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CHAPTER I 

INTRODUCTION 

1.1 Discussion 

Through the years, the study of the free vibrations of,circular 

cylindrical.shells has received much attenti9n. These studies have re

sulted from·the widespread industrial application of.circular cyli~ders. 

Many times,. the designer is faced with the problem of designing cylin

drical shells which are not circular. The purpose,of this·study is to 

investigate the free vibrations of simply supported noncircular cylin

drical shell.panels. 

The design of noncircular.shells,is. of particular interest to de

signers of aircraft and .submarine structutes·.- ·In ·aircraft design, for 

example, the wing and leadi.ng.,.,edge skin,panels al;'e·usually noncircular •. 

Helicopter blades. are often two unstiffened., ·contourecf':skinE:1 joined to

gether. along their straight edges. ·Tb,ere has .:also beenta keen interest 

in submarine hulls with noncircular .. cross sections: and''.ifoncircular skin 

panels between stiffener.s. 

Roof.structures may be unstiffened,' non.circular cylindrical shells. 

Cylinders which are desi~ned to be circular, but become noncircular 

during fabrication, must -sometimes be analy?·ed as norn;:ircular shell.s. 

The examples givep. are representative of "open"·(as opposed to 

''closed") cylindrical. shells. The present study was directed toward 

this class of cylindrical shells. 
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1.2 Background. 

For the discussi.ons. to .. follow, .. reference~-should .be made to the 

geometry and nomenclature oL.Figure 1. The ·quantities· appearing in 

Figure 1 are defined as.follows: s,.x, and z.are the orthogonal coor.,... 

dinates; v, u, and ware corresponding.displacement components; .r is 

the variable radius of curvature; his the shell thickness; Lx is the 

length of· the shell in the x-direction; · and 1 8 .:is the ·arc length of, the 

cylindrical shell measured along the surface in:the. a-direction. 

Figure 1. Elemental Geometry 

2 
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In 1894, Rayleigh (1) derived .an.expression for the natural fre"".' 

quencies of closed circular cylinders with.simply supported ends, con-

sidering only the circumferential mode·s •.. The _results f~om his expres-

sion agreed with experi:ment;al d,;ita for ·.cylinders vibrating in. higher 

circumferential modes. For lower .. circumferential :modes, hi~ results 
. ' 

were in error .. Rayleigh's error occurx-ed:because he assumed the defor-. 

mations to be inextensional. _That.is, the-middle~surfa'ce.of the shell 

would only bend during small vibrations· but· ilot· stretch, · .. Using an ex-. 

planation based on.an energy _approach, A'rno:ld·.and.War.burton· (2) cl,arified 

the significance ·of Rayleigh's inextensional·:.asrsumption. · 

Using this same· energy approach, .and including -middle surface ex-

tensions, Arnold and .Warburton. (2) .. calculated natur1al frequen.cies for. 

circular cylinders with simply suppoJ:ted.ends~ · They· verified the lower 

frequencie_s by. expe:riments. , Their•· study .also .explaineir:::why · the lowest 

frequency _of a cylinder could .possibly occur at a high .. circumferential 

mode shape, Since their wqrk, many papers with parametric.studies and 

experimental data have been published for• simply supportec;l circular. cy-

linders (3, 4, 5). 

Stadler and Wang (6) solved for the.natural frequencies of open 

circular panels. These panels were simply supported alorig'their Cl.!-rved 

edges. They also satisfied the implied -.boundary .conditions· at· the nodal· 

lines of closed circular cyl:J.nders. A computer_program was-written to 

• determine the natural frequencies of ci.rcular panel§! based ·on, the·ir_ 

method. This computer program helped verify that the ni:ethog te be pre ... 

sented would give an exact solution.· 

The first attempts. to solve nonc_irc4lar cylindrical sh~ll ,.problems _ 
. I 

expressed the. variable curvatur_e as .an infinite fourier series. 
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Marquerre (7), in 1951, assumed an infinite fourier cosine series.for 

the curvature when he considered the stability of simply supported.non-

circular cylinders. This curvature expression is given by equation 1,1,_ 

That is, 

where 

R = 
0 

z;;j = 

s = 

s = 
0 

1 
r + 

Mean radius of curvature 

EccentriGity constants dependent 

Coordinate along crose section 

upon j 

Arc length of closed cross section. 

(1.1) 

Malkin:a (8) assumed a nondimensiona.1 radius of curvature given by 

equation 1.2, when he studied the free vibrations of noncircular cylin-

drical shells. Equation 1.2 is 

r 

G 
00 

r 0 + EL bj 
2j1rs J (1.2) = cos s R R 

j=l 0 

where 

r = Mean radius of curvature 
0 

R = Arbitrary constant 

E = Eccentricity constant 

b. = Constants dependent upon j 
J 

s = Arc length of one half of closed cross section, 
0 



Kempner (9) verified the Donnell equations! for cylindrical shells 

having varying curvature, i.e. noncircular cylindrical shells~ When 

solving the static and buclding problems, he assumed a curvatuJ;"e ex-

pression .defined by 

where 

1 
r 

= 41rsJ E cos L 

r = Radius of-curvature 

r · = Mean radius of curvature 
0 

e = Eccentricity constant le Isl· 

s = Cqordinate along cross section 

0 

L = Circumference of cross section in a-direction, 
0 

(1.3) 

It should be noted that .. this expression is a special case of equatio:n 

1.1. While this expression for the curvature includes a lar~e class 

of problems, all arbitrary cross sections are not described accurately. 

5 

by equation 1.3. Although Marquerre's (7) curvature series is complete-

ly general, there may pe cases where it would be difficult to generate. 

A power.series could possibly give an easier and more.accurate expres-

sion for the actual curvature. 

Boyd (12) assumed the curvature.expression as a finite pqwer 

series. In order to nondimensiona,lize the.curvature, the curvature was 

. . 

loonnell (10) ,, in 1933,. derived a simplified set· of e·quilibrium 
equati~ns for circular cylinders. In -deriving this·set of equations, 
Donnell made two siID.plifying assumption!,!, He first.assumed t;hat.the 
transverse shear-force makes_a negligible contributien to the equili
brium of forces.in the circumferential direction. As the ratio of the 
radius te> the thickness of the ·shell increases~ this a.ssumpt:ion can be 
expected to improve in accurg.cy (11). In additiqn; he assumed _that the 
circumferential displacements result in negligible contributions ·to the 
changes in curvature·and twist. 
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multiplied by the arc length, L. The curvature was then assumed to be s 

given by equation _1.4 

where 

L 
s 
r = 

k 

L D (ts·) j-l 
j=l j 

D. = Unitless.constants dependent upon j. 
J 

k = Number . of terms necessary to express accurately the · 

curvature. 

(1.4) 

Although not a part of this study, this curvature series can be 

obtained for any·general cross section. From a known.cross section, 

the curvature at a sufficient number.of pdints can be calculated. With 

the curvature at these points .known, equation 1.4 can be developed by 

any suitable technique, such as the least squares method (l3). ·· 

For the special case of a circular cross section with .a constant 

radius, r = a, k = .1 and equation 1.4 reduces to 

where 

L 
~ = 
r = 

e a 
0 

a = e 
0 

e = Angle subtended by the.circular panel. 
0 

(1.5) 

Another special case of equation 1.4 is the flat plate. For the 

flat plate; k in ·equation 1. 4 is one, and n1 = o. Physically, this-

· represents the case of an infinite r&dius of cu_rvature. 

In seeking solutions to Donnell~s equations, Boyd (12) assumed the 

displacements for the static probl~ to __ take the form of a doubly infi-

nite series. A trigonometric series in the x-direction and-a power 
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Figure 2. Circular Panel 

series in the s-direction were assumed for the di$placements •. 

1.3 Approach 

The equations derived by Kempner for noncir.cular cylind~rs were· 

modified to include. _the translational inertia terms. The · displacel!lents 

(u, v, w) were expanded in the doubly-infinite series, .. similar to _the 

ones used by Boyd (12) in his study of statically loaded cylinders. A. 

periodic function _in the variable time was-added to the displacement 

fu11,ctions used by Boyd. Th~ trigonmetriq series satis~ied ,the· boundary 

conditions for the cylindrical shell panel simply supported along.its 

curved edges. The straight edge boundary conditions.were expressed in 

terms of· the coefficients in the di_splacement series. -· 

From the substitution of the ·ass.umed_ displacements ,and curvature 

functions into the equilibrium equations, the -three recurrence formulas 



were obtained. From these recurrence formulas, and· the eight equations. 

stating the. straight edge boundary conditions, the natural,frequencies 

were calculated for circular and noncircularpanels. Once the natural 

frequencies were known, the corresponding modal shapes were calculated. 

8 



CHAPTER II··. 

FORMULATION OF THE SOLUTION 

2.1 Introduction. 

Equations. 2, 1 are the familiar Dom~ell (10) equations of. equilib-

rium for a freely-vibrating cylindrical shell. These ·equations were 

verified for a noncircular cylindrical shell by Kempner (9), The geom-

etry of the shell was shown. in Figure 1. The modified Donnell equa-

tions are 

u + xx 

1-µ --v 

1 
r 

2 XX· 

1-µ --· u 
2 SS 

+ v 
SS 

+ 
1+µ + µ (;)x -v 2 XS 

+ 
1+µ 

+ (:t --u 
2 XS 

h2 4 + 12 v w + 

Subscripts indicate differentiation and 

(1..a./1e 
E. 

(1.;.µ2)p 
E 

2 (1-µ }p 
E 

vtt 

tift = 0 

= 0 

o. 

(2,1) 

x, s, z, t = Longitudinal, circumferential, and transverse spa-

tial coordinates~ and time, respectively 

u, v, w = Displacements in the x, s, z directions, respectively 

r = Variable radius .of curvature 

µ = Poisson's ratio 

p = Mass. dens.i ty. 

For convenience, equations 2,1 are rewritten-using the following 
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nondimensional independent variables: 

where 

n = x/L x 
~ = s/L s 

a = !tit 
2 

y = 1-µ 
2 

Lx = Length of cylinder in x-direction 

L = Arc length of cylinder in.s-direction. s 

Equations 2,1 become 

(1-/)pL 2 
. . s 

. E Utt = 0 

r(~:}2 vnn + v« + a(~:) unS + {: w ls 
(1-i)pL 2 

s 
0 

L lL (L ) 2 . (l-1/}pL 2 
~ ~ w + v + u ~ u J + h12 v'+w + s r r ~ · L •n E 

x 

where 

=4 (L ·J2 v w = ~·· 
1 
L 2 

x 

w nnnn 
+ 2 

L 2 
x 

10 

(2.2) 

(2;3a) 

(2. 3b) 

0 

(2. 3c) 
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It should be noted that equations 2.3 are a set of .three Goupled par-

tial differential equations. 

As explained in the Introduction, it was assumed that the curvature 

of the cross.section could-be accurately expressed by equation 2.4. 

where 

ture, 

D. = 
J 

k = 

L 
s 
r = = 

k 

I l:j-1 · 
D • "' J 

j=l 

Unitless constants describing the curvature 

(2.4) 

Number of terms necessary to express accurately the curva-

Following the procedure of Boyd .(12), one assumes the solutions 

for the displacements to be mixed, doubly infinite series which satisfy. 

simply supported boundary conditions at x = 0 and x = Lx. These dis-

placement series are shown in equation .2.5, They are 

u(x,s,t) = ~ ! 
m=l n=l 

A m,n 
(i:) n-1 m7TX 

cos . L coswm t 
:x 

00 00 (i:r1 v(x,s,t) I I B 
, m7TX (2,5) "" sin 1 coswm t m,n 

m=l n=l x 

00 00 (1.:) n-1 w(x, s, t) I ~ c . m7TX = sin ·~ coswm t m,n 
m=l· x 

When the x ands coordinates are nondimensionalized by the expres-

sions 



equatioµs 2.5 become 

u(n,~,t) = ff 
m=l n=l 

A 

= .s/L s 

= m L /L 
s x 

cos m,n cosw t m 

12 

v(n,~,t) = ~~ B m,n 
n-1 

~ sin cosw t 
m 

(2 .-6) 

m=l n=l 

w(n,~,t) = ~f 
m=l n=l 

where 

c m,n 
n-1 

~ . sin 

A m,n B m,.n C· =. Unknown constant c0efficients with unit~ m,n 

of length; 

The assumed displacement functions automatically sati~fy the simply 

supported boundary conditions along the curved edges (n = 0,1). They 

do not, however, satisfy any specific boundary condit+ons alolig,the 

straight edges.(~= constant). The incorporation of arbitrary strai~ht 
I 

edge bG>un:ciary cqnditions into the problem will be discussed in detai~· 

in Section 2.3. 

2.2 Formulation of Recurrence Formulas 

When the assumed displacement functions -- (2. 6) are substi_tuted in,to 

the equilibrium equations (2.3), three coupled algebraic recurrence for-

mulas are obtained. There will be one recurrence formula for each 



l.3 

equilibrium equation. 

Substitution of equation 2.6 into equation 2.3a an4 sil\lp1ification-

gives 

! [ t A S 2 ~n-l + ! A (n..;1) (n-2) ~n-3 · 
m=l .f;;,J_- m,n m Y n=l m,n-

~ C ~n-,1 
m,n 

n=l 

<JO 

(1 2) 2 . 2 

L ~n-1] 
S L 

+ 
--µ pts .wm 

A 
,ms cosw··t ·· = o. (2. 7) 

E m,n. cos - 1- n m 
n=l x 

Since this equation must be true for each m, it is therefore pos-

sible to write equation 2.7 as follows: 

00 

+ OI. I 
n=l 

! 
n=l 

_ A S 2 ~n-1 + y 
m,n· m 

(n-1) B 
n-2 + µS ~ m,n m 

00 

2 2 2 (l.,.µ, )pL w 

L + . s m 
E 

n=l 

· n .... 3 
(n-l)(n-2) A ~ · · m,n 

K OQ 

I D. j-1 
~ 

J 
j=l n=L· 

n-1 
A o. !:; = m,n (2.8) 

For convenience, it is necessary to change the.exponents of~ to . . . . 

n-1 for . each _term .in the previous. equation. The following transfor-

mations are needed: 
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00 00 L (n-1) (n-2) A 
n-3 I p(p+l) A 

p-1 
~ = ~ m,n m,p+2 

n=l p=l 

00 00 

~ (n-1) B 
n-2 I p '\i,p+l 

~p-1 
~ :;::: 

m,n 
n=l p=l 

00 00 z 00 

~ D. j-1 I n-1 D. I c 
j+n.,..2 

~ c ~ = . ~ 
J m,n J m,n. 

n=l n=l 

k 
00 p 

I p-1 = D. 0. cm,p-j+l' (2,9) 
J J 

p=l 

where 

p 

0' 0 if p < j 
J 

p 

0' = 1 if p ~ j 
J 

Now, by letting the dummy index p become n, and substituting 

equations 2.9 into equation 2.8, one obtains 

Ioo1 r_o 2 A 
I-µ + y n(n+l) A L m m~n m,n+2 

n=l 

+ a$ n B m m,n+l 

(2 .10) 
K 

+ µSm I DJ. ~J. cm,n-J'+l + 
j=l 

(1-µ2). pL 2. w 2 . J 1 ____ s_m_ A ,n- = 0 • 
E m,n 

By equating the constant coefficients of.all terms in this·series to 

zero, one obtained the recurrence formula. 
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FQr each m and n, 

K 

+ µSm L Dj :j cm,n-j+l + 
j=l. 

(1-i)pLs2Win2 
---..... ---A = o. 

E m,n (2.11) 

Following the.same .procedure and.using the.second and third equi-

librium equations, the second and thir~ recurrence formulas are 

-yS 2 B + n(n+l) B m m,n m,n+2 - e1S n A +l m m,n · 

(2.12) 
K 2 2 2 

I 
n (h·µ )pw L 

+ D. 0, 1 n C + m s 
0 . . B = 

J J- m,n+2-j E m,n 
j=l 

and 

a 4 c m m~n - 2(3 2 (h1 )2 n(n+l) C .:+2 
m. 8 m,n 

+ ( h113)2 n(n+l)(n+2)(n+3) C / m11n+4 + 12 

K K 

LI 
i=l j=l 

n n 

Di Dj 0i 0j cin,n+~ ... i-j 

(2.13) 

12µSm ~· D. J' ~J. A L m,n+l-j 
j=l 

+ 12 
n 

Dj oj-l (n:..j+l) B ·+2 m;n' ... J · 

12(1-/)pL 2w 2 
_____ s __ m __ . C = 0 • 

E. m,n 
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When letting 

-2 
w = 

2 2 2 12 (1-µ )pw L . . m s 
E 

(2.14) 

the three recurrence formulas, (equations.2.11, 2,12, 2.13), become 

+ (a(n) ) B 
S m,n+l m .·· . 

n 

Dj oj cm,n-j+l = 0 
j=l 

-2 

-a.A m,n+l 
.. (-ySm + l~sm) + . . .. . B n+l + -B 

$ m,n+2 
m 

n m,n· 

K 

+ ~· D. ~. l C +2 j = 0 L.i J J- . m,n -
j=l. 

n K n 

(2,l.Sa) 

(2.15b) 

12µS 
m 

(n+2) (n+3) 0; 
J Am,n+l-j 

+· 12 .. 
(n+2)(n+3) I n. 0. 

J J 
(n-j+l)B -j+2 m,n . 

[(tf am4 - ;;2] 
(n+2)(ri+3) + c m,n 

+{~./ n(n+l) cm,n+4 + 12 

j=l 

2n(n+l) sm2 .(h1s)2 c 
(n+2)(h+3) m,n+2 

K K 

II 
i=l j=l 

n n 
D. D, o, o, C +2 i . 

1 J J. J m,n - -J 

(2,15c) 

= o. 
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If it is desired to neglect the.in-surface ,inertia terms in.the 

-2 formulation of the vibration problem, .the terms containing w are omit-

ted from the first two recurrence formulas. 

The recurrence formulas aregeneralenough so that if eight un~ 

known constants are·found, .then the.remainder·of the unknown constants 

can be found through the.use of .the three.recurrence·formulas. These 

eight unknown constants.are.obtained from the boundary conditions which 

will be discussed in the next section, 

2.3 Boundary Conditions . 

Examination.of equations 2.3 reveals.that the highest order of the 

differential equation for w is four; for u and v it· il!fl:wo. Since 

there are two independent variables,.(r.r and~); silltteen independent. 

boundary conditions are needed. -·There.will be four along eaqh of -the 

four edges, giving a total of sixteen. When the_ displacement. funct.icms 

(2. 6) were assumed, eight boundary conditions· were established by the 

cosine and sine functions evaluated for n == 0 and n == l. These condi-

tions are: 

u (1,~) n . = v(l,0 = · w(l,0 = = 0 . 

Therefore, in .order to solve for.the ·eight constants, eight boundary 

conditions must be specified along the two.boundaries of constant·~. 

The boundaries were chosen to correspond to~ =.O and 1, and the. 

following boundary conditions were considered: 
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u = 0 or N,;n = 0 

v = 0 or N,; = 0 
at <; = O ,1 ~ (2, 16) 

w = 0 or vt; = 0 

st; = 0 or Mt; = 0 

Next, it is necessary to substitute the assumed displacements into 

the above boundary conditions. These boundary.conditi6ns, expressed in 

terms of the displacements and nondimensional coordinafes, are given by 

equaticm 2.17 

N,;n 

st; 

M,; 

where 

= --Y..+~ Ghl1 s a a J 
1 L an a~ 

= 

= 

= 

s. x 

i[ Ls v aw J L r a~ s 

2 

[ 2 
µ ( ~:) Dr. J D a w 

- L 2 o,;2 + an 2 
s 

{K,l)} = h3 E th, 121-2 • 
1-µ 

(2.17) 

For the two straight edges, (,; = 0,1), all boundary conditions of 

equations 2.17 are listed (in a series expansion form) in Table I. At· 

the edge,;= O, only the first term of the nondimensional curvature 



TABLE I 

SERIES EXPANSION OF GENERAL BOUNDARY CONDITIONS 

s=o t=1 

N b Boundary Series Boundary Series 
um er Condition Condition Condition Condition 

00 

u(O) = 0 A = 0 u{l) = 0 '\:"' A = 0 
m,l L, m,n 

n=l 
(1) or or 

N, r (0) = 0 8 B l + A z = 0 N,, (l) = 0 L,' (S B + n A +l) = 0 ,.,.,, m m, m, .,,.,, m m,n m,n 
n=l 

00 

v(O) = 0 B = 0 v(l) = 0 ' B = 0 m,l L m,n 
n=l 

(2) or or 
oo K n 

N, (0) = 0 B 2 + Dl C l + µS A l = 0 NC (1) = 0 '\:"' (n B +l + '\:"' D. oj C ·+1 + µ$ A ) = 0 
s m, m, m m, ~s /__, m,n L J m,n-J rn m,n 

n=l j=l 

00 

w(O) = 0 C = 0 w(l) = 0 '\:"' C = 0 
m,l L m,n 

n=l 
(3) or or 

z . Ioo z 
V (0) = 0 6C 4 - (2-µ) S C 2 = 0 V0 (l) = 0 (n(n+l)(n+l) C +J - n(2-µ) S C +l) = 0 
~ m, m -m, ., m,n m m,n 

n=l 

oo K Il 

Sf;(O) = 0 n 1 Bm,l - cm,Z = 0 Sf;(l) = 0 L L Dj cj Bm,n-j+l - n cm,n+l) = 0 

n=l j=l 
(4) or or 

M (0) = 0 2C . 3 - JJS z C l = 0 M, (1) = 0 ~ (n(n+l) C +Z - µS 2 C ) = 0 
:; m, m m, .., L m,n m m,n 

n=l 

!-' 
\D 
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series is incorporated into the boundary conditions. 

The boundary conditions actually incorporated into the computer 

program are given by equation 2.18, 

0 
au 

0 u = or = ac; 

0 
av 

0 v = or = as at ~ = 0,1 (2 .18) 
w = 0 or v~ = 0 

aw 
0 M( 0 "" or = a c; 

Although these conditions are not as general as those given in 

equation 2,17, they are sufficiently general to enable one to consider 

a large class of useful problems. The series expansion form of these 

boundary conditions is given in Table II. 

To summarize, the three recurrence formulas relating the unknown 

algebraic constants were presented; the eight necessary boundary con-

ditions at constant~ were found in order·to get sufficient initial 

values to use the recurrence formulas; these boundary conditions were 

related to the unknown coefficients by the.relationships found in 

Table II. 

The next chapter will explain the combination of the recurrence 

formulas and boundary conditi.ons, and the calculation of the natural 

frequencies and modal shapes. 



~ = 0 

Number 
Boundary 
Condition 

u(O) = 0 

(1) or 

au(O) . 0 ~ 

v(O) = 0 

(2) or 

av(O) 
= 0 

af; 

w(O) = 0 

(3) or 

Vf;(O) = 0 .6C 
m,4 

aw(O) 
= 0 

ai; 

(4) or 

Mf;(O) = 0 2C 

TABLE II 

SERIES EXPANSION OF ACTUAL BOUNDARY CONDITIONS 

i; = 1 

Series Boundary Series 
Condition Condition Condition 

"' 
Am,l = 0 u(l) = 0 I Am,n = 0 

n=l 
or 

au(l) "' 
Am,2 = 0 - 0 L nA · - 0 af; m,n+l 

n=l 

"' B . z 0 v(l) - 0 LB . = 0 m,l ~>n 
n=l 

or 

av(l) "' 
Bm,2 = 0 .. 0 L n Bm,n+l - 0 

ai; 
n=l 

"' 
cm,l - 0 w(l) = 0 I cm,n = 0 

n"':l 
or 

2 "' 2 - <2-µ) "m cm,2 = 0 Vf;(l) = 0 I (n(n+l)(n+2) cm,n+J - n.(2-µ) Ism cm,n+l) 

n=l 

aw(l) "' 
cm,2 = 0 = 0 Inc = 0 

ai; m,n+l 
n=l 

or 

Is 2 C 
... 

B 2 C ) - = 0 Mf;(l) = 0 I (n(n+l) cm,n+Z - - 0 
m,3 µ m m,l lJ m m1 n 

n=l 

= 0 

N ..... 



CHAPTER III 

COMPUTER SOLUTION 

3,1 Frequency Matrix 

In the doubly infi~ite series expansion for the displacements 

(2.6), them-summation denotes the vibrational mode shape in then

direction. That is, the first mode in the. n- direction is the case 

form= 1. The n-sununation includes an infinite number of constant 

coefficients for each m. If. an infinite number of terms in then

summation is used, the assumed.displacement functions will converge to 

the exact solution. Examination of the three recurrence formulas 

(2.15) reveals that the magnitude of the coefficients will approach 

zero as n becomes large. Thus, this method will give sufficiently 

accurate displacements and natural frequencies if then-summation is 

truncated where the omitted terms are negligible, 

In Chapter II, the boundary conditions and the three algebraic 

recurrence formulas were discussed. The recurrence formulas resulted 

inn-wise coupling, for each m, of the constant coefficients of the 

displacement series. Because of this complexity, the constant coeffi

cients of the recurrence formulas were not eliminated from the set of 

simultaneous equations. 

The frequency matrix, denoted as X, was arranged as shown in 

equation 3.1. The frequency matri~ is 

22 
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BC(l) A 
BC(2) m,1 

Recurrence Formula 2.3a 
A I _m_u>+2 -- ---'-- - --

I BC(3) B m,l 
I BC(4) 

{a} 
I 

Recurrence Formula 2.3b • = (3.1) B I I _m_u>+2 - ~ ---
BC(5) c m,l 
BC(6) 
BC(7) 
BC(8) 

Recurrence Formula 2,3c c m,p+4 

[ x lm -H (3.2) 

where 

BC(l) = Boundary condition for u at E; = 0 

BC(2) = Boundary condition for u at !; = 1 

BC(3) = Boundary condition for v at ; = 0 

BC(4) =. Boundary condition for vat ~ = 1 

BC(5) =. First boundary condition for w at t = 0 

BC(6) = Second boundary condition for w at~= 0 

BC(7) = First boundary condition for w at,= 1 

BC(8) = Second boundary condition for w at~= 1. 

For each mode shape in then-direction, a corresponding Value of 

m was obtained. For example, for .the first.mode shape in t11e n-direc-:-

tion, m was equal to one. FQr each value of m, each recurre~ce formula· 

was repeated p number.of times. That is, in each recurrence formula, 

·n varies from one top. Because there were two boundary cqmditions for 
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u and v, there were (p + 2) coefficients for A and B , -respective-m,n m,n 

ly. Using the same argument for w, there were (p + 4) coefficients of 

C in the frequency matrix. m,n 

The frequency matrix can be divided into 9 submatrices (see equa-

tion 3,3). For cases including in-surface inerti~, tlie nondimension~l 

-2 w is fpund in submatrices x11 , x22 , and x33 • When-in-surface 

inertia effects are neglected, only x33 includes.the .nondimensional 

-2 frequency w. The effects of curvature are found in the submatrices 

x21 
I - -- ·-

x11 x12 I xl3 
- -- __ I_ --

1 
I x23 
---
1 

x33 

• B = {a}- (3.3) 

A 

c 

Upon further investigation, it should be noted that.the overall 

frequency matrix is not of a convenient form. Because of the incor-

poration of the boundary conditions into the matrix, it is not of the 

usual eigenvalue form 

I [x] w2 [I] I = 0 I 

The rows containing the.boundary conditions relate the unknown coeffi-

-2 cients and are independent of the frequency w . Even with rearranging 

the frequency matrix, this matrix cannot be made symmetric. Because 

of this _unconventional manner of the frequency matrix, the solutions 

which solve the standard eigenvalue problems could not be used. 

Because equation 3.3 is homogeneous, the natural frequencies are 

-2 those values of w which satisfy the condition that the 
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det I x I = o . (3.4) 

In general, the frequency matrix is a 3p + 8 square matrix, Be-

cause a standard subroutine program was used to determine th.e deter-

minant of .the matrix, the frequency matrix was stored column-wise in 

the computer. This procedure of storing the matrix column-wise added 

to the flexibility of the program. 

3.2 Determinin~ the Natural Frequencies 

In the previous section, it was noted that the frequency matrix 

is not symmetric, and standard eigenvalue solutions could not be used. 

The method used to satisfy the frequency criteria 

det I x I = o 

was to assume a value of ; 2 smaller than the actual value, and to cal-

culate the value of the determinant of X (called DETsr. Normally, the 

first value of ; 2 was zero, but other values can be us-ed if desired. 

-2 -2 Then w was incre.ased to w + BIT, where BIT was an incremental value 

read into the computer. A new value of the determinant (called DET) 

was calculated using the new nondimensional frequency, w2 + BIT. 

-2 
If DET/DETS was positive, w was increased stili another incre-

ment of·BIT. -2 DETS became the value of the determinant for w + BIT, 

formerly.called DET. A new value of the determinant, DET, wa~ again 

calculated, and the ratio of DET/DETS was checked. This procedure was 

continued until the ratio DET/DETS. became negative. 

When PET/DETS became negative, a root.was known.to be.between the 

last two frequencies. Several iterations then took place, until the 

-2 change in the old and new values of w became smaller than .some . known 



value of ERROR. 

This method could not be used indiscriminately. If the initial 

value of BIT was too large, it was possible to skip two roots, and 

the value of DET/DETS would stay positive. Fortunately, it was found 

that the values of the determinant did not behave normally when this 

situation occurred. It was also necessary to insure that the initial 

value of BIT was not too small. If this was the case, it would take 
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an excessive amount of computer time .to reach the first root. With a 

little experience, it was possible to get excellent results with a 

minimum amount of computer time. The method for determining the roots. 

of equatlon 3.4 could be improved, However, it was not the objective 

of this research to develop techniques for this operation. 

Theoretically, there are 3p natural frequencies which satisfy the 

frequency cr:i.teria when in-surface inertia terms are included. Unfor

tunately, only the lower values of the roots could be obtained with any 

degree of accuracy, unless p was taken to be large. The higher values 

of the roots become quite inaccurate, and many may be imaginary. When 

these higher values are needed, a .larger number of terms must be taken. 

3" 3 Calculating Modal ~~~~ 

Once the natural frequency was calculated, the corresponding modal 

shape was found. As is the case for all free vibration problems, the 

true value of the deflections can not be calculated, but only the nor

malized modal shapes can be obtained. Therefore, only the ratios of 

the u, v, and w displacements were found. 

Because a power series in the E.:-direction was used, a more re:'"' 

stricted interpretation of the ratios of the displacements was needed. 
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The unknown coefficients of A , B 
m,n msn 

and C were found as a m,n 

function of the last C coefficient. For convenience, this last co-m,n 

efficient was set equal to one. 

Once the -2 
final w was calculated, the program used the actual fre-

-2 
and recalculated the elements in the X matrix. Then, quency w a new 

submatri~ of X, called T, was.composed of all the elements of the final 

X matrix, except the last row and column. Another submatrix of X (a 

column matrix called S) comprised the last column of X, except for the 

Iast element. Therefore, the modal shape matrix could be written as 

or 

A 1. m, 

c . 
m,p+l 

I. A , 1 m, 1 

c : J m,p+3 

-I 
L 

+ {sl .. c J m,p+4 
0 

T & c . 
m,p+4 

(3 .5) 

The previous equation, which solves for all of the unknown con-

stants as a function of the last, becomes when C +4 = 1, m,p 

A m,1 

c ' 
.m, p+3 

With the coefficients found, they were placed into the assumed 

(3.6) 

displacement functions and the normalized displacements calculated at 

specific values of~ and n, 



CHAPTER IV 

NUMERICAL.RESULTS 

4.1 Comparisons with Known Results for Circular Cylinders 

Because the displacement series converged slowly, a large number 

of terms were required to obtain the natural frequencies. Therefore, 

it was necessary to enlist the aid of a computer .to solve for the natu-

ral frequencies. The procedure outlined in this study was programed on 

an IBM 360/50 digital computer. A listing of this program is given in 

Appendix A. 

One circular shell panel was studied in detail to verify the use 

of the power series method for calculating the natural frequencies of 

circular cylindrical sh~lls. A second computer program was written, 

based on an exact solution for circular cylinders developed by Stadler 

and Wang (6), to compare with the frequencies obtained by the present 

method. In-surface inertia terms were included in this comparison, It 

was possible to use the same nondimensional shell parameters in both 

programs. The shell chosen for comparing the two methods had the fol-

lowing nondimensional properties: 

L s 
L 

x 

µ 

= 

= 

0.0785398 

0.29 u = 

h 
L 

s 
= 

= 

0.025465 

w = = 

28 

L 
s 
r 

0 

= 0.392698 

at = 0 ,1 • 
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Each of the three recurrence formulas was written for each n 

(n = 1, 2, ... , p), Table III lists the nondimensional natural fre-

quencies obtained for different values of p. 

TABLE III 

NATURAL FREQUENCIES VS. P 

p -2 
w 

5 .25933 

6 " .25933 

7 .02995 

8 .03081 

9 .07676 

10 .07464 

11 .06246 

12 .06250 

15 .06301 

20 .06301 

25 .06301 

30 .06301 

-2 
from Stadler and Wang .06303 w = 
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The two programs calculate natural frequencies which differed by 

only 0.01% for p = 15. A double-precision form of the power series 

method was examined, but the improved accuracy did not warrant the addi-

tional computer time. Thus, it was concluded that the power series 

method yielded the exact solution when sufficient number of terms were 

used. 

Once the natural frequencies were calculated, the.modal shapes 

could be found. The shell used to determine the accuracy of·calculated 

modal shapes was the same as that studied by Arnold and Warburton (2), 

It had the following properties 

L 
s 

L 
x 

0.0967 µ = 0.29 h 
L 

s 
= 0.0669 

L s 
r = .785398 

Comparisons of the ratios of the maximum displacements for the lowest 

frequency (m"" 1) are given in Table IV. 

TABLE IV 

COMPARISON OF AMPLITUDE RATIOS 

Amplitude Arnold and Power 
Ratio Warburton Series 

A 0.024 0.024 c 

B 0.25 0.25 c 
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Therefore, this method also provided accurate results when calculating 

the modal shapes, 

4,2 Circular Cylinders 

Section 4.1 established that the present.method yields good reeults 

if a large number of .terms in the power.series is.taken,· It wae then 

decided to hold the value of pat; some practical limit and vary the 

nond_imensional shell parameters. The results of these computer, runs. 

could then be compared with results from.the solution of Stadler and 

Wang to establish practical.accuracy.bounds on the shell parameters •. 

From the recurrence formulas (2.6), it is seen that the value of the 

constant coefficients depend upon the three geometric quantities: Sm, 

L /r , and h/L • For this investigation, the ratio L8/r was. fixed. s s 

The accuracy of the natural freqµencies with in-surface inertia terms 

included was examined for different values of the ratio h/L, s 

For efficient util.ization of the computer, the maximum practical 

value of p was 25, This value of p resulted in an.83 x 83 frequency 

matrix, The maximum value of p tried was 30. It was used only for 

special problems because of the large amount of computer time required 

to solve for t:he natural frequencies. For this study,-the value of, 

L /r for a circular panel was taken as s 

L 
s· 

r 

where a is the radius of panel. 

= 
L s 
a 

7T = 8 

Two different values of h/L were chosen as indicated on Figure 3, 
s 

The boundary conditions used were the same as ·. those implied by the 
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{3" = mrreo a = !.23364 (..Q_) 
m Lx Lx 

m = I ~s = 9 0 = ~ µ. =0.29 
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0.2 014 0.6 0.8 1.0 1.2 IA 1.6 

a1Lx 
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Inertia Included x 

w 
N 
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solution obtained by Stadler and Wang, They are 

u = = w = = 0 at = 0,1. 

The results of this study form= 1 are shown in Figure 31 • As 

shown by Figure 3, greater accuracy was obtained for smaller values of. 

a/L. For smaller values of h/a (thinner shells), the accuracy also 
x 

improved, When frequencies for higher values of a/Lx are desired, p 

must be made larger. Theoretically, the frequency will converge .to the 

exact solution;· in prac;tice, computer -round-off error tq.ay make the 

exact solution impossible to obtain, 

A similar case was studied with in.,..surface inertia terms neglect-

ed. Similar results were obtained. That is, for lower values of a/L, . . x 

the.natural frequencies were obtained with a higher degree of accuracy. 

Because the results were similar, a plot is not given when in~surface 

inertia terms were neglected. 

With the wide use of closed circular cylinders in industry, the. 

extension of the results of this method to closed circular cylinders 

1The following relationships will be helpful when using Figure 3: 

h h = L a s 

m1rL 
s 

L x 
= 

= 

m'11'L 
s 

a 

a 8 = L 7r 
s 

a 
L x 

= 

2 2 2 12(1-µ )pw L 
m s 

E 

h 
a 

2 
m'11' 

8 
a

L x 
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would be most beneficial. When a closed circular cylinder vibrates, 

there are a number of nodal lines around the circumference. An equiv-

alent panel for the closed circular cylinder was chosen between two· 

adjacent nodal lines. The boundary conditions used for the equivalent 

panel were identical to the conditions existing along--the nodal lines· 

of the closed circular cylinder. 

Figures 4, 5, 6, and 7 illustrate the values of the nondimensianal 

natural frequencies for a closed circular shell vibrating in the first 

and third longitudinal modes, m = 1 and 3, respectively~ The nondi-

mensional natural frequencies in Figures 4 and 6 include in-surface 

inertia terms, For Figures 5 and 7, the in...,.surf ace inertia · ter_ms were 

neglected. 

For this set of curves, the class of shells had the following 

properties: 

a 
L 

x 
= 1 

4 µ = 0.3 h - = L x 
0.008333. 

The dimensionless shell parameters are found as follows: 

L 
s 1( 

= a n 
c 

m'l(L 2 

am 
s m'I( 

= = 
4n L 

x c 

h h L x a 0.03333 JL = = 
L L a Ls n s x c 
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0.1 

0.01 

Ls n 
a=nc 

m=I µ,= 0. 30 

p = 25 
MAX 

U = V( = W = W(! = 0 
o = Stadler and Wang 
6. = Power Series 

NONDIMENSIONAL NATURAL FREQUENCIES. 

nc A~bASfA~i 
POWER 
SERIES 

2 0.37644 0.38046 
3 0.04504. 0.04491 
4 0.00515 0.00514 
5 0.00308 0.00307 
6 0.00394 0.00394 
7 0.00531 0.00530 
8 0.00694 0.00693 
9 0.00880 0.00879 
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nc 

Figure 4. Nondimensional Frequencies for Closed, Simply Sup
ported Cir6ular Cylinder - m = 1, In-Surface 
Inertia Included 



1.0 

~x = 8. 333 ( 10-4 ) 
Ls TI 
a = nc 

a I m = I µ. = 0.30 = Lx 4 

PMAX = 25 

u. = v, = w = w,, = 0 

o = Stadler and Wang 
b. = Power Series 

NONOIMENSIONAL NATURAL FREQUENCIES 

nc TA OLER POWER 
0.1 AND WANG SERIES 

2 0.48168 0.48696 
3 0.05045 0.05036 
4 0.00548 0.00547 
5 0.00320 0.00319 
6 0.00405 0.00404 
7 0.00542 0.00541 

(j}2 8 0.00704 0.00704 
9 0.00890 0.00889 

0.01 

0.001---------------------------------------'"'-------....... ----__ ........ ________ _ 
0 2 4 6 8 10 12 14 

Figure 5, Nondimensional. Frequencies for Closed-, Simply 
Supported Circular Cylinder - m = 1, In
Surface Inertia Neglected 
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tx = 8.333 ( 10"4 ) 
Ls TT -=-a nc 

a =-I m=3 µ. =0.30 
Lx . 4 

PMAX = 25 

u = v, = w = wet= o 
o = Stadler and Wang 
.6. = Power Series 

NONDIMENSIONAL NATURAL FREQUENCIE'.S 

nc STADLER . POWER 
1.0 AND WANG SERIES 

2 7.9342 6.4780 
3 1.5853 1.4.861 
4 0.4241 0.4219 
5 0.1416 0.1401 
6 0.0579 0.0577 
7 0.0295 0:0289 

c:;;2 8 0.0193 0.0187 
9 0.0159 0.0154 

0.1 

0.010 
2 4 6 8 10 12 

Figure 6. Nondimensional Frequencies for Closed, Simply 
Supported Circular Cylinder - m = 3, In
Surface Inertia Included 

37 

14 



1.0 
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Figure 7 .• 

tx =8.333(10-4 ) 

a I 
Lx=4 µ, = o. 30 m=3 

'P = 25 
MAX 

U = V( = W = WCC = 0 

o = Stadler and Wang 
b. = Power Series 

NONDIMENSIONAL NATURAL FREQUENCIES 

nc STADLER POWER . 
AND WANG SERIES 

.2 9.1141 7.3601 
3 I. 7497 1.5391 
4 0.4525 0.4502 
5 0.1479 0.1465 
6 0.0597 0.0588 
7 0.03d2 . 0.0294 
8· 0.0196 00190 
9 0.0161 0.0156 

4 6 8 10 12 
nc 

Nondimensional Frequencies for Closed, Simply 
Supported Circular Cylinder - m = 3, In-
Surface Inertia Neglected 
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-2 
w = 

, . 2 -2 
12(1-µ )pw 

E 

where n is the number of the circumferential mode. 
c 
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The maximum va.lue of p was taken as 25. However, for higher n, c 

the value of p could be reduced and still obtain accurate·values for 

the frequencies. For.the first .mode shape in then-direction (m = 1), 

all natural frequencies were accurately calculated. for the second 
' 

through the ninth circumferential modes (n = 2 to 9). For m= 3, the· c 

natural frequencies for circumferential modes 4 to 9 were 0btained 

accurately. However, the natural frequencies fo.r the sec0nd and third 

circumferential modes were not obtained accurately.· For the second 

circumferential mode and neglecting in-,surface inertias, the calculate4 

frequency was 19% below that given by the Stadler and Wang method,· For 

the third cirq.umferential mode, the error was only 15%. If more terms 

were taken, this error would decrease for these lower circumfererttial 

modes. These results verify those given earlier for cases in which p 

was fixed. This indicates that the present method is lim:l.ted practi-

cally to open panels or to the·calculation of highernatural frequen-,. 

cies for closed oval shells. 

The effect of neglecting in-,.surface inertia becomes apparent when 

comparing Figures 4-7. For lower circumferential modes, solutions 

which neglect in-,-surface inertia terms give higher natural frequencies 

than corresponding solutions·which do not include in-surface inertia. 

For the higher circumferential modes, in-surface inertias do not appre-

ciably affe·ct the natural frequencies. These results have been observed 

by Armenakas (14), Ivanyuta and Finkel'shteyn (15) and many.others (11), 
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The final study made for .circular cylindrical shell panels used the 

following boundary conditions at constant E,;: 

u = v = w. = 0 at = 0,1. 

For a ctrcular panel with ,this set of boundary conditions, .the first• 

mode shape, a predominately stretching mode, occurred at a much higher. 

natural frequency. This behavior is· different· for circular panels ex

tracted from vibrating circular shells. As previously noted, the 

straight edges of panels.extracted from vibrating circular shells are 

allowed to move in during vibration and· the lowest.· frequency coincides 

with the funclamental mode shape. It was found that the.lowest fre

quency for the panels with the straightedges not allowed to move in 

vibrated in the second circumferential mode. See Figure 8 for the mode 

shapes at the lowest frequency. 

In-surfa.ce inertia terms were neglected, and th.e panel was allowed 

to vibrate in.the first longitudinal mode. The lowest vibrational fre-: 

quencies are shown in Fig11re 9, When the modal shapes.were calculated, 

the lowest frequency for cases with 

v(n,O) = v(n,l) = O 

coincided with the second circumferential mode shape. as shown in 

Figure 8b. 
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(a.) ( b) 

Figure 8. Mode Shapes at Lowest Frequencies 

4.3 Noncircular Cylindrical Panels 

For all practical purposes, there was very little experimental or 

analytical data with ·whic_h to· compare natural frequencies of noncir-

cular cylinders. Therefore, it was decided .. to compare the na.tur~l fre-

quencies of two noncir_cular cylinders. which .were mirror tmages of each 

other. From a physical point· of view, one would expect _these two cyl-

inders to vibrate with the same natural-frequencies. Also, using two 

mirror-image noncircular cylinders would.imply that the D.'s.for the 
J 

nondimensiona,l curvature would be numerically different but in reality 

describe the same shell. This objective· was accomplished by using the 

following expressions for the nondimensional curvature: 

a) 

and 

b) 

L s 
r 

'IT 'IT 
= 4 + 16; 

L 
1 = 

r 

(4.1) 
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0.10 

...2:_ = _I_ 
Lx 4 

M = I µ. = 0. 3 0 PMAX = 20 

u = v = w = we;( = 0 

Figure 9, Lowest Nondimensional Natural Frequency (Second 
Mode Shape) - m = 1, .In-Surface Inertia 
Neglected 
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It was found that the calculated natural frequencies were exactly 

the same for both cylinders. The fundamental nondimensional frequency 

-2 for the parameters used was w1 = 0. 03207,. .The second. nondimensional 

-2 frequency had a value of w2 = 0,04243. 

Because only characteristic shapes .are calculated for free vibra-

tional problems, the exact·value of the displacements"were not found. 

Instead, for these cases the displacements are redefined as follows: 

u = u 
w max 

v w 

The maximum values of the modal shapes for the first two natural fre-
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quencies are shown in Figures 10 and 11. From equation 2.6 and setting 

m"" 1, the maximum v and w displacements occur at n =~;and the maxi-

mum value of u occurs at n = O. 

From Figure 10, the maximum w displacement occurred at approxi-

mately s = 0.43 for the lowest natural frequency. The v displacement 

had approximately the same magnitude but different signs at~= 0 and 1. 

The u displacement had a similar shape to thew displacement but a much 

smaller magnitude, Because there was no available information on the 

modal shapes of noncircular cylinders in the literature, only a sub-

jective analysis of these displacements could be made. From the anal-

ysis of circular cylinderical panels with. the same boundary conditions, 

the displacements appear to be quite reasonable. 

For the second natural frequency, the normalized displacements are 

shown in Figure 11. The normalized w displacements, w , appear very 

reasonable. Boyd (12) studied a different but.similar noncircular cyl-

inder statically loaded by uniform pressure, and obtained aw deflec-

tion curve similar in shape to that shown for the second frequency 
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Figure 10, Normalized Displacements for First Circumferential 

Mode - m = 1, In-Surface Inertia Neglected 
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-1.00 
\s = ; [ I + i J µ = 0. 3 

P - 25 w22 = o.0424 MAX -

u. = v(, = w = w(,(,=O 

0 0.2 0.4 0.6 0.8 1.0 1.2 
c; 

Figure 11. Normalized Displacements for Second Circumferential 
Mode - m = 1, In-Surface Inertia Neglected 
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mode. In.both cases, the maximum displacements occurred when, was 

between 0.5 and 1.0. For circular panels vibrating in the second mode, 

the w displacements would- be equal at;; .. = .. o·. 25 and O. 75. 

Figure 12 shows the results obtain·ed for a noncircula.r cylindrical. 

panel with a curvature given by the expression. 

L s - = r 

where bis a variable constant. 

'IT 4 + b; 

The value of bwas-allowed to· vary from O~O- to 0.3. ·The boundary 

conditions along the straight edges.were· 

u = = w = = 0 at ;· = 0,1. 

The natural frequency vs. b was nearly linear with or without in-

surface inertias included·, Numerically, the two lines. dive~ged for 

higher values of b, but the ratios of corresponding frequenc.ies con-

verged. When comparing the effects:of,in-surface inertias, higher 

natural frequencies were obtained when· these effects were neglected. 

A similar result was-obtained for circular cyl;i.nders. 

Equivalent circula·r panels, which .vibrate· at the same natural fre-

quencies as the corresponding noncircular· pane:!, were f·ound, The _cur-

vature of this equivalent ci_rcular panel was obtained ~for eaGh value 

of b by the .expression 

L s 
r. = 'If 

4 + b 'equiv. 

The values of; . are given in Table V. Thus; natural frequencies equiv 



_k = _I_ ...b_ = 5 x!0-3 M = I 
Lx 4 Ls 

0.0350 Ls = ..TI.. + b( µ. a: 0. 30 
r 4 

p = 25 
MAX 
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IN-SURFACE INERTIA 
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w2 
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Figure 12, Lowest Nondimensional Frequency Vs. b - m = 1, In
Surface Inertia Included and Neglected 
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could be.obtained for noncircular panels using an equivalen1: curvature 

with the methods available for circular panel. 

TABLE V 

VALUES OF ~efuiv,FOR SUBSTITUTION INTO CURVATURE 

EXPANSION =:- = r + b~equiv FOR EQUIVALENT 

CIRCULAR CYLINDRICAL,PANELS 

,.equiv 

Neglecting Including 
b In.,.Surface In-Surface· 

Inertia Inertia. 

0.05 0,46 0.46 

0.10 0.47 0.48 

o.1s 0.48 0.48 

0.20 0.47 0.47 

0.25 0.48 0.48 

0~30 0,48 0.48 

The frequency and·mode shape for the second circumferential mode 

were calculated for only one value of b. The value of thiE! frequency 

and the corresponding mode shape appeared to be quite reasonable. 

Since its shape was similar to that shown.by Figure 11, it was not 

sl,lown •. 
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CHAPTER V 

SUMMA.RY AND CONCLUSIONS 

5.1 Summary_ 

A method has been presented in. this .. :thesis to determine the natural 

frequencies and mode· shapes:of noncir-cular cylindrical.panels simply 

supported along their·curved edges, :A.special case of a general non-

circular panel is the circular panel. :From .:this study, the fallowing 

observations were made, 

A summary of observations.when the present-method-was applied to 

circular panels; 

1. Through comparison of natural frequencies and modal shapes ob-

tained by another metho.d for identical .circular panels, the power 

series method was shown to be valid. 

2, For a given panel configuration and.the value of p fixed, the 

frequencies of the lower circumferential modes were obtained more accu-

rately than frequencies of higher .. circumferential modes. 

3. For given panel properties .and the .. value of p. fixed, more 

accurate frequencies were obtained for lower.longitudinal mode. shapes 

(lower values of m), 

4. When in-surface.inertia terms.were.neglected, higher natural 

frequencies were obtained fol;'.' identical panels. (This effect was more 

Pronounced for higher values of the ratio L /L ). . s. x 
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5, For a fixed value of p, the power series method calculated 

the natural frequencies more accurately for panels with smaller ratios 

of h/a and a/L. x 

6. With appropriate boundary cqnditions,.natural frequencies for 

simply supported, closed, circular cylinders were found from the fre-

quencies of circular panels. The straight edges of the panel coincided 

with the nodal lines of the closed.cylinder •. The panel was,simply.sup-

ported along its straight edge and allowed.to move circumferentially in 

the plane of the surface. 

For a fixed value of p·and given shell properties, natural fre-

quencies were obtained nrore a.ccura:tely for.panels coinciding with higher 

d.rcumferential mode shapes and for lower values of m. 

7. Natural frequencies were also.obtained for circular panels 

with straight edges simply supported but not allowed to translate. For 

these boundary conditions, the lowest natural.frequency corresponded 

to the second circumferential mode shape. The.first circumferential 

mode shape was predominately a stretching mode and occurrei;l. at a much 

higher natural frequency. 

A summary of observations when the present.method was applied to 

8. Two noncircular, cylindrical panels.with the.same properties, 

but mirror images of each other, were found:to.vibrate at the same natu-

ral frequency. 

9. The normalized modal displacements were calculated for the 

first two natural frequencies of the above noncircular panel, The nor-

malized modal displacements for these frequencies were shown in Figures 

10 and 11. 
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10, Natural frequencies for noncircular cylindrical panels were 

higher when in-surface inertia was neglected. This conclusion was also 

found for circular panels. 

11. For panels which are initially.circular and inc;rease the:i,r 

curvature linearily .with:respect to~ .(increased b), the natural fre

quencies increased. This increase of frequencies is nearly linear with 

b. 

5.2 Conclusions 

The calculation of the natural frequencies and modal shapes for 

noncircular and circular panels was possible using this method, The 

method provided better accuracy for thinner shell panels and shell 

panels with high length to radius ratios. For circular panels, the 

boundary conditions along the straight edges.affected the natural fre

quencies and modal shapes of the panel. For circular panels having 

straight edges which were simply supported and not allowed to translate, 

the lowest frequency corresponded to the second circumferential mode. 

shape, Circular panels having straight edges which were simply sup

ported but allowed in-surface translations, the lowest frequency was 

an order of magnitude lower than.the previous case and corresponded to 

the first circumferential mode shape. 

When comparing the natural frequencies resulting from the inclu

sions of in-surface inertia.terms for noncircula:rpanels, higher natu

ral frequencies were calculated when in-surface inertia-· terms were 

neglected. An equivalent circular panel, which vibrated at the same 

natural frequency as the corresponding noncircular panel, was found. 
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5.3 Suggestions For Further Work 

During this study, many interesting topics were noted which could 

be studied. As noted in Section.5;1., a large number of terllls were 

taken in order for the natural frequencies to be calculated accurately. 

Because the frequency matrix was large, .. a.large amount of computer time 

was necessary to calculate. each natural frequency. To.· make this method 

more usable, a study should ·be· _made .. to determine a more. efficient uti

lization of the computer. Examples for further study.in this area are: 

1) reducing the size of the frequency matrix to-3px3p by· incorporating 

the boundary conditions along the straight edges into the frequency 

matrix; 2) moreefficient methods,of calculatingthe,lower natural.fre

quencies; and, 3) developing techniques which allow a larger class of 

shell panels to be worked. 

Different dynamic equilibrium equations could .. be used, and the 

natural frequencies could· be compared.with .those obtained from the_ 

Donnell equations. Examples of these equilibrium equations are the 

Flugge-Lur'e-Byrne (16) equations and the M<;,rley (17) equations. 

The study of forced vibrations could be an easy and valuable ex

tension of this study. Such.a study would be most beneficial for cases 

when a frequency generator was attached to a panel. 

Variational and approximate .. methods could be used in solving the 

free vibra,tion problem., Examples of..these methods are: Rayleigh-Ritz, 

Galerkin, and Kantorovich. These methods are all approximate methQds 

but could be used. to sqlve for the natural frequencies of noncircular 

cylindrical.panels. 

In order for the investigation of noncircular cylindrical panels 



to be complete, one would desire the experimental verification of the 

natural frequencies calculated in this study. 
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i'Ji.J/..\.F = 'JJA + 4 

ln 
'.',{,) 



c 
c 
31 

~JiJ~~A~Y :JNJITlONS ~OR U 

J !O) = '} 
IF [ I U:J,, ~,J;: -a O} 
N"~J ~ l 
x<~~ .. ,JJY :::: 1 .. J 
GJ TJ 1-1 

TD 32 

c u@ { J, = 

32 N'\lJ -= 'J\l + 
X f N-'L! l = 1 e J 

34 !F![UL.'i'.c.O)G'.JT03~ 
C U (Li O 
c 

CJO 35 l=l,NUA1 
'•J',J = ( l- ll *'1'1 + 2 

35 X(NNJI = l.J 
:; J T J 40 

C U 1 { L l = D 
c 
36 01 37 1=1,N'.J~f 

tnJ= !1-ll*\JN + 2 
37 X!NNJI = I - l 
C QE:U~{E'l:E FORMULA FOR Xll,ll ANO X!l,2) 
c 
40 DO 5J I= 1,NOA 

X\!l] = l*{l+ll 
X'JO=l+l 
N'\iJ = { ! - l) * Nf\l + l + 2 
X(\!NJI = (-1ET,\M + IJ!.IEGAS/{12.0*BEHMl))/Xo!Z.O 
NNJ = imJ + 2*NN 
XINNJl = GA~MA/BETAM 
NNJ = N~J + {NJA + ll*NN 

,;:, X(f;NJ) = ALPHA/X'!U 
C RE:u~•EN:E FOR~ULA FnR X(l,31 

flO SO J = l , Nll '< 
DJ '>O r = 1 , :nA 
IF(l.LT,J) Gll TO t>D 
X'llJ = I* (l+ll 
NNJ = 12*NJa + 4 + I- J)*NN + I + Z 
X(NNJ) = x~u. O(JI/XNZO 

60 :J'lTI'lU:: 
C a'.JUNOA~Y CJNOITIJNS FOR V 
c 

c 

VlOl = 0 
!FIJVJ.\iE.1) G) TD 64 
N~J= ~JUAT*~N + NOAT + 
X(\i\lJ) = l.O 
GO TD 66 
v• to> = :i 

64 N\iJ = {:WAT + ll•:,N +:WAT+ 1 
X!'l'l,Jl = 1.J 

66 !Fl !VL.'lE.O) ;J TO 68 
Cl', 
0 



: V~Ll = 0 
c 

DJ 6 7 l • l, 'l J AT 
NNJ = NOAT + I - ll•NN + NOAT • 2 

67 X(·~\lJl = LG 
GO TO 9'} 
V'l U = Ci 

c 
~g 00 69 != ,NOAT 

N~J • INJ T • I - ll•NN + N0AT + 2 
~9 X!NNJl = - l 
C RECURRENC FOR~ULAS FOR Xl2,ll AND XIZ,21 
c 
9:l [)') 95 l= 1, 'DA 

NNJ = I*INN+l) + NOA+ 4 
X~l; 
XNO = I• 1 
X!NNJl = -ALPHA 
N~J = N~J + !NJA+ll*NN 
x.w:~Jl = 1-GAM"lA *BETAM + (JMEGASl!l2.0*3ETA~HI/XNZ 
NNJ = \P~J + 2*h!N 

95 xn,·,JJ = XNJ/P,ETAM 
C RECURRENCE: FORMULAS FOR Xl2,3l 
c 

DJ lQS J = 1,NJK 
DO l O 5 I = l , NOA 
!Fl! l+ll.LT.Jl GO TO 105 
NNJ = 12*NOA + 5 + 1-Jl*NN + N)A + 4+1 
X(';NJ) = QlJlfi3ETAM 

105 COHl"lUE 
c 

BOUNJARY CONOIT!ONS FOR W 
C HJJ 
c 

c 

c 

NNJ = ll~OJ • NOATTl * NN + NOATT + l 
X(NNJ) = 1.0 
I~T 

!Fl l,JT .,E.2) GcJ TO 110 
·~"IDl=O 

NNJ ; P.JJATT .,_ Zl *NN + NJATT + 2 
X(N'IIJ) = l.'.) 
GJ TJ 112 

c vs{'.) l = '.) 
~ 

110 NNJ= INQ~TT + ll*NN + NOATT + 2 
X(NNJ) = (2.0 - XMU)*6ETA~S 
NNJ = NNJ + Z*NN 
X('l'lJ) = -&.O 

C W(Ll=O 

112 IF( It/LO.NE. O) :;o TJ 114 

CJ'\ 
f.d 



DO 113 l=l,NUAF 
NNJ • !NJATT + I -11 *NN + NOATT • 3 

113 XINNJ) = l.O 
'.iO TO llb 

C ii'( LI = 0 
c 
114 DJ 115 1•2,NOAF 

N'IIJ = l'IIJATT + I - ll*NN + NOATT + 3 
115 atNNJl • l - l 
llo IFl!WLT.~E.21 SO TO 120 
C W"(Ll=O 
c 

DJ 117 I = 3,NOAF 
NNJ • (NJATT + I - ll•NN + NOATT + 4 

117 Xl'\l'\lJl = ll-ll•ll-2l 
GO TO 122 

:: VS! LI = 0 
c 
123 N'IIJ = INJATT + ll*NN + NJATT + 4 

XINNJI = ll • .l - ><MUl*BETAMS 
N'IIJ = NNJ + NN 
Xl'll'IIJI = 2.0•12.0 -XMUI * BETAMS 
NOAO = NOA + 1 
DO 121 I = 1,NOAO 
NNJ = INOATT + 2 + !l*N"l + 'IIOATT + 4 
XN = l 

121 l<l\l'IIJI = (2.0 - XMUl•(XN + 2.0l*BETAMS -llN*lXN+l.l*IXN+2.0) 
C RECURRENCE FORMJLAS FOR X(3,ll A'\10 Xl3,21 
c 
122 DJ 145 J= l,NOK 

DO 145 l= l,NOA 
XNTT = ll + 21 * I l ..- 3 l 
N'IIJ = (l-Jl*N\I + 2*NJA + B +I 
JF(I.LT~JI GO TO 145 
XINNJI = -12.0* XMBETA*DIJI/XNTT 
NNJ ='\!NJ+ (N)A+3l*NN 
XN = I+l . 
XY = J 
X(NNJI = 12.0*IXN-XV)*DIJI/XNTT 

145 CONTINUE 
C RECURRE'l!CE FJRMULAS FOR XI 3,31 WO D 1. TERMS 
c 

DO lbO I =l ,NIJA 
NNJ = 12*'11JA +3+Il*NN + 2*NOA + B + I 
XNTT = 11+31*11+21 
XNTTDZ = l*I I+ 11 *! I +2) * I 1+31 
XNZJ = I*ll+ll 
XI NNJI = (,tOLOS*BET AMS*BET AMS - OMEGA5 l/XNTT 
NNJ = NNJ + 2*NN . . 
X{NNJI =t-2.0* BETAMS*HOLOS/X'Hll*XNZO 
NNi = NNJ + 2.*NN 

160 XINNJI = HJLJS *XNZO 

Cl' 
N 



C RECU~~EN:E ~JRMUL~S FUR X(3,3) 
[)J 175 J ~ 1,'IJK 
JO 175 K = 1~'.~JK 
'.l:J l 7 5 l = l, NOA 
IF!l.LT.(J+K-lll Gu L1 175 
NNJ = !2•~JA + 5 + l-J-KJ•NN • 2*~JA +8 +I 
X'HT = {lv2)*(I+31 
XPs!Ul = XIWJJl +(12.0*DIJ)'-'D(Kl/K'HTl 

175 C<J'H! -.;uE 
!FiNFI\:.:\L.., \lE., ll G:J TO 190 
NSEV = 3~NOA + 7 
DJ 130 I = 1, N St V 
DO 130 J= 1,NSEV 
I I = ! l -1 l ~'.,SE V + .J 
JJ = ( !-ll*'>J'I • J 

180 TH!) = X!J.Jl 
DJ 185 I=l,NSEV 
JJ = \ISE\f*~'I • l 

185 Sill =-X!JJI 
GJ TJ 375 

19J CALL M!Nv(X,NN,IJET,LC,MCl 
,flJTE 16,92:Jl OET, 0,'ffGAS 
!F('ClJFT.<:).ll flETS = OET 
NCDET = 2 
lFiJET/OETS - 0.01 2il5,100,25~ 

250 OETS = OET 
AMEG.AS = ClVi GAS 

260 OViESt. S = OM G4 5 -+- BIT 
IFIABSIJ4~G S-AMEGAS).LT. E~R)Rl ~J Tl 300 
GOT025-

2S5 !F(N:Cs.:,E. ll GD TO 290 
SMEGAS = OM [GAS 
OJET = DET 
CJ3JT = SIT 

2'10 NCCS = 2 
C~FGAS = i'JfT*A·1i'GAS-DETS*0;1EG-'.Sl /DET-ClETS) 
IFIA3S(CMEGAS - OHEGASl.LT.E~~ORl GJ TO 300 
O~EG.\S = c~:::;:\S 
BIT = BIT/1'.l.O 
W'l.JTE{5d4~l A'lEGAS , DET, OMEGAS 
lF(,3S(JHEG,S-AMEGASl.LT. ERROR) GO TO 300 
GO TO 25 

300 WR! TE t;, ,95)1 NCH"1,Ci·1EG.~S,O,'IEGAS., DET 
O~EG!\S = :::~ESAS 
NF!NAL = l 
:;o TO 25 

325 CALL Ml~V(T,NSEV,DET,LC,M:l 
CALL G!-1DRD{ T, S, COEF,'JS EV, NSEV, 11 

C c,L:uLiTICJ~ OF M004L DISPLACEMENTS 
:-..SEVJ ~ 'lSE\/ + l 
COt:F(\JS[VOl = 1.0 
X.'l]STD = ,'flSTEP 
NOAPT = ~WA + Z 
NO.A p::. = NT}.l. + 4 
;.RITE! 6,97ll NJSTED, COEF{ 11, :o, 0 1NDA+3l ,COEf{NOATT+J.J 

°' (.;,J 



3') :.1 

-4 '.J ,::. 

4 ,_ 'J 

900 
903 
904 
905 
906 

920 
93;) 

935 
C),,,Q 

942 

945 

950 

T f ;~ 

,-·)s -· 
r, ~1;:.;:: T 

'.:'i" J.-a ,,.,... 
~ Jt;: ( ... i l 

,T ,J l 
F 

~:: ~ ~· ·~ -1 .. 
? !:'."'-., ].:i,r:: 1" -, .. • : 

-:~-F~<:-:;~F{t-,;::.o:, ~i 
-r::~o~97.J :i,NOS~:::;)-;01\/rll'l' 

~J! 
"'·,~:F~ :·T<SD} GJ TD SJO 

\::-;::; 

i ~, 1 S::: l ·: '::=\lC.RF 
:;:.") 

21,- ~ 0:.,~:r.:: 1·!*;J3If 
·:~~i~<:;;~5 ~ ..;_:·0'-i:(;:\S + 3iT 
],= ·.rs U:.JE i 
1<:J1;. '~:J~S 
r,:\1 rJr:~. 
NJ\F = ~JAF 
NJlT = ~)AT 
NJ6T·r ~~OATS 
~~cs= 1 
GO TJ 2S 
FGRMATi 5Fl5~6) 
F;.:;i?Vi.t\T (8I4) 
F01~MAT {? 14., F=15 60) 
FJ•P·H,T i 3I4) 
F~R~ATllX, 1 ~UMBER o~ TE~~s USED I~ CALCULAl!NG TrlE FREQUENCY.'• 

114,' NU•'i:iE~ OF CURVATURE TERMS=', !4/l 
FJ~MH{ lX, lOE 13. 7) 

FJRHATilH'J,6HBETAM=,El3.7, 6X, 5HX:~11J =,E13.7 9 &X,7rHOLOS •,El3.7 9 ' 

l INJTIAL O~EGl\S = 'El4.7/l 
fQi<,",AT { 1X,2HD!,12,3Hi =,El4.7! 
FOR~ATllHK,lHERRDR =,El4,8,7H~OMSJ =,!4,5HBIT •,El4.8/l 
FJ~MAT,(H0,'NUM8ER OF ffRMS IN SERIES EXPANSION IN CALCULATI'lG DEF 

lLECT!J•NS =•, 14/l 
FORHATIJ~K, 12HOLD AMEGAS =,E14.8,5HDET =,El4,8,12H'lEW OMEGAS =,El 

14.Sl 
FORMAT(lHO,BHS-MODE • 1 14,lBHNEW FINAL OM~GAS •,El4.8,18HDLD FINAL 

1o~cGis =,El4.8,5HD~T =,El4.BI 

°' J..,> 



955 
960 

FOR;~AT ClHL,~THlS P~oG;AM !NCLUDES lNPL~~~ 
FJR~!T11Xc' BJU~OARY C3~JlTIO~S ~GR UCO) 

1 r 10:,..i.s ;:.:c:{ J {L 1 =", 14/, 

I~E~f!A EFFECTS 6 /) 

'·l4,SX,'SOU1MJiHl.Y CONDI 

961 FJ:Z'"l:\T\1~,· 80UNDA:ZY CGNO!HO'-iS FOR vc:n = ',l4,8X,'B0c!NOAR11 CJ'llOI 
ITIJNS FJZ 1IL) =1 ,14/l 

962 FORMAT'ilX,' BOUNOA;{Y CONDIT lQ!',;S FOR ,l(Ol =•, ·;,,,' AMO ',14,' BOU 
!'ID~,Y '.;J)l)l TIO'.~S FOR \II U = ', i4,' A"iD ', HI l 

970 FOK.MAT{lH0·1• PSI COORJINATE = ·' 1 I4vf/'•i~/,~ U O!SPLACEMEMT =;,9X., 
l.El'~~7/1' 1 V DISPlACE~E~~T =!fw~X~El4-c:a7/,,' M,QX!M,}'": ,4 DISPLACE~E-\IT = '0 

2E14o7/} 
971 FORMHllHO,' PS! CCiGi<O!N,HE = 0!',14!,' !J G·!Sl-'ll\:b'IEl'H ~',9X,El 

14.7/,' V DISPLACEMENT • 1 ,9X,El4.1/ 1 1 MAXIMJM ~ DISPLACENENJ •',El4 
z.7/i 

500 CONT i ~~UE 
STOP 
E'l'J 

,:,... 
lrl 
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