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CHAPTER I 

INTRODUCTION 

Analysis of two-dimensional optical patterns by automatic means is 

l.ecoming of central importance in computerized analysis of large volumes 

of photographic information such as weather satellite records, machine 

interpretation of handwritten postal envelope addresses, automatic fin-
., . .. i • 

gerprint identification and other similar tasks. Cross-correlation tech-

ri_iques appear to b, promising in this regard both from theoretical and 

experimental points of view. 

The purpose of this investigation is to examine in detail the possi-

bilities of obtaining rapid two;;;dimensional cross-correl,tion functions 

between seJected pairs of patterns by experimental meanso Earlier 

studies have been made on the problem of optical cross correlati<>n of 

two-dimensional patterns as well as other approaches to effecting or 

simulating pattern recognition systems. 

Rosenblatt (1) gives sever~l critet'.ia to be applied to a simula

tion program. Under his "controls against trivial or ambigoous results11 

he mentions that -the "actual form.atone and not location.on the retina 

or some other unintentional source of.information" be considered. He 

desc;.ribes a simplified version of known feat~res of a mamalian vision 

system. The 11Perceptron" has retinal ,_points directly coupled to asso-

ciation cells. Each sensory point is connected tc;> an "A" unit in either 

an e:xcitory·(+l) or inhibitory (-1) connection. Each "A" unit, has fixed 
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threshold and de livers an output pulse if the algebraic sum of the in-

puts exceeds a given l evel. Each "A" unit is assigned a value wh i ch i s 

adjustable during training such that during the test phase t he to ta l 

signal delivered by a se t of t he unit s approaches t he desired signa l . 

The total value distributed over all the un i ts must remain cons tant 

according to an assumed constra'int so that when one unit ' s va lue i s 

increased all the other units• values a r e diminished. 
I 

Widrow and Hoff (2) describe a simi lar system which is imp l emented 

in the "Adaline" ,machi ne. Thi s system used n adj ustab l e we i ght i ng fac-

tors oper ating on n inputs to g i ve an out put . The desired output is 

forced by changing all weights by a fixed amount (pos i t i ve or negat i ve ) 

stepwise to gradually reduce the error ' e t o zer o. Accor ding to the 

authors, the process used will always converge . The aut hors set out t o 

minimize the mean square error between the sunnnat ion of the we i ghted 

outputs of the system and t he desired output, showi ng t hat this cri t eri.on 

impl i es mi nimizat i on of the average number of neur on er rors (af ter quan-

tizat ion). The adaption amounts to a surface sear ching t echnique wher e 

a mi nimum i s sought on an n- di mensional paraboloido The experiment s 

descr i bed cons i der a 3x3 f i e l d of sensors ~hi ch ar e ei t her excited or 

not . The field consider ed, unlike Rosenb l a t t 1 s (1), assumes norma liza= 

t ion of the pa ttern. 

Steinbuch (3) describes a " l earni ng matr i x" and its two distinct 

operat ing phases. First, the l ear ning phase requires~ set of s igna ls 

(properties or at tributes) and a se t of mean ings (output s) to be app l ied 

t o the system s i multaneous l y. The second phase (able phase ) gener a t es 

the output or meaning set accor ding t o a se t of input s i gna ls. Imp l e-

menta tion i s said t o be r ealizab le fr om magnetic, electro- chemi ca l or 
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electromechanical elements in the matrix. 

Bolie (4) describes an algorithm whereby a machine may identify a 

particular symbol from an "alphabet" of signal vectors (assumed to be 
"\ 

linearly independent.) The machine developes a matrix of column vectors 

representing the alphabet to be recognized. This matrix is inverted 

after the learning phase and then used to premultiply any vector to be 

identified. In the linearly independent, noiseless case the product is 

a unit vector in the symbol space. Various cases with noise are con-

sidered showing a deviation from the ideal unit vector results, but no 

serious recognition problem arises if a sufficient number of samples 

are considered during learning. This approach appears significant in 

the information retained since no quantization occurs internal to the 

process. 

Eden (5), and Mermelstein and Eden (6) use a model for stroke gen-

e r .1.tion i n handwriting analysis which considers any stroke to be repre-

sentabl e by two pairs of quarter-wave sinusoidal segments, one for each 

of the horizontal and vertical components during the vertically accel-

er ating and decelerating Gections, respectively. From these segments 

a parameter vector is formed including such characteristics as displace-

ment, curvature, pen velocity, amplitude, etc. The authors chose the 

lower case Latin alphabet and represent the 26 letters by 52 different 

symbols plus a null stroke. A set of allowable sequences is used along 

with probabilities of their occurrence to expedite the search procedure. 

When each subject's writing was ,~n the learned ensemble, results seemed 

reasonable; if not, the error rate was very high. If the subject's 

writing was the only sample used, the results were excellent, that is, 

the error rate was reduced to about that of a human reader. 
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Blackwell (7) summarizes a group of "neural" theories of visual 

discrimination and compares them to the physical quantum theory groups. 

Much attention is given to the quotient ~I/I (change in intensity divided 

by intensity). Evidence of a 5-6 cps scanning mechanism is given as well 

as a discussion of the position of the stimulus in the visual field. A 

time delay storage mechanism is also discussed. The bulk of the paper 

deals with threshold measurements and the validation of the measurement 

methods. 

Kazmierczak and Steinbach (8) feel that the human visual system 

should be considered in designing perception systems and compare some 

properties of the human visual system with existing mechanical percep-

tua l systems 'i They describe the necessity to se lect a set of f eatures 

independent of changes in registration, skew, size, contrast, deforma

tion, etco They note the evidence of data reduction from the 108 nerve 

fibres in the human optic nerve; in addition, abstraction ability and 

imagination indicate that some feedback must exist. The learning matrix 

descr i bed here consists of column inputs (a feature vector) and row out-

puts (the category) connected with variable weights as conventionally 

used i n adaptive network schemes. The weights may be positive or nega-

tive as may be the features x. which are assumed to be analog in 
J 

character. The authors give comparative examples in two dimensions for 

separating the pattern set aggregation. Throughout their paper the need 

for schemes of feature abstraction is emphasized. 

Cutrona,!!,!.! (9), Montgomery and Broome (10), and Vander Lugt (11) 

have presented mathematical theories of spatial filtering of optical 

patterns in which both the amplitude and the phase relationships of the 

pattern-transmitting light beam are considered as essential parts of the 
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pattern. Montgomery and Broome (10) present considerable filter theory 

extended to two dimensions and computer simulation experiments. Cutrona, 

~ !.!. (9) present techniques of both spatial and "frequency domain'' 

filtering and suggest the necessary optics for achieving the filtering 

action in one or two dimensions. Vander Lugt (11) extends the spatial 

filtering theory to include non-uniform noise distributions where a 

prior knowledge of the noise function is known. Experiments described 

.in the latter two papers require a coherent light source to establish 

phase relationships of the light throughout the optical system. This 

theory is the basis of the more modern laser-projected hologram patterns. 

An excellent survey of many different commercial approaches to 

mechanized automatic recognition of standardized letters, numbers and 

punctuation marks has been presented by Falk (12). 

McLachlan (13) extends optical correlation techniques developed i n 

earlier work (14) toward the problem of pattern recognition. One and 

two dimens ional convolutions are performed using masks, light and photo

cell . The level registered on the photocell is recorded versus the 

pos ition to yield t he correlation function. Although examples are 

shown of characters of different sizes , both size and orientation seem 

to be requisite for meaningful correlations in one or two dimensions. 

A method for obtaining the autocorrelation of any image directly 

using only one photographic plate and a combination of lens, mirror 

and beam splitter is describ~d by Kovasznay and Arman (15). The authors 

also note some of their observations on the autocorrelation of randomly 

positioned ensembles of simple patterns. Meyer-Eppler and Darius (16) 

describe a two plate ~orrelator on which cross-correlation can be made . 

A matrix of cross-correlation patterns for five upper-case alphabet 



letters was presented with comments on the various typas of syrrnnetry 

observed in the resulting patterns. 

6 

Comprehensive treatments of the present state of knowledge of the 

detailed functions of the central nervous system and of the optic tracts 

may be found in the relatively recent compilations of Gerrard and Duyff 

(17), Wiener and Schade (18), Reiss (19), and Wiener and Schade (20). 

Convincing evidence is presented by the authors cited and others 

that when a suitable set of parameters or features exist, various meth

ods may be employed to effect a pattern recognition system. Extensive 

work applicable to machine printed-symbols has been done on the basis of 

a 3x3 field of sensors as assumed by Widrow and Hoff .(2) and others. 

While Eden (5) considers the problem of handwriting on a real-time or 

tracking basis, none of these reports have been devoted to feature ab

straction in off-line analysis of handwriting and similar two-dimension

al patterns. It is the apparent nee~ for such feature abstraction tech

niques that motivates this stu.dy. 

Following this introduction and overview of the literature is an 

examination of the theory of two-dimensional cross correlation and the 

development of a resultant theorem. Presented thereafter are details of 

the design and construction of the. laboratory equipment used for the 

investigation. Details in support of experimental verification of theo

retical predictions are the~ presented, following which are the results 

of studies made with certain specialized two-dimensional patterns. 



CHAPTER II 

OPTICAL CROSS-CORRELATION THEOREM 

Correlation techniq~es seem to hold much promise in the problem of 

two dimensional pattern recognition. Point by point measurement of the 

correlation function of two dimensional patterns has proved to be quite 

laborious, however, since small increments of displacement in two dimen

sions make many measurements necessary. The optical method described 

here allows the entire correlation function to be obtained at once in 

the form of a light intensity distribution on a plane.. 

The principles of the optical method of producing two dimensional 

pattern correlations can be outlined with reference to Figure 1. The 

planar diffused light source is ideally a plane in which every elemen

tal area emits light in all directions, with a normalized flux inten

sity of unity ~verywhere in the 4 n steradians surrounding the elemental 

area. Light :r.ays eme.nating from some of the points in this planar dif= 

fus,ed light source travel through the clear regions of transparencies 

A and Band impinge on the observation plane c. 

The first transpart!mcy (plane A) contains aligned and centered 

coordinates Y-1 , y 1• The pattern in plane A is defined by the tr.an.s

parency function f(x1, y 1} which varies from a v.;1lue of zero fo:i: com

plete opacity to a value of unity for complete transparency. 

The second transparency (plane B) contains similarly aligned and 

7 
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· centered coordinates x2, y2• The pattern in plane B is defined by the 

transparency function g(x2, y 2) which varies from a value of zero for 

complete opacity to a value of unity for complete transparency. It is 

assQmed that the light is attenuated but not refracted or scattered by 

the pattern g(x2, y 2). 

9 

The observation or detection plane (C), which might be ,a "frosted

glas.s" viewing surface, contains aligned and centered coordinates a. 

and~. The observed pattern in plane C is defined by the detected 

light intensity function h(a., ~), which increases from a value of zero 

for no light-ray impingement to increasingly more positive values for 

brighter illumination. It will be assumed that over the area of inter

est in the observation or detection plane (C) the effects of the inverse 

square law and cosine variations are insignificant. 

A mathematical analysis of two dimensional pattern correlation by 

the optical method illustrated in Figure 1 can be initiated with the 

aid of some mathematical definitions. The optical processes of both 

magnification and reduction of images must be c:onsidered. 

DEFINITION 1: An image function is defined as a light intensity 

variable G(e, w) expressed as .,a function of two orthogonal coordinate 

variables 8 and We 

DEFINITION 2: .A k-stretched image function is defined as the 

function obtained by replacing th.e coordinate variables e and w of an 

original or parent function G(8, w) with k8 and kw, respectively, 

where k is an omnidirectional stretching factor. 

In order to illustrate the idea of a k-stretched image function 

in relation to its parent image function, let G(e, w) be an image func-
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tion as defined earlier, and specifically 

, I e I s_ 2 and I wl < 3 
(2-1) 

, elsewhere. 

Let F(0, w) = G(k0 , kw), i.e. F(0 , w) is the k-s.tretched image 

. function whose parent image is G(e, w). Then 

G(ke, , j k0 j ~ 2 and j kw j < 3 

' 
elsewhere., 

Alternatively 

F (e, w) = t 111 <:: 2 and I !£j < 3 , k - k -

elsewhere .. 

(2-2) 

(2-3) 

Referring to the functions described by Equations (2-1) and (2-3), and 

to Figure 2 9 it will be seen that when k > 1 the pattern represented by 

the k-stretched image function is physically smaller than the pattern 

represented by the parent image function. On the other hand, for.k < l 

the pattern represented. by the k-stretched image function is physically 

larger than the pattern represented by the original or parent image 

function, as illustrated in Figure 3., 

The detected light intensity in a neighborhood of the point (a., [:I) 

on plane C of Figure l is comprised of a summation of the effects of all 

of the light.sources whose rays ar~ transmitted by incremental openings 

or transparencies in planes A.and Bas suggested ia the one-dimensional 

representation shown in Figure 4., Plane C is separated by the distance 

s from plane A, and plane Bis located at the intermediate distance ms 

from plane A where O < m < 1. The geom~try :of ~igure 4 shows that a 
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straight line extending from the point (x1, y 1) in plane A to the point 

(a,~) in plane C must intersect the point 

in plane B. Let 10 represent the light intensity per unit area emanat

ing from the planar diffused light source and impinging on the trans-

parency in plane A. Further," let x1 ' and x111 , and y1 ' and Yi", respec

tively, be the maximum x-limits and y-limits of the A plane pattern re-

presented by the transparency function f;(x 1, y 1). The detected light 

intensity function h(a, ~) is then given by the equation 

y " l 
h(r.1.., ~) = I 

y. I 
l 

(2-4) 

g [f (1 : m)x1 + ~~}, (O_-__ m)y 1 + _l!l]J] dx1 • dy 1 
~ 

In view of this e~pression and the preceding definitions 1 and 2, 

the following theorem may be formulated with relation to the optical 

system represented by Figures 1 arid 4. 

THEOREM. If a dispersive light beam traverses a first plane con-

taining a first transparency pattern f(x, y), and then_traverses a sec-

ond plane containing a second transparency pattern g(x, y) positioned 

at a distance ms from the first plane, and produces a two dimensional 

light intensity function h(a, ~) by illuminating uniformly distributed 

light scattering elements in a third plane positioned at a distance 

(1 - m)s from the second plane, and if p(kS., kw) is defined as the 

k-stretched function whose parent image function is p(e, w), then 
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h(~, ~) is them-stretched image function whose parent image function is 

the two dimensional cross correlation of the image function f(x, y) 

against the (1 - m)-stretched image function whose parent image function 

is g(x, y). 



CHAPTER Ill 

EXPERIMENTAL OPTICAL CORRELATION APPARATUS 

Initial investigation of the two 00 d:i.mensional correlat.:i:on method 

involved the assembly of a sys~em,which implements the geometries de= 

scribed in Chapter II and Figure 1o An av~:i.labl.e projector, orig:i.nally 

a combination slide and opaque projector (Bausch and Lomb, Type 41=23-

81 ), was utilized for its light source and con,densing l.~ns systemo In 

former use a pair of 4.3-inchmdiameter lenses formed a conventional con= 

densing lens system in which the light source is placed at one focal 

point of the first lens so that light leaving the first lens is essen= 

tially .collimated into. parall~l rays; the second lens serves, to converge 

the beam back to a point usually at the rear of the projection lenso In 

the modification the second lens of the condensing set was removed to 

allow the parallel rays to impinge normally upon the ground ... glass dif= 

fusero A mechanical carriage for the diffuser and first transparency 

was fabricated to fit the space normally occupied by the slide carriero 

The carriage was constructed so that both the ground ... glass diffuser and 

the first transparency could be inserted into the carriage separatelyo 

The first transparency was positioned as close as possible to the 

ground-glass diffuser to make the, plane of the diffused light source and 

the plane of the first pattern nearly coincidento 

The second transparency was mounted in a second carriage comprised 

16 
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by a modified sheet-film holder fast~ned to a mounting base located 

half,"':'way: (9.5' . .:f;riches ). be.tween the fir·st :tra:nsparency and. the observation 

plane. 

The observation plane consisted of an ,8-inch by 10-inch sheet of 

commercially available ground glass located 19 inches from the plane of 

the first transparency, mounted in a shadow box arranged to minimize 

the effects of stray light. The observation plane assembly is shown 

near the center of the_picture in Figure 5. 

A-Plane and B-Plane Image Transparency Design 

The transparencies were made using commercially available 4x5-inch 

high contrast, orthoch~omatic, acetate-base film. The photographic 

process used was similar to that ordinarily used in producing film. 

negatives, except for the exposure times required and the fact that the 

film could be developed in red safe-light. The latter fact was found 

helpful in that some compensation for exposure variation and developer 

temperature could be effected during development. 

Images were typically made about 3 inches, and 1.5 inches, in 

height on the 4-inch dimension of t_he film for, the A-plane, and B-plane 

respectively. The original images of interest in _the preliminary studies 

were black figures on a white background, and w,re typically about one 

inch in height. A 3x and l.5x magnification was thus required in the 

photography process for the A-plane and B-plane images, respectively. 

Although the initial exposure time for an image of one particular 

magnification was determined by experiment, exposure-time adjustments 

for various magnifications could be made by use of· the following expres-



Figure 5. Experimental Optical Cross Correlator Showing (a) A-Plane Pattern Position, (b) B-Plane Pattern 
Position, (c) Observation Plane Position, and (d) 35 mm Camara For Recording Patterns 
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sfon for image plane illumination 

B I = ~~~~~~-
4 (1 + m)2 A2 

(3-1) 

where 

I= image illtunination in footcandles, metercandles, etc. 

B = object luminance in footlamberts, meterlamberts, etc. 

A= lens aperture (£/number) 

m = magnification ratio 

Since exposure is equal to the product of image illumination I and 

exposure time T, the exposure time for any magnification may be found by 

equating the expressions for exposure. That is 

(3-2) 

or 

(3-3) 

then given some satisfactory exposure time (T 1) and constant object 

luminance, the exposure time for any given magnification may be found 

as follows 

• T 
1 

(3-4) 

and further if the aperture is also held constant 

• T 
1 

(3-5) 

A press type camera (Folmer Graflex Corporation, Speed Graphic) 

with 127 nun, f/4.7 lens (Kodak, Ektar) and double extension bellows was 
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used for photographing the images for the A-plane and B-plane trans-

parencies. The camera was equipped with both a focal plane shutter and 

the more common "between the lens" (Kodak, Supermatic Number 2) shutter 

but the focal plane shutter was not used in this case. An f/3.2, 4.5-

inch-focal-length lens was mounted in an adapter ring (Kodak, Series VI) 

to augment the regular lens and achieve the image magnifications in the 

photography process mentioned previously. 

Original images for preliminary experiments were drawn on "botany'' 

paper with black drawing ink. Object illumination was provided by two 

ordinary 100-watt long-life incandescent bulbs mounted in corrnnon desk 

lamps, and located 8-to-10 inches from the image to be photographed. An 

improvised, track-mounted easel attached to a common base plate with the 

Graflex camera allowed convenient positioning of the image for proper 

magnification while minimizing problems of inadvertant movement of the 

image relative to the camera. The camera, easel, and base plate, plus 

one of the lamps, are shown in Figure 6. 

For convenience, the same overall dimension was used for both the 

A-plane and B-plane transparencies. The maximtnn x-and-y extents of 

interest on the A and B transparencies were sized appropriately for the 

spacing between the A and B planes, and the Band C planes, i.e. for the 

B-plane located equidistant between planes A and c, the previously de-

-
scribed coefficient mis 0.5 and the B-plane x-and-y extents of interest 

become one-half the resp~ctive x-and-;-y extents 6£ -ffiterestl: ·i ·ri'- the 

A-plane. Figure 7 shows two of , the , t~ansparenqies used. 

The basic exposure time determined by several trials was found to 

be 20 seconds for an aperture of f/22 and a 3x magnification of the 
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Figure 6. Graphic Camara and Track Mounted Easel Use<l for Photo3raphing Patterns 
N ..... 



Figure 7. Actual Film Transparencies Used in Optical Correlation Experiments N 
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object image. By use of Equation (3-5), exposure times of 8 seconds and 

5 seconds were determined for the 1.5x and 1.0x magnifications, respec-

tively. The determination of exposure times may be facilitated further 

by the use of a graph such as the one shown in Figure 8. In this case 

T1 is the exposure time for a lx magnification (M1 = 1) and may be de

termined directly by experiment or from the graph, based on any other 

satisfactory exposure. 

0.5 
M2~ 

Figure Bo Graph for Determination of Relative Exposure Time 
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Recording.Corr.elation :eatt.erns 

A 35 nm camera (Eastman Kodak Company, Kodak 35) was modified for 

use in recording the cross-correlation patterns produced on the observa

tion plane. The front lens of the camera was extended to allow the ob

servation plane to be photographed closely enough to fill the 35 mm-film 

negative. Forward movement of the lens to allow for the close-up pho

tography required a different method of focusing since the original dis

tance calibrations of the camera were no longer valid. A satisfactory 

focusing method was devised by placing a strip of material having light 

diffusing properties in the film guide of the camera. The image could 

then be focused in the same manner as with cameras equipped with a 

ground-glass plate, 

The camera mounting was constructed so that the back could be re

moved from the camera for focusing and loading film without disturbing 

the position of the camera relative to the observation plane. A Graf lex 

electrical shutter release solenoid was attached to th.e camera ·mounting 

plate t:o actuate the shutter release mechanism. The solenoid was ener~ 

gized by a Graflex battery package with its built~in push-button switch 

and connecting cord. The camera and mounting are shown at the extreme 

right in Figure 5. 

Normal contrast film was used in recording the correlation patterns 

since the information sought is in the intensity level as well as the 

position of the illu.mination in the ob$ervation plane. Normal filrn neg

atives were made so that prints made from the film would indicate white 

for areas of illumination. If projection of the correlation patl:erns 

were desired, direct positive film could be used. 



CHAPTER IV 

EXPERIMENTAL VERIFICATION OF THEORETICAL PREDICTIONS 

Some of the simpler geometric shapes provide a basis for comparing 

the experimental correlation results with those obtained mathematically. 

Results thus obtained through comparison of theory and experiment for 

simple patterns can then aid in the interpretation of more complex pat

terns. Results of the theoretical example to follow will be compared 

with corresponding experimental results obtained by use of the equipment 

described in the previous chapter. 

Example 

Figure 9 illustrates the relative displacements of two simple, 

nearly coplanar patternsJ oriented for the determination of the conven

tional two-dimensional cross~·correlation function. As previously noted, 

a transparency function value of zero represents complete opacity while 

a value of unity represents complete transparency. Since the transpar

ency function over either of the pattern plaries is either zero or unity, 

the unit step function 

U(x) = t: x < 0 

x>O 
' 

may be used conveniently in the computation of the cross correlation 

function of the two rectangles. In order to retain generality, it will 

25 
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Function h(a, a) 
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be assumed in the initial computation that the first rectangle has di-

mensions a and bin the x and y coordinatas, respectively, and the sec-

ond rectangle has dimensions. c and din the x and y coordinates, respec-

tively. It is also. as.sumed · that the rectangles are centered in their 

respective planes and that none of the dimensions exceed the extents of 

intere-st implied by the limits on the integrals. The cross-correlation 

function may then be expressed as 

(4-2) 

where 

' 

and 

g(x,y) = [u<x + I) - U(x - I)] [u(y + 1) - U(y - 1)] 
The cross correlation function then becomes 

y " 11 [ b p(a.! p) = U(y + 2) 
y • 

b-ir d d J 
- U(y - 2) .J L U(y + 2 + ~) - U(y. - 2 - ~) • 

1 (4-3) 
X n 

l 

~ 
1 

[ U(x + f> - U(x - 1) J [ U(x + a. + 1) - U(x + a. - f) J dx dy, • 

If the inside integral above is ,identified as pl (Cl'), then 

xr xr 
p1(a) = 1 U(x + !) U(x +a.+ I)dx .- f U(x + f> U(x + ex. - f)dx 

x1' .. x1' 

x" x" 11 fl .. 
- U(x - f> U(x + a.+ f)dx + U(x - f) 

x ' x f 1 1 

(4-4) 

U(x + a. - f)dx ' 
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which further.simplifies to 

• (4-5) . 

The resulting value of the function p1(a.) depends on the relative magni

tudes of the x dimensions of the f(x, y) and g(x, y) patterns. If 

c < a, then 

pl(a.) = 

.If c > a, then 

0 
' 

a.+ c ; •, 

c ' 
c + a 

2 - a., 

0 
' 

0 , 

a. + c + a~ 
2 

a 
' 

c +· a 
2 - a., 

0 
' 

a. < - (a+ c) 
2 

c•; ~> < a.< c - a 
2 

c - a<a.<a-c 
2· - - .2 

a - c<cx.<a+c 
2 - - 2 

a.>2+c 
- . 2 

c• + c) < a. < a - c 
2 - - 2 

c-a<O.<c+a 
2 ..... - 2 

(4-6) 

(4-7) 

• 
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Finally, if c = s, which implies (a+ c)/2 = a= c and a - c = c - a= O, 

then 

0 
' ex. < - a 

ex.+ a 
' -a<cx.< 0 

pl (a.) = (4-8) 

a - a ' O~cx.~a 

0 
' ex. ?: a 

Substitution of p1(cx.) thus determined into Equation (4-3) yields 

b b 

f 2 d 
b U(y + 2 + [3)dy - /

2 d 
b U(y - 2 + f:1) dy. (4-9) 

-2 - 2 

If the quantity in the brackets in Equation (4-9) is identified as 

• (4-10) 

The value of the function p2<S) depends on the relative magnitudes of 

they dimensions of the f(x, y) and g(x, y) patterns. If d < b, then 

0 f3 < - (b + d) 
.,.. 2 

Q + b + d 
jJ 2 , (b + d) < f3 < d - b 

2 -- - 2 

d 
(4-11) 

b + d 
2 - S, 

0 Q > b + d 
jJ - 2 • 



If d > b, then 

0 
' 

Q + b + d 
f.l 2 ' 

b 

b + d Q 
2 - f-', 

0 
' 

finally, if- d == b, then 

0 ' 

13 + b ' 

b - f3 ' 

0 

S :5. _ (b ; d) 

- (b + d) < [:3 < (b -. d) 
2 - - 2 

(b - d) < < (d - b) 
2 -13- 2 

(d - b) < !3 < d + b 
. 2 - - 2 

13 5 b 

-b :5_ f:3 5 o 

S > b + d 
- 2 
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(4-12) 

(4-13) 

The functio.ns p1 (a.) and P/13> can be defined more briefly in te:rms 

of absolute value symbols. Equations (4-6), -(4-7) and (4-8) may thus 

be expressed a.s 

0 I I I a+ cl a. 2:. 2 

a+ c - I o.l , I a - cj _,. I I < I a + cj, 
p 1 (ex.) = 

2 2 ::::. ex. - 2 
(4-14) 

c I I < I a - cl 
!l - 2 , c < a 

a lo.I 5 I a ; cj , a< c 0 
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Similarly, Equations (4-11), (4-12) and (4-13) may be combined to obtain 

0 , Isl > I b + di 
- 2 

b + d .. Is I , I b - dJ ~ I ~I ~ I b; di 
2 2 

P2'S) = (4-15) 

d Isl <lb - di 
' d < b , 

2 

b Isl lb - di 
' b < d < 2 . 

If the first pattern function f(x, y) is a square with side lengths 

equal to 2 units and the second pattern function g(x, y) is a rectangle 

with x-dimension equal to 4 units and y-dimension equal to 2 units, then 

f(x, y) = [U(x + 1) - U(x - l)] [U(y+ 1) - U(y - l)] 

and 

g(x, y) = [U(x + 2) - U(x - 2)] [U(y + 1) - U(y - l)] 

In. th:i.s c:a.se above the constituent parts of the cross-correlation 

:functi.on 111ay be expressed as 

0 jaj ::::, 3 

p 1 (a.) = 3 - la.I , 1 :5. I a.I < 3 
.,.,,: 

(4-16) 

2 I a.I < l -
and 

, 
(4-17) 

Is I , • 
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A three-dimensional representation of the product p(a,p) = p1(a) 0 p2(~) 

of the above functions is illustrated in Figure 100 The top view in 

Figure 10 shows several equal value contours of p(or,~) while the per= 

spective view shows the general shape. In interpreting this theoreti= 

cally obtained function p (a,~) in terms of an equivalent light intensi= 

ty function h(a,~), it will be expected that the illumination of points 

in the a,~ plane will be more intense at points where p(a,~) has the 

largest value. 

A photograph of the experimental result corresponding to the theo= 

retical patterns illustrated in Figure 10 is shown in Figure 11. Agree= 

ment between the experimental result and the theoretical predict.ion is 

seen in the photographic presence of the intensified straight lines 

which correspdnd to the "high ridges" seen in the perspective projection 

of the theoretically predicted light intensity pattern. 

In obtaining the photographed experimental result shown in Figure 

11, it was found necessary to compensate for the imperfection of the 

ground-glass light .scattering slab used to realize experimentally the 

planar diffused light source identified in Figure 1o Preliminary exper= 

iments with the apparatus illustrated in Figure 5 showed that the light 

beam impinging on the light scattering slab was not scattered uniformly 

in all directions, but rather was more strongly scattered in the forward 

direction than in other directions. This generally caused the center of 

the photographed detection plane to be too brightly ;Uluminatedo .Com= 

pensation for this imperfection was achieved by insertion of additional 

light diffusing material in the center of the light scattering sl.abo 

Alternatively, compensation for the diffuser imperfection could be 

achieved by the deliberate misalignment of the impinging light beam axiso 
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Fig ure 11. Actual Light Intensity Function Recorded From Optical Cross-Correlator 
For Two Rectangular Transparencies, For Wh ich a= b = d = 4 and c = 4 w 
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However, this was found to introduce unqesirable distortion of the image 

geometry. 

As a further comparison of the theoretical predictions with experi= 

mental results, the special case in which the two patterns were identi= 
I 

cal squares was examined. In this special case Equations (4..:10), (4 ... 14) 

and (4-15) give 

elsewhere 

in which a= b = c = d = 2 units. This relationship is illustrated 

graphically in Figure 12. A photograph of the corresponding experimen= 

tal result is shown in Figure 13. 
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Figure 13. Actual Light Intensity Function Recorded From Optical Cross-Correlator 
For Two Square Transpare ncies, For Which a = b = c = d. = 2 w 
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CHAPTER V 

CALCULATED AND .. MEASlJRED .. PATTERNS 

Repeated patterns in one or both planes of the optical cross corre"' 

lator provide a basis for investigating the spatial ... frequency (repeti"". 

tion per unit distance) characteristics of the res~lting .cross.,.correl.! ... 

tion functionso These1 functions also provide at lea.st some insight into 

possible applications of the optical cross-correl8:tion techniqueo 

Stripes whose lengths were several times their respect$,ve widths 

were chosen for the repeated pattern experiments and the mathematic~! 

analysis was simplified by carrying out calculations in one dimension 

only. To further expedite the gathering of data for the following ex0 

periments, the c .. plane ground-glass diffuser wa.s replaced wi.th an easel 

for photographic paper and the experimental 1corl'elation functions were 

recorded direct_ly on the .Photographic pa,per.. The irrlages from these re"' 

corded patterns are therefore negative functions such that a C-plane 

value of zero (zero or low light intensity) corresponds to white and a 

value of increasing positive value (increasing light intensity) corre= 

sponds to increasing densities of gray or blacko 

The approach used in the calculation of the predicted functions was 
• I • , . 

to choose. the. simplest int_egrable function that would adequately d~ ... 

scr.ibe the A-p!ane and B-plane functions and still give interpretable . 

functions for comparison to the experimental resultso 

The B0 plane pattern in all of the following cases was a repeated· 

38 
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-
pattern of vertical stripes with transparency and opacity widths.equal, 

as would be appr0ximated by a sine-squared transparency function. The 

entire available space in the x-dimension was used for the repeated 

stripe pattern and in the particular case of the following experiments 

this allowed the use of twelve stripes. 

Experiff\ent 10ne 

Let the first pattern be one stripe of width w. Necessary restric-

tions on w evolve from lat.er calculations. The s.econd pattern is the 

series of stripes mentioned earlier. The single stripe is described by 

a unit step function while. the series of stripes is described by a sine-

squared function. The particulars of .the experiment are depicted in 

Figure 14. 

where 

then 

or 

In one dimension the cross-correlation function may be written 

p(a.) = fr,;, f(x) g(x + cx.)dx 
- a:, 

[ w w J f(x) = U(x + 2) - U(x - 2) 

P (ex.) = f [ U(x + I) - U(x - 1> J • sin2 2n,(x ~ a.) dx 

p (a.) 

- co 

w 

2 

. 2 sin 

w 
2 

2rr(x ta) dx = } J w [ I 

--2 

- cos ~ ( x + a.) J dx 

(5-1) 

(5-2) 

(5-3) 
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B-PLANE PATTERN 

A- PLANE PATTERN 

f(x) = u{x+ 1)- u(x- 1) 

Figure 14. Images and Functions Used. in Experiment One 

Integration of Equation (5-3) with respect to x yields 

40 

P (-·' = .!. [x .!:._ sin 4n . w 2 - 4n . L (5-4) 

• 

Evaluation of the limits and collection of terms yields 

p ( a.) = - w - - s 1n - ( ex. + ·-) -1 t L [ . 4n · w 
2 4n L 2 

(5-4a) 

·' 
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which may be further simplified to give 

p(a.) = j [w - ~ cos <f'l O a.) sin <in• i>J (5-5) 

For sma'll values of (2 w/L), the function 

sin ( 2rr w) :::: 2rr w 
L L 

and therefore Equation (5-5) may be approximated by 

p (a.) :::: ~ ( sin 2rr Lw) [ 1 ... cos <in • a.) J (5-6) 

or 

p(a.) ::;::~ (~ w) [l - cos(~• ex.)] (5-6a) 

and by application of the trigonometric identity used previously 

p (a.) • . (5-7) 

The equation above shows that the resultant magnitude of the correlation 

function should vary directly as the width of the single A-plane stripe, 

and should retain the same spatial frequency and shape as the B-plane 

function. A record of the experimental result is shown in Figure 15. 

It is seen that the experimental result corresponds in general with the 

theoretical prediction of Equation (5-7). The 0 pincushion'' appearance 
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Figure 15. Cross-Correlation Results of Experiment One 

of t he image in Figure 15 is due, at least in part, to the reflection of 

light pas s ing t hrough the photographic paper by the focusing surface of 

the e a se l. When the paper is exposed some of the light in the higher 

inten s ity areas penetrates the paper, is diffused by the paper, reflects 

off the easel, is diffused agair. by the paper and adds undesired expo

sure to areas adjacent to points of desired exposure. 

Experiment Two 

The second experiment is depicted in Figure 16 and consists of the 

B-plane pattern described previously and an A-plane pattern comprising 
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g{x) = sin2 (2rx) 
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Figure 16. Images and Functions Used in Experiment Two 
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two stripes with center-to-center spacing of L/2 units. The cross-corre"" 

L'cltion function is again 

p (Cl) = Jm f(x) g(x + Cl) dx 

- Cl) 

Use of the functions pertinent to this second experimertt gives 

p (oJ = f 00 [ u(x + I) - u(x - I) + 
' - CX) . 

- u{x - I - ~) J · 
u(x+ !'.! - 1)· 

2 2 

sin2 [2n(~ + Cl)] dx 

(5-8) 
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and 
w 

p(c,) = f 2 
ain2 ::' (x + c,) dx + 

' w 

JL;w 
sin2 ~TI (x + a) dx o 

L - w 
(5-9) 

- 2 2 

This expression reduces to 

w 

:u L 4,r 
p(ot) = ·2LX - 4n sin 1 

2 
(x + a)] + { x 

w 

L . 4rt - 4n s1.n L 

L+w 
2 

(x + a)] (5~10) 
L = w 

·2 2 

1[W L • 4TT ( w) w L • 4TT I w)]' = '2 -2 - -4f." sin -L ot + - + - + - sin - ,a = -, 2 2 4TI L 2 
(5=11.) 

+ )J L + W L O 4TI ( + L + W) ( L - W) + L • (rv + J, ; W 1,.·Ji O '·t 2 = 4TI s1.n L a 2 "' 2 tin s1.n "" II 

Equation (5-11) may be simplified by use of trig,.mometric idenUt:!.es as 

follows 

p(c,) = If · t11 [sin t;:r(o, + 1) + sin ~(c, • J>J} 

+·{ 

yielding 

Ot' 

• Li.rr w, 
s HJ. -L (O! = - J 2 

4n L cos-(-) 
L 2 

( ) L [ 4rr, w) , 4rr, w)·] 
p a = w = 4n sin L'a + 2 - sin L'O:' = 2 

L 4'f'fe¥ 4 TI 
p(a) = w - 4n cos <1)., s:i.n <r 1> 

(5-12) 

4rr L 
sin-(-) 

L 2 

(5-13) 

(5-14) 
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It may be noted at this point, before simplification, that the predict-

ed cross-correlation function p(a) for this second experiment is just 

twice that predicted in Equation (5-5) for the first experimento Equa-

tion (5-14) may be simplified in the same manner as was Equation (5-5) 

to yield 

··c 2 0( J p (a) ')& 2w sin (2TT L) (5-15) 

The corresponding experimental results are shown in Figure 17. Al ... 

though the results appear almost identical, it ·should be noted that the 

exposure time for the record of Figure 17 was one-half that for the 

record of Figure 15. It may thus be noted that the similarity of Equa-

tions (5-7) and (5-9), except for scale factor, is evident in the ex-

perimental results as well. 

ExpeJ:iment Three 

Figure 18 depicts the third experiment in which the A-plane pat-

tern comprised three stripes with center-to~center spacing between ad-

jacent stripes of L/2 units. The calculation of the cross-correlation 

function yields 

( ) 3 [ L (4TI ) (4TI _w2)J p a. = 2 w - 4ii cos La • sin r (5 ... 16) 
0 

This expression shows that for three stripes, the predicted function 

should be just three times that of Equation (5-5). Equation (5-16) may 

be simplified in a manner similar to Equations (5-5) and (5-14) to 

yield 
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Figure 17. Cross-Correlation Results of Experiment Two 

p (a) ~ 3w [ sin2 (2n I:)] (5-17) 

The corresponding experimental results are shown in Figure 19. Again 

intensity compensation was made by adjusting the exposure time. The 

record of Figure 19 was exposed for one-third the time that the record 

of Figure 15 was exposed. 

In each of the previous experiments the center-to-center spacing 

of the A-plane stripes was equal to the center-to-center spacing of the 

B-plane stripes. Non-integral relationships between the spacings of 
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f (x) = _I [ u( x- n2L + ; ) 
n--1,011 . 

...._ ____ x ( .. nl w )] -u x.-y - 2 .. 

Figure 18. Images. and Functions Used in Experiment Three 

the A ... plane and B~plane stripes can be expected to produce markedly 

different results. 

Experiment F.o.ur · 

The A-plane and B-plane patterns for the fourth experiment are 

shown in Figure 20.· The B-plane pattern is identical to the B-plane 

patterns used in the first three experiments. The A-plane pattern con-

sists of two narrow stripes having four .. thirds the spacing of the B ... 
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Figure 19. Cros s-Correlation Results of Experiment Three 

plane stripes. 

The cross-correlation function may be determined in a manner simi-

lar to that for the case of two A-plane stripes considered previously. 

Again, as in Equation (5-1), 

co 

p(a) = f f(x) g(x + a) dx 

- co 

and for this particular case 
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A-PLANE PATTERN 

f ( x) = L [u(x- 2nL +~) 
n=01I 3 2 

·-u( x- 2~L - 2 )] 

Figure 20. Images and Functions Used in Experiment Four 

a 

p(ck') = f [u(x +¥) - u(x -1) + u(x = ¥+i) 
• a 

(5-18) 

. 21 w J . 2 2ff - u(x - 3 · 2) 0 s1.n 1 (x +a) dx, 

where the limits of integration are chosen sufficiently large to in-

elude the entire domain of the function f(x). Then 
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p(a) = 

w 

12 2 2n 
sin r<x + a) 

w . 

1!:! + !! 
f 3 2 2 2'1i 

dx + sin r<x + a) 
2L w 

dx, (5-19) 

- 2 3 • 2 

and again, as developed previously, but with appropriate limits, 

w 

p(a) = ~ [x - in sin °t11Cx + a)] 
2 + \ [x 
w 

2L w -+-
L 4n J 3 2 

- 4nsin r<x + a) 
2L w 

-2 3 .. 2 • 

(5-20) 

Evaluation of the above expression yields 

P (a) = \ [!! - .h.. sin 4n (!! + a) + !! + .!!.. sin .!!:!!(a .. !!2 >] + \ [ (3
2L + !!2 ) 2 4n L 2 2 4n L 

(!$-21) 

- .h.. sin ~(a + !! + ~) - (~ .. !'!) + .h.. sin !.!lea .. !! + ~>] 
4n L 2 3 , 3 2 4n L 2 3 

which further reduces to 

(5 ... 22) 

{ 
L [ 4TI . w 2L + \ w .. 1+n sin r<a + 2 + 3 ) .. sin -(a .. - + -) 4n w 2L J} 

L 2 3 , • 

For purposes of simplification, the above equation may be written 

as 

(5-23) 

where 
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and 

- sin -(a - - + - ) 4n w 2L ]~ 
L 2 3 • (5-25) 

. Equation (5-24) may be simplified in the same manner as was Equation 

(5-4a) to yield 

Use of the substitution 

in Equation (5~25) yields 

2L 0=a+-3 

. 4,r(,,. 
sin L" 

(5 ... 27) 

(5-28) 

Tb.is expression has the. sa~e form as that of Equation (5 ... 24). Hence in 

view of Equation (5 ... 26), it is seen that 

[ 2 2TT 2L J p 2 (a ) ';:!, w s bi r-<a + 3 ) 
• 

(5-29) 

Use of Equations (5-26) and (5-29) in Equation (5-23) yields 
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( ) ,,,.,, [ . 2 (2rta) ,__ i 2 (2na + trn)JP a ,.., w sin L ·r s n L 3 (5-30) 

or alternatively, 

[
. 2 

p(a) ~ w sin 
2 2 2 (...lli!) + sin ( TLTL.t' 

. L 
2n)j···, 

- -3 (5-31) 

It was previously noted that the stripes in the B-plane pattern 

have been approximated mathematically by a simple sine-squared function. 

These patterns are more accurately represented by a square-wave pattern, 

which necessarily requires the inclusion of the higher~o:rder odd har-

monies to improve the mathematical representation. The associated in-

creased complexity of the more accurate mathematical analysis can be 

alleviated by the use of graphical techniques. Figure 21 shows the 

same information sl10wn in Figure 20, except that the B-plane transpar .. 

ency function is more accurately portrayed by its square-wave represen .. 

tation. Figure 22 illustrates the graphical processes used to develop 

and represent the theoretically predicted C-plane intensity function, 

:.,,l;icL ni10uld be a mo:.:e accurate analytical prediction than tlwt given 

bv Equation (5-31). 

The corresponding experimental results obtained in the fourth ex .. 

periment are shown in Figure 23. As may be seen in the first experi-

mentr the resultant patt;ern shown in Figure 15 could be represented as 

a squareuwave function with spatial frequency equal to that of lhe 

sine-squared function in Equation (5-7). If the ~wo parts of Equation 

(5-31) are first represented as square-wave functions and subsequently 

added graphically as shown in Figure 22, the resultant sum predicts 

closely the function obtained in Figure 23. It is seen that the roost 
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A-PLANE PATTERN 

= L [u(x- 2nL + J(. ). 
n=O,I 3 2 

______ _.1 .... -- .._ _____ X -u(x- 2~L - 2 )] 

Figure 21 • 
" 

Images and F1,1nctions Used for Graphical Analysis 
. in Experiment Four' 

darkened parts of the photograph are the doublyo;ointense stripes of width 

L/12, spaced L/2 apart between centers, centered as pedestals on 11pla ... 

teau" or "butte" stripes which have single-unit.intensity and have 

I . 
widths 5L/12, and·are spaced L/2 apart between centers. Thus, the ex ... 

perimental result obtained is, in reasonably good agreement with the 

graphically derived.· theoretical prediction. The experimental rest3:lt br 

not well represented by the analytical approxinµltion defined by Equa .. · 

tion (5-31), since Equation (5 .. 31 )' represents, ess¢nt:Lally, a constant 
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Figure 22. Graphical Construction of Predicted Inten:sJ.ty FunctiotA 
for Experiment Four 
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term plus the sum of two equal-period sine functionsp and does net in= 

elude the contribµtions of the higher harmonic~ needed to more=accu-

:l:'!o,tely pcirtray the C-plane intensity function& 

A repetition of this fourth experiment, with the single e~ception 

of making the spacing between the A-plane. stripes 4L/3 instead of 2L/3~ 

p:r:och.ic,ed a r1ea:rly identical photographic result.a This outcome could 

have been anticipated from the nature of Equation (5~30 and Figure 22. 

Experiment Five 

For the case depicted in Figure 24, and for the f(x) and g(x) 

functio,;is·assumed, the cross correlation functiort may be written as 



Figure 23. Cross-Correlation Results of Experiment Four 

a 

p(c,) = J L 
n = -1,0,1 

- a 

[ u(x _ 2nL + ~) 
3 2 

2nL w J u(x - -3- - 2) • 

2 2rr 
sin ""i:""(x + a) dx 
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(5 - 33) 

where as in the previous case the limits on the integral are suffi-

ciently large. Then 
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f(x) = L [u(x- 2;L + ~) 
n=-1,0,+I 

-u(x-2~L - ;)] 

Figure 24.. Images and Functions Used in Experiment Five 

~ _21 + ~ 

f 3 2 2 Zn p(a) = sin r:-<x + a) dx + 
21 w 

w 

f 2 · · 2 2n 
sin r:-(x + a) dx 

w 
- 3 = 2 - 2 

21 + ~ 

f 3 2 22 '' 
+ . sin ~1 (x + a) dx 

21 w -:r-2 



Integrating with respect to x and evaluating at the limits yields 

p(a) = ~ 

+\ 

{ 
L [ . 411 w 2L 4n w 2L ]1 

w - 4n sin 1 (Q' + 2 - 3 ) - sin L(a - 2 - 3 ) ij 

{ L [ . 4n( + w) . 4n( w)J} w - 'Zn' sin T Q' 2 - sin T o: - 2 

{ 
L [ 4n w 2L . 4n +~ w-4-n sin 1 (Q-+ 2 + 3 )-siny(Cl' 

For simplification purposes the above equation may be written as 

where if 
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(,5-35) 

I 

(5-36) 

{ 
L [ 4rr w 2L = '1 w - lm sin T(Q' + I -T) 4n w 2L J} - sin L(Q' - 2 - 3 ) • (5-37) 

p1(a) and p2(a) are then defined in Equations (5-24) and (5-25) respcc~ 

tivcly.. If, in the ·trianner of Equation, (5-24), the definition 

(5-38) 

is made, then substituting~ above into Equation (5-36) yields 

(5 ... 39) 

which can be simplified in the same manner as Equation (5-29) to yield 

(5-40) 



58 

From Equation (5-36) and the respective constituent equations, (5-40), 

(5-24) and (5-25), the following may be written 

p(a) -')J [sin2 (2na ... ~) + sin2 (2na) + sin2 (2na + l,n)J (5-41) 
L 3 L L 3 • 

Equation (5-41) shows three terms with distinct arguments compared 

to two in Equation (5-31) for the fourth experiment. If a square-wave 

function were presumed for each of the sine-squared terms in Equation 

(5 ... 41), a graphical addition could be performed as before to yield a 

square-wave predicted intensity function. The graphical analysis shown 

in Figure 25 is similar to that in Figure 22 except that the finite 

slope of the sides of each of the geometric wave functio~s is shown. 

The effect of the stripe width win these wave functions may be deter-

mined from Equation (4-14) and the discussion preceding it. Figure 25 

shows first the addition required to obtain the function predicted for 

the fourth experiment (middle) when stripe width w is considered. Then 

the function p3 (a) is added to obtain the predicted intensity function 

for Experiment Five (bottom). It should be noted that this predicted 

function has a spatial frequency greater than that of the constituent 

A-plane and B-plane. functions. in contrast to the same spatial freq4ency 

predicted and observed in the third experiment. The predicted function 

for this experiment also has only two definite levels of intensity in 

contrast to the case of the fourth experiment. 

The corresponding experimental results are shown in Figure 26. 

Th~se results again appear to be in good agreement with those predicted 

by use of Equation (5-41) and the graphical interpretation or' Figure 25. 
,, 

It should be noted again that use of Equation (5-41) without the aid of 
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Figure 25. Graphical Construction of Predicted Intensity Function 
for Experiment Five 

graphical interpretation or computation with higher harmonics would. not 

yield the spatial frequency characteristic observed~ 
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Figure 26. Cross-Correlation Results of Experiment Five 



CHAPTER VI 

PATTERN ORIENTATION EXPERIMENTS 

Considerable information concerning orientation of predominant , 

characteristics of -patterns may be obtained with the optical cross cor

relator by making one of the patterns a single narrow stripe with ad

justable orientation. This operation provides increased insight into 

the application possibilities of the optical cross-correlation technique. 

A single narrow stripe centered on a 360° protractor was chosen for 

the A-plane pattern in the following experiments. The protractor was 

edge-mounted in a larger sheet of plastic which was cut to the dimen

sions of the A-plane transparencies used previously. The protractor was 

mounted snugly in the encircling plastic and provided with an index 

r,1.ark, so that the transparent stripe on the protractor could be posi

tioned at any desired angle relative to the vertical axis. Again, the 

experimental correlation functions were recorded directly on the photo~

graphic paper so that areas of low intensity correspond to light or 

white while higher intensity areas correspond to darker or black areas. 

A lighter area is noticeable in the center of the cross-correlation re

cords of several of the figures for the following experiments. This was 

due to the increased diffusion and scattering of light from the center 

of the A-plane stripe caused by the center hole in the plastic protrac

tor. This phenomenon, although noticeable, does not detract signif;i.

cantly from the experimental results obtained. 

61 
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The approach for the following, sequence of experiments was to pro= 
I , ' 

gress ~,:om simple patterns to those of a mo?,:"e comp_lex nature~ Simpler. 

patterns 'were studied in~tially so. th~t their individual characteristics 
.· /~~ .. "! I . 

could ~- t.'.ecognized. more easily when integrated into comple'x patternso . 

Straight-J.,ine. Patterns 

F,igure 27 shows five cross .. correlation records geperated with the .. 

optical cross correlatqr and, in addition, a representation of the con= 

stituent ;patterQ.s when. the B-plane pattern consisted of a single verti= 

cal stripe. It may be noted that in this and subsequent figures the 

B-plane pattern representation was derived directly from the B-plane 

transparency used in the respective experimen~s. By use of this proce~ 

dure the relative dimensions of the B=plane patterns and the cross cor-

relation records were preservedo It UU,.Y be seen from Figur~ 27 that the 

cross-correlation records ,graduate from max',imum intensity for the A .. 

plane, stripe vertical to a minimum intensity for the.A-plane st:t'.ipe 
I ' ' ' 

oriented horizontallyo 

The next experiment used the same A~plane pattern orie~tations used 
' I { 

in the experifuent depicted in Figure 27 exce~t that the B0 plane pattern 

comprised the series of wide vertical strip.es used in the experiments of 

Chapter V. Figure 28 shows the results obtainedo Since the A ... plane 

stripe in this case is narrow with respect to the B-plane stripes, the 

graduation of intensity at the edges of the stripes in Figure 28 (a) is 

barely perceptible and the cross=correlation record appears to be a 

reproduction of the B-plane patterno 

Several observers·have noted that the original cross-correlation 

record of Figure 28 (b) at certain viewing distances caµsed an instabil= 
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Figure 27. Cross Correlation Between a Single ~ide Stripe and a Sing le 
Narrow Stripe Inclined at (a) O, (b) 15 , (c) 30 , ( d ) 60 
and (e) 90 Degrees 



64 

A 

C D 

1111111111 J 
B-PLANE A- PLANE 

Figure 28. Cross Correlation Between a Series of Wide Stripes and a 
Single Narrow Stripe Inclined at (a) O, (b) 15, (c) 30, 
(d) 60 and (e) 90 Degrees 
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ity or oscillation in their visual system.. Ro_ugh estimates place the 

frequency of this phenomenon at less than 20 cps and greater than 2 cpso 

Although the matter was not pursued, the evidence of the 5-6 cps' visual 

scanning mechanism mentioned by Blackwell (7) would seem to be supported 

by the$e observations. ,, 

An experiim~nt to investigate the possibility of separating features 

of two dimensional patterns used a series of "inverted els" for an exam= 

ple of a pattern with two equal and distict featureso The results of 

the experiment are shown in Figure 29. It may be seen that the vertical 

component of each character is detected as a.more intense vertical 
' . ) 

stripe ,in t~e cross-~ol:'relation pattern. As before, the intensity of. 
' ' 

the pattern is significantly greater when the A-plan~ and B ... plane pat=. 

terns have the same orientation. Fur,ther, it may be seen that when the 
\ . 

.. hprizontal feature of the character sequence is considered· the fact that· 

. the horizontal features of the individual characters are collinear re= 

sults in a pattern with greater intensity than for the vertical case. 

F,igure 30 shows a set of cross .. co:rrelation patterns for a series of 

narrow stripes inclined at an angle of 30 deg~ees in the B=plane and the 

A=plane pattern described previously. The stripe spacing was unifo11:m in 

the l.eft· .. hand portion of the pattern while the spacing la~ked. uniformity 

in the right .. hand portion. The choice of such a pattern was motivated 
·",I 

by the desire to simulate some· of the features of handwriting or hand,·,-

printingo The· narrow stripes yield a grea,ter contrast or sensitivity t'o 

orientation than do the wide stripes as may be not_ed by ,comparison of .. 

the results· in Figure 30 with t;hose in Figure 280 

An effort to further simulate features characteristic of handwriting 
' ' 

or hand printing led to the addition of horizontal lines or bars to a 
I 
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Figure 29 . Cross Correlation Between a Seri~s of "Inverte d Els" and a Single Narrow Stripe 
Inclined at (a) O, (b) 45 and (c) 90 Degrees 
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Figure 30. Cross Correlation Between a Series of Inclined Narrow Stripes 
and a Single Narrow Stripe Inclined at (a) O, (b) 30, 
(c) 60, (d) 90 a~d (e) 120 Degrees 
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series of equally spaced narrow stripes or lines inclined 30 degrees 

with respect to the vertical. The continuous stripe at the base of the 

ser:i,es of inclined stripes appeared to be more characteristic of hancl

writ,ing than hand,printing from a subjective evaluation. Further dis

cussion of the base-line feature is presented with subsequent experi

ments. Again, the results of Figure 31 show a distinct contrast in the 

cross-correlation patterns when the A-plane stripe was oriented similar

ly to components of the B-plane pattern. Further, Figure 31 (d) shows 

the effect of slight misalignment when the A-plane stripe was pos:Ltioned 

at nominal horizontal or 90 degrees. The misalignment results in the 

slight separation of the ends of the more intl"!nse areas in the center of 

the cross-correlation record. These intense streaks correspond to the 

three short horizontal stripes in the B-plane pattern and would be col-

linear under conditions of ideal alignment. 

Hand-Printed and Handwritten Patterns 

Figure 32 shows the results of the first experiment in extracting 

straight line features from actual hand printed characters. In this 

experiraent the number sequence 11 7407411 was used in the B-plane and the 

variable-orientation stripe described previously was used in the A-plane. 

As may be noted, for the A-plane stripe vertical, the maximum correla

tion seems to come from the sides of the "0" (center) while a lesser 

correlation seems to exist for the other characters. When the A-plane 

stripe is oriented at or near the normal slant of the writing, the cor

relation pattern is dominated by the effects of the "vertical11 or "slant 

axis" strokes of the characters. It may be noted that the correlation 

of the 11 011 is increased as might have been expected since it more nearly 
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Figure 31. Cross Correlation Between a Series of Inclined Narrow Stripes 
With Some Horizontal Stripes and a Single Narrow Stripe In
clined at (a) O, (b) 30, (c) 60, (d) SO and (e) 120 Degrees 
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Figure 32. Cross Corre lation Between the Hand-Printed Numerals 11 7407411 and a Single Narrow 
Stripe Inclined at (a) O, (b) 30, (c) 60 and (d) 90 Degrees -.J 
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resembles an elipse with major axis coincident with the "slant axis" 

than it does a circleo For the A-plane stripe inclined at 60 degrees, 

th~ intensity of the correlation p~tte~n diminished and again the sides 

of the 11 0" seemed to domi.nate o Figure 32 (d) shows the distinct separa ... 

tion of the horizontal features from others in the sequence of numberso 

The stripes on the upper level in the cross ... correlation record corre ... 

spond to, the high horizontal. component of the ''7" characters while the 

middle level stripes correspond to the intermediate=level horizontal 

component in the "4" characterso A 1,sser horizontal component from the 

11 011 cha~acter may be seen on the two extreme levelso 

An experiment using the handwritten word "fluid" was performed 

similarly to the previous experiments except that the average or pre"' 

dominant slant of the handwriting was determined by a subjective deter= 

mination of maximum contrast in the C plane while the A-plane stripe 

orientation was varied. The maximum contrast or sharpness shown in Fig= 

ure 33 (c) seemed to occur for an A ... plane stripe orientation of 34 de ... 

grees. The results are barely distinguishable from those i.111 Figure 33 

(b) except for an increased intensity associated with the main stroke of 

the letter "f" at the extreme left side of the correlation pattern. A 

notable result of th.is experiment was the evidence of a predominant base 

line in the handwritten word.when the A-plane stripe was horizontal. 

Although this characteristic was expected to some degree as mentioned 

earlier, Figure 33 (e) shows how this particular feature of a handwrit= 

ten word was effectively separated from other featureso 

A second handwritten word was examined similarly to the previous 

one. The word "pattern" used in the latter experiment had greater line 

width and less uniformity than the previous word. The exposure time and 
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Figure 33. Cross Correlation Between the ·Handwritten Word "Fluid" and a 
Single Narrow Stripe Inclined at (a) O, (b) 30, (c) 34, 
(d) 60, and (e) 90 Degrees 
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light source intensity were the same as used in the previous experiment 

and thus the greater width of the lines resulted in the more intense or 

darker cross-correlation patterns of Figure 34. A subjective determina

tion of maximum contrast in the neighborhood of 30 degrees yielded an 

angle of slant of 26 degrees with respect to the vertical. Although the 

two handwriting samples were from the same subject, the congruity was as 

close as expected from the relatively coarse indexing and measurement 

system and subjective determination of contrast. A noticeable increase 

in line features oriented at 60 degrees with respect to the vertical is 

evident in Figure 3l> ( d) compared with those in Figure 33 (d) for the 

word "fluid." 

A marked increase in complexity is observed in the pattern compris-

ing a three-line address with some numbers. Figure 35 shows the cross-

correlation patterns which resulted from the address shown and a single 

narrow stripe of variable orientation used in the previous experiments. 

Retention of the separation between words is evident in the cross-corre

lation record of Figure 35 (a) and for the top line at least in the two 

subsequent records. Figure 35 (b) shows the cross-correlation record 

for the case of maximum contrast which seemed to occur when the A-plane 

stripe was oriented at an angle of 27 degrees with respect to the verti

cal. It may be noted at this point that the handwritten address and the 

handwritten words in the two previous experiments were samples of hand

writing from the same subject. 

The difference between the records for the angle for maximum con

trast and the record for 30 degrees in Figure 35 is difficult to distin

guish. The record for an A-plane stripe orientation of 60 degrees shows 

two horizontal streaks of greater intensity which evidently result from 
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Figure 34. Cross Correlation Between the Handwritten Word "Pattern" and 
a Single Narrow Stripe Inclined a t (a) O, (b) 26, (c) 30, 
(d) 60 and (e) 90 Degrees 
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Figure 35. Cross Correlation Between a Handwritten Three-Line Address 
and a Single Narrow Stripe Inclined at (a) O, (b) 27, 
(c) 30, (d) 60 and (e) 90 Degrees 
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the areas of overlap of the correlation patterns of the three lines. 

Probably most significant in the experiment was the demonstration of the 

separation of the individual lines of the three-line address. As in the 

case of the single handwritten words, a definite base line appears with 

a slightly less intense intermediate-level line corresponding to each 

line of the handwriting. The extreme right-hand end of the lower line 

in Figure 35 (e) shows that in the area of the numerals, the predominant 

base line ~id not appear and instead the horizontal line characteristics 

were the same as those in Figure 32 (d) described previously. Figure 35 

(e) also shows upper-level or mid-upper-level streaks of greater inten

sity which resulted from the incidence of the letter 11 t 11 several places 

in the address. 

It should be noted that th<E! photographic paper on which the c.ross

correlation patterns were recorded did not encompass the entire observa

tion plane. For this reason the extreme left-hand and right-hand por

tions of the resultant patterns do not appear in the cross-correlation 

records of Figure 35 and Figure 36. 

In order to compare characteristics of handwritten material to 

those of hand-printed material, the same three-line address used to ob

tain the cross-correlation patterns of Figure 35 was hand-printed. The 

slope and spacing were duplicated as nearly as possible to obtain the 

three-line address in Figure 36. Although an effort was made, to dupli

cate the slope of the handwriting, the subjective determination of maxi

mum contrast corresponded to an A-plane stripe orientation of about 22 

degrees. Further, there is a perceptible difference in the CQntrast in 

the cross-correlation pattern thus obtained and the p.,lttern obtained in 

Figure 36 (c) for an A-plane stripe orientation of 30 degrees. There is 
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Figure 36. Cross Correlation Between a Hand-Printed Three-Line Address 
and a Single Narrow Stripe Inclined at (a) O, (b) 22, 
(c) 30, (d) 60 and (e) 90 Degrees 
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also a reduction in relative intensity for the 60-degree features in the 

hand printing shown in Figure 36 (d) compared to the same angle for the 

handwriting. Although a base line characteristic is evident in Figure 

36 (e) for the hand printing, it is neither as intense in an absolute 

sense nor as intense relative to the intermediate-level· line as for the 

handwritten address. Significance of this and other contrasting fea

tures in the previous experiments is discussed further in the following 

chapter. 



CHAPTER VII 

DISCUSSION 

It was found, as detailed in the two previous chapters, that cer= 

tain features could be abstracted from two-dimensional patterns us:!,ng 

the optical cr.oss-correlation technique. While the scppe of a study of 

this sort must necessarily be limited, several pos'sibilities for appli= 

cation and extended study appear at this point. 

Application to a Reading Machine 

Although the experiments presented in the previous chapters byno 

means constitute a complete feature abstraction method, several of the 

results seem t;o suggest that the optical cross=correlation technique 

could be effectively used in the implementation of an.automatic reading 

machine. 

Early in the maphine=proce,ssing of handwritten OJ;" hand ... printed ma= 

terial a determination of predominant slant would probably be requiredG 

As noted in several of the experiments in Chapter VI, two phenomena 

accbmpanied the positioni.ng of the single narrow stripe coincident with 

the dominant slant axis of the writing. The contrast of the resultant 

pattern was at a maximum, and further, the predominant spatial frequency 

of the cross .. correlat.ion pattern seemed to be at a minimum. A detection 

scheme for such an occurence could comprise a fixed rate scanning device 

and photo detector to scan perpendicularly to the narrow stripe!s axis 
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while integrating the light intensity function along the axis of the 

stripe. Available electronic circuitry could then be used for detection 

of the maxima and minima as required. 

Location of the individual lines of handwriting or hand printing 

could possibly be achieved by use of the horizontally oriented narrow 

stripe with horizontal integration of the· light intensity and vertical 

scanning. This method of locating the individual lines would not be 

affected by the overlap of characters which often occurs vertically be

tween lines of handwriting. The scanning results should also serve to 

make discrimination between handwriting and .hand printing possible based 

on the comparisons between Figure 35 (e) and Figure 36 (e) mentioned in 

Chapter VI. Presently this discrimination seems to be a significant 

problem in the realization of reading machines. 

Presumably, the material to be analyzed would be transferred at 

some point in the process by a typical video system. In this case, the· 

individual lines of the material could be analyzed by electronic blank

ing of the undesired lines. 

As noted previously in the experimental results, word separation is 

preserved when only a single line of the handwriting or hand printing is 

considered. This would allow for the partitioning of individual words 

for further analysis. In the case of handwriting, this would probably 

be the finest partitioning done since evidence supported by the work of 

Mermelstein and Eden (6) indicates that context must be considered in 

any automatic handwriting recognition system. 

Although supporting data are not available, it seems that individ

ual stroke spacing relative to the average spacing of strokes in hand

writing might yield an invariant in the character recognition problem. 
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It would also seem that determi.nation of word length in terms of average 

spatial period would have more significance in a recognition system than 

the physical dimension on the page. 

Possible Extension of Studies 

The facility of investigation of spatial frequency characteristics 

of handwritten words and similar patterns would be greatly enhanced if 

the size of either the A-plane or B-plane pattern was easily variable. 

Use of a projection cathode-ray tube in the place of the light source, 

diffuser and A-plane transparency would allow this variation quite read

ily if used in conjunction with a video signal source and a suitable 

raster control. 

Som,::. relative size variation could be simulated by variation of the 

B-plane pattern position. Size variations achieved in this way would 

necessarily affect both dimensions equally and would necessarily cause 

variation in the size of the C-plane pattern as Equation (2-4) suggests. 

The nature of the particular experimental laboratory equipment shown in 

Figure 5 precluded significant variation of the spacing between the var-

i.0 1Js planes of the system. Subsequent studies should have some sort of 

size control, preferably a cathode-ray tube in the A plane. 

Possible directions for extension of optical cross-correlation re

search certainly include evaluation of more refined feature abstraction 

techniques for handwritten script as well as similar techniques for 

automatic identification of spiral storm cloud patterns appearing in 

weather satellite photographs. 



CHAPTER VI II 

SUMMARY AND CONCLUSIONS 

The results and conclusions of this investigation of optical cross 

correlation of two-dimensional patterns may be itemized as follows. 

1. A survey of.the literature was made to examine prior works in 

cross correlation of t:wo-dimensional patterns by optical means. 

2. The theory underlying the various experimental methods for ob-

taining two-dimensional cross correlation by optical means was examined 

and further developed into the form of a more concise and more rigorous

ly defineci theorem. 

3. An experimental laboratory system was designed, constructed and 

t0sted in order to obtain cross-correlation functions for arbitrary ex-

perimental patterns. 

4. Attention was given to the comparison of theoretical predic-

tions ·to experimental cross-correlation results for simple geometric 

pc,tterns. Discrepancies between theoretical and experimental results 

were analyzed and discussed. 

5. It was found that special graphing techniques could be used ad

vantageously to predict the basic experimental results to an acceptable 

order of accuracy. 

6. Spatial frequency in two-dimensional patterns was found to be 

determinable by cross correlation with appropriate repeated patterns. 

7. It was found that straight-line features could be readily 
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abstracted from handwriting and other two-dimensional patterns by opti

cal cross correlation with a narrow stripe. 

8. A discussion was presented which included some of the more 

apparent possibilities for application of the optical cross-correlation 

technique to a reading machine and some areas for extension of research 

in this area. 

It is felt that these studies have shown that optical cross-corre

lation techniques hold considerable promise for use in implementation of 

two-dimensional pattern recognition systems. It is fe:i lt that re search 

should be conducted toward refinement of feature abstraction in hand

writing and subsequently toward statistical analysis of the occurenCt; of 

these features in arbitrary samples of handwritten material. 
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