2.2.l) 

The above equation exists for N equal to every positive integer. From 

we have 

and fr.om 

_W(l) ge(O) 
w(o) = r. ( 1) 

e 

.~(l) = r (2)W(2) + g (O)W(O) - W(l) [g (1) + r (1)] = 0 
dt e e e e 

(2.2.4) 



we have 

W(2) g/ l) 
W(l) = r (2) 

e 
i.e. 

By induction from N = 1 to Nit follows: 

6 

( 2. 2.5) 

(2.2.6) 

The logarithmic differentiation of W(N) at the most probable value of N, 

i.e. the steady state value N0 of N is: 

LdnW(N) = -·-··~ ... 
AN 

lnW(N+l) - ltiW(N) 
- - (N + l) ·- N 

N=No 

From Equations 2.2.6 and 2.2.7 we have: 

N-1 ) 

~ = 0 
I N=N0 

dlnW(N) = ln 
dN 

W(O) - ln 
vlbo g (v _N __ e __ W( 0) 

\!1!:l r / \!) 

= ln g (N) - ln r (N + 1) e e 

(2.2.7) 
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it follows: 

(2.2 .. 9) 

It is assumed throughout that all the numbers N0, P0 are large com-

pared with unitye From the above equations we have: 

g. (N0) = r (NO+ 1) ,.., r (N0) · e e - e 

In order to make a Taylor expansion of ln W(N) up to the quadratic term, 

2 2 
we evaluate d h"l W(N0 ) /dN = 0 (See Equation 2,,2 .. 9) and d ln W(N0 ) /dN 

as follows (Use Equation 2.2.8)i 

= 
N=N 

0 

~ 'lnW(N+l) :N lnW(N) 

(N + 1) - N 
N=N 

0 

= [ lng/N+l) - lnr/N+2) J - [ lng/N) 

N=No 

- lnre (N+l) JI 
N=No 

lng (N+l) - lng (N) 1· [ lnr (N+2) e e e 
= ---,.(-N-+-1""'") ---N-- - (N + 2) 

N=No 

- lnr/N+l) JI \ 
(N + 1) 

N=N 
0 



d ln ge(N) 
= 

dN 

d ln r (N + 1) e 
dN 

g; (N0) r; (_No + 1) 

= ge (N0:) - r/.No + 1) 

g!(N0) r;<N0) 

::'. ge(NO) - re(NO) 

N=N 
0 

8 

where the prime denotes differentiation with respect to N1 Thus, the 

Taylor expansion yieldsg 

' 1n W(N) (2.2.12) 

or 

(2 .. 2.13) 

where 

(2.2.14) 
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From Equation 2.2.10 it follows that 

If we are interested only in extrinsic semiconductors with fully 

ionized impurity atoms, e.g. donor atoms N0 , the equilibrium number of 

electrons in the conduction band is N = ND + P ~ N0 • We, then, consider 

only transitions between the valence band and conduction band as pro-

ducing fluctuations where now (Burgess, 1956) 

ge = constant r = p NP = p N(N - N ) e D 
(2.2.16) 

and where p is a proportionality constant. From Equation 2.2.,1.5 and 

2 ,, 2 " 16 we have 

ge(NO) 

= p(No + Po) 
(2.2ol7) 
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From Equation 2.2.10 and 2.2.16 we have 

(2.2.18) 

It follows immediately that 

(2.2.19) 

2.3 Fluctuation in the Number of Charge Carriers in the Case of 

Non-Equilibrium, The development of the mean square fluctuation in 

Section 2.2 of this chapter by Burgess is a good approximation, if N0 

and P0 are in the neighborhood of thermal equilibrium. In the steady 

state case where the values of N0 and P0 may be quite different from the 

thermal equilibrium values, we should not omit higher order terms in 

the e.xpansion of ln W(N), iee. we should have more than the two terms 

shown in Equation 2.2.11. It is reasonable to assume that the existence 

of space charges due to excess electrons in the conduction band and 

excess holes in the valence band will affect the fluctuation of charge 

carriers. Since in a double-injection diode the steady state values of 

N0 and P0 in the case of non-equilibrium are always greater than the 

steady state values in the case of thermal equilibrium, we will tenta-

tively assume Equation 202.12 for N less than N0 , i.e. we rewrite it as 

follows: 
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(N - N / 
W(N) = W(N0) exp [ - ---0-J for N < NO 

2 
(2.3.1) 

2 ANt .· 

where 

(2.3.2) 

If N0 is much greater than unity, Equation2~3.l can be considered as a 

continuous distribution function rather than a discrete distribution 

.function in the. neighborhood of N0 • We can shift the zero point of N0 

by transformation X = N . ..:. N0 , and Equation 2. 3.1 becomes then 

-W(X) = W(O) exp [ • 

. 2 . 

~] for X < 0 

211N. 2 
t 

(2.3.3) 

For a distribution function where N is greater than N0 , we n::tain the 

same probability for X > 0 as for X < 0 i.e. for N > N0 as for N < N0 • 

We will tentatively introduce a suppresion factor k 1 of the simplest 

kind (i.e. k 1 i~ a constant to be determined but is independent of N) 

due to the existence of space charge such that 

Y=kX 
1 

where 
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and 

W(Y)YdY = W(X)XdX (2.3.L.c) 

From the above relationship we have 

W(Y) = W(~) exp (- __ Y_2--) 

kl 2k 2 AN 2 
1 t 

for O < Y 

By changing the dummy variable from Y to X in Equation 2.304 and using 

Equation 2o3.2 

x2 
W(X) = W(O) exp (- ) 

W(O) · 
= -- exp (-

k 2 
l 

where 

2 AN 2 
t 

2 
x ) 

2k 2 AN 2 
1 t 

and 

for X < 0 

for O < X 
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From the distribution of Equation 2.3.6, it is easy to find that 

the mean is equal to zero and the variance is 

~ kl+ 1 N0P0 
iN 2 ( ) 
Jj. = 2 s N0 + P0 

.1 < c < 1 
2 (2.3.7) 

where 

1 + kl 
c=---2 

It is obvious that in thermal equilibrium the "'suppression factor" 

k is equal to l because Equation 2.3.6 has to converge to the Burgess 
.I. 

theory (Equation 2.2el2). When N0 is much higher than the steady state 

value of thermal equilibrium, ~l may be near zero. By the preceding 

argun1ent together with c = (k1 + 1)/2, we obtain a result which is one 

half that of Burgess when operating in very high carrier density level. 



CHAPTER III. 

NOISE SPECTRA DENSITIES 

3.1 Introduction. In Chapter II the fluctuation of the number of 

charge carriers in a microscopic volume was discussed. In this chapter 

based on a method of van der Ziel (1966), we will discuss therma.1 noise 

of a single-injection Space-Charge-Limited (SCL) diode. But WE! will 

obtain a different result than van der Ziel, namely, 

i2 = 4kT gAf (3o lo 1) 

Theoret:i.c..01 support to the equation which was first suggested by Webb 

and Wr 0962) 9 will be given. Then the equations for the generat:t.'.:m= 

recombination noise of double-injection devices will also be developed • 

.3~rmal_f'!o~ fs~~lnjection SCL Diode. · If we assume 

thermal noise for a single-injection diode in a microscopic volume, 

there are several possibi.Hties to get the noise spectra of the whole 

device. Van der Ziel (1966) showed that, if the "thermal noise 

hypothesis11 (namely the Nyquist Equation) is applied rigorously; the 

following result is obtained 

i 2 = 8kT gAf, 

14 
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which is a factor two different of Equation 3.1.l and g is the 

differential conductance of the device. 

There are experimental results (Liu, ~ .!!.•, 1967) which seem to 

support Equation 3.2.l for single-injection diodes. However, Klassen 

(1968) derived through a different argument the result 

(3.2.2) 

which is 1/3 the value suggested by van der Ziel. 

For further discussion on this subject, it is worthwhile to present 

a method which leads to Equation 3.1. l. In a single.-injection n - v - n 

SCL diode with v (slightly n doped) material (See Figure 1) it is well 

known that as long as drift predominates over diffusion: 

where 

I -qµ nAE a n 

I = electric current (A) a 

(Drift Current) 

(Poisson's Equation) 

q = electric charge (coulombs) 
2 

µ = electron mobility <mv) 
n s 

(3.2.3) 



-3 n = electron density (m ) 

A= area of cross section of the device (m2) 

E = electric field intensity(!.) 
m 

e = relative dielectric constant 

d 1 . <Avms). e0 = ie ectr1c constant 

16 

(In this dissertation. Ia is called positive when it flows from right to 

left, and we assumed V = 0 at x = 0 and V = VL at x = L.) The field 

intensity and the electron density in the device is obtained from the 

above two equations with appropriate boundary conditions (i.e. E(O) = O) 

as 

E(x) 

ee 0 
n(x) - -- 2q 

n 

Ix= o 
V = 0 

Figure 1. Noise in 

0 < x < L (3. 2. 5) 

0 < x < L (3.2.6) - -

11 _ t.S.(f) 
l. 

\I n 

~ ~ Ix= L 

V=V 
L 

a Column Element of an n - v - n Device 
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As shown in Figure 1 the voltage across the section Ax is 11 V where 

~Vis obtained from Equation 3.2.5 as 

l,.V =-E L':.x 

In order to apply the thermal noise hypothesis, we should use the 

incremental resistance as the one responsible for thermal noise rather 

than the D.c. value suggested by van der Ziel (1966), since the current 

fluctuates around its steady state value I ~ Instead of using 
a 

we use 

AV(x.) 
AR(x.) = 

Ia 

o bV( x) 
= -o I a 

From Equation 3o2.7 and 3.2.9 it follows that 

1 
2 

x LX 

(3.2.9) 



If we assume thermal noise in a microscopic volume A1>.x the thermal 

noise spectrum is given by 

2 
J:. v = 4kT t.R . .!if 

1 
(3.2.11) 

Furthermore, if we assume no position correlation of the thermal noise it 

follows that 

v 2 =Z 4kTAR.(x) bf 
1 

(3.2.12) 

If we define R as the sum of incremental resistance as follows together 
n 

with Equation 3.2.10, we have, 

R = Z llR (x) 
n i 

1 3 

j L ( ) 1( 2 )2 L2 
= AR" x = 3 I E:E:O µ A 

0 1 a n 
(3.2.13) 

where Lis the length of the device. 

To relate Equations 3.2.12 and 3.2.13 to the 1-V characteristic, we 

integrate Equation 3.2.7 between V(x = O) = 0 and V(x = L) = v1 to get 



\ VL JL 
) 0 t,.V = - 0 

and it follows 

v 2 
L 

ee µ A -O n 13 

19 

(3.2.14) 

(3. 2.15) 

In Equation 3.2.13 replace I by its value from Equation 3.2.15, we have 
a 

(3.2.16) 

where 

If the noise . db -:'1. 11 l is represente ya current generator 1 in para e 

with the device. Thus, from the equation 

.2 2 2 
1 = V g (3.2ol7) 
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we obu.ia 

-
i 2 = (4kTR "'£) 2 4kT A f ~ g = 'g&..l,. 

11 
(3 .. 2 .. 18) 

Although this type of solution was first suggested by Webb amd Wright 

(1962) 9 this section gives a theoreti~al.support of their argument. 

If we have positio~ correlatioa as bidicated by Sergiescu ( 1966) ll 

we expect a value somewhat lower than the value shown in Equation 

3 .. 2 .. l6o Howeyer, future experiments about. noise in such. devices w1U 

decide which of the approaches is more nearly t;uee 

3o3 Geaerat:i.on Re~ombb.~.t:iq,!_Noise Sp~ctra. in a D,guble-Injection 

Deviceo Let. us assume that the geuratio~-:r.ecombilu1.tion noise theory as 

given by van der Ziel (1959) for a linear element holds also in a small 

section.6.x of·· nonlinear element and together with the follewing: 



we have 

where 

2 2 
4Ia (b + l) np T 

. 2 • 2 2 
(bn + p) (n + p) A(l +WT) 6X 

AS.(f) = the current noise spectra in a section AX 
1. 

µn = electron mobility 

µp = hole mobility 

b = µ /µ 
n p 

n = electron density 

p = hole density 

ANO = number of electron 

APO = number of hole in 

in a section 

a section IJ. x 

T = average charge carrier lifetime 

w = angular frequency. 

AX 

21 

(3.3.1) 

In all following calculations c has been tentatively set equal to one, 

and we have 

2 2 
4Ia (b + 1) npr 

6. s. ( f) = -----,--------,.--,---
1. (bn + p) 2 (n + p) A(l + ui2r 2) /:,.X (3. 3. 2) 

We consider a double-injection device as a quasi-linear device in a 

a section AX, and therefore, we may apply the following equation to each 

section of the device 



~Sv(f) = ASi(f)(AR) 2 = ASi(f)(A~(x)) 2 
a 

where ASV(f) = voltage noise spectra in a section Ax~ Along with 

Equation 3.3.2 we have 

2 2 
S ( f) = 4(b + 1) _np T (AV) 

A V 2 2 2 
(bn+p) A(n+p)(l+ WT )Ax 

• 

It follows that 

2 jL 2 S (f) _ 4(b + 1) T · n(x) p(x) E(x) dx 
V - 2 2 2 • 

A(l + WT ) 0 [n(x) + p(x)J [bn(x) + p(x)J 

Finally, from the equation 

we have 

L 2 
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(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3 .. 6) 

Si (f) = ?1a>2 4 (b + !):T j 
aVL A(l +wt) O [n(x) 

n(x) p(x) E (x) dx . . 2 • ( 3. 3. 7) 
+ p(x)J [bn(x) + p(x)J 



23 

Calculations on g-r noise in a somewhat different nonlinear diode 

h,,we &pparently been done i.n a thesis by Bar:rera (1966) (communication, 

Hans Ro Bilger)o Thi.s is the basic equation for the calculation of g-r 

noise spectra" In order to calculate the g-r noise in a double·dnjec

tion diode, we need to know th@ I-V cha.racteristi.c as well as the prop

erties E(x), n(x) and p(x)o 



CHAPTER IV 

GENERATION-RECOMBINATION NOISE SPECTRUM OF A DOUBLE-INJECTION 

DIODE OPERATING IN THE OHMIC REGIME 

WITHOUT INJECTED CARRIERS 

4.1 Introduction. This chapter is concerned with a demonstration 

showing how to apply the theory we developed in Chapter III to a realiz

able double-injection diode (See Figure 2). The simplest operation of 

the double-injection diode will occur when there are no externally 

injected holes and electrons. This case occurs when no voltage is 

applied to the double-injection diode. Calculating the g-r noise in 

this condition will give us an example of how to use Equation 3.3~7 and 

will give us the approximate g-r noise when the current is small. (In 

Chapter VII with injected carriers we will use.the same method to find 

the g-r noise spectra of a double-injection diode when it is operating 

in the ohmic regime with injected carriers and in the Lampert semicon-

ductor regime.) 

4.2 Ohmic Regime Without Injected Carriers. In a double-injection 

diode without injected carriers the current flow equations are given by 

J =qµ n...E n n ·r 
(Ohm's law for electrons) (4.2.1) 

J =qµ pTE p p 
(Ohm's law for holes) 
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I+Al(t) .. 

~---- V + AV ( t )------,----..i 

+ 

P region 
(Pp~ 1015 cm-3) 

Tr region (orv) 
( P0 ~ I012cm-3) 

X=L 

n region 
( nn ~ 1017 cm-3 ) 

Figure 2. Schematic Representation of a Double-Injection Diode 
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where 

J = electron current density 
n 

J = hole current density 
p 

~=electron density in thermal eq4ilibrium 

(assumed independent of x) 

p = hole density in thermal equilibrium 
T 

(assumed independent of x). 
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The addition of Equations 4.2.1 and 4.2.2 gives the total current density 

as 

J = J + J n p 

whe.re J = total current density. 

(4.2.3) 

The device is assumed to have a constant cross section A. In this 

chapter we assume no space charge exists, therefore 

I - -a 

q(µn nT + µp pT) AV L 

L 
(4.2.4) 

where I = total current passing through the device, and this case we a 

have: 
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From Equation 3.3.7 in Chapter III the equation of g-r noise is then 

I 2 L b E2 dx 
S.(f) =(°a/ 4(b + 1) r) ~ T 

1 v 2 2 
d L A(l + CJJ 'f ) 0 (~ + f'rr)(b~ + 

2 2 
4(b + 1) T ~ Pr Ia 

=~~~2---2~~~~~~~~~~-2--

(l + w r ) A(~ + pT)(b~ + pT) L 
(4.2.5) 

Representing the spectral density by the equivalent shot noise current 

Si(f) 
I (£) = eq 2q 

(4o2.6) 

where I = equivalent shot noise current, we find a g-r noise spectrum 
eq 

of the form 

I oC I 2 
eq a 

(4.2.7) 
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in the ohmic regime of a double-injection diode without injected carri

ers. Results similar to Equation 4.2.7 have been obtained by Fazakas 

and Friedman ( 1968) with different approaches. 



CHAPTER V 

THE DOUBLE-lNJECTION PROCESSES IN A SEMICONDUCTOR AND 

AN APPROXIMATE METHOD OF ANALYSIS 

5~1 Introduction. The theory of double-injection in a semiconduc-

tor has been developed by Lampert (1959, 1962), Lampert et al. (1961), 

Baron (1965, 1968), Mayer!! al. (1965, 1968) and will again be discussed 

in Chapter XI. The nonlinear ordinary differential equation which 

defines the problem has no closed form solutions. This chapter will give 

an approximate analytical solution to the problem. This approximate 

solution will give a physical picture of the variation of the quantities: 

n(x), p(x), and E(x), and the I-V characteristic. These quantities are 

needed in order to calculate the g-r noise of Equation 3.3.7 in such a 

nonlinear device. 

5. 2 The Equations o.f a Double-Injection Diode. As shown in the 

paper by Baron (1968), we start with the following set of equations 

which completely defines the problem. 

(1.) The current flow equations (with drift and diffusion terms). 

[ d6n 
Jn = q µn (°T + on) E + ~ dx J 

d6p 
JP = q µ P [ ( P.r + 6 P) E - ~ d:x) 

29 

(5.2.1) 

(5.2.2) 
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J = J + J 
n p 

(5.2.3) 

where jj = kT I q and 6n, 6 p are excess injected electron and excess 

injected hole densities. 

(2.) The particle conservation equations. 

l dJn 
--=r 
q dx 

1 (in three dimensions.r = - div J) 
q ·n,. 

l dJ 
_ _.£=r 
q dx (in three dimensions r = - 1 div J) 

q p 
(5.2.5) 

where the recombination rater shall be given by 

on l.E. on 
r = - -at = - ot = T (5.206) 

(In this dissertation we consider only a one dimensional problem.) 

(3.) Poisson's equation is: 

eeO dE (-) - = op - on 
q dx (5o2o7) 



and 

dV 
E = - -dx 
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(5.2.8) 

where V is the electrostatic potentialo Equations 5. 2o 1, 5.2. 2 and 

5.2.3 give 

[ d6 n d.§..E.) J 
J = q µp (b~ + pT) E + (b6n + 6p) E + !3(b-Fx - dx (5.2.,9) 

Multiplying 5u2.4 by 1/iµn and 5.2.5 by 1/u = b/µ and then adding 
·p n 

the results gives, using 5.2.1 and 5.2.2 

(b + 1) dE d d2 
r = (°!' - pT) dx - dx [(op - &n) E] + 13-2 (6n + op) 

µn dx 
(5.2.10) 

We will only consider n type material~ i.e. slightly p doped, which 

has~<< PT» n = on and p = pT + op. Furthermore, we can assume the 

current is due to drift mainly~ i.e. the last term in Equation 5.2.9 is 

negligible compared with the other terms. In this case Equations 5. 2. 9 

and 5.2.10 can be replaced by 

J = q µ p ( PT + hon + 6 p) E 
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(b + l) 
r - - e:e:o £.. (E dE) + 13 i2· (on + op) 

q dx .dx dx . 
(5.2.12) 

where Equation 5.2. 7 .·has been used to eliminate o - o in the _seco.nd 
p n 

term of 5.2.10. The solutions for the Lampert semiconductor regime, 

the Lampert insulator regime, and the diffu~ion dominated regime, are 

obtained by retaining respectively only the first, the second: or .the 

third term in ··5. 2.12. . This soluti.on has been carried out with the 

following results (Baron, 1965): 

125 
J = - (1.8"'"~. E:E:(frJ!p '!" 

for. the l,ampert semiconductor regime 

v 3 
L 

15 
for .the Lampert insulator regime. 

(5.2.13) 

(5.2.14) 

In the remainder of ·this chapter, we always assume that on:::::'. op. 

Thus, the second t~rm in 5.2.10 is small compared with the other two 

terms, consequently is neglected. 

5.3 The Diffusiot) Dominated Sections. We will not solve the re-

maining differential equation for the whole device. Instead this chapter 

will provide a' •method for finding out which part of the device is in the 

Lampert semiconductor reg~on, · i.e. where the first te,rin on the right, hand 

side of Equation 5. 2.12 dominates, and which part is in the diffusion 

dominated region, ,i.e. where thelast term on the ,right.hand si,de of 

Eq~ation 5.2 •. 12 dominates. If we apply a voltage acros's the. double

injection device, ·the holes will inject from the left anci the electrons 

will inject from the right, (See Figure 2). As shown in Figure 3, we 
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define xDO and x01 by the following conditions: 

For O S x ~ x00 and L - ~L S x S L, the diffusion term, i.e. 

the last term on the right hand side of Equation 5. 2.12, shall 

dominate. 

For x00 S x !S_ x01 , the first term on the right hand side of 

Equation 5.2.12 shall dominate. 

+ 

-------1P 

x = 0 

~o 

TT (or v) 

2 

XDL 1 ,~ 

I 
x=L 

Figure 3. Diffusion Dominated Sections of a Device 
(Sections 1 and 3) 

If we assume high level conditi~ms, i.e. 6n ~op>> pT, and 

neglect the space charge term, i.e. neglect the second term on the right 

hand side of Eq~ation 5. 2.12, Equations 5. 2.11 and 5. 2.12 become 

together with n = on and op = op + PT 

J = q µp (b + 1) nE (5.3.1) 

(b + 1) dE 
2~ 

in 
(5o3o2) r = - PT dx + 

dx2 µ, n 



With Equation 5.3.1 and r = n/T Equation 5.3.2 becomes 

If the diffusion term dominates, Equation 5.3.3 becomes 

(b + 1) n = 2 ~ d2n 
µ 'T dx2 n 

The general solution is 

where. 

L = a 

+ .!._ 
L 

n(x) = c1 e a+ c 2 e 

2 l::l µ 'T 
n 

(b + 1) 
is the arnbipolar diffusion length, 

and c 1, c 2 are arbitrary constants. 
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(5.3.3) 

(5.3.5) 

In the long devices which we studied, the total length is given as 
-x/L 

L > > L8 • In this kind of problem c 1e a must dominate in section 1 
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x/La 
of Figure 3 and c2e must dominate in section 3. Since the first 

term of Equation 5.3.3 was neglected, we then will have in Section 1 

where 

pTJ dn 
2 dx 

q µ (b + 1) n p . 

x 
- La 

n(x) -:;:: c 1 e 

(5.3.7) 

(5.3.8) 

Substituting Equation 5.3.8 into Equation 5.3,7, we have the 

following condition for a diffusion dominated region: 

1 
pTJL 2 

n(x) > > [z. a (b + l)J 
~ q µp 

From Equation 5.3.6 it follows tha~ 

n(x) 

2 2 
PT J 1" b .. 

>>[ . 
. 2 2(b + 1) 3 I~ . q l" µp 

(5.3.9) 

(5.3.10) 



Since at x = O, the boundary condition is (Baron, 1965) 

JL a 
n(O) = 2 q µ ~ 

p ' 

and from Equations 5.3.8 and 5.3.11, Equation 5o3.9 becomes 

x 1 
JL - L p_J L -2 

a a [ ·T a J 
2q µp 13 e > > 2 p q µp (b + 1) 

It follows that 

La L J(b + 1) 
x < < ~ ln ( a ~ 

2 2q f:3 µp Pr 
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(5.3.12) 

(5.3.13) 

x00 (See Figure 3) is defined to be equal to the right hand side of 

Equation 5.3.13 and is given by 

La L J(b + 1) . 
xDO = 2 ln ( 2 £. l3 P ) 

q µp T 
(5.3.14) 

For Section 3 of Figure 3, by using the boundary condition (Baron, 

1965)~ 



JL a 
n(L) =---

2q u. p 
'n 

and in a similar way we get the result 

L L J(b + 1) a a 
xDL = 2 ln (..,.2_b_q_~_µ_p_p-T-) 

which is by a factor L/2 ln (b) smaller than ~o· 
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(5,3.15) 

(5.3.16) 

5.4 The Lam~rt Semiconductor Sections. If the first term on the 

right hand side of Equation 5.3.3 dominates, we have 

(b + 1) n 
b µ T 

p 
= 

Solving the above equation, we have 

where c3 is an arbitrary constant. 

(5.4.1) 

(5.4.2) 

The range of validity of Equation 5.4.2 is determined by assuming 

that the first term on the right hand side of 5.3.3 is large compared to 

the second tenn. This condition gives: 
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<< 
pTJ dn -------2 dx 

q µ (b + 1) n 
(5.4.3) 

p .. 

where n(x) is shown in 5.4.2. Substituting Equation 5.4.2 into 

Equation 5.4.3, we may put the above condition into the form 

2 2 1 
PT J rb 4 

[ 2 .. 3 ] > > n(x) (5.4.4) 
6q (b + 1) 1:3 µ 

p 

where the left side of Equation 5.4.4 is a lower limit for n. This 

formula is roughly the same quantity as in Equation 5.3.10 where it 

represents a lower limit for n in the diffusion dominated region. So we 

define a new quantity Mas follows: 

(5.4.5) 

where the condition 

n(x) > > M determines the diffusion dominated region, and 

n(x) < < M determines the Lampert semiconductor regiono 

5.5 An Approximate Solution to the Differential Equation. From 

Section 5.3, i.e. Equations 5.3.12 and 5.3.14 (b =µ /µ > 1), we derive 
... n p 

that in a p-n-n diode, diffusion is more prominani:·,,on the left side of 

then section. Since we consider a long diode (L >>La), an approximate 

solution of Equation 5.3.3 can be found by neglecting the diffusion 
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effect on the right hand side of the TI section but by including the 

diffusion effect on the left hand sideo We start with a linear super-

position of the separate solutions of Equations 5.3.,8 and 5o4 .. 2 as 

follows: 

x 

n(x) = c 1 e 
L 
•+ 1 

(5.5.1) 

/
.:_x2q {b + 1) 2 + 

Jb ,- PT c2 

where c 1 and c 2 can be evaluated through the boundary conditions of n(x), 

i.e .. n(x)x-~O = n(O) and n(x)x=L = n(L) as given by Equations 503.10 and 

5.3 .. 13 .. 

In addition, if we neglect the diffusion term on the left hand side 

of the TI section, Equation 5o 5 .. 1 becomes 

n(x) = 

where c 3 is an a.rbitra.ry constant ;;;.nd can be evaluated through the 

boundary condition n(x) L = n(L)o Then Equation 5 .. 5o2 becomes x= 

1 (5 .. 5.3) 
. ' 2 

_ x) 2 q ( b + l) + _1_ 
Jb 'f PT n2(L) 

2 when the device is operating in the regime where J OC V , ioe. which 
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2 2 means that 10 A/m $ J ::s_ 1000 A/m (See Section 604). We may neglect 
2 . 

the term 1/n (L) over most of the diode lengtho As an example we take 

the lowest current (werse case because n2 (L) increases with J 2), 

J = 10 A/m2, L - x = L. The following numerical quantities are assumed a 
2 . • 2 

(Bilger, _et _al., 1968): µ = Oo 135 m /Vs, µ = 00048 m /Vs, PT = lo 1 X 
n p . 

1018m-3, 4 o 'f = 0 µ seco, T = 300 K., Then we have: 

2 
(L - x) 29 (b +· 1) = L 

Jb 'f PT a 

and (from Equation 5.3.13) 

From the results of Equations 5.,5o4 and 5.,5.5, we justified the 

approximation 

1 
n(x) = ---------

2q (b + 1>2 
( L - x) --'=:::-::---

Jb 'f PT 

• 

(5.5.4) 

(5,.5.5) 

(5.5.6) 

This result is withil"l a factor 1//2 of the result given as Equation 12 

by Bilger,~.!!.•, (1968)., Comparing Equation 5.5.6 with the numerical 

results derived in Section 6.4, we see that except for the small 
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diffusion dominated part on the left hand side of then section, it is a 

2 
a good approximation for J in the regime where J oc V , i.e. 

10 A/m2 ~ J < 1000 A/m2 



CHAPTER VI 

A COMPUTER SOLUTION OF THE DIFFERENTIAL EQUATION 

OF DOUBLE-INJECTION IN A SEMICONDUCTOR 

6.1 Introduction. In this chapter the equations of double-injec-

tion are solved as a two boundary value problem {split boundary value 

problem). A computer program is written in such a way that we guess the 

the unknown initial condition on one side, for instance, the left side 

of the device. It then becomes a one boundary value problem. The solu-

tion that we have by guessing the unknown initial condition on the left 

side will give us a new boundary_ vah.1e ·on the; right hand side. The new 

boundary value on the right hand side is compared with the specified 

boundary cond_ition on the right hand side.. If the diffe.rence of the two 

is not tolerable the computer will automatically select a new boundary 

value on the left hand side. The process will reiterate until the 

di,fference between the calculated and the known boundary values on the 

right hand side is within the. desired preset limit. One set of computer 

results will give us E(x), n(x) at every point of .the device, as well as 

the voltage corresponding to the assumed.constai;it current density. 

Several sets o.f computer results will give us the I-V characteristic 

which, togethor with E(x) and n(x), are needed to calculate the g-r 

noise spectra of Equation 3.3.7. Compared with the experimental data 

by Bilger, et al., (1968), the calculated I-V characteristics are within 
.~~ ' 

35%0 The results ai-e also compared with the analytic methods given in 

42 
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Chapter V. 

6.2 Master Equations andBoundary Conditions. The master equa-

tions are derived as follows: 

(1.) Master differential equati0ns - From Equations 5. 2.11 and 

5.2.12, assuming n ~on ~op and r = n/-r as given by 

Equatiom 5.2.6, we have: 

Written as a function o.f V, with the x c0ordinate 

normalized by y = x/L, we have: a 

(6.2.1) 

(6 .. 2 .. 2) 

This equation results in a third o.rder differential equation. 

(2.) High level regime - We aoume n ,z on~ op, r = n/'r, and 

(b + l) 6n > > PT• From Equations 5. 2.11 and 5.2.12, we get 

the following result: 

• 

( 6.2. 3) 



Written as a function of V9 we have: 

where y = x/L a 
a 
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In order to solve Equ&tions 60202 and 6.2o4, we use true two bound-

ary conditions as given by Equations 5o 3o 10 and 5. 3o 1.3. The ini.tial 

conditions of E &re obtained by Equ.ation 5.2oll for Equation 6.2o2 and 

by Equation 5.3.1 for Equati.on 6.2.4. The other initial condition for 

Equations 602.2 and 6.2.4 i.s V = 0 at x = O. We write the initial cen-

ditions for Equation 6.2.2 such that 

V(O) = 0 V(L) = VL (to be calculated) 

4:!(!:2. = "'" . - 29b § J. 
dx (2qb µPSPT + (b + 1) L)) 

(6. 2. 5) 

d2V(._Q1 -- to 
2- be initially estimated 

dx 

a2v(L) _ _,.,...,,,... = to be calculatedo 
ctx:2 

Si.rnilarly, we wi-:ite the initial conditions for Equ<ition 6.2~4 such that 

V( O) = 0 V(L) = V (to be calculated) 
L 
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dV(O) 
= dx 

-2 f) 

(b + 1) L 
a 

dV(L) 
clx = 7_?_ ~ 

(b + 1) L a 
(6.2.6) 

iv(O) = to b~ initially esti1;nated 
iv(L) --2--- = 
dx 

to be calculated. 

As stated in Equation 6. 2. 5 or 6. 2. 6, we guess the unknown value of 

d2V(O)/dx2• The computer program then becomes a one boundary value prob

lem. The computer solution that we have by guessing iv(O) /dx2 will give 

us a set of values of V(L), dV(L)/dx and iv(L)/dx2• If the difference 

of the new value of dV(L)/dx with the specified dV(L)/dx given by 

Equation 6. 2. 5 or 6. 2. 6 is not tolerable, the computer will automatically 

2 2 
select a new value of d V(O) /dx • The process will reiterate until the 

difference between the calculated dV(L)/dx, a.nd the specified dV(L)/dx 

is within the desired preset limit. 

In his paper Baron (1968) stated two more approximate boundary 

conditions: 

dn(O) 
dx 

J - - ..,,...---
2q µp ~. 

dn(L) J =----2q µ p 
n 

dx 

and (6.2.7) 

(6.2.8) 

The initial conditions of d2V/dx2 are obtained by Equations 5.2.11, 

5.3.10, and 5.3.13 for Equation 6.2.2, together with the others such 
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that: 

V(O) = 0 V(L) = VL (to be calculated) 

dV(O) = - 2 p J 
dx [ 2q µ IS PT + (b + l)L J] 

ct2v( o) 
2· 

dx 

p a 

= 2q µp p (J - q µp pT) 

(b + 1) L 2 J a 

dV(L) _ -2qb [? J 
dx - [ 2q µ p PT + (b + l)L J] 

p a 

(6.2.9) 

a2v ( L) = _-_2 q_·_µ...;.;;n_tJ_(_J_,_-,....q_µ_f~P..;;;;T_) 

dx2 (b + 1) L 2 J a 

Similarly, the initial con~itions of d2V/dx2 are obtained by Equations 

5.3.1, 5.3.10, and 5.3.13 for Equations 6.2.4, together with the others 

s1.,1ch that: 

V(O) = 0 

dV(O) -2 l::l 
-= 

dx (b + l)L a 

a2v(O) 

dx2 

= 2q µp p 

(b + l)L 2 
a 

V(L) = v1 (to be calculated) 

dV(L) -2 ~ b = dx (b + l)L 
a 

iv(L) 
-2q µ p 

n 
2 = 

dx (b + l)L 2 
a 

(6.2.10) 

For example, in solving Equation 6.2.4, if the boundary conditions 
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at x = 0 of Equation 6.2.10 are used, we do not necessarily get dV(L)/dx 

and d2V(L)/dx2 of Equation 6.2010. Knowing the approximate initial con

dition d2v(O)/dx2 of Equation 6.2.6 will save a lot of computer time 

because the solution will converge faster by guessing approximately the 

correct one. We do not know whether Baron (1968) used the split bounda-

ry value conditions as we do, but if he does not, we have reason to be-

lieve that our results are more accurate because his results are the 

first iterations of our computer program. 

603 1-V Characteristic. In order to compare the theoretical re-

sults (i.eo by solving Equations 602.2 and 60204 with appropriate bound-

ary conditions as discussed in Section 6.2)' with the expe:rimen.tal datat': 

· bf Bilger .!E_ al. ( 1968}, we use the f01lewin.g numer;ical quantities: 

2 
µ = 0.135 m /Vs 

n 

µ = 0. 048 m 2 /Vs 
p 

b = µ /µ = 2. 813 
n p 

p = 1.1 X 1018 m- 3 
T 

q = 1.6 X 10-19 coulombs 

'T = 40 µ sec 

T = 300 ° K 

A = 10 X 10-6 m2 

-.3 
L = 6 X 10 m. 

The variable V of Equations 6 .. 2.2 and 602.4 is a function of the normal-

ized distance, y, where y = x/L4 ,, The ambipola.r d.iffusion length L2 is 

given by Equations 5.3.6 and, in this case, is given as 

-4 L = 2,, 7 X 10 m, and L ~ 22 L .. a a 

For each constant current density, J, by solving Equation 6.2.2 we 

get a corresponding voltage difference VL across the device. The I-V 
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characteristic is plotted in Figure 4o We found I OC. Vl. 243 in the ohmic 

regime, except for the transition regime (between the ohmic regime and 

the Lampert semiconductor regime). These results are within 35% of the 

experimental data. It is to be noted that each of the parameters used 

in the experiments may be uncertain by .30%a If we also consider the 

contact voltage drop of the p-rr and n-n junction, we expect that the 

theoretical values will be closer to the experimental oneso 

2,315 
Similarly, by solving Equation 6.2o4 we found that I oc:. V is in 

the Lampert semiconductor regimeo Comparing Equation 6.2.4 with the 

experimental data in this regime where I ~v2, we also found an accuracy 

of 35%. 

In the transition regime the results of Equation 6.2.2 and Equation 

602.4 are differento This problem remains to be further investigated. 

6.4 Carrier Densities and Field.Int.ensitieso The field intensi-

ti@s for various assumed current densities are plotted in Figure 5 as 

functions of the normalized distance, y~ · The field intensity profile of 

the dashed line, i.e. for J 

density in the olun:i.c regime. 

2 
= 2 Arnps/m , is an exampl112 of the current: 

In the Lampert semiconductor regime we 

2 
= 10, 100, and 1000 Amps/m. For each 

curve, thiia current pa.ssing through the devic.e is c.onstant. In a given 

cm:ve the diffusion effects (third tenn in Equation 5. 2.12) become less 

important as the field intensity is larger. From studying the curves in 

Figure .5, we see the dri.ft effect is predominant over most of the cen-

tral part of the device. 

The carrier densities can be obt~ined from the field intensities 

by Equation 5.2.11 for the ohmic regime and can be obtained from the 

field intensities by Equation 5.3 .. l for the Lampert semiconductor regime. 
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The c~rrier density curves for several current densities corresponding 

to the field intensity curves in Figure 5 are plotted in Figure 6. The 

diffusion effect is proportional to the gradient of the carrier density 

(see the second tern on the right hand side of Equation 5.2.1 or 5.2.2). 

From the carves in Figure 6, we see that the diffusio~ effect is predom-
\ 

inant in the neighborhood of contacts (i.e. in the neighborhood where 

x = 0 and x = L). The diffusion effect is more prominent on the left 

hand side than on the right hand side as is also shown by Equations 

5.3.12 and 5.3.14, because b ~2.813 and x00 > xD1 • 

In order to compare the carrier densities in the device as a func-

tion of .normalized distance with the analytical method list in Chapter V, 

i.e .. Equation 5. 5. 6, we rewrite Equation 5.4. 5 as follows: 

2 2 .!. 
PT J ,- b 4 

M=[ 2 .. 3 ··] 
4q {b + l) 13 µp 

• (6.4.1) 

We rewrite Equation 5.5.6 as follows: 

1 
n(x) = -------------

2q (b + 1) 2 ( L - x) ___,_,__ __ _ 
J b ,- PT 
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The numerical quantities are taken from ~,ection 6.3. Equation 6.<'l-.1 is 

plotted as a dashed line in Figures 7, 8, and 9. For n(x) > > N (above 

the dashed line), we have the diffusion dominated region. On the other 

hand for n(x) < < M (below the dashed line), we have the Lampert semi-

conductor region. 

In Figure 7 by solving Equation 6.2.2 with the boundary conditions 

2 
of Equation 6.2.5, the numerical results of J = 2 Amps/m are plotted 

together with Equation 6. lf. 2 at the same current density. It is seen 

that Equation 6.4.2 is not a good approximation because the curve of the 

numerical results does not satisfy the condition n(x) < < H., Le. rn.ost 

of the curve is not in the Lampert semiconductor region. 

In Figure 8, we plotted Equation 6.4.2 together with the numerical 

results by solving Equation 6.2.4 with the boundary conditions of 

2 
Equation 6. 2. 6 at J = 10 Amps/m • We found that Equation 6. L~. 2 is a good 

npproximation except for the diffusion part on the left hand side of the 

device. These results are true because, in Figure 8, most of the curve 

,Ct" • 1 lt d•ff f "".="7"1017 J 112 b 11 oI 11e numer1ca resu s 1. • er rom t·, -~ -'• A y a muc 1 .arge:r 

amount than in Figure 7. Thus, most of the curve is in the Lampert 

semiconductor region. 

In Figure 9, the approxirnation of the results of the two curves is 

tolerable but is not as close as those in Figure B. The reason for this 

dVference is that the diffusion effect on the right hand side of the 

device becomes a factor that we should consider as current density 

increases. This effect is shown by Equation 5.3.14. From this argument, 
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we sea Equation. 5. 5~ 6, i.,e. in this case Equation 6.4. 2, is a good ap

proximation for the current density in the Lampert semiconductor regime. 



CHAPTER VII 

G-R NOISE SPECTRAL DENSITIES OF A DOUBLE-INJECTION DIODE 

7.1 Introduction. Using the equation developed in Chapter III and 

the results of Chapters V and VI, the noise spectrum was calculated by 

both the analytical method and the numerical method. It has been found 

that at low frequencies the generation-recombination noise spectra have 

the dependence 

where (7.1. l) 

m should be near 2 when the current is small and should be near 3/2 for 

current in the Lampert semiconductor regime. 

7. 2 G-R Noise Spectrum by the Analytical Method. As shown in 

Chapter III, the generation-recombination noise spectrum is given by 

Si(f) np dx dx 
. )2 (n + p)(bn + p 

• (7.2.1) 

From Equation 5.2.11, Equation 7.2.1 becomes: 
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s. (f) 
l. 

l:. (b + 1) 2 r .i-2 __ J L _ no dx 2 2 2 2 ____ , __ :..:.i;:__ __________ _ 

q µP A(l + w r ) 0 (n + p) (bn + p) 2cPT + bn + 6p/ 

(7.2.2) 

where, in this case, n = 6n, p = Pr + 6p. In the Lampert semiconductor 

regime 6n ~op>> Pr' from Equation 7.2.2 we have 

s. (f) 
J. 

2 r J 2 

2 2 2 
q u (b + 1) 

' p 

dx • (7.2.3) 
(1 + 

The approximate value of n(x) is given by Equation 5.5.6, substituting 

n(:,) into Equation 5.3.1, we have 

E(x) --
(L - x) 2 J 

2 
b T PT qµ p 

T."i: follows from (E = -dV/dx) that 

and 

dV VL - -~ 2 \L JL - x dx 

o J b r Pr g µP ) o 

v = -L 
8 8 J 13 __ ,.....,.. __ _ 
9 2 

q r-'·p b r Pr 

(7.2.4) 

(7.2.5) 

(7.2.6) 
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Rewriting Equat:ton 7.2.6 we have 

v 2 
9 2 L 

J=-q'1J. brp - (7.2.7) 8 p T 3 
L 

(which is exactly the same as given by Equation 5.2.13). From Equations 

5.5.6 and 7.2.7, Equation 7.2.3 becomes 

s. (f) 
l. 

1 

= 36 {2 A g2 (b + 
1 1 1 
2 2 2 2 2 

,5 . b L PT ( 1 + w T ) 

From Equation 4. 2. 6 we have 

3 

18.[2 A (b + 1) r 2 J2 
I =~~~~---~---~~~~~ 

1 

eq l 1 l 1 

5 q 2 b 2 1~ PT 2- ( l + 2 2 
W T ) 

(7.2.8) 

(7.2.9) 

7.3 G-R Noise From the Numerical Results. Using the numerical 

results (i.e. n(x), p(x), and E(x) as well as 1-V characteristics of 

Chapter VI) and numerically integrating Equation 7.2.1, we found that 

I I 1.91 
eqoC. a (7.3.1) 
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in the ohmic regime, and 

I I 1.512 
eq OC a (7.3.2) 

in the Lampe~t semiconductor regime. 

Using the numerical quantities as given in Section 6.3, Equation 

7.2.9 is plotted in Figure 10 together with the numerical results of 

Equations 7.3.1 and 7.3.2. Comparing the results of Equations 7.2.9 and 

7.3.2, it is seen that 7.2.9 is a good approximatio~. The noise spectra 

as a function of w at several ct.1rrents, are shown in Figure 11. From the 

results of Equations 7.3.1 and 7.3.2, we know the noise spectra as a 

function of current should be in the range as shown in Equation 7. 1. L 
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CHAPTER VII I 

Sill11'1ARY AND CONCLUSIONS 

8.1 Sum,-nary. A theory of the generation-recombination noise 

spectra was developed from.a microscopic viewpoint which extended over 

the entire device. In order to get the g-r noise, the I-V characteristic 

of double.-injection had to be thoroughly studied. From these results 

theoretic;al predictions of g-r noise as a function of current were made. 

In Chapter II the theory of carrier density fluctuation in a semi-

conductor was discussed and was extended for the case of large departures 

from thermal equilibrium. Using the results in Chapter III, the g-r 

noise spectrum was developed once the local carrier fluctuation was 

known. 

In Chapter IV a simple e:>;;ample was given to show how to apply the 

theory to the double-injection device operating in the linear mode. 

ln Chapter V and VI the physical properties of double-injection in 

a semiconductor were solved both analytically and numerically with the 

aid pf a computer. 

In Chapter VII the g-r noise of double-injection was solved by both 

an analytical method and a numerical method. 

8.2 Conclusion. The following equation for g-r noise has been 

derived: 

S.(f) = c ?Ia)2 4 (b + 1)2 T (L ne E2 dx 2 

l. c)VL A(l + w2 r 2) ) 0 (n + p)(bn + p) 
(8.2.1) 
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where 1/2 < c 5 1. 

In the ohmic regime, the results were found that I C>C V. 1. 2 and a L 
I I 1.91. 
eqo<: a 

In the Lampert semiconductor regime, the results were found that 

I V 2.315 d I I 1.512 oc. L an oC. • a eq a 

If we neglect the diffusion part from the p-n junction, the electron 

density in the Lampert semiconductor regime is 

n(x, J) = 1 (8.2.2) 

(L - x) 
29 (b + 1) 2 + ..,._.. __ 1 __ 

b 'f PT J J L 
( 2 . , a ) 2 

q P µn 

In general the g-r noise spectrum should be 

S. ( f) OC. I m 
l. a 

where .2. < 2 2 m < , 

m should be nfaar 2 when the current is small and should be near 3/2 

when the current is in the Lampert semiconductor regime. 

8.3 Recormnendation for Further Study. The most interesting and 

fruitful extension of this dissertation would be a program of experimen-

tal measurements to probe the predictions made in this dissertation. 

A second extension would be to look into the transition regime 

between the ohmic and the Lampert semiconductor regime and to detennine 

how the g-r noise changes from I ~r 1•91 to I -r 1. 512 • eq,..._., a eq,___. a 
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APPENDIX A 

LIST OF SYMBOLS 

2 
A= cross section area of a device (m) 

b = µ /µ n p 

t3 = kT / q ( VO 1 t) 

c = (1 + kl)/2 

E = electric field intensity (V/m) 

e = relative dielectric constant 

e0 = dielectric constant= 8.854 X 10- 12 (As/Vm) 

f = frequency (H) z 
-1 g( f) = high frequency conductance (real part of admittance) (n. ) 

ge(N) = the probability that an electron enters the co.nduction band 

I 8 = the DC current passing through the device (A) 

I (f) = equivalent shot noise current (A) eo 

12 = the variance of current fluctuation (A2) 

J = total current density (A/m2) 

~23 ( 2) k = Boltzmann constant= 1.38 X 10 VAs/m 

k1 = a suppr~ssion constant due to the existence of space-charge 

L = length of the device (m) 
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where the conditions n(x) > > M determines the diffusion 

dominated region 

n(x) < < M detennines the Lampert 

µ = electron mobility 
, n 

µ = hole mobility 
p 

2 p µ 'f 
n 

1 + b 
(m) 

semiconductor region 

= the ambipola:r diffusion length 

N = number of electrons 

(m-3) n = electron density 

N0 = donor atoms 

N0 = the steady state v~lue of N 

AN2 = variance of the variable N 

AN 2 = 
t 

= variance of Nat thermal equilibrium 

1 where 2 < c < 1 

= variance of Nin the case of non-equilibrium 

ANO = number of electrons in a section Ax 

(m-3) ~=electron density in thermal equilibr~um 

-3 6n = excess electron density (m ) 

P = number of holes 

-3 p = hole density (m ) 

P0 = the steady state value of P 

APO= number of·holes in a section Ax 
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( -3, pT = hole density in thermal equilibrium m ; 

-3 
6p = excess hole density (m ) 

-19 q = electron charge= 1.60 X 10 (As) 

( -3 -1.) r = recombination rate of electron and hole m s 

r (N) = the probability that an electron leaves the conduction band 
e 

AR(x) = D.C. resistance in a section Ax of a device (Sl.) 

~R.(x) = incremental resistance in a section x of a device (n) 
l 

70 

R = total resistance responsible for thermal noise in a device (n.) 
n 

s. (f) = noise current spectral density (A2 s) 
l 

s (f) = noise voltage spectral density (V 2s) 
v 

T = absolute temperature ( o K) 

V = voltage difference (V) 

v1 = voltage difference applied to a device (V) 

v2 = variance of voltage (V2) 

W(N) = the steady state probability distribution for the number of 

electrons in the conduction band 

w = angular frequency (Hz) 

x = length coordinate of a device (m) 

L L J(b + 1) 
a a ~o = 2 ln ( 2 .... . ) (m) 

q I' µp PT 

where x < < ~O is the diffusion dominated region adjacent to 

the p-:rr contact 

La La J(b + 1) 

xDL = 2 ln (2bq i3 µp pr' (m) 

where L - x < < xDL is the diffusion dominated region adjacent 

to the n-n contact 



y = k • x 
1 

y = x./L normalized length coordi.nate of a device 
t:. 

V = electrostatic potential (V) 

T = carrier average Ufe time (s) 
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