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PART I 

OXIDATIVE DECAR~OXYLATION OF y-OXO ACIDS 

USING LEAD DIOXIDE 
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CHAPTER I 

INTRODUCIION AND HISTORICAL 

The general applicability of lead dioxide as a reagent for the oxi-

dative decarboxylation of y-oxo acids to a,~-unsaturated ketones is re-

ported in this part of the dissertation. The study includes the de-

velopment of a reaction method which gives high yields of the desired 

product using comm.ercially available lead dioxide. 

~he elimination of vicinal dicarboxylic acid and anhydride func-

tions to yield a double bond at the site [e.g., formation of cyclohexene 

(2) from cyclohexane-1,2-dicarboxylic acid (1)] may be effected with 

h 1 d d . .d 1 ot ea 1.ox1. e. 

~OOH 

VcooH 
1 

0 

O+ ::~. 
Ho· 

2 
2 

'V'-

Grob et 1!.!, substituted lead tetraacetate in pyridine for lead 

dioxide. 2 This and later modifications have essentially supplanted 

2 
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oxidative decarboxylation with lead dioxide, probably because higher 

yields, lower temperature, and better control over the reaction have 

3 4 been reported. ' In general, lead tetraacetate decarboxylations give 

the same olefinic products. 

In 1955, it was demonstrated that (-)-3-methylcyclopenten-1-yl 

methyl ketone (!J) is the major product of lead dioxide oxidative decar

boxylation of nepetonic acid (3). 5 These observations have now been 

confirmed. The decarboxylation of y-oxo acids with lead dioxide per-

mits survival of the ketone function. This is strikingly different 

from the reaction of vicinal dicarboxylic acids with hot lead dioxide. 

PbO'> 
__ ,,_:;-_·=·-+ 

~ 

3 

Ct_~ 
" 3 
0 

4 



CHAPTER II 

DISCUSSION AND RESULTS 

The author extended the work referred to in Chapter I to other y-

6 oxo acids. The reaction appears to be general, but the yield of 0(,(3-

unsaturated ketone usually does not exceed 30-40% for y-oxo acids having 

no alkyl or aryl substituents at the 0( or f3 position. The best yields 

were obtained from the 0(-phenyl-y-oxo acid Sa and the 0(,0(-dimethyl-y-

oxo acid 6, which gave the corresponding O(,~-unsaturated ketones in 84 

and 76% yields respectively. A 72% yield was realized from 3-methyl-3-

(2,S-dimethylbenzoyl)propionic acid (Sc), which is substituted in the 
""""" 

f3 position. However, acid Sd, with no alkyl or aryl substituents in the ...,._ 

0( or f3 position, gave a mixture of six products in low yield. 

I ! 

ArCCHCHCOOH 
II 

0 

Sb, Ar = C6HS' 
Rl = CH3 , R2 = H .......... 

~· Ar = 2- (£-xylyl), R1 = H R2 = CH3 ' 

~. Ar = ..e-tolyl, R1 = R2 = H 

Rl = 
I 

R2 = ~. Ar = 2-(£-xylyl), CH3 , H 

g, Ar = 2-naphthyl, Rl = C6HS' R2 = H 

Sg, Ar ......... 
:::; 2-naphthyl, Rl = CH3, R2 = H 

Sh, Ar = 1-naphthyl, Rl R2 = H ._._, 

4 

ArCCH ,, 
0 

7a, Ar = .......... 

7b, Ar 
....-.... 

CHR 

~~o 
'+:OOH 

6 
N 

2- (.e_-xylyl), R = CH3 

R = c6HS 
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The potential of this reaction fo:r the preparation of ('J{,(3-unsatu

rated ketones in the degradation of natural products can best be appreci

ated when one includes y-lactones, which may be converted into y-oxo 

acids. The high yields possible with or and /or t:J-substi tuted acids in 

this one-step decarboxylation, in addition to the ease of product iso-, 

lation, make lead dioxide a preferred decarboxylating agent. 

The oxidative decarboxylations were carried out by one of our tech

niques. Best yields are realized with method A, in which an intimate 

mixture of commercially available lead dioxide, the y-oxo acid and 

powdered soft glass are added to a sublimation tube. The tube is evacu

ated and then inserted part way into a preheated sublimation apparatus. 

The reaction takes place immediately and the product, an a,(3-unsaturated 

ketone in this case, distills out of the reaction mixture and condenses 

in a cooled portion of the tube. The entire operation requires only 

about 10 minutes. 

Method B also utilizes a hot tube containing lead dioxide. A solu

tion of the y-oxo acid in xylene is added slowly to the hot lead dioxide 

to cause decarboxylation. The a,~-unsaturated ketone is washed from 

the lead dioxide into a receiving flask. 

Method C, involving a suspension of lead dioxide in a boiling solu

tion of y-oxo acid in xylene, was found to be less convenient and pro

duced lower yields. 

Decarboxylation can also be effected and the product analyzed in a 

single operation by injecting a solution of the y-oxo acid into a hot 

plug of lead dioxide inside the injection port and at the entrance of a 

gas chromatography column, The ('){,~-unsaturated ketone, impurities, and 

side products are swept by a helium stream through the gas chromatography 
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column and recorded as peaks on the chromatogram. 

Earlier studies5 were carried out with granular lead dioxide of the 

type formerly used by microanalysts in the universal combustion tube 

7 filling according to Pregl. This grade of lead dioxide is no longer 

commercially available. 8 

Variation in activity of lead dioxide from different sources was 

encountered with different reaction methods, particularly Band C. 

9 10 Doering and Finkelstein and others reported that commercial lead 

dioxide was not effective in the decarboxylation of some 1,2-dicarbox-

ylic acids. A method for prepar~ng activated lead dioxide was devel-

9 oped, and indeed it was found that lead dioxide so prepared shows in-

creased activity in methods Band C, but the activated material does not 

5 approach the effectiveness of the original sample of lead dioxide. 

Sufficient lead dioxide remained in the original bottle to permit di-

rect comparisons. 

Initially decarboxylation using methods Band C was studied, How-

ever, the low yields obtained with commercial lead dioxide necessitated 

development of method A, which worked satisfactorily with all samples 

of lead dioxide tried. The oxo acid~ used with a variety of lead 

dioxide samples in method A gave a 76-78% yield of 2' ,5'-dimethylcroto

lla nophenone (~) in all cases. An even higher yield, 84%, of chalcone 

(7b) was obtained when 3-benzoyl-2-phenylpropionic acid (Sa) was used.lib 
vvv, 

The effect of temperature on the oxidative decarboxylation of the 

y-oxo acid~ by method A is shown in Fig. 1. For y-oxo acids yielding 

products of low volatility, a reaction temperature of 250° is recom-

mended since an immediate reaction takes place in high yield. However, 

y-oxo acids yielding more-volatile products and the half esters 8 and 9 
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as well as the dicarboxylic acid 1 gave higher yields of decarboxylated 

material at 135°. In these latter cases, the higher temperature caused 

formation of cyclohexanedicarboxylic anhydride which sublimed out of the 

reaction tube. 

~, 
4-l 
0 

'Cl 
r-1 
QJ 

,,..j 

:>-I 
··~ 

80 

~ 
0 

,,... 

70 0 

0 

60 

. 1.0° 150° 170° 190° 210° 230° 250° 

Figure le Response of Yield to Reaction 
Temperature for Decarb.oxyl
ation of Se 

Saf~ty precautions should be observed during oxidative decarboxyla-

tion of y-oxo acids with lead dioxide. The most serious hazard results 

from admitting air to the hot residue from a lead dioxide decarboxyla-

tion, This hazard is most pronounced in method A. Such contact invar-

iably causes some sort of vigorous reaction, due presumably to pyro~ 

photic particles, ranging from formation of sparks to violent 
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explosions, which in one instance sounded like a shotgun blast and com-

pletely demolished a multipiece glass apparatus. The residue from this 

explosion was a hard lump which resembled lead metal. The experimental 

methods described are the result of considerable effort to develop safe 

reaction techniques, and no explosions should be encountered if proper 

precautions are observed. Insufficient mixing of y-oxo acid, lead 

dioxide, and powdered glass may lead to a reaction mixture containing 

high local concentrations of acid which may also be a cause of the more 

violent reactions. These reactive centers may be observed as dark spots 

in an otherwise uniformly yellow-brown reaction residue. Reactions 

which generate these dark spots usually produce lower yields of ot,13-un-

saturated ketones. The mixing at ordinary temperatures is without 

hazard. One should avoid exceeding reported limits without extensive 

trial. 

The presence of the ketone function in the y-oxo acids being de-

carboxylated is essential to high yields of ot,~-unsaturated ketone. 

Monomethyl cis-1,2-cyclohexanedicarboxylate (8) and monomethyl trans-1, 

2-cyclohexanedicarboxylate (9) on reaction with hot lead dioxide give a ..,.... 

low yield (ca. 12-15%) of a complex mixture of unsaturated esters while 

10, the y-oxo analog of 9, provides a 45% yield of 1-cyclohexenyl methyl 
""" ""' 
ketone under the same conditions. Decarboxylation of other acids with-

out the ketone function generated extremely complex mixtures of prod-

ucts. Evidently the role of the ketone carbonyl is not limited to 

resonance stabilization of the double bond formed. 

The inability of the enol lactones 11 and 12 to form significant ........ 

products in the lead dioxide decarboxylation reaction indicates that 

these easily formed derivatives of y-oxo acids do not have a role in 



the decarboxylation mechanism, 

r"Y COOR 

t,,'"/l._ COOCH 
3 

8 

11 

(XCOOH 

COOCH3 
9 

¢y 
12 

The effect of a substitution on the yield of a,~-unsaturated ke-

tones from y-oxo acids can be seen in the series of ~-aroylpropionic 

acids Sa, Sb, Sd, Sf, Sg, and Sho Those acids substituted in the a 
,,.-....-v"\ 'VV"v'\ 

position gave the a,~-unsaturated ketones in 70-85% yields with only 

minor impurities. Those acids without substitution in the a or~ po-

9 

sition, Sd and Sh, gave low yields of complex mixtures of productso The 
"'""' """""" 

p-substituted acid~ was oxidatively decarboxylated with lead dioxide 

to give the a,~-unsaturated ketone in 72% yield, The results of vari-

ous lead dioxide decarboxylations of y-oxo acids are summarized in Table 

I. 

The heterogeneous nature of these reactions presents obvious diffi-

culties in studying the mechanism. The instability of an a, 13-unsatu-

rated ketone or occurrence of side reactions could give misleading re-

sults. Unt,il better methods of study are available, it will be neces-

sary to rely on product analysis to gain an insight into the reaction 



TABLE I 

DECARBOXYLATION OF y-oxo ACIDS TO 0:',,8-UNSATURATED KETONES 

-3 Powd. Reaction Reaction Mp 
Method a Moles x 10 

Acid Product Acid Pb02 
Glass Xylene temp time Yield 2,4-DNP 

g ml oc hr % oc 
I 

Sa Ch a le one (2.!) c 10.0 40.0 - 50 144 10.0 37 241- 244 b 

B 10.0 40.0 - 120 135 3.0 57 244b 

A 0.5 2.5 3 250 0.25 84 245b 

Sb Crotonophenone c 10.0 40.0 - 75 135 4.5 37 194-197c 

A 2.0 10.0 12 250 0.5 69 200- 201 c 

~ 2,2' ,5'-Trimethyl- A 0.5 2.5 3 - 250 0.5 72 118 
acrylophenone 

~ 2' ,5' -Dimethyl A 0.5 2.5 3 - 250 1.0 76 210- 211 
crotonophenone (7a) 

Sf 3-Phenyl-2 1 -acrylo- d B 3.8 40.0 - 200 125 4.0 40 
naphthone, mp 105-6° 

A 0.5 2.5 3 250 0.25 83 

~ 2'-Crotononaphthone c 5.0 20.0 - 50 144 2.0 36 

A 0.5 2.5 3 - 250 0. 25 35 205e 

6 Pulegone B 5.0 40.0 - 50 135 2.0 11 

A 0.5 2.5 3 - 250 1.0 76 14i 

10 1-Cyclohexenyl methyl B 10.0 40.0 10 135 2.0 22 196-201g 
ketone 

A 0.5 2.5 3 250 0.5 45 202- 203g 

13 2-Cyclohexen-1-one A 2.0 10.0 12 250 0.5 92 163-165h 

8 See Experimental for decarboxylation procedures; b245°, C.H. F. Allen and J. H. Richmond, J. Org. Chem.,~. 224 (1937); c204°, 

V. Franzen, Ann., 602, 199 (1957); dl05-106°, A. Maccioni and E. Marongui, Ann. Chem. (Rome), 1.Q, 1806 (1960); e214°, F. Ramirez nnd 

M. B. Rubin, J. Amer. Chem. Soc., 22, 2905 (1955); £142°, 0. L. Brady, J. Chem. Soc., 758 (1931); g202-203°, D. Nightingale, E. C. 

Milberger, and A. Tomisek, J. Org. Chem., !1, 357 (1948); h163°, P. D. Bdrtlett and G. F. Woods, J. Amer. Chem. Soc., Zl, 2905 (1955). 
..... 
0 
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mechanism, The evidence suggests a reaction mechanism similar to that 

proposed by Kochi for the lead tetraacetate decarboxylation of aliphatic 

.d 12, 13 ac1. s. This applied to oxo acid ~ would involve homolytic cleav-

age of the lead salt 14 and decarboxylation to an alkyl radical which, 
........ 

if stabilized by electron-donating groups, would further react to form 

14 alkenes and esters such as 15. An unsubstituted free radical would 
~ 

produce a complex mixture typical of free radical products. 

14 

via carbonium ion12 

ocoo-0 
11 II 
0 0 

15 

0 + 13 

II 
0 

The high yield of a,$-unsaturated ketone from 2.S is not consistent 

with the Kochi mechanism, but more examples will be required to clarify 

this point. 



CHAPTER III 

EXPERIMENTAL 

Preparation of Starting Materials.~ 2-Phenyl-3-benzoylpropionic .. . .................. ~ 

acid (5a), 2-phenyl-3-(2-naphthoyl)propionic acid (5f), 2-menthane-3-........... ............ 

one-8-carboxylic acid (6), and 2-acetylcyclohexanecarboxylic acid (]:£) 

b · db dd' 'd · 15 · d were o taine ya ing cyani e ion to appropriate ~,~-unsaturate 

ketones and subsequent~y hydrolyzing to the y-oxo acids. 

The ~,~-unsaturated ketones were prepared by heating Mannich 

bases, 16 by Claisen-Schmidt condensation17 or by Friedel-Crafts acyl-

. f 1 f. 18 ation o o e ins. 

2-Methyl-3-benzoylpropionic acid (~) and 2-methyl-3-(2-naphthoyl) 

propionic acid (5g) were prepared by reaction of benzene or naphthalene 

with methylsuccinic anhydride in the presence of aluminum chloride, 19 

The preparations of 5c and 5e and the enol lactones 11 and 12 are 
~ ""'"" 

described elsewhere, 20 

3-(2-Toluoyl)propionic acid (5d) was obtained from the Aldrich 

Chemical Company and used without further purification, 

The monomethyl esters 8 and 9 were prepared from 25 g (0,16 mol) 

of cyclohexanedicarboxylic anhydride and 9.12 g (0,39 mol) of methanol, 

which were heated together at the reflux temperature for 4 hrs, The 

methanol was distilled at reduced pressure and the clear residue was 

extracted once with 160 ml of 10% sodium bicarbonate. The aqueous al-

kaline extract was extracted three times (25 ml) with methylene 

12 
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chloride, and the aqueous layer was acidified. The acidic solution was 

extracted with three 25 ml portions of methylene chloride and the meth-

ylene chloride extracts were combined, dried (MgS04 ), filtered and 

evaporated. Crystc\ls formed after five days at room temperature, Re-

crystc\llization of half the material (Skelly B) gave 4.82 g of~ mp 

66.5-68° [lit. 21 mp 68-69°], Distillation of the other half of the re-

action product at 100°(0.6 mm) produced only cyclohexanedicarboxylic 

anhydride and methanol in the distillate, but recrystallization of the 

undistilled material (Skelly B) yielded 0.98 g of 9: mp 93-95° [lit. 22 

95-96°]. 

boxylated by one of the four following methods. Yields of products and 

methods of preparation are listed in Table I. A specific y-oxo acid 

decarboxylation is described for each method. 

The reaction products were identified by infrared absorption at 

-1 
1690 and 1620 cm (representing the conjugated carbonyl and double bond 

respectively), gas chromatography, and preparation of 2,4-dinitrophenyl-

hydrazones. In some cases, gas chromatographic analysis showed the 

presence of minor impurities (ca. 1-5%). 

A. Hot tube with powdered soft g-~~·- A mixture of 3 g of pow

dered soft glass, 0.110 g (5.0 x 10- 4 mol) of Se and 0,598 g (2.5 x 10- 3 

mol) of lead dioxide were ground in a mortar and placed in a 9-mm Pyrex 

tube closed at one end. After a glass wool plug was placed over the 

loosely packed mixture, the tube was evacuated to about Q.5 mm and par-

tially inserted horizontally in an aluminum block preheated to 250°. 

A 5-cm portion of the tubing outside.the aluminum block was cooled in 

powdered dry ice. After 10 min. the reaction appeared to be complete. 
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The product collected before the dry-ice-cooled portion of the tube just 

outside the sublimer. The portion of the tube which contained the prod-

uct was broken away from the rest to give 0,066 g (76%) of yellow~: 

bp 90° (0.3 mm); 
-1 ir (liq film) 1656 (C=O), 1625 (C=C) cm , and no ab-

-1 
sorption at 1615 cm (absence of co 2H); nmr (CC14 ) o 7.11 (s,l, liAr), 

7 .01 (s, 2, liAr), 6.47 (s, 1, Cli=C), 6,63 (q, 1, Cli=C decoupled at 

6.63), 2.27 (s, 6, Cli3 ) and 1.813-1.900 (d, 3, Cli3 ); mass spectrum 

(60 eV) m/e (rel intensity) 174 (21.4), 159 (100), 133 (36.6), 105 

(33,3), 77 (25.4), 41 (24.4), 39 (31.2). Analysis by gas chromatogra-

23 phy showed the product to be free of impurities, 

Anal. Calcd, for c12H14o: C, 82.72; H, 8.10, Found: C, 82.73; 

H, 8.21. 

Application of method A to 2.: gave a 72% yield of 2,2',5'-trimethyl-

acrylophenone: bp 64° (0.33 mm); nmr o 6,97 (m, 3, Arli, 5.81 (m, 1, 

Cli=C), 5.47 (m, 1, CB=C), 2.23 (s, 3, Cli3 ), 2.16 (s, 3, Cli3 ), and 1.95 

(m, 3, CB3 ); mass spectrum (70 eV) m/e (rel intensity) 174 (78.2), 159 

(100), 133, (88.2), 105 (56.5), 77 (36.7), 39 (38.6). 

Anal. Calcd. for c12H14o: C, 82.72; H, 8,10. Found: C, 82.85; 

H, 7,73, 

A mixture of 0,220 g (0.001 mol) of~· 0.957 g (0,004 mol) of lead 

dioxide, and 2 g of powdered Pyrex glass was heated according to method 

A at 135° to give 0.070 g (40%) of the O!,,B-unsaturated ketone, Substi-

tution of powdered soft glass for the Pyrex glass gave the same product 

in 42% yield, Doubling the quantity of soft glass raised the yield, 

0.080 g (46%). 
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B. Hot tube with solvent,~ Lead dioxide (9,60 g, 0,040 mol) was 

placed between glass wool plugs in a vertical 9-mm Pyrex tube which 

passed through an aluminum heating block. The top of the tube was fit-

ted·with a dropping funnel and the bottom with a receiver side arm flask 

immersed in an ice bath, Nitrogen was passed through the system as the 

lead dioxide was heated to 135°, A solution of 2,540 g (0.010 mol) of 

Sa in 120 ml of £-xylene was dripped through the lead dioxide (one 

drop/4-6 sec), After all the acid had been added, the lead dioxide was 

washed with 50 ml of £-Xylene and the combined xylene solutions were 

extracted twice (20 ml) with 10% sodium bicarbonate and once (20 ml) 

with distilled water, The bright yellow nonaqueous solution was dried 

(MgS04 ), filtered and concentrated at reduced pressure. The remainder 

of the xylene was separated from the product by chromatography through 

a column of Merck acid-washed alumina, The column was washed with 50 

ml of hexane and the product eluted with 150 ml of benzene. The ben-

zene solvent was distilled at reduced pressure, leaving a yellow oily 

residue which crystallized on standing overnight. Recrystallization 

from ethanol gave Ll80 g (57%) of yellow needles of 7b; mp 53-55° 

[ liL 24 58°], 

The aqueous bicarbonate solution was acidified and extracted three 

times with ether, The ether layer was dried (Mgso4 ), filtered, and 

evaporated to give 0,398 g (67% based on recovered acid) of unreacted 

acid melting at 148-150°. 

C. Refluxing-solvent method.~ In a 200-ml flask were placed 
~ 

1,920 g (0.010 mol) of Sb, 9.600 g (0.040 mol) of lead dioxide and 75 

ml of xylene. Nitrogen was passed through the apparatus at room tern-

perature for 1 hr. The mixture was agitated with magnetic stirring and 
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heated at reflux for 4.5 hrs, After cooling and filtering, the xylene 

was distilled at reduced pressure, the liquid residue was dissolved in 

ether, and the ether solution was washed with a saturated sodium bicar-

bonate solution and a saturated salt solution and dried (Mgso4 ). Dis-

tillation of the ether through a spiral column left a residue which was 

25 treated with 2,4-dinitrophenylhydrazine reagent. The red precipitate 

was purified by elution through alumina with benzene and distillation 

of the benzene at reduced pressure to give 1.213 g (37%) of crystals of 

the 2,4-dinitrophenylhydrazone of crotonophenone: mp 194-197° [cf, 

Table I]. 

D. On-column reaction.~ A 0.2 g sample of lead dioxide between 
~ ..... ~ ..... ~ 

glass wool plugs was placed in the injection port of an F&M Model 700 

-3 
gas chromatograph. A 100µ1 sample of 10 M y-oxo acid in ether was 

injected directly into the lead dioxide plug. The yield of a,~-unsatu-

rated ketone produced was determined by comparing the peak area with 

those found for known amounts of the product. 

With the injection port at 200° a 30% yield of 7b was realized 

from acid .2,! while the a,~-unsaturated ketones derived from acids Sc 

and Se were detected in 20% yields. In each case none of the enol lac-
~ 

tone which would be formed by unreacted acid was found. Examination of 

the lead dioxide plugs after reaction showed very little charring. 

?~~n of Other Compounds -- (1) cis-l~~

-5 carboxylic Acid.~ A mixture of 0.100 g (5.8 x 10 mol) of 1, 0.557 g 
~~ ,...... 

(2.33 x 10- 4 mol) of lead dioxide, and 5 g of powdered Pyrex glass was 

heated at 135° by method A above. After 1 hr, the product which col-

lected along with water in the cooled portion of the tube was taken up 

in ether, and the ether layer dried (MgS04 ) and evaporated to give 
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0.021 g (44% yield) of cyclohexene. The infrared spectrum of the prod-

uct was identical to that of reagent grade cyclohexene. 

(2) The Enol Lactone of 2-Methyl-3-(2,5-dimethylbenzoyl)propionic 

Acid (1.1) .- A mixture of O. 202 g (0. 001 mol) of 11, 0. 957 g (O. 004 mol) 

of lead dioxide, and 2 g of powdered Pyrex glass was heated, using 

method A, at 135° for 1 hr. The only material other than water which 

collected in the tube was 0.015 g of unreacted starting material. How-

ever, the lead dioxide had turned yellow, indicating that a reaction oc-

curred, 

(3) The Enol Lactone of 3-Methyl-3-(2,5-dimethylbenzoyl)propionic 
~......,....,... -VVV'"V'V''VVV'V'V"VV'V''Y''VV'\ 

~cid (122_;~ A mixture of 0.404 g (0,002 mole) of 12, 2.392 g (0.010 

mole) of lead dioxide and 12 g of powdered soft glass was allowed to 

react according to method A at 250° for 15 min. Material condensed in 

two zones, ahead of the sublimer and in the portion of the tube cooled 

with dry ice. Analysis by gas chromatography and infrared spectroscopy 

showed the former to be unreacted enol lactone while the latter was a 

7-mg mixture of six compounds, one of which was the a,~-unsaturated 

ketone in about 0.1% yield. 

(4) ~::!~.t~----~is-1,2-Cyclohexanedicarboxylate ~.- The fol-

lowing procedure for 9 was applied to ! to give 0. 017 g of decarboxyl-

ated product with an infrared spectrum very similar to the product from 

the trans half ester. Gas chromatography showed this material to be 

primarily three compounds but there were 17 peaks in all. 

(5) Monomethyl trans-1,2-Cyclohexanedicarboxylate (9).~ A mix-
~...._....._..._~~-~~~-~~~""",,....,,..,..,..,. ........ ~ 

-4 -3 
ture of 0.20 g (1.8 x 10 mole) of 2.,, 1.03 g (4.3 x 10 mole) of lead 

dioxide and 2 g of powdered Pyrex glass was treated at 135° by method 

A. The products condensed in three zones outside the sublimer and were 
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separated by severing the tubing between each pair of zones. Unreacted 

starting material (0.221 g) and Q.005 g of the anhydride of 1,2-cyclo-

hexanedicarboxylic acid were isolated from the first two zones and were 

identified by comparisons of the infrared spectra with those of standard 

samples. In the third zone, 0.0203 g of material appeared; it showed no 

carboxyl group absorption in 

-1 cm but did have absorption 

its infrared spectrum between 2500-2700 
0 

bands at 1725 cm- 1 (~oR) and_l(:,48 cm-l 

(C=C). Gas chromatographic analysis showed the condensate to be a mix-

ture of mainly three compounds which were not identified. 
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CHAPTER I 

INTRODUCTION, HISTORICAL, AND EXPERIMENTAL 

Confusion exists about the structures of the products resulting 

from the acid-catalyzed dimerization of 1,2-dihydronaphthalene (l). 2, 3 ,4 

We show that the c20H20 hydrocarbon dimer (mp 93°) derived from the sul

furic acid-catalyzed dimerization of 2:_ and the c20H20 hydrocarbon dimer 

(mp 153°) resulting from the action of phosphorous pentoxide on 1 and 
""" 

1,2,3,4-tetrahydronaphthalene ~ are stereoisomers of 4,5,6,6a,6b,7,8, 

12b-octahydrobenzo[j]fluoranthene (3) and that 4 is not the correct 

2 3 structure for the lower melting dimer as p'reviously reported. ' In 

addition, we offer instrumental evidence for the assignment of the con-

figuration of these hydrocarbons, specifically cis, anti-4,5,6,6a,6b,7, 

8,12b-octahydrobenzo[j]fluoranthene ~), mp 93°, and cis, syn-4,5,6,6a, 

6b,7,8,12b-octahydrobenzo[j]fluoranthene (6), mp 153°. 
vv-. 

3 4 

1 

3 
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5 6 7 .....,,... 

The formation of these dimers from a variety of starting materi

als3'5'6'7 ' 8 as well as their structural relation'ship to the well-known 

carcinogen benzo[j]fluoranthene (7)9 make the correct structural assign-
""" 

ment important and of concern since it has been shown that partially 

hydrogenated polynuclear aromatic hydrocarbons may retain carcinogenic 

. 10 properties. 

Interestingly, gas chromatographic analysis shows that no detect-

able quantity of dimer melting at 93° is formed in the phosphorous 

pentoxide-catalyzed reaction which produces the dimer melting at 153°. 

Similarly, the sulfuric acid-catalyzed reaction produced the lower melt-

ing dimer but none of the other dimers. 

The c20H20 dimer, mp 153°, has been synthesized by several 

routes 2 ' 12 designed to produce structure 1_. Apparently without knowl-

edge of the synthesis of 1, Campbell, et al., rationalized structure J 

for the lower melting isomer. 4 As recently as 1968 however, structure 

~ continues to be incorrectly used to describe the lower melting 

isomer. 3 Stereochemical assignment to 3 or 4 has not previously been - -
made. 
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The similarity7 ' 8 of the ultraviolet spectra of both dimers to l 

and their facile dehydrogenation4 ' 11 to l narrows the selection of their 

carbon skeletons to l or 4. The application of runr spectroscopy now 

permits differentiation between structure land j, 

Dimerization of 1 with sulfuric acid 13 afforded white crystals of ,... 

5: - · 13 mp 93° [lit. mp 93°]; uv max (95% c2H50H) 268 (loge 3.04) and 

276 mµ (loge 3.02), min 273 (loge 2.86) and 2.43 mµ (loge 2,32) 

[lit, 8 uv max (n-hexane) 268 (loge 3.08) and 277 mµ (loge 3.13), min 

273 (log e 2.98) and 245 mµ (log e 2.58)]; nmr (CC14 ) c 6.67-7 .41 (m, 7, 

Ar.!!), 3.96 [d, 1, C.!!(Ar) 2J, 2.2-2.95 (overlapping m, 6), 0.9-2.10 (over

lapping m, 6). 

Reaction of a mixture of 1 and l, with phosphorous pentoxide 2 gave 

the crystalline dimer _2: mp 152.5-153° (from c2H50H) [lit. 2 mp 150.5°]; 

uv max (95% c2H50H) 267 (loge 3.07) and 274 mµ (loge 3.03) [lit. 8 uv 

max (n-hexane) 265 (loge 3.12) and 273 mµ (loge 3.05)]; nmr(CC14 ) o 

6.67-7.40 (m, 7, AR]), 4.17 [d, 1, CH(Ar) 2J, 2.85-3.28 (m, 1, ArC.!! in 

plane of aromatic ring), 2.4-2.85 (overlapping m, 5), 0.8-2.35 (over-

lapping m, 6). 

The presence of a benzhydryl-type proton doublet absorption in the 

nmr spectra of both dimers shows that they are stereoisomers of land 

this is supported by the absorption due to seven aromatic protons in 

each spectrum. 

Dreiding models of the cis fused ring stereoisomers 5 and£ show 

that the benzhydryl-type proton of~ lies nearer to the plane of the 

benzo ring than that in~· This accounts for the downfield shift of 

this proton in the nmr of the dimer melting at 153°. Further evidence 

confirming structure 6 for the higher melting isomer is the general 
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broadening of the saturated proton multiplets indicating increased ri-

gidity of the saturated rings in 2 caused by severe steric interference 

between the aromatic protons at positions 1 and 12. Also, the proton 

at position 8 is constrained in the plane of the adjacent phenyl ring 

and is probably responsible for the appearance of a multiplet at the 

unusual position between o 2.85 to 3.28. 

The lower melting isomer must then be assigned to structure 5 or ,.., 

to one of the two trans ring fused isomers 8 or 9. Drieding models of - ,.. 

the highly strained trans isomers~ and 2 cannot be made. Flexible bond 

models show the benzhydryl-type proton of each of these trans structures 

is appro~imately perpendicular to both aromatic rings and would be ex-

pected to absorb at a higher field than was found for the dimers m,p, 

93 and 153°. Thus, configuration 5 is assigned to the lower melting -
dimer. 

8 9 
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CHAPTER I 

INTRODUCTION AND HISTORICAL 

1 . 2a-d The Birch reduction and related metal-amine reactions in-

valving alkali or alkaline earth metals dissolved in amrnonia, a mono-

amine or a diamine have been widely applied to the reduction of aromatic 

2e systems. Naphthalene (l) was one of the first aromatic hydrocarbons 

to be reduced. 3 Ruckel and Bretschneider4 observed that 1 is reduced 
"" 

at -70°, giving a red complex which is decomposed by methanol to 1,4-

dihydronaphthalene (2). It has also been reported that the red complex ..., 

reacts with ammonia at higher temperatures, giving 2 and 1,2-dihydro--
naphthalene (3). The latter is reduced to 1,2,3,4-tetrahydronaphtha-.., 

lene by sodium in ammonia at -so 0 •
2f 

The reduction of 1 with sodium dissolved in a variety of amines 

has been studied. 5 These reactions, unlike most of the work previously 

reported, have been carried out at room temperature. It was felt that 

the mechanism for the reduction of naphthalene proposed by Ruckel and 

Bretschneider4 should apply equally well to a room temperature reaction, 

despite the occurrence of reductive amination5 and reductive dimeriza-

t . 6a, b ion. Although the formation of Z was not observed in the early 

h f h · k 6b k 1 d f . b h p ase o tis wor , a now e ge o its presence or a sence among t e 

reaction products became important in order to provide assurance whether 

the mechanism in Fig. 2, derived from Ruckel and Bretschneider4 and 

7a-d others, could be used as a working model. 

28 



CHAPTER II 

DISCUSSION AND RESULTS 

In the present investigation, 1 was reduced by stirring with finely 

dispersed sodium and an amine (hexamethylenediamine, diisopropylamine, 

or cyclohexylamine) at room temperature. When the reaction mixture was 

quenched with water before all of 1 had reacted, 2 was found among the - .-.; 

volatile reaction products. 

As shown in Fig. 2~ it is possible to rationalize the formation of 

1 directly from 1 without first forming~· However, since in this work 

2 is shown to be present as a reaction product, it must be considered 

for mechanisms involving these reactions, 

The argument that 2:., may have arisen from 1 may be eliminated be-

cause 2 may be completely isomerized to 3 in the presence of such bases - ~ 

lk 1 . 1 h d . d Sa · d · d f . · 4 • Sb as a a i meta y roxi es or anions. erive rom ammonia or pre-

bl . Sc suma ·y amines. Compound 1 does not appear to isomerize to 2 since ,.., 

the latter could not be detected during the sodium-diisopropylamine re-

duction of 3. Naphthalene (1) did not appear during this reduction and, ..., 

although there is no evidence to show that the individual steps in these 

reductions of naphthalene are not reversible, it seems likely from re

ports of similar reactions that a series of equilibria7c,ld,Sa-f exist 

and the reduction of l or some closely related intermediate is suffi-

. 1 · d Sd h 2 1 f d cient y rapi tat or_ are not orme . 

29 
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Figure 2. Mechanism for the Reduction of Naphthalene With 
Sodium 
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1,2- and 1,4-Dihydronaphthalene were shown to be present among the 

reduction products of 1 by combination gas chromatography-mass spectrom,.., 

etry in which a chromatographic fraction is trapped and then introduced 

into the mass spectrometer while.the remaining fractions are held sta-

9a-c tionary on the column by stoppage of the carrier gas flow. This 

technique is useful and efficient where carrier gas separators and fast-

scanning mass spectrometers are not available. 

A line drawing of the apparatus is shown in Fig. 3. A conventional 
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Figure 3. The Trapping System for Combination 
Gas Chromatography-Mass Spectrom
etry. acarrier gas inlet and in
jection port; bpressure release 
valve~ cgas chromatographic col
umn; valve to trap· evalve to 
mass spectrometer; fheated jacket; 
gtrap wrapped with heating wire; 
hvalve to vacuum; and iDewar flask 
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chromatograph equipped with a thermal-conductivity detector was used in 

combination with a Bendix Model 12 time-of-flight mass spectrometer. 

As the material corresponding to a peak emerged from the chromatographic 

column, it was directed into the trap cooled by liquid nitrogen. After 

the carrier gas was pumped away, the trap was warmed to a temperature 

sufficient to vaporize the component. The mass spectrum could then be 

obtained. As soon as the spectrum was recorded, the remaining component 

was pumped out of the trap, whereupon the apparatus was ready for the 

next fraction. 

The gas chromatogram of the volatile products from the sodium-

hexamenthylenediamine reduction of 1 is shown in Fig, 4, The chromato-

grams of the other two systems are similar but not shown, The relevant 

peaks are numbered 4, 5, and 6 (1,2,3,4-tetrahydronaphthalene, 1, and 

I. respectively). Fig. 4 is a continuous chromatogram and not from the 

stopped-flow technique, When the stopped-flow technique·is used, some 

peak spreading is observed. This is not detrimental except where two 

or more peaks are closely spaced. In such cases, some overlap will re-

sult. Because peaks for 2 and 3 were located on the trailing edge of 

peak No. 4, they were analyzed during a separate run. Good spectra of 

the materials corresponding to the other 5 peaks were obtained during 

a single run. 

The mass spectra of the hydrocarbons represented by peaks 4, 5, 

and 6 were obtained and are presented in Table II. As expected from 

the close proximity to peak No. 4, the fractions containing the two 

dihydronaphthalenes are contaminated with tetrahydronaphthalene, By 

subtracting out the spectrum of the latter, two mass spectra essentially 

the same as from pure 3 and 2 were obtained for peaks 5 and 6 ,..., ,., 



Figure 4. 

Solvents 

\ 

Gas Chromatogram of Volatile Hydrocarbons From the Re
duction of! With Hexamethylenediamine and Sodium 
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respectively. Partial spectra compared with those of standard samples 

are also shown in Table II. 

Since the mass spectra of 2 and 3 are very similar, it is not - -
possible, on the basis of the spectra alone, to distinguish~ and 3. 

However, the difference in chromatographic retention times for the two 

standards permits correlation of 3 with peak No. 5 and 2 with peak No. - -
6. 
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The presence of 2 and 3 was also confirmed in the Na-diisopropyl-
- N 

amine system by the combination gas chromatograph-mass spectrometer. 

Although the mass spectra were not obtained for the third system 

(Na-cyclohexylamine), the two isomers were identified by the two charac-

teristic peaks present in the gas chromatogram. 



TABLE II 

MASS SPECTRA OF NAPHTHALENE REDUCTION PRODUCTSa 

( 
Relative Intensity 

1,2,3,4-Tetrahydro-
1,2-Dihydronaphthalene 1~4-Dihydzonaphthalene naphthalene 

Uncorrected b Uncorrected d 

Mass (Corrected) c Standard (Corrected) e Standard Standard 

91 48 (5) 5 47 (5) 5 51 

104 100 (8) 7 100 (8) 8 100 

115 25 (38) 37 37 (37) 37 15 

127 12 (19) 19 20 (20) 20 6 

128 29 (38) 39 48 (42) 42 8 

129 31 (70) 71 47 (75) 76 7 

130 38 (100) 100 52 (100) 100 5 

131 26 (16) 17 33 (18) 18 17 

132 58 (8) 7 81 (7) 7 53 

aFrom the reduction of 1 with sodium and - hexamethylenediamine; bpeak No. 5, Fig. 4; cmass spectrum of 

peak No~ 5 minus contribution from 1,2,3,4-tetrahydronaphthalene; dpeak No. 6, Fig. 4; emass spectrum of 

peak No. 6 minus contribution from·l,2,3,4-tetrahydronaphthalene. 
w 
\.J1 



CHAPTER III 

EXPERIMENTAL 

Reduction of 1 with Sodium and Hexamethylenediamine.~ A mixture 

of!, 6.4 g (0.05 moles), dispersed sodium, 4.6 g (0.2 g atom), and 100 

ml of hexamethylenediamine was stirred under nitrogen with a magnetic 

bar. The 250-ml reaction vessel was equipped with an air condenser and 

a drying tube. Within 5 min, the reaction turned dark red and .in 30 

.minutes the sodium agglomerated to form a shiny ball. After 12 hrs, the 

lump of sodium was removed and the remaining slurry was cautiously 

poured over 400 ml of crushed ice. The reaction mixture was extracted 

three times with ether and the ether layer was washed with 20% hydro-

chloric acid until free of amine and then washed with water to neutral-

ity. The acid extract was then combined with the aqueous washings. 

The ether extract was steam.distilled and both the residue and the 

distillate were extracted with ether. The separate ether extracts were 

then dried (Na 2so4 ) and freed of ether to give 2.8 g of volatile hydro-

carbons and 1.7 g of nonvolatile hydrocarbons. The latter was a complex 

. f d" d . 6b mixture o imers an trimers. The volatile products were analyzed 

by the gas chromatography-mass spectrometry technique on a 10-ft x 

0.25-in. column containing Carbowax 20M on 80-100 mesh, acid-washed 

Chromosorb Wat 190° and found to contain small quantities of ethanol 

introduced as an impurity from the ether used in the extraction, xylenes 

(from the dispersed sodium), 1,2,3,4-tetrahydronaphthalene, 3, 2, and 1 
,v ·~ -' 
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(see Fig. 4). The approximate ratio of~ to J was 0.43:1. 

The acidic aqueous extract was made basic with 30% sodium hydroxide 

and steam distilled. The residue was extracted with ether and the ether 

extract was dried (Na 2so4 ) and distilled to give 3.2 g of crude non-

1 · 1 . 5 vo ati e amine. 

Reduction of 1 with Sodium and Cyclohexylamine.~ Cyclohexylamine 
~,...,,...-v-,.,-,.--..,-,.,---.., ............... -v"'\-...., ........... -..-..,-.,,.-.. ............... ~ 

was substituted for diisopropylamine in the above procedure. The yields 

of products were: nonvolatile hydrocarbons, 2.1 g; volatile hydro-

carbons, 1.6 g; and nonvolatile amines, 4.3 g. The approximate ratio 

of 2 to 3 was 0.25 to 1. ,... 

~eduction of 1 with Sodium and~~ Diisopropylamine 

was substituted for hexamethylenediamine in the earlier procedure. The 

yields of products were: nonvolatile hydrocarbons, 2,7 g; volatile 

hydrocarbons, 2.4 g; and nonvolatile amines, 0.1 g. The approximate 

ratio of 2 to 3 was 2.4:1. 

Reduction of 3 with Sodium and Diisopropylamine.~ 1,2-Dihydro-
'"""~~~v....,-....~~ 

naphthalene (l) (5.00 g), 3.54 g sodium dispersion and 154 ml diisopro-

pylamine were combined as previously described. Samples were removed 

after 1 and 2 hours. These samples were quenched with water and ex-

tracted into ether and the ether extracts were dried (Na 2so4 ) and 

filtered. The gas chromatograms of these samples on the Carbowax column 

at 190° showed complete absence of 2 and 1. ,.,,, 
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CHAPTER I 

INTRODUCTION AND HISTORICAL 

The formation of c20 hydrocarbons as side reaction products of 

metal-ammonia reduction of 1,2-dihydronaphthalene was reported by Ruckel 

and Bretschneider1a in 1939, who referred to Lebeau and Picon's1b·"dimere 

des tetralin," mp 99°. More recently Ruckel and Wartini 2 have shown 

that slow addition of sodium to 1,2-dihydronaphthalene in liquid ammonia 

gives a 2,2'-octahydrobinaphthyl, mp 114°. 3 
Benkeser, et~· probably 

isolated c20 dimeric hydrocarbons :l;rom the reduction of naphthalene with 

sodium and ethylamine but did not report the composition of their 

"polymeric material." 4 Reggel, et al. reported that hexahydro- and 

octahydrobinaphthyl were present among the reaction products. In con

trast to previous reports, 1 ' 2 the octahydrobinaphthyl isolated by Reggel 

melted at 85°. We have confirmed5 ' 6 one of the products from this re-

action to be 1,1' ,2,2',3,3' ,4,4 1 -octahydro-2,2'-binaphthyl (1), mp, -
84- 85 °. 

7 A recent study by Markov,~ al. using magnesium and ammonia 

in the reduction of naphthalene provided presumably the same product, 

• • 2 
mp 119° (c 20H22 ), as previously obtained by Ruckel and Wartini from 

sodium and 1,2-dihydronaphthalene. 

Our study has included a number of metal-amine reactions of naph-

thalene and the dihydronaphthalenes to learn the nature of these c20 

dimeric products which are considered to arise from a reaction competing 

· h h B" h d · 8a,b d d t" · · Sa wit t e ire -type re uction an re uc ive amination. 

41 



42 

Although Lebeau and Piconlb first studied the reduction of naph-

thalene with sodium in liquid ammonia as early as 1914, it remained for 

Wooster and Smith9 to carry out a more detailed study of this reaction. 

It became of interest to determine whether our products were the same as 

1 2 3 4 those previously reported. ' ' ' Repetition of Wooster and Smith's re-

duction showed that dimers are indeed formed. Higher yields of these 

dimers may be realized by the slow addition of sodium to the naphthalene-

liquid ammonia solution. 

Dimers have also been formed from reactions of dihydronaphthalenes 

utilizing solvents other than amines. The polymerization of 1,2- and 

1,4-dihydronaphthalene in nonprotic solvents gives a thermally stable, 

b . 1 1 10 ritt e po ymer. After initiation by sodium-naphthalene, the reaction 

solution becomes bright red. At low temperatures (-20° to -30°) in 

dimethyl ether, "dimers of dihydronaphthalene" have been obtained. 11 

The same workers isolated a crystalline dihydronaphthalene dimer 

10 12 
(mp 51- 2 °) when 80% sulfuric acid was used as a catalyst. ' 



CHAPTER II 

DISCUSSION AND RESULTS 

In addition to the expected Birch-type reduction, sodium and pri-

d . d . . . 5a,b,c d d . mary or secon ary amines cause re uctive amination an re uctive 

dimerization and trimerization of naphthalene, but interestingly, very 

5d 
little higher polymerization products are observed. 

00 Na 

R 
N' ro· dimers 

+ 
and 

+ 
trimers 

The versatility of this reaction can best be illustrated by citing 

the change in product composition with change in amine solvent which is 

a reflection of the relative rates of the various competing reactions, 5b 

Reductive dimerization of naphthalene in different amines may provide 
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any of the structures shown below as a major product or part of a more 

complex mixture<.£.!.. Table III). 

5 oo-co 
1 2 .... ,.. 

3 ,,.. 
4 -

Mass spectrometric analysis of the dimeric products from the re-

action of sodium and naphthalene in ethylamine showed a 19% yield of a 

c20H20 dimer which was as~igned structure I,4 We now show that this 

dimer isl (Table III). Structure! is reported to comprise 72% of the 

dimer fraction. Since the melting point range (114-119°)1 ' 2 ' 7 of 1 ,.., 

formed in homogeneous reactions in ammonia is higher than the melting 

point (85°)4 ' 5 obtained for the product from the heterogeneous.reactions 

of sodium in various amines, one may conclude that the heterogeneous 

reaction produces another diastereoi&omer or a mixture of diastereo-

isomers of 1. This problem remains under study. Catalytic reduction of 

1,2,3,3' ,4,4'-hexahydro-2,2'-binaphthyl (]) with palladium on carbon 

forms!, mp 102°, while reduction of 2 with sodium and ethylamine pro-

vide s 1, mp 84 ° . 

Some control of specific dimer formation in reductive dimerization 

is possible through selection of the appropriate amine solvent. In 



TABLE III 

REDUCTIVE DIMERIZATION OF NAPHTHALENEa 

Nonvolatile 
ti 

Relative Ratios of Dimers 

' Amine Solvent Hydrocarbons Reaction 2 3 4 Other Dimers 
Yield,% Time, hr - - - ..., 

Peak No. (Yield) 

Amm . b on1.a 87 26 2 29 - 30 1(40) 

Ammoniac 8 12 - 39 - 11 1 ( 1 7 ) , 4&5 ( 3 2 ) , 
6(1) 

Ethylenediamine 91 12 14 - 76 - 1(2), 3(8) 

N,N-Dimethylethylenediamine 58 12 88 - 5 3 2(4) 

1,3-Diaminopropane 90 12 38 - 53 - 1(0.5), 5(2.3), 
3(6) 

1,4-Diaminobutane 70 12 91 - 9 

1,5,-Diaminopentane 47 12 96 - 3 1 

1,6-Diaminohexane 44 12 52 - 34 - l(trace), 3(4), 
5(10) 

_g-Hexylamine 47 24 19 - 54 7 4(11), 5(9) 

Cyclohexylamine 43 12 42 - 21 7 2(11), 5(4), 6(14) 

Ethylamine 80 12 65 - 23 - 2(12) 
.i:-, 
Vl 



TABLE III (Continued) 

Nonvolatile 
Amine Solvent Hydrocarbons Reaction (1 

Relative Ratios of Dimers ') 2 3 4 Other Dimers - -Yield,% Time, hr Peak No. (Yield) 

Di~:g-propylamine 66 12 71 1&2(19), 4(10) 

Di-iso- propylamine 56 12 33 65 2(2) 
r 

Di~:g-butylamine 50 12 63 1(19), 3(18) 

Pyrrolidine 36 12 98 2 -

Piperidine 11 12 94 2 - 2(1), 3(3) 

Hexamethyleneimine 56.5 12 72 6 trace 1(5), 2(14), 3(3), 4(2) 

N-Methylpiperazine 5 12 71 1 17 3(8), 4(4) 

Morpholine 12 8 94 2(1), 3(5) 

3,5-Dimethylmorpholine 12 12 20 71 3(9) 

aFor reaction conditions see the reduction of naphthalene with sodium and ethylenediamine described in 

the experimental secti~n: bSodium added slowly to a solution of naphthalene in ammonia. cNaphthalene added 

rapidly, to a solutie>11. of sodium_ in ammonia. __ . 

;p,. 

°' 
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general, lower-molecular-weight diamines·favor theformation of 5,6,6a, 

6b,ll,12,12a,12b-octahydrodibenzo[,!!,..&]biphenylene (~). However, as the 

number of 111.ethylene units separating the amine groups is increased, the 

diamine takes on the qualities of. a monoamine, and little cyclobutane 

ciilll.er 3 is produced (£! .. Fig. 5), whereas the sterically hindered sec-

ondary amine, dipropylamine, causes the preferential formation of the 

a,,8-coupled dilll.er, l' ,2' ,3,3' ,4,4 1 -hexahydro-l,2'-binaphthyl (~). 

Figure·S shows that in the homologous series of diamines, as the 

number of methylene units is increased, the total yield of dimers de~ 

creases. This decrease in dimeric products is accompanied by an·in-

crease in the yield of reductive-amination product. It is ~enerally 

true in sodiu~-amine reactions with naphthalene that most of the reacted 

naphthalene may be accounted for through the·formati,on of reductive-

dimerization and reductive-amination products. The volatile hydro-

carbons (1, 2-dihydronaphthalene, 1, 2,3 ,4-tetrahydronaphthalene, and 

occasionally 1,4-dihydronaphthalene) are·formed in·low yield. 

The reduction of naphthalene with sodium in liquid ammonia was 

found to give not only tetralin as reported by Wooster and Smith, 9 but 

also a low yield (8%) of dimers and trimers. This yield of polYI11eric 

material is increased to 87%.when sodium-is added slowly to a solution 

of naphthalene in ammonia as opposed to Wooster and Smith 1 s9 original 

method of adding naphthalene to a solution of sodium in ammonia. Gas 

chromatographic analysis of the dimer fraction showed that the compo-

sition of the mixtures did change somewhat with change in procedure, 

The major dimeric products were·2, 4, and an unknown compound in about 
,., "" 

equal proportions from.the inverse addition of sodium, while a mixture 

of five dimers was produced by the Wooster reaction9 of which 1 and~ 
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were the only identified components. 

The dimers 2, 3, and 4 are also formed by base-catalyzed reactions - -
of 1,2-dihydronaphthalene or 1,4-dihydronaphthalene in certain solvents 

under nonreducing conditions. The critical role of both solvent and 

13 14 
cation in polymerization reactions has already been documented. ' 

These two factors have a profound effect on the yields of dimers and 

trimers from dihydronaphthalenes. Potassium hydroxide is sufficiently 

basic to cause dimerization of dihydronaphthalenes in dimethyl sulfoxide. 

The effect of other solvents and bases on this reaction is shown in 

Table IV. Although the low solubility of sodium hydroxide in ethylene-

diamine does not permit realization of high yields of dimeric products, 

the ratio of specific dimers formed is similar to that from the reaction 

of sodium and naphthalene in ethylenediamine. 

The reaction of sodium with naphthalene in ethylenediamine dis-

plays a variety of colors .. After 10-15 minutes of stirring, the color-

less mixture develops the green color typical of the naphthalene radical 

ion. 15 In less than 60 seconds, the green mixture changes to the brown 

. 15 16 color of the relatively stable anion of dihydronaphthalene. ' The 

brown color progressively darkens until after two hours it becomes 

opaque. A deep red or purple color which has been attributed to both 

17 the dianion of naphthalene and to living polymers of dihydronaphth-

10 alenes develops in about five hours. Soon after the appearance of 

this red color a blue color is sometimes observed, Admittance of air 

causes the upper part of the red reaction mixture to turn blue. This 

blue color gradually reverts to red in the absence of air. The color of 

the mixture is red toe red-brown during reductive dimerization in most 

other amine solvents. 



TABLE IV 

BASE-CATALYZED Dll,1ERIZATION OF DIHYDRONAPHTHALENES 

Dimer Relative Yieldsb~ 
Dihydronaphthalene Solvent Base Hours Temp. Hydrocarbons a (2 3 4 Unknown 

Yield, % 
,.. .... ,., 

1,4- DMSO KOH 
0 

5 100° 73 54 12 34 

1. 2- DMSO 
+., II 

NaCH2ScH3 2 100° 100 79 11 10 

1, 2- EDA BuLi 5 28° 91 83 4 !3 

1,2 EDA Na OH 24 28° 0.5 26 59 trace 15 

1,2 Dioxane KOH 22 101<> trace 

1, 2- HMPA KOH 48 75° trace 

1, 2- Hexane BuLi 1.5 28° trace 

aNot steam volatile. bDetermined through gas chromatography studies. cPeak three in Fig. 7. 

U1 
0 
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Reductive dimerization of naphthalene under nonprotic conditions in 

tetramethylethylenediamine results in five new compounds which are not 

found in the dimeric fractions when primary and secondary amines are 

18 used as solvents. . 19 h Other workers have shown that the nap·. thyI .rad,-

icals will react with naphthalene' to produce 1,1'-, 1,2'-, and' 2,2'-

binaphthyl. Since dimerization would be expected to occur only by free-

radical coupling under nonprotonating conditions, it may be concluded 

that the products from the dimerization in tetramethylethylenediamine 

were the result of a free-radical mechanism and that the different 

dimers formed in primary and secondary amines may arise by a different 

pathway, i.e., an ionic mechanism. The probability of an ionic mecha-

nism being operative in the reductive dimerization of naphthalene using 

protic amine solvents is further supported by the fact that the base-

catalyzed dimerization of dihydronaphthalenes gives the same dimers. 

A mechanistic rationalization for the ionic dimerization is shown 

in Fig. 6. As shown in these reaction schemes, several dimers which 

should appear in the initial part of the reaction, would be cpnsumed as 

the reaction proceeds and the end products should be some combination 

of 1, 3, and 5. The gas chromatograms in Fig. 7 verify this for the 
..- -

ethylenediamine reaction. Peaks 2, 4, and 5 correspond to compounds 1, ,.., 

3, and 2 respectively. Structural assignments to the compounds .respon-..., ,., 

sible for peaks·l, 3, and 5 have not been made. After six hours reac-

tion time only dimers! and 1 remain in significant yields, The un-

known compounds represented by peaks 1 and 3 are present only in trace 

quantities. The absence of 4 and 5 in the reactions in ethylenediamine 

but their presence in the products from most other reductive-dimeriza-

tion reactions using different amine solvents is probably a reflection 
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of differences in the solubility of intermediate dimer ions in these 

amines. 

The much greater cation solvation by tetrasubstituted ethylene-

diamines when compared with monotertiary amines has been well docu-

20 mented. It follows l! priori that ethylenediamine will be a better 

solvent for the dimer salts than other diamines or monoamines, The 

general decrease in total yield of dimers as the solvent is varied from 

ethylenediamine through the homologous .series of diamines (cf. Fig, 5) 

is probably a direct consequence of this decreased solvation of the 

organometallic intermediate, The greater solvating ability of the 

ethylenediamine also may account for the greater yields of the cyclo-

butane dimer 3 since the dianion 6 would be expected to be more soluble 

in this solvent, 

The clean conversion of 2 to 1 in sodium and ethylenediamine veri-

:Eies that particular portion of the mechanism (Fig, 6), Van Tamelen, 

et al., 21 have shown that the radical ion of cyclopentadiene couples to 

give a dianion which, upon hydrolysis, produces equal amounts of the dl 

and meso forms of 3-(3'-cyclopentenyl)cyclopentene, The reader should 

be reminded that only one 2,2'-octahydrobinaphthyl, mp 85°, was obtained 

in the metal-amine reactions. Repeated recrystallizations from ether 

and acetone do not change its melting point, 

Interestingly the presence of oxygen or iron salts in these reac-

tion systems results in significant yields of 2,2'-binaphthyl. However, 

no detectable amount of this dimer is produced in normal reactions run 

under an inert atmosphere. 



CHAPTER III 

EXPERIMENTAL 

Nuclear magnetic resonance (nmr) spectra were obtained with a 

Varian HR-60 spectrometer. Peak positions are reported in terms of 

6 = parts per million (ppm) downfield from internal tetramethylsilane 

standard in carbon tetrachloride solvent. Mass spectra were obtained 

with a Consolidated Electrodynamics Corporation Model 21-103 C mass 

spectrometer. Gas chromatographic analyses for the hydrocarbons were 

obtained with an F&M Model 5750 gas chromatography apparatus fitted with 

dual thermal conductivity and hydrogen flame detectors using helium as 

a carrier gas. 

The amines used in this work were distilled from potassium hydrox-

ide, The dispersed sodium was prepared by stirring molten sodium at 

high speed in xylene and then allowing the suspension to cool without 

agitation. 

Structural Assignments.~ The structures of the reductive dimeri-
~vv-..~~ 

zation products l, ~·~'and~ were assigned from nmr and mass spectral 

data summarized in Tables V and VI. 

General Reaction Conditions.~ With the exception of annnonia and 
................ "'\,"VV'VV"vv'<,'"'~~ 

ethylamine, al~ reductions were carried out at room temperature under a 

nitrogen atmosphere in a 250-ml, three-necked flask equipped with an 

air condenser and magnetic stirring bar. When ethylamine was used as a 

solvent, a water condenser kept at 5° was used, A dry ice condenser 
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Compound 

1 ,.., 

2 -
3 -
4 ,... 

TABLE V 

NUCLEAR MAGNETIC RESONANCE SPECTRA OF REDUCTIVE 
DIMERIZATION PRODUCTS (60 Hz) 

Proton Absorptions (CCL4 ) 

56 

56.99 (s, 8, ArH), 2.73 (m, 8, ArC,!!), and 1.2-2.3 (over
lapping m, 6,-ArCC,!!), 

66.96 (s, 8, Ar.!!), 6.21 (s, 1, C=C.!!), 2.77 (m, 6, ArC.!!), 
and 1.5-2.5 (m, 5, C=CC,!! & ArCC,!!), 

66,99 (s, 8, Ar.!!), 2.6-3.5 (m, 6, ArC,!!),·arid Ll":"2~2 (m, 
6, ArCCH). 

66.97 (m, 8, Ar.!!), 5.83 (5, 1, ArC=C,!!), 2.45-3.2 (m, 6, 
ArC,!!), and 1.4-2.4 (overlapping m, 5, ArCC.!! & C=CC,!!). 

TABLE VI 

MASS SPECTRAL DATA OF REDUCTIVE DIMERIZATION PRODUCTS (70 eV) 

Compound -~ (rel intensity) 

1 262 (47), 131 (100), 130 (36), 129 (32), 115 (21), 104 ...., 
(40), 21 (33). 

2 260 (19), 131 (31), 130 (58), 129 (100), 128 (63), 115 - (21), 104 (18), 91 (16). 

3 260 (45), 131 (37), 130 (33), 129 (100), 128 (68), 127 
(14), 115 (23). 

4 260 (51), 131 (63), 130 (62), 129 ( 100 ) , 128 ( 7 4 ) , 115 
(43), 104 (69). 
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was used to retain refluxing ammonia. 

Reduction of Naphthalene With Sodium and Ethylenediamine.- A mix-
~~ 

ture of naphthalene, 6.4 g (0.05 mol), dispersed sodium, 4.6 g (0.2 g 

atom) and 100 ml of ethylenediamine was stirred under nitrogen with a 

magnetic bar. The 250-ml reaction vessel was equipped with an air con-

denser and a soda-lime drying tube. Within 5 min, the reaction mixture 

turned dark blue and in 30 minutes the sodium agglomerated to form a 

shiny ball. After 12 hrs, the lump of unreacted sodium was removed and 

the remaining slurry was cautiously poured onto 400 ml of crushed ice. 

~he reaction mixture was extracted three times with ether and the ether 

layer was washed with excess 20% hydrochloric acid and then washed with 

water to neutrality. The acid extract was then combined with the aque-

ous washings. 

The ether extract was steam distilled and both the residue and the 

distillate were extracted with ether. The separate ether extracts were 

then dried (Na 2so4 ) and freed of ether to give 1.1 g of volatile hydro

carbons and 5.8 g of nonvolatile hydrocarbons. The latter material was 

shown by mass spectral analysis to contain a 4:1 ratio of dimers to 

trimers (m/e 390) with a trace of tetramers (m/e 520). 

Gas chromatographic analysis of the dimer fraction on a 10-ft x 

1/8-in. column contaiLing 5% silicone UCW-98 on 80-100 mesh, DMCS-

treated, acid-washed Chromosorb Wat 230° showed the total yield of the 

two major components to be 8.7% of 1 and 52% of 1· Equal relative 

molar responses of these compounds was assumed. The total yield of 

trimers was 19%. The nonvolatile hydrocarbon oil was dissolved in a 

minimum amount of ether. On standing overnight 0.32 g (5%) of 1, mp 

176-178°, crystallized from the solution. Recrystallization in acetone 



and purification by zone refining gave white crystals melting at 179-

180°. 

Anal. Calcd for c20H20 : C, 92.26; H, 7.74. Found: C, 92.25; 

H, 7 .85. 
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The volatile hydrocarbons were analyzed by the gas .chromatography 

on a 10-ft x 0.25-in. column containing Carbowax 20M on 80-100 mesh, 

acid-washed Chromosorb Wat 190° and found to be primarily tetralin 

with traces of 1,2-dihydronaphthalene and naphthalene. 

The acidic aqueous extract was made basic with 30% sodium hydroxide 

and steam distilled. The residue was extracted with ether and the ether 

extract dried (Na 2so4 ), and the ether distilled to give 0.1 g of crude 

nonvolatile amine. 

The reaction procedure and product analysis techniques given above 

are identical to those used with the other amine solvents shown in 

Table III. 

Reaction of Naphthalene With Sodium and Dipropylamine.~ Dipropyl-

amine was substituted for ethylenediamine in the above procedure. The 

yields of products were: 0.92 g of volatile hydrocarbons including 

0.06 g recovered naphthalene, 0.08 g nonvolatile amines, and 4.2 g non-

volatile hydrocarbons. Gas chromatographic analysis of the latter 

showed the yield of iudividual dimers based on reacted naphthalene to 

be 13% of an unknown dimer, 2.2% of! and 51% of i· Dimer 4 was iso-.-

lated by preparative gas chromatography. 

Reaction of Naphthalene With Sodium and Ethylamine.~ Ethylamine 
~'"'~'V"" .... '"VV"lo~ 

was substituted for ethylenediamine in the above procedure. The yields 

of products were: 0.08 g (1.2%) of tetralin, 1.5 g (17%) of crude N-

ethyl-1,2,3,4-tetrahydro-2-naphthylamine, and 5.2 g (80%) of nonvolatile 
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hydrocarbon dimers. Gas chromatographic analysis of this latter product 

showed it to contain 1 (65%), 3 (23%), and an unknown dimer (12%). A 
.- "" 

saturated ether solution of the viscous oil crystallized to give 2.5 g 

of white crystals of!, mp 84-85°. 

Anal. Calcd for c20H20 : C, 91.55; H, 8.45. Found: C, 91.64; 

H, 8.51. 

Reaction of Sodium With Naphthalene in Ammonia.~ To a mixture of 
'"V"VVVV'v"'\~"'"""'"""V°',,""'\'' ............... " ..... ~~~~· 

naphthalene, 25 g (0.2 mol), and 200 ml of freshly distilled liquid 

ammonia, 8 g of sodium spheres (1/8 to 1/4 in.) were added piecemeal 

over a 26-hr period. Each portion of sodium was allowed to react be-

fore the next addition was made. Total reaction time for each piece of 

sodium varied from 10 min at the start of the reaction to 45 min after 

three hours reaction time. Addition of sodium caused the solution to 

turn light green, then dark green and finally become colorless. The 

reaction was stopped by allowing the ammonia to evaporate at room tern-

perature. Work up of the reaction products is given in the preceding 

experiment with ethylenediamine. The product yields based on reacted 

naphthalene were: 7% 1,2-dihydronaphthalene, 5% tetralin, and 87% 

nonvolatile hydrocarbons. Gas chromatographic analysis of this latter 

material showed that the dimer fraction contained 1 (2%), 2 (29%), 4 
;w ,., 

(30%), and an unknown dimer (40%). 

Reaction of 1,2,3,3',4,4'-Hexahydro-2,2'-binaphthyl (2) With Sodium 
~ . 

and Ethylenediamine.~ A mixture of 0.1 g (0.0039 mol) of 2, 0.359 g 
~""VV'",,"'o ,,,.,, 

(0.0156 g atom) of sodium, and 5 ml of ethylenediamine were stirred for 

24 hr under a nitrogen atmosphere. After about 10 min, a blue color 

developed which gradually changed to red-orange. 
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The product was poured into ice water and then extracted with ether. 

The ether extract was washed once with 20% hydrochloric acid, washed 

twice with water, dried (Mgso4 ), filtered and freed of ether. Gas 

chromatographic analysis of the residue showed only dimer 1 and none of ,.., 

dimer 3. 

Reaction of 1,2,3,3' ,4,4'-Hexahydro-2,2'-binaphthyl (2) With Hydro-
~~~ ....................... ...,,. .. vvvv·vv·vv-vvv·vv· ..... ··,.-vv-·.·-,,.v·vv-...~ ...... ~ ..... ~~........-vv""\'V"V"V"'V'\-'"'-'"",...., ........ v·v··v·v-v·vv·,~"' 

gen and Palladium Over Carbon.~ A mixture of 1.0 g of 2 was dissolved 
·..,-.,.-,...-...~.-.. .... .-.."""'"V'VV'w'"V'V"V'VVV'VV'V'Y"'V'"V"\~ .... ~-...·-... ,-..J' 

in 15 ml of ethyl acetate and 500 mg of 10% palladium on carbon were 

added. The mixture was hydrogenated at room temperature and atmospheric 

pressure for 48 hr, then filtered and distilled to give a viscous oil 

which crystallized from an ether-petroleum ether solvent mixture to give 

300 mg of colorless crystals, mp 102°, Further purification gave mate-

rial mp 107-109°. The nmr and mass spectra of this solid were identical 

22 to those of 1. 

Dehydrogenation of 1,2,3,3' ,4,4'-Hexahydro-2,2'-binaphthyl (2).-
~~ ...... ""---v-Y"V"\,"""V'"\., ....................... , ....... ..,,...., .... ~, ..... ""~'"'_..,.."V"'\ ..... ~---....-v .... '"V°',....,. ....... -..,""' ..... ...., ...... v·vV'V"\l ..... , .......... ,""V"',,......,........,,....'"' .... 

A mixture of 1.5 g of I and 500 mg of 10% palladium on carbon was heated 

at 280° under nitrogen for 6 hr. The solid residue was sublimed to 

give 700 mg of colorless crystals, mp 184-185°, The melting point of 

a mixture of these crystals and 2,2 1-binaphthyl was not depressed and 

their nmr spectra were identical. 

Reaction of 1,4-Dihydronaphthalene With Potassium Hydroxide and 
~--vv·v,.-..·,rv;.~,-v'Y'V"'l~ ...... -..-,.............---v-,.-""'V'V"V'V"' ...... ~.-·,r.,.·,·-...--..·-...-..--...-.. . .........,'"'"",_..,.........-..-.,--..-.,.~.....,,"V'V'"V"\-...-"'-""'""",...,,,."V"V"l. .. v-...-V""\ .... ">."'\"' 

Dimethyl sulfoxide.- A mixture of 7.8 g (0.06 moles) of 1,4-dihydro-
......... , .. , .... "'V"-·,,'V"'\.-..... 'V'.....-.."' ........ "'\ ...._, .... v-v-,.~--.., 

naphthalene, 2.8 g (0.07 moles) of potassium hydroxide, and 50 ml of 

dimethyl sulfoxide were heated at 100 to 110° for 5 hr under a nitrogen 

atmosphere. The solution first turned yellow, then green, and finally 

brown. The cooled mixture was poured into 400 ml of water and extracted 

three times with ether. The ether extract was washed once with excess 
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20% hydrochloric acid and twice with water, then steam distilled. The 

steam distillation residue was taken up in ether and the ether was 

dried (Na 2so4 ) and evaporated to give 5.68 g (73%) of nonvolatile hydro

carbon material. Gas Chromatographic analysis showed that the ratio of 

dimers 2, 3, and 4 was 54:12:34. - ~ -
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