A MODERN GEOMETRIC DEVELOPMENT
FOR ELEMENTARY SCHOOL

MATHEMATICS TEACHERS

By
BILL R. GRIMES
3

Bachelor of Arts
Southeastern State College
Durant, Oklahoma
1950

Master of Teaching
Southeastern State College
Durant, Oklahoma
1956

Master of Science
Oklahoma State University
. Stillwater, Oklahoma
1959

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF EDUCATION
May, 1969



OKLAHOMA
STATE UNIVERSITY
LIBRARY

' GEP 201969

S STy

A MODERN GEOMETRIC DEVELOPMENT
FOR ELEMENTARY SCHOOL

MATHEMATICS TEACHERS

Thesis Approved:

.0 2OA
#~ el =: Thesis Advi

(). N Aewdan

Dean of the Graduate College

ii



PREFACE

I am deeply indehted to my:committee énd iﬁ particular Dr. Gerald
K. Goff for guidance, .assistance and supefvision, to the National
Science Foundation for awarding:me a Science Faculty Fellowship and to
my secretary Miss Dotty Phillips for typing and proofreading the
maguscript.

My sincere appreciation goes to Dr. Leslie A. Dwight, my former
teacher and present dgpartment chairman, whose devotion to excellence
in mathematics educatién.has been an inspiration to me since I began
undergraduate study iq mathematics.

Finally, T wish to express gratitude to my wife Kathryn and my
sons, Owen and Paul, for encouragement, understanding and willing

sacrifices during the course of this study.

iii



Chapter

I.

II.

I1I.

TABLE OF CONTENTS

INTRODUCTION . & & & o o & &

Need for the Study . .
Statement of the Problem
Scope .. . . . .. .
Procedure . . . . . ,

BASIC CONCEPTS . . . . . . .

Undefined Terms . . .

SetsS ¢ v v v 4 e e e e e
The "Equals" Relation .
Subsets . . . . . ¢« . . .
Union and Intersection .
The Empty Set . . . . .
Universal Set . . . . .
Statements . . . . . . .
Connectives~--AND, OR , .
Negation . . . . . . . .
Conditional Statements .
Converse . . . + « o o &
Contrapositive . . . . .
Definitions . . . . . .
Proofs . . . . . . .+ . .

Points . ¢« o o o & « o W
Lines .« ¢ ¢ v v o . .
Planes . . ¢« ¢« ¢ o o« o«

IV. SUBSETS OF THE PLANE . . . .

Betweenness . . . . . »
Segments . . . . . . . .
Rays ¢« « » . « o . . . &
Angles . , . . . . e

~Separation in the Plane

Interior and Exterior of
Convex Sets ... . . .

. Simple Closed Curves . .

Polygons e e e e e e o

iv

POINTS, LINES, PLANES AND SPACE . .

55
58
60
63
66
69
72
73
79



Chapter

V.

VI

VII.

VIII.

IX.

X.

CONGRUENCE . . o & ¢ v o v v o & o & o o o &

Congruent Segments . . . . . . . . . . .
Congruent Angles . . . . . . . . . . . .
Triangles . ¢ v ¢« o o & &« v o o o o o &
Congruent Triangles . . . . . . . .

Congruent Polygons . . . « . . . . + . .

CLASSIFICATION OF ANGLES AND TRIANGLES .

Isosceles Triangles . ¢« & « & 4 + o o &
Equilateral Triangles . . . . « . . . .
Midpoints .+ o & v v o v & 4 s v . .
Interior. Points of Angles and Trlangles
Bisectors of Angles . . . . . . . . .
~Supplementary Angles . . . . . . . . . .
Vertical Angles . . . . + ¢« ¢« o « o « &
Perpendicular Lines . . . . o+ « « « . &
Right Angles . . . . « . « « &« « v v o
"Right Triangles . . . . .« e s e o e
Acute Angles and Obtuse Angles o e e e

~PARALLELS AND QUADRILATERALS . . . . . . . .

Transversals and Associated Angles . . .
Parallel Lines o+ . + o o ¢ &+ o o o « &
Quadrilaterals . ¢« v ¢« ¢« ¢ « ¢ ¢ ¢ « + o
Trapegoids .. . « ¢« + + v o 4t ¢ o o« &
Parallelograms . . . +« +« 4o « o « o o «

CIRCLES AND GEOMETRIC CONSTRUCTIONS . . .

Circles v & ¢ 6 ¢ o o ¢ o o o 4 o« o o =
Geometric Constructions . . « . v o o «

MEASURE v & v v v o v v e b e e e e e e

Units of Measure . . . « + v o + &« & & &
Measuring Segments . . . . . . . . . . .
Measuring Angles . . . . &« « & ¢ & « o .
Measuring Polygons . . + . « + + & « « o
Rectangles . . « « « v ¢ v v o o o & &
‘Parallelograms . « . & « ¢ &+ « o« & o o
Triangles . . v ¢ o o ¢« o o o o o &+ & o
The Pythagorean Theorem . . . . . . . .
Measuring Circles . . . . . . . . .

POINTS SETS IN 3-SPACE & . . v ¢ & &« ¢ « o &
. Simple Closed Surfaces . . . . . . « . &

Prisms . . . 4 ¢ ¢ v 0 4t e e e e e e
Cylinders . . . ¢« . + v ¢« ¢ ¢ ¢ & o o

82
85
87
88
94



Chapter

Cones . & v ¢« ¢ « o« o o e 0
Pyramids . . « « « o ¢ o« « o
Sphere . . . . . . . . . .

Volume . . . . « . ¢« ¢« &« « + &
Prisms . . . & 4 o o . 0 ..
Cylinders, Cones Pyramids
Spheres . . . « . + « ¢ + o .

XI, CONCLUSION . . , « v &5 « ¢ « o « &

SELECTED BIBLIOGRAPHY . . . . . . . . . .

APPENDIX A: - SUMMARY OF GEOMETRIC CONCEPTS
ELEMENTARY SCHOOL MATHEMATICS
APPENDIX B: -LIST OF DEFINITIONS . . . . .

APPENDIX C: LIST OF POSTULATES . . . .

vi

¢« o o e
o e o
e« o o & o
¢« ¢ o e
o o o
e o o 3 o
. e °
. e o o

OCCURRING
TEXTS . .

. ® °
e - ° °

° ° ° e

. » .

° . . ° °

. e o °

® ° » - °

. ° a 03

. - ° ° .

IN SELECTED

. * e ° . e
© o °
. . o o



. CHAPTER I
INTRODUCTION

The traditional elementary school mathematics curriculum placed
little or no emphasis on geometry. Consequently geometry Has not been |
a part of the undergraduate preparation of prdspective elementary
teachers. As a result of the recent revolution in mathematics educa;
tion, geometry has permeated the elementary school mathematics curric-
ulum, A few years ago the study of geometry begin in the tenth grade.
Today it .may begin in kindergarten. Thus today's elgmentary school
mathematics téacher is seriously handicapped without some formal

preparation in the area of geometry.
Need for the Study

Evidence of the significant role of geometry in today's elementary
school mathematics curriculum is found in current periodicals regard-
‘ing mathematics education. - Dr. Nicholas J. Vigilante reports as
follows:

As you survey THE ARITHMETIC TEACHER, for example, you

may discover the following statistics:. Between the years

1954 and 1960 it contains one article on the topic "elemen-

tary school geometry." 1In contrast, approximately twenty-

five_ such articles appear between the years 1961 and 1966

(/[12/, p. 453)0

As minimum preparation for elementary schobl mathematics teachers

the Committee on the Undergraduate Program in Mathematics (CUPM)

recommends four semester courses, one of which is geometry. The



geometry course is described as follows:
. INTUITIVE FOUNDATIONS OF GEOMETRY. A study of space,

plane, and line as sets of points, considering separation

properties and simple closed curves; the triangle, rectangle,

circle, sphere, and the other figures in the plane and space
considered as sets of points with their properties developed
intuitively; the concept of deduction and the beginning of
deductive theory based on the properties that have been
identified in the intuitive development; concepts_of measure-

ment of the circle, volumes of familiar solids (/9/, p. 990).

- These recommendations assume a full year of algebra and a full year of
geometry in secondary school,

As a consequence of the new role of geometry in the elementary
school curriculum, many colleges and universities now include an under-
graduate course in:geometry for elementary teachers. Traditionally
undergraduate texts in geometry were designed primarily for mathemat-

ics majors. Thus there is a need for resource material designed for

elementary teachers in the area of geometry.
Statement of the Problem

Specifically stated the problem in this study is to present a
geometric development that is:
1. Consistent with the spirit of modern mathematics education.
2. Appropriate as resource material for pre-service and in-
service training for elementary school mathematics teachers.
The second criteria presents the subproblem of identifying the

geometric concepts that are present in the elementary school mathemat-

ics curriculum,
Scope

Since elementary teachers are expected to be proficient in a great



many areas, the time allotted to the study of geometry will be limited.
Thus the concepts to be studied should be well defined. A survey of
selected series of elementary:school mathematics texts reveals that
more than one hundred geometric concepts are now included in the
elementary school mathematics curriculum. Certainly these concepts
should be included in a geometric development designed for elementary
teachers. Thus the concepts that are present in the elementary school
mathematics curriculum provides a basis for the development.

Modern mathematics education involves more than the presentation
of basic concepts such as vocabulary, facts and principles. The basic
concepts must be related so as to expose the structure of the disci-
pline. In summarizing a discussion regarding the importance of
structure, Dr. Jerome S. Bruner comments as follows:

.« « .. . the curriculum of a subject should be determined by

. the most fundamental understanding that can be achieved of

the underlying principles that give structure to that sub-

ject. Teaching specific topics or skills without making

clear their context in the broader fundamental structure of

a field of knowledge is uneconomical . , . .. (/2/, p. 31)

. : ’

Regarding knowledge transfer, Dr. Robert M. Gagne comments:

_The student needs to be encouraged to 'think about'" the
relationships among various categories of knowledge he has
acquired and to make his own applications to new situations
and problems... . . there is a good deal of agreement that
knowledge should be used for thinking and that thinking
fosters transfer of knowledge (/5/, p. 256).

The development of structure and continuity of thought is facili-
tated by the preciseness of language inherent in modern set terminology
and deductive inference. C(Consequently an introduction to set termi-
nology and deductive reasoning will be included in the study. Addi-

tional concepts will be introduced only when they are needed to

preserve the continuity of the development. Many undergraduates enter



college without having had geometry at the secondary level. Conse-

quently no previous knowledge of geometry is assumed.
Progedure

The concepts that provide the nucleus of the study were determined
by surveying seven selected elementary school mathematics series. The.
results of the survey are summarized in Appendix A.

To provide a basis for a logical development the nature of dedué~
tive feasoning is introduced in Chapter II. The remainder of the study
is a discourse‘relating the concepts determined by the survey. New
concepts will be introduced.on an.intuitive basis and subsequenﬁly will
be precisely defined or classified as undefined. The postulates aﬁd
defipitions that are a part of this discourse are listed in Appendix B.

In order that the development be in harmony with the spirit of
modern mathematics, precision of language will be emphasized through-

out,



CHAPTER II
BASIC CONCEPTS

Precision, in the expression of abstract concepts and in the
application of the logical processes, is an essential characteristic
of a geometrical discourse. This precision is attained through the
use of special terminology and symbols which eliminate the normal
ambiguity in everyday language. This chapter is concerned with basic

linguistic deviges that will be used throughout the discourse.
Undefined Terms

" Words and symbols are invariably defined in terms of other words
and symbols.k An understanding of the definition of a particular word
is cdntingént uﬁon a prior understanding of the other words in the
defiﬁition. Is it possible to give a series of explicit definitions
covefing every technical word in a particular discourse? Certainly in
any such series there would have to be a beginning, thaﬁ is, a first
definition. Consequently any technical word appearing in this first
definition must be considered as undefined. To illustrate, an attempt
will be made to determine the meaning of the word '"point'" from an
ordinary dictionary. Point--a place considered as to its position
only, a spot. The kéy words. in this "definition" are place, position
and spot. For these words the dictionary gives the following defini~

tions:



Placé—-a,particular or specifiable spot.

Position--the manner in which anything is placed. Spot; site;
place.

Spot--a small extent of space, any particular place,

Space--the aggregate of points.

An understanding of the word "position" depends on -a. prior ynder-
standing of the words '"place'" and spot." !'"Place" is a synonym of
"spot" and the definition of "spot'" involves the word "épace." Thus
an understanding of "point" is ultimately subject to an understanding
of "space," but the definition of "space" depends on the word "point."
The effort to define the word "point'" results in an endless circular
process. If this circular process is to be avoided, either the word
"point" or the word '"space' should be considered as undefined.

Words that are undefined are not to be considered as meaningless.
Before one person can communicate withvanother there must Be some ideas
that are understood by both and for which no definitions are necessary.
Words which symbolize these common ideas are referred to as primitive
or undefined terms.

- The primitives used in avparticular discourse are optional, as may
be seen in the illustration above. If the word '"space'" is designated
as an undefined term then the word "peint" is defined., If "point" is
considered as an undefined term then '"space' is defined. Thus the
reader may find the undefined terms in this discourse different from
tﬁose found in some other discussion of géometry. Those undefined
terms that symbolize geometric ideas will be pointed out as they occuf
throughout the discussiqn. In many instances certain conditions will

be imposed on a primitive term to help create a mutual understanding



regarding its use.
Sets

It will be convenient to have a word that will be used to indicate
that some objects or things are to be considered together. The word
most commonly used in mathematics for this purpose is the word'”sét."
The word set will be taken as an undefined term. It will be used to
indicate that a collection of objects have certain properties in
common. Once the desired properties are stipulated the objects in the
collection will be determined. Those objects having the stipulated
proéerties, and no others, will be called elements of the set. For
example, the collection of whole numbers less than 5 is a set and its
elements are 0, 1, 2, 3 and 4.

Since frequeht references are made to various sets, .it is conven-
ient to have names for sets just as names are used to distinguish
people. Capital letters will be used as names for sets. For example,
. 1f one wished to refer to the set of symbols in the decimal system,
that is, the digits 0, 1, 2, 3, 4, 5, 6, 7,8, 9, it would be conven-
ient to have a name for this collection. Suppose this set is named
“D," Then D represents the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and
could be used to denote this set rather than to list the elements. The
brackets "{}" are used to enclose the elements of a set when they are
listed, and the elements are separated by éommas. Frequently it is
necessary to indicate the elements of a set when it is impossible or
inconvenient to list all of the elements, The set of counting numbers
is a set of this type. If the letter "(C" is used to name this set'the

bracket notation can be utilized to symbolize C as {1, 2, 3, 4, . . .}.



The initial element is listed as well as enough subsequent elements to
indicate a‘pattern. The series of three dots following the last ele-
ment is called an ellipsis and indicates that the last element is>not
listed and indeéd there is no last element. If ”H”.denotes the set
whose elements are thg first one-hundred counting numbers, it is con-~
venient to symbolize Has {1, 2, 3, . . . , 99, 100}.. In this case the
ellipsis indicates that some of t;e elements are not listed. &he sym-
bol "¢" is often used in lieu of the phrase "is an element of." Thus
the statement "3 is an element of the set C" could be symbolized

"3 eC." The symbol " ¢'" is read "is not an element of." The statement

"0 is not an element of H" is symbolized "0 ¢ H."
The "Equals'" Relation

The word "equal" will be used to describe the relation between
different names for the same thing. Intuitively "equal" symbolized. "="
means ''the same as.'" Thus the statement "A = B'" means that‘A names the
same thing that B names. It will be assumed that the equals relation
has the following properties:’

/For all se;§7

1. A = A, the reflexive property.

N
(o
=
B>
]

B.then B = A, the symmetric property.

3., If A=B and B = C then A = C, the tramnsitive property.

Any relation that has all of these three properties is called an equi-

valence relation. Thus the equals relation is an equivalence relation.
If A and B are names for sets then "A = B" means that A and B are

different names for the same set. That is, the elements of set A are

exactly the same as the elements of set B. A statement such as



"A and B are two sets gnd A = B" is self-contradictory. If A and B are
two sets then they must be different and hemce A # B. (The symbol #
means not equal.) If A =B then there is just one set and two names
for that set. The word equals as used here is not appropriate to
describe a relation between two physical objects. Two sets of dishes
may be alike in many ways, but if there are two sets then they are not
equal., It will be assumed that if A and B name the same thing, that is
A = B, then A may be substituted for B or B may be substituted for A in

any expression in which either A aor B occurs.
Subsets

Let A = {2,4,6,7,8,9} and B = {2,6,9}. Notice that every element
of set B is also an element of set A; that is, set B is a part of set
A. The word subset is used to describe this relation. The set B is.a
subset of the set A if every element of B is an element of A. This
‘relation is symbolized BCA, According to this definition every set

is a subset of itself. If B is a subset of A and there is at least ore

element in A that is not in B then B is called a proper subset of A.
Union and Intersection

In a study of the real numbers the word "operation" is used to
refer to a way of thinking of two numbers so as to obtain a number.
Addition and multiplication are operations on reél numbers. The word
"operation" will also be used to refer to a way of thinking about two
sets to obtain a set.  The operations on sets called union and inter-~
section will be useful in this discussicen. It will be assumed that it

is possible to perform these operations on any two sets and that the
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result will always be a set.

Let S = {1,2,4,5,7) and T = {2,3,5,6,8}. The distinct elements of
these two sets are the numbers 1, 2, 3, 4, 5, 6, 7, 8. This collection
of numbers is a new set formed by considering the distinct elements of
S agﬁ T. This new set is called the union of the sets S and T and is-
symbolized SYUT. The union of two sets A aﬁd B is defined to he the
set consisting of all of the elements that belong to A or B or both.

If A= {a, b, c}and B = {1, :4} then AUB = {a, b, c, 1, 2} .

Referring to the sets § and T above, note that the numbers 2 and
5 are elements of both sets. Thus a set may be formed from S and T by
taking those elements that are common to both sets. This set is called
the intersection of S and T and is symbolized Sf\T. The intersection
of M and N is defined to be the set consisting of all elements that
belong to both M and N. If M= {2, 3, a, by and N= {l, 3, a, c} then

MAN = {3, a} .
The Empty Set

In many instances two sets have no elements in common; for
example: Consider A = {a, b, c}and B= {1, 2, 3} . However, the
operation intersection has been defined as an operation on sets.
Consequently Af}B must be somé.set. But there are no elements that are
in both A and B, A set which contains no elements will be called the
"empty set." The symbol {} will be used to denote the empty set. - Thus

if A= {a, b, c} and B = {1, 2, 3} then ANE = {}
Universal Set

In situations in which set terminology is used it is often
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convenient to have in mind a set which contains all possible elements
from which particular sets may be selected. This sef is called the
universal set and is symbelized by the capitalvlettér U. The univer-
sal set may vary in different situations. If the letters in various
words in the English language are considered as sets, than a universal
set is the English alphabet. 1In the study.of arithmetic a universal

set is the set of real numbers.
Statements

The intellectual process of deriving conclusions from previously
‘accepted premises is called deduction. Most of the conclusions of
mathematics are a result of deduction., A primary ingrédient in the
deductive process is a type of sentence called a statement. |

A sentence is defined as "a unit of speech consisting of a mean-
ingful arrangement of words, or merely a word, that expresses an
assertion, a question, a command, a wish or an exclamation.'" Sentences
which are assertions are of particular concern here. Such sentences
will be called statements. It is assumed that statements are either
true or false but not both. vSentences which express a single assertion
are called simple statements. Sentences which contain two or more
assertions are called compound statements.

The sentence "The world is round." is a simple statement that is
true. The sentence "The world is‘flat.” is a simple statement that is
fals;. Sentences such as "Stop.", "Is the world round?", and '"Write

" are not statements since they

a short paragraph describing statements.
do not contain assertions.

All statements have the property of being either true or not true.
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Statemenﬁs that are always true are classified as true statements.
Statements that are sometimes true and scometimes not true and state-
ments that are always not true are classified as false statements.
This true or false elassification of a statement is called its truth
value.

It is frequently desirable to combine two or more simple state-
ments so that a new sentence is formed., (Recall that a simple seate—
ment is a sentence.) Since each of the simple statements involved
contains an assertion, the new sentence will contain two or more asser-
tions and thﬁs is a compound statement. When simple statements are
combined to form compound statements, the simple statements will then
be called the components of the compound statement. The truth value of
a compound statement is determined by ehe truth values of its compo-

nents and the way these components are connected.
Connectives--AND, OR

There are two common connectives that wili be used extensively in
this discourse. One of these is the word "and." When the word "and"
is used to connect simple statements, the truth value of the resulting
compound statement will be'”true" if the truth value of each component
has truth value "true." Otherwise, the truth value of the compound
statement 1s false. If two statements are connected with ehe connec-
tive "and" the resulting statement is called a conjunction.

Example 1. The compound‘sentence "The world is round and the sun
rises in the east." is true (has truth value "true'") since both compo-

nents are true.
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Example 2. The compound statement "The world.is flat and the sun
rises in the east." is false (has truth value "false") since one of the
components is false. |

Example 3. The compound statement ''The world is flat and the sumn
rises in the west,'" has truth value '"false'" since both components are
false.

Insome compound statements, the role of the connective "and" is
not as apparent as in the three examples above. Two such cases are of
particular interest in this discourse.

Example 4. Consider the compound statement "A baseball is round
and hard.'" "Here the word "and" indicates that two assertions are being
made about the subject ''baseball.! Hence it is a compound statement.
The simple statements implied ére: A baseball is round." and "A base-
‘ball is hard."

Example 5. Consider the true statement "A crow is a black bird."
Is this a coﬁpound statement? Notice that if ﬁhe word "red" is supsti-
tuted for the word '"black" the statement is mio lomger true. If the
word "dog" is substituted for the word "bird" the statement again
becomes false, It is apparent that the words '"black" and "bird" are
both pertinent in the description of a crow. Thqs two assertionsvare
made about the subject crow; that is, "A crow is a bird." and "A crow
is black." Thus .the statement "A crow is a black bird." is a compound
statement. Here the connective is the word ''and' even though it is not
present in the statement.

The other connective that is of interest here is the word "or;";

o

The word "or" is used to indicate the presence of alternatives. When

this word is used to connect simple statements, the resulting compound
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statement will be tfue if at least one of the components is true. If
all components are false, the compound statement is false. A compound
statement formed by using "or'" to combine two statements is called a
.disjunction,

Example 6, The compound statement '"The world is round or the sun
rises in.the east.'' has truth value "true'" since both components are
true.

Example 7. The compound statement “'The World is flat or the sun
rises in. the west." is false since both componeﬁts are false.

Example 8. The compound statement "The world is flat or the sun
rises in the east."” is true since the second component is true.

A device called a truth table provides a graphic representation of»
the relation between the truth value of a compound statement aﬁd the
truth values of its components. For brevity, capitai letters are used
to symbolize simple statements., Let A represent some simple statement
and‘let B represent a second simple statement. "Then the conjunction of
the two statements is symbolized "A and B" and the disjuﬁction'is
symbolized "A or B." Figure 1 below is the truth table fpr the con-
junction and Figure 2 is the truth table for the disjunction. There
are four rows in.- the table since for each of the two possible truth
values of one component there are two truth values of the second com-
ponent>for a total of four possible combinations. The first and second
columns give the truth values of the components. The third column
gives the truth value of the compound statement for each possible

combination of truth values of the components.
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A | B|AandB A | B|AorsB
T T T T T T
T F F T F T
F T F F T T
F F F F F F
Figure 1 Figure 2
Negation

The negation (denial) of a statement is indicated by the presence
of the word '"not" or the phrase "it is false'" immediately preceding the
statement. Thus the negation of the statement '"The world is round." is
the statement "It is false that the world is round." or more conven-
iently "The world is not round." If the letter A represents a state-
ment, then not-A repreéents the‘negation of the statement. Two of the
basic assumptions of deduction occur in connection with a statement and
its negation.

1. A statement is‘true or the negation of the statement is true but
not both.

2. A compound statement which is the conjunction of a simple statement
énd the negation of the simple statement is always false,

Figures 3 and‘4 illustrate the assumptions 1 and 2, respeﬁtively.
Example 9. As an illustration of the use of truth tables in
determining the truth value of compound statements, consider the state-

ment: "Joe is not a Texan or Joe is a citizen of the 'United States."

Is this statement always true, always false, or sometimes true and
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sometimes false? The letter A will be used for the statement '"Joe is a
Texan." and the letter B for the statement "Joe is a citizen of the
United States." The statement "Joe is not a Texan." would be repre-
sented by not-A. The compound statement, "Joe is not a Texaﬁ}or'Joe is
a citizen of the United States.'", then becomes "not-A or B.'" .There are
two possible truth values for each of the components, Eithér Joe is a
Texén, in which case "not-A" is false; or Joe is not a Texan, in which
case "not-A" ié true. Similarly, Joe is a citizen and B is true or Joe

is not a citizen and B is false. The resulting truth table is. shown in

Figure 5,
A ‘ngt-A A or‘not-A A not-A A and not-A
| F | T | T P _F
F| T T ‘ F T F

Figure 3 v Figure 4

_A not—:mB not-A or B
.| ot | F | 1] T
2. | T F | ¥ F
3. | F T T T
4 F T F T

Figure 5
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. Figure 5 indicates that the compound statement is true in each
case except the second. A close look at the second row of the truth
table is instructive. In this case, "not-A" is false, meaning that it‘
is false that Joe is not a Texan and thus Joe is a Texan. Also, "B" is
false, meaning that Joe is not a citizen. This gives, "Joe is a Texén
and Joe is not a citizen.'" Since all Texans are citizens, this situa-
tion is impossible.. Therefore, it is not surprising that the resulting

compound statement is false.
. Conditional Statements

In deduction it is frequently desirable to make assertions subject
to certain conditions. As an example consider the sentence, "Tomorrow
is Saturday, if today is Friday." This sentence contains the two
simple statements: ﬂTombrrow is Saturdéy." and "Today is Friday."
Since the sentence contains two simple statements it is a compound
.statement and thus has a truth value.

Suppose the owner of a professional football team issues the
following statement: '"The coach will receive a raise if the team wins
ten games." This amounts to an assertion on the part of the owner that
he will perform a specific act subject to a stated condition. In the
event that the team does win ten games,.ﬁhe coach has every right to
expect a raise.  Suppose the team wins only nine games. Does the
coach get a . raise? ' The statement issued by the owner makes no asser-
tion about what he will do in the event that the team fails to win ten
games. Presumably, he could grant the coach a raise but he is under no
obligation to do so. In any event, assuming that the owner is relia-

ble, one of the following must be true (and possibly both): (1) the



18

team does not win ten games,; (2) the coach receives a raise.
Intuitively, it seems that the statement: TI. "The coach will
receive a raise if the team wins ten games.'" amount to the same thing
bas the statement: - II. "Either the coach receives a raise or the team
does not win ten games.'" This suggests that the truth values for
statement II be used to assign truth values to statement I. Since
statement II is a disjunction, its truth values are known. It will be
convenient to symbolize the statemeﬁts. Let A represént'"the coach
will receive a raise'" and B fepresent ""the team wins ten gameé,” then
not-B represents ""the team does not win ten games." Statements I and
II may then be written as follows:
I. A1f B
IT. A or not-B
In the truthltable below the fourth column gives the truth wvalues
for statement. IT. The fifth column assigns truth values to statement

I.

A B | not-B v‘A or not-B | A if B
1 T T F T T
2 F T F F F
3 T|F T T T
4 FIF T T T

Figure 6
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Compound statements of the form, A if B, are called conditional
statements., A conditional statement results when two simple statements
are connected by the conjunction "if." The simple statement préceding
the connective "if" will be called the "assertion." The simple state~
ment following the connective "if" will be called the condition.

The first row of Figure 6 shows that the truth valwe of the condi-
tional statement is true provided the assertion is true Qhen the cogﬁﬁ-
tion holds (has truth value true). Also if it is known that the
conditional statement is true and the condition holds, it follows that
the assertion is true. Rows three and four show that the truth value
of the conditional statement is aiso true when the condition fails to
hold regardless of the truth value of the assertion. Consequently no
conclusions may be derived concerning the assertion when the condition
fails to hold. The second row of the tabie shows that the truth value
of the conditional statement is false in any case in which the condi-
tion holds and the assertion is false,

Example 10. The conditiénal statement "Joe 1s a citizen of the

A
United States if Joe is a Texq;§” is true since the agsertion is true
provided the condition is satisfied. In this example the assertion is
about Joe and is subject to a condition that is imposed on Joe. Notice
that in the event that the condition is not satisfied the assertion may
or may not be true. Indeed Joe may he an "Okie" and yet still be a
citizen of the United States. On the othér hand Joe could be a Martian
and would not be a citizen of the United States.

Example 11. The conditional statement '"Joe is a Texan if Joe is a
citizen of the ﬁnited States," is false singce the condition could be

satisfied and yet the assertion be false. That is, Joe could be a
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citizen of the United States and also be aﬁ "Okie'" and thus would not
be a "Texan."

Often the connective "if" is implied but not present in a state-
ment. The statemeht UA1l dogs are four-legged animals' could be
written as the conditional statement "An animal has four legs if it is
a dog."

The conditional statement was introduced initially in the form
"A if B" to emphasize that the assertion A is subject to the condition
B. In mathematic textbooks and in common language the conditional is
often written in the form "If B then A." The two forms will be consid-
ered equivalent in this discourse and both will be used. Conditional
statements are often referred ;o as implications and the condition is

sald to imply the asseértion.
Converse

When a conditional statement "A if B" is altered by interchanging‘
" the assertion and the condition, the resulting statement, "B if A," is
called the converse of the original statement. The converse then
becomes a conditional statement in its own right since it contains the
assertion "B" subject to the condition "A." The converse of the condi-
tional statement "Tomorrow is Saturday if today is Friday." is the
conditional statement 'Today is Friday if tomorrow is Saturday."

The truth value of the conyerse shouldbbe determined in the same
manner asvin any conditional sﬁatement. That is, the truth value is
"true" if the truth value of tﬁé assertion is true when the truth value
of the condition is "true.'" The truth value is '"false" if the truth

value of the assertion is "false" and the truth value of the condition
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is "true."

Example 12. The conditional statement "Joe is a Texan if Joe is a
citizen of the United States'" has truth value '"false" as noted in
example 11. The converse '"Joe is a citizen of the United States if Joe
is a Texan'" has truth value "true'" as noted in example 10. Thus a
conditional statement and its converse do not always have the same

truth value.
Contrapositive

The contrapositive of the conditional statement "A if B" is the
conditional statement '"not-B if not-A." That is, the contrapositive
of a conditional statement is obtained by writing a new conditional
statement whose assertion is the negation of the condition of the
-original statement, and whose condition is the negatioﬁ of the asser-
tion of the original statement. The truth value of the contrapositive

may be determined from a truth table.

1] 2 3 | 4 Nl 5 1 6

A | B |not-A |not-B | A if B | not-B if not-A .
T|T F F T __ T

T F F T T T_

F r| 1 | ¥ F ¥

F|F T | T |. T T

Figure 7
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In this table the truth values in column 5 are obtained by consid-
ering columns 1 and 2. The truth values in column 6 are obtained by
considering columns 3 and 4. Note that for any possible combination of
truth values of the components A and B, the truth value of the state-
ment is the same as the truth value of its contrapositive. Thus the
truth value 6f a conditional statement is always the same as the truth
value of the contrapositive statement.  Statements having this charac-
teristic are said to be equivalent statements and may be used inter-
changeably.

Example 13. The conditional statement, "Joe is a citizen of the
United States if Joe is a Texan," has truth value true. The contra-
positive is the conditional statement: "Joe is not a Texan, 1if Joe is
not a citizen of the United States.'" Notice that if the conditien is
satisfied (has truth value '"true'") then the assertion is true. Thus
the contrapositive is a true statement as was the original conditional
statement.

Example 14. Suppose the conditional statement is "Joe is a Texan

" which is false from example

if Joe is a citizen of the United States,
11. The contrapositive is '"Joe is not a éitizen of the United States
if Joe is not a Texan." The condjtion is satisfied if Joe is an ''Okie"
but the agssertion is false. Thus the:truth-value of the contrapositive
is "false' as was the original statement.

Observe that in examples 13 and 14 the truth value of the contra-
positive is the same as the truth value of the original conditional

statement, - This proves nothing of course, but perhaps it will make the

definition of the truth value of the contrapositive seem plausible.
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Definitions

Definitions play a vital role in the study of mathematics. There-
fore, an analysis of the term "definition" is in order. The definition
of the term "definition" given by Whitehead and Russell provides a good
starting point for such an.analysis,

- A definition is a declaration that a newly-introduced

symbol or combination of symbols is to mean the same as a

certain other combipnation of symbols, the meaning of which

is already known (/13/, p. 11).

That which is‘to be defined is called the "definiendum." The
combination of symbols that constitutegfthe definiendum is called the
"definiens." Once the definition is made the definiendum and the
definiens become synonymoué in the sense that either may replace the
other in a discourse.

Notice that the definijiens muét be present before a definition ¢an
be formulated. Consequently the meaning which is to be attached to the
definiendum has already been symbolized. Thus, definitions are theo-
retically unnecessary. They are, however, very'conveﬁient. Without
definitions language would become extremely cumbersomé. Often a
dozen. or more words wouyld bé necessary where one word would suffice.

In addition to being convenient, definitions add precision to
language. Often a term which is to be defined is familiarvin a vague
sort of way but the precise meaning may be unknown. For example con-
sider the statement, "An even number is a number like two, four, six,
etc." This indicates some knowledge of "even number" but leaves some
important questions unanswered. Is twenty even? If‘so, in what way is
twenty like two, four and . six? 'Is nine even? 1If not, thén apparently

nine is unlike two, four and six. But in what way is nine unlike two
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or four? A precise definition of "even number" provides the answers to
fhese questions.

_Aé previously stated,. the definiendum may be substituted for, or
replaced by, the definiens in any,discourse; In ﬁost instances the
definiendum cqnsists of only one or two words, while the definiens
consist of a phrase or the conjunction of two or more phrases stating
the charagteristics»of the definiendum. - Since the definiendum and the
definiens are interchangeable, it follows that the definiendum must
inherit all of the characteristics set forth in the definiens, and
nothing more. On the other hand, the definiens must include all of the
characteristics of the definiendum. To illustrate, consider' the
following definitionm.

Example 15. "An even number is a number that is divisible by
tﬁo." (It should be understoed that in referring to numbers as being
even or not even, only integers are considered.,) The definiendum is>
"even number' and the definiens is the phrase "a number that is divisi-
ble by two." The int;ercha;ngeability of the definiendum and the
definiens permits the derivation of two conditiongl statements from the
definition, both having truth valﬁe true.

1. 1If a numﬁer is an even number then the number is divisible by two.

2, If a number is divisible by two then it is an even number.

Since these two conditionals are true, the contrapositive of each is

also true, Hence we obtain two additional conditional statements.

3. If a number is not divisible by two then the number is not even.

4., If a number is not an even number then it is not divisible by two.
Statements (2) and (3) are the most useful in this particular

definition and indeed the conjunction of these two conditiomal
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statements is often taken as the definition of even number. That is,
5. "If a number is divisible by two then the number is even and if a
number is hot.divisible by two then the number is not even."

" Statement (5) is often written in the following abbreviated form.

6. A number is even if and only if the number is divisible by two.

The form used in statement (6) is the one most often used in mathemati-
cal definitions. It is referred to as the "if and only if" form of a
definition.

If a definition is not given in the if and only if form then the
sentence giving the definition should be preceded by the word "defini-
tion." To illustrate this point, consider the two following state-
ments:

(a) An even number is a number that is divisible by two.

(b) A dog is an animal that has four legs,

Statements (a) and (b) have exactly the same form, Statement‘ié) was
given as the definition of "even number" in example 15 but certainly
statement (b) does not define "dog." Note that example 15 was preceded
by a statement that a definition of "even number" waé forthcoming.

Thus statement (a) is acceptable as a definition of "even number" and
statement (b) would be acceptable as a definition of 'dog" only when
preceded by notification that it is to be considered a definition.

The word "definition'" preceding statement (a) would inform the
reader that two assertions were intended. Namely,

1. "If a number is even then it is divisible by two.", and
2. "If a number is divisible by tﬁo then the number is even."
If the word "“definition'" did not precede the statement, then only the

first assertion ahove could be considered.
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The two statements that may be derived directly from a definitionv
depends. on the manner in which the definition ig stated. This is
illustrated by considering tﬁo forﬁs bf the definitiOn of Tuesday.

1. Definition: Tuesday is the day follewing Monday.

2. Today is Tuesday if and only if yesterday was Monday.

From the first form the following statements may be derived:

(a) 1If yesterday was Monday then today is Tuesdéy.

(b) If today is Tuesday then yesterday was Monday.

The second (if and 6n1y if) form implies the statements:

(¢) 1If yesterday was Monday then today is Tuesd%y.

(d) 1I1f yesterday was not Monday then today is not Tuesday.

Note that (a).and (c¢) are exactly the same while (b) is the contréposi-
tive of‘(d) and (d) is the contrapositive of (b). Since the contra;
positive always has the same truth value as the statement from which it
is derived, the two forms of the definition convey precisely the same
information. | |

From the foregoing discussion it is apparent that a knbwledge of
conditional statements is a valuable aid in extracting information from

a definition.
Proocfs

A primary function of mathematiecs is to establish certain results
by means of a deductive argument usually referred to as a '"proof." Any
idea which is capable of being believed, doubted or denied is a possi-
ble subject of a proof. In this discussion only ideas which can be
written as conditional’statements will be used as sﬁbjects for proofs.

Ordinarily a number of conditional statements are present.in a complete
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proof. Therefore in. order to avoid confusion between the statements
that are a part of the proof and the statement which is the subject of‘
the proof, the latter wili be referred to as a theorem or a proposi-
“tion.,

The object of a proof of any theorem is to establish that the
associated conditional statement has truth value truei' Thus an under-
standing of "proof" requires a prior knowledge of the conditions underv
which a conditional statement is true. Recall that a conditional
statement has two components, a condition and an assertion. Both the
condition and the assertion are statements and thus are either true or
false. - The conditional statement is true provided the assertion is
always true when the condition holds (has truth value true). Thus for
the purpose of proving a theorem the truth value of the condition is
fixed. 1It:1s always assumed to be true. Since the condition‘is always
assumed true it is often referred to as the hypothesis of the theorem.
The ultimate problem in any proof is to establish that the assertion
will invariably bé true under the hypbthesis that the condition holds.

- Once a theorem has been proved one may always conclude that the asser-
tion is trué provided the condition holds. The assertion is called the
conclusion‘of‘the theorem. ' If, in a particulaf situation, the condi-
tion of a theorem does not hcld then the truth value of the ‘assertiom
is undetermined and no conclusion may be derived from the thgorem. The
theorem, "The sum of two even numbers is an even number.'", epables one
to.conclﬁde that A + B names an even number in.the event that both A
and B name even numbers. This conclusion does not depend on knowing
precisely what even number is named Ey.A or by B. On the other hand if

either A or B or both are odd numbers then the theorem provides no
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conclusion about A + B.

It . is not really difficult to state what must be done in order to
prove a theorem. One simply assumes the condition and then must estab-
lish that under that assumption the assertion must be true. The diffi-
culty arises in éstablishing the truth of the assertion. Having
assumed the condition, how does one establish the truth of the asser-
tion? The conditional statement is the basic element in this process.
Conditional statements are the vehicles on which one moves from the
assumption of the condition to the truth of the assertion.

Just as one needs words to define words, conditionals are needed
to provevtheorems. It was previously noted that every mathematical
definition gives rise to two conditional statements. Thus the defini-
tion is an important source of conditionals. Also, every theorem in
itself gives rise to at least one conditional. Consequently, once a
theorem is proved, the conditional of that theorem is then available as
an aid in-proving other theorems. This source becomes significant as
soon as & number of theorems have béen proved.

The third and last source of conditional statements originates in
much the same way as the set of undefined terms. 1In a particular area
of study certain properties are intuitively apparent. These properties
are analogous to the rules of a game. They are to be agreed upon
initially by all concerned and thereafter accepted without question.

In most instances it is possible to state these properties as condi-
tional statements. These properties are often referred to as laws,
‘axioms, or postulates. In the following discussions the term "pqstu~
late" will be used to refer to a statement that is to he accepted

without proof. Some familiar examples of this type of statement are
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the following properties of the real number system.

.1. If a and b are real numbers then a + b =b + a; i.e., the commutar
tive law for addition of real numbers.

2. If a, b and c are real numhers, then a+ (b + c) = (a + b) + c;
i.e., the associative law for addition.

A proof is.a reasoning process in which certain statements, known
or assumed to be true, are used to establish the truth of some other
statement. The initial statement in a proof is usuyally the hypothesis
of the theorem to be proved. This is followed by an additional state-
ment that is closely related to the initial statement. The next step
is to combine these statements in a way that will produce an additional
true statement. This process continues until the conclusion of the
theorem is established as a true statement.

The process of combining stateménts to obtain additional state-
ments is'justified by a set of rules, called rules of inference. Two
rules of inference and two basic laws of logic will be needed for this
discourse. They are as follows.

1. The Rule of Detachment: If the conditional statement "If A then B"
is accepted as true and the condition "A'" is accepted as true then the
assertion "B" must also be accepted as true.

2. The Rule of Indirect Proof: 1If a contradiction can be derived as a
result of assuming the denial of the conclusion of a proposition, then
the conclusion of thg proposition is true.

3. The Law of Contradiction: If A is any statement then A and the
denial of A canpot both be true. That is, the conjunction,k "A and
not=A" is always false.

4. The Law of the Excluded Middle: If A is any statement. then either
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A or the denial of A must be true. That is, the disjunction "A or
not=A" is always true.

The rule of detachment suggests a starting point for a proof.
First one writes the hypothesis of the theorem to be proved as a simple
statement. As previpusly noted this statement is to be accepted as
true. The next step, if possible, is to write a conditional statement
which.is known to be true and which has as its condition the hypothesis
of the theorem. The rule of détachment then permits one to write as a
third statement the assertion of the conditional stated in the second
step. To illustrate, consider the following theorem.

Theorem. The square of an even number is an even number. (The square
of the number a is denoted az and is obtained by multiplying the number
by itself.)

First, note that the theorem is not stated as a.conditioﬁal and so
should be restated.

2 names an even number.

Restatement. If a names an even number then a
The first step in the proof is a statement of the condition of the
theorem.

1. a is an even number,

The definition of even number provides a true conditional which has
statement 1 as its condition.

2. If a is an even number then a is divisible by 2.

The rule of detachment may be applied to statements 1 and 2 to obtain:
3, a is divisible by 2.

The next step is to produce a conditional statement with statement 3 as

a condition. Again a definition provides the statement,

Definition, A number is divisible by two if and conly if the number can
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be expressed‘in the form 2 » n where n is some integer. From. this
definition one may extfact the statement:

4. 1f a is divisible by two then a = 2 - n where n is an integer.
Then by the rule of detachment we have,

5. a=2 - nmn.

From statement 5 and the properties of multiplication on the set of

PYEPy

real numbers we may write
6. a . a=2n + 2n or

2=12. (2n * n) = 2 - k where k is the product 2n -« n,

a
The number k is an integer since the product of integers is invariably
an integer, This expresses the square of a in the form 2k where k .is
an integer, The definition of "divisible" yields a second condition
which is pertinent to the above argument.

7. If a? = 2n where n is some integer than a? is divisible by 2.

From statement 6, a?

is the product of 2 and some integer so by the
rule of detachment,
8, a2 is divisible by 2.
According to the definition of "even number,"
9. 1If a2 is divisible by 2 then 32 is even.
By applying the rule of detachment to statements 8 and 9 one obtains,
10. a% is even.

Thus the argument began with the hypothesis of the theorem and by
using conditional statements and the rule of detachment the conclusion
of the theorem was established.

The above proof is an example of what is referred to és a "direct

proof."” In a direct preof one begins with the hypothesis and proceeds

directly to the conclusicn. Tt is sometimes advantageous tq use a
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slightly different technique called an "indirect proof." The indirect
proef is based on the two basic laws of logic and the rule of indirect
proof.,

The procedure for an indirect proof is as follows:

1. Assume that the hypothesis of the propesition is true.

2. Assume that the denial of the con¢lusion of the propositien is
true.

3. Use the same procedure as in a direct proof to arrive at a contra-
diction of the form "A and not-A."

4. Apply the rule of indirect proof to conclude that the conclusion of
the proof is true.

The law of the eﬁcluded middle is not actually a part of the above
outline. Its fﬁnction in an indirect proéf is to motivate the rule of
indirect proof. The thinking is as follows. The second. step assumes
that the denial of a statement is true, This assumption. leads to a
contradiction and this suggests that the assumption was false, But
according to the law of the excluded middle either the denial of the
statement in step 2 or the statement itself must hold. Sin#e the
denial of the statement turns out false the statement (which is the
conclusion of the proposition) must be true., This type of proof is
difficult but nevertheless very useful. An example will be given in
the proof of the first theorem in the next chapter.

~An understanding of the conditional statement and the rule of
detachment is a prerequisite to the construction of a proof. However,
this understanding is useful only to those with a background of infor-
mation related to the subject of the proof. Consequently, before

attempting a geometric proof it will be necessary to acquire some basic
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concepts of geometry. In what is to follow it will be assumed that the
reader is familiar with the rational number system of elementary school

mathematics. No previous knowledge of geometry is assumed,



CHAPTER ITI
POINTS, LINES, PLANES AND SPACE
Points

Geometry is a branch of mathematics which investigates the rela-
tions, properties and measurement of sets of points. Thus the fundav.
mental entities of geometry are sets of points. The sets of points to
be considered can be divided into three major categories: the line,
the plane and space. All other sets will be subsets of one or more of
these three. This chapter is concerned with some of the properties of
these three universal sets. Since points are the elements of each set
to be considered, the discussion will begin with the word point.

No doubt the‘reader has used the word "point"™ as a noun on many
occasion%ﬁand thus it is a familiar term. In Chapter II, it was noted
that the dictionary definition of the word "point" depends on certain
other technical words which in tuxn were defined in terms of "points.”
It seems that it is impossible ﬁo define "point" without introducing
other words that are less meaningful. Therefore, the word "point" will
be considered as an undefined term. Using "point" as an undefined
term, it is possible tp define space,

Definition 3-1: Space is the set of all points.

Thus space is a set. Every element of space is a point and every
point is an element of space.

In a particular mode]l of space, points could be described as

34



35

positions. This &eécription suggests that points are fixed relative to
a particular model of space. For_example, if the model of space is the
earth and its a;mosphere, then the geographical center of the United
States 1is a médel'of a point in this space. The position of the.geo-
graphical center of the United States is fixed relative to all other
positions in the model., Thus this point is fixed relative to evefy
other point in the model.

In this discourse points will be assumed to be fixed relative to
a space. Pointé'will be represented by a dot ":". Since sets are
denoted by capital letters and points are elements of sets, pOints are
denoted by lower case letters. 1If a particular point is denoted by the
letter "a" it will be referred to as point a. Since space is the set
of all points, everyvset of points is a subset of space. Indeed, every
set of points other than. space is a proper subset of space. One of the

most important proper subsets of space is the line.
Lines

If one places a ruler or étraightedge on a sheet of paper and
moves a pencil along the edge, a mark is left .in each position that the
pencil occupies. Each of these positions is occupied by a point which
will be represented by the mark left by the pencil. The resulting
configuration (Figure 8) must then be a representation of a set of
points. The arrows on either_end of the drawing in Figure 8 are to
indicate that the»representation.should extend indefinitely. Any set
of points that can be represented as in,Figufe 8 will be ¢alled a line.

“Any -such physiéal representation of a line will be limited by the

edges of the paper but the reader should be aware that the line itself
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is not limited. Thus every line contains an unlimited number of
points. It is possible to draw many different figures like Figure 8,
and thus there are many different lines. Capital letters will be used
to symbolize sets of p;ints such gs lines, etc., If L symbolizes a

certain line, that line will be referred to as line L.

A
L4

‘Figure 8

The preceding discussion is not a definiticn of a line. In fact
the term "lipe," like the term "peint," will be undefined, However, it
is now possible to assert one definite characteristic of the concept

"line, "

Postulate 3-1. 1If "L" is a line, then "L" is a set of points.

This postulate ié a conditional statement about the term "line"
guaranteeing that every line is a set of points. Is this property a
definition? Recall that definitions must be reversible. The converse
of Postulate 3-1 is, "If 'L' is a set of points; then 'L' is a line."
But certainly there are sets of points that are not lines. Figure 9 is
a model of a set of pointé'that cannot be represented as in Figure 8.
Thus the converse of Postulate 3-1 is not a true statement. Péstulate
3-1 is not reversible and therefore could not be a definition, Figure
10 is a combination of Figures '8 and 9. PFrom this model i@ may be seen

Eae

that for any line there are points that are not in the line, This
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observation suggests a second property of lines.

Figure 9

<

Figure 10

Postulate 3-2. A line is a proper subset of space.

One frequently hears or reads references to a line passing through
points. The phrase "passing through" suggests that the line is in
motion. But lines are sets of pointé and points do not move, Hence
lines cannot move. Thus in this setting it would be improper to speak
of a line passing through a point. However, itvwill be ¢onvenient to
refer to certain points that are parts of certain. lines. Postulate 3-1
provides a.device'fér such reference. By Postulate 3-1; lines are sefs
of points. If "L" is a particular line and "a" is a point of the line,

then "a" is just an element of the set "1'" and may be symbolized "aeL."
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" "

That.is, "a" is an element of "L" or "L contains "a.
For any line L, Postulate 3-2 implies that there are points that
are not in L. Tt is often convenient to refer to certain sets of

points that belong to the same line. The term '"collinear'" is used to

describe sets of points that belong to the same line,

‘Definition 3-2. A set "S" of points is said to be collinear if and
only if eQery point of the set belongs to the same line.

Consider a set of exactly two points, as the points a and b in
Figure 10. With some convenient straightedge draw as many lines as
possible so that each line will contain both of the points a and. b.

If more than one is found, a straightedge was not used. The drawing
should look like Figure 1l. This experiment suggests a third property

. for lines.

A\
mvn
ox

A4

Figure 11

Postulate 3-3, 1If a and b are two different points, then there is

exactly one line that contains both a.and b.

The phrase "exactly one" is used to emphasize that there is one
" but no more than one; Thus if a is some point in Texas and b is some
point in Alaska, then‘there is a line (only one) that contains both a
and b. Sinée a line is completely determined by two points it is

advantageous to be able to refer to a line L in terms ¢f two of the
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points oniL. If a and b aré point in L, then the symbol gg may be used
to represent L whenever it 1is convenient. In view of Postulate 3-3 and
the definition of collinear, two points are always collinear. Thus the
symbol‘ﬁg willlrepresent thevline containing points m and n, the symbol
ﬁﬁ-represents the line containing points h and k, ete.

Postulates 3-1 and 3-2 function primarily as language aids. They
are a consequence of a need for cenvenient ways to: express certain
ideas. Postulate 3-3 imposes a condition on the concept "liﬁe." Its
- effect is to force lines to be what is commonly referred to as |
"straight."

It is now possible to obtain a fourth property of lines by apply-
ing some deductive reaspning to the conceptsmthat'are'available.

Suppose that L is a 1iné and a is a point of L. Let'M be a second
line, M # L, that also contains the point a. Thus there are two
different liﬁes, L and M, ‘and a point a that is an element of both. 1In
the language of sets a is an element of the intersection of the sets L
and M, That is ael/WM, | |

Is there another point that also belongs to both L and M? = Deduc-
tive reasoning will provide the answer. ‘In order to facilitate under-
standing, the‘steps in. the thought process will be listed numerically;
The first step will be a statement of the situation leading to the
question.

1. L and M are two different lines and a is a point that is in both:

L and M.

2., Assume that b is a point different from a and that b is in both
L and M.

3. Thus aeLfM and beL(M.



10,

11,

12,

13.

14,

15.

l6.

40 .

Since acLfM, then ae¢l and acM.

Since begLM, then beL and beM,

Thus ael and bel, or L contains both a and b.

Also, aeM and beM, or M contains both a and b.

By Postulate 3~2, there is only one line that contains both a and
b.

Therefore since bo;h M and L contain the points a and b it must be
concluded that L and M are the same line.

Thus an impossible situation arises. In step l,‘L and M are
different lines but step 9 contends that L and M are really the
same line. One of these statements must be false,

The statement in étep 1 cannot be false since it is just a state-
ment of the conditions that lead to the question, "Is there a
point other than a that is in both L and M?"

Thus the conclusion in step 9 that L and M are the same line must
be false, |
Notice that step 2 makes the assumption thét the answer to the
question was “yes." That is, that b was a point different from

a and that b was in both I and M,

This assumption leads to a false conclusion.

It is only reasonable then to conclude that the assumption was

false.
But if this assumption is false, then there are no points other
than a that are in both L and M.

This conclusion is stated formally in Postulate 4,

Postulate 3-4, If two distinct lines I and M intersect, then the

intersection is exactly one point.
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Postulates 3-1, 3-2 and 3-3 are agreements based on observation
and intuiﬁion. Poétulate 3-4 is a logical conclusionbof applying
dedyctive reasoning to the concepts previously developed. Such a
process is called a formal proof. To distinguish the properties that
are established by a formal proof from properties that are agreements,
the former will be referred to as theorems. Consequently Postulate 3-4
should be renamed as Theorem.3-1.

Theorem 3-1. If two distinct lines intersect, then the intersection is

exactly one point.

- Figure 12

~Figure 12'is a model illustrating Thecrem 3-1. In observing
Figure 12 one would likely conclude that indeed the lines L and M do
not intersect in more than one point, Thus Theorem 3-1 might have been
obtained as a result of intuition as was the case Qith Postulates 3-1
and 3-2. What is the purpose of a lengthy argument to obtain an
obvious conclusion?

The deductive process is an essential part of geopmetry. Thus it
is important that a student of geometry become familiar with this
process, ’His concern is as much with the method of obtaining conclu-

sions gs it is with the conclusions themselves. It seems appropriate
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that one's first experience with deductive arguments should be in
situations in which the conclusions are compatible with his intuition,
One is not likely to develop much faith in deductive reasoning if his

initial conclusions are unbelievable.
Planes

Consider a set of physical objects that contains the top of a
.table, the floor of a room, and the surface‘of a 1éke. It is common tq
use the phrase "flat surface'" in describing each of these objects,
Each of these objects contains positions and thus each is a physical
representation'of a set of points. Each of thése sets is in. some way
different from just random collections of points and each one is in
some way like each of the others. The term "plane" will be used to
describe sets of points whose physical representations are commonly
referred to as flat surfaces. It is frequently desirable to draw.some
form of représentation of a plane. A drawing like Figure 13 will be
used for this purpése, and capital letters such as P, Q, etc., will be

used to designate a particular plane.

Figure 13
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The representation in Figure 13 is misleading in the sense that it
suggests that a plane has limitations when in reality a plane extends
indefinitely. Thus any physical representation of a plane would be
incomplete. Floors and lakes have boundaries and a table top has a
"dropping-off" place or edge. Planes have no Boundaries and it would
be impossible to "drop off" the edge of a plane since there is no edge.

If the edge of a straight ruler is placed on the top of a desk the
ruler will contact the desk at every point on the edge of the ruler.

If the ruler is turned or moved in any way seo that two points of its
-edge remain on: the desk top then every point on the edge of the ruler
will bé in contact with the desk. Note that the edge of the ruler is a
physical representation of a line. This experiment suggests the first
postulate for planes.

.Postulate 3-5. If a plane contains two points of a line, then the

plane contains every point of the line; that is, the plane contains the
entire line,

The reader is reminded that a plane is actually a set of points
and as such is an abstraction. Postulate 3-5 is suggested by physical
representations of a line and a plane. Once stated, the postulate
imposes a condition on the abstract concept 'plane." 1Its effect is to
force the plane to conform to one's intuitive notion of a "flat
surface,"

Acéording to Postulate 3-4, two points determine a .line. Hoﬁ many
.points are mnecessary to determipe a plane?  Suppose a door swings on
its hinged edge. The hinged edge is a subset of a line that contains
the three collinear points a, b, and ¢, and more (see Figure 1l4). As

the door is swung‘to its various possible positions it represents a
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different plane in each position. Note that points a, b and c are all
elements of each of the planes represented by the door. Therefore
when three (or more) points are collinear, they do not determine a

plane.

Figure 14

Now suppose the door is to contain a specific point such as d .in
Figure 14, The door now becomes stationary and thus represents only
one plane, Only two of the points, say a and ¢, are necessary to
determine the line that contains the hinged edge. The three points a,
¢ and d fix Fhe position of the door and therefore determine a plane.

Postulate 3?6..‘If a, b and ¢ are noncollinear points then there is

exactly ope plane that contains a, b and c¢. Stated another way, any
three noncollinear points determine a plane.

It has been established that a set of cocllinear points does npt
determine a plane. Every line is a set of collinear points. Therefore
a line does not determine a plane. Would a line and a point ﬁot on the
line determine a plane? Consider a line L and a point ¢ not in L.

Every lipe contains many points, so chocse any two points a and b in L,
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Now a and b-are in L and ¢ is not in L, Since there is only one line
that contains a and b, namely L, and c¢ is not in that line, it follows
that a, b and ¢ are noncollinear. Therefore by Postulate 3-6 the
poiﬁts a,vb and ¢ determine a plane. Remember than the points a, b apnd
c were obtained by first having a line and a point not in the linpe.
This proves the folleowing theorem.
Theorem 3-2. A line and a point not in the line determine a plane.
"According to Theorem 3-1, if two lines interseét, the intersection
is one point. Every line contains more than orne point and hence
contains at least two points, Thus the union of two intersecting lines
will be a set containing at least three points. These observations
together with Theorem 3-2 are useful in the proof of Theorem 3-3.
Theorem 3-3. If L and.M are two lines that intersect, then L and M

determine a plane (see Figure 15).

Proof:
1. Let a be the point of intersection of lines L and M. That is,

LM = {a}.
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2. Since every line contains at least two points; there is some point
b in L other than a.

3. The interséetion of L and M contains only one point, namely a.

4. Hence the only point in both L and M is the point a.

5. Since b is in L and b is noﬁ a, then b is not in M.

6. Thus b .is a point not in M.

7. Therefore by Theorem 3-2, M and b determine a,piane.

8. The line M and the point b wére obtained as a.resulﬁvof‘having two
intersecting lines,

9. Thus two intersecting lines determine a plane,

If a plané P is determined by the three points a, b and ¢, then
the three points lie in the plane. »Bvaostulate 3~3 each pair of
points determine a line and thﬁs points a, b and ¢ determine lines ;§:
§§?and ﬁ?i By Postulate 3=5, if two points of a line are in a plane
then the line is in the plane. Thus since acP and beP, then-ggsz.
Similarly gg}:P and‘i%g:P. Hence a plane determined by three points
contains at least thfé;.lines; If a plane is determined by two inter=-
‘secting lines, then it contains at least the two lines that determine
it. 1If a plane is determined by a line and g point not in the line,

it is easy to argue that the plane contains at least three lines.

Postulate 3-7. Every plane contains more than one line.

In view of Postulate 3-7, every plane contains at léaét two lines,
By Postulate 3-1, every line contains an unlimited number of points. .
Consider a plane P and two lines L and M so that LCP and MCP (see
Figure 16). Take a point ae¢M and a point bel. By Postulate 3a3,f§%
is a liﬁe and by Postulate 3-53, fng:P. If ¢ is any other peoint in L

<>
then acCP. Thus there are at least as many lines in P as there are
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points in L. Since there are an unlimited number of points in L, every

plane contains an unlimited number of lines.

Figure 16

Consider a plane P and a point a sc that a is not an element of P.
As a convenient physical representation, think of the top of a desk as
the plane P and a point on the ceiling of the room as the point a.
Take any point b in P. By Postulate 3-3, points a and b determine the
qe  E2 . s .~ J ) ;
line ab. Since b is in P, the line ab intersects the plane P in at

. . . <> .

ast one point. Is it possible for abMP to contain more than cne

1
point? The answer is no, as is stated formally in Theorem 3-4.

1

(O]

Theorem 3-4. Let P be a plane and b be any point in P. If a is any
. . <> . . i .
point not in P, then abNP contains exactly one point (see Figure 17).
The intersection of g%)and P certainly contains at least one point
since b is in P and b is on §g. Thus the theorem will be proved if it

can be shown that the intersection does not contain more than one
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point. The following simple observation will facilitate the argument.

In order for‘ggf\P to contain more than one point, it must contain at

. R ¢ . ,
least two points. Hence if abNP does not contain at least two points

then it could not contain more than one point.

Figure 17

- Proof of Theorem 3-4:

1.

By hypothesis,

i) aégg and ag P

(ii) begg and b¢P and therefore be((e;.gﬂP)

Suppose ¢ is a third point such that cefsgf\P). That is,
ceg g.? and ceg P.

By Postulate 3-3, there is only one line.that contains a and b and

<>
ab is this 1line.

2.

By Postulate 3-5, if two points of a line are in a plane, then the

. . . . <>
Since ¢ is on this one line, then bc

L]

entire line is in the plane.
But b-is in P by hypothesis and ¢ is in P by the assumption in

step (2).
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Therefore, bcEP.

But %@ = %Z, soéa-%C.P.

This implies that ae P.

This implies the impossible situation that ae P and aé P..

This situation is a result of the supposition in step (2), so this
supposition must be false.

But if step (2) is false then there is no point other than b that

is onlggyand also in plane P.

. Therefore the intersection of‘gg and P contains exactly one point.

By-Postulate 3-5, if two points of a line are in a plane then the

entire line is in the plame. By Theorem 3-4, if a line L contains a

point a that is not in a plane P and alsc contains a point b that is in

plan

2 P, then LNP = {b}. Combining Postulate 3-5 and Theorem 3-4

yields the following theorem.

Theorem 3-5. If a line L and a plane P intersect, then the intersec-

tion is either the line L or a set containing exactly one point. (See

Figure 18.)

>

é—wm—-«e——_

Figure 18
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This theorem is similar te Theorem 3-1 which states: : "If twe
lines intersect, the.intersection is exactly one point." Theorems 3-1
and 3-5 are both conditional statements. The conclusion in Theorem 3-1
is subject te a conditiom that twe lines intersect. The conclusion in
Theorem 3-5 is subject to a condition that a lime and a plane inter-~
sect., The presence of these conditions suggests that (1) lines do neot
always intersect, and (2) a given line does not always intersect a
given plane,

Physical representations of both possibilities are present in any
classroom. Consider the line determinmed by the edge of the floor at
the bottom of the north wall of a room and the lime determined by the
edge of the floor at the bottom of the south wall, These lines do not
intersect (assuming that the room is square). Notice that both lines
are in the floor and thus are in the same plane. Such lines are called
parallel lines.

Definition 3-3. TIwo lines are parallel if and only if they are in the

same plane and their intersection is empty.

The symbol ”H” is often used to symbolize the word parallel., That
is, LHM means that L and M are parallel,.

To illustrate the second possibility above, consider the floor of
the room and the line on the celling at the top of the north wall.

This line does not intersect the plane of the floor.

Definition 3-4. A line L and a plane P are parallel if and only if
their intersection is empty.

The definition of parallel lines ipsists that the lines must lie
in the same plane. The lines determined by the north edge of the floor

and the line determined by the west edge of the ceiling do not



intersect. These lines are mot parallel because they do not lie in the

same plame. Such lines are called skew lines.

_Definition 35, Two lines are skew if and only if their intersection
is empty and they do not lie in the same plane.
The definition of parallel lines, like any definition, implies two

conditional statements.

1. If two lines lie in the same plane and do¢ not intersect, then they
are parallel,

2, ‘If two lines ére parallel, then they lie in. the same plane and do
not intersect.

‘The second statement provides another means of determining a
plane. Let L and M be two parallel lines; that is, LHM, Ilet a and b
be two points in L and ¢ be a point im M. Then a, b.and ¢ are mnot all
in the same line since no peint in M is in L. Thus a, b and ¢ are non-
collinear. By Postulate 3-6, ﬁhere is exactly one plane that contains

, b-and ¢ but any plane that contains L and M must contain a, b and c.

@

Hence there is exactly omne plane that contains L and M. This proves
the following theorem.

haorem 3-6, Two parallel lines determine exactly one plane.

Consider a plane P and a point a such that a is not in P. Let L
be any line in P. By Theorem 3-2, line L and point a determine exactly
one plane, call this plane Q. The point a is in plane Q but not in the
plane P so that Q and P are different plames. The line L was in P by
choice. It is in the plare Q since line L and point a determine Q.

ntersection of P

[

Thus line L is in both P and Q and hence is in the

and Q. Could there be any points in the intersection of P and Q other

han those points in line L? Suppose b is a point in plane P and b is
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not in L. Then by Theorem 3-2, line L and point b lie in just one
plane and since they are both in plane P, then P must be the one plane
that contains them, Hence no other plane contains both L and b. Since
‘line L is in plane Q, it follows that point b is not in plane Q. Thus
there are no points in the intersection of P and Q other than the
points of the line L.

Theorem 3-7. If two planes intersect, then the intersection is a line.-

Definition 3-6. TIwo planes are parallel if and only if their intersec-

tion is empty.

The ceiling and the floor of a classroom provide an illustration
of parallel planes. The floor and a wall of a room determine two
planes that intersect and the line of intersection contains an edge of
the floor and also the bottom of the wall.

From the definition of parallel planes and Theorem 3-6, it follows
that any two planes are either parallel or they intersect in a line.
Thus it is impossible for two planes to intersect in a single point.
Suppose three planes are considered. Could the intersection of three
planes be a point? Notice the line determined by the intersection of
two walls of a room. This line does not lie in the plane determined by
the ceiling and therefore by’Theorem 3-5 must intersect this plane in
exactly one point, Thus it is possible for three planes to intersect
in a single point.

Three of more planes could intersect in a line as may be illustrat-
ed by three or more pages of a bock. The different pages can be
positioned so as to determine different planes and each of the planes
contains the line determined by the binding of the book, Thus the

intersection of three planes could be either a point or a line.
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In considering two planes it was noted that the planes are either
parallel or they intersect. It is possible fér three or more plames in
a set of planes to be mutually parallel in the sense that each plane in
the set is parallel to every other plane in the set. This situation is
illustrated by considering the planes determined by the floors of a
building having three or more stories. On the other hand suppose that
it is known that three:particular planes are not mutually parallel. Is
there some set of points that belongs to each of the three planes?

Consider a tent of the type illustrated in Figure 19. The walls

determine different planes and the floor determines a third plane.

.

- Figure 19

Certainly the three planes are not parallel, yet there is no point
that is in all three planes. Thus the interéection of the three planeé
is the empty set. Note that each pair of planes in this set of plames
intersect:in a line.

_In the beginning pf this chapter it was notéd that geometry is
concerned with the study of point sets. Thus the point is the funda-

mental building block of geometry. Space was defined as the set of all
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points. Consequently space is the universal set in the study of geome-
try in the sense that every geometric entity is a point set and thus is

a subset of space.



 CHAPTER IV
SUBSETS OF THE PLANE

This chapter is concerned with certain sets of points which will
be subsets of a plane. In some cases the sets under consideration will

also be subsets of a line.

Betweenness

Consider the points a, b and ¢ in Figure 20 (a) and the points x,
y and z in Figure 20 (b). Note that the points a, b and ¢ are colline-

ar while the poiﬁts %X, y and z are noncollinear.

LR

(a) | (b)

Figure 20

- If three points are situated as in Figure 20 (a), it is common to
refer to one of the three, b in this case, as being between the other

two. 1Is ome of the points in Figure 20 (b) between the other two? If

55
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so, which one? Notice that in Figure 20 (a) there is no doubt about
which point is betweenvthe othér two. The poiﬁt b.is between a and c,
ﬁut aiis not between b and ¢ nor is ¢ between a . and b. If the term
"between" is applied to one-of the points in Figure 20 (b), then it
.might just as well be applied to either Qf the other twa. Thus the
term "between" does not seem ta be applicable to the sets of points in
Figure 20 (b). Under what circumsﬁances is it appropriate to apply the
term "between" to one eiement of a set of points? The question could
be answered with.a definition but such a definition would necessitate
the introduction of other concepts, the definitions of which would
involve more concepts, etc, Consequently the term "between" will be
considered an'ﬁndefined term. Certain prbperties will facilitate the
use df thé concept.

Postulate 4-1. If a is between b and c, then a, b and ¢ are collinear.

Notice that this statement is not reversible. Consider Figure 21.

. Points a, b and c are collinear'but a is not between b and c.

Figure 21

Thevnotation a-b-c will be used to indicate that b is between a
and e¢. Similarly b-a-c means that a is between b and c, and a-c-b
means that ¢ is between a and b. It is intuitively apparent that if a

is between b and ¢, then a is betwsen c and b, Thus a-c-b and b-c-a
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mean the same thing,

b e : b a c

a b c a
a-b-c o¢r c-b-a bra-c or c~-a-b b~c=-a or a-c-b
Figure 22

A study of Figure 22 suggests the following postulate.

‘Postulate 4-2. If a, b and c are three points in the same line, then
exactly one of the-points is between the other two, |

Consider points a and b in line L as in Figure 23 (é)} Since the:
line L extends indefiniﬁely, intuitioh”suggestS'the foilowing:
1, There is some point d so that a-b-d. (See Figure 23 (b).)
2. There is a point c so that é-a-b. (See Figure 23 (c).)

3. There is a point e so that a-e-b.v (See Figure 23 (d);)

a b '
(a) L <€ ’ » >
' a b d
() L < - —— >
’ c a b
(c) L <€ -t - >
@ P a e b S
1 < - v >

~ Figure 23



58

Notice Figure'23‘(d). There is no difficulty in finding a place
for poiht e so that e is between a and b. Is it possible for a and b
to be so "close" together that there is no place for point e so that e
is between a and b? Intuition may suggest that if a is taken '"next ro"
b then there-would be no place for point e. However, inpuition is not
always dependable, It is possible (but not appropriate here) to prove
~that the point a cannot be "next to" the point b and thus there is
always a place for a point between a and b, This is formally stated in
the third part of Postulate 4-3.

 Postulate 4-3., If a and b are two points, then:

1., There is a point d so that a-b-d,
2, There is a point ¢ so that c-a-b, and

3. -There is a point e so that a-e-b.,-
Segments

Let a and b be any two points. By Postulate 3-3 there is exactly
one line'gz that contains both points. If ¢ is any other poiﬁt infgg
then (1) a—c-B, (2) ¢-a-b or (3) a-b-c. Thus some of the points of'gi
are between a and b and some are not.

Definition 4-1. The set consisting of the points a and b and all of

the points between a and b is called a segment.

The poihts a and b are called the endpoints of the segment and the
points between a and b are called interior points of the segment. . The
segment WhQSe'endpoints are a and b is denoted'"zgh, and the interior
of segment ab is denoted I ab. Since the set of paoints between a and b
is the same set aé the set of points bgtween b and a, it follows that

1 ab = 1 ba and EET= g;i ~8ince definitions are reversible the
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following four conditional statements are implied by the definition of

segment,

1.

If p is an interior point of the segment EE, then p is between

a.and b,

Symbolically: If pe I ZB, then a-p-b.

1f p is not between a and b, then p is not an interior point

of segment ab.
Symbolically: If not a-p-b, then pé I ab.
If p is between a and.b, then p is an interior point of

segment ab.

vSymbolically: If a-p-b, then pe I ab.

“If p. is not an interior point of segment ZE, then p is not

between a and b,

Symbolically: If pé I ab, then not a-p-b.

The definition of '"segment" and Postulate 4-1 provides a basis for

a proof of the following theorem.

Theorem 4-1. - The segment ab is a subset of the 1ine 53.

According to the definition of "subset,” it is necessary to prove

. —_ ' >
that every point of the segment ab is a point of the line ab.

Proof:

Then'p = a.a P

Let p be any point of segment ab.

b or pe I ab.

<>
If p=a or p=h, then pe ah.
If pe I EE, then p.is between a and b.
Therefore by:Postulate 4-1: p, a and b are collinear and pe'gg.

Thus every point of segment ab is a point of line g%.

Is gg'a proper: subset of gﬁb That is, are there points hlline'gg
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that are not in segment ab? Recall from Postulate 4-3 that if a and b
are any two points then there is a point d such that a-b-d. Then

<« — . I -t .
de ab, but df ab; thus there are points uyllne ab that are not in seg-
ment ab, Therefore the segment ab is a proper subset of the line 63.
In fact every pair of points in a line L determines a segment in L, In

Figurev24 the points a, b, ¢ and d in L determine segmepts‘zg,-zz, ad,

bc, bd, and cd.

A

Figure 24

Rays

Consider a line L and.a point a and L.  (See Figure 25.) Recall
that the line L extends indefinitely. Thus there is an unlimited
number of points in the line on either side of a. The set of points of
L on one side of a together with the point a is called a ray and thev‘
point a is called the endpoint of the fay. ~Since there is a set of
points on either side of g it is apparent that the point 4 in the line
L determines two rayé on L.  -Each of these rays has the point a as its
endpoint. Some means of identifying a particular one of these rays is
needed. Let b and c be points in L so thét a is between b and c. (See

Figure 26.) Consider the two rays in L de;ermined by the point a. The

point b is in one of the rays and the point ¢ is in the other. This
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suggests the possibility of determining a particular ray in termé of
its endpoint and_one other point of the ray. That is, there is‘just
one ray in line L with eﬁdpoiﬁﬁ a that contains the'point‘b and just
one ray in L with endpoint a that contains point.c. 1If, as in Figure
26, a'is betwéen b-and ¢ these two rays will be different. The symbbl
’;g, which is read rafagﬁr,denotes the ray with endpoint g that contains
b, and the symbol z?-deﬁotes the ray with,endpoiﬁt a that contains c.

The rayslzg and Ez»are called opposite rays.

: a
<€ * >
Figure 25
L < 2 2 = >
-Figure 26

Apparently each point in the line L in Figure 26 belongs to one of
'ﬁ? -> . , . , o L
the rays ab or ac, If a.particular point in L is considered, how does
one determine which ray it is in? A fﬁnctional definition of the con-
cept "ray" is needed. Since a ray is a set of points, it will be
defined in terms of thé‘points that it contains. Consider the ray ;ﬁ:
in line L in Figure 27. The point q is in Eg and also in segment ab.

The points-labeled py, py, and pjy are also in'§§. Notice that b is



62

between a and P1» b is between a and Py and b is between a and P3. The
point r ig not in _g. Note that r is not in segment ab and that b is

not between a and r.

L

L < : R— 1? w — -
: ) Pl P2 P3

Y
Nal"

Figure 27

Definition 4—2. The ray ;ggis the union of the segment ab and the set
of all point p such that b is between a and p. |

Another way of deécribing a ray is as follows: Consider a line L
and points a; b and ¢ in L so that a is between b and c. Thiﬁk.of the
.point a .as separéting the line L into two parts. One part would be the
set of all points in L that are oh the samé side of a that b is on.
The other part is the set. of all points in L that are on the same side
of a that ¢ is on, .Notice that the point a is not in eithér set, Each
of the sets described is called a half-line. In Figufe 28 the point a
is circled toviﬁdicate that it is not in either half-line. The half-
line on'the b side of a is calléd the half-line deterﬁined by a that
contains b. The other is‘célled the half-line determined by,a that
contains-c. The ray’;g is the union of the point a and the half-line
determiﬁed by a that c¢ontains b,

The ray Zg contains ﬁany points other than a and b but only one

endpoint, namely a. Thus there are many ways of symbolizing a
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particular ray with endpoint a but each symbpol must contain the letter
d. In Figure 29, b, ¢ and d are all on the same side of a and hence

the symbols Z%,'EZ'and ;3 all'symbolize the same ray,

o
L B2

Half-Line Containing c ‘ Half-Line Containing b

Figure 28

A
2 4

Figure 29

Angles

" If two rays lie in the same line their union will be the line or
a ray or two digjoint fays. Their intersection will be a point,
segment, ray or the empty set. Thus no new types of point sets occuf
as a resplt of takihg the unién or intersection of two rays in the same
line.

The most important situation arising from the union of two rays
occurs when ;he rays have a common endpoint but do not lie in the same
line. Let a, b and ¢ be three non-collinear points:és in Figure 30.

Consider the rays.gg ang E? having the common endpcint a. Since a, b
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and ¢ are non-collinear, the rays ab and ac are not in the same line.
The set of points consisting of the union of these two rays is called

an angle.

Figure 30

Definition 4-3. An angle is the union of two non-collinear rays

having the samezendpoint..
nyn _g -

The symbol "#' is used to denote angle. If ab and ac are non-

. -g - , .
collinear rays then the angle formed by ab U a¢ is symbolized ¥ bac ox
‘X cab. The three letters used to symbolize the angle are the three
.letters used to denote the two rays involved. The middle letter in the
symbol will always be the common endpoint of the two rays.” The first
letter will be a point in one of the rays (either ome) other than the
»endpoint, while the third letter will be a point in the other ray. The
two rays whose union makes thebangle are called the sides of the angle
and their common endpoint is called the vertex of the angle. In Figure

N ‘ : .
31, the sides of X yxz_are-E? and xz and the vertex is the point x. As

previously,notéd there are many ways of symbolizing a particular ray.
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Thus in Figure 31,';§ ='§Z and ;; = ;g.- But ;? UTQ; = ¥ yXz SO

;Z U Eg = X yxz; .By definitidﬁ,’§3 U_E? = X axb, aﬁd therefore

¥ yxXz ='¢§xb. .Thus there are many ways:to symbolize a pérticular
angle but the vertex ﬁust always appear as the middle letter'iﬁ_each

symbol, In Figure 31, ¥ axb = X yxb = ¥ axz = & yxz,

N ¢
Ty
v

Figure 31

T
If ab and .ac are two rays whose union. is an angle, then according
to the definition of angle, ab and ac lie in different lines. Thus the
. ’ég > , . . \
lines ab and ac are different lines that intersect in the point.a.
According to Theorem 3-2 two intersecting lines determine a plane.
Since'the rays 2? and:;? are subsets of the lines gg’and'gg it follows
*ﬁ?, -, , , ,
that ab U a¢ is a subset of the unique plane that is determined by the
. é%' &> , .
lines ab and a¢. Thus an angle is a subset of exactly one plane.
Considerable confusion arises concerning the points of a plane
that. are actually a:part of a particular angle and the points of the
plane that are not part of the angle., In Figure 32 one may be inclined
to say that the point p is "in" angle abc. However, ¥ abc is a set of

points and hence if p is in ¢ abc, it must be one of the points of the
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set. Yet p is not in EZ or'g% and therefore p.is not an.element of

EE'U g%. Thus it is incerrect to state that p is in X bac.

a
/’P
b > >
‘ c
Figure 32

In viewing a model of an angle in a plane as in.Figure 33, three
sets of points are in evidence. First the angle itself, second the
points in the interior of the angle and third the remaining points in
the plane, called the exterior of the angle. It is a simple matter to
indicate a particular point in the plane and state which of the three
sets that the point is in. But how does one describe these sets in
mathematical language? The angle has been defined and thus an adequate
- description is available. Some notion of separation of the points in a
plane will‘provide a means of describing.the,intefior'and exterior of

an angle.
Separation in the Plane

Consider & line L in a plane M and let a be a point in L. Let b
be a point in M such that b is not in L. By Postulaﬁe 4-3 there is a
point ¢ such that a is between b and ¢. Since a is between b and ¢, by

Postulate 4-1, a, b and ¢ are collinear. The point b was not in L so
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the line ab is different from L and therefore intersects L in only one
point, namely point a. Since ¢ is in 1ine'§g it follows that ¢ is not

in line L. The situation is pigtured in Figure 34.

a

(&
I e ——

Figuré 33

be

N

e C

Figure 34

Since the line gz'intersects the line L in a point a which is
betweeh b and e, b aﬁd c afe said to be on opposite sides of L. Thus
the plane M is separated into three Subsets; One subset is the set of
all points that are on the same side of L that b is on. Another is the
set of points that are on the‘same'sidekof L that ¢ is on, The third

subset is the line L. The set of points in the c-side of L is called
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the half-plane determined by L that contains c¢. The set of poiﬁts in
the b-side of L is called the half-plane determined by‘L‘that contains
b. The line L is said to éeparate the plane M inté two half-planes.
If ¢ and b are points on opposite sides of L, the half-plane that
contains ¢ is called the c-side of L. The half-plane that contains b

is called the b-side of L.

half¥p1ane on b-side of L

=7 L
b ///
™
/ *° ‘
‘ half-plane on c-side of L
Figure 35

Postulate 4-3. Let L be a line in a plane M. 1If a and b are two

points of M such that a and b are not in L, then a and b are on the
same side of L if and only if abN1 = {1.
The following four conditional statements may be extracted from

the if and only if statement of Postulate 4-3.

1. If abNL = {}, then a and b are on the samekside of L,
2. 'If a aﬁd b are on the same side of L, then abN1 = {1.
3. If a and b are on opposite sides éf’L, then abNL # {1.
4. If£abNL # {}, then a and b are on opposite sides of L.

The concept of a line separating a plane provides a.means of

indicating the positions of points relative to certain lines. ' This in
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turn provides a basis for stating precisely the conditions that will

guarantee that a particular point is in the interior of a particular

angle.
a\ a
T \
< > L 5 L
< ‘ < NG —>
a and b on .same side of L a and b on opposite sides of L
‘Figure 36

Interior and Exterior of an Angle

Consider an ¥ abc in a plane. (See Figure 37.) From the.definia
- >

tion of "angle"‘points a, b and c are non-collinear and X abc = ba ﬁ c.
The ray'Ez is a subset of the 1ine}§2'and the ray B2 is a subset of the
line<€2. Since a, b and c are noncollinear,'%%'and'ﬁz are different
lines. Thus ¢ is not in%—‘a> and a is not in %? Consequently'gz
determines two half-planes one éf which contains the point c¢. This
half-plane, the c-side of Sﬁa is-indicated in Figure 38 by the horizon-
tal shadings. In a similarvmanner the 1ine'§2 determines two half- |

planes, one of which contains the point a. The a-side off%% is

" illustrated in Figure 39 by the vertical shadings.
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Figure 37

Figure 38

L

Figure 39

~
”~

- The ynion of the half-planesf;nwFigures?SS:and339”iSushown:in
Figure 40. . The section of Figure‘40 that contains both vertical and
horizontal shadings is that subset of the plane which is common to both

. > ' . *3 , , .
the a~side of bc and the c-sgide of . Notice that any point that is

ih the a-side Qf‘ﬁz_and also in the c-side of g%'is a .point that,
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intuitively speaking, is in the interior of & abc. This suggests the

following definition of the interior of an angle.

Figure 40

:Definitipn 4-4. A point p is an element of the interior of ¥ abe if

and only if p is in the a-side of B¢ and p is in the c-side of B.

(See Figﬁre 41.)

Figure 41

| Recall that the angle ¥ abc is the union of the rays EZ and E?.

Thus any peint that is in ¥ ahc must be a point in‘gz or E?. _According
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to the definition of interior of an angle, any point of'the interior of -
X abc mué; be in a half-plane determined by‘ﬁz and also in a half-plane
~ determined byﬁﬁz. Byt a half-plane and the line determining it have no
-points in common; Consequently 1if a point q is in the interior of
X abc, the q is not in‘gz and q is not in §Z; Therefore q is not in

. I SR -
¥ abc. If'a point p is in X abc then p.is in ba or p is in bc. If p
is in ba, then p is not in any half-plane determined by ba and there-
fore it is not in the interior of ¥ abc#» If p is not in Eg but p is
in X abe, then p must be ‘in Eg. In this case p is not in any half-
plane determined by'gz and so p is mot in the interior of ¥ abc. Thus
an angle and its interior are disjoint subsets of the plane.

‘Definition 4-3. If & abc is a subset of a plane M, then the set con-

sisting of all points of M that are not in ¥ abc or the interior of
X ch is called the exterior of i‘abc. |

Thus every aﬁgle of a plane separates the plane‘into three dis-
joint subsets, the interior of‘the angle, the exterior of the angle and

the angle.
Convex Sets

Aécofding ﬁo:Postulate 4-3, if a and b lie on the same side of a

line L, then the segment ab does not intersect L. To say fhat a and b
vlie on the same side ova_ié equivaient to saying that a and b lie in
the same half;plane. Thus avhalprlane is a set of pointsvsuch that if
a.and b ére any two ﬁoints in the set, fhen the segment ab is also in
the set.

Definition 4-6. A set of points S is said to be a convex set if and

only if for every two points a and b of S the segment ;E is also in S.
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If.L is a line and a and b are points in I, then ab.is a subset of
L. Therefore a line is a convex set. Other examples of convex éets
are rays, pianes and half-planes. Aﬁ angle is not a con&ex set for if
p and q are points such that p is iﬁ one of’the sides of the angle and
q is in the otherAside, then the'intefior 6f‘segment ;a is not a subset

of the angle, (See Figure 42.)

Figure 42"

Theorem 4-2. If Ais a convex set and B is a convex set, then AMNB is

a convex set.

Proof: Accdrding to the definition of '"convex set," it must be estab-~
lished that if p and g are any two points in the set‘Ar\B, then the
segment pq is also in ANB,

1. let p and g be any two pointé in ANB.
2. By the defiﬁition of intersection, pe A, qe A, pe B and qe B.
3. 8ince A is convex, pe A and qe¢ A, then ;ac:A.- :

4. Since B is convex, peB and qe B, thén,;gc:B.

.53. Again by the‘definition of intersection, since Egc:A and EEC:B,

| then ECA“B-

6. Therefore if'p and q are any £Wo points of ANB, then pq is a
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subset of AfB,
7. Hence Af\B is a convex set.

Notice that_steps'B and 4 in the proof are a result of the hypo-
thesis that Abénd B are both convex sets. The following exémples show
that if A and B are not convex, then ANB may or may noﬁ be convex.
Example 1.' The intersection of X abc and ¥ adc is a,set consisﬁing of

the two points a and c. The set {a,c}is not convéx. (See Figure 43.)

Figure 43

Example 2. The intersection of X abc and ¥ dbc as shown in Figure 44

A

is the ray E% and the ray E? is a convex set.
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Theorem 4-3. The in;eriof of an angle is a convex set.

~Proof: This theorem is a direct consequence of Theorem 4~21and the
definition of the interior of an angle. Half-planes are convex sets
and the interjor of,an angle is the interséctioniof two half-planes.

Therefore by Theorem 4-2 the interior of an angle is a convex set.
Simple Closed Curves

The word "curve“ like the wofds ﬁoiﬁt gnd line is a common term.
From én intuitive point of view, a curve is a continuous path. Of
course this would not suffice for a definition since the words continu-
ous and path have not been defined. intuition plays an important role
‘in the study of mathematics but, as was previously'sugggsted,-intuition
is not always reliable. To illﬁstrate, consider Figures 45 and 46.
Intuition might lead one to refer tq Figure 45 as a curved line and
v'Figure‘46‘as a straight line., But this terminology is not consistent
with the concepts that have been previously developed. If Figure 45
represents a line (éurved or otherwise), then Figure 47 represehts two
linesbboth of which contain points a and b. According to Postulate
3-3, Chapter III, there is only one line that coﬁtains points a and b,
Therefore Figure 45 does not represent a 1ine.‘ This discussion suggests
that intuition can be misleading, bﬁt it should not be abandoned.
Indeed the idea of a curve will be considered on an intuitive basis
only singe a precise definition would depend on concepts that are not

appropriate here.
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Figure 45 ‘ ' Figure 46

Figure 47

The sets of points represented by.Figures 46 and 47 are both

curves, As noted in Chapter III, a set of points like Figure 46 is a

line. This set is now referred to as a curve, This implies that all

lines are curves, Segmeﬁts, fays and angles are also referfed to as
curves. The set of_points in_Figure 45 is a curve which is neither a
line, a segmént, a ray or an angle. Planes and half-planes are exam-
ples of sets of points that are not curves. The point sets represented
in Figuyre 48 and Figure 49 are not curves; whereas the point set in

Figure 50 is a curve. In what ways does the set of points in Figure 50

~differ from those in Figures 48 and 49?7 Notice that it is possible to

move a pencil freom any point in Figﬁre 50 to any other'point in the set

without removing the pencil from the paper. This is not possible with

-the point set in Figure 48. One might say intuitively speaking that

the point set in Figure 48 has gaps in it., The set of points in
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Figure 50 has no gaps in it. The set of peints in Figure 49 has no

gaps but it has a characteristic which is commonly called "thickness."

N~ - | -
; .

(Not a curve) (Not a curve)

Figure 48 ' , Figure 49

Figure 50

These observaﬁions suggest the following description,bf'a curve.
_This is a description only, the term "curve" is to be considered as an
undefined term.‘v |

A cﬁrve is described as any set of points which has the following
properties:

1. 1In any physical represenﬁation of a curve it is possible to trace
va.pencil from any point in the set to any other point in the set
without rempving‘the pencil from the set,

2. A curve has no thickness.

3. A curve contains more than one point.



78

If it is possible to trace a éurve in a way such that the pencii
.ultimately‘returns to its original position without retracing its route
“then the curve is.a‘clqsed curve, if‘it.is possible to trace a curve
inva wéy such thét the_pencii ultimately returns to its original point‘
and not trace the samé'point twice, then the curve is a.simple.closed
curve, . Figure 51 repfesents a simple closed curve. The curve in
Figure 52 is_lesed but not simple.' Figure 53 represehts a simple

closed curve.

Figure 51 S Figure 52

Figure 53
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«Polygons

While there are many forms of éimple closed curves, only two types
will be considered in this discourse, One of these is the circle which
will be considered in a later chapter. Of immediate jinterest is a form
of the simple closed curve which consists of the union of segments,

Definition 4-7. ‘A‘polygon is a simple closed curve which is the union

of segments,

Note thét the definition éf "polygon" requires that it be a
simple closed ¢urve and that‘it is the union of segments. Thus the
simple closed curve illustrated in Figure 53 is ﬁot a polygon since it
is not the union of segments, Figure 54. 1llustrates a simple cufve,
which is the ypion of segments, but it is not closed and therefore, is

not a polygon,

Figure 54

Figure 55 ‘ | Figure 56
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The simple closed curves illustrated in Figures 55‘and 56 are both
polygons.

'The segments whose union - constitutes a polygon will be called the
sides of the‘polygon.‘ If two sides of a polygon have a'point in
common, then they will be called-adjacent sides and the common point
will be called a vertex..‘The vertices (plural for vertex) of a polygon
are endpoints of segments. Each vertex will be named by the common
endpoint of the two segments. that determine.it._ Two vertices that are
in the'éame segment will be referred to as consecutive vertices. The
polygon illustrated in‘Figure 57 is the set of points consisting of
EBWJBEL)EELJEE. The verticex are a, b, ¢ and d. All of the ver;ices
of a polygon are used. in naming the polygon. For convenience the
letters naming consecutive vertices will be listed consecutively in
naming the polygon. Thus the polygon in Figure 57 could be named dcba
~or dabc if d is chosen as the first vertex to be named. Any vertex
could be named first and in each case there are two distinct orders fof
listing the other vertices. Thus there are 2n ways of naming a polygon
having n sides. With this‘notation it would be incorrect to refer to
Figure 57 as the polygon achd since this suggests that the segmentslgz

~and bd are sides of the polygon.

Figure 57
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A particular polfgon is ¢lassified according to the number of
sides that it has, The prefix."poly" is a Greék.form meaning man&.‘
If a polygon has more than four sides the Greek form for the particular
number of sides involved may be subétituted for the‘form "poly“ to
indicate the number of sides that the polygon has. Thus a péntagon is
a polygon having five sides, a hexagon is a polygon having six sides,
eﬁ cetera, The term "quadrilateral' is used to denote a polygon having
four sides and the term "triangle" denotes a polygon having three
sides. The polygons most frequently encountered in elementary geometry
are the quadrilaferals and the triangles. |

The study of the point sets introduced in this chapter is facili-
 tated by the congruence relatioﬁ.} This concept will be considered in

the next chapter.



CHAPTER V
GONGRUENCE

Much of theisuccess ofbmodern,industry may be attribufed to the
.interchangeability of components, ‘A defective part of a Swiss made
watch is feadily replaceable in a lecal jewelry store. A simiiar
situation exists regarding gost of the mechanical devices used by
modern society. This situation is a result of manufacturers produciné
large quantitiesvof items ﬁhat are alike‘in size and.shape.

Experiences with physical objects as suggested abové provide an
intuitive basis for considering sets of points that are alike in size
and shape, In the study of geometry the word congruent is used to
describe the felation_between sets of points thaﬁ are alike in size and ‘
- shape. The reader will recall that tﬁe equals relation discussed in
Chapter III applied oniy to differént names for the same set. If A and
B are point sets such that A = B, then A and B are the same set ahd
therefore are aglike in every possible way. Hence they are congruent.
The congruence relation‘is broader in that it describes a relation that

may exist between sets that are not equal.
Congruent Segments

Initial consideration of congruent sets of points will be focused
upon segments., Intuitively speaking ''congruent segments'" are segments

that are alike in size and shape. This is to be considered only as a

82
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description. "Congruence" as applied to segments will be considered an
undefined term. All segments have the same shape, thus two segments
are congruent if énd only if they are thé same size, Hence the problem
is determining whether or not they are the same size,

Consider the segments ab and cd in Figure 58, How does one déter4
mine if ab is the same size as cd? Remember that gb and cd are pointl
sets and points do not move, Thus it is not poésible to place ab over
‘cd or cd over ab to see if they are the same size. However, it is
possible to. take some convenient model of a segment (commoniy called a
straightedge) and make a copy of ab on the model. This may. be accom-

' .
plishe& by placing the straightedge alongside ab and making points m
and n on the straightedge to corresﬁond to the points a and b. The
model may then be moved aiongside cd so that the point m is on point c,
If the point n of the model falls on the point d then the segments ab

and cd are the same size and thus are congruent. The symbol '"=" is

used to symbolizew"is congruent to," Thus the statement, "ab is
congruent to ed" is symbolized "ab = cd."
a b c d
.Figure 58

Since the procedure described above involves a physical operation,
only approximate accuracy may be expected. Therefore, it could not

serve as a basis for asserting with certainty that a given pair of
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segments are congruent. At best, the process justifies the assertion
that two.segmentsvappear‘to be congruent. Indeed, notﬁing in the foré-
going discusSion guarantees that congruent segments even exist. The
existence of congruent segments is assured by thé fbllowing postulate.

. . _ _ >
Postulate 5-1. If ab is any segment and cd is any ray, then there

exists exactly one point p in‘zz.such that the segment E; is congruent
to the segment ab.

The phrase "is congruent to" when applied to two segments indi-
cates that the segments are rélated in some way and thus is a relatiom
on segments. Since the term "congruent" is undefined, this is an
undefined relation. The next postulate assigns three useful properties
to the congruence relation,

Postulate 5-2. For all segments,

(a) ab = ab.
(b) If ab = cd then cd = ab.
(¢c) If ab = ¢d and cd = pq then ab = pq.

Statements (a), (b) and (c) of Postulate 5-2 are respectively the
reflexive, symmetric and transitive properties of an equivalence rela-

tion. Thus the relation '"congruence" on segments is an equivalence

—

relation. Since for. any segment ab, ab = ba, it follows from (a) that

>

ba. Also if ab = cd then ab ¥ dc since cd = de.

n}

ab
The readef shoﬁld’note that the ¢ongruence relation is not the
same as the equals relation. Consider the segment ab and the ray ZZ in
Figure 59. According to Poétulate 5-1 there is a point p in E% such
that ab ;'E;. ab and o8 are disjoint sets and hence ab and ;; are dis-

joint. But two sets are equal only if theY‘contain the same elements.

Thus ;E # ;1
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b
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Figure 59

A\ 4

Congruent Angles

The undefined relation "congruence" on segments provides a basis
for formulating a definition of congruent angles.

Definition 5-1. Let & abc and & mno be two given angles. Let p be the

point in ray ™ such that np = ba, and q -be the point in ray 78 such
that ;E EiEZ. Then ¥ mno = X abc if and only if»SE T ac. ~ (See -

Figure 60.)

Figure 60

Note that this definition involves three pairs of congruent seg-

ments, namelyf;a :'EE, _; = ba and SE T ac. Postulate 5-1 guarantees
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the existence of a point p in E% such that Vp_;'BZ'and a point q in ;%
such that ;Ef; be, ~There is, however, no assurance that the segment ;E
determined by these points is congruent to ac. GConsequently previous

developments do not provide for the existence of ¢ongruent angles.

Postulate 5-3. Let ¥ abc be any angle and L be any line in a plane M.
Let H be one qf the‘half-planes in‘M determined by L. 1If EZ is any ray
in L, then there exists exactly one ray‘;? with f in H such that

X rpq = X abe.

Postulate 5-2 states that‘congruence is an equivalence relation on
segﬁents, ‘This postulaté along with the definition of congruent angles
makes it possible to prove that the congruence relation is an equiva-
lence relation 6n.éngles.

Theorem 5-1. For all angles,
(a) ¥ abc = ¥ abe.
(b) »If.a: abcv: X mno, then ¥ mno = ¥ abc.

P~

¥ mno and X mno = ¥ pqr, then ¥ abc = ¥ pqr.

u

() If X abc
Proof:

c.

P~

(a) 1. By Postulate 5-2(a); SZ = ba, bc = bc and ac
2. Therefore by:the definitiqn of congruent angles, X abc = abec.
(b) 1. ¥ abc = ¥ mno by hypothesis. (See vFigure 6_1',) '
2. By Postulate 5-1 there exists p¢ b4 such that bp = nm and
qe'E? such that bq = no. |
3. Since pg EZ and qg 3?, X pbg = ¥ abc,
4. Therefore by substitutién in step 1, X pgb = X mno.
5. Thus,'EE;;"EH, EE';'EE and X pbq = ; mno; ﬁherefore by the;
definitién of pongrueﬁt angles pq = mo. |

————

6. By Postulate 5-2(b), = bp, no = bq and mo = pq.
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~

7. Therefore, by definition of congruent angles ¥ mno = ¥ pbq.
8. Since ¥ abc = ¥ pbq, one may substitute ¥ abe for ¥ pbq in

step 7 and obtain ¥ mno = & abc as was to be proved.

The proof of part (¢) is similar and will be omitted.

(0%
A4

Figure 61

‘Triangles

Definition 5-2. If a, b and c are three noncollinear points then

ab|)bcl\Jyca is a triangle, (symbolized p abc)

Thus the triangle bac is a polygon having three sidés,_namely ;E,
YEZ anc ca. The segments ac and ;E are subsets of rays ;; and'za
respectively. (See Figure 62.) These rays have a'cdmmon.endpoint a.
Let b be a'point»on';ﬁ and ¢ be a point on ;?,.then 5%;;2% = X bac.
Since the raysfzg and ;? are.detérmiﬁed by the sides ab and 2:, X bac
is determined by the triangle and hence is said to be an éngle of A abc.
. This designatioﬁ is somewhat misleading in that it suggests that X bac
is a subset of A abec. .Let p be a point on Z% such that ¢ is between a

and p. Then pe ac, pe ab and pe bc. Thus pe X bac but pf A abc.
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Therefore ¥ bac is not a subset of A abc., Thus an angle of a triangle
is not a subset of the triangle. The two angles, ¥ abc and X bca, are
also angles of , abc. Since each angle determines a vertex, a triangle
has three vertices. Thus a triangle has three éides, three angles and

three vertices.

Figure 62

Congruent Triangles

The congruence relatién between two triangles will be defined such
that it will involve a correspondence between certain parts of the two
triangles. In tﬁis.correspondencé comparable parts will be paired,
that is, a particular side of one triangle with a_sPécified‘side of the
other and a pérticulaf angle in one with a specific angle of ﬁhe other.
The parts that are paired will be referred to as correspondipg parts.
The order in which the vertices are listed in naming the triangles will
determine the particular correspondence'to be considered, The symbol
NI Will mean "correspondsbto.” For the correspondence, . p abc €> amno,

the vertices a and b of A abc determine the segment EE while the
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vertices m and n of A mno determine the segment EH»(see Figure 63).

The segments'zg and mn will be designated as corresponding parts. The
vertices a and ¢ of p abc determine segment ac and vertices m and‘o of

-~ p mno determine segment mo. Segments ac and mo are corresponding parts.
Similarly bc and mo are corresponding parts.. The correspandence be-
tween the angles‘Q111 be determined by the position of the wvertices in
naming the triangles. Again in the correspondence p abc «> A mno the
angle Qith vertex a corresponds to the angle with vertex m, tﬁe angle
with vertex b corresponds to the angle with vertex n and the angle with

vertex ¢ corresponds to the angle with vertex o.

c m <= 4 ’ o

Figure 63

The correspondence p abc €» A mno implies the set of correspond-

ences listed below.

ab ¢ mn ' Yabe €> Ymno
ac € mo | %bca;éé ¥nom
be € no Xcab é—} ¥omn

Any correspondence between p abc and p mno which implies this set of
corresponding parts will be said to be equivalent to the correspohdence

A 8bc €> Ao mno. Thus the correspondence. p bca €9 A nom is equivalent
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to A abc &> A mno. The tv}o correspondences p abc € A mno and

A abc € A nom are not equivalent since in the former ;,T;(—) mn and in
‘the latter ab & no. Invariably when symbolizing a congruence between.
two triangles a particular correspondence will be impliéd. Thus the

congruence p abc = p mno implies the correspondence , abc €> A mno.

Definition 5—3.. A abc = A mno if and only if ab = ;n_r-{, be = no and

~ T—

‘ac-='mo.

Theorem 5-2. If A abc'= A mno then ¥ abc = X mno, X bca.‘;‘-' X nom and
¥ cab = X omn., -

Proof. 1In Figure 64 the marks indicate the parts that are known to be

congruent.

1. By Definition 5-2, ab = m, be = no and ac
. ; ' . .,_> — .

2. Therefore ¢ is the point on ray ac such that ac = mp, and b is

the point on ray Zg such that ab = .

3. But bc = no, therefore ¥ cab = ¥ omn.

The proof for the other two angles is identical except for notation and

will be omitted,
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Theorem 5~3. The congruence relation on triangles is an equivalence

relation, that is, for all triangles,

~

(a) a abe = A abe

~

(b) 1If A abc = 5 mno, then p mno =  abe

~

(¢) If p abe ;”A-mno and Ao mno = A pqr, then A abc

m

A POr.
Proof: The proof for part (¢) will be given; parts (a) and (b) are

similar and will be omitted. Refer to Figure 65.

dadnad

ity LA 0

Figure 65

1. Since p abc = A mno, Definition 5-2 implies that 5373'5;,»32';';;
and ac = ;5; and
2. Since A Mno :'A par, Definition 5~2 implies that mn ;';E, no = a;

——

pr.

n

and ™o
3. By Postulate 5-2 (¢), ab = mn and mn = pq implies that ab = pY;

-~ ——

bc = no and no = qr implies that bc = qr; ac = mo and mo = pr

implies that ac = pr.

pr; hence by Definition 5-2,

—

4, Thus ab = pq, bc ~ gr and ac

"

A abe T A par.
Definition 5-3 gives the only criteria thus far available for

establishing a éongruence between two triangles. That is, two triangles
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are congruent under a.particular cofrespondence if the three pairs of .
corresponding sides are dongruent. Are there other sets of conditions
that are sufficient to’establish a congruence between two triangles?
The'answer.is, yes, ‘and each of the next two theorems provides. such é

set of econditions,

n

Theorem 5-4.  If, for the correspondence , abc &) A mno, ab = mn,

-~

ac = mo and X bac = X nmo, then abcf:_A mno.

TN Moy . b ‘0,

Figure 66

~Proof: Refer to Figure 66.

1. By hypothesis, ac = mo and ab

-~

mn.

%

2. Thus c is the point on ray ac such that 327;'58, and b is the point

~

on ray zg:such that ab = mn.
3. But by hypbthesis x bac‘: ¥ nmo.,
4, Therefore from Definition 5-1,’35':';3.

— — — pr—

5. Thus, for the correspondence p abc &> p mno, ab = mn, ac
EZ*E'EE; therefore»A abc>: A mno by Definition 5-2.
For é A abc, the side ab is a subset of one ray of X bac while the
side of ac is a subset of the other ray of X bac. Thus the sides ab

and ac determine: ¢ bac which is often referred to as the included angle
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relative to tﬁese two sides. With this terminology'the above theorem
may be>stated,_flf'for a particular corresPQndence two sidés and the
included angle of one triangle are congruent fespectively to the
correspoﬁding two sides and included angle of another triangle, then
the triangles are congruent under the indicated correspondence.'" This
is often referred to as the side-angle-side theorem or more briefly

~ S.A.S.

~

Theorem 5-5; If for the correspondence p abc €2 p mno, X bac = % nmo,
ac T mo and ¥ bca = ¥ nom, then p abc = A mno.

Proof: -Refer to Figure 67. This proof is. quite different from any
previously encountered and perhaps more difficult, Obsgrve that side
mo of A mno lies in a line L which in turn determines two half-planes,
The ray ;% lies in one of these half-planes, which will be called H.
Since mo = ac and X nmo = X bac, if mn was congruent to ab then the
S.A.S. theorem would apply and p abc would be congruent to a mno, Thus
if it could be established that mn = ZE,:the theorem could be proved.
0f course it isn't known that mm = ab, but by Postulate 5-1ithere is
exactly one point pe oy such that 5;': ;E. The problem is to show that

p and n are the same point.

a — ¢ u

Figure 67
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In Figure 67 let L be the line that contains ;;vand let ﬁ»be the

half-plane determined by L than contains n.

10.

11.

12.

13.

one

~ ~

"X nmo = X bac, mo ;';Z’and ¥ mon = ¢ acb by hypothesis.
Let p be the point on T such that mp = ab.

—_—
Since pe‘az, E% = mn and X pmo = .¥ nmo.

—~

But ¥ nmo = & bac, so by substitution ¥ pmo ;'{ nmo,

Thus for A mpo and p abc,'E;'; ZE,{; pmo = ¥ bac and 53 ; ac.
Therefore, by Theorem 5-4, A mpo :iA abc. o
This implies that X mop = X acb and from (1) x mon.;'k ach.

~

Thus ;Z is a ray in H su¢ch that & nom = & acb, and G? is a ray in
H such that & pom.;'k ach.

According to Postulate 5-3 there is only one such ray, therefore
o = on.

Therefore pe ;% and by step (3) pe E:.

Hence pe B?r\ﬁﬁ, but two rays intersect in at most one point and
E% and EZ intersect at n.

Therefore p = n.

Hence A mno = a mpo; but p mpov;'A abe from step (6) so

A mnov:'A abc.

This theorem states that if two angles and the included side of

triangle are congruent:to the corresponding two angles and included

side of a second triangle,.then the triangles are congruent. It is

referred to as the angle—side-angle-theorem or A.S.A.

Congruent Polygons

Consider the polygons abcde and mnopq in Figure 68 and the corre-

spondence abcde € mnopq. The segment determined by two nonconsecutive
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vertices of a polygon is called a diagonal. The segments ac and ad ére
diagonals of polygon adeé. The corresponding diagonals of polygqﬁ
mnopq are mo and E;. ‘The diagonals ac and ad partitioﬁ polygon abcde
and its iﬁteribr into three triangles and Eg‘and.ag partition polygon
mnoﬁq and its interior into three triangles.  If‘the corresponding
triangles determined by this partition are congruént then the polygons

are congruent,

Figure 68

‘Definition 5-4. Two polygons are congruent if and only if there is a

partition of the poiygdns into triangles such fhat the cbrreSPonding
triangles are congruent.

The congfuencevrelation‘pfovides a basis for developing many
additional concepts in geometry. In the next chapter this relation

will be used in the classification of triangles and angles;



CHAPTER VI
CLASSIFICATION OF ANGLES AND TRIANGLES

One frequently encounters references to right angles, perpendicu-
lar lines and to classes of triangles such as isosceles triangles,
equilateral triangiesiand right triangles. These classifications are a

consequence of the congruence relation and will be explored in. this

chapter.
Isosceles Triangles

Suppose & paq is a given angle and mn is a given seégment. There
is a point b on ray';% such that ab = mn and there is a point c on
= v —— ion i i
ray aq such that ac = mn., Since the congruence relation is an equiva-

oy —

“lence relation it follows that ab = ac. The points b and c determine

segment‘gz and ab U be U ca is a triangle. (See Figure 69.) For the
triangle thus determined, two of the sides are congruent segments. Any

triangle that has this characteristic is called an isosceles triangle.

Figure 69

96
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Definition 6-1; A triangle is an isosceles triangle if and only if two

of its sides are congruent segments.

Wﬁen referring to a triangle such as p abc, it is convenient for
one to describe a particular angle in terms of a certain side.- The &
béc with vertex a 1is réferred to as the angle opposite the side EZ,

X abc is opposite'zz and ¥ acb is opposite ab. Conversely, side be is
opposite ¥ bac, ;E‘is opposite ¥ abe and ab is opposite ¥ acb.

Theorem 6-~1, If two sides of a triangle are congruent, then the angles
opposite these sides are congruent; i.e., in 4 abg if ZE':'EB, then

X cab = X ach,

Proof: Since the congruence relation is an equivaleﬁce relation; every
triangle is congruent to itself, That is, A abc ;'A abc under the
correspondence 4 ab¢ éé.A abc, 'This correspondence.is cailed the
identity correspohdence,‘evefy part caorresponds to itself. Under cer-
tain conditioqs a‘triangle will be congruent to itself under some>
cbrrespondence'other than the identity correspondence., This provides

a basis for a proof of Theorem 6-1. Refer to Figure 70.

C

Figure 70
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Consider the correspondence p abc € p cba.

For this correspondence ab & E‘E, X abc & X cba and cb & ab. v

i. ‘ab ¥ cb by hypothesis.

ii., X abc = ¥ cha, hence ¥ abc = X cba,

—— . m—

iii. cb = ab by the symmetric property of the congruence relation.

Therefore p abc = p cba by the S.A.S. theorem.
For the correspondence p abc €> p cba, X cba €> X acb, and there-
fore X cab = ¥ acb by Theorem 5-4,

In an isosgeles tfiangle the side opposite the angle determined by

the two congruent sides is called the base. Thus in Figure 71 ab is

the base. The angle opposite the base is calledvthe vertex angle.

~Each of the two angles that has as its vertex a point in the base is

called a base angle.. In Figure 72 the base angles are X cab and X ach.

With this terminology, Theorem 6-1 may be stated: "The base angles of

an isosceles triangle are congruent."

Figure 71

Theorem 6-2. If two angles of a triangle are congruent, the sides

opposite these angles are congruent;‘i.e., in A abc if i'cab';‘k ach,



b

Figure 72

Proof:
1. Consider the correspondence p abc &) p cba.
.2, Then ¥ cab € ¥ acb, ac €> ca and ¥ acb &> X cab (see Figure 73).
3, i. ¥ cab ;’& acb by hypothesis.
i1. ‘3 = ca, hence 3¢ T ca.
iii. .x acb = X cab by the symmetric property.
4. Therefore p abc = p cba by the A.S.A. theorem.

5. Then ab ;'Eg'by Definition 5-2.

b

‘Figure 73

929
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Equilateral Triangles

All isoéceleé triangles have two congruent sides. A special class
of isosceles triangles is one which consists of triangleé that have all

three sides congruent. These are called equilateral triangles,

Definition 6-2: A abc is an equilateral triangle if and only if
53}2 32 and EE-;'ZZ, that is if all of its sides are congruent.

Thus if p abc is an equilateral triangle, ﬁhen any two of itsl
sides are congruent. Consequently every equilateral triangle is alsq
an isosceles triangle,

Theorem 6-3: If A abc is equilateral, then ¥ abc = X bac and ¥ bac =

-~ —~

X bca, or & abc = ¥ bac = X bea.

Figure 74

Proof:
1. ZE*:'EZ by hypothesis, hence X abc = ¥ bac by Theorem 5-6.
2, BE.;'Ez‘By hypothesis, hence ¥ bac = ¥ bcé. |

3. Therefore ¥ abc = X bac = X bca from step (1), step (2) and the

transitive property of the congruence relation,
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4.  Thus each of the three angles of an equilateral triangle is
congruent to each of the other two,

' Theorem 6-4: If‘in,#'abc, ¥ abc.;'i bac = X bca, then  abc isn

equilateral.

Proof: (Refer to Figure 75.)

n

1. ¥ abc = ¥ bac by,hypothesis; therefore by Theorem 5-7, ZE:;'EZ.
2. X bac = ¥ bca by hypoﬁhesis;.henée by Theorem 5-7, bc = ba.
3. Therefore p abc is equiiatefal by:Definition 6-2.

Not all triangles are isosceles and if a triangle is not isosceles
then it is not equilateral. If a triangle is not isosceles it is
called a-scalene: triangle. .Thus triangles are classified as:

i, Isosceles if two sides are coﬁgruent segments, .

ii. Equilateral if all three sides are.congruent segments.

-iii. Scalene if no two sides are congruent segments.

Figure 75

Midpoints

Suppose ab is a segment and L is a line as in Figure 76. 'Let m,

p and n be points of L such that p is between m 'and n. Then ;3 ahd'sa
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are opposite rays. According to Postulate 5-1, there exists a point d

P~

in ;% such that‘;E = ab. Also by Postulate 5-1 there exists a point ¢

n

in ;% such that ;E' ;E.k Acéordingito Postulaté 5-2 (b), the congru-
ence relation ié symmetric; hence 527: ab implies that'zg;; ;Z. Thus
SE{;'EE and ab 3'52. Applying Postulate 5-2 (c) one obtains ;E'; EZ.
The points ¢ and d determine the segﬁent cd. Since p is an interior

point of ZE,.Z; U ;E.="EE, and Z;f: ;E; the point p is called the mid-

point of cd.

s P L B SR, S
Figure 76

Definition 6-3: A point p is the midpoint of a segment ab if and only
if p is an interior point of zg'and>£; ;";E.

Postulate 6-1: If ab is any segment then ab has exactly one midpoint.

Interior Points of Angles and Triangles

Let. A abc be any triangle and let p be é poinﬁ in the interior of
% bac, Then p could be in the interior of each of the pother two angles
of the triangle as in Figufev77, or p could be in the interior of & bac
but not in the interior of either of ﬁhe other twovaﬁgles ofbthe tri-
angle as in Figure 78 (a) and (b). In Figure 77,’p appears to be in
the interior of the'triangle whereas in Figure 78, p does not appear to

be in the interior of the triangle.
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Figure 77 - Figure 78

Definition 6-4: A pbint p is in the interior of p abc if and only if p
is in the interior of éach'of the three angles of the triangle.

Thus a point of a triangle is not in the interior‘of the triangle
since any éoinﬁ of a triangle belongs to at least one of the sides. 1f
q is a point in the segment ac of A abc then q is not in the interior

of either X bac or ¥ bca. (See Figure 79.)

S

Figure 79

The point q in Figure 79 does appear ' to be in the interior of

" X abc.. Further consideration of Figure 79 suggests that if d is a
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point in the interior of X abc, then the ray Ez'is in the interior

¥ abc, and that any ray in the interior Qf X abc will contain an inte-
riorlpoint‘éf side.zg. Thesé‘properties are not logical consequences
of the‘previous development and thus are based on iﬁtuition. They-are

important to further development and therefore will be postulated.

_Postulate 6-2: Let A abc be any triangle and for definiteness consider
¥ bac, then:

1. 1If q is an interior point of’ﬁz, then q is in the interior of
¥ bac.

2, If d is any point in the interior of ¥ bac, then every point
of the ray'zg except a . is in the interior of ¥ bac. This ray
is said to be‘in.the interior of ¥ bac.

3. _If Z% is any ray in the interiér'of X bac, then ;% intersects

the side bc in an interior point of bec.
Bisectors of Angles

Let ¥ paq be any angle and mn be any segment, There is a point b
= T~ T . . —>
on ray ap such that ab = mn and there is a point ¢ on ray aq such that
ac = mn. Thus ab = ac and ab U ac U bc-is an isosceles triangle.
Therefore for any given ¥ paq there exists an. isosceles triangle having

X paq as its vertex angle.

Definition,6ﬁ5; The bisector of ¥ paq is a ray ;%-in the interior of

~

X paq such that X paé = X oaq. Stated another way, the ray ;3 is“thg
bisector of ¥ paq if and only if ray Z% is in. the interior of ¥ paq and
X paovg'k‘oéq. |

Theorem 6-5: For aﬁy ¥ paq, then ¥ paq has a unique biseétor.

Proof: Theorem 6~5 is a conditional statement with a compound statement
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for a conclusion, That is, & paq has é bisector and the biséctor is
uﬁique. ‘Thus_the proof must establish both the existence of an angle
bisector’and the uniqueness, The proof fﬁr'the existence is given
first. |

1. For the given angle, ¥ paq, let A abc be an isosceles triangle

.with k‘paq as its vertex angle. (See Figure 80.)

v

Figure 80

2. According to Postulate 6-1 there exists a midpoint d of segment

be.
, — — L. . .
3. Since de be, by Postulate 5-5 ray ad is in the interior of X bac.
4. Points b, d and c are in bc and a4 bc; hence a, d and b are non-
collinear and points a, b and ¢ are noncollinear.

5. Therefore ad U db U ab = , adb and ad U dc U ac = 4 adc.

ab T ac since A abc is isosceles.
ad = ad by the reflexive property, and db =

#

dc since d is the mid~

point of be.
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Thus for the. correspondence p adb &) , adc, the corresponding
sides are congrﬁent segments.

Therefore p adb = p adc by the definition of congruent triangles.
Therefore X bad = X cad since they are corresponding angles of
congruent triangles (Theorem 5-2).

This proves the existence of an angle bisector. It remains to

prove that there is only one angle bisector. The approach will be to

. consider any angle bisector and prove that it is the one whose exist-

ence was just established.

1.

Let A abc be an isosceles triangle with vertex at the given angle,

X paq. (See Figure 81.)

a

b : 0‘

V2N TR
Figure 81

Let ray.;%-be any anglg.bisector of &\béc, then .ray 23 is in‘the
interior of ¥ bac' from the definition of.angle bisector.

By PostulatevS-S, the ray 2%>interseéts bc in ah_interior point,
call it o.

Then b, -0 and c.are_distinct points on Ezland-aé gaﬁﬁﬁ‘

Therefore points a, o and b are noncollinear, and points a, o and
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¢ are noncollinear.

6. Thus ;; Uob U ;E"= A aob and ao U oc U ac = A aoc,

—~—

7. Siﬁqé ;g is an angle bisector, ¥ bao = ¥ cao.

8. ao = ao by the reflexive property and since p bac is isosceles,

ab

~ —
=

ac.
9. Then for the correspondence A aob &> A aoc, two sides and ineluded
angle of p aob are congruent to the corresponding two sides and

included angles of , aoc.

n

10. Therefore p aob = A aoc by the S.A.S. theorem.

11. Therefore 33-;'32 since they are corresponding sides of congruent
triangles.

12. The point o is the midpoint of bc By the definition of midpoint.

13. Thus any ray that bisects & paq,intersectsvgz’at its midpoint.

14, Since there is only one midpoint, it follows that there is only

one angle bisector,
Supplementary Angles

Supﬁose ZZ, ;z_and>zz are distincf rays having the common endpoint
a, such that the three rays determine three angles, kvbac, X bad and
X cad. (See Figure 82.) All of these angles have the same vertex,
namely a. bThe angles in {X bac, ¥ bad} have a common -side EZ, the
angles in {X bad, X cad}_have a common side ;%, and the angles in
’{k bac, ¥ cad} have a common side ;g. Thus there are three distinct
pairs of angles, each pair having a common vertex.and’a commonbside.
However, the pair of angles, ¥ bac and ¥ cad, arevdifferent from the
other two pairs. Their interiors are disjoint sets. These_two angles

are called adjacent angles and each is said to be adjacent to the other.
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a

N A

Figure 82

Definition 6-6: Two angles are adjacent angles if ana only if they
have a common vertex, avcdmmon side and their interiors are disjoint
sets.

If a pair of angles, ¥ abc and X c¢bd, are adjacent angles, it is
conceivable that the sides EZ and 33 1ie in the same line.  Then éince
’BZ ana'EZ are'differént‘colliﬁear rays having the same endpoint, they
must be opposite rays. Adjacent angles having the property that theif
noncommon. sides lie on opposite rays are called supplementary adjacent
angles and each one is Said to be a supplement of thé other. (See

Figure 83.)

1 A

\

Figure 83
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Definition 677:_ Two angles are supplementary adjacent angles if and
only if (1) they are adjaceﬁt angles, and (2) their noncommon sides are
opposite rays.

Ibvis important tp note that supplementary angles always occur in
pairs. Each angle in the pair is a supplement of the other. Thus
"supplementary" is a symmetric relation.

Definition 6~7 provides for a pair of supplgmentary angles only in
the event that the angles are adjacent., In Figure 84 X mno is a sup-
plement of:i onp. If X abc = X mno and X def = ¥ onp, ¥ abc and ¥ def
seem to be related in a manner similar to the relation between ¥ mno
and X onp. However, they are not supplementary according to Definition
6-7 since they are not adjacent.‘ It will be convenient to have a
.definition of‘supplementary angies that will include pairs of angles
that are not adjacent. A basis for such a definition is provided by

the definition of Supplementéry Adjacent Angles.

: o]
c d
d
/a LN pra >
< b e " f/ . \.fn T f’/’
Figure 84

Definiﬁion 6-8: ‘Let‘k mno be any angle gnd let E? be the ray opposite

~

E%. Then ¥ abc is a supplement of X mno if and only if ¥ abc = ¥ oms.
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That is, X abe is g supplement of ¥ mno if and only if X abc is con-

gruent to an angle that is adjacent to and a supplement of ¥ mno. (See

Figure 85.)
a
o
<; z'——w——-——f--> b .;
m n 8 c
Figure 85

In Figure 86 let ¥ mno be a given angle and 78 be the ray opposite
;%v, Hencelk ons is adjacent and supplemeﬁtary'to X mno; Tﬁen from
Definjition 6-8:
(1) 1If k.abc is any angle such that X abc = ¥ ons, then X abec is
a‘supplement of X mno, that is, every angle thaﬁ is congruent
‘to X ons is’aAsupplement of ¥ mno.
(2) If ¥ abc is any angle such that‘¥ abc is a Supplement’of
X mno, then X abc = X ons, that is, any angle that is a
supplement of & mno is congruent to ¥ ons.
The statement numbered-(Z) is the key to the proof of the following
theorem,
Theorem 6-6: Lét X mno be é given angie. If X abc is a supplementbof

X mno and ¥ pqr is a supplement of X mno, then ¥ abc = ¥ pqr. That is,

. supplements of the same angle are congruent,
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Coemg . e Y ;) b e =y

Figure 86

Proof: Refer to Figure 87.

5 - —— ——> b : +> g + >
Figure 87

Let E? be the ray opposite ;;.

¥ abc is a supplement of ¥ mno by hypothesis; hence ¥ abc ¥ X ons

by Definition 6-8.

~

% pqr is a supplement of X mno by hypothesis; hence ¥ pqr = X ons

bnyefinition 6-8.

~

¥ ons = ¥ pqr by the symmetric property of the COngrﬁence relation.

-~

Then ¥ abe = ¥ ons from step (2) and X ons = ¥ pqr from step (5);

o~

hence - ¥ abe = ¥ pqr by the transitive property of the congruence
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This theorem implies that two angles that are supplements of the

same angle are congruent., It is also possible to prove that two angles
that are supplements of congruent. angles are congruent.

Theorem 6-7: If ¥ abc = ¥ pqr, and

(1) ¥ efg is a supplement of X ébc,

(2) X mno is a supplement of ¥ pqr,
then ¥ efg = ¥ mno.

Proof: Refer to Figure 88.
a
i e >
m
€t &4 n
g o
Figure 88
1. X abc'= X pqr by hypothesis,
20

X efg is a suppiement of X abc and ¥ mno is a supplement of X pqr
by hypothesis. ‘
Let'gg be the ray opposite EE.

Then & abd is a supplement of ¥ abc.
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Therefore ¥ abd = X efg by Theorem 6-6.
If agvis opposite E?, then ¥ pqs is a supplement of ¥ pqr and

~

¥ pqs = ¥ mno by Theorem 6-6,

. Since ¥ pqr = ¥ abc and ¥ abe is a supplement of X abd, then by

_Definition 6-8, X pqr is a supplement of ¥ abd,

Hence ¥ abd is a supplement of X pqr.

abd by Theorem

n
badl

But ¥ pqs is a supplement of ¥ pqr, hence X pgs

. 6"60

From step (3) X efg ¥ ¥ abd and from step (6) ¥ mno = X pgs.

Then by the transitive property X efg = ¥ mno.

Vertical Angles

Let L and M be two lines that intersect at point p. Let a and b

-be points in-L'such that a-p-b (p is between a and b) and let r and s

be points in M such that r-p-s. Thus four angles'afe determined. (Seé

Figure 89.)

Figure 89

The angles in {X aps,. X apr} have a common vertex p and a common
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side 53. Hence, they‘are adjacent angles. The rays ;3 aﬁdbs? are
opposite rays, thefefore X aps.andkk apr are also sﬁpplementary.
Similarly, ¥ apr and X rpb are SuPplementAry adjacent angles, ¥ rpb and
% bps are supplementary adjacent angles and ¥ bps and X spa are‘supple—'
mentary adjacent angles.‘ The angles in {&iaps,,k rpb} are not adjacent
since they do not haveba'common side. Similarly X apr and X spb are
not adjacent. - These two pairs of angles are the pairs of nonadjacent
angles détermined by two intefseqting lines, Each pair is called aiv
pair of vertica}'angles. Note that pairs of vertical angles are always
determined by two interSecting lines. Further, vertical angles haveia
commonVVertex and their sides determine pairs of opposite rays.

~Definition 6-9: Two angles determined by two intersecting lines are

vertical angles if and only if their sides determine pairs of opposite

‘rays (see Figure 90).

Figure 90

Theorem 6-8. If two angles are wertical angles, then. they are congru-

ent.
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Proof: Refer to Figure 90. For definiteness suppose pa and ;g are
. — - .
opposite rays, and pn and pm are opposite rays.
. &>
1, EZ,'E% and ;g are distinet rays since g? and mn are distinct lines.
2. Thus ¥ npa and ¥ npb are distinct angles having a common vertex p
and a common side';;.
, , , , >
3. The interior of ¥ npb is a subset of the b~side of mn, and the
interior of ¥ npa is a subset of the a-side of %ﬁ; hence the
interiors of ¥ npb and X npa.are disjoint sets.
—
4. pa and Eg are opposite rays; hence ¥ npb and ¥ npa are supplementa-
ry adjacent angles,
5. Similarly, ¥ npa and ¥ apm are supplementary adjacent angies.

6. Thus X apm and ¥ npb are both supplements of ¥ npa.

7. Therefore X apm = X npb by Theorem 6-6.
Perpendicular Lines

~From thé previous section, if two lines intersSect in a point, then
two pair of vertical angles are determined and four pair of supplemen-
tary adjacent angles are determined. In every case each pair of verti-
cal angles is a.pair of congrueﬁt angles.‘ It is conceivable that a
pair of supplementary adjacent angles are congruent angles. Suppose in

~

Figure 91 that ¥ apm = X apn. Since X apn and X mpb are vertical

angles, X mpb = ¥ apn; hence X mpb = X apm. Similarly X mpb::'¥ npb

and X npb'; X apn."Thus if two lines intersect such that two adjacent
supplementary angles are congruent, then each of the.four angles detér~

‘mined is congruent to each of the other three and the two lines are

said to be pérpendicular lines.
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vDefinition 6-10.

A

A 4

Figure 91

v
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Two intersecting lines L and M are perpendicﬁlar

lines if and only if the adjacent angles determined are congruent.

The symbol "lﬁ denotes the relation ""is perpendigular to." If L

and M are lines and LM, then M|L; that is, "perpendicular" is a
symmetric relation.

and therefore is not an equivalence relation.

This relation is neither transitive nor reflexive

Iwo rays or two segments are perpendicular if and only if the

lines containing them are perpendicular lines., Thus two rays or two

segments could be perpendicular even

Figure 92 ab l_ZE and ab i_ZE if and

Figure 92

if they are disjoint sets,

only if ab | cd.

-———

In
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Right Angles

_ Suppose SB) _L.‘-c? and éa?n(c% = p (see Figure 93). Then 71;2 is oppo-
site ;3, hence ¥ apc aﬁd ¥ pad are supplementary adjacent angles.
According to Définition 6-8. every. angle that is a supplement of & apd_
is congruent to.k apc. But X apcv: § apd by Definition 6-10, hence
every angle that is congruent to k_apc is congruent to ¥ apd. There-"
fore, every énglé that isva supplement of k.apd is congtuent to x apd.
Stated another way, ¥ apd.is congruent to every angle that is supple-
mentary to it. An angle that is congruent to every angle that is
supplementary to it, is called a right angle. Thus X gpd is a right
angle. From Theorem 6~6, angles that are supplements of the same angle
are congruent. Since the congruence relation.is transitive, if én
angle is congruent to one of itsvsupplements it is congruent to.every

angle that is supplementary to it, and consequently is a right angle.

&
< >
S c P d
b
v
Figure 93

‘Definition 6-11: X abc is a right angle if and only if X abc is con-

gruent to . one of its supplements.
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The above definition defines a right angle but does not guarantee
that right angles exist.
Theorem 6-9: Right angles exist.

Proof: Refer to Figure 94.

Figure 94 S

1. Let ¥ pbq be any angle and E;-bé any segment.

~

2. Let a be-the point on.g; such that'gz = mn and ¢ be the point on.gz

such that F(; = ;n_r; 4

—~
=

3. Then ba U ac U ¢b = A abc. ‘ba = be so A abc is isosceles.
4, Let d be the midpoint of'zzg then ad = cd.

5. Points d.and b determine EE.

n

6. bd EE,'EE';'EE and 327;'325 hence , bda = , bdc by definition,
7. Therefore X bda = X bdc by Theorem 5-2.
- . .
8. da and dc - are ppposite rays; hence ¥ bdec and X bda are adjacent
supplementary angles.

9. Therefore ¥ bda is congruent to its supplement ¥ bdc, and hence

X bda is a right angle.
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Note that ¥ bdec is also congruent to its supplement ¥ bda, and
thus is.also a right aﬁgle. These two right angles are congruent ffom
step (7).

Let X abe be a right angle and Ea»be the ray opposite E?. . (See
Figure 95.) Then ¥ abd is adjacent and supplementary to ¥ abc. Since
X abc is a rlght angle, it is congruent to every angle that is supple-
mentary to it. Hence ¥ abc = ¥ abd, and by the symmetric property
X abd = X abc. Thusxk abd is congruent to one of its supﬁlements and

therefore is a right angle. This is formally stated in Theorem 6-10.

[a 7R

b o c

Figure 95

’Theorem,6-10: ' If two adjacent angles are supplementary and one is a
right angle, then the other is also a right angle and these two right
angles are congruent,

o s o>
Let. X abc be'a right angle and bd be opposite bc. TLet ¥ mno be

any angle that is a supplement of ¥ abc. (See Figure 96.) ‘Then ¥ abc
is 'a supplement of X mno. But X mno = X abd since.X abd is a supple—

" ment of X abc, and ¥ abd = X abec. Therefgfé:k mno = ¥ abc. This ¥ mno

is congruent to one of its supplements, and hence is congruent to every
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angle that is supplementary to it. Therefore ¥ mno is a right angle.

But X mno was any supplément of the right angle, ¥ abc, This argument

proves the following theorem.

j=H
o
0

v

N
B

1
!

!

|

|
{

i

Figure 96

Theorem 6-11!‘"Every angle that is a supplement of a right angle is a

right angle.

Suppose ¥ abe is any right angle and & pqr is any angle congruent
to ¥ abc. Let’gg be the ray opposite Eg. (See Figure 97.) Then X cbd
is a supplement of X abc and hence ¥ abc = ¥ cbd. Since k’pqr:= X abce
and ¥ abc‘:'& cbd, it follows that X pqr :'k cbd. Therefore X pqr is a
supplement of ¥ abc, and hence ¥ abc is a supplement of ¥ pqr. Thus

¥ pqr is congruent to one of its supplements. Therefore X pqr is a

right angle.'-This proves the following theorem,

Theorem 6-12) Every angle that is éongruent to a right»angle is a
right angle.

From Theorem 6~10, if two adjacent angles are supplements and one
is a right angle, then the other is a right angle, and the two angles

are congruent. This provides a pair of right ahgles that are also
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congruent angles. Frdm Theorem 6-11, every supplement of a right angle
is a right angle and from Theoreﬁ 6-6 all supplements of any given
angle are congruent angles.; This suggests that there are many right
angleé that are also congruent angles. In fact, inﬁuitivelyvit seems
that all right angles are congruent, It is possible to prove that all
right\angles are’congruent; but the proof involves concepts that have
not been developed in this discourse, Consequently»this property of

right angles will be postulated.

A
v
F; !
Na)

Figure 97

Postulate 6-3: All right angles are congruent.

It was previously noted that if two lines intersect, they deter-
mine adjacent supplementary angles. Also if two of these adjacent
angleskaré congruent, then each of the four angles determined is con-
gruent to each of the other three and the two lines are called perpen-
dicular lineé. bThus if the lines are perpendicular, then each of. the
four angles determined is congruent to one of its suppiements and
therefore is a right éngle. Since all of the angles are right angles,

perpendicular lines are said to intersect at right angles.
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If Eg andig% are twyo rays such that a U'Ez = Y bac is a right

- . > . :
angle and ad is opposite ac, then ¥ bad is a right angle by Theorem

-> . .. —g : v \
6-10, 1If ag is opposite ab, then ¥ cae and‘k dae ‘are alsp right angles
(see Figure 98). Furthermoreﬁgg'U ab = gZ‘and ;Z‘U'EE =.$?;' Thus if
'Z? U ;Z is-a right angle then the lines containing these rays intersect
so as to form congruent adjacent angles and therefore are perpendicu-
lar. Hence perpendicular lines intersect at right angles and the sides
of a right angle determine perpendicular lines., This is stated formal-

ly in Theorem 6-13.

A
<
v

Le

Figure 98

Theorem 6-;3, Two lines are perpendicular if and only if the unions of

noncollinear rays with endpoints at their point of intersection are
right angles. |

By Theorem 6-9 right angles eiist. Consequently in view of
Theorem 6—13, perpendicular lines exist. ‘Fufthermore if L is a line
and mvand p are points of L, then in one of the half-planes determined

by L there is exactly one ray Ez such that ¥ mpq is a right angle.
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Thus there is oﬁly one line through p that is perpendicular to L.

Theorem 6-14! If L is a given line and p is a point in L, then there

exists one and oniy one line through p that is perpendicular to L.
Right Triangles

.Every triangle has three sides and determines three angles. If
one of the angles determined is a right angle, then the triangle is
called a right triangle, lIn Figure 99 suppose ¥ acb is a right angle.
Then p ab¢ is a right triangle. The side opposite the right angle
(;E in this model) is called the hypotenuse. The other two sides are
called legs. 1If the legs are congruent segments, then the triangle is
isosceles, and»thus is an isosceles right triangle. vLike any isosceles

triangle the angles opposite the cohgruent sides are congruent angles,

Figure 99

It was previously established that if a triangle is equilateral
then each of its three determined angles is congruent to the other two.
Thus if a right triangle was also equilateral, then each of its deter-

mined angles would be a right angle, Concepts developed in the next
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chapter will show that a triangle cannot determine more than one right

angle. Therefore a right triangle could not be equilateral.
Acute Angles and Obtuse Angles

Suppose. & abc is a right angle and bd is a ray such that d is in
the interior of ¥ abc. Then X abd is called an acute angle. (See
Figure 100.) If be is a ray such that b is in the interior of ¥ abe

then X abe is called an obtuse angle,

A
A\ 4

Figure 100

‘Defiﬁitiqn 6-12: Let ¥ abc be a right angle:
1. X ebd is an acute angle if and only if EE is in the interior
of X abc,
2. .¥x abe is an obtuse angle if and only if EZ is in the interior
of X abe. |
Thie terminology gives rise to a further classification of tri-
angles; 'Ifbone of the angles determined by a triangle is an obtuse

angle then the triangle is called an gbtuse triangle.  If all of the



125

angles determined by a.triangle are acute angles then the triangle is

called an acute triangle.



CHAPTER VII
~ PARALLELS AND QUADRILATERALS

Since lines extend‘indefinicely, physical models of.lines do not-
exist.‘ A model like Figure lOl.is‘oftgn useful for refereﬁce in a
.discussion pertaining,to one or more lines, Thé fact that the lines L
and.M do not intersect in the modél should not be interpreted to mean
that. they do not intersect aﬁ some point not shown in the model. It
does suggest fhe possibility ﬁhat theyvdo not intersect, but this could
be determined only if certain conditions are established guaranteeing

that they are disjoint sets,

N
2

A\

;3
v

Figure 101

| The word "coplanar" is used to describe sets of points that are

126
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in the same plane. In particular the sets L, M and N in Figure 10l are

coplanar.
" Transversals and Associated Angles

The study of parallel lines is facilitated by the introduction of
certain terminology regarding pairs.of.lines interéected by.a third
line and the_associated angles formed by these lines. In‘Figure 102
the line N intersecting the lines I, and M is called a_transveréal of
lines L and M. If L and M are any two coplanar lines and N is a third
line intersecting L and M in diétinct points then N is called a trans-

versal of the lines L and M.,

h 4

Figure 102

If 1, and_M are distinct lines anq N is a transversal intersecting
L in point a and intersecting M in point b, four.angles are determined
with vertex b:. (see Figure 103). Let m and n be points’invL such that
m~-a - ﬁ. ‘Let ¢ and d be points in M such that ¢ - b - d. Consider

“the set {¥X mab, X dba}f The ra§'gg is. a side of ¥ dba and the ray ;g



128

is a side of ¥ mab. The sides am of ¥ mab and b8 of ¥ dba, are on

opposite sides of the transversal N, The angles in {¥ mab, X dba} are

)

called alternate interior angles..

A
9’“
v

A
x
v

Figure 103

Definiﬁion 7-1  Let ﬁ? and ﬁ? be two coplanar lines and‘let gg be a
transversal intersecting S2 and $3 in the distinct points a and b
respectively (see Figure 103). Then {¥ bam, ¥ abd} is a set of alter-
'natevinterior‘aﬁgles if and only if m and d are on opposite sides of
 the transversal Q?. If ¢ -b-dandm=-a-n then {¥ nab, X cba} is
also a set of altefnate interior angles.
If m and d are on the same side of the transversal as in Figure

104, then the angles in {¥ mab, X dba} are‘called interjor angles on

the same side of the transversal.

Definition 7-2! Tet gghand S? be cut by a transversal g§ such that
X mab and ) dba are alternate interior angles. The angles in

{X mab, ¥ cbq} are corresponding angles if and only if ¢ and q are
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points such that the angles in {X cbq, ¥ dba} are vertical angles

(see Figure 105);

A
1
[\

A
. o
o

Figure 104

=
\\\Q:f
=]

N

Figure 105

In Figure 105, {X nab, ¥ dbq} is a set of corresponding angles.
With each angle of a pair of alternate interior angles there is an

associated vertical angle. These two angles considered as a pair are

called alternate exterior angles. 1In Figure 105, ¥ pan and ¥ chq are
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“alternate exterior angles.
Parallel Lines

Parallel 1iﬁes were defined in Chapter III. For convenience the

definitionvwill be repeated.

Definition 7-3! Two lines are parallel if and only if they are co-
planar and their intersection is empty.

Let mf and ¢& be two lines cut by a transversal intersecting the
two lines at points a and b such that: (1) a is between m and n,
(2) b is between ¢ and d, and (3) {x mab, X abd} is a set of congruent
alternate interior angles. Suppose gg’and g? intersect at p (see
Figure 106), For definiteness assume p is on the d-side of g?. On the

p. For the cor-

~

| ray g? opposite ﬁ? let q be the point such that EE

~—

‘respondence A pab & 4 gba, ab = ba and bq p. The angles in
{X qba, X pab} are supplements of the congruent angles in {X abd,
X mab}; hence ¥ gba T ¥ pab by Theorem 6-6. Therefore p pab = p gba by

the S.A.S. theorem. Then by Theorem 5-2 X qab = ¥ abp. Since pe EE,

n

¥ abp = X abd and therefore X qab = X abd by the transitive property.

But ¥ abd = ¥ mab by hypothesis; hence ¥ qab = ¥ mab. Thus the rays'zz
- . g .

and am are on the same side of db and form congruent angles with ray

Zg. According to Postulate 5-3 there is only one such ray. Therefore
- _e - N N s

Za'= am., This means that qe %3. Thus if 53 intersects SK in point p
gz . » €« . A . .

then intersects wn in point q. This implies that two distinct lines

intersect in two points which is impossible. Therefore $3 and SZ do

not intersect and thus are parallel. This argument proves Theorem 7~1.

Theorem 7-1. 1If two coplanar lines are cut by a transversal such that

a pair of congruent alternate interior angles are determined, then the
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lines are parallel,

Figure 106

This theorem and Postulate 5-3 make it possible to establish the
 existence of parallel lines. Let gg be a.line and let q be any point
not in $?;‘ Let $g-be_a line containing q and intersecting Sﬁ at p such
that a - p -~ b, (See Figure 107.) By Postulate 5-3 there is exactly
one ray Eg on the b-side of §2 such that ¥ cpq = X npa, Let Q¢ be the
line containing Sg. Then ﬁ? and gg are two lines cut by the transver-
sal gg such that a pair of alternate interior angles are congruent.
Thus ﬁ? is parallel to gg by Theorem 7-1.

Theorem 7-1 asserts that the lines are parallel if the alternate
interior angles are congruent. It makes no assertion in the event that
the angles are not congruent. Thus the fact that there is only one ray
Eg such thaﬁ X cqp = X npa does not guarantee that there is onlf one
line containing q that is parallel to S?, Intuitively it seems that
therebis only one such line ‘and therefore the uniqueness of this line

will be postulated,
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Figure 107

Postulate 7-1: If:L is a line and p is a point not in L, theﬁ there
exists ohe and only one line M containing p and coplanar with L such
that M is parallel to L (éymbolized L | M.

‘Postulaté 7-1 is a simplified form of Euclid's famous fifth postu-
late., It is the distinguishing characteristic of Euclideén Geometry.
Theorem 7-2; If L and M are parallel lines and N # L is a line such
that NNL = p then N intersection’M is not eﬁpty.

Proof: Refer to Figure 108.

b 4

v

Figure 108
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"l. Assume that the assertion of the theorem is false, that is
NAM = { 1.

2. Then N || M by definition, |

3. _Theréfore L énd»N are two distinet lines through p and parallel
to M.

4. This is contradiction‘of_Postulate 7-1,

5. Therefore NNM is not empty by the rule of indirect proof.

If L || M then LAM = { }, but then MNL = {}ﬁmmeM\]L, Thus
the parallel relation is symmetric., The next theorem will establish
that the relation is also transitive. |
~Iheorem 7-3; If (1) L, M and N are coplanar, (2) L || M, and (3) M || N,
then L || N.

Proof: See Figure 109,

va 'L’ b

2 M >

< N >
" Figure 109

1. If LAN is not empty then since N || M, L must intersect M by

Theorem 7-2.
2. But L || M byvhypothesis,.hence LNM = { J.

3. Therefore LAN = { } hence L !l N,

If the symmetric property is applied to the third condition of
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Theorem 7-3, conditions two and three are (2) L || M and (3) N || M. The
assertion remains L || N. 1In this form the theorem states that if two
lines are parallel to a third line then they ére parallel.

Theorem 7-4: va two paralle]l lines are cut by a transvefsal both pairs
of alternate interior éngles determined are congruent.

Proof: 1In Figure‘llo let S? be parallel to'ﬁg andlﬁg be a transversal
intersecting §§ and ﬁg at points ¢ and o respectively. Witﬁ this nota-
tion the theorem may be stated, "If é?’u'%? then X aco;; ¥ con and

-~

¥ bco = ¥ com,"

i 3

H

Figure 110

1. 'gg I §g by hypothesis.
2., Assume X éco is not_cOngruent to_% con,
3. By.Postulate 5-3 there exists exactly one ray Za such that
X qco :9: con. |
4., Since ¥ aco is not congruent to X con_then Za #'ZZ.

5.  But by Theorem 7-1 the line ‘c_q) ||'§?3.

-6, Therefore there are two lines through c parallel to gg and this is
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a contradiction of Postulate 7-1,
7. Therefore Xlécov:'i con.
8. «x béo ié a supplement of X aco and X com is a supplement of X con,
thus ¥ bcof;,kvcom since they are supplements of congruent anglés.
Theorem 7-4 is the converse of Theorem 7-1, The next theorem is
an if and only if statement regarding‘cofresponding angles and is a
consequent of Theorems .7-4 and 7-1.
Iheoremv7—5: . If two coplanar lines are ¢ut by transversal then the
lines are'paraliel if and only if the angles of a pair of corresponding
angles are congruent.
Proof: ‘Let?l'a) and fn.'r? be two lines and g? be a transversal intversecting
Sﬁ and $3 in points p and q such that a-p-b, m-q-n, c-p-d and p-qfd.
Using the symbols in Figure 111 the theorem may be stated:

< e ~

@B If a8 U'mn then ¥ apc = ¥ pgm and,

-~

(2) 1If X apc = ¥ pqm then g? H $g.

N
=
\D—\ |
| @&\\\\\
o v
\0&
? 1<)
v v

Figure 111

Proof of (1):

1. gg H»§g by hypothesis..
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wl

2. X bpq ¥ pqm by Theorem 7-4.

3. X apc = X bpq since they are vertical angles.

4. Therefore ¥ apcf; X fqm by the transitive property.
"Proof of (2): |

X pqm by hypothesis,

i

1. X apc

2. ¥ bpq

nwl

¥ apc since vertical angles are congruent.
3. Therefore X bquzvk pqm by the transitive property.
4. Hence ab || mn by Theorem 7-1.

Suppose the lines é? and ég'are perpendicular to the line %2 at
the points a and c respectively. (See Figure 112,) Let ray Z% be
opposite 23. The X cab is a right angle and ¥ acp is a right angle,
Therefore ¥ bac = ¥ aqp by Postulate 6-3. Thus the lines 2 b and‘izlare

cut by«é transversal such that a pair of alternate interior angles are

congruent. Therefore'S? H S?; This proves the following theorem,

)
m b
S - >
a
c d
3 —>
.\,
Figure 112

Theorem 7-6: 1If two coplanar lines are perpendicular to the same line

then they are parallel.
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Every triangle is the union of three segments which are détermined
by three noncollinear points. These three pbints‘determine a set of
three.lineé such that any two lines in the set intersect the third line
in distinct points and also intersect each other..vThus with any tri-

‘ angle there is assoclated a set of three lines such that each pair of
lines in the set are intersecting lines. Therefore no two lines in the
.set are parallel and thus according to the‘contrapositive.of Theorem
7-6 no two 1inesvin the set are perpendicular to the same iine. In
Figure 113 lines L and M are not parallel. Therefore they intersect
and a triangie is formed, 1If in Figure 114 the lines N and K are per-
pendicular to line H then they do not intersect. Therefore these three

lines could not contain the sides of a triangle.

[
Xz
7N
~

v

v

Figure 113 | o Figure 114

- If two of the angles of a triangle were right angles then the two
lines determined by two of its sides would be perpendicular to the line

determined by the third side. According to the above discussion this



138

is impossible. Therefore not more than one of the angles of a triangle
is a right angle.
Theorem‘7-7:‘_A triangle has at most one right angle.
Theorems 7-1, 7-5; and 7-6 provide three sets of conditions that

are sufficient to guarantee that two lines are parallel. Theorems 7-4
and 7-5 both contain assertions that are subject to the condition that
the two lines are parallel., The next theorem is an if and only if typé
theorem, It will give a fourth condition that is sufficient to guaran-
tee that two lines are parallel and will give an additionél consequent
of the parallel relation existing between two lines.
Theorem-748: ‘Let L and M be two lines and N a transversal. (1) If the
interior angles on the same side of the transversal are supplementary,
then L || M. (D) If L H:M then the interior angles on the same side of
the transversal are supplementary. |
Prbof of (1):  In Figure 115, let N intersect L and M in a.and'b rer
spectively. Let m and n be points of L such that m - a - n. Let ¢ and
d be points of M such that c.=-'b - d and ¢ is on ﬁhé m-side of N. Then
X mab and ¥ abc are. interior aﬁgles on the same side of the transversal
and are supplementary by hypothesis.
1. X nab is é supplement of ¥ mab since Zi is opposite'gg.
2. Therefore X nabf; X abc_since they are both sypplements of ¥ mab.
3. Bﬁt ¥ nab and ¥ abc are alterpate interior angles, hence L H M by

Theorem 7-1.
Proof of (2):  Refer to Figure 115.
1. L || M by hypothesis. |
2. Therefore ¥ mab‘;'i_abd by Theorem 7-4.

3. Eg is opposite _g,,therefore X cba is a supplement of ¥ abd,
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4. Therefore ¥ cba is a supplement of ¥ mab.

L o \a,

< n -
‘\ ali L
M c b d -
@ > L 7
N
Figure 115
Quadrilaterals

In Chaﬁter,IV‘a quadrilateral is defined as a polygon having four
sides. A polygon is a simple closed cﬁrve that is the union of seg-
ments. Thus the sides of. a quadfilatefal are segments, The points of
intersection of the sides are called vertices, thus every quadrilateral
has four vertices, Two sides will be called adjacent sides if their
intersection is a vertex. If their intersection is the empty set thén
they are called opposite sides,

In Figure_116 ad and EZ»are opposite sides since they do not in-
tersect. ab andbgg éré adjacent sides since EE]\BZV= b, Similarly,
be and ZE are adjacent,'za and da ére adjacent, with da aﬁd ;E also

adjacent, If two vertices are in the same segment they are called
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consecutive vertices. In accordance with Chapter IV regarding the
naming of polygons, a quadrilateral may be named by‘listing the verti-
ces in any order éuch that consecutive letters name consecutive
vertices, Thus'the QUadrilatéral in Figure 116 could be named abcd,
adcb, or any-one of six other names. In a quadrilateral, the noncon-
secutive vertices are called opposite vertices. Thus in naming a
quadrilateral the nonconsecutive letters listed always name opposite

vertices.

Figure 116

The segment determined by opposite vertices is called a diagonal.
‘In Figure 117, a and c are opposite vertices and ac is é diagonal,
Also b and d are opposite vertices and bd is a diagonal.

Each pair of adjacent sides of a quadrilateral determine a pair of
rays haQing one Vertex of the quadrilaterél as a common end point.v The
angle formed by the union of these two rays is called an angle of the
quadrilateral. Thus each quadrilateral hés four angles. If two angles
of aiquadrilateral are such that their vertices are opposite vertices

of the quadrilateral then they are opposite angles. If their vertices
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are consecutive vertices of the quadrilateral they are called consecu-
tive angles of the quadrilateral. In Figure 117, angles in {x bad,
¥ bed} are opposite angles. The angles in {x bad, X adc} are consecu-

tive angles.

—=7Tc
-
’/
\\ 4,(4
~
’, \\
-~
-~
\\
a d
Figure 117

A quadrilateral is the union of noncollinear segments and thus
could not be a convex set, Nevertheless, it is convenient to refer to
certain types of quadrilaterals as convex quadrilaterals.

Definition 7-4: A quadrilateral is a convex quadrilateral if and only

_if its sides are such that no side of the quadrilateral intersects the
line determined by the opposite side.

The quadrilateral abcd in Figure 118 is a convex quadrilateral.
The quadrilateral mnop in Figure 119 is not convex since m N dp is not
the empty set butvE; and op are opposite sides of the quédrilateral.‘
The quadrilaterals considered in this discussion will be convex quadri-
laterals. Thus any quadrilateral will be assumed to be a convex

quadrilateral unless otherwise specified.
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Figure 118 : Figure 119

Definition 7-5: If abcd is a quadrilateral, then a point is in the

interior of abcd if and only if it is in the interior of each of the
angles_df the quadrilateral,

This implies that the interior of a quadrilateral is the intersec-
tion of the interior of‘the four angles of the quadrilateral. Since
the interior of an angle is a convex set by Theorem 4-3 and the inter-
section of convex sets is convex from‘Theorem 4-2, it follows that the
interior of a quadrilateral is a convex set.

If abed is a quadrilateral as in Figure 120, the points b and a
are on the same.side of ﬁz and the points b and c are on the same side
of EZ. »Then,b is in.thé interior of ¥ cda and hence‘d' is in the
interior of X cda. Therefore every interior point of the diagonal EE
is in the interior of ¥ cdé, Similarly everyfinteriof point of the
diagonal'gﬁ'(=ﬁg) is in the interior of ¥ abc. By Postulate 6-2 every
interior peint of bd is in the interior of ¥ bad and also in the

interior of ¥ bcd.  Thus every intefior point of the diagonal of a
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quadrilateral is in the interior of the quadrilateral.

Figure 120

Trapezoids

A special class of quadrilaterals is that in which a pair of

opposite sides determines subsets of parallel lines,

Definition 7-6: Two segments ;3 and‘EE are parallel segments if and
~only if E? and ﬁg are parallel lines.

Definition 7-7: A quadrilateral is a trapezoid if and only if at least

one pair of opposite sides of the quadrilateral consists of parallel
segments,

In Figure 121 Eglﬂ EE and hence abcd is a trapezoid.

Every trapezoid has four sides and two of the sides are parallel
segments. If the other two.sides are non-parallel and congruent then

the trapezoid is called an isosceles trapezoid. (See Figure 122,)
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Figure 121

Figure 122

Parallelograms

A further classification of quadrilaterals occurs if both pairs of

opposite sides of a quadrilateral are parallel segments,

Definition 7-8: A quadrilateral is a parallelogram if and only if the
opposite sides of the ‘quadrilateral are parallel segments.

Thus every para11e1§gram is also a convex quadrilateral and hence
the terminology just developed regarding vertices and sides of quadri-~
laterals applies to parallelograms. |

A segment joining the points a and ¢ of parallelogram abcd is a
diggonal and since every parallelogram is a convex quadrilateral, every
interior point‘of the diagonal is in the interior of the parallelogram.

Then ac U ab U cb = Aabc and ac U ad U cd = A ade. (See Figure 123.)
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It will be established that these two triangles are congruent and this
conclusion will be used to prove two interesting properties of paral-

lelograms,

Figure 123

Theorem 7-9: The bpposite si&es of a parallelogram are congruent
segments and the opposite angles of a pafallelogram ére»congruent
angles.
Proof: As suggested above a diagonal will be used in the proof. With
-a particular diagonai it will be possible to prove two pair of opposite
sides and one pair 6f opposite aﬁgles congruent. The proof for the
other pair of angles would differ only in that the other diagonal would
be used and thus will bé omitted, Refer to Figure 124,

1. abed is é parallelogram by hypothesis.

2. Then ad || bc and ab || dc. by, Definition 7-8.

3. 'Sg H-€? and gﬁuu'ﬁ? by Definition 7-6.

4., The diagonal ac intersects lines Sg and.ﬁ? in points a.and ¢

resPectively and intersects lines S? and g? in points a and c
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respectiﬁely.

Therefore &C is a»transversal»of b and 32.

The angles in {X acd, X cab} are alternate interior angles‘and
since (;b’ H‘d_g, ‘X acd = X cab by Theorem 7-4.

S? is élso_a'transversal of 33 and Sg.

The angles in {X cad, X acb} are alternate interior angles and

‘siﬁce S? I $%,‘; cad = ¥ acb by Theorem 7-4.

—~ T—

ac = ac by the reflexive property of the congruence relatiom.

Thus for the correspondence p cad 69,3 acb, ¥ cad ;ik achb, ;Z;;';Z
and x acd = X cab.

Therefore p cad = p acb by the A.S.A. theorem.

~

For this correspondence ¢d € ab and ad &> cb thus cd = ab and

ad = ngby Definition 5-3.

~

¥ ade € X cba hence X ad¢ = X cba by Theorem 5-2.

Figure 124

In the parallelogram abecd, the line determined by any side, side
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ab for definiteness, is a transversal of the lines determined by its
adjacent sides, bc and ad (see Figure 125). Since ﬁ? Hrgz,,the angles

in {¥ cba, ¥ dab} are supplementary angles by Theorem 7-8.

Figure 125

Theorem 7-10. Any two consecutive angles determined by a parallelogram

are supplementary.

va two consecutive angles of a parallelogram are congruent, then
each of the angies is congruent to one of its supplements and is there-
fore a right angle. Also if one angle of a parallelogram is a right
angle then each angle consecutive to it is a right angle since consecu-
tive angles are supplementary. By Theorem 7-9, the opposite angles of
a parallelogram are congruent, Thus if one angle of a parallelogram is

a.right angle then all angles of the parallelogram are right angles.

Definition_7-9.. A rectangle is a parallelogram which determines right
angles.
Thus the set of rectangles is a subset of the set of parallelo~

grams. A further classification occurs if two adjacent sides of a
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parallelogram are congruent. vatwo.adjacent sides of a parallelogram
are congruent then all sides are congrueht since the opposite sides are
congruent by Theorem 7-8. If all sides of a parallelogram are congru-
ent, then it is called a rhombus. If all sides of a parallelogram are
congruent and all.detérmined angles are right angles then it is called

a square (see Figure 126).

Figure 126

Definition 7-8 provides a set of conditions sufficient to guaran-
tee that a quadrilateral is a parallelogram, namely that each pair of
opposite sides is a pair of parallel segments. Two other sets of con-
ditions sufficient to establish that a quadrilateral is a parallelogram
are provided by the next two theorems.

Theorem 7-11: 1If two opposite sides of a quadrilateral are parallel

and also congruent,‘then the quadrilateral is a parallelogram.

Proof:; 1In Figure 127 let ab and dc be the two sides that are parallel
and congruent as giveﬁ-in the hypothesis of the theorem. Let ac be the
diagonal determined by the opposite vertices‘a and c.

1. ab H de by hypothesis, therefore S? H 33 by Definition 7-6.



149

The angles in {X bac, ¥ dca} are alternate interior angles and thus
X bac T ¥ dca by Theorem 7-4.

dc by hypothesis.

w

ab.
ac = ac by the reflexive property of the congruence relation.

For the c§rrespondence A bac € A dca, ba € dc, ¥ bac (-) ¥ dca and
ac € ca.

Therefore A bac = A dca by the S.A.S. thqorem._

Therefore ¥ dac = ¥ bca.

Hence ad H cb by Theorem 7-1,

Therefore abed is a parallelogram by -Definition 7-8.

Figure 127

‘Theorem 7-12. 1If the opposite sides of a quadrilateral are congruent

segments, then the quadrilateral is a parallelogram.

Proof: In Figure 128 ad
1.

2.

gl &l

~

e

EZ and ;E EE.‘

cb and ba = dc by hypothesis.

i

n

&

by the reflexivevproperty.
Therefore p adb = p cbd by Definition 5-3.
Then ¥ cbd = X adb by Theorem 5-2.

Then EE-H ad by Theorem 7-1.
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6. Thus segments EE and da are parallel and congruent, hence abed is

a parallelogram by Theorem 7-11.

']
T

/
7 ‘ d

Figure 128



CHAPTER VIII
CIRCLES AND GEOMETRIC CONSTRUCTIONS
Circles

The triangles and quadrilaterals considered in previous chapters
are elements of a set of simple closed curves that are polygons. There
are many simple closed curves that are not polygons. The most commonly
used simple closed curves, other than the polygons, are the circles,
There are many physical models of circles sugh as the rim of a wheel,

a wedding band,‘the top of avcoffee cup, etc, These are models only
since circles are point sets and therefore are abstractions. The con-
gruence relation provides a basis for a definition of "circle.,"

Definition 8-1. Let o be a point in a plane M and ab he a segment.

The set of all points p in the plane M such that op = ab is a circle.
The point o.is called tﬁe center and aﬁy segment BE such that ¢
is 'a point in the circle is called a radius. ‘Thus a radius of a circle
is a segment, EQery circle has many radii (plural for ;adius). Each
radius is congruent to a given segment and all segments congruent to a
given segment are congruent. Therefore all radii of the same circle
are congruent. In Figure 129 the points p,  q, r and s are points in
the circle, that is, they aré.elements of the point set that is the - -
circle. The point o is the centef of the circle. Segments ;;, SE, or

and os are radii. Note that o is not an element of the circle; thus it

is incorrect to say that o is in the circle, Similarly, the interior

151
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points of the radius ;;‘or'any other radius are not in the circle. The
center of a circle and all interior points of any segment that is a
radius of the circle are in the interior of the circle. A circle with
center o will be called circle‘o. If a particular capital letter is
used to name a circle, it is understood that the corresponding lower -

case letter refers to the center of that particular circle.

Figure 129

Definition 8-2. If O is a circle in a plane M, then a point pe M is

in the interior of circle 0 if and only if the segment 3; does not
intersect the circle.

Thus a circle and its interior are disjoint sets., If a point q
in the plane of a circle is neither in the circle or in the interior of_
the circle then q is in the extefior of the circle. 1If g is in the
exterior of a circle with center o, then ;E intersects:the circle. .

If two circles are such that they have the same center, but their

radii are not congruent, they are called concentric circles (see
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Figure 130). If two cir¢les have different centers and congruent radii

they are congruent circles.

Figure 130

Definition‘8-3. If 0 is a circle with center o and radius ;E and X is

a cirecle with center k and radius EE, then circle O': cirele K 1if and

only if op = kq.

~

In Figure 131 circle O = circle K if and only if op = kq.

Figure 131
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A segment that is determined by two points Iin a circle is called A
chord., If a chord contains the center of the circle, then it is called
a diameter. If p is any point in'a circle with radius ab and center 0,
then ﬁg is a line. Let m be a point in S? such that m-o-p. 1In the ray
;; there is exactly one point g such that EE,:'ZE. Since ;a'; ZE, q is
in the circle by definition; Therefore E; is a diameter. Thus if p is
any point in a‘cirqle, then there exists exactly one point q in the
circle such that ;E is a diameter. 1In Figure‘132, mn is a chord and';a

is a chord that is also a diameter.

Figure 132

v
-

The ﬁeédle‘of a compass is a physical model of the diameter of a
circle. 1In any position the needle represents a particular diametér
'Pq. 1If the needle rotates on an axis at the center to a different
position, itkthen répresents a different diameter,  say . Evidently
the needle does not change size or shape as it fotates. This suggests

that the diameters ;a and mn are congruent segments (see Figure 133).
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m

Figure 133

~Postulate 8-1. If ;E and mn-are diameters of the same circle, then

— e, —

Pq = mn,

»If a and b arevdistinct points in a circle with center o such that
0, a and b are noncollinear, then 33 U'SZ = ¥ aob. The sidés of this
angle are détermined by the radii oa and ob and ifs vertex is the
center of the circle. Any angle which has its‘vertex at the center of
a circle is called a centrai angle. In Figure 134, X aob is a central
angle, The set of points consisting of a and b together with all
points in the circle that are in the interior of ¥ aob is called a
minor arc of the circle., Points a and b will be called endfoints of
the arc, A minor arc with endpoints a and b will be referred to as are
ab, The set of points consisting of a and b together with all points
of the circle that are in the extefior of X apb is called a major arc.
A major arc with endpoints a and b will be referred to as major arc ab.
If a and b are endpoints of‘a diaﬁeter, than a, o and b are collinear;
hence no central angle is determined, The points é and b determine the
line Sg. The set of all points of the circle that are in the same side

of ﬁ? together with a and b is called a semicircle. Thus a semicircle
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is a special arc with its endpoints in a diameter. Since two points in
a circle always determine two arcs, a third point is used in symboliz~-
-ing a particular arc. If‘a and b are endpoints of an arc aﬁd c is a
point in the afc, then thé arc is symbolized QZB. 1n Figure 134 ﬁ;ﬁ is

a minor arc and agb is a major arc.

Figure 134

Theorem'8—1. 1f a, b énd c are three collinear points and o is any
point not in the line containing these points, then at most two of the
segments»zz, ob énd oc are congruent. | |
Prbof: ,An indirect argument will be given, 33, ob and oc will be
assumed to be congruent, and it will be shown that this assumption
leads to a contradiction, Refer to‘Figure 135. For definiteness,
assume a~b-c.

1. a, b and ¢ are collinear and oé‘gg by hypothesis;

c by assumption.

e~

2. oa s

~

ob

3. Then.A-aoc is isosceles by definition,
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12.

13,

14,

15.
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Therefore X oac = X oca by Theorem 6-1.

Similariy A aob is isosceles and X oba = ¥ oab.

¥ 0ab = X oac hence ¥ oab.:'i oac.

Then ¥ oba.= ¥ oca by the transitive property.

But p obc is isosceles; hence X obc;; X ocb.

X ocb = X oca, hence ¥ ocb = X oca,

Then ¥ obc = ¥ oca by steps (8) and (9) and the transitive proper-
ty.

Therefore ¥ oba = X obc by steps (7) and (9) and the transitive
property.

Hence ¥ oba is congruent to one of its supplements and therefore
is a right angle by definition.

From step (7), k'ocaf: X oba and from steps (5) and (6),‘k oac =
X oba; hence,* oac and X oca are right angleé.

Thus A oaé has two right angles and this éontradictS’Theorém 7-7.
(A triangle has at most one right angle.)

Therefore the assumption in step (2) is false, hence at most two

of the segments oa, ob and oc are congruent.:

09
v

- : | .

Figure 135
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The contrapositive of Theorem 8-1 is Mif a, b, ¢c and o are dis-
tinct points such that 32 ;';Ef;.3E, then a, b and ¢ are noncellinear
points." If a, b and c are distinct points in a circle 0, then SZ,ISE
and oc are congruent segments and therefore a, b and c are noncollinear.
Theorem 8;2."If a, b and ¢ are any three distinct'points in a circle,
then a, b and c are noncollinear.

As a consequent of Theorem 8-2, any three poiﬁts iﬁ a circle
determine a triangle. Each vertex of this triangle is a point in the
circle and its sides are chords. A triangle which has.all of its ver-
tices in a circle is said to be inscribed in the circle. More general-
ly, any polygon which has all of its vertices in a circle is called an
inscribed polygon. If the vertex of an angle is in a circle and its
sides intersect.the circle in pointé other than the vertex, then the
angle is .called an inscribed angle. An angle is said to be inscribed
in an arc if its vertex is a point in the arc and its sides intersect

the circle at the endpoints of the arc. 1In Figure 136 ¥ abc is in-

S
scribed in the arc abe,

Figure 136
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Theorem 8-3. Any angle inscribed in a semicircle is a right angle.
Proof: Refer to Figure 137. The problem is to show that ¥ acb is a
.fight angle.
o o, ' \

1. The arc acb is a semicirecle by hypothesis.

2. Hen¢e4;§ is a- diameter,
. 3. Let d be the point in the circle such that EE is a. diameter.

4. Consider. p aoc and p bod under the correspondence p aoc €> p bod.

5. 20 = 55 and EZH; od since they are all radii of the same circle.

6. X aocv;'bod by Theorem 6-8. (Vertical angles are congruent.)

7. Therefore p-aoc = 5 bod by the 5.A.S. theorem.

8. Hence ac = bd by Definition 5-3 and X aco : ¢ bdo by‘Theorem 5;2.

-9. Relative to the lines ﬁ?’and’ﬁﬁ the linewgg is a transversal and,
¥ aco and ¥ bdo are alternate iﬁterior angles. |

10. Therefore < I g? by Theorem 7-1.

11. Then acbd is a quadrilateral with a pair of opposite sides paral-
lel and congruent, _

12, ‘Therefore acbd is a parallelogram by Theorem 7—11,

13. Then by Theorem 7-10, X acb and ¥ dbc are supplementary angles.

14, Consider the correspondence p-acb €2 , dbe,

—— | —

15. ac = db from Step (8),‘23 T I since they are both diameters of

W

the samé circle and cb = ob by the reflexive property.
16. Hence p acb = p dbec.
17.. Therefore X acb = X dbc by Theorem 5-2.

18. Thus ¥ acb is congruent to one of its suppleménts and therefore

X acb is a right angle by Definition 6-11.
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Figure 137

The two circles in»Figure 138 intersect in two points. In Figure
139 the two circles have one common point, while the two‘circles in
Figure 140 are Aisjoint‘sets. In Figure 138';E[\E; =‘E;. In Figure
139'33f\EE ='EE.’YIn Figure 140 oqNkp is empty. These observations

suggest the following postulate,

Figure 138 _ Figure 139



161

Figure 140

Postulate 8-2. The Two Circle Postulate. Let ;E, ab and mn be dis-

~

tinct segments. Let ¢ be the point in ;i such that ;a, ab and p be
the.Point in E% such. that E;,;'E;, then:

(1) If oqNkp is a segment, then the circle with gentér o and
‘radius ab intersects the circle with center k and radius mn
in two ﬁoints on opposite sides of %ﬁ. If the two circles
intersect on one side of ﬁﬁ, then they will iﬁtersect in the
opposite side of'g?.

(2) 1If SE'ﬂE; is a point, then tﬁe two circles in statement (1)

intersect in one point and are called tangent circles.

(3) If oqNkp =.{ ], then the circles do not intersect.
Geometric Construction

In this section techniques will be developed for constructing
models of some ofvthe point sets encountered in the previous chapters.
The procedures used will be justified by the definitions, postulates
and theorems that have been establishgd. The only toqols neceséary are
pencil, compass and unmarked straight edge,

Construction 8-1. On a given ray construct a segment congruent to a
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given segment,

Procedure: . According to Postulate 5-1, there exists exactly one seg-
ment ab in réy 23 such that ab is congruent to a given segment. From

‘ Definition 8-1 all radii of the same circle are congruent. Let ;3 be
the given ray and mn be the given segment (see Figure 141), Place the
point of the compass at m and adjust the compass so that the pencil is
on point n. Without changing the compass adjustment, move the point of
the compass to point a and swing an arc interseéting'ray ;% at b. ‘This
arc is a part of a circle with radius . _Therefore for every point p

—— —

in the arc, ;;';';H. Thus ab = mn.

-
L

Figure 141

A

~According to Postulate 6-1, every segment has a midpoint. A line
intersecting a segment af its midpoint is said to bisecﬁ.the segment.
If the 1ine bisects'the segment and is also pefpendicularxto the seg-
ment, then the line is called the perpendiculér bisector of the segment,

Construction 8-2. Construct the perpendicular bisector of a given

segment.
Procedure: Let mn be the given segment. With m as center and mn as

radius,; construct a circle and with n as center and mn as radius
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construct a circle (see Figure 142). Then tmNmn = mo and the two
circle postulate applies, Therefore circles M and N intersect in two
points on opposite sides of ﬁg. Let a and b be the points of intersec-
tion of the two circles. The segments am, mb, bn and na are all radii
of congruent circles and hence are congruent. Therefore manb is a
parallelogrém by. Theorem 7-12. Since every parallelogram is a convex
quadrilateral, every interior point of segment ab is in the interior of
manb. For the‘correspondence A amb €> A anb, am = an, mb = nb and

~

ab. Hence A amb = p anb. Therefore X mab = ¥ nab. Points a and

. . & —_ L I \ .
b are on opposite sides of mn, so ab intersects mn. Every interior
point of @b is in the interior of parallelogram ambn, therefore it
follows that ab intersects mn. Let abNmn = p, then pe g?; hence
X map =X nap and ;; ;'E;. Thus A apn ;'A apm by the S.A.S. theorem.
Therefore mp = pn; hence p is the midpoint of mn. Also ¥ apm = X apn
and they are adjacent supplementary angles., Thus X apm is a right

angle and ¥ apn is a right angle. Also S? l_ﬁg. Therefore'sg is the

perpendicular bisector of ™.

A

Figure 142
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In Chapter II it was noted that two points are required to deter-
mine a line. In Construction 8-2 it was necessary to determine a par-
ticular line and thus it-was necessary to determiﬁe two‘points.v The
next construction.also requires the construction of a line but in this

case one point of the line is known.

Construction 8-3. Construct a line containing a given point such that

it is perpendicular to a given line.

Procedure: There'are two possibilities: (1) the given point is in the

given line, or (2) the given point is not in the giﬁen line, Case (1)

will be considered first,

1. Let L be the given line and p be the given point in L.

2. With p as‘center and any radius swing an arc intersecting L in
points m and n #s in Figure 143.

3. Then E;.;'EE since they are radii of the same circle.

4. Place the point at m and adjust the radius of thé’compaés so that
an arc'centered at'm will intersect the line at n.

5, TUsing this radius, circles centered at n and m will intersect in
two points according to the two circle postulate.

6. Let q be the point of intersection on one sidé of L.

7. 'S?'is perpendicular to L.

To justify the contention in step (7), consider A qmp and A qnp.
EE:;';E since they are radii of congruent circles, EE';‘;E from step
(3) and EECE'E;. )Therefore A(qmp': qnp; hence X qpm'; gpn by Theorem
5-2, ‘E% and 5% are opposite rays, so X qpm and % gpn are supplementary

congruent angles, Therefore each is a right angle and hence'ﬁg | L.
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Figure 143

Case (2).

1. Let L be the given line and lef a be the given point, af L.

2, Adjust the compass so that an‘arc with center a will intersect L in
two poinfs m and n.(éee_Figure 144).

3. TUsing 35‘;'55 as radii, construct circles centered at m and n.
Since these circles intersect at a they also intersect at a point
on the side of L opposite a. Call this second ﬁoint of intersec-
tion b.

. 81

Statement (4) may be justified by the argument used in Construc-

tiOn 8-2.

v

Figure 144



166

Construction 8~4, Construct the bisector of a given angle,

1. Let ¥ paq bé the given arigle.

2, With cénter a and any radius swing an arc intersecting Z%‘at b and
Za at ¢, thus ;E ;';E.

3. With radius bc and center b swing ap arc in the interior of X paq,
but not in the interior of p abc.

4. With radius bc.and cenﬁervc swing an arc intersecting the arc in
step (3). (Thése arcs intersect by the two-circle postulate.)
(See Figure 145f)

5. Call this point of intersection d.‘

-
6. ad is the bisector of ¥ paq.

v

Pigure 145

To justify the statement in step (7) consider a abd and A acd.
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'ab = ac from step (2). bd = cd since they are radii of qongfuenﬁ cir-
cles and ZE”E'ZE.' Therefore p abd = p acd by Definition 5-3. Then

¥ bad = X cad by Theorem 5-3 and,the;efbre Zﬁ is the bisector of ¥ paq
by Definition 6-5.

Construction 8-5. .Construct'an angle congruent to a given angle.

Procedure:
. e
1. Let ¥ man be the given angle and op be any ray.
. . , LT
2. With center a and any radius swing an arc intersecting am in b and
= . | :
an in ¢. Then ¥ bac =-¥X man (see Figure 146).
3. With center at o and radius ab = ac, conmstruct a circle intersect-
ing ;S in d.
4. With d as center and bc as radius swing an arc intersecting the
cirecle in q.

5. X qod = ¥ bac and therefore X qod = X man.

A 2

Figure 146
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The statement in step (5) is justified by the definition of con-
gruent angles. The point d is the point in ;% such that ;E;;'ZZ and
q is the point in ;a such that BE’:'ZE, since the segments are radii of
congruent circles. EE;;'ZE\%or the same reason. Therefbre ¥ qod =

X bac by Definition 5-1.

Construction 8-6.  Construct a triangle congruent to a given triangle.
Procedure:

o . ‘ 1 s 5
1. Let p abc be the given triangle and pd be any ray (see Figure 147).
2. On?;% construct pq = ab.

~

3. With vertex p construct ¥ gpm = X bac,

M

4, On ;% construct pn = ac.

—~ ~

5. Then EE.;’;E, X qpn = ¥ bac and S; = ZE.

6. Therefore p qpn ;'A’bac by the S.A.S. theorem.

Figure'147

Construction 8-7. Construct a right triangle.

Procedure:
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1. Let ;% be any ray.
2. At point a in»line,sg construct a line Sg perpendicular to SZ.
3. X qap is a right angle; therefore, A qap is a right triangle since

one of its‘angles is a right angle (see Figure 148).

N

v

Figure 148

Construction 8-8. Construct a line parallel to a given line that

contains a given point not in the given line.
~ Procedure:
g . . e < ,

1. Let ab be a given line and p be a point such that pé db (see Figure
149).

2. Let pq be any line intersecting ab and for definiteness, assume
a-q-b.

3. With vertex p construct X qpm‘: ¥ pqa such that m and a are on
opposite sides of Sg,

4. Then pq is a transversal of Zﬁ and %% and X qpm and ¥ pqa are
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alternate interior angles.

—~

5. Since X gpm = ¥ pqa, line %3 is parallel to line S? by Theorem 7-1.

N
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CHAPTER IX
MEASURE

The previous chapters have been concerned with non-metric geome-
try, that is, geometry without measufe. In this chapter the concept of
measure of point séts will be considered. Measure involves the corre-
lation of point sets with positive real numbers. The point sets are
the entities to be measured and for a particular point set the number
assigned to it in any correlation process is called the measure of the

point set.
Units of Measure

The above paragraph suggests that a particular point set may be
éssigned more than one number as a measure. This is a resﬁlt of the
existence of more than one "standard unit of measure." The firsf step
in measuring any point set is to select a particular point set, prefer-v
ably of the same shape as the sef to be measured, as a standard unit of
measure. This standard unit of measure is assigned the number‘l; The
set to be measured is then compared in some way to the standard unit
and a number is assigned bésed'on this comparison. Thus the use of
different stahdards results in‘thé‘assignment of different numbers to
the same point set. For example, consider the questiom, ﬂWhaﬁ is the
measure of a yard stick?” The answer could be 1 or 3 or 36 depending

on the standard upit of measure. If the standard unit is the yard,

171
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then the answer is 1. If the standard unit is the foot, then the
answer is: 3, and'if‘the staﬁdard unit is the inch, then.the answer is
36. Note that for a particular standard unit only one.nﬁmber is as-
signed as the measure. 1In thé discussion to follow a particular unit
- will be assuméd in every instance. Subject to this assumption, if a
point set has a measure, then its measure is upique. The number of
standard units that constitute a point set. S is the measurement of S,

denoted M(S).
Measuring Segments

The measure that is assigﬁed to a particular point set depends on
. the size of the set to be measured relative tO»Ehe standard unit of
measure. The standard unit of measure for segments is some arbitrarily
chosen.segment which is assigned the number 1 as a measure. Any seg-
ment to be measured is compared to this unit segmentvand assigned a
measure based on. this comparison. The measure of a segmentA;E will be
denoted "aB". ~Since congruent segments have the same size it is rea-
sdnable’to assign the same measure to each segment in any set of con-
gruent segments.

Postulate 9-1. Two segments have the same measure if and oniy if the

two segments are congruent. ' In symbols, ab ='cd if and only if ab.

=cd.
- . , —- .
Suppose ab is a unit segment and mh is any ray (see Figure 150)..
Let p be the point in'E% such that E;':”;E. For defiﬁiteness,.assume

~

m=-p-n. Let q be the point in ;z such that ;E' ab. It follows from
Postulate 9-1 that mp.= pq # ab and since ab is a unit segment ab = 1.
Thus mp.="1 and pq.= 1. Note that the model was constructed so that

EE(T;E~= p, that is, the intersection-of'E; and EE is a single point.



. mr-

173

Fur thermore E; and ;a are subsets of the same line.

a b m P q r n
et — » g -5 ~ 4
Figure 150

- Postulate 9-2, If two segments are subsets of the same line and their

intersection is a point, then the measure of their union is the sum of

their individual measures.

P UFEE. It follows from Postulate 9-2 that

In Figure 150 mq =
mq = mp + pqa = 2..

To extend this process,.suppose that point q in Figure 150 is
between p and n. Let r be the point in E% such that 5?7:‘33. Then

EEWWEE = q and mr = (E;VUVEE) 4] a?; therefore by.Postulate 9-2

(mp + pq) + qr. But mp = 1, pqg = 1 and qr = 1, therefore

mr: = (1+1)+1 = 2+1 = 3.

T, . > -
In general suppose ab is a unit segment and p3 is a ray. Let the
set.{po, Pi> Poseees P12} be a set of points in Sa'such-that Py =P and
such that the segment determined by any two consecutive points in the

set is congruent to ab. (Consecutive points are points having consecu-

‘tive subscripts@j‘_Since the congruence relation is transitive it

follows that'pbpl.;'plpza;'p2p3vetc., or that PiPit+] = for all i

PiPit+1
and j in'{0,1,2,...,11}. Since each of these segments is congruent to

the unit segment ab it follows from Postulate 9-1 that each segment has
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measure 1 (see Figure 151).

Po P1 Pp P3 P4 Ps Pe P7 Ps P9 P10 Pui P12

Figure 151

Thus pgpy = 1 and from Postulate 9-1 PPy =Lp0p1 + P1Pp = 2,
Similarly PoP3 = PgPp * PyP3 = 2+1 = 3 and PPy, = 4 ete, Thus the
measure of PoPj = ] for all je {1,2,...,12}.

The segment ;EEI; together with the points {pg,py,...,P1o} is

called a ruler. The subscript of the point Pj is the measure of the

segment pgp;. For example p,p; = 7 (see Figure 152).
07 0F7

Po. D1 P2 P3 Py, - Pj Pg P7 Pg  Pg P10 P11 PR

Figure 152

This particular ruler is a twelve unit ruler. An n-unit ruler may
be constructed by constructing n congruent copies of some chosen unit

segment on a ray such that the consecutive segments determined have



175

exactly one point in common. The measurement of an n-unit ruler is n
units. If the point set is a segment and the unit is specified, then
the measurement -of the segment is referred to as the length of the

. segment.

The rufér described above is useful for determining the approxi-
mate measure of a given segment. Let mn be a giveh segment and ;6;2 be
a six-inch ruler, In Figure 153 the segment'E; is approximately coh~-
gruent to ;SSZ; hence mn is approximately 4. Using the symbol";ﬁ“
for "approximately equal to" this is written mn'= 4, In Figure 154,
the segment od is compared to the six-unit ruler ;5;2. It appears that

the measure of PoP3 is less than.the measure of cd and that the meas-

ure of cd is less than the measure of PoPs4- Using the symbol " <" for
the phrase "is less than," PoP3 < cd < PPy - But pyp3 = 3 and

PoPy = 4; hence '3 < c¢d < 4. Thus the numbers 3 and 4 are both approxi-
mations of the méasure of cd. A better approximation of cd may be

obtained by partitioning p3p, as follows.

Figure 153

Let p be the midpoint of‘pjpa. Then p3p'U'pp4”=”p3p4 and p3p N PPy

.= p. So from Postulate 9-2, P3P, = P3P + pPp,. Hence p3p + ppy, = 1.
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But p3p‘= pp4rby the definition of midpoint, so pgp = pp, by Postulate
9-1. It follows that p3p = %. Then by Postulate 9-2, pgp = PoP3 + PgP
= Jyo= 3%, Figure 154 suggests that cd is approximately congruent to

pgp; therefore cd = 3%,

9
<

Figure 154

This example suggests that it is advantageous to partition a ruler
into subunits. For definiteness consider a six-unit ruler popﬁlsuch

that P;P is congruent to some unit segment ab for each ie {0,1,...,

i+1
5}. Let m; be the midpoint of Pi—ipi for each ie¢ {1,2,...,6} (see

Figure 155). Then Pi-lmi = myp;, ie {1,2,...,6} and in each case

pi_lmiffmipi = my. Thus by Postulate 9-1vpi_lmi = myPy and by
Postulate 9-2 p; 1P = P;_m; + mipj. Since p; ;p = 1 it follows that
Pi-1™i = %. Then pom; = POPi;l + %= 1-1+5= i-%, ie¢ {1,2,...,6}.
Thus pgmy = 3-% = 2%, pgmg = 6-% = 5%, etc., 1In this process each unit
segment in the rulef is subdivided into. two subunits each haﬁing
measure %, If each of these subunits is partitioned at its midpoint
the resulting segments will each have measure %. In general if this

process is repeated n times the measure of each subunit thus determined
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is %n. An ordinary ruler usés the "iﬁch" as a standard unit and each\
unit is subdivided into sixteen subunits. The measurement of length of
each subunit is 1/16 inch. Thus an ordinary ruler may be used to
determine the measurement of a model of a segment to the nearest six-
teenth of an inch. For example if.one measures a given segment and
contends ﬁhat the measurement is 3 3/16 inches, this means that the

measurement. is greater than 3 2/16 inches but less than 3 4/16 inches.

Figure 155

The calibrations on measuring instruments are always rational
numbers. In measuring a segment one places the initial point of the
measuring instrument at one endpoint of the segment and attempts to
match the other endpoint of the segment with one of the calibrated
points on the measuring instrument. It may happen that no calibrated
point on the instrument matches the second endpoint of the segment. In
this case one chooses the calibrated mark that seems most appropriate
in the situation and assigns the corresponding number of units as the

-measurement of the segment. Since this numbér is a rational ﬁumber,‘
measurement is referred to as a rational approximation. The accuracy
of the approximation depends on.the precision of the instrument»and the

care with which. it is used.
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Measuring Angles

The process of measuring angles is analogous to the process of
measuring segments. An angle is arbitrarily chosen as a standard unit
of measure and a given angle is measured. by comparing it to the stand-

ard ynit. As with segments, congruent angles have the same measure.

 Postulate 9-3. ‘Two angles have the same measure if and only if they
are congruent,

If M( X abc) = M( ¥ mno) then ¥ ab¢ and X mno have the same
-measure and if ¥ abc and ¥ mno have the same measure, then M( ¥ abc) =
M( ¥ mno).

‘Postulate 9-4. Let';g be a ray and ;? and E% be two rays with p and g

in one of the half-planes determined by gg. If ¥ bap and X paq are
adjacent angles, then M( X baq) = M( ¥ bap) + M( ¥ paq) (see Figure

156).

A

a v b

Figure 156

A common device used to measure angles is the protractor. The

protractor is calibrated in standard units called a 'degree.” Consider
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a semicircle with center o and radius oa. Let EE be a diametef and'sa
- be a line perpendicular to ab at point o. Let c be the pdint of inter-
-section of g? and the semicircle (see Figure 157)5‘ Then ¥ aoc is a
right angle.' Suppose the arc 4c is subdivided into ninety arcs such
that if p and q are consecutive points in. the subdiviéidn and m and n
are consecutive points, then ;Ebg';;. If x and y are any two ¢onsecu-
tive points in this subdivision, then the measurement of ¥ xoy is 1
degree. Thus M( ¥ poq) = 1 degree and M( X mon) = 1 degree. Each pair
of consecutive points together with point o determines an angle with
measurement equal 1 degree. Since there are ninety such angles deter-

mined by this subdivision, M( ¥ aoc) = 90 degrees. Thus the measure-

ment of a right angle is 90° (the symbol "°" means 'degree").
N
1d
1c
b L a
R)
Figure 157

If the arc b is sﬁbdiﬁided as was arcfga, one obtains 180 points

on the semicircle, ' These points aré numbered consecutively beginning
with point a using the set of integers {0,1,2,...,180}, The semicircle

together with the points described is a protractor.
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The approximate measure of any angle 1is obtained by placing the
protractor so that 0 is at the vertex of the angle and oa coincides
with one éide,of the angle. Oné of ﬁhe points of the protractor will
‘correspond approximately with a point on the other‘side of the angle..
The number associated with that poinf is the measure of the angle.: In
Figﬁre 158 M( ¥ mon) = 20° and M( X mop) = 105°, By defiﬁition ﬁhe
sides of an angle are not subsets of the‘same line, -Consequentiy the
measurement of any angle is iess'than 1800;‘ If ¥ mox is any acute -
angle, then‘sz is in the interibr of X aoc and thus M( X mox) < 90°.
If ¥ moy is ény obtuse angle, then 33 is in the interior of X moy;

hence M( ¥ moy) > 90°.

\ 4

qb o - a  m

'Figure 158

In Figure 158:{ mop and X ﬁoq are-supplementary angles. The sum
of the measurements of these two angles is 180°, The measurement of
X mop =105° and the measurement of ¥ poq = 85°. If ¥ rst is any
supplement of kbmop, then X rst = X poq and thus M( X rét) =‘85°.

This suggests the following postulate.
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Postulate 9-5. Two angles are supplementary 1f and only if the sum of

their measurements is 180°.
Theorem 9-~1. 'The sum of the measurements of the angles determined by a
triangle is 180°,

Proof: .Refer to Figure 159.

Figure 159

1. Let A abe be any tfiangle and'gg be the line containing a that is.
parallel to gg"

2, Let q be a point in S? such that gq-a-p.

3. Then ¥ qabig'k abc and X pac‘:'k acb by Theorem 7-1.

4. Therefore M( ¥ qab) = M( ¥ abe) and M( ¥ pac) = M( X acb) by
Postulate 9-3.

5. Since 22 H ﬁﬁ; ¥ qac is a supplement of X acb by Theorem 7-8.

6. Therefore M( ¥ gac) + M( ¥ acb) = 180° by Postulate 9-5.

7. By .Postulate 9-4 M( X qac) = M( ¥ gab) + M( ¥ bac).

8. By substitution from step 7 to step 6, M( X gab) + M( X bac) +

M( ¥ acb) = 180°.
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9. Substituting from step 4 to step 8, M( ¥ abec) + M( ¥ bac) +
M( ¥ acb) = 180°. |
Suppose A ch is a right triangle and X abc is a right angle.
Then M(‘k acb),+'M( ¥ cab) + M( ¥ abe) = 180° by Theorem 9-1. But
M( ¥ abe) = 90°. Therefore by substitution, ( ¥ acb) + M( ¥ cba) +
90° = 180° and therefore M( X ach) + M( X cab) = 180° - 90° = 90°,
Thus M( ¥ acb) < 90° and M( X cab) < 90°; hence each of these angles is

an acute angle.

Definition 9-1. Two angles are complementary angles if and only if the

sum of their measurements is 90°.

Since the sum of the measurements of the acute angles of a right
triangle is 90° it follows from Definition 9-1 that the acute angles of
a right triangle are complementary.

Theorem19-2. ‘If'two angles are complements of congruent angles, then
they are congruent, |

Proof: -Refer to Figure 160.

Y

A 4

Figure- 160
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1. By hypothesis:

90°.

(1) M( ¥ abd) + M( ¥ dbc)

90°,

(ii) M( % mop) + M( ¥ pno)
(1ii) X abd = X mnp.
2. From Postulate 9-3, M( X abd) = M( X mnp).
3. From step 1(i), M( ¥ dbc) = 90° - M( X abd),
4, From step 1(ii), M( X pno) = 90° - M( X mnp).
5. Substituting from step 2 into step 4, M( X pno) = 90° - M( % abd).
6. Therefore from steps 3 and 5, M( X dbc) = M( X pno),

7. From Postulate 9-3, X dbc = ¥ pno.
Measuring Polygons

Every polygon‘partitions the plane into three disjoint subséts,
the polygon, itsiintefior and its exterior. The union of the polygon
and its interior is called a region and the polygon is the boundary of
the region.

The measure of the boundary of a polygon is called the perimeter.
Since a polygon is the union of segments the perimeter of a polygon is
just the sum of the measures of the segments which cbnstitute the
polygon. If abede is a polygon, then the perimeter of abcde = ab + be
+ cd + de + ea. |

The measure of a region requires the introduction of a standard
unit of measure whose shape is similar to the shape of a region. The
standard unit commonly used for measuring regioné is the unit square.
The unit square is a square such that each of its sides is congruent to
a unit segment., The measure assigned the unit square is 1 and its

measurement is 1 square unit, The measure of a region is commonly
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referred to as the area of the polygon that determines the region.

Thus the area of a unit square is 1,

Postulate 9-6. If two polygons are congruent then their measures are

equal,
Rectangles

Suppose that a rectangle abed is such that ab = 2 and ad = 3 (see
Figure 161). Let m be the midpoint of ab énd n be the midpoint of cd.
‘Then wb = ma = 1 and nc'= nd = 1. Similarly let r and s be points of
be such that br = rs = sc = 1 and let h énd j be points of ad such that
ah =-hj = jd = 1. Then br H‘ZE and 3?52'23 hence abrh is a parallelo-
gram. Similarly rsjh and scdj are parallelograms., Since ab JJZE and
rh and EE are both pafallei fo ab it follows that rh and sj are both
perpendicular to ad. Therefore each.of the three parallelograms is a
rectangle. Let mnArh = p and mnNsj = q; Then mb I pr I qs | P and

-~

ma H'EE I qj I nd. Further ma = nd and ma H'Ea; hence mnda is a paral-

[=9

lelogram. Therefore mn I ad but a I be hence mn I ad “,BE' Since rh
and EE are boﬁh perpendicular to 2&, then rh and EE are both perpendic-
ular to ;E, then rh and EErare.both’perpendicular to mn. It follows |
ﬁhat each of the six quadrilaterals in Figure 161 is a rectangle.
Further'theif sides arebcongruent segments with measure 1; hence each
is a unit square. Therefore it is reasonable to assign the number 6-as v

the measure of the rectangle abcd. Note that this number is the-

product of the measure of ab and the measure of ad.

Postulate 9-7. .If .a region R is partitioned into n.subregions such
that the interiors of the subregions are disjoint, then the measure of

the region R is the sum of the measures of the subregions.
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Figure 161

Let the unit square abced be partiticned as in Figure 162, such
that j is the midpoint of ad and h is the midpoint of bc. Thus
aj =bh=jd=hc=%and ab= jh=dc=1., For the correspondence
A abh.Qé'A jhc,'zg;;'gﬁ, X abc = ¥ jhe (both are right angles) and
Th = Be. ‘Thefefore‘A abh‘:'A jhc. Similarly a ahj:;'A'jcd. Hence
abhj‘;'jhcd and thus by Postulate 9-6 M(abhj) =vM(jhcd). Then by
Postulate 9-7 M(abhj) + M(abcd) = 1 square unit, Therefore M(abhj)

square unit, and M(jhed) = % square unit. Again the measure of the

rectangular region is the product of the measures of its adjacent

185

= 1
= %

sides. This discussion provides an intuitive basis for the following

definition.

Figure 162
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Definition 9-2, The measurement of a rectangular region is the product

of the measurements of two édjacent sides. A(bcde) denotes the area of
the polygon having vertices b, ¢, d and e;

The measurements of a pair of adjaceht sides of a rectangle are
commonly referred to as the length (ﬂ) and the width‘(w) of the rec-
tangle and the measuréﬁent of a region is called the area (A). Using
this symbolism, Definition 9-2 provides a formula for determining the
measurement of a rectangulﬁfﬂregion. Thus if abed is a rectangle such
that M(a—b) ={ units aﬁq M(:g)= w units, then A(abcd) =4 w square
units. Thus a formula is used to determine the measure of a region

-rather than a tool such as a ruler or a pretractor.

Since in gctual practice the measures of the sides of a rectangle

are approximations, only the approximate measure of a rectangular
‘reglon can bebdetermined.’

The formula for determining the area of a rectangle provides a

basis for formulas for the area of regions determined by parailélograms

and triangles,
Parallelograms

Suppose abed is a parallelogram aé in Figure 163. Construct
bp _ng, and nc _1_5'3. ~ Then bp i en since they are perpendicular to the
same line. Further X bpd and X cnd are right angles. Therefore bpnc
is a rectangle. The opposite sides of a rectangle are congruent seg-
ments, therefore bp = nc, If a segment has its endpoints in the lines
containing the opposite side of a parallelogram and is perpendiculaf
to one side of the'Parallelogram, it is perpendicuylar to the other

side. Such a segment'is called gn altitude of the parallelogram
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relative to either of the sides that contains an endpoint of the seg-
‘ment., Thus‘g; is an altitude of the parallelogram abcd relative to

sides'gz and EE; ;Similarly'zzﬂis an altitude of the parallelogram abcd

relative to the sides bc and ad.

Figure 163

By Dgfinition 9-2 A(bpnc) = M(gg) . M(E;) and by Postulate 9-7
A(abéd) = A(abp).+ A(bpde), Considerithe correspondence A apb €
A dnc. Segments ab and dc are opposite sides of a parailelogram; hence
>EE;;'EZ. Relative to the parallel lines S? and.€3 and the transversal
gg,hk bap and X cdn are corresponding anglesiand therefore ¥ bap =
¥ cdn. Since X bpa and ¥ cnd are right angles, A bpa and A cnd are
right triangles. Therefore X abp is é,complement of X bap and ¥ den is
a complement of X cdn. Since k’bap‘;'k edn it fbllows from Theorem 9-2
that X abp';‘¥ dcn. Thus p apbv:'A dnc by the A.S.A. theprem, There-
fore by Postulate 9-6 A(dnec) = A(apb). Since A{abcd) = A(abp) +
A(bpde) by substitution, A(abed) = A(dnc) + A(bpde). But the union of
the regions dnc and bpde is the region bpnc. Then by Postulate 9-7

- A(dnc) + A(bpdc) = A(bpne). Therefore A(abed) = A(bpnc). But
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A(bpnc) = M(Be) * M(BP), hence A(abed) = M(bc) - M(BP). Thus the area
 of the region determined by the parallelogram abed is the product of
.the measurement of one side and the measurement of an altitude relative
to that side. The measure of the altitude is called the height (h) and
the relative éide is called the base._ The measurement of the base is
'Symbolized b,
Theorem 9-3. The measurement of a region determined by a parallelogram
is the product of thé.measurement of one of the sides and the measure-
ment of an altitude relative to that side.

In symbols, if ‘the meésurement of the base of a parallelogram abecd
is b units and the measurement of the altitude is h units, then -

A(abcd) = b + h square units.
Triangles

Let A abe be any triangle and ZE,,ZE and bo be segments such that
am lﬁ?, cn J_("’-‘? and ho _ng as in Figure 164. Each of the segments
EE, cn an& bo are called altitudes.of the triangle. An altitﬁdé is a
. segment having one endpoint at a Qertex and the other endpoint in the
line determined by the side opposite that vertex such that the segment
is perbendicular to the line, The measurement of the altitude is
called the height.(h).

CoﬁsidervA abc and the 1ine‘S? such that'gg I be., ‘Let d be the
point in Egjsﬁch that ZE'E'EE (see Figure 165). Then abed is‘a quadri-
lateral such that a pai: of opposite sides are parallel and congruent.
By Theorem 7-11, abcd iS‘a parallelogram. Let am be an altitude of the
parallelogram abed. Then am i;ﬁg'and therefore am is an altitude of

A abc. Consider the correspondence p abc € p cda. The segments ab
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and cd are opposite‘sides of a parallelogram, hence EE{;'ZE. ~Similarly
EZ;:'EE.' Since the congruence relation is reflexive, EZF;'EE. ‘There—
fore the correspondiné sides of 5 abc and p cda are congruent segments
and hence , abc = 5 cda. Hence, frombPostulate 9-6; A(p abe) =

A(p cda). By,Poscuiate 9-7, A(p abe) + A(p cda) = A(abcd) and by
Theorem 9—3‘M(abcd) = M(SE) . M(EE). Thus A(a abp) + A(p cda) =

M(EZ) . M(EE). vThen by sﬁbstitution A(A abe) + A(A abc)‘= M(EE) .
M(am) or 2A(p abc) = M(bc) ° M(;E). Therefore A(p abc) = M (be)

M(ZE). This proves the following theorem.

m

Figure 164
a d p
< : >
(
b c

m

Figure 165
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Theorem 9-4. NThe measurement of a triangular region is one-half the
9productlof the measurement of one side and the measurement of the
altitude fo that side,

In symbols let Bc be the base of A abc and am be the altitude to

the side bc. If M(bc) = b and M(am) = h, then A(a abc) = kb * h,
. The Pythagorean Theorem

The formula for the measurement 6f g rectangular region provides a
basis for developing a relation that exists between the sides of a
right triangle,

Theorem 9-5. The Pythogoréan Theorem. The square of the measuyre of
‘the hypotenuse of a right triangle is equal to the sum of the squares
of the measures of the other two sides. In symbols, if A acb is a
~right tfiangle'suchbthat ¢ is the measure of the hypotenuse, b is the
measure of one side and a is the measure of the other side, then

a2 + b = cz.

Proof: vLet';E Be a segment and q be a point in mn such that mq = a and

qn = b. Let mnop be a square having'EE as one side. Since the sides

of a square are congruent segments, mn = no

o~ —

‘pm (see Figure 166).

Let r, s and t be points on ;3, 3;, and-;E respectively such that

mqg = nr = os = pt = a, Then qn.= ro = sp. = tm = b,

1. Consider A tmd, A-qnr, A ros, and A spt.
2. Each is a right triangle, tm T qn. :';E'E'EE and EE';
therefore the four triangles are mutually congruent by. the S5.A.S.

theorem.

n{

—
r =

. 3. Thus tq E— -? Let the measure of each of these be

denoted by. c,
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‘Since X tqr is a right angle and EE
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Since ¥ mqt and X tqn are supplementary angles, M(X mqt) +

M(X tqn) = 180°.

»But:M(& tqn) = M(X tqr) + M(X rqn); hence M(X mqt) + M(¥ tqr) +

vM(k rqn) = 180°,

Since X mqt and ¥ mtq are complementary, M(¥ mqt) + M(X mtq) = 9¢°.

n

But X nqr = X mtq, so M(X nqr) = M(X mtq). |
Therefore M(k mqt) + M(X nqr) = 90° by substitution.
From steps 8 and 5 it follows that M(X tqr) = 90°.
Therefore.az l.a;'

Similarly rs J;E;-

"

Therefore qt H“;g and since qt = rs it follows from Theorem 7-11

that the quadrilateral tqrs is a parallelogram.

o~ ——

q

"

~

Ts E?, the parallelo-
gram tqrs is a square,

From step 3 and Definition 9-2, A(tqrs) =c +« c'= éz square units,

[e]

N

Since mn.= a + b, A(mnop) = (a + b)(a + b) = a” + 2ab + b2 square

units,

From steps 1. and 2 and Theorem 9-4, A(p tmq) = A(p qnr) = A(p rbs)
= A(a spt)v= Lab square units,

From Postulate 9-7 A(mnop) = A(tqrs)_+'A(A tmq) + A(A>an) +

A(p ros) + A(a spt).

By substitution? a? + 2ab + b2 = ¢2 + %é§‘+ kab + %ab + kab or

a + 2ab + b2 = ¢2 + 2ab.

Therefore a? + b2 = c?.
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s

Figure 166

Measuring Circles

The boundary of a circular region is called the circumference and
its measure is symbolized by the leﬁter el Experimeneation with
- various circular objects having different diameters will suggest that
the ratio of the measure of the circumference to the measure of the
diameter is the same number for all circles. One may conduct such
experiments by measuring the circumference and diameter of vegetable
cans or similar circular objects with a tape measure and dividing the
- measure of the circumference by the measure of the diameter. 1In
-advanced mathematics it is established that this ratio is the same for
all circles and is approximated by the number 3 1/7, This number is
denoted by the Greek letter m. Using decimals, m'= 3.1416. .If the
measure of the diameter of a circle is symbolized by the letter '"d",
then c¢/d .= 1. The measure of the radius of a circle is denoted r and
since a diameter is the union of 2 radii, d = 2r. Therefore c¢/d =
¢/2r =.m and ¢ = 2mr. The expression ¢ = 2 r is the formula for the
measure of the circumference of a circle in terms of the radius,

Consider a circle with center o and an .inscribed polygon
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P1Py---Ppo Such that p;piyg ;'Pjpj+l for each i and je {1,2,...,20]}.
That is, the sides of the polygon are mutpyally congruent segments (see

Figure 167).

Py
P1'1
VP12
P13
P15 p1g P17
Figure 167

Such a polygon is called a regular'polygon, that is a polygon is a
regular polygon if all sides and angles are éongruent. A regular poly-
gon having n sides is called an n-gon. I£ P; and Pj4p are consecutive
-vertices of an inscribed n-gon and o is the center of the circle, then
P;OPi4+1 is avtriangle. Any other triangle determined by consecutive
vertices of the n~gon and the center of the circle is congruent to
A PjOPi4q since the corresponding sides are congruent segments. Thus
A P30P, is éne such.triangle. Thus an inscribed n-gon determines a set

of n mutually congruent triangles in the interior o¢f the circle. The
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perimeter of the n-~gon is an approximation of the measure of the cir-
cumference of the circle and the sum of the areas of the triangular
‘regions is an approximation of the area of the circular region. Larger
values of n give rise to bétter approximations. For large values of n,
the measure of the altitude of the associated triangle is approximately
r.

Suppose the measure of the side of an inscribed n-gon ish . ;iheh,

the perimeter is approximately n +f . Thus c”==n -,ﬂ. The area of

I8

each of the associated triangular regions is approximately % - r . f;
thus the area of the circular region is approximately n « % « r -£.=
Yr «n L. Butn -£=cand c = 21 r; hence the area of the circular
region is approximately ¥ - r *c =% .. v + 2Mr' =1 r2. Since the
n-gon is inscribed in the circular region, the perimeter of the n-gon
is less than thé circumfefence of the circle. That is, n -12<:c. Also
the altitude of each associated triangle is less than the fadius‘of the
circle. Consequently the area of any. inscribed n-gonal fegion is less
than the number T r2.

Now consider an n-gon such that the sides are tangent to the
circle, called a circumscribed n-gon (see»Figure 168). For large
values of n the perimeter is an approximation of the circumference of
the circle, but is greater than the circumference. 1If each side has
measure 's th%n n-s >'¢, but n -+ s < c. The area of the n-gonal

.regionisn % +r . §=%°+r *n. s butn. s=c=2nr; hence
the area of the circular region is approximately %r - 2mrr = mr”. vIn
this case the area of the n-gonal region is greater than 1 r2 since
n- s>c. Henée the area of any circumscribed n-gonal region.is

greater ‘than the number r?.
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Figure 168

The examples in the last two paragraphs suggest the following
definition.
Definition 9-3. 1If r is the measure of the radius of a circle, then

the area of the circular region is m r2 , that is A(Q) = m rz.




CHAPTER X
POINT SETS IN 3~SPACE

The point sets previously considered have been subsets of the
plane. This chapter will consider certain point sets that are not
subsets of a plane.

A line may be thought of as a set in l-space. Subseté of the
plane are sets in 2~-space, In Chapter II, it was noted that two inter-
secting lines determine a plane. 1In particular two perpendicular lines
determine a-plane and thusv3 ﬁutually perpendicular lines determine
3-space, In the remainder of this discussion 3-space will be»feférred
to as space. |

A plane partitions.épace into three disjoint subsets. One is the
plane and the other two are half~spaces. Two points are in the same
half-space if and only if the éegment determined by the points does not
intersect the plane that determines the half—spaée.

In Ghapter II it was noted thét if two planes intersect, then the
intersection is a line. SuPpose.planes M and N intersect in line'gg.
The line 33 determines two half-planes in M., Let ¢ be a poiﬁt in one
of these half-planes. Similarly let d be a point in one of the half-
planes in N determined by Sg; The union of the line gg,_the c-side of
2? and the dvside of Sg is called a dihedral angle (see Figure 169).
The line gg is called the edge of the dihedral angle.and the two half-

planes are called faces of the dihedral angle,

196
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I
|
I
P od
I

Figure 169

Let m be a point in the edge Sg of a dihedral angle. ILet p be a
point in one..face of the angle and q be a point in the other face such
that fn_p)_]_sl-)) and ?n—q)_l_sg Then X pmq is called a plane angle of the
dihedral angle. A dihedral angle is a right dihedral angle if and only

if the associated plane‘angle is a right angle.

‘Definition 10-1. Two plénes are perpendiculér if and only if they
determine a right dihedral angle,

Let M be a plane and gl-)) and €2 be lines in M such that (a?ﬂﬁ-= P.
The line %a) is perpendicuiar to M if and only if f;g J_(a-l? and ‘5‘1)._[_ (?

vDefinitionllO-Z. A line ﬁg is perpendicular to plane M at a point p

if and only if gz is perpendicular to at least two distinct lines in

M that contain p (see Figure 170).
8imple Closed Surfaces

A simple closed surface is a set of points that partitions space
into three disjoint subsets, called the interior of the surface, the
exterior of the surface, and the surface. A simple closed surface

which is the union of a finite number of polygonal regions is called a
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polyhedron, The polygonal regions are called faces of the polyhedron
and any segment determined by the intersection of two faces is called

an edge of the polyhedron.

Figure 170

Prisms

A proper subset of the set of polyhedrons is the set of prisms. A
prism is a polyhedron such that two of its faces are congruent polygons
in parallel planes and its other faces are regions determined by paral-

lelograms. The two parallel congruent faces are called bases of the

prism and all other faces are called lateral faces. If the bases of a

prism are parallelograms, then. the prism is a parallelepiped. If the

bases are rectangles, then the prism is a rectangular prism, and if the

bases are triangular, then the prism is a triangular prism (see -Figure

171}, An altitude of a prism is a segment having its endpoints in the

two planes determined by the bases such that the segment is
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perpendicular to the two‘plénes. _Each lateral face of a prism deter-
mines a plane that intersects the plaheé determined bf the bases. Thus
each lateral face together with a base determines a dihedral anglé.» 1f
each dihedral angle so determined is a right.dihedrél angle then the
prism is a right prism. That is, a prism is a right prism if and only
if its lateral faces are perpendicular to its bases. 1If each face of a

right prism is a square, then the prism is a cube.

\

141
Paralleiepiped l
(
' l
VA
e
» P
Rectangular prism Triangular prism
Figure 171
Cylinders

Consider two parallel planes M and N. Let C be a simple closed
curve in M and H be a simple closed curve in N such that Clg'H. VLet P
.be a point in C aﬁd q be a point in H. Let S be the union of all seg-
ments xy such that xe C, ye‘H and ;; I Pq. Then the union of region C,

‘region H and region S is a cylinder, The regions determiped by the
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curves C and‘H are called the basés of the cylinder. 1If it is possible
~ for each segment in S to be perpendicular to the planes determined by
the bases, then the éylinder'is a right eylinder. If the curves C and
H are circles,,then'the cylinder is a ¢ircular cylinder. An ordinary
vegetable can is a model of a right circular cylinder (see Figure 172).
An altitude of a cylinder is é,segment having its endpoints in the
plane determined by the bases such that the segment is perpendicular to

these planes. The set S is called the lateral surface of the cylinder.

Figure 172

Cones

Consider a simple closed curve C in a plane M and a point p such
that pé M. The union of the region determined.by the curve C with the
set of all segments determined by points in curve C and the point p is
a cone. ‘The_altitude,of the cone is a segment with p as one endpoint
and the other endpoint in the plane of curve C Such that the segment is

perpendicular to the plane. The point p is called the vertex and the
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region determined by C is called the base of the cone. If the curve C
is a circle then the cone is a circular cone. If the intersection of
the altitude of a circular cone with the plane of the base is the

center of the base, then the cone is a right circular cone (see Figure

173).

Figure 173

Pyramids

Consider a cone in'which the curve C is a polygon abed in a plane
M aﬁd a point p not in M. Any two consecutive vertices of'tﬁe polygon
together with p determines a triangle. The union of the triangular |
regions thus determined with the polygonal region is called a pyramid
(see Figure 174). The polygonal region is called the base of the
pyramid. The triangular regions are called lateral faces and p is
called the vertex of the pyramid. The altitude of the pyramid is the
segment';E where p is the Vertex, q is in the plane of the base and Ea

is perpendicular to the plane of the base.
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Figure 174

Sphere

The last simple closed surface to be conéidered is the sphere.
Let o be a point in space and ab be a segment. The set of all poiﬁts )
in space such that 3;}: ZE is a sphere. 4If q is any point in the
sphere, then Ea is a radius of the sphere. The point o is called the
centef of the sphere (see Figure 175). A diameter is a segment that

has its endpoints on the sphere and contains the center of the sphere.

Figure 175
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If a plane intersects a sphere, then the intersection is a point
or a circle. If the intersection is a point, then the plane is said to
be tangent to the sphere. If‘a plane that intersects a sphere contains
the center of the sphere, then the intersection ofvthe plane and the

sphere is called a great circle of the sphere.

Volume

The measurement of a region in space determined by a simple closed
surface is called its‘volume. The standard unit of measﬁre for volume
is a unit cube, that is a cube such that each edge has length 1 unit.
The volume bf a unit cube is 1 unit « 1 unit -+ 1 unit = 3 cubic units,
The volume  of a region in space is the number. of unit cubes that con-

stitute the region.
Prisms

Consider a prism having a parallelogrém for a base and an altitude
having measurement 1 unit. If the measurement of one side of the
parallelogram is b units and the meésurement of the altitude is h
units, then the area of the parallelogram is b + h square units. That
is the number of Square units that constitute the base is bv- h. . Since
the measurement of the altitude of the prism is 1 unit, then each
square unit in the base gives rise to a cubic unit in the region. Thus
the Voluﬁe is 1« (b -.h) cubic units (see Figure 176).

In general if the area of the base of a prism is b * h square
units and the measurement of the gltitude is a units, then the volume is

given by the formula V= a - b « h (see Figure 177),.
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Figure 176

T~

Figure 177

If a prism:is a triangular prism, then its base is a triangle, If
the measurement of one side of the triangle is b units and the meas-
urement of the éltitude to that side is h units, then the area of the
base of the prism is'%b * h square units, If the measurement of the

altitude of the prism is a, then the volume is %b - h - a cubic units.
Cylinders, Cones and Pyramids

The formula for the volume of a circular cylinder is determined in
the same manner as the formulas for the volumes of prisms. If the.

measurement of the radius of the base of a cylinder is r units, then
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the area of the base is m rz square units, If the measurement of the

2, h cubic units,

altitude is h, then the volume is given by V= nmr

The formula for the volume of a cone results from a relation that
exists between the céne and a cylinder such that the altitude of the.
cone is congruent to the aititude of the cylinder and the base of the:
cone is congruent to the base of the cylinder. In Figure 178 the
measurement of the radius of the base of the cone is r:units and the
measurement of the radius of the base of the cylinder is r units. The
measurement of the altitudes of both regions is h units. If a cone and
a cylinder are‘related in this manner, then the volume of the cone is

1/3 of the volume of the cylinder. Thus the volume of a cone is given

by the formula Vv = 1/3 7 r2 . h cubic units.

Figure 178

The volume of a pyramid is related to the volume of a prism in the
same way that the volume of a cone is related to the volume of a cylin-

der, Thus for a given pyramid and a given prism, if the base of the
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pyramid is congruent to the basé of the prism and their altitudes are
congruent, then the volume of the pyramid is 1/3 the volume of the
prism. Therefore the volume of a pyramid is given by the formula
V"= 1/3_Ab * a cubic units where Ay represents the number of square
units in the base, This\number‘may be determined from one of the

previous formulas if the base is a parallelogram or a triangle.
Spheres

The -volume of a sphere is related to the volume of a cylinder and
the volume of a cone as follows. Suppose the measurement of the radius
of a given sphere is r units, Consider a cylinder and a cone such that
the measurement of the radius of the base of each is r units and such
that the measure of the altitude is 2r units. Then the volume of the
sphereris‘ﬁhe-volume of the cylinder minus: the volume of the conme.

Hence the formula for the volume of the sphere is:

Vve=mr? . (2£) - 1/3 mr? . (2r)

omr3 -~ 2/3 13

4/3 1 r3 cubic units

L}

(see Figure 179).

Figure 179



CHAPTER XTI
CONCLUSION

The development in this discourse was structured sﬁecifically to
be of assistance in the training of eleméntary school mathematics
teachers.“lt is hoped that the study of this material will provide the
reader with sufficient depth of understanding to treat, with confidence,
the geométric concepts that occur in the elementary school mathematics
curriculum. No topicé are included that are not relevant to the devel-
opment of such an understanding. This does not mean that the develop-
ment conéists 6;ly of material that is included. in the elementary
school mathematics curriculum, ‘Modern mathematics education requires
on the part of the teacher a much greater comprehension than would be
expected from elementary school students,

The topics that were included in the study were considered appro-
priate in the sense that each belongs to one or more of the following
caﬁegories.

1. Topics that occur in the elementary school curriculum.

2. Topics that contribute to an understanding of the relations
that exist between the geometricbconcepts that océur in the
elementary school mathemétics curriculum,

3. Topics that help provide a basis for independent study in
mathematics.

Relative to today's textbooks, a reasonably accurate determination

207
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of topics in the first category is possible, However, it is only
reaéonable to conclude that Curricula will continue to change. Conse-
quently the concepts.in tomorrow's texts may be expected tgo differ from
the concepts found in present editions. This suggests that the topics
~in the second and third categories are the most significant for elemen-
tary school mathematics teachers.,

Modern pedagogical procedures stress the importance of the struc-
ture of a discipline. Regarding the nature of structuré, Bruner
comments as follows:

Grasping the structure of a subject is understanding it

in a way that permits many other things to be related to it

meaningfully. To learn structure, in short, is to learn how

- things are related ( /2/, p. 7).

Mathematics education has often been criticized for offering
students a collection of seemingly unrelated topics to be memorized.

Aﬁ objeétive of modern mathematics education is to present. the subject
in a way such that new ideas are developed through past experiences and
understandings aﬁd also in a maﬁner that may contribute to the develop-
ment of related concepts to be learned. Teaching mathematics in this
manner requires an understanding of structure. Therefore relatiopns
‘such as congruence, parallelism and perpendicularity are emphasized far
morevin this study than in the elementary school curriculum,

In view of the ever changing curriculuym it would be inappropriate
to expect that preservice training could be extensive enough to last a
lifetime. As a consequence a teacher must expect to continue his own
education indefinitely.‘ Certainly most teachers will be involved in
some formal training beyond the Bachelor's degree, either in in-service
study or in summer school.  Nevertheless, it is important that every

teacher be prepared to do independent study in any field in which he



209

w
e

teQEhes. It follows that formal courses ehould be designed so as to
prepare the student to do independent study; Thus topics in the third
cetegory are appropriate in this study.

Mathematics is by its nature a deductive-science. Consequently an
understanding of. the nature of deductive inference is prerequisite to
independent study in mathematics., ‘This development places a great deal
of emphasie onn-deductive techniques such as conditionai statements, the
nature of definitions, direct proofs and indirect proofs. While these
- topics are not a part of the elementary echool curriculum they are em-
phasized here for two reasons:

1. An understanding of these topics contributes to an.understand-

ing of the structure of geometry.

2. Most mathemaeics texts assume that the reader is familiar with

“these techniques”and therefore an understanding of these
-topics is essential to independent study in mathematics,

An effort has been made to make this material readable. The
proofs and explanations are detailed. The sequence of the development
is such that new ideas_are introduced in terms of previous understand- .
ings or are based on intuition and experience, However, the mathemati-
cal background of those for whom‘it is intended is limited, .Consequenb'
~ly this material is not intended for independent study but rather for
use in an organized class under the supervision of a competent instruc-
tor.

In the interest ofvproviding material for independent study in the
area of elementary school geometry thie writer suggests as a further
-study a programmed dévelopment of geometry designed specifically for

the elementary school mathematics teacher.
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APPENDIX A

SUMMARY OF GEOMETRIC CONCEPTS OCCURRING
IN SELECTED ELEMENTARY SCHOOL
MATHEMATICS TEXTS
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Number of Series

Number of Texts

Concept . in which - in which Grade
Concept Occurs Concept Oceurs »Level(s)
Acute Angles 2 k) 5-6
~Acute Triangles 1 l‘ 5
Altitude 3 4 5;6
Angles 7 - 24 2-6
Arcs 3 5 5=6
Area 7 16 3-6
Area of Circle 4 6 3, 5-6
_Area. of Triangle 5 7 3, 5-6
“Area of Rectangle 7 14 3-6
“Area. of Square 6 11 3, 5-6
Base of:Parallelogram 3 5 5-6
Base of Pyramid 1 | 1 6
Base of Triangle 4 6 5-6
Center of Circle 4 9 2-6
Central Angle 3 3 4,6
Chord 4 4 3,6
Circle 7 31 -1-6
Circumference 2 2 5-6
Concentric Circles 1 1 6
Cone 4 5 4=6
Congruence 4 11 2-6
Congruent Angles 4 9 2,3,5,6
Congruent Segments 3. ‘9 2-6
Congruent Triangles 2 6 2,3,5,6
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» Number of Series Number of Texts
Concept in which in which Grade

Concept Occurs Concept Occurs  Level(s)
Congruent Polygons ‘_ 1 1 3
Construction | 3 5 5-6
Bisect Angle 2 _ 3 5-6
circle 3 3 56
Copy Angle . 2 _ 4 5-6
Copy. Segment 3 4 5-6
Copy Triangle 3 4 5=6
Parallel Lines 1 1 | 6
Perpendicular Bisector 2 3 5-6
Perpendicular Lines 2 2 6
Right Angle : 1 ' 1 . 6
Triangles | 3 3 5-6
Cube | | 7 ' 12 3-6
Cubic Meaéure © 5 5 6
Cylinder 4 K 4-6
Diagonal 4 . .6 4-6
-Diameter 7 12 3-6
Dihedral Angles 1 . 1 5
Edge of a Cube 4 7 ' 3<6
Endpoint . \ 4 14 1-6
Equilateral Trianglé 5 _ 11 3-6
Face of a Cube ' 4 7. . 3-6.
Equiangular Triangie l‘ 2 -5-6

Height ' 5 8 1,5,6
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Number of. Series

Number of Texts

~Concept in which in which Grade
Concept Occurs Concept Occurs  Level(s)

Half-plane 1 1 5
Hexagon -3 5 4=6
Hypotenuse 2 4 46
Ingcribed Angle _ 2 2 4,6
Intersecting Lines 7 10  2,4~6
Intersecting Planes 2 2 4=5
Isosceles Triangle -5 9 3-6
Isosceles Right Triangle 1 1 4
Legs of a Right Triangle 1 2 4,6
Length 7 41 1-6
-Lines 7 27 1-6
Measurement 7 32 1-6
Measurement of Angles 5 8 4-6
Measurement of Circles 2 3 5-6
Measurement of Cubes 2 2 4,6
Measurement of Cy1inders 1 1 )
Measurement of Squares 5 5 4-6
Measurement of Triangles 3 3 5-6
Midpoint 2. 3 4=5
Obtuse Angle 2 3 5-6
‘Parallel 6 10 4-6
Parallel Lines 6 14 2,4-6
Parallelograms 5 8 4-6
Pentagon 3 4 4-6
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Number of Serles- Number of Texts

Conceptv ~in which Grade
Concept Occurs ~Concept Occurs  Level(s)

Perimeter -17 3-6
Perpendicular Bisector 2 6
Perpendicular Lines 10 4-6
Pi 1 6
‘Planes .14 4-6
Plane Figure 6 4-6
Points .29 1-6
Polygon | ‘18 2-6
Prism 9 4-6
Protractor 6 4;6
Pyramid 8 4L-6
Pythagorean Theorem -3 4,6
Quadrilateral 20 1-6
‘Radius 11 3-6
Ray 17 26
Rectangle 32 1-6
Rectangular Prisgm 11 4-6
Rectangular Byramid 7 4-6
Region 13 - 1-6
Rhombus 4 4-6
Right Angle 24 -2-6

Right Triangle 15 3,4-6
- Segment v26 1-6
Sides 16 1-6
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Number of Series “Number of Texts

Concept ' in which in which Grade
Concept Occurs Concept Occurs Level(s)

‘Simple Closed Figure 4 | n | 3-6
Skew Lines ’ 1 ‘ 1 4
Space | 2 4 2-4,6
Space Figures 2 ’ '3 _ 4=6
Space Geometry ' 1 ‘.2 5=-6
Sphere 5 , 10 . 3-6
' Square 7 - 32 , 1-6
Sums of Angle Measureﬁent 2 2 . 6
Supplementary,Angle 1 1 6
Tangent Circles 1 1 6
Trapezoid | 2 4 4-6
Triangle ‘ 7 .35 1-6

Triangular Prism ’ .6 7 4-6
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. Definition
3-10

- 3-2.

3-3,

3-4.

4-6.

4-7.

5-1.

5=2.
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. DEFINITIONS

Space is the set of all points.

A set "g" of points is said to be collinear if and only if
every point of the set-belongs to the same line.

Two lines are parallel if and only if they are 1n the same
plane and their intersection is empty.

A line L and a plane P are parallel if and only if their
intersection is empty.

Two lines are skew if and only if their intersection is
empty and they do not lie in the same plane.

Two planes are parallel if and only if their 1ntersect10n is
empty.

The set consisting of the points a and b and all of the
points between a and b is called a segment.

The ray ;t is the union of the segment ;E and the set of all

points p such that b is between-a.and p.

An ‘angle is the union of two noncollinear rays having the
same endpoint. :

Avpbint p is an element of %ge interior of X abc if and only
if p is in the a-side of bé and p is in. the c-side of

- If X abec is a subset of a plane M, then the set consisting

of all points of M that are not in X abc or the interior
of X abc is called the exterior of ¥ abc.

A set of points S is said to be a convex set if and only if
for every two points a and b of S the segment @b is also
in S. . : :

A polygon is a simple closed curve which is the union of
segments.

Let X abc and ¥ mno be two given éngles. Let p be the
p01q£>;n ray EE such that np ¥ ba, and q be the ppeint in
ray no . such that Tiq = B’. Thén k mno ¥ X abc if and only
ifpq =

If a, b and ¢ are three noncollinear points, then ab\chlJca
is a. triangle. :



Definition

5"3.

6-1.
6-2.
6-3.

67'40

6+5.

6"6_-
6‘7.

6-8 .

6-9 .

6~-10.
6-11,

6-12.

~ pabc = pmno if and only if ab = mm, EZ = no and ac::
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Two poiygons are congruent if and only if there is a
partition of the polygon into triangles such that the
corresponding triangles are congruent.

A triangle is an isosceles triangle if and only if two of
its sides are congruent segments,

A abc is.an equllateral triangle if and only if ab = Pc and
bc = &c, that is if all of its sides are congruent,

A point p is the midpoint of a segment ab if and only if p
is an interior point of ab and ap = pb.

A point p is in the interior of p abc if and only if p is
in the interior of each of the three angles of the
triangle,

-
The- bisecnpr of X paq ‘is a ray ao in the interior of ¥ pag

such that ¥ pao ¥ X oaq.

\ﬂND angles are adjacent angles if and only if they have a

‘common vertex, a common side and their interiors are
"disjoint sets,

Two.angles are supplementary adjacent angles if and only if

(1) they are adjacent angles, and (2) their non-common
sides are opposite rays.

~Let & mno be any angle and let ;g be the ray opposite ;%.

Then. k abc-is a supplement of ¥ mno if and only if

"X abc'F ¥ ons. That is, ¥ abc is a supplement of X mno
if and only if ¥ abc is congruent to an angle that is
.adjacent to and a supplement of X mmno.

Two éngles determined by two intersecting lines are verti
cal angles if and only if their sides determine pairs of
opposite rays.

Two intersecting lines L and M are perpendicular lines if
and only if the adjacent gngles determined are congruent.

-¥ abc is a right angle if and only if X abc is congruent to

-one of its supplements.

Let ¥ abc be a right angle: (1) X abd is an acute angle if
and only if B is in the interior of X abec. (2) X abe is
an obtuse angle if and only if E% is in.the interior of
X abe, :



Definition

7-10 .

7-2,

7-3'

7-4.,

7-6,

7"7_.

7-8.
7-9 .

8"1-
8-2.
8-3.

9"10‘
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Letlgg and.ez be two cpplanar lines and let gg be a trans-
-versal intersecting mn and &d in the distinct points a and
b respectively. Then {X bam, X abd} is a set of alternate
interior angles if and on}y if m and d are on opposite
sides of the transversal

Let 7 and &2 be cut by a transversal B such that X mab and
X dba are alternate interior angles. The angles in
. {% mab, ¥ cbq} are corresponding angles if and only if
¢ and q are points such that the angles in. {¥ e¢bq, ¥ dba}
are vertical angles,

Two lines are parallel if and only if they are coplanar and
their intersection is empty.

A quadrilateral is a convex quadrilateral if and only if its
sides are such that no side of the quadrilateral inter-
-sects the line determined by the opposite side.

If>ébcd.is a quadrilateral then a point is in. the interior

of abed if and only if it is in the interior of each of
the angles of the quadrilateral.

Two segments ‘ab and cd are parallel segments if and only
if 4B and are parallel lines.

A quadrilateral is a trapezoid if and only if at least one

pair of opposite sides of the quadrilateral are parallel
segments,

A quadrilateral is a parallelogram if and only if the oppo-
site sides of the quadrilateral are parallel segments.

A rectangle is a parallelogram which determines right
angles,

Let o be a point in a plane M and ab be a segment. The set
of all points p in the plane M such that op = ab is a
circle.

If 0 is a circle in a plane M, then a point pe M is in. the
interior of circle O if and only if the segment ©Op does
not intersect the circle.

If O is a circle with center o and radius S; and K is a

circle with center k and radius kq, then circle 0 ¥ circle
K if apd only if op = Kq.

Two angles are complementary angles if and only if the sum
" of their measurements is 90°.
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Definition .

9-2. The measurement of a rectangular region is the product of
the measurements of two adjacent sides.,

9-3, If r is. the measurement of the radius of a circle, then
© " the _area of the circular region is T r2, that is A(Q) =
mre. i oo

10-1. Two planes are perpendicular if and only if they determine
a right dihedral angle.

10-2, A line ﬁz i1s perpendicular to plane M at point p if and
only if 1s perpendicular to at least two distinct
lines in M that contain p.
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Postulate
3-1.
. 3-2,

3-3.
3-4,

3-5 .

3-6.

3-7.
4-1,

4-2,

4-3.
5-1.

5-2.

5-3.

6-3.
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If "1" is a line, then "L'" is a set of points,

A line is a proper subset of space.

If a and b are two different points, then there is exactly
one line that contains both a and b.

If two distinct lines L and M intersect, then the intersec-
tion is exactly one point,

If a plane contains two points of a line, then the plane
contains every point of the line; that is, the plane
contains the entire line.

If a, b and ¢ are noncollinear points then there is exactly
one plane that contains a, b and c.

Every plane contains more than one line.
If a is between b and ¢, then a, b and ¢ are collinear,

If a, b and ¢ are three points in the same line, then exact-
1y one of the points is between the other two.

Let L be a line in a plane M, If a and b are two points of
M such that a and b are not in L, then a and b are on the
same side of L if and only if 3bNL = { }.

If ab is .any segment and Eg is any ray, then there exists
exactly one point p in EZ such that the segment ¢p is con-
gruent to the segment ab.

For all segments: (a) ab =.ab, (b) if Eﬁ;; ed then d = ab,
and (c) if 36 = cd and cd = pq then ab = Pq.

Let X abc be any angle and L be any line in a plane M. Let
H be one of the half-planes in M determined by L. If pq
is any ray in L, then there exists exactly one ray P

~

with r in H such that ¥ rpq = X abc.
If ab is any segment, then ab has exactly one midpoint.

Let A abc be any triangle and for definiteness consider
X bac, then: (1) If q is an interior point of Bc, then q
is in the interior of X bac. (2) If d is any point in the
interior of ¥ bac, then every point of the ray ad except &
is ip the interior of X bac. (3) If @ is any ray in the
interior of X bac, then ad intersects the side Bc is an

""”,'""inter,ior._upomt;_ t-of T)—(.::.' w. VA

All right angles are congruent.



Postulate

7-1.

8‘10

8-2n

9-1.

9-2.

9-3.

9-4,

9-5.

9-6,

9-7.
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If L is a line and p is a point not in L, then there exists
one and only one line M containing p, and coplanar with L
such that M is parallel to L.

~__'

If pq and mn are diameters of the same circle, then 'E

The Two Circle Postulate. Let ok ab and mn be distinct v
segments. Let q be_ the point in BE such that oq = ab and
p be the point in KB such that kp.= mm, then: (1) If
og OKp is a segment, then the circle with center o and
radlus ab intersects the circle with center k and radius
mn in two points on oppaosite sides of %?. If the two
circles intersect on one slde of ﬁ? then they will inter-
sect in the opposite side of YK, (2) 1f 5qNkp is a
point, then the two circles in statement (1) intersect in
one point and are called tangent circles. (3) If opNkp. =
{ }, then the circles do not intersect,

Two segments have the same measure if and only if the two
segments are congruent.

If two segments are subsets of the same line and their
intersection is a point, then the measure of their union
is the sum of their individual measures.

Two angles have the same measure if and only if they are
congruent.

- Let Zg be a ray and Z; and'za be two rayg with p and q in

~one of the half-planes determined by . If X bap and
X paq are adjacent angles, then M(X bap) = M(x bap) +

‘M(x paq).

Two angles are supplementary if and only if the sum of their
measurements is 1809,

If two polygons are congruent then their measures are equal.

If a region R is partitioned into n subregions such that the
interiors of the subregions gre disjoint, then the measure
of the region R is the sum of the measures of the sub-
regions.
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