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CHAPTER l 

INTRODUCTlON 

The traditional elementary school mathematics curriculum placed 

little or. no eIJJphasis on geometry. Consequently geometry hai; not been 

a part of the undergraduate preparation of prospective elementary 

teachers. As a result of the recent revolution in mathematics eduaa-

tion, geometry: has permeated the elementary school mathematics curric.-

ulum. A few years ago the study of geometry begin in the tenth grade. 

Today it may begin in kindergarten. Thus today's elementary school 

mathematics teacher is serioul,!ly handicapped without some formal 

preparation in the areaof geometry. 

Need for the Study 

Evidence of the significant role of geometry in today's elementary 

school mathematics curriculum is found in current periodicals regard-

ing mathematics education. Dr. Nicholas J. Vigilante reports as 

follows: 

As you survey 'i'HE ARITHMETIC TEACHER, for example, you 
may discover the following statistics: , Between the years 
1954 and 1960 it contains one article on the topic "elemen-. 
tary schoql geoniet:t"y." In contrast, approximately twenty .. 
fiye_such article$ appear between the years 1961 and 1966 .· 
(ll]J, p. 453). 

As·minimum preparation.for elementary school mathematics teachers 

the Comm;Lttee on the Undergraduate '.Program in Mathematics (COP~) 

recommends four seme~ter courses, one of which is geOltletry. The 
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geometry course is described as follows: 

INTUI'L'IVE FOUNDATIONS OF GE;OMETRY. A study of space, 
plane, and line as sets of points, considering separation 
properties and simple closed curves; the triangle, rectangle, 
circle, sphere, and the other ;figures inthe plane and space 
considered as sets of points with their properties developed 
intuitively; the concept of deduction and the beginning of 
deductive theory based on tpe properties that have been 
identified.in the intuitive development; concepts..;...Qf measure­
ment of the circle, volumes of familiar solids (/9/, p. 990). 

· These recommendations assume a full year of algebra and a full year of 

geometry in secondary school. 

As a consequen~e of the new role of geometry in the elementary 
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school curriculum, many colleges and universities now include an under-

graduate ~ourse in. geometry for elementary teachers. Traditionally 

·undergraduate texts in geometry were designed primarily for mathemat-

ics majors. Thus.there is a.need for·resource material designed for 

elementary teachers in the area of geometry. 

Statement of the Problem 

Specifically stated the problem in this study is to present a 

geometric development that is: 

1. Consistent with the spirit of modern mathematics education. 

2. A:ppropriate as resource material for pre-service and in .. 

service training for elementary school mathematics teachers. 

The second criteria presents the subproblem of identifying the 

geometric conce:pts that are present in the elementary school mathemat-

ics curriculum. 

Scope 

Since el,ementary teachers are expected to be proficient in a great. 
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many areas, the time allotted to the study of geometry will be limited. 

Thus the concepts to be studied should be well defined. A survey of 

selected series of elementary.school mathematics texts reveals that 

more than one hundred geometric concepts are now included in the 

elementary school mathematics curriculum. Certainly_ these concepts 

should be included ip a geometric development designed for elementary 

teachers. +hus the concepts that are present in the elementary school 

mathematics curriculum provides a basis for the development. 

Modern mathematics educ,;1.tion involves more than the presentation 

of basic concepts such as vocabulary, facts a.nd principles. The basic 

concepts must be related so as to expose the structure of the disci-

pline. In summarizing a discussion reg1:l,rding the importance of 

structure, Dr. Jerome S. Bruner comments as follows: 

.. the curriculum of a subject should be determined by 
the most fundamental understanding that can be achieved of 
the underlying principles that give structure to that sub­
ject. Teaching specific topics or skills without making 
clear their context in the broader fundamental structure of 
a field of knowledge is uq.economic1:l-l . , .. uJ], p. 31) 

, 
Regarding knowledge transfer; Dr. Robert M. Gagne comments: 

.The student needs to be encouraged to "think about" the 
relationships among various categories of knowledge he has 
acquired and to make his own applications to new situations 
and problems ••.• there is a.good deal of agreement that 
knowledge should be used for thinking and that thinking 

· fosters transfer of knowledge (f.2../, p. 256). 

The development of str-u.cture and continuity of thought is facili-

tated by the preciseness of language inherent in modern set terminology 

and deductive inference. Consequently an introduction to set termi-

nology and deductive re,;1.soning will be included in the study. Addi-

tional concepts will be introduced only when they are needed to 

preserve the eontinuity of the development. Many undergraduates enter 
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college withoµt having had·geometry.a.t the secondary level. Conse-

quently no previous knowledge of geometry is assumed. 

Proc;:edure 

The concepts that provide the nµclE:1-us of the study were determined 

by surveying seven selected elementary school mathematics series. The 

results of the survey are summarized in Appendix A. 
'l 

To provide a basis for a logical development the nature of deduc-

tive reasoning is introduced in Chapter II. The remainder of the study 

is a discourse relating the concepts determined by the survey. New 

concepts will be introduced on an intuitive basis and subsequently will 

be precisely defined or classified as undefined. The postulates and 

definitions that are a part of this discourse are listed in Appendix B. 

In order that the development be in harmony_~ith the spirit of 

modern mathematics, precision of language will be emphasized through-

out. 



CHAPTER·II 

BiSIC CONCEPTS 

Precision, in the expression of abstract concepts and in the 

application of the logical processes, is an essential characteristic 

of a gec;>met:rical di.scourse. This precision is attained through the 

use of special terminology and symbols which eliminate the normal 

ambiguity in everyday language. This chapter is concerned with basic 

linguistic devi9es that will be used throughout the discourse. 

Undefined Terms 

Words and symbols are invariably defined in terms of other words 

and symbols. An understanding of the definition of a particular word 

is contingent upon a prior understanding of the other words in the 

definition. Is it possible to give a series of explicit definitions 

covering every technical word in a particular discourse? Certainly in 

any such series there would have to be a beginning, that is, a first 

definition. Consequently any technical word appearing in this first 

definition must be considered as undefined. To illustrate, an attempt 

will be made to determine the meaning of the word "point" from an 

ordinary dictionary. Point--a place considered as to its eos:(.tion 

only, a spot. The key words. in this "definition'' are place, poi:;ition 

and spot. For these words the dictionary gives the following defini~ 

tions: 
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Placeua -particular or specifiable s.pot. 

Position--the manner in which anything is placed. $pot; sit~; 

place. 

Spot--a small extent of space~ any particular place, 

Space--the aggregate of points. 
I 

An understanding of the word "J?osition" dependsi on a prior 1.Jnder-

standing of the words "place" and spot." "Place" is a synonym of 

"spot" and the definition of "spot" involves the word "space." Thus 

an understc1,nding of "point" is ultimately subject to an understanding 

of-"space," but the definition of "sl?ace" depends on the word "point." 

The effort to define the word "point" results in an endless circular 

process. It this c:i,.rcular process i$ to be avoided, either the word 

"point" or the word "space" shouid be considered a1;1 undefined. 

Words that are undefined are not to be considered as meaningless. 

Before one pei;son. can communicate with another there must be some idea.s 

that are understood by both and for which no definitions are necessarr. 

Words which symbolize these common idea1;1 are referred to as primitive 

or undefined terms. 

· The primitives used in a particular discourse are optional, as may 

be seen in the ilh;stration aboye. If the word "space" is q.esignated 

as an undefined term then the word "point" h defined, If "point'' is 

considered as an undefined term then "space" is defined. 'J'hus the 

reader may find the undef;l..ned terms in this discourse different from 

those found in 'some other discussion of geometry. Those undefined 

terms that symbolize geometric ideas will be pointed out as they occur 

throughout the discussion. In many instances certain conditions will 

be imposed on a primitive term to help create a mutual understanding 



7 

regarding its use. 

Sets 

It wiU be convenient to have a .word that will be used to indicate. 

that some.objects or things are to be considered together. The word 

most colDlDonly used in mathematics for this purpose is the word "set." 

The word set will be taken as an undefined term. It will be used to 

indicate that a collection of objects have certain properties in 

comnon. Once the desired prqperties are stipulated the objects in the 

collection will be determined, Those objects having the stipulated 

properties, and no others, will be called elements of the set. For 

example, the collection of whole numbers less than 5 is a set and its 

elements are O, 1, 2, 3 and 4. 

Since frequent references are made to various sets,. it is conven­

ient to hav~ names for sets just as names are used to distinguish 

people. Capital letters will be used as names for sets. For example, 

. if one wished to refer to the set of symbols ;i.n the decimal system, 

that is, the digits O, 1, 2, 3, 4, 5, 6, 7, ·~, 9,. it would .be conven­

ient to have a name for this cqllection. Suppose this set is named 

"D," Then D represents the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and 

could be used to denote thts set rather than to list the elements. The 

brackets"(}" are used to enclose the elements of a set when they are 

listed, and the elements.are separated by colDlDas, Frequently it is 

necessary to indicate the elements of a set when it is impossible or 

inconvenient to list all of the elements. The set of counting numbers 

is a set of this type. If the letter "C" is used to name this setthe 

bracket notation can be utilized to symbolize C as (1, 2, 3, 4, ... }, 



8 

The initial element is listed as well as enough subsequent e.lemep.ts to 

indicate a pattern. The series of three dots following the last ele-

ment is called an ellipsis a.nd indicates that the last element :i,s not 

listed and indeed there is nQ last element. If "H" denotes the set 

whose elements are the first one-hundred counting numbers, it is con-

venient to symbolize l:l a1:1 (1, 2, 3, . . . , . 99, 100 }. · In this case the 
., 

ellipsis indicates that some of the elements are not listed. The sym-

bol '' e" is often used in lieu of the phrase "is an element of. 11 Thus 

the statement "3 is an element of the set C" could be symbolized 

. 11 3 ec. 11 The symbol" rt'' is read "is not an element of." The statement 

"O is not an element of H" is symbolized "O ¢ H." 

The "Equals" Rel&tion 

The word "equal" will be used to describe the relation between 

different names for the same thing. Intuitively "equal" symbolized "=" 

means "the same as." Thus the statement "A;= B" means that A names the 

same thing that B names. lt will be &ssumed that the equa\s relation 

has the following properties=· 

. .£For all set!}_/ 

1. A =r= A, the reflexive property. 

2. If A = B the:i;i B = A, the symmetric property. 

3. If A= Band B = C then A= C, the transitive property. 

Any relation that has all of these three properties ;i.s call.ed an equi-, 

valence relation. Thus the equals relation is a.n equivalence relation. 

If A and B are names for sets theIJ. "A= B" means that A and B are 

different names for the same set. That is, the elements of ~et A are 

exactly the i;a.me as the elements of set B. A statement sucl't as 
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11A and B are two sets artd A = B11 is self .. contraqic tory. If A and ~ are 

two sets then they must pe different and hence A# B. (lhe symbol# 

means not equal.) If A= B then.there is just one set and two names 

for that set. The word equa,ls as used here is not appropriate to . 

describe a relation between two physical objects. Two sets of dishes 

may be alike in many ways, but if thet;"e are two sets then they are not 

equal. It will be assumed that if A and B name the same thing, that is 

A= B, then A m~y be substituted for B or B may be substituted for A in 

any expression in which eithet;" A or B occurs. 

Subsets 

Let A= (2,4,6,7,8,9} and B = [2,6,9}. Not~ce that every element 

of set Bis also an ele~ent of set A; that is, set B .is a part of set 

A. The word i;ubset is used to describe this relation. The set Bis a 

.subset of the set A if every element of Bis an element of A. ~his 

relation is symbolized BCA. According to this definition every set 

is a subset of itself. If Bis a.subset of A and there is at least one 

element in A that is not in B then Bis called a proper subset of A. 

Union and Intersection 

In a study of the real numbers t;:he word "operation'' is used to 

refer to a way of thinking of two numbers so as to obtain a numb~r. 

Addition and multiplic1;1.tion are operations on real numbers. The word 

11 operation11 will also be used to refer to a way of thinking about two 

sets to obtain a set. The operations on sets called µnion and inter~ 

sectio:p. will be usefuJ in this diacussiC!ln. It will be assumed that it 

is possible to perform these operations on any two sets and that the 
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result will always be a set. 

Let S ·= {1,2,4,5,7} and T = [2,3,5,6,8}. The distinct elements of 

these two sets are the numbers 1, 2, 3, 4, 5, 6, 7, 8. This collection 

of numbers is a new set formed by considering the distinct elem~nts of 

Sand T. This new set is called the union of the sets Sand T and is 
l. 

symbolized SU T. The union of two sets A and B is defined tc;> be the 

set consisting of all of the elements that belong to A or B or both. 

If A = {a, b, c } and B = { 1, f4''} then A U B = {a, b, c , 1, 2 } . 

Referring to·the sets Sand T ~hove, note that the numbers 2 and 

5 are elements of both sets. Thus a .set may be formed from Sand T by 

taking those elements that are common to both sets. This set is called 

the intersection of Sand T and is symbolized S(\T. The intersection 

of Mand N is defined to be the set consisting of all elements that 

belong to both M and N. If M = {2; 3, a, b} and N = {1, 3, a, c} then 

The Empty Set 

In many instal'l.ces two sets have no elements in common; for 

example: Consider A~ {a, b~ c} and B = (1, 2, 3}. However, the 

operation intersection ha.s been defined as an operation on sets. 

Consequently Af"I B must be some set. But there are no elements that are 

in both A and B, A set which contains no elements will be called the 

"empty set." The symbol {} will be used to denote tb,e empty set. Thµs 

if A = {a, b, c } and B = { 1, 2, 3} then An B = [} • 

Universal Set 

In situations in which set terminology is usec;l it is often 
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convenient to have in mind. a.set which contains all possible elements 

from which particular sets may be selected. l'his set is called the 

universal set and is symbolized by the capital letter U. l'he un:i,ver­

sal set may vary in different situations. If the letters in various 

words in the English language are considered as sets, than a un;i.versal · 

set is the English alphabet. In the study of arithmetic a universal 

set is the set of real n~mbers. 

Statements 

The intellectual process of deriving conclustons from previously 

accepted premises is called deduction. Most of the conclus:i,ons of 

mathematics are a.result of deduction. A primary fogred:i,ent in the 

deductive process is a type of sentence called a statement. 

A sentence is .defined as "a unit of speech consisting of a mean­

ingful arrangement of words, or merely a word, that expresses an 

assertion, a qµestion, a command, a wish or an exclamation." Sentences 

which are assertions are of particular concern here. Such sentences 

will be called statements. It is assumed that statements are either 

true or false but not both. Sentences which express a single assertion 

are called simple statements. Sentences which contain two or more 

assertions are called compound statements. 

The sentence "The world is round." is a simple statement that is· 

true. The sentence "The world is flat." is a simple statement that h 

false. Sentences such as "Stop.", "Is the world round?", 1;1.nd "Write 

a short paragraph describing statements . 11 are not. statements since they 

do not contain assertions. 

All statements have the property of be;i.ng either true or not true. 



Statements that are always true are classified as true statements. 

Statements that are sometimes true and sometimes not true and state­

ments that; are always not true are classified as false statements. 

This true or false classification of a st;atement h called its truth 

value. 
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It is frequently desirable to combine two or more simple state­

ments so that a new sentence is formed. (Recall that a simple state­

ment is a sentence.) Since each of the simple statements involved 

contains an assertion, the new sentence will contain two or more asser­

tions and thus is a compoup.d statement. When simple statements are 

combined to form comJ;>OUnd statementEl, the simple statements will then 

be called the components of the compound .statement. The truth value of 

a compound statem~nt is determ;i.ned by the truth values of its compo­

nents and the way these components are connected'. 

Connectives--AND, OR 

There are two common connectives that will be used extensively in 

this discoµrse. One of these is the word "and. 11 When the word "and" 

is used to connect simple statements, the t')'.'uth value of the rel;'lult;i.ng 

compou,nd statement wPl be "true" if the truth value of each compone11,t 

has truth value "true." Otherwise, the truth value p:f; the col!lpound 

statement is false. If two statements are connected with the connec­

tive "and" the resulting statement .is called a qonjunction. 

Example 1. The compound sentence "The wpttld is round and the sun 

rises in the e;1st." is true (has truth value "true") ~ince both compo­

nents are true. 



Example 2. The compound statement "The worldis flat and the s1,1n 

rises in the, east." is false (has truth value ";false") since one of the 

components is false. 

Example 3. The compot,md statement "The world is flat: and the sun 

rises in the west," has truth value "false" since both components are 

false . 

. Ih some compound statements, the role of the connective "and'.' is 

not as apparent as in the three examples above. Two such cases are of 

particular interest in this discourse. 

Example 4. Consider the compound statement "A baseball is round 

and hard." Here the word "and" indicates that two assertions are being 

made about the subject "baseball.'.' Hence it is a compound statement, 

The simple statements implied are: "A baseball is round." and "A base-

ball. is hard." 

Example 5. Consider the true statement "A crow is a black bird.". 

Is this a compound statement? Notice that if t;he word "red" ·is substi­

tuted for the word "black" the statement is rio longer true. If the 

word "dog" is substituted for the word "bird" the s.tatement again 

becomes false. It is apparent that the words "black" and "bird" are 

both pertinent in the description of a crow. Thus two a~sertions are 

made about the subject crow; that is, "A crow.is abird. 11 and "A crow 

is black." Thus,the statement "A crow is a black bird." is a compound 

statement. Here the connective is the word ''and" even though it is not 

present in the statement. 

'l'he other connective tb,at is of interest here is the word "or~~·; 

The word "or" is used to indicate the presence of alternatives. When 

this word is used to connect simple statements, the r¢sulting compound 
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statement will be true if at least one of the components is true. If 

all components are false, the compound, statement is false. A compound 

statement formed by uaing "or" to combine t:wo statements is called a 

disjunction, 

Example 6, The compound statement "The world is round or the sun 

rises in the east.'' 'h,a.s truth value "true" since both cotllponents are 

true. 

Example 7, The c9mpound statement "The wor:).d is flat or the sun 

rises in. the west."· is fahe since both components are false. 

Example 8. lhe compound statement "The world is flat or the sun 

rises in .the ec!;l.st. 11 is true since the second component is true. 

A.device called a truth table provides a graphic representation of 

the relation between the truth value of a cQmpound statement and the 

truth values of i,ts components. For bt"evity, capital letters are used 

to symbolize simple statements. Let A represent some simple statement 

and let B represent a second simple statement. Then the conjunction of 

the two statements is s.ymbolized "A 1:1-nd B" and the disjunction is 

symbolized "A.orB.'.' figure l below is the truthtable for the con­

junction and Figure 2 is the truth table for the disjunction. There 

are fourrows·in the table since for each of the two possible truth 

values of one component there are two truth va.lues of the second com­

ponent for a total of four possible combinations. The first and second 

columns give the truth values of the components. The third coluµm 

gives the truth value of the compoundstatetnent for each possible 

combination of truth values of the components. 
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A :a A and B A B A or B 

'1; T T T T T 

T F F T F T 

F T F F T T 

F F F F F F 

F;i.gure 1 

Nee;iation 

The negation (denial) of a sta,tement is indicated by the presence 

of the word "not" or the phrase "it is false" immediately preceQ:l.ng the 

statement. Thus the negation of the statement. "The world i$ round." is 

the statement "It is false that the world is round." or more conven­

iently "The world h not roul'].d." If the letter A represents a state­

ment, then not-A. represents the negation of the statement. Two of the 

basic assumptions of deduction occur in connection with a statement and 

its negation. 

1. A statement is true or the negation of the statement. is true but 

not both. 

2. A compound sta,tement which is the conjunction of a simple statement 

and the negation of the simple statement is always false. 

Figures 3 and 4 illustrate the assun1ptions 1 and 2, respectively. 

Example 9. As an illustration of the use of truth tables in 

determining the truth value of compound statements, consider the state~ 

ment: "Joe is not a Texai;i or Joe is a citizen of the United States." 

Is this statement alway~ true, always false, or $Ometimes true and 
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sometimes false? The letter A will pe usec;l for the statement "Joe is a 

Texaii .. 11 and the letter B for the statement "Joe is a citizen of the 

United States-." The statement "Joe is not a Texan.." would be repre-

sented by not,;.A., The compound statement, "Joe is not a Texa,i: or Joe is 

a citizen of the United States.fl, then becomes "not,.A or B." There are 

two possible truth values for each of the components. Either Jpe is a 

Texan, ip. which case "not-A" is fahe; or Jqe h not a Texan, in which 

case "not-A" ;Ls true. Similarly, Joe is a citi:irnn arid B is true qr Joe 

is ~ot a citizen and Bis false. The resulting truth table is shown in 

Figure 5. 

A not-A A or not-A A not-A A and not-A 

T F T T F F 

F T T F T F 

Figure 3 Figure 4 

·I " ~ ·-·-....:>: .. 

A not-A B riot-A or B 

1. T F T T 

2. T F F F 

3. F T T T 

4. F T F T 

Figure 5 
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Figure 5 indicates that the compound statement is true in each 

case except;: t;he second. A close loolt at the ~econd row of 1;:he truth 

table is instructive. In this case, "not;..A" is false, Jlleaning that it 

is falae that Joe is· not a. Texan and thus Joe is a Texan. Also, ":Bi' is 

false, meaning that Joe is not a cithen. This gives,. "Joe is a Texan 

and Joe is not a.citizen," Since aU Texans are citizens, thie situa.­

tion is impossible •. Thel!efore, it .is not surprising that the resulting 

compound statement is false. 

Conditional Statements 

In deduction it is frequently desirable to make assertions subject 

to certain conditions. As an example consider the sentence,. "Toniorrow 

. is Saturday, if today is Ft:iday." This sentence contains the two 

simple statements: '.'Tomorrow is Saturday." and nToday is Friday." 

Since the sentence contains two simple statements it is a compound 

.statement and thus has a truth value. 

Suppose the owner of a profeesional football team issues the 

following statement: "The coach will receive a raise if the team wins 

ten games." This atnoµnts to an assertion on the part of the owner that 

he will perform a Sl?ecific act subject to a stated condition. · In the 

event that tµI;!, team does win ten games~. the coach has every right to 

expect a raise. Suppose the team wins only nine games. Does the 

coach get a .. raise? · The. statement ;i.ssued by the owner makes no asser­

tion about what he will do in the event that the team fails to win ten 

games. Presumably 1 he could grant the coach a raise but he is under no 

obligation to do so. In any evl;'!nt, assum:f.ng that the owner is relia-, 

ble, one of the following must be true (and pos~ibly both): (1) the 
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tea1I1 does not win ten games; (2) the coach receives a raise. 

Intuitively, it seems that the statetllent: I. "The coach will 

receive a raise :i.f the team wins ten galtles." amount .to the same thing 

as the statement: II. "Either the coach receives a raise or. the team 

does not win ten games." This s1,1ggests that the truth val1,1es for 

statement II be used to a~sign truth values to statement 1. Since 

i;tatement II is a disjunction, its, truth vc1rlues are known. It W:i.~1 .be 

convenient to symbolize the statements. Let A represent "the coach 

will receive a raise" and B represent "the team w;lns ten games," then 

not•B represents"the team does not win ten games." Statements I a,nd 

II may the~ be written as fotlows: 

I. AifB 

II, A or not-B 

In the truth table below the fourth coluwn gives the truth values 

for staf;ement II. The fifth column assigns truth values to statement 

I.. 

A B not-B A or not ... a A if B 

1. T T F T T 

2. F T F F F 

3. T F T T T 

4. F F l' T T 

Figure 6 



19 

Compound statements of the form, A if B, are called conditional 

statements. ~ conditional statement results when two simple statements 

are connected by tqe conjunction "if." The ~imple statement prec;.eding 

the connective "if'' wiU be cal.led the "assertion." Thia simple state.-

ment; following the connective "if" will be called the conditi,on. 

The first. row of Figure 6 shows that the truth value of the 

t;i.onal statement is true provided the assertion is true when the 

tion holds (has truth value true). Also if it is known that the 

condi­

d-1. 
con)::1-

1 

condi,tional statement is true and the condition holds, it follows that 

the assertion is true. Rows three and four show that the truth value 

of the conditional statement is also true when the cond.i tion faHs to 

hold regardless of the truth value of the assertion. Consequently no 

conclusions ma.y be deriv~d concerning the assertion when the condition 

fails to hold. The second row of the table shows that the truth value 

of the conditional statement is false in any case in wh;i.ch the condi-

tion holds and the assertion is false. 

Example 10. The condi, tional statement "Joe is a citizen of the 

\'\ 
United States if Joe is a Te~a};'." is true since the assertion is tpl\e 

provided the condition is satisfied. In this example the assertion is 

about Joe and is subject to a condition that is imposed on Joe. Notice 

that in the event that the condition is not ,satisfied the assertion may 

or may not b~ true. Indeed Joe may be an "Okie" and yet still be a 

citizen of the United States. On the other hand Joe could pea Martian 

and would not be a citt~en of the United States. 

Exa11!ple 11. The conditional statement "Joe is a Te~an if Joe is a 

citizen of the United States~" is false sinoe the condition could be 

satisfied and yet the assertion be false. That is, Joe coµld be a 
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citizen of the l,Jriited States and also be an "Okie'' and thus would not: 

be a "Texan." 

Often the connective "if" i.s implied but not present in a state­

ment. The statement "All dogs are four- legged animals" could be 

wt;'itten as the conditional statement ''An animal has four legs if it is 

a. dog." 

The conditional statement was introduced initially in the form 

"A if B" to emphasize that the assertion A is subject to the condition 

B. In mathei;n~tic textbooks and in common language the c.onditional is 

often written in the form "If B then A." The two forms will be consid­

ered equivalent in this discourse and both.will be used. Conditional 

statements are often referred to as implications and the condition is 

said to imply the assertion. 

Converse 

When a conditional statement "A if B" is att.ered by intarchanging 

the assertion and the c01;1dition, the resulting statement, "B if A," is 

called the converse of the original statement. The converse then 

becomes a conditional statement ip its own right l'!ince it contains the 

assertion "B" subject to t;he condition ''A." The converse of the condi­

tional stat;,ement "Tomorrow is Saturday if today is Friday." is the 

conditional statement "Today is Friday if toi;norrow :i,.s Satt,1rday." 

The truth value of the conyerse should be determined in the same 

manner as in any conditional statement. That is, the truth value is 

"true" if the truth Vf!.lueof the assertion is true when the truth value 

of the condition is "true." The truth value is "false" if the truth 

value of the assertion is "false" and the trut;h value of the conditiol!l 
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is " true • " 

· Example 12. The c.onditional statement "Joe is a Texan if Joe is a 

citizen of the Un~ted States" has tr\,lth value ''false'' as noted in 

example 11. The converse "Joe i~ a citizen of the United States if Joe 

is a Texan" has truth value "true" as noted in example 10. Th4~ a 

conditional statement and it;s converse do not always have the same 

trt.1t:h value. 

Cont:t1apositive 

The ~ontrapositive of the CQPditional statement "A. i:I: B" is the 

conditional statement "not,-B if not-A." That is, the contrapositive 

of a cond:i,tional statement is obtained by writing a maw cond:i,tional 

statement whose assertion is the negation of the condition of the 

·ori~inal statement, and whose condition is the negation of the asser­

tion of the original statement. The truth value of the contrapositive 

may be determined frolI! a truth table. 

-·- ~-... ·-

1 2 3 4 5 6 

A B not-A not-B A if B not-B if not.-A. 

T T F F l' ·l' 

T F F T T T 

F\ T T F f F 

F F T T . T . 'I' 

Figure 7 
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In this table the truth values in column 5 are obtained by consid~ 

ering columns 1 and 2. The truth values in column 6 are obtained by 

considering columns 3 and 4. Note that for any possible combination of 

truth values of the components A and B, the truth value of the state­

ment is the same as the truth value of its contrapositive. Thus the 

truth value of a conditional statement is always the same as the truth 

value of the contrapositive statement. Statements having this charac­

teristic are said to be equivalent statements and may be used inter· 

changeably. 

Example 13. The conditional statement, "Joe is a citize:n of the 

United States if Joe iEi a Texan, 11 has truth value true. The contra­

po1:1itive i~ the conditional statement: "Joe is not a Texan, if Joe ia 

not a citizen of the United States." Notice that if the condition is 

Eiatisfied (has truth vl;llue "true") tµen the assertion ia true. Thus 

the contrapositive is a true statement as was the or:j.ginal Gonditional 

statement. 

Example 14. Suppose the conditional statement is !!Joe is a Texan 

if Joe :ts a citizen of the United States, 11 which is false from example 

11. The contrapositive is "Joe is not a citizen of the United States 

if Joe h not a .Texan." The cond:j.tion is satisfied if Joe is an "Okie" 

but the assertion is false. Thus the·truth·value·of the contrapositive 

is '/'false" as was the original ·state:ment. 

Observe that in examples 13 and 14 the truth value of the contra­

po~itive is the same as the truth value of the original conditional 

statement, This proves nothing of course 1 but perhaps it will make the 

definition of the truth value of the contrapositive seem plausible. 



Definiti,ons 

Definitions play a vital role in the study of i:nathematics. There-

fore, an analysis of the term "defin;i.tion" :(.sin 01:'der. The definition 

of the term "definition" given by White)lead and RusseH provides a good 

starting point far such an analysis, 

·\ A definition is a .declaration that a newly-introduced 
symbol or combination pf symbols is to mean the same as a 
certain other combi!!A~ion. of symbols, the meaning of whi,ch 
is already known (j_l]/, p. 11). 

That which is to be defined is called the "definiendulll," The 

combination of symbols that constitute/ the definiendum is called the. 

"definiens." Once the definition is made the definiendum and the 

definiens·become synonymous in the sense that either may replace the 

other in a discourse. 

Notice that the definiens must be present before a definition can 

be formulated. Consequently the meaning which is to be attached to the 

definiendui:n has already l;)een symbolized. Thus, definitions are theo., 

retically unnecessa~y. They are, however, very convenient. Without 
( 

definitions lari~uage would become extremely cumbersome. Often a 

dozen or more words wo4ld be necessary where one word would suffice. 

In addition to being convenient, definitions add p~ec;i,s;i.on to 

language. Often a term which is to be defined is familiar in a vague 

sort of way but the precise meaning may be unknown. For e~ample con-

sider the statell)ent, "An even, nµmber is a number l.ike two, four, six, 

etc." This indicates some knowledge of "even number" but leaves some· 

impor.tant questions unanswered. Is twenty even? . If so, in what way i~ 

twenty like two, four and six? Is nine even? If not, then apparently 

nine is unlike two, four and six, But in what way is nine unlike two 
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or four? A precise definition of "even number" provides the answers. to 

these question~ • 

. As previously stated,. the definiendum may be substituted for, or 

replaced by, the definiens in any discourse, In most instances -the 

defini,endum consif;lts of only one or two words, while the definiens 

consist of a.phrase or the conjunction 0;f two or more phrases stating 

the character:i,stics of the definiendum. Since the definiendum and the 

definiens are interchangeable, it follows that the definiEmdum must 

inherit all of the ch~racteristics set forth in the definiens, and 

nothing more. On the other hand, the definiens must include all of the 

characteristics of the definien!lum. To illustrate, eonsic;ler the 

following definition. 

Example 15. "An even m,1mbe:r is ~- number that is divisible by 

two." (It should be understo0d that in referring to numbers as being 

even or not even, only integers a:re c<;ms:j.dered.) The def:i,niendum i,s 

"even number" and t_he definien1:1 is the ph:rase "a. number tthat is divisi­

ble by two. II The inteq:.hangeapility of the definiend\,lm and the 

definiens permits the derivation of two conditional statements from the 

definition, both having truth value true. 

1. If a number is an even number then the number is divisible PY two. 

2. If a number is divisible by two then it is an even number • 

. Since these two conditionah are true, t]:ie contrapositive of eac);l is 

also true, Hence we obtain two additional conditional statements. 

3. If a number is not divisible by two then the number is not even. 

4. If a number is. not an even number then it :i,s not divisil:>le by two • 

• statements (2) and (3) are the most useful in this particular 

definitiop. and indeed the conjunction of tbesetwo conditional 



statements is often taken as the definition of even number. That is, 

5 .. "If a number is divisible· by two then the number is even and if a 

number ;ls not divis:(.ble by_ two then the number ;is not even." 

Statement (5) is often written in the following abbreviated form. 

6. A number is even if and only if the number is divisible by two. 
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The fol'.'m used.in statement (6) is the one most often used in mathemati­

cal definition,. It is J;"eferred to as the ''if and only i.f" form o( a. 

definition. 

If a definition is not given in the if and only if form then the 

sentence giving the definition should be preceded by the word "defini­

tion." To il11,1strate this point, consider the two· following state­

ments: 

(a) An even numbe1;; ls a number that is divisible by two. 

(b) A dog is an animal that has four le&s, 

. Statements (a) and (b) have exactly the same fo:rm. Statewent (a).. was 

given a,s the d,efinition of "even number" in example· 15 but certainly 

statement (b) does not define "dog." Note that example 15 was preceded 

by a statement that a definition of "even number'' was forthcoming. 

· Thus statement (a) is acceptable as a definition of "even n1,1mber" and 

statement (b) would be acceptable as a definiti<;>n of "dog" only when 

preceded by not;i.fication that it is to be considered a definition. 

The word "definition" preceding statement (a) would Jn;form the 

l;'eader that two assel;'tiop.s were intended. Namely, 

1. "If a number is even then it is divisible by two.", and 

2. "If a numb et;' is di visible by two then the number is even." 

If the word "definition" did not precede the statement, then only the 

first a,ssertion above could be considered. 
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The two statements that may be derived directly from a definition 

depends. on the manner in which the d.efinition i1;1 stated. This is 

illustrated by consid~r~ng two forms of the definition of Tuesday. 

1. Definition: Tuesday is the day following Monday. 

2. Today is Tuesday if a.nd only if yesterday w1;1s·Monday. 

From the :l;irst form the following statement!s may be derived; 

(a) If yesterday was Monday then toclay is Tuesday. 

(b) lf today is Tuesday then yesterday was Monday. 

The second (if and only if) form implies the statements: 

(c) U yesterday wasMonda.y then today is Tuesday. 

(d) If yesterday. was not Monday then today is not Tuesday. 

Note th1;1.t (a) c1,nd (c) are exactly. the same while (b) is the contraposi­

tive of (<D and (d) is t;he contrapositive of (b). Since the contrc1,­

positive always has the same truth value as the statement from which .it 

is derived, the two forms of the definition convey precisely the same 

information. 

From the foregoing discussion it is apparent that a knowledge of 

conditional statements is a valuable aid in extracting inforll!ation from 

a definiti,on, 

Proofs 

A primary function of mathematics is to e1:1tablhh certain results 

by means of a deduc t:i,.ve arg1,1ment usually referred to as a "pt'oof." Any 

idea which is capable of being believed, doubt;eq or de~ied is a pos1:1i~ 

ble subject 9:l; a proof.· In this discussion only ideiis which cart be 

written as c0nditionai statements will be used a.s subjects for proofs. 

O;rdinarily a number of conditional statements are present in a cQmplete 
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proof. Therefore in order to avoid confusion between th~ statements 

that are a part of the proof and the statement which is the subject of 

the pl;'oof, the latter will be rehrred to as a theorei:n or a proposi-

. tion. 

The object of a pl;'oof o;f any theorem ia to e~tablish tpat the 

l:!,ssociated conditiqnal statement has truth value trtJe. Thus an under- · 

standing of "proof" requires a.prior knowledge of the cond;i.tions under 

which a conditional statement is true. Recall that a conditional· 

statement has two components, a condition and an assertion. Both the 

condition and the assertion are statements and thus are either true or 

·false. · The conditional statement is true provided the ,E!.Ssertion is 

always true when the condition holds (has truth value true). Thus for 

the purpose of proving a theorem the truth value of the condition is 

fixed.. It is always assumed· to be true. Since the condition is always 

assumed true it is often referred to as the hypothesis of the theorem. 

The ultimate problem in any proof i~ to establish that tqe assertion 

will invariably be tl;'ue under the hypothesis that the condition holds. 

· Once a t]i.eoreIII has been proved one may always conclude .that the asser­

tion is true provided th,e condi t;ion holds. The assertion is called the 

conclusion o( the theorem. If, in a particular situation, the oondi~ 

tion.of a t]leol'.'emdoes :not hold then the truth value of the assertion 

.is unc;letermined and no conclusion may be derived from the theorem. The 

theorem, "The St.1.m of two even numbers is an even number .. ", enables one 

to conclude that~+ a names an even nuxnber in the event that both A 

and B name even numbers. This conclusion does not depend.on knowin$ 

precisely what even number is nat1]ed by. A. or by. B. On the other hand if 

either A or B or both a.re odd numbers then the theorem provides ~o 
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conclusion about A+ B. 

It is not really difficult to state what must be done in order to 

prove a theorem. One simply assumes the condition and then, must estab­

lish that under that assumption the assertion must be true. The diffi­

c4lty arises in establishing the truth of the assertion. ;Having 

assumed the condition, how does one establish the truth of the asser­

tion? The conditional statement is the basic element in this proce~s. 

Conditional statements are the vehicles on which one moves from the 

assumption of the condition to the truth of the assertion. 

Just as one needs words to define words, conditionals are needed 

to prove theorems. lt was previously noted that every mathematical 

definition gives rise to two conditional statements. Thus the defini­

tion is an important source of conditionals. Also, every theorem in 

its elf gives rise to at least one conditional. Consequently, once a 

the.orem is proved 1 the conditional of that theorem is then available as 

an aid in, proving other theorems. This source becomes significant as 

soon as·a number of theorems have been proved. 

The third and last source of conditional statements originates in 

much the same way as the set of undefined terms. In a particular area 

of study cet;'tain properties are intuitively appat;'ent. These properties 

are analogous to the rules of a game. They are to be agreed upon 

initially by all concerned and thereafter accepted without question. 

Jn most instances it is possible to Etate these properties as condi­

tional statements.· These properties are often. referred to as laws, 

axioms, or postulates. In the following discussions the term "postu-

late" will be .used to refer to a statement that is to be accepted 

without proof. Some familiar examples of this type of statement are 
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the following propE;u;:-t;ies of the real number system. 

1. If a and bare real numbers then a+ b ~ b + a; i.e., the commuta~ 

tive law for addition of real numbers. 

2. If a, band care real numqers, then a+ (b + c) ~ (a+ b) + c; 

i.e., the assqciative law for addition. 

A proof is a reasoning process in which certain statements, knowµ 

or assumed to be true, are used to establish the truth of some other 

statement. The initial statement ina proof is us1;1,a1ly the hypotl:i.esis 

of the theorem to be proved. This is followed by an additional state~ 

ment that is closely related to the initial statement. l'h? next step 

is to combine these statements in a way that will produce an additional 

true statement. This process continues until the conclusion of the 

theorem is establi$hed as a true statement. 

The process of combining statements to obtain additiQnal state~ 

ments is justified by a set of rules, called rules of inference. Two 

rules of inference and two basic laws of logic will be nee4ed for this 

discourse. They are as follows. 

1. The Rule of Detachment: . If the conditional statement "If A then B" 

is accepted as true and the conclition "A" is accepted as true then.the 

assertion "B" must a;Lso be accepted as true. 

2. The Rule of Indirect Proof: If a contradiction can be derived as a 

.result of assuming the denial of the conclusion of a ~roposition, then 

the conclusion of the proposition is true. 

3. The Law of. Contradiction~ If A is any statemen~ then A and the 

denial of A cannot; both be true. That is, the conjunction, "A and 

not-.A" is always false. 

4. 'J;'he_ Law of the Excl1,1.ded Middle: . :J:f a is any statement then eithe-r 



A or the denial of A.must be true. That is, the disjunction "A or 

not ... .A." is always true. 

The rule of detachment suggests a .starting point fol;' a p:i:-oof. 

so 

First one writes the hypothesis of the theorem to be proved as a. .simple 

statement. As previously noted this statement is to be accepted as 

true. The ne~t step, if possible, is to write a conditional statement 

which.is known to be true and which has as its condit;i.on the hyp<;>thesi,s 

of the theorem. The rule of detachment then permits one to write as a 

third statement the assertion ot the conditional stated in the second 

step. To illustrate, consider the foll.owing theorem. 

Theorem. The square of an even nµmbe:i:- is an even number. (The square 

of the number ah denoted ~2 and i$ obtained by multiplying the number 

by itself.) 

First, note that the theorem is not stated as a.condition,al and so 

should be restated. 

Restatement. If a names an even number then a2 names an even number. 

The first step in the proof il;l a statement of the condition of the 

theorem. 

1. a is an even number. 

The definition of even number provides a true conditional which has 

statement 1 as its condition. 

2. If a is an even number then ais divisible by 2. 

The r1,1le of detachment may l;>e applied to statements 1 and 2 to obtain; 

3. a is divisible by 2~. 

The next step is to produce a conditional statement with statement 3 as 

a condition. Again a definition provides the statement. 

Definition. A number is divisible by two if and only if the number can 
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be e:x:pressed in the form 2 • n where n is some integer. Fr.om this. 

definition one may e:x:tract the statement: 

4. U a. is divisibl,.e by two then a = 2 n where n is an integer. 

Then by the rule of detachment we have, 

5. a= 2 • n. 

From statement 5 and the properties of multiplication on the set of 
\:"'t.;_,,. 

real nu~qers we may write 

6 • a • a = 2n • 2n or 

a2 = 2 • (2n • n) = 2 • k where k is the proc;luct 2n • n. 

The number k is an integer since the product of integers is invariably 

an integer. This e:x:presses the squar~ of a in the form 2k where k ii; 

an integer. The definition of "divisi]:>le" yields a. second condition 

which is pertinent to the apove ar~ument. 

7. If a2 = 2n wher(;! n is sol'(le integer than a2 is divisible by 2. 

From statement 6, a 2 is the prodµct of 2 and some integer so by the 

rule of detachment, 

8. a2 is divisible by 2. 

According to the definition of "even number," 

9. If a2 is divisible by 2 then a2 is even. 

By applying tne rule of detachment to statements 8 and 9 one obtains, 

10. a2 is even. 

Thus .the a.rguJ;1;1ent began with the hypothesis of the theorem and by 

using conditional statements and the rule of detachment the concl.usion 

of the theorem was established. 

The above proof is an example of what is referred to as a. "direct 

proof." In a direct proof one begins with the hypothesis and proceed$ 

directly to the conclusion. · It is sometimes advantageous tq use a 



slightly different technique called an 11 indirec;: t proof. 11 The indirec: t 

proof is bas~d on the two basic laws of logic and the rule of indirect 

proof. 

The procedure for an indirect proof is as follows: 

1. Assume that the hypothesis of the proposition is true. 

2. Assume that the denial of the conc;:lus:i,.on of the propoeition is 

true. 

3. Use the same procedure as in a direct proof to arrive at a contra­

diction of the form "A and not-A." 

4. Apply the rule of indirect proof to conclude that the conclusion of 

the proof is true. 

The law of the e:x;cluded l!liddle is not ac t:ually a part of the above 

outline. Its function in an, indirect proof is to motivate the rule of 

indirect proof. The thiqking is as follows. The second step assumes 

that the denial of a statement is. true. 'I'his assumption leads to a 

contradi,ction, and thj.s suggests that tb,e asst,1mption was f.alse •. But 

according to the law of the excluded middle either the denial of the 

statement in step 2 or the stat~ment itself must hold. Sin~e the 

denial of the statement turns out false the statement (which is the 

conclusion of the proposition) must be true. Thh type of proof is 

diffic1.,1.lt bu,t nevertheless very. useful. An example will be given in 

the proof of the firsit theorem in the next chapter • 

. An understanding of the conditional statement and the rule of 

detachment is a prerequisite to the construction of a proof. However, 

this understanding is useful only to those with a background of infor­

mation related to the subject of the proof. Consequently, before 

attempting a geometric proof it will be necessary to acquire some basic 
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concepts of geometiy. In what i~ to follow it will be asi;umed. that the 

reader is familiar with the rational number system of elementary school 

mathe:matics. :No previous knowledge of: geometry is assumed. 



CHAPTER III 

POINTS, !,,INES, PLANES AND SPACE 

Points 

Geometry is a branch of mathematics which investigates the rela-

tions, properties and measurement of sets of points. Thus the funda~ 

mental entities of geometry are sets of points. The sets of point$ to 

be considered can be divided into three major categories: the line, 

the plane and space. All other sets will be subsets of one or more of 

these three. This chapter is concerned with some of the properties of 

these three universal sets. Since points are the elements of each set 

to be considered, the discussion will begin with the word point~ 

No doubt the reader has used the word "point" as a noun on many 

occasion~;) and thus it is a familiar term. In Chapter II, it was noted 
t, 

that the dictionary definition of the worq. "point" depends on certain 

other technical word,s which in turn were defined in teriµs 0f "points." 

It seems that it is impossible to define 11 point" without introducing 

other words that arie less meaningful. Therefore, the word "point'' will 

be considered as an undefined term. Using "point" as an undefined 

term, it is possible to define space, 

Definition 3~1: Space is the set of all points. 

Thus space ;i.s a set. Every element of space is a point;: and every 

point is an element of space. 

In a particular model of space, points could be described ~s 

J4 
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positions. This description suggests that points are fixed relative to 

a particular model of space. For example, i,f the model of space is the 

earth and its atmosphere, then the geographical center of the United 

States is a model of a point in this space. l'h,e position of the geo­

graphical center of the United States is fixed relative to all other 

positions in the model. Thus this point is fixed relative to every 

other point in the model. 

In this discourse points will be assumed to be fixed relative to 

a space. Points -will be represented by a dot "·" Since sets are 

denoted by capital letters and p<;>ints are elements of !:iets, points are 

denoted by lower case letters. If a particular point is denoted by the 

letter "a" it will be referred to as point a. Since space is tqe set 

of all points, every set of points is a subset of space. Indeed, ev~ry 

set of poi.nts other than space is a proper subset of space. One of the 

most important proper subsets of space is the line. 

Lines 

If one places a ruler or straightedge on a sheet of paper and 

moves a pencil along the edge, arpark is left in each position that the 

pencil occupies. Each of these positions is occupied by a point which 

will be representeq by the mark left by the pencil.· The resulting 

configuration (Figure 8) must then be a representation of a set of 

points. The arrows on either end of the drawing in Figure 8 are to 

indicate that the representation should extend indefinitely. Any set 

of points that can be represented as in Figure 8 will be called a line. 

Any such physical representation of a line will be limited by the 

edges of the pape't" but the reader should be aware that the line itseU 
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i$ n.ot limited. Thusi every line conta;i.ns an unlimited nv.mber of 

points. It is possible to drc;1.w many different figures like Figure 8, 

a1;1.d thus there are man,y different lines •. Capital letters will be used 

to s.ymb91ize sets of points such as lines, etc. If L symbolizes a 

certain line, that line will be referred to as· line L. 

Figure 8 

The preceding discussion is not a definition of a line. In fact 

the term "line, 11 like the term ''point,". will be undefined, However, it 

is now possible to assert one definite characteristic of the concept 

"line.''· 

Postulate ~-l. ;If "L" is a line, then "L" is a set of points. 

l'his postulate ha conditional statement about the term "line" 

guaranteeing that every line is a set of points. Is this property a 

definition? Recall that definitions must be reversible. The converse 

of Postulate 3-1 is, ''If 1 1 1 is a set of points, then 'L' is a line." 

But certainly. there are sets of points that are n0t lines. Figure 9 is 

a model of a set of points that cannot be represented as in. Figure 8. 

Thus. the converse of Postulate 3=1 is not a trt.;1e state!I!erit, Postulate 

3=1 is not reversible and therefore could not be a definition, Figure 

lOis a combination of Figures 8 and 9. 
. I 

from this model 1~ ~ay be seen 
\'il 

that for any line there are points that are not in the line, This 
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observation suggests a second property o:I; lines • 

• • • • & • • • • 

Figure 9 

. .. 

a 

Figure 10 

Postulate 3-2. A line is a proper subset of space. 

One frequently hears or reads references to a line passing through 

points. The phrase "passing through" suggests that the line is in 

motion. But lines are sets of points and points do not move. Hence 

lines cannot move. Thus in this setting it wou.l.d. be improper to speak 

of a line passing through a point. However, it will be convenient to 

refer to certain points that are parts of certain lines. Postulate 3-1 

provides a device for such reference. By Postulate 3-1, lines ia,re sets 

of points. lf "L" is a particular line and "a" is a point of the line, 

then "a" is just an element of the set "L" and may be symbolized "ae:L." 



That is, "a" is an element of "L" or "L" contains "a." 

For any line L, Postulate 3-2 implies· that there are.points that 

are not in L, . ;J;.t is o.ften convenient to refer to certain sets of 

points that belong to the same line. The tet.m "collinear" i.s used to 

describe sets of points that belong to the same line. 

Oefini tion 3-2. . A set "811 of points· is said to be collinear if and 

only if every point of the set belongs to the same line. 

Consider a set of exactly two points, as the point$ a a:nd, b in 

Figure 10. With some convenient straightedge draw as many lines as 

possible so that each line will contain both of the points a and b. 

If more than one is found, a straightedge was not used. The drawing 

should look like Figure U. This experiment suggests a.third property 

for lines. 

< a· • 
Figu:i:-e 11 

Postulate 3-3. If a and bare two different points, then there is 

exactly one line that contains both a and Q. 

The phrase. "exactly one" is used to emphasize that· there is one 

but no more than one. Thus if a is some point in Texas and bis some 

· point in Alaska, theµ there h a line (only one) that contains both a 

and b. Since a line is completely determil;'led by two poip.ts it is 

advantageous to be able to refer to a line Lin terms Qf two of the 
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points on L. If a and b are point in L, then the symbol :t' may be used 

to represent L whenever it is convenient. In view of Postulate 3~3 and 

the definition of collinear,. i:wo points are always collinear. Thus the 
.. <El-) 

symbol mn will represent the_ line containing po:i,.nts m and n, the symbol 

tt represent~ the line containing points h and k, etc. 

fostul,ates 3-1 and 3-2 function primarily as language aids. l'hey 

are a consequence of a need for convenient ways to, express certain 

ideas •. Postulate 3-3 imposes a copditio1;1 on the concept 11 1:i,.ne." Its 

effect is to force lines to be what i$ commonly q~ferred to a.s 

"straight." 

It is now possible to obtain a fourth property of lines by apply-

ing some deductive reasoning to the concepts that p,re ava:;i.lable. 

Suppose that Lis a line and a is a point of L. LetM be a second 

line, M :/:, .· L, that also contains the point a. Thus there are two 

different lines, Land M, ancl a point a that is an element of l?oth. In 

the language of sets a is an element of the intersection of tl").e sets L 

and M. That is aeIJlM. 

Is there another point that also belongs to both Land M?. Deduc-

tive reasoning will provide the answer. In order to facilitate under-

standing, the steps in the thought process will be listed numerically. 

The first step will be a statement of the situation leading to the 

question •. 

1. L and M are two different lip.es and a is a point t;hat is in. both 

Land M. 

2. Assume that bis a point different from a and that bis in both 

Land, M. 

3. Thus a eLC'M and b eLrM. 
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4.. Since ae:LRM, then ae:L and ae:M. 

5. Since be;LOM, then be:L anA be:M, 

6. Thus ae:L and be:L, or i contains both a and b. 

7. Also, ae::M and be:M, or M contains both a and b. 

8. By.Postulate 3-2, there is only one line that containij both a and 

b. 

9. Therefo~e since both M aQ.d L contain the points, and bit must be 

concluded that Land Mare the same line. 

10. Thus an impossib~e situation ari~es. In step 1, Land N are 

different lines but step 9 contends that Land Mare really the 

same line. One of these st~tements must be fals~. 

11, The statement in step 1 cannot be false since it is just a state­

ment of the conditions that lead to the question, "Is there a 

. point other than a that is in both L and M?" 

12. · Thus the conclusion in step 9 that Land Mare the same line must 

be false. 

13. Notice that step 2 makes the assumption tha.t the answer to the 

question was "yes." That is, that b was a point differl!;lnt from 

a and that b was in both Land M. 

14. This assumption leads to a false conch~sion. 

15. It is only reasonable then to conclude that the assumption was 

false. 

16. But if this assumption is falee, then there are Q.O point1:1 other 

than a that are in both Land M. 

This conclusion is stated formally in Postulate 4. 

Postulate. 3-4~ If two distinct lines. L and M intersech then the 

intersection is ~xactly one point. 



41 

Postulates 3-1, 3-2 and 3-3 are agreements based on observation 

and intuition. Postulate, 3-4 j.s a logical conclusion of applying 

deductive reasq1;1ing to the concepts previously developed. Such a 

process is called a formal proof. To distinguish the properties that 

are established by a formal 1;>roof from properties that are agreemen,ts, 

the former will be referred to as theorems •. Consequently Postulat~ 3-4 

should be renamed as Theorem 3-1. 

Theorem 3-1. If two distinct lines intersect, then the intersection is 

exactly o~e po~nt. 

;Figure 12 

.. Figure 12 is a model illustr,;1.ting Theorem 3-1. In observing 

Figure 1~ one would likely conclude that indeed the lines Land~ do 

not intersect in more than one point. Thus Theorem 3-1 might have been 

obtained as a res4lt of intuition as was the case with Postulates 3-1 

and 3-2. What is the purpose of a lengthy argument to obtaip an 

obvious conclusion? 

The deductive process is ,;1.n essential part of geometry. Thus it 

is important that a student of geometry become familiar with this 

process. His conc.ern is as much with the method of obtaining conclu­

sions as it is with the conclusions themse:j.ves. lt seems appropriate 
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that one's first e:itperience with deductive arguments should be in 

situations in which the conciusions are OOIJlpatible with his intuition. 

One is not lik~ly to develop much faith in deductive reasoning if his 

init:i,al conclusions are unbelievable. 

Planes 

Consider a set of; physical objects that contains the top of a 

. table, the floor of a room, and tb,e surface of a lake. It is common tq · 

use the phrase "flat; surface" in describing each, of these objects, 

Each of these object$ contail'J.S positions and thus each is a physical 

representation of a set; of points. Each of these sets is in.some way 

different from just 1+andom collections of po:i,nts and eac;h one is in 

some way like ~ach of .the othei-s. The term."plane" will be used to 

describe sets of points whose physical representations are commonly 

referred to as flat surfaces. It i,s frequently desirable to draw some 

form of representation of a plane • .A draw.i,ng 1:i,.ke Figure 13 will be 

used for this purpose, and capital letters such as· P, Q, e·tc., will be 

used to designate a particular plane. 

p 

Figure 13 

; 
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The representation in Figure 13 is misleading in the sense that it 

suggests that a plane µas limitations when in reality a plane extenc;ls 

indefinitely. Thus any physical representation of a plane would be 

incomplete. Floors and lakes have boundaries and a table top has a 

"dropping-off" place or edge. Planes have n.o boundaries and it would 

be impossible to "c;lrop off" the edge of a plane since there is no edge. 

If the edge of a straight ruler is placed on the top of a desk the 

ruler will contact the desk at every point on the edge of the ruler. 

If the ruler is turned or moved in any way so that two points of its 

edge remain on the desk top then every point on t4e edge of the ruler 

will be in contact with the desk. Note that the edge of the ruler is a 

physical representation of a line. Ihis experiment suggests the first 

postulate for planes. 

Postulate 3-5. If a plane contains two points 0£ a line, then the 

plane contains every point of the line; that is, the plane contains the 

entire line. 

'.!I'he reader is reminded that a plane is actually a set of points 

and as such is an abstraction. Postulate 3-5 is suggested by physical 

representations of a line and a plane. Once stated, the postulate 

imposes a condition on the abstract concept "plane." Its effect is to 

force ihe plane to conform to one 1 s intuitive notion of a ''flat 

surface." 

According to Postulate 3-4, two points determine a line. How many 

points are necessary to determip.e a plane? Suppose a door swings on 

its hinged edge. The hinged edge is a subset of a line that contains 

the three collinear points a, b, and c, and more (see Figure 14). As 

the door is swung to its various possible positions it represents a 
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diffe·rent plane in each position. Note that points a~ b and c are all 

elements of each of the planes represented by the door. Tl;lel'.'efore 

when three (or more) points arr;a collinear, they do not determine a 

plane. 

a 

b 
c 

Figµre 14 

Now suppqse the door is to c;onta::i.n a specific point such as din 

Figure 14. The door now becomes stationary and thus represents only 

one plane. Only two <:>f the points, say a and c, are necessary to 

deterJ:11ine the line that contains the hinged edge. ThE;l. three points aj 

c and d fix the position of the door and therefore determine a plane, . 

. Postulate 3~6 •. It a, band care noncollinear point~ then th~re is 

exac.tly op.e plane that contains a, band c. Stated another way, any 

thre.e noncollinear points determine, a plane. 

It has been established that a set of collinear points does not 

determine a plane. Every line is a set of collinear points. Therefore 

a line does not dlftermine a plane. Would a line and a point not on the 

line determine a plane? Consider a line Land a point c not in L. 

Every line contains many points, so choose any two points a and bin L. 
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Now a and bare in Land c is not in L. Since there is only one line 

that contains a and b, namely L, and c is not in that line, it follows 

that a, band care noncollinear. Therefore by fostul~te 3-6 the 

points a, b apd c determine a plane. Remember than the points a, band 

c were obtained by first having a line and a point not in the line. 

This proves the following theorem. 

1'heorem3-2 •. A line and a point not in the line determine a plane. 

According to Theorem 3~ l., if two lines fntersec t, the intersection 

is one point. Every line contains more than one point and hence 

contains at least two points. 'l'hus the union of two intersecting lines 

will be a set containing at least three points. These observations 

together with Theorem 3-2 are useful in the proof of Theorem 3-3. 

Theorem 3-3. If Land Mare two lines that intersect, then Land M 

determine a plane (see Figure 15). 

Figure 15 

Proof: 

1. Let a be the point of ;i.ntersection of lines L q.nd M. That is, 

LOM =- [a}. 
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2. Since every line contains at least two points, there is som~ point 

.· b in L other than a. 

3. The intersection of.· L and M contains only one point, namely a. 

4. Hence the only point in both Land Mis the point a. 

5. Since bis in Land bis not a, then bis not inM. 

6. Thus bis a point not in M. 

7. Therefore by theorem.3-2, Mand b determine a plane. 

8. The line Mand the pqint b were obtained as a result of having two 

intersecting lines. 

9. Thus two intersecting lines determine a plane. 

If a plane Pis determined by the three points a, band c, then 

the three points lie in the plane. By :Postulate 3-3 each pair of 

~ 
points determine a line and thus points a, band c determine lines ab, 

·~ ~ 
ac and be. By Postulate 3-5, if two po:i,nts of a line are in a plane 

-~ 
then the line is in the plane. Thus since aeP and be;P, then aBcP • 

. Similarly ·ft c;;:P and ~f P. Hence a plane determined by three points 

contains at least thr'$; lines. If a plane is daterJ:!]ined by two inter-

secting lines~ then it contains at least the two lines that determine 

it. If a plane is determined by a line and a point not in the line, 

it is easy to argue that the plane contains at least three lines. 

Postulate 3-7. Every plane contains more than one line. 

In view of ·Postulate 3-7, every plane contains at least two linee • 

. By Postulate 3 .. 1, eyery line contains an unl;i.mited number of points. 

Consider· a plane P and two lines L and M. so that LCP a.nd MCP · (see 

Figure 16). Take a point aeM and a point b eL. By. Postulate 3~3, ·1:t 
~ 

is a line and by Postulate 3-5, abCP. If c is any other point in L 

~ 
then ac CP. Thus· there are at least as JDany lines in P as ther~ · ar:e 
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points in L. Since there are an unlimited number of points in L, every 

plane contains an unlimited number of lines. 

Figure 16 

Consider a plane Panda point a so that a is not an element of P. 

As a convenient physical representation, think of the top of a.desk as 

the plane Panda point on the ceiliI).g of the room as the point a. 

Take any point bin P. Ey Postulate 3-3, points a and b determine the 

. ~ 
hne ab. Since bis in P, the line~ intersects the plane Pin at 

least one point. 
~ 

Is it possible for ab n P to contain more than one 
~ 

point? The answer is no, as is s t,ated form~lly in Theorem 3-4. 

'I'heo'l:'ero 3-4. Let·P be a plane and b be any point in p; If a is any 

~ 
p.oint not in P, then ao f' P contains exactly one point (see "Figure 17). 

The intersection of~ and. P certainly contains at le,;1.st one point 

since b is in P and b is on tl:. Thus. the theorem will. be proved if it 

can be shown that the intersection does not contain more than one 
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point. The following simple observation will facilitate the argument. 

In order for 1tnP to contain more than one point, it must contain at 

least two points. ijence if~ n;e does not contain, at least two points 

then it could not contain more than one point. 

p 

~- - a ....,. 
Figure 17 

Proof of Theorem 3-4: 

1. By hypothesis, 

(i) a~ and aJ. P 

(ii) be: 1~ and be:P and therefore be:(~()P) 

2. Suppose c is a third point such that ce:(~()P). That is, 

c e: tt and c e: P. 

3. B~ Postulate 3-3, there is only ope line that contains a and band 

eb · h' 1· a. is tis ine. 

4. Since c is on this one line, then tt = 1.t, 
5. By Postulate 3-5, if two points of a line are in, a plane, then the 

entire line is in the plane. 

6. But b·is in P by hypothesis an,d c is in P by the assumption in 

step (2). 



7. 

8. 

9. 

10. 

Therefore, bcCP. 

~ ~ A 
But ao = be, so 'ab C P. 

This implies that ae P. 

This implies the impossible situation that ~e Pandas p, 
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11. 'I'his situation is a result of the supposition in step (2), so this 

supposition must be false. 

12. But if step (2) is false then there is no point other than b that 

is on~ and also in plane P. 

13 •. Therefore the intersection of~ and P contains exactly one point. 

ByPostulate 3-5, if two points of a U.ne are in a plane then the 

entire line is in the plane. By Theorem 3-4, if a line L contains a 

point a that is not in a plane P and also contains a point b that is in 

plane P, then LOP = [b}. Combining Postulate 3-5 and Theorem 3 .. 4 

yields the following theorem. 

'rh~orem 3-5. If a line Land a'plane P intersect, then the intersec-

t:ion is either the line Lor a set containing exactly one point. (See 

Figure 18.) 
"· 

p 

Figure 18 

b, 
I 
I 
e 

L 
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This theorem is similar to Theorem 3-1 which states: "l.f tw(!) 

1:i,nes intersect, the intersection is exactly one point." Theore;.ms 3~1 

a.nd 3-5 a.re both conditional statements. The conclusi.011 in Theorem 3-1 

is subject to a condition that two lines intersect. The conclusion in 

Theorem 3-5 is subject to a condition that a line and a plane inter­

sect. The presence of these conditions suggests that (1) lines do not 

always intersect, and (2) a. given line does not always intersect a 

given plane. 

Physical rep:resentation13 of both possibiliti.es are present in any 

classroom. Consider the line determined by the edge of the floor at 

the bottom of the north wall of a room and the line determined by the 

e.dge of the floor at the bottom of the sou.th wall. These lines do not 

i.ntersec t (assuming that the room is square), Notice that both lines 

are in the ffoor and thus a.re in the. same plane, Such lines are called 

pa:ral.lel li·l\leS, 

Definition 3-3. Tuo lines a.rl;?. parallel if and only if they are in the 

sa:me plane and. their intersection i.s empty. 

the symbol 11 lliu is often used to symboHze the word parallel. That 

is, L\jM means that L and M are par,z111el. 

'l'o illustrate the second possibility above, consider the floor of 

the room and the line on the ceiling at the top of the no·rth wall. 

this line does not intersect the plane of the floor. 

Definition 3-4. A line Land a plane Pare parallel if and only if 

th.eir intersection is empty. 

The defini.tion of parallel lip.es i.nsi.sts that the lines must lie 

in the same plane. The lines det:ermined by the north edge of the floor 

and the line determined by the west edge of the ceiling do not 
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intersect. These lines at'e not parallel because they do not lie in the 

same plane. Such l:i.nes are called skew lines. 

Definition 3~5. 'I'wo lines are skew if and o~ly if their intersection 

is empty and they do not lie in the same plane. 

The definition of pa:ralle.1 lines, like any definj..tion, implies two 

conditional statements. 

1. If two lines lie in the same plane and d<;> not intersect, then they 

are parallel. 

2. If two lines are parallel, then th~y lie in the same plane and do 

not intersect. 

The second statement provides another means of determining a 

plane. Let L and M be two parallel lines; that is, LIIM. Let a and b 

be two points in Land c be a point in M. Then a, band care not all 

in the same line since no point in Mis in L. Thus a, band care non­

collinear. By Postulate 3-6, there is exactly one plane that contains 

a, band c but any plane that contains Land M must contain a, band c. 

Hence there is exactly one plane that contains Land M. 'l'his proves 

the following theorem. 

ThG,orem 3-6. Two parallel lines determine exactly one plane. 

Consider a plane P aIJ.d a: point a such that a.is not in P. Lei;: L 

be. any 1:ine in P. By Theorem 3~2, line 1 and point a deti?rmine exactly 

one ]Jl.ane, call this plane. Q. The point a .is in plane Q but not in the 

plane P so that Q and P are different pl.wnes. Th~ line L was in. P by 

choice. It is in the plane Q since line Land point a determine Q. 

Thus line Lis in bo;h P and Q and henc~ is in the intersection of P 

and. Q. Could there be any points in the intersection of P and·. Q other 

than those points in line L? Suppose bis a point in plane P and bis 
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not in L. Then by Theorem 3-2, line Land point b lie in just one 

plane and since they are both in plane P, then P must be the one plane 

that contains them. Hence no other plane contains both Land b, Since 

line Lis in plane Q, it follows that point bis not in plane Q. Thus 

there are no points in the intersection of P and Q other than the 

points of the line 1. 

Theorem3-7. If two planes intersect, then the intersection is a line. 

Definition 3-6. Two planes are parallel if and only if their intersec .. 

tion is empty. 

The ceiling and the floor of a classroom provide an illustration 

of parallel planes. The floor and a wall of a room determine two 

planes that intersect and the line of intersection contains an edge of 

the floor and also the bottom of the wall. 

From the definition of parallel planes and Theorem 3-6, it follows 

that any two planes are either parallel or they intersect in a line, 

Thus it is impossible for two planes to intersect in a single point, 

Suppose three planes are considered. Could the intersection of three 

planes be a point? Notice the line determined by the intersection of 

two walls of a room. l'his line does not lie in the plane determined by 

the ceiling and therefore by Theorem 3-5 must. i.n.tersec t this plane in 

exactly one point, Thus it is possible for three planes to intersect 

in a single point, 

Three of more planes could inter1;1ect in a line as may be illt,1stra,t­

ed by three or more pages of a book. The different pages can be 

positioned so as to determine different planes and each of the planes 

contains the line determined by the binding of the book, Thus the 

intersection of three planes could be either a point or a· line. 
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In eonside~ing two planes it was noted that the planes are either 

par1:1llel or they intersect.. It is possible for three or more planes in 

a set of planes to be mutµal],.y parallel in the sens.e that each plane in 

the set is parallel to every other plane in the set •. This situation is 

illustrated by considering the planes determined by the floors o{ a 

building having three or more stories. On the other hand suppose that 

it is known l;:hat three particular planes are not mutually parallel. Is 

there some set of points that belongs to each of the three planes? 

. Consider a tent of the type illµstrated .in Figure 19. The walls 

determine different pll;i.nes and the floor. determines a. third plane. 

Figure 19 

Certainly the three plane1;1 are not parallel, yet there is no point 

that is in all three planes. Thus the intersection of the three planes 

is the empty set. Note that each pair of planes in this set of planes 

intersectin a line. 

In the beginning of this ch.;lpter it was noted tha~ geometry is 

coI),cerned with the study of point sets. Thus the point is the funda-

mental building block of geometry. Space was defined as the set o.:!: all. 
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points. Consequently space is the universal i;;et in the st;udy of geome­

try tn the sense that; eve:ry g~om~tric entity is a point set and thus is 

a subset of space. 



CHAPTER IV 

SUBSETS OF TW PLANE 

Th:l.s.cha.pt;er is concern~d with certain sets q:f; points WQich.will 

be s~bsets of a. plape. I:p. some caselii the sets uri,der conE;iideration will 

also be subs~ts of a line. 

Betweenness 

Conside;i:- the points a, band c in Figure 20 (a) and the points x, 

y and z in Figure 20 (b). Note that the points a, b ap.d c are colline~ 

ar while the pqints x, y. and z are ncmcollinear. 

c 

(a) 

Figure 20 

y 

• 

(b) 

If three poip.ts are situatep ai:i in Figure 20 (a), itis c.ommon to 

refer to ope of the three, bin this case, as l;>ei.ng between the other 

· two. Is one of the poi.nts in Figu:t:'e 20 (1:>) between the other two? .· If 

55 
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so, which one? Notice that in Figure 20 (a) there is no doubt about 

"{hich point is between the other two. The point bis between a and c, 

~µt a. is noj: between b and c nor is c between ,a apd b. If the term 

. "between" ts a:ppUed to one of the points in Fig1,1re 20 (b), then :J,.t. · 

might just as well be applied to either o:f;.the other two. Thus the 

term "betweep.11 does not seem ta }?e applic1ii,ble to the sets of points in 

Fig\,1:1:'e 20 ('\)). Under what circumstances ;i,s it c1,ppl!'opriat~ to apply the 

term "b~tween" to one elemel).t of a set of points? The question could 

be answered with a definition but such a definition would necessitate 

the introdu,ctian of other concepts, the pefinitions of which would 

involve more concepts, etc. Consequently the term "between" will be 

conside+ec;l an undefined term. CertEJ.in properties will facilitate the 

use of the concept. 

Postulate 4-1. If a.is between band c, then c;1., band care collinear. 

Notice that this statement is not reversible. Consider Figure 21 • 

. Points a, band.care collin,ear but a is not between band c. 

a b c 

Figl,1.re i1 

'J;he notation a,-b~c wilL be used to indicate that b is between a 

and o. Similarly b-a-c means that a is between band c, and a-c-b 

1,Deans that c is between a and b: It is intuitively apparent that if a 

is between band c, then a is between c and b, Thu,s a-c-~ and b-c-a 
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mean the same thing. 

a b .C b a c b c a 
• • • 

a-b-c or c-b-a b-a .. c or c-9--b b-c .. a or a-c·b 

Figure 22 

A study of Figure 22 S'1gge13ts the following postulate. 

Postulate 4"."2 •. If a, b and c are th,ree points in the same line, then 

exactly .;,ne of tqe points is betweein the other two. 

Consider points a.and~ in line Las in.Figure 23 (a). Since the 

line L ex:tendi, indefiDiitely, intuition .. suggests the following: 

1, l'hel!'e h some point d so that a-b-d. (See Figure 23 {b).) 

. 2 •. There is a point c so that c-a-b. (S~e Figure 23.·(c).) 

3. There is a point e so·that a-e-b. (See Figure 23 (d).) 

a .b 
(a,) L E ' • > 

a b d 
(b) L < • .. • > 

c a b 
(c) L ( 

·, •····. • - > 
a e b 

(d) L ( • • • ) 

Figure 23 
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Notice Figure 23 (d). There is no difficulty i,n finding a place 

for point e so that·e is between a and b, Is it po$sible for a and b 

to be so "close" together that there is no place for point e so that e 

is between a and b? Intuition may suggest that if a ;i.s taken "next t.o" 

b then there wol,lld be no place for point e, However, :j_ntuition is not 

always dependable. It is possible (but not appropriate here) to prove 

· that the point a cannot be "next to" the point band thus there is 

always a place for a point between a and b, This is formally stated in 

the third part of Po$tulate 4-3. 

Postulate 4 ... 3, If a and b are two points, then: 

1. Tliere is a point d so that a-b-d, 

2. There is a point c so that c-a-b., and 

3. · There is a point e so that a-e-b. · 

Segments 

Let a and b be any two points, By Postulate 3-3 there is exactly 

one line ~ that contains both points. If c is any other point in ·1t 
then (1) a-c-b, (2) c-a-b or (3) a~b-c, 

are between a and band some are not. 

~ 
Thus some of the points of ab 

Definition .4-1. The set consisting of the points a and b and all of 

the -points between a and b is called a segment. 

The points a and b 1;1.re called the endpoints of the segment and the 

points between a and bare c1:1-lled interior points of the segment. The 

segment whose· endpo;i..nts are a and b is c;lenoted 11Jb' 1 , and the interior 

of segment ab i$ denoted I ab. Since the set of paipts between a and b 

is the same set as the set of points between band a, it follows that 

1 ab = l ~ c:1-nd a,b = ha: Since definitions are reve:t;'sible the 
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foUowing four copditional statem~pts are implied by the definitiop of 

segment. 

1. If pis an interio;i:- potnt of the segment ,ib, then pis between 

a and b. 

Symbo~ically: · If pe I ab, then a-p-b. 

2. If pis not between a and b, then pis not an interior point 

of s.egment ab. 

SymboU.c:aUy: If not a-p.,.b, then ps I ;i;. 

3. If pis b~tween a and b, then pis an interior point of 

s~gment ab . 

. Symbolically: .· If a ... p-b, then pe I ab. 

4. · If p is not an interior point of segment ab, . then p is not 

between a and b. 

SYl!lbolj.caU;y: . lf pt I ab, then not a-p-b. 

l'he definition of ''segment" and Postulate 4·1 provides a basis for 

a proof of the follo~ing theorem. 

. ~ 

Theorem 4 .. 1. · The i;iegment ab is a subset of the line al;, • 

. according t;o the de:finition of "subset,11 it is necessary to prove 

that every point of the 1:1egment ab is a point of the line ~. 

Proof: 

l,. Let p be any point of segment ;i;. 

2. Then ~· ·= a, p = -b or Pe I ab. 

3. · If p = a or p = b, tl\~n pe 'tt'. 
4. !f pe I ;i;, then p is between a and b. 

5. Therefore by Postulate 4-1: p, a aµd b are collinear and pe ~. 

6. Thus every point of segpient ab is a point of U.ne ~. 

- e ~ Is ab ·a proper subset of ab? That is, are there points in line ~b 
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that arij l').Ot in segment ~? Recall from Postulate 4-3 that if a and b 

are any two points then there is a point d such that a-b-d. ?hen 
~ ,,.,....,.. ~ 

de: ab, but dt al:5; thus there are po:ints in line ab that are not in seg-

ment ab. Therefore the segment ab is a propel;' subset of the line ~. 

In ;fact every pair of points in a l;i..ne L determ:ines a segment in L. In 

Figure 24 the points a, b, c and din L datermine segmepts ab, ac, ad, 

~, bd, and Gd. 

a b c d 

Figure 24 

Rays 

Consider a line L and a point a and L. (See Figure 25.) Recall 

that the !:i,ne L extends inde~initely. Thus there is an unlimited 

number of; poi'q.ts :i,n the line on either side of a. The set of points of 

Lon one side of a together with the point a is called a ray and the 

point a is called the endpoint of the ray. Since there is a set of 

points on ~itl:i.er side of a it is appa.rent that the point a in the \ine 

L determinei; two rays on L. Each of these rays has the point a as its 

endpoint •. Some me~ns of identifying a particular one of these rays :i,s 

needed. Let band c be points in L so that a is between band c. (See 

Figure 26.) Consider the two rays in L determineq. by the point a. The 

point b :is in one of the rayi, and the "Point c is in the other. This 
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suggests the possibility of determining a particular :i;-ay in terms of 

its endpoint apd one other point of the ray. That is, there is just 

one ray in line L with endpoint a that contains the point band just 

one ray in L with endpoint a that cont1;1,ins point c. If, as in Figure 

26, a is between p and c these two rays will.be different. The symbol 

~' which is read ray~':, denotes the ray with endpoint a tqat contains 

b~ and the symbol ;t denotes the rc!.y with endpoint a ~hat cont;.ains c. 

The rays~ and~ are called opposite rays. 

L < 
b • 

Figure 25 

a • 
Figure 26 

c 
• ) 

Apparently each poi,nt in the :\.ine L in Fi,gure 26 belongs to one of 

the l;'ays ':;t or -;t. If a particular point in L is considered, h9w does 

one determine which ray it is in? A functi,onal <;lef;inition of the con~ 

cept "ray'' ii!! needed. Since a ray is a set of points, it will be 

defined in terms of the points that it contains. Consider the ray ;t 
in line Lin Fi&ure 27. The point q is in~ and also in segment ab. 

The points labeled Pl, p2, and p3 are also in "at. Notice that bis 
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between a.and p1 , bis between a and p2 and bis. between a and p3• The 

point r i$ -pQt · in ~. Note that r · is not in SEl~ent ~ and that b is 

not between a and r. 

L E • i • ~ • • • ) 
r q P1 P2 P3 

F:i,.gure 27 

Definition 4 .. 2. The ray .;t is the. union of. the segment ab ani:l the set 

c;>f all point p such t;:hat b is between a .and p. 

A,nother war of describ;(ng a ray is· as follows: Consider a line L 

and points a, band c in L so that a.is between band c. Think of the 

point a as separating .the line L into two parts. One part would be the 

set of all. points in L that are on the same side of·a that b hon. 

The other part :i,s the set. of all points in L that are on the same side 

of.a.that c is on. Not:i.ce that the point a is not in either set, Each 

of the seta described is called a half-line. In Figure 28 the point a 

is circled to indicate that it is not in either half-line. '.!;he half-

line on the b :Side of a is called the half-line determined by a that 

contains b. The other is called the half-line determined by a that 

containsc. The ray 'at is the u.nion of tp.e point a and the half .. line 

deterniined by a that contains b. 

~ 
The ray ab contains many points other ;than a and b but only one 

endpoint~ namely, a. Th~s there are many ways of symbolizing a 

·t;, 
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particular ray w;i.th endpoint a but each symbol must contain the letter 

a.. In Figure 29, b, c and dare all.·on the same side of a and hence 

the symbols ~' ·at and ~ c1rll syinbolize the same ray. 

c a b 

<~_-______ :::;::~----,::;8;;;:::~.~---..--:::::-------7 
Half-Line Containing c Half-Line Containing b 

Figure. 28 

< a b c d > ... ,· • • 
at 4 ~ :;, ac = 

Figure 29 

Angles 

. If two rays lie in the same line their union will be the line or 

a r,ay or ttvo dhjoint rays. Their intersect;ion will be a point, 

segment, ray_ or the e111pty set;:.. Thus no new types of point sets occur 

as a resµlt of ta~ing the union or intersection of two rays in the same 

line. 

The most important situation a:ri$ing from the union of two rays 

occurs when th'3 rays have a common endpoint but do not lie in the same 

line. Let a, band c be three non-colline<1t points as in Figure 30. 

Consider the rc1,ys at l:l.OQ ';t having the COil)I!IOn enc;lpoint a. Since a, b 
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. ~b d-+ 0 h 1· and care non-collinear, the rays a an ac are not int .e sa;me 1.ne. 

'I;he set of points consisting of the union of these two rays is called 

an angle. 

Figure 30 

Definition 4-:-3. An angle is the union of two non-collinear rays 

having the same endpoint. 

~ ~ 
The symbol "~· is used ta denote a:qgle. If ab and ac are non-

collinear rays then the angle formed by "at U ~ is symbolized* bac or 

·~ cab. The three letters used to symbolize the angle are the three 

letters used to denote the two rays involved. The middle letter in the 

symbol will 1;1.lways be t.he common endpoint o;E the two ray$ .• / '.fhe first 

letter will be a poin,t in one of the rays (either one) other than.the 

endpoint, whUe the third letter will be a point in the other ray. The 

two rays whose union makes the angle are called the sides of the ,;mgle 

and their comrnon endpoint i1;1 called the vertex of the £tngle. In Figure 

~ .~ .n, the sides of ~y:icz are xy and xz and the vertex is the point x, As 

previously noted there are many way1;, of symbol:i..zing a particular ray. 
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. ....,+ ~ ·~ ~ 
Thus in Fig~re 31, xy = xa and xz = xb. 

~ ~ 
But xy U xz = ~ yxz so 

i! U it= ~ y:icz. By definition, ·X: U it'= 1- axb, and therefore 

1- yxz = ~axb. Thus there are many ways to symbolize a particular 

angle bub the vertex must a.lways appear as the middle letter in ea.ah 

symbol. In figure 3i, .1'. axb = 1- yxb = ~ axz = ~ yxz, 

Figure 31 

~ ~ 
If ab and ac c;1.re two rays whose .union is an angle, then according 

to the definition of.angle, ab and ac lie in different lines. Thus the. 

linel? ·~ and ~ are different lin~s that intersect in the point. a. 

According t;o Theorem 3-2 two inter!;lecting lines deti?rmine a plane. 

Sinci? the rays ·~ and ;t are. subsets of the lines !t and rc it follows 

that g l) ~ is a subset of the unique plane that is determined by the 

Thus an angle is a i;;ubset of exactly one plane. 

Considerable confusion arises concerning the points of a plane 

that are actually a part of a particular angle and the points of the 

plane that are not part of the angle. In F;igure 32 one may be inclined 

to say that the point pis "in" angle a.be. However, ~a.be is a set of 

points and hence if pis in~ a.be, it must be one of tbe points of the 



set. Yet p is not in bi or ~ and therefore p is not an element of 

·~ U 'it.·· +bus it is inco~rect to state that p is in ~ bac. 

~•P 
b~:,, . c 

F;!.guJ;'e 32 

In viewing a model of an angle in a plane as in Figure 33, · three 

sets of points are :i.n evidence. First the angle itself, second the 
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points in the ;i.nterior of the angle and i:hfrd the remaining points in 

the plane, call.ed the e~terior of the angle. It is a simple matter to 

indicate a particular point in the plane and state which of the three 

sets that the point is in. But how does one describe these sets in 

mathematical langµage? The angle has qeen defined and thus an adequate 

description is a.vailal:>le~ Some notion of separation of the points in a 

plane wi.11 provide a i;nea11is of describing tqe.interior·~nd e:xterior of 

an angle. 

Separation in the Plaµe 

. Consider. a line i in a plane M and let a be a point in L. Let b 

be a point in M such that bis not in L. By Postulate 4-3 there is a 

point a such that a is between band c~ Since a.is between band c, by 

Postulate 4 .. 1, a, band care.collinear. The point b was not in L so 
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the line~ is different from Land therefore intet$ects Lin only one 

point, namely point a. Since c is in linen it follows that c is not 

in Hne L. The sit;:uati9n is pictured in Figure 34. 

I 

p 

Figure 33 

.c 

;Figure 34 

Since the linE:l ~ intersects the li,ne i in a point a which is 

between band e, band care said to be on opposite sides of L. Thus 

the plane M j.s s~parc;i.ted into three subsets. One sµbset is the set of 

all points th~t are on the same side of L that bis on. Another is the 

set of points that are on the same side of L thq1.t c is on 1 The third 

subset is the line L. The set of points in the c-si,de of Lis called 
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the half .. plane dete:i;:mined by L that contains c. The set of points in 

the b-1;1ide .of L ia called the half-plane de.termined by L that contains 

b. The line 4 1$ said to separate the plane Minto two half-planes. 

If c and bare points on opposit;e sides of l, the hal.f-plane that 

contains c is called the c-side of 1. The half-plane that contains b 

is called the b-side of L. 

half-plane on b-side of L . ..-::,, L 
•b 

•c 
half-plane on c-side pf L 

Figure 35 

Postulate 4-3. Let L be a line in a plane M. If a and bare two 

points of~ such that a and bare. not in L, then a and bare on the 

same side of L if and only if .ab n L ;:::: {}. 

The following four conditional statemeQ.ts :may be extracted from 

the if and c;,nl,y if statement of Postul.ate 4-3. 

1. If abrlL = [}, then a and b are on the Sl:!.me side of L. 

2. If a.and b are on the sanie side of.L, then abn L = [} 0 

3. If a and b are on opposite sides of L, then ab n1 ,' [}. 

4. lf abrlL ;{, [}, then a and b are on opposite sides of L. 

The concept of a .. line· separating a. pla.ne provides a means of 

indicating the .positions of points relative to certain lines. · This in 
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guarantee that; a parl;:icular point is in the interi,or of a pa:rticular 

angle. 

a~.b 

( ) L 

a and b on same side of L 

a . 

~(-~~\_._. -~) L 
·b 

a and b on opposit~ sides of L 

Figure 36 

;tnterior and Exterior of an Angle 
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Con,s;tder an ~· abc in a plane. (See Figure 37.) From the defini .. 

. ·~ ·.~ 

tion of "anglia" points a, b and c are non-collinear and ~ abc ;:: ba U be . 

. The :r:ay 'i;t is a su.bset of the line ft and t;.he l!'ay ~ is a subset of the 

line tt. Since a, b and c · a-re nan.collinear, tt and tt are different; 

line1;1. Tpus c is not in tt and a is not in 't?. Qonsequently 'tt 
determines two half-planes one of which contains the point c. 'J;'his 

half-plane, the c-side of~. i,s indicated in Figure 38 by. the hori,zc;m­

tal 1;1hadi,ngs. !n a similar manl!).er the U.ne tt determines. two half­

planes, one of which. contains the point a. The a-side of tt is 

illusttc;1.ted in Figure 3~ by the vertical shadings. 
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•... b~ 

Figure 37 

Figu:i:-e 38 

( I l~ll illlll [fJl1 ~ 
Figure 39 

The 1,1nion of the half-planes: in Figures 38 and ,.39 :i;s shc;,wn in 

Figure 40. . The section of Figure 40 that contains both vertic;:al and 

horizontal sha4ings is that subset of the plane which is common to both 

the a-side of~ an4 the c-side of ~. Notice that any point that is 

in the a-side of tt and also in the c-s;td~ of ~ is a .point that, 
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;i.ptuitively spel;lk.ing, is .in. the interior of ~ abc. Th:ts s4ggests the 

followin,g ~efinition of the interior of an angle. 

a. I. . 

.... 
..... 

i..,, 

1: ·-

/ 

. Definition 4-4. A point p is an, eleme11-t of the int~rior of ~ a.be if. 

and only if p is in the a, .. s:J.de of~ 1;1.nd p is in the ~~side of 1.t. 
(See Fig1,lre 4i.) 

b 

Figure 41. 

Reqall that the angle~ a~c is the union of the rays~ and b€'. 
·~ ~ 

Thus any. pqint that is in ~.abc must be.a point in ba or be .. According 
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to the defin;i.tion of interior of an angle, any point o1; the interior of 

~ a.be mus1r be in a ~alf .. plane determined by 'tt and also in a h13,if·plane 

determined by tt. But; a half-plane and th~ line d,etermin:i.ng it; have no 

points in common. Conseq~ently if a.point q is in the interior of 

~ abc, the q is not in ft and q is not in t'c. Therefore q is not· in 

~ ·~ 
~ a.be. rf·a pointp is ;i.n ~ abc then p.is in ba or pis in be. Up 

:l,s in ~' then p is not in any half .. plane de'termined by tt .and there ... 
. .~ . 

fore it is not :1,n the interior of ~ a.be. :)::!: p is not ill ba but p :i,.s 
. . ':'..+ 

in~ abc, tqen p must be ·;i.n be. In this case pis not in any half-

plane determined by~ and so p is not in the inte1;;ior of ~ a.be. Thus 

an ang].e and its interior are disjoint subsets of the plane. 

DeJinition 4-5. If~ abc is a subset of a plane M, then the set con-

sisting of all p<;>ints of M that are not in ~ abc or the interior of 

~ abc is ~alled the exterior of ~ abc. 

Thus every.angle of a plane separates the plane into three dis­

joint sub~ets, the interior of the angle, t;he exterior of the angle and 

the angle. 

Convex Sets 

According to, Postu].ate 4-3, if a and b lie on the same side pf a 

line 'h th,en the segment ab does not intersect L. To say that a and b 

lie on the sa~e side of.i is eq~ivalent to saying that a and b lie in 

the same hal£ .. plane. Thus a half-.plane is a set of points. such that if 

-a and bare any two po:i,.nts in the set, then the segment ab is also in 

the set. 

Definition 4-6 •. A set of pointsS·is said to be a convex set ;i.f a.nd 

only if . f.o;r· every two J?Oints a and b of S the segment ~ is also in S. 



·-lf Lis a line and a and bare points in L, then ab.is a subset of 

. L. The:i:-efore • Hne is a convex set. Other examples of convex sets 

are rays, pia:q.es and half-J?lanes. An angle is not; a convex set for if 

p and q are point~ such that pis in one of the sides of the angle and 

q is in the oth13r side, then the interior of segment pq is not a subset 

of the angle. (See Figure 42.) 

o~ 

Figure 4Z 

Theorem 4-2. If A h a co1;1ve:8.\ set and B is a convex set, then A(\ B is 

a convex set. 

Proof: ,Accqrdin~ to the definition of "convex set," it must be estab ... 

lished that if p and q a.re any two points in the set A ('\Bt then the 

segment pq iEi also in A('} B. 

1. Let l? and q be any two points in AnB. 

2. By the defin~tion of intersection, pe A, qe A, pe Band qe B. 

-3. ~ince A is convex, Pe A and qe A, then pqcA. 

-4. Since Bis convex, peB and qe B, then. pqc::B. 

5. Aga,in by the defimi.f;:ion of intersection, since pq cA and pq CB, 

then pqcAf"IB. 

-6. Therefore if p and q a::i;-e any two points of A '1B, .then pq is a 
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subset of An B. 

7. Hence f,. n B is a convex set. 

NotiQe that .step1;1 · 3 and 4 in the prqof are. a result i;,f thEl hypo .. 

th~sh tnat A and B ar.e both eorivex sets. The following examples show 

thli1-~ if .A, apd B a.re not convex, then An B may or may not be conve:x;. 

Example l. The inte-rsection of 1= abe and ~ adc is a set eopsist:i;ng of 

the two point~ a and e. The set [a,e }:is nqt convex. (See Fig1..1,re 43.) 

Figure 43 

Example 2. The inter sec t:i,on of 1= abe and 1= dbe as shown in Figure 44 

~ . ~ ' 
is the ray be and the ray be is a convex set. 

a 

bkk . . . 
Figur~ 44 

' . 



Theorem 4-3. The int;eri,or of an a,ngle ha convex set. 

Proof: 'ni,is theore1n is a .direct consequence of Theorem 4-2 and the 

definitic;m of the intet:"ior of an angle. H.df-planes arl;! convex sets 

and the inte1r;Lor of .an a11,gle is the intersection of two half-.planes. 

Therefore by 1,'heprem 4-2 the interior of an angle is a convex set. 

Simple.Closed Curves 
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The wo:r:d ''cul;'ve" like the word!:! point ~nd line is a common term. 

Froi;n an intuitive point of view, a curve is a continuoul;i path. Of 

cours~ · this would not suffice for a. .definition s;i..nce · the words continu­

ous and path have not been defined. Intuition plays an iwportant role 

in the study of mathematics b\lt, as was prev:i,ously suggested, intuition 

is n,ot always J;"el.iable. To i11ustrate, condder Figures 45 and 46. 

!ntuit:i.,on might lead one to refer to Figure 45 a,s a curved line and 

~igure 46.as a strai~ht line. But this terminolo~ is not consistent 

with t;he concepts that have been previoualy developed. If Figure 45 

represents a line (curved or otherwise), then Figure 47 represents two 

lines both of which contain points a and b. According to.Postulate 

3 ... 3, Chaptei;- lII, there is only one line that contains points a and b. 

Therefore Fi~ure 45 does not represent a line. This discussion suggests 

that intuition can be m;i.$leading, but it should not be abandoned. 

Indeed the idea c;,f'a curve wil~ be considered on an intuitive bash 

only sb1ce a prec;J.se definition would depend on concepts that are not 

appropriate.here. 
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Figure 45 Figure 46 

Figure 47 . 

'.f.'he sets of points represented by Figures 46 and 47 are both 

curves. As noted in Chapter III, a set of po;i.nts lik,e Figure 46 is a 

line. This set is now referred to as a curve. This implies that all 

lines a.re curves. Segments, rays and angles are also referred to as 

curves. The set of points in Figure 45 is a curve which is neither a 

line, a segment, a. ray or an angle. Planes and half-planes are exam­

ples of sets of poi,nts that are not curves. The point seti; represented 

iu. Figure 48. q.nd Figure, 49 are not curves; whereas the point set in 

Figure 50 is a curve. l;n what ways does the set of p0irits in Figure 50 

dif;fer from those i,n Figures 48 and 49? Notice that it is possible to 

µiove a pencil frpm i3,ny point in figure 50 to any other point in the set 

withqut removing the pencil from the paper. This is not possible with 

. the pqint set in Figure 48. One might say ;i.ntuit;i.vely speaking that 

the point set ip. Figu+e 48 h;3.i:; gaps in it. The set of points in 
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Figul;'e 5Q has nq gaps in ;it. Th"e set of ppints in Figure 49 has no 

g13,ps but it h,as a characteristic wh;i..ch is commol;lly called "th,ickness." 

I 

(Not a curve) 

Figure 48 

Figure 50 

.. 
(Not a curve) 

Figure 49 

These observi:J.tions suggest the following desci;-iption of a curve. 

This is a desar;i..ption only~ the term "cu,rve" is to be considered as an 

undefined term. 

A curve is described as any set of points which has the following 

properties: 

1. ln any physical representation of a curve it i,s possiple to trace 

l;l. pencil from any point in tl;i.e set to any other po:Lnt in the set 

without rem1;>ving tlJ,e pencil from the set. 

2. A curve has no thickness. 

3. A curve contains more than one point. 
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If it is possible to trace a curve in a way such that the pencil 

ultiJlll;ltely returns to. its original position without retracing its route 

' . then the cµrve i,s a c lqsed curve. If it is possible to trace a curve 

in a way such that the pencil ultimately returns to its original point 
I 

and not trace the sc;1.me point twice, th~n the curve is a.i;;imple closed 

cµrve. Figure 51 represents a simple closed curve. The curve in 

Figure 52 is closed but not;: simple. Figure 53 represents a simp\e 

closed curve. 

Figure 51 Figure 52 

Figure 53 
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While there are mari.y forms of simple closed c;iurves, only two types 

will be consiclered ;i.n this discourse. One of these ;ts the circle which 

wil.l be considered in a later chapter. Of ;lmmecU.ate :J.ntere1;1t is a for!ll 

of the simple closed.c1,1rve which.consist;:s of the union of segments. 

Definition 4•7 •. A. polygon is a. simple c:losed curve which is the union 

of segments •. 

Note that the definition of "polygon" require$ tlwt it be a 

simple closed c;!urve and that it is the union of segments. Thua t;he 

simple closed curve illustrated in. Figure 5;3 ~s not a polygon a:l.p.ce it 

iS not the u;nio1' of segpients. Figure 54 illustrates a simple curve 

which is. the Ul'lion of ·segments, b~t it is not closed &nd therefore, is 

not a polygon. 

Figure 54 

Figure 56 
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The simple clo~:ied curves illustrated in Figures ~5 and 56 are both 

polygons. 

· The segments whose l.lnion · ocnstitutes a polygon will be called the 

sides of the polygon. J:f two sides of a polygon have a point in 

common, t;hen they will be called adjacent sides and the common ppint 

will be caUed a vertex. The verti~es (plural for vertex) of a polygon 

are endpoints of segments~ Each vertex wil,.l be nc1,med by the common 

endpoint of the two sewnents that determine it. Two ve)."tices that are 

in the same segment w:ql be referred to as consecutive vertices. The 

polygon illustrated in Figure 57 is the set of points consisting of 

ab Ube U cd l)da. The verticex are a, b, c and d, All of the vertices 

of a pol.ygon are used.in naming the polygon. For convenience the 

letters naming conseoutive vertices will be list.ed consecutivety in, 

naming the polygon. Thus the polygon in F;i.gure 57 could be named dcba 

or dabc if dis chosen as the first vertex to be named. Any vertex 

could be named first and in each case t]1ere are two distinct orders for 

listing the other vertices. Thus there are 2n ways of naming a polygon 

having n sides. With th,is notation it would be incorrect to refer to 

Fi,gure 'j7 as the polygon ac:;bd s;i.nce this suggests that the segments ~ 

and bd are sides of t;he pol.ygon. 

Figt.1ire 5 7 



A pa:i:'ticular polygon is c;:.lassified according to the number of 

sides tha,t it has. The prefix "poly" is a Greek form mea:p.ing many. 

81. 

If a polyg<;lll has more than four sides the Greek form fo;t' the particular 

numpe:,:- of sic,ies involved may be sub$tituted ;fpr the form ''poly'' to 

indicate the n1Jmber of sides that the polygon has. Thus a penta&on is 

a polygo1' having five sides, a hexagon is a.polygon hav;i.ng six sides, 

et cetera. ':(he tei-m "quac,irilateral" is used to denote a polygon having 

f 01Jr aides and t'l;te term "triangle" denote~ a .polygon having three 

sides. The polygons most frequently ~m.c;:.ounterecl in elementary geometry 

are the quadrUa,terals a.nd the triangles. 

TJ::>,e study of the point seu intro<;luced in this chapter is faci.li .. 

tated by the congruep.ce relation.. This concept will be _conside+ed in 

the next chapter. 



CHAPTER V 

CONGRUENCE 

~ijch of the success of modern industry mlly be a.ttributed to the 

interchangeability of c:ompot).ents. A ~efective part of a Swiss mad, 

watch is readily replaceable in a local jewelry store. A similar 

situation exists regarding mo$t of the mechanical devices used by 

moder:p. society. This situation is a result of i;nanufactµrer~ producing 

large qua.ntit;::.ies of items that are 1;1.like in si:l:e and shape. 

Experiences with physical objects a,s suggested above provide an 

int;:u:i,tive basis for considering sets of points that ar~ alike in size 

and shape. In the study of.geometry the word congrt,1e11,t is used to 
. . . 

desc;.i;-ibe the rel.at:i,on between sets of points that are alik,e · in size a'Q.d 

. shape. The reader will recall that the equals relation discussed in 

Chaptl:!r III ap]i)U.ed only to different names for the same set. If A and 

B are l'oint sets. such that A = B, then A and B are the sa.rn~ set and 

therefore are alike in every possible way. Hence. they ate congruent, 

The congtuence rela.tion is broader in that it describes a relation that 

may exist between sets that are not equal. 

Congruent Segments 

Irt:i,.tial consideration. of congrt,1ent s~ts p;I; points will be focused 

upon segments. Intuitively speaking ''congruent segments'' are i;egments 

that are alike in size and shape. This is to be c.onsidered only a~ a 

82 
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description. "C::ongr1,1ence" as applied, to segments will be considered an 

undefined term. All segments pave the same shape, thus two segments 

are congruent if .and only if they are the sa:llle s.i2;e. Hence the problem 

is dete:r;miqing whethe;r: or not they a.re the same size. 

Consider the segments ~ and !;i in Figui:-e 58. How does one deter.:. 

........ ....... 
mine if ab is the. same ,size as cd? Remember that ~band cd, are point 

sets and pointEil do not roove. Thus it ;Ls not possible to place abovet 

·cd or.cd over ";i;' to see if they are the same size. However, it is 

possible to t~ke some convenie~t model of a segment (commonly called a 

straightedge) and make a copy of ab· on the model. This may be accom~ 

plished by placing the straightedge alongside a:b and making points m 

and non the straightedge to correspond to the points a and b. The 

model may then be moved alongside~ so that the point mis on point c. 

If the point n of t9e model falls on the point d. then the segments ab 

and cl a.re the. saxqe size apd thus are congruent. The symbol "~' is 

used to symbol;l.ze ,"is congruent. to." Thus the statement, "ab is 
_,,_. . ,•, --- ......... ~ 

congruent to cd" is symbolized "ab = ed." 

a b c d 

. Figure 58 

Since the procedure desc;ribed above involves a phys:1-cal operation, 

only approximate accuracy may be expected. Therefore, it could not 

serve as a basis· for asserting with certainty that a given pair ot 
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segments are congruent. At best, the process justifies t;he assertion 

that two segments appear to be congruent. Indeed, not,:h:j.ng :i,n the fore-. 

going discussion guarantees that congruent segments even exist. The 

existence of congruent segments is assured by the foHowing postulate. 

. ~ 

Postulate 5-1. If ab is any segment and cd is any ray, then there 

exists exactly one po;lnt p in·~ such that the segment cp is congruent 

to the segment ab. 

The phrase "is congruent to" when applied to two segments indi-

cates that the segments are related in some way and thus is a relation 

on segments. Since the term "congruent" is undef:i,.ned, this is an 

undefined relation. The next postulate assigns three useful properties 

to the congruence relation, 

Postulate 5-2. For .all segments, 

(a) ab -;- ab. 

(b) If ab-;;;;- cd then.~-;;;;- ab. 

(c) If ab -;- cd and ~ ';' pq then ~-;; pq. 
Statements (a), (b) and (c) of Postulate 5-2 a.re rei;;pectively the 

reUexive, symmetric and transitive properties of an equ:i,valence re~a-

tion. Thus the relation "congruence" on segments is an equivalence 

relation. Since for a11y segment -;i;, ab = ba, it follows from (a) that 

ab ';' ba. Also if ~ ';;' cd then ;J;°-;- dc since cd -;- do. 

The reader should note that the c;.:ongruence relatiqn is not the 

same as the equals relation. Consider the segment -;i;- and the ray 'a! in 

figure 59, At;:cording to Postulate 5-1 there is a poi11t pip.~ such 

that -;i;-;- ~. ab ~nd ~ are disjoint sets and hence ab and cp are dis-

joint. But two sets are equal only if they .contain the same elements. 
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b 

c d 

Figure 59 

Congruent Angles 

The undefined relation "congruence" on segments prov:i,.des a basis 

for formul~t:i,.ng a definition of congruent angles. 

Defin:i,.t:i,.on 5'."l. Let ~ abc and * mno be two given angles. Let p be the 

point in ray ~ such that.~ ~ ba, and q · be the point in ray ~· such 

that nq -;;;- be. Then * mno ~ 1'. a.be if and only if pq -;;;- ac'. (See · 

Figure 60.) 

b ---..,..,......_~--"~ 
c 

F:i,gure 60 

Note that this definition involves three pairs o~ congruent seg .. 

ments,, namely nq ~ ho, np -;· ha and pq-;;;- ac'. Postulate 5-1 guarantee~ 



the e:itistence of a po:i,nt p in ;t such that rip ';;' ba and a point q in 7o 
such that~;;: be, There is,. however, no assurance that the segment pq 

. ---determined by these points is.congruent to ac. Consequently previous 

developments do not provide for the existence of congruent an~les. 

Postulase 5-3. Let-~ a.be be any angle and L be any line in a plane M~ 

Let .H be one Q{ the half-planes in M determined b:>7 L •. If ~ is any ray 
-·~ . 

in L, then there e~ists e~actly one ray pr with r in H such that 

. ~ rpq ~ ~ abc • 

· Postulate S-2 states that cong~uence is an equivalence relation on 

segments, This postulate along with the definition of congruent angles 

makes it pos$i~le to prove that the congruence relation is an equiva-

lence relation on angles. 

Theorem 5 .. 1. Fm; .all angles, 

(a) -~ abc. ~- -~ abc. 

(b) If-~ abc ~ ~ mno, then ~ mno ~ ~ abc. 

(c) If ~ abc ~ ~ mno ~nd ~ mno ';;' ~ pqr ,. then ~ abc ~ ~ pqr. 

Proof: 

. (a) 1. By Postulate 5-2(a), ba -;;-i;;, be;;: be and ac ~ ac • 

. 2. The+efore by. tl).e definition of congruent angles,. ~ abc ~ aha. 

(b) 1. ~ abc ~ ~ µmo by hypotheds. (See Figure 61,) 

2. By Postulate 5-:t there e~ists pe 'j;t such that hp-;;;;' mu· and 

~. . ......,_ ....... ~ 
q, be such that bq = no. 

3, Since pe rt" and qe 1£, ~ pbq :;: ~ c;t.bc, 

4. Thei:'iafore by substitution in step 1, ~ pqb ~ ~ i;nno. 

5. Thus, b:p -;;:;:;_;, bq-;; ~and-~ pbq = -~ mno; therefore by the 

defiDii tion of congruent angles pg.~ ;;; . 
6. 

_...... -.,., - .............. ---,, ,-. ....... ........,..... 
By Postulate 5 .. 2 (b), nm =. bp, no = bq and mo = pq. . . 



7. Therefore, by definition of congrq.ent angles .~ mno ~ ~ pbq. 

8. Since ~ abc = ~ pbq, one may substitute ~ abc for.,: pbq in 

step 7 and obtain~ mno-;;- ~ abc as was to be p~ov~d. 

The proof of part (c) is similar and will be omitted. 

a 

b 
q c 0 

Figure 61 

Definition 5·2. · If a, band care three noncollinear points then 

ab U bcU cc;1. is a ti;iangle. ($yi;nbolized ll a.be) 
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Thus the tri1;1.ngle bi:ic is a polygon having three sides, narnely ab, 

be anc "2a. The segments ac and ab are subsets of rays ar and aq 

respectively. (Se~ Figure 62.) These rays have a common endpoint a. 

Let b be a point on ~ and c be a point on ~' then a:'t I) Tc = ~ bac. 
~ ~ . 

Since the rays ao and ac are determined by the sides~ ano. ac, ~ bac 

is determined by the triangle and hence is said to be an angle of ll c;1.bc. 

This designation is somewhat mislec!-dingin that it suggests tb,at ~ bfl.C 

is a i;;ubset of ll abc. 
~ Let; p be a point on ac such that c is between a 

and p. Then pe: ac, pe: ab and pe: bc. Thus Pe: ~ bac but Pt A abc. 
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Therefore* bac is not a subset of~ abc. Thus an angle of a triangle 

is not a subset of the triangle. The two angles,~ abc and~ bca, a-re 

also angles of Jl abc. Since each angle determines a vertex, a triangie 

has three vertices. Thus a triangle has three sides, three angles and 

three verti<:ies. 

a 

Figt;l.re 62 

Congruent Triangles 

The congruence relation between two triangles will be defined such 

that it will involve a correspondence between certain parts of the two 

triangles. ln this correspondence comparable parts will be paired, 

that is, a particular side of one triangle with a specified side of the 

other and a particular angle in one with a spe~ific angle of the other. 

The partl;! to.at are paired will be referred to as correspondip.g parts. 

The ordet' in which the vertices are listed in naming the triangles wi.;Ll 

determine the partict;l.lar correspondence to be considered. The symbol 

11~ 11 wi:1.1 mean "corresponds to." For the correspondence~ .A abc ~ .AIDno, 

the vertic;.es a and b of .A abc determine the segment ab while the 
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vertices m a.nd n of A mno determine the segment mn (see fi~ure Q3) . 
..,_ ~ . 

The segments ab and. mn will be designated as corresponding parts. l'he 

ve;,;tices a a.nd c c;,f A abc determine segment ac and vertices m and o of 

A mno determine segment~. ..,..... -Segmen,ts ac and IllO ~re corresponding part$ .• 

Similarly~ and~ are correspQnding parts. The correspondence be-
. , 

tween tp.e angles will be determined by the position o:f the vertices in 

naming the triangleij. Again, in the correspondence A abc <E+ A mno the 

angle with vertex a corresp,;mds · to the angle witp. vertex m, the an.gle 

with vertex b corresponds to the angle with vertex n and the an,~le with 

verte~ .c corresponds to the angle with vertex o. 

Figure 63 

The correspondence A abc ~ .A mno implies the set q;f correspond-

ertces listed below. 

~ '7. µin 

ac ~mo 

bc·~~ 

~be ~.1nmo 

~ca~ ~QID 

~ab ~~n 

Any correspondence between A abc and A rono which implies this set of 

corresponding parts w:i.ll be said to be equivalent to the correspondence 

A abc ~ A mno. Thus the correspondence A bca ~ A n,om is equivalent 
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to 11 abc A 11 mnc;,. The two correspondences .A abc tt .A mno and 

.A abc ~ .A nom are not equivalent since in the former ab~ mn and in 

the latter ab~ no. Invariably when symbolizing a congruence between 

two triangles a particular correi;pondence will be implied. Thus the 

congruence ~ aba ';;; .A mno implies tb,e correspondence .A abc ~ 11 mno. 

Definition 5 .. 3. .A abc ';;' ,A mno if and only if ab';;';;;, be';;' no a.nd 

--:,,,-, -- .........,. 
ac = mo. 

Theorem 5 .. 2. If .A abc -;;- 11 mno then 1= abc -;;- ~ mno, 1= bca -;;- ~ nom and 

~ ca,b ";;' * omn. 

Proof. In Figure 64 the marks indicat~ the parts that are known to be 

congruent. 

b n 

Figure 64 

1. 
_.._. __ ~ --- -....,....,..._ 

By Qefinition 5-2, ab= mn, be= no and ac = mo, 

2. Therefpre c is the point on ray 'at such that~";;';;;, and bis 

the point on ray °;t such that ab -:;- ~-

3. But k ';;;' ~' therefore ~ cab .';;' ~ oron. 

The proof for the other two angles is identical except for notation and. 

will be omitted. 



Theorem 5-3. The congruence relation on triangles is an equivalence 

relat!on, that is, for all triangles, 

(a) .A abc ~ ~abc 

(b) If.~ abc ~ A mno, then A mno ~ A abc 

( c) If A abc ~ .A mno and .A mno ';;" 4 pqr, then .A abc ';;" A pqr •. 

Proof: The proof for part (c;:) will be given; parts (a) and (b) al;."e 

similar and wUl be omitted. Refer to Figure 65. 

n 

Figure 65 
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1. Since .A abc ';;" A mno, Definition 5~2 implies that ab;;~' k-;;;, ~ 

---and ac·= mo; and 

2. Since A mno;; .A pqt, Definition 5~2 implies that;;;:;; pq, ~·-;; qr 
and ;;; ;; pr. 

3. By Postulate 5-2 (c), ab -;;;- ~ and ;j; :;; pq implies that ~-;;;;- pg; 
k;; ~ and -;; ';;" qr implies that be;; qi;; -;; -;; ~ and ;;; ;; pr 
imp1~es that ac -;;;- pr. 

4. Thus~';;' pq, be·:;- qi; and-;;-;;;- pr; henc;:e by Definition 5·;2, 

.A abc ';;' 1:t, pqr. 

Definition 5 .. 3 gives the only criteria thus far available for 

establishing a congruence between two triangles. That is, two triangles 
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are congruent under a particular correspondence if the three pairs Qf 

corresponding sides are congruent. Are there other sets of conditions 

that are Sl.\fficient to establish a congruence between two triangles? 

. The aniswer is, yes, and each of the next two theorems provides such a 

set of cond.itions. 

Theorem 5-4. If, for the correspondence .A abc ~ .A mno, ab ~ ~' 

ac ~ ~ and .~· bac ~ ~ nmo, tqen .A abc ;; A mno. 

b n 

Figure 66 

Proof: Refer to Figure 66. 

By hypothesis, a'.;;"·~ mo and ah-;;;;:~. 

2. 
~ -.-_......,... 

Thus c is the.point on ray ac such that ac = mo, and bis the point 

on ray ;t'. such that ab ;;. ;;;. 

3. But by hypothEi!,sis ~· bac ;; ~ nmo. 

4. Therefore from Definition 5-1, ~;; ~. 

5. Thus, for the correspondence .A abc <:-7.A mno, ab-;;;;-;;';,~;;~ and 

-~- . -... be =no; therefore A a.be= .A 111no by Definition 5-2. 

For a Aabc, the side ab is a subset of one ray of~· bac while the 

side of ac is a i,ubi,et of the other ray of~ bac. Thus the side~ a:'b 
--and ac detel;'mine~ bac which is often referred to aa the included angle 
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relative to these two sides. With this te:i;-minology the above theo:i;-em 

may be atated, "If for a particular correspondence two sides a,nd the 

included angle of one.triangle are congruent respectively to the 

corresponding two sides and includ~d angle of another triangle, then 

the triangles are congruent under the indicated correspondence." This 

is often referred to c1rs the side-angle-side theorem or more briefly 

S.A.S. 

Theorem 5,..5, If for the correspondence .A abc ~ A mno, ~ bac ~ 1= nmo, 

~ ·~ ~ and ~ bca ~ ~ nom, then .A abc ~ .A nmo. 

Proof: Refer to Figure 67. ';['his proof is. quite different from any 

previously encountered and perhaps more difficult. Obs~rve th,9,t side 

~ of .1; mno lies in a line L which in turn determines two half-planes. 

The ray ~ liea in one of these half-planes, which will be called H •. 

~~-..... ~ 

Since mo· ac and* nmo == 1'. bac, if mn was congruent to ab then the 

S.A.S. theorem would apply and .A abc would be congruent to .A mno. Thus 

if it could be established that ;'u ~ ab, the theorem could be proved. 

Of course it isn't known that mn ~ ~' but by Postulate 5-1 there is 

exactly one po~nt pe; mn such that ;j; ~ ~. The problem is to show that 

p and n are the same point. 

b 

a c 

Figure 67 

p 

n .,..., , 
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In Figure 67.let L be the line tl)at contains mo and let H be !;he 

half-plane determined byLthan contains n. 

1. 
"""""" . ......... ....... -. -

~ nmo = ~ bac, mo= ac and ~mon = ~ acb by hypothesis. 

2. ~ ---Let p be t;he point on mn s1,1ch that mp= ab. 

3. ~ ~ ~ 
Since pe mn, mp= mn and~ pmo = ~ runo. 

4. But ~.nmp';; ~ bac, so by substitution~ pmo ';;;" ~ nmo. 

5. Thus for .A mpo and .A abc, · ;p ';;"ab,.·.~ PJllO ~ ~ bac and ~ ~ ac. 
6. · Therefore, by Theorem 5-4, .A mpo ';;'A abc. 

7. This implies that ~ mop ;- ~ acb and from (1) ~ mon ~ ~ acb. 

~ ~ - ~ 8. Thus on is a ray in tt such that.,. nom = ~ acb, and op is a ray in 

a such that ~ pom -;;- J acb. 

9. According to Postulate 5-3 there is only one such ray,· therefore 

~ '7 op= on. 

10 . "?' ~ Therefore peon and by step (3) pe mn. 

11. 
. ~ ~ 

Hence pe onnurn, but two rays inte:i:-sect in at most one point and 
~ ~ . 
on and mn intersect at n. 

12. Therefore p = n. · 

13. Hence .A mno ;- A mpo; bu.t .A mpo ;;- A abc frprq step (6) so 

.A mno ;- .A abc. 

This theorem states that if two angles and the included side of 

one tJ;"iangJ,.e are congrµent.to the corresponding two ~ngles and included 

side of a second triangle, .. then the. triangles are congruent. It is 

referred to a1;1.the angle-side-angle thcaorem or A.S.A~ 

Congruent Polygons 

Considei; the polygon.s abcde and mnopq in Figure 68 ·a.nd·the aorre .. 

spondence abcde ~ mpopq •. The segment determined by two npnconsecutive 
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vertices of a polygon is called a diagonal. The segments ac and ad are 

d:i,.agonals of polygon abcde. The corresponding diagonals of polygon 

mnopq are mo and mp. The diagonals ac and ad partition polygon abcde 

and its interior into three triangles and mo and mp partition polygon 

mnopq and its interior into three tt'iangles. If the corresponding 

triangles determined by this partition are congruent then the poiygons 

are c ongruem t • 

a d m p 

e q 

Figure 68 

Definition.5.-4. Two polygons are congruent if and only if there is a 

partition of the polygons into triangles such that the corresponding 

triangles are congruent. 

The congruence relation provides a basis for developing many 

additional concepts in geometry. :In the next chapter this relation 

will be used in the classification of triangles and angles. 



CHAFTER VI 

CLASSIFICATION OF ANGLES AND TRIANGLES 

One frequentl:y encpunters references to right a.ngles, perpendicu­

lar lines and to classes of triangles such as isosceles triangles, 

equilateral triangles. and right triangles. These classifications are. a 
I . 
i 

... consequence of the congruence relation and will be explored in. this 

chapter. 

Isosceles Tr:l.anglas 

Suppose.~. paq. is a given angle and ~ :is a given 1;1~gment. · There 

. ·~ ................ -
is a point b on ray a.p such that a.b = nm and there :j.s a point c on 

~ . ---tay aq such that ac·= mn. Since the congruence relation is an equiva-

lence relation it follawl;I that ab ';;;; ac. The points b and c determine 

segment·bc and ab Ube U ca is a triangle. (See Figure 69.) For .. the 

triangle thus.determined, two of the sides are congruent segments. Any 

triangle that has this characteristic is call,.ed an isos.celes triangle. 

a 
'\ m ...,_ ____ ..,...... n 

Figure 69 
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Definition 6-1: A triangle is an isosceles triangle if and only if two 

of its sides alTe congruent segments. 

Wl;len reterring to a triangle such as .l!i. abc, it is convenient for 

one to describe~ particular angle in terms of a certain side. The* 

bac with vertex a is referred to as the a1;1gle opposite the side be, 
........... 

* abc is opposite~ and~ acb is opposite~- Conversely, siqe be is 

opposite ~ bac, ac is opposite * abc a:p.d ab :i.s opposite ~ acb. 

Theorem 6-1. If two sides of a triangle are congruent, then the angles 

opposite these sides are c.ongruent; i.e.~ in .l!i &b9 if ab~~, then 

* cab ~ ~ acb .• 

Proof: Since the congruence relation is an equivalence relation, every 

tria~gle is co~gruent to itself. That is, .l!i abc ~ A abc under the 

correspondence A abc ~ A abc. ';['his correspondence is called the 

identity correspondence, every part co;rresponds to i tsel;f. Under cer..;. 

ta.in conditions a tdangle will be congruent to i.tself under SPiiie. 

correspondence other than the identity correspop.denc(\?. This provides 

a basis for a proof of Theorem 6-1. Reter to Fig~re 70. 

c 

Figµre 70 
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.1. Consider .the cc;,rresppndence .1:,. abc ~ ./:. cha. 

2. For this correspondence ab~ ch, ~ abc ~· ~ <rba and ch~ ab. 

3. i. ·IJ;' ~ ch by hypothesis. 

ii •. ~ abc:; * cha, hence~ abc-;;;;- ~ cha. 

iii. ~';' ab by the symmetric property of the congrµence relation. 

4. Therefore .1:,. a.be 'i:;' A cba by the S.A.S. theorem. 

5. For the correspondence· A a.be ~ .b cba, ~ cha e ~ a.ch, and there-
. . 

fore ~ cab -;;;;- ~ a.ch by theorem 5·4. 

· In an isosceles triangle the side opposite the angle determined by 

the two congruent sides is called the base. Thus in Figure 71 ab is 

the base.. The {lngle opposite the base is called the vertex a-p.gle. 

Each of the two angles that has as its vertex a .point in the base is 

cal).ed a base angle. In Figure 72 the base angles are ~ cab an.d ~ acb. 

W:i,th this terminology, Theorem 6-1 may be stated: "The base angles .of 

an isosceles triangle are congruent.'' 

a~···i b 
. . 

c 

Figure 71 

Theorem 6·2. If two angles of a triangle are congruent~ the sides 

. . . -· . 
opposite these angles are congruent; i.e., in A abc if~ cab"" J: acb, 
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-..,...-
thencl:>= ab. 

b 

Figu.re 7~ 

Proof: 

1. Consider the correspondence A abc ~ J;. cba • 

. 2. . Then ~ cab e ·* acb, ac e -;;-; a1,1d ~ acb ~- ~ cab (see Figure 73). 

3. i. ~cab~~ acb by hypothesis. 

ii. • ac = ~' hence ac ';; ca .. 
iii. ~ aeb ~*cab by the symnietric property. 

4. Therefore A abc ~ A cba by the A.S.A. theorem. 

5. Then a6';;;i cb by Definiiion 5~2. 

a~-·········· c . . 

. . ~ . . . . 

Figure 73 
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Equil.ateral Tr:i.,angles 

All isosceles triangles have two congruent sides. A special class 

of isosceles triangles is one which ccinsists of triangles !=hat have all 

three sides congruent. These are callep equilateral triangles. 

Definition 6-2; .A abc i1:1 an equilateral triangle if and only if 

ab ~ .~ and be.-;;;~~ that is if all of its sides are congruent. 

Thus if A abc is an equilateral triangle, then any two of its 

sides are congruent. Consequently every equilateral triangle is also 

an isosceles triangle. 

Theorem 6,-J: If A abc is equilateral, then ~ abc -;; ~ bac and .~ bac ~ 

~ bca, or~ abc-;; * bac ~ ~ bca. 

b 

c 

Figul;'e 74 

Proof;: 

1. 
--~ . -.,... ac = be br hypothesis, hence~ abc = ~ bac by Theorem 5-6. 

2. be-;;;- baby hypothesis, hence~ bac-;;;;-} bca. 

3. Therefore ~ abc. -;;;- ~ bac ~ ~ bca from step (1), step (2) and the 

transitive property of the congruence relation. 
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4. Thus each of the t:hree angles of an equilateral triangle is 

congruent to each of the other two. 

Theorem 6-4: If in A abc, ~ abc ;; ~ ba:c -;;;- ~ bca, them .A abc is 

equHateral. 

Proof: (Refer to Figure 75.) 

1. ~ abc-;;;- ~ bac by hypothesis; therefore by Theorem 5-7, ~.-;; be. 

2. ~. bac -;;;;- ~ bca by hypothesis; hence by Theorem 5-7, ~·-;;;;- ba. 

3. Therefore .A abc is equilateral by Definition 6-2. 

Not all triangles are isosceles and if a triangle is not isosceles 

then it is not equilateral. If a triangle is not isosceles it is 

called a scalene tr:i..aQ.gle. Thus triangles are claasified as: 

i. · Isosceles if two sides are congruent aegments. 

ii. Equila.teral if all three sides are congruent segments. 

iii. Scalene if no two aides are congruent segments. 

b 

a 

Figure 75 

Midpo;i,nts 

Suppose ab is a segment and L ia a line as :i,n Figure 76. Let m, 

p and n be points of i, such that pis between m·and n. ~ ~ 
Then pn and pm 
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are opposite r~ys. Accord:i,ng to Postulate 5-1, there exii;ts a point d 

in~ sueh that pd'.;;;;' ab. Also by Postul.ate 5-1 there .exists a pqint c 

in pt suc;:h that pc';;° ~b. Accoi:-di,ng to Postul.ate 5-2 (b), the c1;mgru· 
. ·: .. 

. . -.,........- _,....,.... __ .~ 
ence relation is SYtnmetric; hence J>C = ab implies that ab = pc. Tht.1s 

pc°·-;; ab and ab ~ pc.. Applying Po!:!tulate 5-2 (c) one ob ta.ins pd ;- pc. 
The points c and d determine the segment ed. Sinc.:e p is an inter;l.or 

- ·- --- _.,... ...... -.. point of cd, cp U pd • cd, and cp = pd; the po:i,nt p is called. the mid-

point, of cd. 

a _____ __.,b m . <. 

Figure 76 

c 

' 
p 
• 

d , n . ) 

Definition 6-3: A point pis the midpoint of a segment abif and only 

if p is an interior point of ab and-ap ~ pb .. 
·-,-

Po$tulate 6-1: · If ab is any segmept then ab has e~actly one midpoint. 

J;nteriot.Points of Angles·and Ttiangles 

Let ..A abc be any triangle and let pbe a point :i,n the interior of 

~ bac. Then P. could be, in the ;i.nte+ior of each of the other two angles 

of the tr:i,angle as in Figure .77, or p could be in tqe interior of ~ bac 

but not in the interiot of e;i.ther of the other two angles of the tri-

angle as in Figure 78 (a) and (b) ~· In Figure 77, p appears to be in 

the interior of the tr:i,angle whereas ip. Figure 78, p does not appear to 

be in.the interior·of the triangle. 
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a a a 

Fi$ure 77 Figure 78 

De:f;ini tion 6"."4; A. pb:i,.nt p is in the interior of .A abc if and only if p 

i$ in.the int;er:i,or of each of the three angles of the triangle. 

Thus a. point of a tr::1.angle is not in the interior of the triangle 

since any point of a triangle belongs to at least one of. the s~des. If 

-q is a point in the segment ac of .A abc then q is not in the inte:i:-ior 

of either~bac. or ~bca. (See Figure 79.) 

b 

a c 

Figure 79 

The point q ln Figure 79 does a.ppear · to be in the interio:i:: of 

.~ abc. F\,rrther consideration of figul;'e 79 suggests that if d is a 
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point in the interior of* abc, then the ray ba· is in the interior 

* abc, and that any ray in the interior of~ abc will contain an inte ... 

rior point of side ac. These properties are not logical consequences 

of the previous development an.d thus are based on intuition. They are 

important to further development and therefore will be postulated. 

Postulate 6-2: Let;: A abc be any triangle and for definiteness consider 

· .~ bac, then: 

1. If q. is an interior point of bc, then q is in the interior of 

~ bac. 

2~ If dis any point in the interior of~ bac, then every point 

f h ."""7.a f ~ b o t e ray a e~cept a is in tµe interior o ~ ac. l'his ray 

is said to be in the interior of* bac. 

3. If ~ is any ray in the interior of * bac, then~ intersects 

the side be in an interior point of be. 

Bi sec tors of Angles 

Let~ paq be any angle and i;nn be any segment. There is a point b 

on ray~ such that ab-;;;-;; and there is a point con ray~ such that 

---ac = mn. Thus 'ib-;; ;;;- and ab U ac U kis an hosceles triangle. 

Therefore for any given* paq there exists an isosceles triangle having 

* paq as its vertex angle. 

Definition 6-5: "'? The bisector of 1'. paq is a ray ao in the interior of 

t paq such that} pao-;;;- ~ oaq. Stated another way, the ray~ is the 

b;i..sect;or of ~ paq if and only ;if ray ~ is in the interior of ~ paq and 

~ pao -;;.'J oaq. 

Theor§m 6-5: For any~ paq, then~ paq has a unique bisector. 

Proof: Theorem 6-5 is a conditional statement with a compound statement 
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for a conclusion. That .is; ~ paq has a bisect9r and the bisector is 

unique. Thus the proof m1,1st establish.both the existeni;:e of an an8le 

.bisector and the uniqueness. The proof for the e~istence :i,s given 

firs~. 

1. Fot · the given angle, ~ paq, ·· let .4 .abc be an is<;>sceles t1;iangle 

. with ~ paq as its vertex angle. (See Figu;i;-e 80.) 

Figure 80 

2. Acc<;>t'din~ to. Postulate 6-1 there e;Kists a midpoint d of segment 

be. 

3. Since de l;)c, by Postulate 5-5 J;"ay ~ is in the inte:i:;ior of ~ bac. 

4. J:>oints b, d · and c are in be and ai bc; hence a, d and b are non-. 

collinear and points·a, band care noncollinear. 

5. The~ef c;,re ;r V db v·;.; ;::: ..6 adb and ';;i° U dc U ac = .I!. adc. 

6. ab ~-a'c since ..6 abc is isosceles. 

7. ~ .-; ;r by the refl~:l!:ive property, and db-:;- dc since d is the i;nid­

point o.£ bc. 
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8. Thus for the correspondence A adb · tj A a.de, the corresponding 

sides are congruent segments. 

9. Therefore A adb-;;;- A adc by the definition of congruent tria.ngles. 

10. Therefore ~· bad -;;; ~ cad since they a,re corresponding angles of 

congruent triapgles (',f,'heorem 5-2). 

This proves the existence of an angle bisector. It remains to 

prove that there is only one angle bir,,ect<;>r. The approach will be to 

consider any angle bisector and prove that it is the one whose exist-

ence was just establisqed. 

1. Let A abc be an isosceles triangle with vertex at the given angle, 

~ paq. (See Figure 81.) 

a 

Fi.gure 81 

2. ·~ --=>·. Let ray an be any angle bisector c;,f ,?c bac, then ray an is in the 

interior of~ bac from the definition of angle bisector. 

3. By Postulate 5-5, th,e ray~·· intersecte bc in an interior point, 

call. it o. 

4. Then b, o and c are dis tipc t pqin ts on be and a.e be~~ 

5. Therefore points a, o and bare noncollinear, a,nd points a, c;, and 



care noncolli~ear. 

6 • Thus ;; U ob U. ;i:; ·· = .A aob and. ao U oc U ac · = .A aoc ~ 

7. Sine;~ ~ is an angle bisector, ~ bao ';" ~ cao. 

:----..-· 
8~ ao = ao by the reflexive l'roperty and since .A bac is isosceles, 

-·-.., ~ 
ab= ac. 
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9. The'fi foX' the correspondence ~ aob ~ .A aoc, two s;J.des and included 

angle of~ aob ate congruent to the corresponding two sides and 

. included 1:1:ngles of .A aoc • 

10. Therefore .A aob-;;; A aoc by the S.A.S. theorem. 

11. Therefore ho-;;;~ since they are corresponding sides of congruent 

triangles. 

12. The l'?oint: o is ~he midpoint of bc by the definition of midpoint. 

·-13. Thus any ray that bisects 1= paq intersects. be at its midpoint. 

14. Since there is only one midpoint, it follows that there is only 

one angle bi sec tor •. 

Supplemen~ary Angles 

Suppose ~' 7c' and al are distincJ;; rays having the coll!IDon e,:i.dpoint 

a, such that the three rays determine three angies, 1'. bac, 1= bad and 

~ cad. (See Figure 82.) AU of these 1;1.ngles have the same verte.x, 

namely a. The angles in f * bac, ~ bad} have a common side i;t, t;he 
. ~ 

angles in{~ bad,* cad} have a common side aa, and the angles in 

[1= bac, ~ cad} have a cc:,,rtnnon side ~. Thus there are three distinct 

pairs of angles, each pair having a common vert~x and a common aide. 

However, the pair of angles, ·~ bac and * cad, are different· from the 

other two paits. ·Their interiors are disjoint sets. These two angles 

1;1.re called adjacent angles and each is said to be adjacent to the other. 
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d 
a. 

Figure 82 

De:finition.6-6: Two a.ngles are adjaGent angles if and only if they 

ha.ve a common vertex, a.common side and their interiors are disjoint 

sets, 

If a pair of angles,~· abc and~ cbd, are adjacent angles, it is 

conce;J.vable that tne sid~s i;t and ~ lie in the same li-ne. Then since · 

·~ and·~ are different. collinear rays having the same endpoint, they 

. niust be opposite· .rays. Adjacent angles b,aving the property t;:.hat their 

nonc01llIDon sides lie on opposite rays are called supplementary adjacent 

angles and each one is said to be a supplement of the other. (See 

Figure 83.) 

b d 

Figure 8~ 
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Definition 6~ 7: Two angles are suppl.eIJ.1entt;!.ry adjacent angles if and· 

only if (1) they are adjacent angles, and (2) their noncommon sides are 

opposite rays. 

It is b1portap.t to note. t;hat supplementary angles always occur in 

pairs. Each angle in the pai;t' is a 1;1upplement of the other. Thus 

"supplemental;'y" is. a SYJDmetric;: relation. 

Defi.nition 6 .. 7 provic:les for a pair of supplementary angles only in 

the event that the angles are adjacent. In Figure 84 ~ mno is a sup­

plement of ~ onp. If ~ abc ;- ~ moo and.~ def ;- ~ onp, ~ cJ.bc .!!.rid ~ def 

seem to be related in a manner similar to the relation between* mno 

and ~ onp, However,. they l:l,re nqt supplementary according to Definition 

6-7 since they al;'e not adjacent, It will be convenient to have a 

.definition of supplementary angles that wi,11 include pairs of angles 

that are not adja<!:ent. A basis for. such a definition is provided by 

the definitio,;i of Supplementary Adjacent Angles. 

p 

Figure 84 

Definition6~8: 
-,,. . . 

Let~ mno.be any angle ,:1.nd let ns be the ray opposite 
-..l), 
nm. Then~ abc ;ls a supplement of~ mnQ i:f; and on:j.y if ta.be~·~ ons. 
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That is,. ~ ab<; is a. supplement of ~ mno if and · only if ~ abc. h con ... 

gr~ent to an angle that is adjacent to and a supplement of~ mno. (See 

Figute 85.) 

m n 
- - ..,. ... 

s 

Figure 85 

~. 
In Figure 86 let~ mno be a given angle and ns be t;:he ray opposite 

~ 
nn;i, I:{ence ~ ons is adjacent. and supplementary to~ mno. Then from 

Def in:J,. tion 6 ... 8: 

(1) If ~ abc is an:y angle su<;:h that ~ abc -;;;; ~ ans, then l abc is 

a supplement 11:)f ~ mt10, that ii;, every angle that is congruent 

.to~ ons is a.supplement of·~ mno. 

(2) It' J;: abc h any angle $ueh that ~ a.be is a supplement. of 

~ mno, then ~fl.be-;;~ ans; that is,. any angle that is a 

supplement of .~ nmo ii congruent to ~ ans. 

Th.e statetnent nµmbered (2) is the key to the proof of the following 

theo"J:"em. 

Theorem. § .. 6: .Let ~· mno be a given angle. If ~ c!.bC is a suppletnent; of 

~ mno and ~ pqr is a supplement of ~ mno, th~n J: abc ';' ~ pqr. '.!;'hat is, 

·. supplel!lents of the same angle· are congruent, 
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.. m n s b-------.c 

. Figure 86 

Proof: Refer tq Figure 87. 

m q 

Figure 87 

1 ·~ b .... . --.:,.. • Let ns e t~~e ray oppos+te nm, 

. .Z. . ~ a.be h a supphment of ~ :cnno by hypothesis; hence ~ ahc -;;;;- ~ ans 

by Definition 6 ... 8. 

3. ~ pqr is a supplement of.~ mno by h:,pothesis; hence ~ pqr -;;;- ~ oni 

by.Oefinition 6-8. 

4. ~ ons ~ ~ pqr by the· symmetric property of the congruence relation. 

5. l'hen ~ .ab<. -;;; ~ ons from step (2). and ~ an&-;;;- ~ pqr from step (5); 

hence~ abc ~ ~ pqr by the transit~ve property of the congruence 
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relation in angles. 

Thie theorem implies that two angles that are supplements of the 

san1e angle are congruent. It is also possible to prove that two angles · 

that a+e S\.lpplements of congruent angles a~e congruent. 

Theorem 6 .. 7: If ~ a.be·-;; ~ pqr, and · 

(1) ~· efg i,s a supplement of ~ abc, 

(Z) ~ mno is a supplement of ~ pqt' ~ 

then~ efg-;,;- ~ mno. 

Proof; Refer to Figi.Jre 88. 

c 

g 0 

Figure 88 

1. . ~· abc ';;' ~ pqr by hypothesis. 

q r 

2. J: efg ~s a Sl1,ppleme-pt of ~ a.be and. ~ mnc;, is a supplement; of ~ pqr 

by hypothesis • 

. 3. Let ~ be the ray opposite ~. 

4 •. Then ~ ,;i.bd is a supplement of.~ abc. 
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5, Therefore ~ abd -;;; ~ efg. by Tb,eotem 6-6. 

6. l;f 'qt is opposite ~' th~n ~ pqs is a supplen:iept of ~ pqr and. 

~ pqs • ~mno by Theorem 6-6. 

7. Since ~ pqr -;; ~ abc and ~ i;!,bc is a supplem';lnt of ~ abd, theq. by . 

. Oefinition 6-8, ~ pqr is a .su.pplement of .~ abd, 

8. He,;i.ce ~ ab<l is a supplement; of ~ pqr. 

9, But~ pqs is a supplement of~ pqr, het1c!;3 ~ pqs-;;;;- ~ abd by Theoren:i 

10. FroIP step (5) ~ efg .~ ~ abd and from st;ep (6) ~ mno ~ ~ pqs. 

ll. Then by the transitive proper~y ~ efg';;; ~ mno. 

Ve-rtical Angles 

. J,.E;\t L and M be two lines that intersect at point p. Let a and b 

· be points in :i; .. such that a·:p-b (p is between a and b) and let. r anp s 

be points in M such that r-.p-s, Thus four angles are determined. (See 

Figure 89~) 

Figure 89 

The angles in{~ aps, ~ apr} have a common ;ertex panda common· 



'd ~ s;i. e pa. Hence, they ai;-e .ad.jacent angles. ~ ~ The rays ps and pr are 

opposite rays, therefqre ~ aps. and~ apr are also supplementary. 
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Similarly, ·~ 1;1.p:t;' and ~ rpb are s1,1pplementary adjacent angles, ~ rpb and 
. . 

~ bps are supplementary adjaoept angles and ~ bps and.~ spa are supple· 

mentary a:djac~'Qt angles. The angles in(~ aps, ~ rpb} a,re mot adjacent 

since they do not have a .com$on. siq.e. Sim:U.arly ~ apr 1;1.nd ~ · spb are 

not a<;ljacent. These two pa:i.r~·of·angles are the pairs of nonadjacent 

angles determ;i..ned by two intersec;:ting linef3. Each pair is ca.lle~ a 

pair o.f ver~ical angles. Note that pairs of vertical angles are always 

determined by two inte+secting lines. Further, vertical angles have a 

coiw1Qn vertex and their sides determ;lne pairs of opposite rays. 

I>efinition 6-9: Two angles determined by two intersecting lines are 
·. , . I 

vertical angles :i,.f and onty if their sides determine pairs of opposite 

rays (see Figure 90). 

Figure 90 

Theorem 6-8. If two angles are vertical aQgles, then they are congru-

ent. 
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Proof: Refer to Figure 90. For definiteness suppose~ and~ are 

"'"""' ~ opposite rays, and pn anc;l pm are opposite rays. 

~ ~ ~ e A 
l. pa, pn and pb are distinct rays since ao i;!.nd mn are dis tine t lines. 

2. Thus~ npa and.~ npb are distinct angles hav:i,ng a common vertex p 

and a common side~. 

3. A The :i,nterior o:f; ~ npb is a subset of the b-side of mn, and the 

intetior of ~ npa is a subset of the a-s:i,de of ~; hence the 

interiors of~ npb and~ npa are disjoint sets. 

4. ~and~ are opposite rays; hence~ npb and~ npa are supplementa-

ry ad,jacent angles. 

5. Similarly,~ npa c!,nd ~ apm are supplementary adjacent angles. 

6. Thus.~ apm and~ npb ate both supplements of~ npa. 

7. Therefore ~ apm -;;;- ~ npb by Theorem 6- 6. 

Perpendicular Lines 

From' the previous section, if two +ines intersect in a point, then 

two pair of vertical angles are determined and four pair of supplemen-

tary adjacent angles are determined. In every case each pair of verti-

cal angles is a pair of congruent angles. It is conceivable that a 

pair of supplementary adjacent angles are congruent angles. Suppose in 

Figure 91 that * apm -;;- ~ apn. Since ~ c;1.pn and ~ '!IlPb are vertical 

angles, ~ mph ~ * apn; hence 1= mpb -;; ~ apm. Similarly ~ mph -;;;- 1'. npb 

and * npb ';;;;' * apn. Thus if two lines inteqec t such that two adjacent 

supplementary iangles are congrt,1ent, then each of the four angles deter-

mined is congruent to each of the other three and the two lines are 

said to be perpendicular lines. 
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a 

m p n 

b 

Figure 91 

Definition 6~10. Two intersecting lines Land Mare perpendicular 

lines if and only if the adjacent angles determined are congruent. 

l'he symbol "i' denotes the relation "is perpendi9ular to." If L 

and M are lines and LlM, then Mj_L; that is, "perpenQ.icular" is a 

symmetric relation. This relation is neither transitive nor reflexive 

and therefore·is not an equivalence relation. 

Two rays or two segments are perpendicular if and only if the 

lines containing them are perpendicular lines. l'hus two '):'ays or two 

segments could be perpendicular even if they are disjoint sets. In 

Figure 92 ab _L ;i and ab l 'Zci if and only. if ab J_ ed. 

d c 

1: 
I 

'- - - - - -- - 7 
I 
I 

'V 

Figure 92 
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Right Angles 

. Suppose tt i ~ and ft ntl "" p (see Figu:re 93). 
~. 

Then pc is oppo-

site ~' hence i ape and .. ~ pad are supplementary adjacent angles. 

According to Definition.6-8 every. angle that is a supplement of~ apd 

i,s congruent to~ ape. But~ ape';;;'~ apd by Definition 6-10, hence 

every angle that is congruent to.~ ape is congruent to .~.apd. There ... · 

· fore,. every angle that ia a supplement of ~ a.pd is cong'.liuent to ~ apd. 

Stated anothet" way,~ a.pd.is congruent to every angle that is supple-

mentary to it •. An angle that is congruent to every angle that is 

supplementary to it~ is called a. right angle. Thus .~ E!,pd is a right 

angle. From Theorem 6 .. 6, angles that are supplements of the same angle 

are congruent. Since the congruence relation is tl;."ansitive, if an 

angle is congruent to one qf its.supplements it is congruent to every 

angle that is supplementary to it,. and consequently is a right an$1e. 

c p 

b. 

Figut;"e 93 

Definition 6·1,1: .·~ abc is a right. angle if and only if ~· abc :;..:;; con.-

gruen t to . one of i t;s ,supplements • 
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The above definition defines a right angle but does not guarantee 

that right angles exist. 

Theorem 6-9: Right angles exist. 

Proof: Refer to Figure 94. 

b 
n 

Figure 94 .~· 

l. Let * rhq l;>e any angle and nm be any segment. 

2 L b h ' · ~b h h · -b - ·- d b h · on ~bq ·• et a . e t e point on p sue t ,at a = mn an c · e t e point 

such that bq· -;;. mn. 

3. Then ha U 1;1c Ucb = .A abc. ~-,;;;- be 1:10 .A abc is isosceies. 

4. 

5. 

6. 

7. 

8. 

Let d be the midpoint of ;ic, then a'.°d";; ed. 

Points d and b determine bd. 

bd-,;;;- bc;l 1 ·~·~~and fui'. ~ be; hence .A bda-;;;- .A bdc by definition. 

Therefore~ bda-;;,;;- * bdc by Theorem 5-2. 
-:+ . ~ 
da and de are opposite rays; hence~ bdc a,nd ·~ bda are adjacent 

supplementary angles. 

9. Therefore ~ bda ia congruent to its supplement 1'. bdc, and hence 

.1'. bda is a right angle. 
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Note that ~. bdc is also congruent to its supplement .~ bda, and 

thus.is.also a }:'ight angle. These two right angles are congruent from 

step (7). 

Let ~ ape be a right angle and b! be the ray opposite bl. (See 

Figure 95 .• ) Then ~ abd is adjacent and supplementary to .~ abc. Since 

. ~ abc is a right angle, it .is cqngruent to every angle that .;Ls supple­

mentary to it. Hence~ abc-;;; ~ abd, and by the s)7lllllletric prope:1:;ty 

.. ~ abd -;;;- ~ abc. Thus.~ abd is congruent to one of its supplements and 

therefore is a right angle. This is formally stated in Theorem 6-10 • 

.d . b c 

Figure 95 

• 

Theorem 6 .. 10:. l;f two adjacent angles are supplementary and one is a 

right an~le, then the other is abo a right angle and these two right 

angles are congfuent. 

Le.t ~ abc be a right angle and~ be opposite tt. Let ~ mno. be 

·any angle that ;l,s a supplement of~ abc, {See Figure 96.) Then.~ abc 

is a.supplement of ~·mno. But~ mno-;;;;- ~ abd since~ abd is a supple­

ment of~ abc, ·and ~ abd ';' ~ abc. Thereff~ ~ mno:-;; ~ abc. This 1: mno 

is Congruent to one of its sup:plements, and henceis congruent to every 
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angle that is supplementary to it. Therefore~ mno is a r:i,ght angle. 

But~ mno was any supplement of the right angle,~ abc. This argument 

proves the following theorem. 

m a 

d b c 
n 

~--· - - - _.__ ________ ..... 
0 

Figure 96 

Theorem 6-11: Every angle that is a supplement of a right angle is a 

right angle. 

Suppose~ abc is any right angle and~ pqr is any angle congruent 

to~ abc. Let b! be the ray opposite~. (See Figure 97.) Then~ cbd 

is a supplement of~ abc and hence~ abc ~ ~ cbd. Since~ pqr = i abc 

and ~ abc -:;;- ~ cbd, it follows that i pqr ~ * cbd. Therefore ~. pqr is a 

supplement of* abc, and hence} abc is a supplement of~ pqr. Thus 

* pqr is congruent to one of its supplements. Therefore ~ pqr is a 

right angle. This proves the following theorem, 

Theorem 6-12: Every angle that is congruent to a right angle is a 

right angle. 

From Theorem 6-10, if two adjacent angles are supplements and one 

is a right angle, then the other is a right angle, and the two angles 

are congruent. This provides a pair of right angles that a"J;"e also 
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congruent angles. From Theorem 6-11, every supplement of 1;1. right angle 

:i,.s a r;i.ght angle and frolil Theorem 6-6 all supplements of any given 

angle are congruent angles. This suggests tl;lat there are many right 

angles thc;1.~ ate also congruent angles. In fact, intuitively it seem~ 

that all right angles are congruent. It is possible to prove that all 

right angles are congruent, but the proof involves concepts that have 

not been developed in this discourse. Consequently this property of 

right angles will be postulated. 

c p 

a b d 
q 

Figure 97 

Postulate 6-3: All right angles are congruent. 

It was. previously noted that if two line;:; intersect, they deter­

mine adjacent supplementary angles. ,Also if two of thel!ie adjacent 

angles are congruent, then each of the four angles determined is con­

gruent to each of the other thre~ and the two lines are called perpen­

dicular lines. Thus if the lirie,s are perpendicular, then each of the 

four angles determined is congruent to orie of its supplement;:; and 

therefore is a right angle. Since all of the angles are right angles, 

perpendicular lines are said to intersect at right angles, 



. If·~ and ··at. are two rays such that ';t U ·at = ~ bac is a right 
. ~ .... 

angle and aa is opposite ac, then~ bad is a right angle by Theorem 

6 .. 10. 
-,, 

If ae is 

(see Figure 98). 

opposite -;t, ·then.~ cae and .~ dae are also right angles 

FuJ;."thermofe 'at U 'at ;.. ft and a! U ~ r= -~. . Thus if 

~ U ~ is -a J;."ight angle then t;he lines contaip.ing these rays intersect 

so as to form congruent adjacent; angles and.therefore are perpendicu-

lar. Hence petpendicular lin~s intersect at right angles and the sides 

of a right angle determine perpendicular J.ines. l'his is stated formal-

ly in Theorem 6-13. 

b 

d. a c 

e 

Figure 98 

Theorem 6-.13.. Two l:lnes are perpendicular if and only if the unions of 

noncolline1:1.r rays with endpoints at their point of intersection are 

right angles. 

By Theo+eJD 6·9 right angles exist,· Consequent;:ly in view of 

Theorei:n 6-13, perpendicular lines e:icisi;;. Furthermore if L is a line 

and m and p Are points· of. L, then in. one of the half-planes determined 

by L there is e~ctly one ray~ such that~ mpq is a.right angle. 



123 

Thus th~re is only one line through p that is perpendicular to L~ 

Theorem 6':'14: If L is a. given line and p is a point in L~ then there 

exists one and only one line thtough p that is perpencUcular ~o L. 

Right Tria"Q.gles 

.Every triangh has three sides and determines three angles. If 

one of the angles determined is a right i!;t.:pgle, then the tr~ang1e·is 

~allecl a.right triangle. In Figure 99 suppose~ acb is a right angle. 

Then A ab~ is a right triangle. The side.opposite the right angle 
. -""' 
(a.bin this model) ~s called the hypotenuse. +he other two sides a.re 

called legs. If the legs are congruent segments, then the triangle is 

isosedes, and thus :i.s an isosceles right triangle. Like any isosceles 

triangle the angles opposite the congruent sides are congruent angles. 

Figure 99 

It wis previously esti!;l.blisl).ed that if. a triangle is equilateral 

then each of its three determined angles is congruent to.the other two. 

Thus if a ri,ghi: triangle was also equilateral, then ea.ch of its deter-
. . . 

mined angler;; would he a right angle, Concepts developed in the next 
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chapter will show that.a tr:i,.angle cannot determine more than one right 

angle~ Therefore a .right tr:i,.angle could not be equilatetal. 

Acute Angles and Obtuse Angles 

. ~ 

Suppose.~ abc is a right angle and ba is a ray such that dis in 

the interio+ of ~ abc. Then ~ abc;l is called an acute angle. (See 

Figure 100.) If~· :i,.s a ray such that b! ;i.s in.the inter;i.or of* abe 

then~ abe :i,.s called an obtuse angle. 

a 

b 

Figure 100 

Definition 6-12: Let~ abc be a right angle: 

1 •. * .a.bd ;i.s an acut;e angle if c!-nd only if Il is in the interior 

of~ abc. 

2. . ~ abe ts. an obtuse· angle if and only. if.~ is in the interior 

of ~ abe. 

Tllh terminology gives rise to a .further classi,fication of tri~ 

angles. I;f one of the angles determined.by a triangle is an obtuse 

angle then the tr:i,.angle is called an obtuse triangle •. If all of the 
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angles determined by a triangle are acute angles then the triangle is 

called an acute triangle. 



CHAPTER VII 

·· fARALLELS AND QUADIULATE~LS 

Since lines e~tend indefinitely, physical models o:f; lines do not 

ex;i.st •. A model like Figµre 101 is ofte.n useful for reference in a 

dhcussiQn pertaining.to one OJ;' more lines. '.Che fact that th~ lines.L 

and M do not inter.sect in the model 1:1hould not be interpreted to meEl,n 

that they dQ not intersect at some point not shown in the model. It 

does sugg(;!st the pouibility that they do not intersect, but this could 

be determined only if certain conditions are established guarantee:j.ng 

that they are disjoint sets. 

M 

Figure 101 

Theworc;l "c1;>planarll h used to descrihe·sets of points th.at are 
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in the same plane. ln particular the sets L, Mand Nin :Figure JOl a.re 

coplana-r. 

Trc!,nsversals and A,sspciated Angles 

The study of parallel lines is facilitated by the introduc~ion of 

certain terminology regarding pairs of lines intersl:!cted by a. third 

line and the associated angles formed by these lines. In Figure 102 

the line N in~ersec ting the lines L and M is caUed a. transversal of 

lines Land M. If Land Mare any two coplanar lines and N is j:!. third 

line intersecting Land Min distinct p9ints then N is called a trans-

versal of the lines Land M. 

Figure 102 

If L a11d M are distinct lines and N is a transversal inteJ;secting 

L in point a anc;I, i1;1tersecting M in point b, four ang;I.es are deterrpined 

with vertex·b (see.Figure 103). Let m c!,nd n be points in L such that 

m -·a .. n. Let c and d be points in M such that c - b - d. Consider 
;~ ~ 

the set [~ mab, .1= dbcl-}. Thi:! rc:iy bcti is a side of ~ dba and the ray ab 
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is a si,de of 1'. mab. The sides ~ of 1'. mab a~d ~ of 1'. dba, are on 

opposite sides of the transversal N. The angles in[~ mab, ~ dba} are 

called alternate interior angles. 

L n 

M 

Figure 103 

Definition 7-1: Let ~ and ft be two coplc:!.nar lines an,d let~ be a 

transversal intersecting tt and !;tin the distinct points a and b 

respectively (see Figure 103). Then(~ barn,~ abd} is a set of alter­

nate interior angles if and only if m and dare on opposite sides of 

the transversal~- If c - b - d and m ~ a - n then[~ nab,~ cba} is 

also a set of alternate interior angles. 

If m and dare on the same side of the transversal as in Figure 

104, then the angles in[~ mab, ~ dba} are called interior angles on 

the same si,de o{ the transversal. 

Definition 7 ... 2: Let~· and ti be cut 1:iy a transversal tit such that 

~ mab and~ dba are alternate interior angles. The angles in 

[~ mab, ~ cbq} are corresponding angles if and only if c and q are 



points such thc:!-t the ~ngles in (~ cbq, ~ dba} are vertical angles 

(see Figure 105). 

m n 

d 

Figul;"e 104 

m n 

c d 

Figure 105 
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In Figure 105, {~ nab, ~ dbq} is a set of corresponding angles. 

With each angle of a pair of alternate interior angles there is an 

associated vertical angle. these two angles considered as a pair are 

called alte:i;:nate e:,cterior angles. In Figure 105,. ~ pan and ~ coq are 
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. alternate exte,l;'iOJ;' angles·. 

Parallel Lines 

ParaUel U.n.es weir:e defined in Chapter.III. For convenience the 

defin;i.tionwUl be repeated. 

·oefinition 7"'.'3! .Two lines ai-e parallel if and only if they are co-

planar and their intersection is empty. 

~ M Let mn and c(l be two lines cut by· a transversal intersecting the 

two lines at points a and b such that: (1) a. is between m 1:1-:nd n, 

(Z) bis between c and d, and (3) (* mab, * abd} is a.set of congruent 

alternate interior angles" Suppose tit and tl intersect at p (see 

e Figure 106), For definiteneu. assume p 'is on the d ... sid~ of a6. On the 

ray~ opposite t'a let q be the point such that bq-;- ap. For the cor-

. . . ...,... ....... - ---
respondence .b pab ~ .b qba, ab = ha and bq = ap·, The angles in 

(~ qba,. ~ p.ab} are supplements of the congruent angles in (~ abd, 

.~ niab}; hence ~ qba-;;.- ~. pab by Theo;em 6-6. Therefore·.A pab-;;.- .A qba. by 

the S.A.S. theorem. Then by Theorem 5-2 ~ qab ';:;; * abp. Since pe: bd, 

~ abp-;- ~ abd and therefore~ qab-;- ~ abd by the transitive property. 

~ 
But ~ abd ';;;;' ~ 111ab by hypothesis; hence ~ qab -;;.- ~ mah. Thus the rays· a;q 

~. ~ 
and am are on the same side of a6 and form congruent angles with ray 

--:> a.6. According tq Postulate 5.,.3 the1;1e is only one such ray. Therefore 

.-,. .:~ ~ 
aq = am •.. 'l'his WE;!.ans that qe: mn. Thus if ti in.tersec ts tt 1-n point p 

then tl intersects tt in point q. This implies that two distinct li.nes 

· intersect i;n two points which is impossible.. Therefore·~ and tl do 

not intersect a1;1d . thus are parallel. This argument proves TheorelD 7 ... 1, 

l'heorem 7•1. If two coptanar lines are cut by a transversal such that 

a pair of congrul;!.nt alternate interior angles are determined, then the 
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lines are parallel. 

Figure 106 

'Ibis theorem and P9stulate 5~3 make it possible to establish the 

· .existence of parallel lines. Let !'t be a. line and let q 1;,e any point 

not in it. Let ~· .qe a line containing q and intel;'secting 'tt ~t p such 

that a - p - b~ (See Fig1,1i-e 107.) By Postulate 5-3 there is exactly 

.....+ ~ . - . one ray qc on the b-side of mn such that~ cpq = ~ npa. Let~ be the 

~ ~ ~ line containing qc. 'Ihen qc and ao are two lines cut by the transver-

sal~ such that a pair of alternate interior angles .are congruent. 

Thus t?. is parallel to ~· by theorem 7-1. 

'flleorem 7~1 asserts that the lines are parallel if the alternate 

interior angles are congruent. It makes no assertion in the event that 

the angles are not congruent. Thus the fact that there is only one ray 
-> . .. ....... 
qc such that~ cqp = ~ npa does not guarantee that there is only one 

line contaip.ing q that. is :parallel to ti?. Intuitively it seems that 

there is only one such line and therefore the uniqueness of this line 

will be postulated, 
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~------,--

Figure 107 

Postulate 7 .. 1; If Lis a line and pis a point n9t in L, then there 

e~ists one and only one line M containing p and coplanar with L such 

that M is parallel to L (symbolized L 11 M). 

J>ostulate 7-1 is a simplif:i..ed form of Euclid's famous fifth postu-

late. It is the dis tingt,tishing characteristic of Euclidean Geometry. 

Theorem 7-2. If Land Mare parallel lines and N ~.Lis a. line such 

that N n L ,;= p then N intersec t;i..on M is not empty. 

Pro9f: Refer to Figure 108. 

) 

Figure 108 
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· 1. Assume that the Assertion of the theorem ii; false,. that :J.s 

NnM = {). 

2. Then N II Mby definition. 

3 .. Therefore L an4 ~ are two distinct lines through p and par~llel 

to M. 

4. This is Ol'ntra.cl.iction of .Post'l.llate 7•1. 

5. Therefore N(lM is riot empty py the l;'ule e>f indirect pr9of. 

If L II M then Ll'\M = ( l, but then MnL = ( } .hence M II L, Tpus 

the parallel relation is symmetric. The next theorem will establish 

.. that the relation isl also transiti,ve. 

Theorem 7-3; If (l) L, M and N are coplanar, (2) ;L II M, and (3) M 11 N, 

then L II N. 

Proof: See Figure 109. 

M 

N 

· Figure 109 

. 1. If L() N is not empty then sitlce N II M, L must intersect M by 

Theorem 7•2. 

i. Bu.t L\\Mbyhypothesis, hencetnM=;: ( J. 

3, There.fore. L nN "" ( } hence L II N. 

If the symtt1etria property is applied to the third condition of 
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'Xheorem 7-3, conditions two and three are (2) L 11 M and (3) N II M. The 

assertion remains L II N. In this form the theorem states that if two 

lines are parall.el to a third line then they are parallel. 

Theorem 7-4: If two paraHel lines are cut by a transversal both pa:i,rs 

of alternate interior angles determined are congruent. 

A ·~ ~ 
Proof: In Fig\;lre 110 let El:15 be parallel to mn and co be a transversal 

intersE;icting ·tit and tit at points c and o respectively. With th,is nota­

tion the theorem may be stated, ''If ~ II·~ then ~ a.co-;- ~ con and 

~ boo -;- ~ com." 

~ - q -
·a -

n 

Figure 110 

1. ~ I\ trt by hypothesis. 

2. Assume ~ aco is not congruent to .~ con. 

3. 
,--> 

By Postulate 5-3 there exists exactly one ray cq such that 

.~ qco -;;;- ~ con. 

4. 
. ~ ~ 

Since.~ aco is not congruent to~ con then cq ~ ca. 

5. But by Theorem 7-1 the line tt II tt 
6. 

~. 

Therefore there· are two lines through c parallel to mn and this is 



135 

a, contradiction of Postulate 7,..1. 

7. 
. . ...,.. 

Therefore~ aco =~con. 

8. ~ bco is a supplement of~ aco a.nd ~ com iij a suppleJt1ent of~ con, 

thus ~ bco ~ ~ com since they are supplements of cong1;qent at\gles. 

Theorem 7-4 is the converse of '.[heorem 7-1. Tl;,.e next theorem is 

an if and only if stateJDent rega-rding corresponding angles and is a 

consequent of Theorems 7 .. 4 and 7-1. 

Theorem 7 .. 5: . If two coplanar lines. are c;iut by transversal tl;len ~he 

lines are pfirallel if and only if the angles·of a pair of corresponding 

angles are congruent. 

Proof: Let ·tit and ~ be two lines and !I be a transversal inter sec ting 

·ig .and ·tit in points p and q such that a-p-b, m-q-n, c-p-d and p-q-d. 

Using the symbols in_ Figl,lre 111 the theorem may be stated: 

(1) · If ~ II tit then ~ ape -;; ~ pqm and, 
. ~ .. 

(2) If ~ ape ';. ~ pq1T1 then a6 I\ tit. 

ri. 

Figure 111 

Proof of (1): 

1. tt II.·~ by hypothesis •. 



2. . ~ bpq -;;;- ~ pqm by Theorem 7-4. 

3. ~ape-;;-~ bpq since they are vertical angles. 

4. The,:efore ~ a~o--;- ~ pqm by the· transitive property • 

. Proof of (2): · 

1. . ~ ape -;;;- ~ pqni by hypothesis. 

2. ~ bpq ~ ~ ape since vertical angles 1;1.re congruent. 

3. Therefore ~ bpq-;;;- ~ pqm by the transitive property. 

4. Hence ab II mn by Theorem 7-1. 

Suppose the lines iit and tl are perpendic4lar to the line~ at 

the points a and c respectively. (See Fig~re 112,) 
.....+ 

Let ray cp be 
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opposite ~. the ~ cab is a right angle and ~ acp is a right angle. 

Therefore .~ bac -;;;- ~ acp by: Postulate 6-3. Thus the lines t6' and~ are 

cut by a transversal such that a. pair of alternate interior angle~ are 

cop.gruent. Therefore ~ II tt '.{.'his proves the following theorem. 

m 
b 

a 

c d 
p 

Figure 112 

_ Theorem 7-6: If two coplan,;11, lines are perpendicular to the same Jine. 

then they are paraUel. 
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Every triangle is the union of three segment;.s which are determined 

by three noncollinear points. These three points determine a set of 

three· lines such tha~ any two lines in the set int;e;rsect the third line 

in distinct points and also intersect each other. Thus with any tri­

angle there is associated a set of three liijef'/ such that each pair of 

lines in the set are intersecting lines. Therefore no two lines in the 

set are paraUel and thus according to the contrapositive of Theorem 

7-6 no two lines in the set are perpendicular to the same line. In 

Figure 113 lines L and M are not parallel. Therefore they inten,ec t 

and a triangle is formed. If in Figure 114 the lines N and Kare per­

pendicular to line H then they do not intersect. Therefore these three 

lines could not contain the sides of a triangle. 

N 

H - K 

:Figure 113 Figure 114 

If two of the angles of a triangle were right angles then the two 

lines determined by two of its s;i.des would be perpendicular to the line 

determined by the third side. According to the. above discussion this 
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is impossible. Therefore not more than one of the angles of a triangle 

is a right angle. 

Theorem7-7: A triangle has at most one right angle. 

Theorems 7-1, 7-:,; and 7-6 proviqe three sets of conditions that 

are sufficient to guarantee that two lines are parallel. Theo:i:ems 7-4 

and 7-5 both contain assertions that are subject to the condition that 

tj:le two lines are parallel. The next theorem is an if and only if type 

theorem. It will give a fourth condition that is sufficient to guaran-

tee th,at two lines are parallel and will give an additional consequent 

of the parallel relation existing between two lines. 

Theorem 7-8: . Let L and M be two lines and N a transversal. (1) If the 

interior angles on the same side of the transversal are supplementary, 

then L I\ M. (2) If L I\ M then the interior angles on the same side of 

the transversal are supplementary. 

];>roof of (1): . In Figure 115, let N intersect L and M in a and b rer-

spectively. Let m and n be points of L such that m - a - n. Let c and 

d be points of M such that c - b - d and c is on them-side of N. Then 

~ mah and~ abc are interior angles on the same side of the transversal 

and are supplementary by hypothesis. 

1. ~ nab is a supplement of.~ mah since~ is opposite-;:. 

2. Therefore~ qab-;;;- ~ abc since they are both s~pplements of~ ma~. 

3. But ~ pab and ~ abc are alternate interior angles, hence L l\ M by 

Theorem 7-1. 

Proof of (2): Refer to Figure 115. 

1. L II M by hypothesis. 

2. Therefore·~ J.11ab -;;;- * abd by Theorem 7-4. 

3. bl is opposite ~' therefore ~ cba is a supplement of ~ abd. 
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4. l'herefore ): c;:ba, is a supplement of ~ mab. 

L m n 

M c d 

Figure 115 

Quadrilaterals 

In Chapter IV a quadrilateral is defined. as a polygon havip.g foul;' 

sides. A polygon is a simple closed curvf;! that is the union of seg­

ments. Thus the sides of a qu,adrilateral are segments. The points of 

intersection of the sides are called vertices, thus every quadrilateral 

has four vertices. Two s;ides will be called adjacent sides if their 

intersect:ion is a vertex. If their intersection is the empty set then 

they are called. opposite sides. 

In Figure 116 ~ and be are opposite sides since they do .not in-­

tersect. ab and be a:i:-e adjacent sides since abO be = b. Similarly, 

be and cd are adjacent, cd and da are adjacent, with da and ab also 

adjacent. If two vertices are in the same se&111ent they are called 
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consecutive vertices. In accordance with Chapter IV regarding the 

naming of polygons, a quadrilateral may be named by listing the verti­

ces in any order such that consecutive letters name consecutive 

vertices. Tl)us th,e quadril~teral in Figure 116 could be named abed, 

adcb, or any one of six other names. In a quadrilateral, the noncon­

secutive vertices a,'):'e called opposite vertices. Thus in naming a 

qul;l.dril.ateral the nonconsecutive letters listed always name opposite 

vertices. 

d 

F:i,.gure 116 

The segment determined by opposite vertices is called a diagonal. 

In Figure 117, a and care opposite vertices and ac is a diagonal.. 

Also band dare opposite vertices and bd is a diagonal. 

Each pair of adjacent sides of a quadrilateral determine a pair of 

rays having one vertex of the quadrilate:i:-al as a common end point. l'he 

angle formed by the union of these two rays is called an angle of the 

quadrilateral. Thus each quadrilateral has four angles. If two angles 

of a quadrilateral are such that their vertices are opposite vertices 

of the quadrilateral then they are opposite angles. If their vertices 
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are consecutive vertices of the quadrilateral they are called consecµ-

tive angles of the quadrilateral. In figure 117, angles in [* bad, 

~ bed} a:t;"e opposite angles. The angles i.n (* bad, * aclc} are consecu-

tive angles. 

'- c ... 
' .... -" -.... ... 

~ .... 
.... - .... ... .... - ... ... ... 

a 

Figure 117 

A quadrilatera~ is the union of noncollinear segments and thus 

could not be a conve~ set. Newertheless, it is convenient to refer to 

certain types of quadrilaterals as convex quadrilaterals. 

Definition 7 .. 4: .A quadrilateral is a convex quadrilateral if and only 

if its sides are such that no side of the quadrilateral intersects the 

line determined by the opposite side. 

The quadrilateral abed in Figure 118 is a convex quadrilateral. 

The quadrilateral mnop in Fig1,1re 119 is not convex since ~ntt is not 

the empty set but.~ and ~ are opposi, te sides of the quadrilateral .. 

The quadrilaterab c;.onsidered in this discussion will be convex quad.ri-

laterals. Thus any quadrilateral will be assumed to be a convex 

quadrilateral unless otherwise specified. 
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m 

~ --
-~ p 

Fi gl,lr e 118 Figure 119 

Definition 7-5: If abed is a quadrilateral, then a point is in the 

interior of abed if and only if it is in the interior of each of the 

angles of the ql,ladrilateral. 

Thi$ implies .that the interior of a quadrilateral is the intersec-

tion of the iptetior of the four angles of the quadrilateral. Since 

the interior of an angle is a convex set by Theorem 4-3 and the inter-

section of convex set;s is convex from Theorem 4-2, it follows that the 

interior of a quadrUateral is a convex set. 

If abed is a quadrilateral as in Fig4:J'.'e 120, the points band a 

are on the $ame side of~ and the points band care on the same side 

of ~. Then b is in, the interior of ~· cda and hen,ce ."Jt is in the 

interior of~ cda. Th!?refore every interior point of the diagonal db 

is in the interior of~ cda. Similarly every, interior point of the 
__,... 

diagonal bd (=db) is in the interi01;- of ~ abc. By Postulat~ 6-2 every 

interior point of bd is in the interior of}: bad and also in the 

interior of ~ bed. Thus every interior point of the diagonal of a 
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quadrilateral. is in t;he interior of; the quadrilateral. 

.~ .. -! 
I 

I 
I 

~ 

'/' 
IC 

--~-------~-------. - - ~ 

Figure 120 

Trapezoids 

A special class. of quadril~terals is that in which a pair of 

opposite sides determines subsets of parallel lines. 

Definition. 7 .. 6: . Two segments ab arid cd are parallel segments if and 
; 

only if·~. and !cl. are parallel lines. 

Def;i.:n,!tion 7-7: .A quadrilateral is a trapezoid if and only if at least 

one pair of opposite sides of the quadrilateral consists of parallel 

segments. 

In Figure 121 ~ 'jj °dc' and hence abed is a trapezo;i.d. 

Every trapezoid .has· four sides and two of the sides are pai;allel 

segments. If the other two sides are non-parallel and congruent then 

the trapezoid is called an isosceles trapezoid.· (See Figure 122.) 
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Figure 121 

b c 

~t 
Figu:i::-e 122 

Parallelograms 

A, further classification of quadt'ilaterals occurs if both pl;!.irs of 

opposite sides of a quadrilateral are parallel segments. 

Definition 7.,.8: · A quad:i::-ilateral h a parallelogram if and only if the 

opposite sides of the quadrilateral are parallel segments. 

Thus every parallelogram is also a convex, quadrilateral and hence 

the terminology just dE~.veloped regarding vertices and sides of quadri-

laterals applies to parallelograms. 

A se~ent joining the points a and c of parallelogram abed is a 

diagonal and since every parallelogram is a conve:it qµadri1ateral, every 

interior point of the diagonal is ip the interior of the parallelogram. 

!hen ac U ab U cb = A abc and ac U ad U Zci° = ~ adc. . (See Figure 123.) 
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It wUl be established that these two triangles are congruent and this 

conclusion will be used to prove two interesting properties of paral-

lelograms. 

Figure 123 

Theorem 7-9: The opposite sides of a parallelogram are congruent 

segments and the opposite angles of a parallelogram are congruent 

angles. 

Proof: As suggested above a diagonal will be used in the proof. With 

a particular diagonal it will be possible to prove two pair o.f opposite 

sides and one pair of opposite angles congruent. The proof for the 

other pair of angles would differ only in that the other diagonal would 

be used and thus will be omitted. Refer to Figure 124. 

1. abed is a parallelogram by hy~othesis. 

2. Then ;i°' 11 be and~ II de by D~finition 7-8. 

3. ·~ II t? and t1. II~ by Definition 7-6. 

4. The diagonal ac intersects lines tt and 1it in points a and c 

respectively and intersects lines ~ and~ in points a and c 



respectively. 

5. Therefore ft i~ a transversal of ~. and ~. 

6. The angles in {~ acd, ~ cab} are alternate interior angles and 

~ .·~ -
since al). II lie, ~ acd = ~ cab by Theorem 7-4. 

~ ~ tt• 
7. ~c is ~lso a transversal of ad and co . 

. a. The angles inf~ cad,~ acb} are alternate interior angles and 

. since tt n tt, ~ cad.-;.~ acb by Theprem 1.:.4. 

9. ;;--;;;~ by the reflexive property of the congruence relation. 
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10. Thus fot' th¢ correspondenc·e .A cad~ A acb, ~ cad-;;;.~ acb, ac ;" ac 
and ~ acq. -;;;- ~ cab • 

11. Therefore A cad-;;; .A acb by the A.S.A. theorem. 

12. 
~ ~ . - ~ __,... ·~ ...-· . 

For this correspondence cd ~. ab· and ad ~ cb thus cd ;:;: ab and 

~ ';; cb by Definition 5-3. 

13. ~ adc ~ ~ cba hence ~ adc -;;; .~ cba by Theorem 5-2. 

41 '1 
I I 

~' I I - ... _ ..... 14·~-----------, b- - - ~ ... 7' a ~-

~ - - - - " 

Figure 124 

In tb,e pa.rallelogr1;lm abed, the line detel;:'.mined by any. side, side 
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ab ;for definiteness, is a. transversal of the linee determined by its 

adjacent sides, ·~ and ad (see Figure 125). Since.~· H t;t, the angles 

in(~ cba, ~ dab} are supplementary angles by Theorem 7-8. 

b I c 

~ _ :-,___7_' ___ / ~ 
I a d 

-~ 

I 

~ 

figure 125 

Theorem 7-10. Any two consecutive angles determined by a parallelogram 

are supplementary. 

If two consecutive angles of a parallelogram are congruent, then 

each of the angles is congruent to one of its supplements and is there-

· fore a right angle. Aleo if one angle of a parallelogram is a right . 

angle then each angle consecutive to it is a right angle since consecu-

t;ive angles are supplementary. By Theorem 7•9, the opposite angles of 

a parallelogram are congruentr Thus if one angle of a parallelogram is 

a right angle then all angles of the parallelogram are right angles. 

Definition 7-:-9. A rec tangle is a parallelogram which determines right 

angles. 

Thus the set of rectangles is a subset of the set of parallelo-

grams. A further class.ification occurs if two adjacent sides of a 



148 

parallelogram at'e congruent. If. two .~dj:acent sides of a parallelogram 

are congruent then all sides are congruent since the opposite sides are 

congt'uent by Theorem .7·8. If all sides of a paralleiogram are congru-

ent, then it is called a rhomblls. If all sides of a parallelogram are 

congruent and all determined angles are right angles then it is called 

a square (see Figllre 126). 

:o 
/b. d c 

ta a b 
".,"' I 1\,· . 

Figure 126 

Defi~ition 7-8 provides a set of conditions sufficient to guaran-

tee that a quadrilateral is a parallelogram, namely. that each pair of 

opposite sides is a pair of parallel segments. Two other sets of ·con­

ditions sufficient to establish that a. qt,1adrilateral is a parallelogram 

are provided by the ne~t two theorems. 

Theorem 7 ... 11: If. two opposite side$ of a quadrilateral a:i;e parallel 

and also congruent, then the qt,1adrilateral is a.parallelogram. 

Pt;'oof: In Figt,1r~ 127 let ab and ~ be the two sides· that axe parallel 

·-and congruent as given in the hypothesis of the theorem. Let ac be the 

diagonal determined by the opposite vertices a and c. 

1. ab· II clc' by llypothesis, therefore ~ II ti b:Y Definition. 7-6. 
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2. The ~ngles in[~ bac, ~ dca} are alternate interior ,angles and thus 

~ bac ~ ~ dca by Theorem 7-4. 

3. - ....... -·. ab= de by hypothesis. 

4. ~';;;'~·by the reflexive property of the congruence relation. 

5. Jfor the correspondence .A bac ~ .A dca, ha~ dc, .~ bac ~· ~ dca and 

~ tt ca:. 
6. Therefore .A b~c -;; . .A dca by the S.A.S. theorem. 

7, Therefore~ dac-;- ~ bca. 

8. Hence ad II cb b): Theorem 7-.1. 

9. Therefore abed is a parallelogram by.Definition 7-8 ~ 

d 

Figure 127 

Theorem 7-12. If the opposite sides of a quadrilateral are congruent 

segments, then the quadrilateral is a parallelogt"al\1. 

Proo{: ln Figure 128 ~.-;;; be and ~d-;; de. 

1. -;]'.-;;;- ch and ha' -;; dE" by hypothesis. 

-.- .... .,...... 
2. bd = db by the reflexive property. 

3. Tp.erefore .A adb-:;; A cbd by Definition 5-3. 

4. Then ~ cbd ~ ~ adb by Theorem 5,,.2. 

5. Then be II -;i by Theorem 7-L 
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6. Thus segments be and da are parallel a~d congruent, hence abed is 

a parallelogram by Theorem 7-11. 

a 

Figure 128 



CHAP+ER VIII 

CIRCLES AND GEOME'IRIC CONS'IRUC'I'!ONS 

Circles 

The triangles and quadrilaterals considered in previous chapters 

are elements ot a set of simple closed curves that are polygons. There 

are many simple closed curves that are not polygons.· The most commonly 

used simple closed curves, other than the polygons, are the circles. 

There are many physical models of circles such as the rim of a. wheel, 

a wedding band, the top of a coffee cup, .etc. These are models only 

since circles are point sets and therefore are abstractions. The con-

gruence rdation provides a basis for a definition of "circle .• ". 

Definition 8-1. Let o be a point in a plane M; and ab be a segment. 

The set of all pqints pin the plane. M such that~~ ab is a circle. 

The point o is called the center and any segment oq such that q 

is a. point in the circle is called a radius. Thus a. radius ofa circle 

is asegment. Every circle has many radii (plural for radius). Ea.ch 

radius is congruent to a given segment and all segments congruent to a. 

.given segment are cong+uent. 'l;herefore all radii of the s1:1-me circle 

are congruent •. In Figure 129 the points p; q, r and s are points in 

the circle, that is, they are elements of the point set that il;i the· 

- .,..._ 
circle. The point o is the center of the circle. Segments op, oq, or 

and-;; are t"adii. Note J:hat o is not ,ii.n element of the circle; thus it 

is incorre~t to say that o is in the circle. Similarly, the interior 
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points of the radius op or any other radius are not in the circle. The 

center of a circle and all interior points of any segment that i,f,; a 

radius of the circle are in the interior of the circle. A circle with 

center o will be called c;l..rcle O. U a particular capital letter :i,s · 

used to name a circle, it is understood that the corresponding lower 

case lettel;' refers to the center of that particular circle. 

q p 

Figure P9 

Defi~ition 8-2. I~ 0 is a ~ircle in a plane M, then a point pe Mis 

· ix,. the interior of circle O if and only if the segment op does not 

intersect the circle. 

Thus a circle and its i~terior are disjoint sets. If a point q 

in the plane of a.circle is neither in the circle or in the interior of 

the circle then q is in the exterior of the circle. If q is in the 

exterior of a.c:i,.rcle with center o, then oq intersects the circle •. 

If two circles are such that they have the same center, but their 

radii are not congruent, they are called concentric circles (~ee 
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, Figu,re 130). If t:wo circ;:les have different centers and con~r\,lent radii 

they are con~ruent: circles. 

Figure 130 

Definition 8-3. If O is a circle. wit;h center o and radius ;p and K is 

. a circle. with center k and radius kq~ then c;:ircle O-;;; circle K i,.f and 

only if op -;- kq. 

In Figure .131 circle O ';° circle K i;E and only if op ';;' kq . 

0 
.....----P 

Figure 131 

. k ___ ....,.q 
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A segi;nent that is determined by two points in a circle is called a 

chord. If a chord contains the center of the circle, then it is called 

a diameter. If pis any point in a circle with radius ab and center o, 

h ~. li t en op ;i.s a . ne. Let m be a point in ~ such that lll-o-p. In the ray 

~there.is exactly one point q such that oq;; ab. Since oq? ab, q is 

in the circle by definition. Therefore qp is a diameter. Thul'! if p is 

any point in a circle, then there exists exactly one point q in the 

-c;i.rcle such that pq is a diameter. In Figure 132, mn is a chord and, pq 

is a c;:hord that is also a diameter. 

m 

p 

Figure 132 

The needle of a compass is a physical model of the diameter of a 

circle. In any position the needle represents a particular diameter 

pq. lf the needle rotates on an axis at the center to a different 

position, it then represents a different diameter, say llln, Evidently 

the needle does not change size or shape as it rotates. This suggests 

that the diallleters pq and mn are congruent segments (see Figure 133). 



155 

p 

m 

Figure 133 

Postulate 8-1. :c£ pq and mn are diameters of the same circle, then 

---pq = mn. 

If a and bare distinct ~oints in a circle with center o such that 

o, a and bare noncollinear, then-;;? U -;t = 1'. aob. The sides of this 

angle are detet"mined by the rad:i,i oa and ob and its vertex is the 

center of the circle. Any angle which has its vertex at the center of 

a circle is called a central angle. In Figure 134, ~ aob is a central 

angle. The set of points consisting of a and b togethet" with all 

points in the circle that are in the interior of· 1'. aob is cdled a 

minor arc of the circle. Points a and b will be called endpoints of 

the arc. A minor arc with endpoints a and b will be referred to as arc 

ab. The set of points copsi$ting of a and b together with all points 

of the circle that i3,re in the exterior of 1'. aob is called a majot" ,;1.rc. 

A major arc with endpoints a and b will b~ referred to as major arc ab.· 

If a and bare epdpoints of a diameter, than a, o and bare collinear; 

hence no central angle is determined. The points a and b determine the 

line~- The set of all points of the circle that are in the same side 

of ~ together with a and b is called a semicircle. Thus a semicircle 
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is a special arc with its endpoints in a diameter. Since two points in 

a circle always determine two arcs, a third point is used in symboliz.,. 

·ing a particula; arc. If a and bare endpoints of an arc and c is a 

point in the arc, then the arc is symbolized Q. In Figure 134 Q is 

a minor arc and~ is a major arc. 

p 

0 

q b 

Figure 134 

Theorem s~1. If a, b and c are three collinear points and o is any 

point not in t;he line containing these points, then at most two of the 

segments oa, ob and oc are congruent. 

Proof: An indirect argument will be given, oa, ob and oc will be 

assumed to be congruent, and it will be shown that this assumption 

leads to a contradiction, Refer to Figure 135. For definiteness, 

assume a~b~c. 

i. a, band care collinear and os tt by hypothesis. 

2. ~;;-ob ;;- oc by assumption. 

3. Then -4 aoc is isosceles by definitipn. 
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4. Therefore~ oac-;;;; ~ oca b~ Theorem 6-1. 

5. Similarly A aob is isosceles and~ oba-;; ~ oab. 

6. ~ oab = .~ oac hence~ oab-:;;;- ~ oac. 

7. Then.·.~ oba-;;;;- ~ oca by the transitive propert~. 

8. But A obc is isosceles; hence~ obc-;;; ~ ocb. 

9. ~ ocb = 1= oca, hencl;l ~ ocb -;;;;- 1'. oca. 

10. Then ~ obc -;;;;- ~ occ1, by steps (8) and (9) and the tran$itive prol'er­

ty. 

11. Therefore ~ oba -;;; ~ obc by steps (7) and (9) and the transitive 

property. 

12. Hence~ oba is congruent to one of its supplements and therefore 

is a right angle by definition. 

13. From step (7), ~· oca ';;' 1= oba and from steps (5) and (6), ~ oac -;;;­

~ oba; hence.~ oac and~ oca are right angles. 

14. Thus A oac has two right angles and this contradicts Theorem 7-7. 

(A triangle has at most one right angle.) 

15. Therefore the assumption in step (i) i,s false, hence at most two 

of the segments oa, ob and oc are congruent. 

a 

0 

b 

Figure 135 

c 
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The contrapo~lit;lve of Theorem 8-1 is "if a., b, c and o are dis­

tinct points such that oa ~ -;;i;'·-;- ~' then GI-, b and c a.re noncollinea,r 

points." If a, band care distinct points in a circle O, then oa, oB' 
-and oc are cong:t"uent segments and therefore a, b and c are noncollinear. 

Theorem 8-2. If a., band care any three distinct points in a circle, 

then a, band care noncallinear. 

As a. conaequent of Theorem 8-2, any three points in a circle 

determine a triangle. Each vertex of this triangle is a point in the 

circle and its sides are chards. A triangle which has all of its ver-

tices in a circle is said to be ini:;cribed in the circle. :More gene:i::-al-

ly, any polygon which has all.of its vertices in a circle is called a.n 

inscribed polygon. If the vertex of an angle is in a circle and its 

sides intersect the circle in po;i.ntl;l other than the vertex, then the 

angle is called an inscr:i,bed angle. An angle is said to be inscribed 

in an arc :i.f its vertex is a point in the a.re and its sides intersect 

the circle at the endpoints of the arc. In Figure 136 ~ abc is in­

~ 
scribed in the arc abc. 

' \ ,,,0 
b I 

I 

Figure 136 



l59 

Theorem 8-3. Any angle inscribed in a.semicircle is a rigpt angle. 

Proof: Refer to Figure 137. The problem h to show that ~ acb is a 

.right angle. 

1. 
-~ .. 

The arc acb is. a semicircle by hypothesis. 

-2. Hence .ab is a dia~eter. 

. 3. Let d be the point in tb,e c;i..rclesuch that cd is a diameter • 

4. Consider .A aoc and .A bod under the col'respondence .A aoc ~ .A bod. 
' . . . . . 

5. ~""""""~ - ...... --,, 
ao = bo and oc = od since they are all radii of the same circle. 

6. --~ aoc ~ bqd by Theorem 6-8. (Vertical ap.gles are congruent.) 

7. Therefot'e .A -aoc -;:;; .A bod by the S.A.S. theorem. 

8. Hence 's2·-;bd by Definition 5~3 and~ aco-;;;- ~ bdo by Theorem 5-2 . 

. 9. Relative to the lines it and-~ the line ti is a transversal and, 

~ aco and -~ bdo are alternate ip.terior angles. 

10. Therefore it II tt by Theorem 7-1. 

11. Then acbd is a quadrilateral with a pair of opposite sides paral-

_lel and congr~ent. 

12. Therefore acbd is a parallelogram by Theorem 7-11. 

13. Then by Theorem 7~10, ~ acb and~ dbc·are supplementary angles. 

14. Consider the correspondence .A·acb ~ A dbc. 

15. ~c ~ db from step . (8), .-;i; ~ de since they are both diameters of 

the 1;1ame circle a.nd cb -;;;- -;i; by the reflexive propeTJ;ty. 

16. Hence .A acb ·';' .A dbc. 

17. Therefore~ acb ~ -~ dbc by Theorem s~2. 

18. Thus~ acb is congruent to one of its supplements and therefore 

-~ acb · is a right angle by_ Definition 6-11. 



160 

a 

Figure 137 

The two circles in Fi.gure 13a intersect in two points. J:n Figure 

139 the two circles have one common point, while the two circles in 

Figure 140 are disjoint sets. Iri Figure 138 oq n kp = qp, In Figure 

139 ~q nkp = -pq •. IP Figure 140 oq nkp is empty. These obsei-vations 

suggest the following postulate. 

F~gure 138 Figure 139 



Figute 140 

Postµlate 8~2. The Two Circle J,>ostulate •. Let ok, ';i;' a.ncl ;; be dis~ 

tinct segments. Let q be the point in ";;t such t):la.t 'rui-;; ab and p be 

-:--+ 
the point in ko s1,,1ch that kp;; ;;;:, then: 

(1) If ~ riiq; is a segment, then the circle w:i,th center o and 
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radius·~ int(;!rsects the circle with cepte:i;- k and radius·~ 

in two points on opposite sides of tt. If the two circles 

intersect on one side of tit, then they will intersect in the 

opposite side of tt. 
(2). If qq Okp is a. poiri.t, then the two circles in statement (1) 

intersect in one point and are called tangent circles. 

(3) If oci'niq; ~· ( }, then the circles do not. inteisect. 

Geometric Construction 

In this section techniques will be developed for constructing 

models of some of the point sets encountered in the previous cha.pters. 

The proceq.ures used will be justified by the defini'J:ipri.s, postulates 

and theorems that have been estc;1.blish~d. The only tools necessary are 

pencil, compass and Ulllllarked straight edge, 

. Constructiop 8~1. On a given ray construct a segment congr1,1ent to a 
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g:j.ven segment. 

Procedure: Accordi.ng to Postulate 5-1, there exists exactly one seg­

men): ab in ray ~ such that ab is congruent to a given segment. From 

Definition 8-1 all radii of tl).e same circle are congruent. 

the given ray and~ be the given segmeµt (see Figure 141), Place the 

point of the compass at m and adj1,.1st the compass so that the pencil is 

on point n, Without changing the compass adjµstment, move the point of 
. ~ 

the compass to point a and swing an arc intersecting ray ap at b. This 

arc is a part of a circle with radius mn, Therefore for every point p 

- - ..,.._ in the arc, ap = mn, 

m 

Thus ab;-~. 

n a 
• 

Figure 141 

~ ·) .. 

According to Postulate 6-1, every segment has a midpoint. A line 

intersecting a segment at its midpoint is said to bisect the segment, 

If the line bisects the segment and is also perpendicular to the seg-

ment, then the line is called the perpendieular bisector of the segment, 

Construction 8-2. Constr-µct the perpendic-µlar bise<;tor of a given 

segment. 

Procedu:r;'e: Let mn be t;he give1;1 i;;egment. With m as center and .• -;;: as 

radius, construct a circle and with n as center and mn as radius 
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construct a circle (see Figure 142). Then;; f'\~ = ~ and the two 

circle postulate ijpplies. Therefore circles M and N interseG t in two 

·~ 
points on opposite sides of mn. Let a and b be the points of intersec-

tion of the two circles. 
....,.....,.. ....,_ .__,.... .......,.. 

The segments am, rob, bn and na are all radii 

of congruent circles and hence are congruent. Therefore manb is a 

parallelogram by Theorem 7-:\.2. Since every parallelogram is a convex 

quadrilatera)., every interior point of segment ab is in. the interior of 

manb. For the correspoµdence .A amb tt A anb, ~ ~ ~, ;i;°-;;;- ;i;- and 

'ab.';; ab. Hence A amb-;;;- .A anb. · Therefore~ mab-;;;- ~ nab. Points a and 

~ - ~. 
bare on opposite sides pf mn, so ab intersects nm. Every interior 

point of~ is in the interior of parallelogram ambn, therefore it 

follows that ab intersects mn, Let ";J;n~ = p, then pe: ~; hence 

~ map '; ~ nap and ap ;- ap. Thus A apn -;;;;- A apm by the S .A. S. theorem. 

Therefore ;j; ~ pn; b,ence p is the midpoint of -;;;. Also ~ apm -;;;- ~ apn 

and they are adjacent supplementary angles. Thus~ apm is a right 

angle and.~ apn is a.right angle. A:\.so ~ l ~. 

perpendicular bisector of 'im:i. 

a. 

.. , 

Figure 142 

~ Therefore a.o is the 



164 

ln Chapter II it was noted that two potnts are required to deter-

mine a line. l;n C.onstruction ~-2 it was necessary to de.termine a par-

ticu.lar line and thus it ,was necessary .to determine two· points. The 

next con1;1truction also requires the construction of a line but in this 

case one point of the line is known. 

Construction 8-3. Construct a line containing a given poinj: such that 

it is p'=\rpendi,cular to a given line. 

Procedure: There i'a:t1e two possibilities: (1) the given point is in the 

given li11e, or (2) the given point is not in the given line. Case (1) 

will be considered first. 

1. Let L be the given line and p be the given point in L, 

2. Withp as centet' and any radius swing an arc intersectin& Lin 

pointi;i m and n as in Figure 143. 

3. Then inp-;;;- pn since they are radii of the same circle. 

4. Place the point at m and adjust the radius of the compass so that 

an arc centered at m will.intersect the line at n. 

5. Using this radius, circles centered at n and m will intersect in 

two point!s according to the two circle po$tulate. 

6. Let q be the point of intersection on one side of L • 

. 7. ~ is perpei;idicular to L. 

To justify the contention in step (7), consi~er .It. qmp and .It. qnp. 

;q'.·-;;;- nq since they are radi:J, of congruent circles. ;j;"-;,;;- ~ :l;rom step · 

( 3) and qp ;;- qp. Therefore Ji qmp ';;' qnp; hence .~ qpm -;;;- qpn by Theorem 

---+ ~ ' \,.. ·~ 5 ... 2. pm and pn a.re dppos;i.te rays, so.,.. qpm o;tnd-,.. qpn are supplementary 

congruent angles. Therefore each is a right angle and hence~ J_ L. 
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n p m L .i,.:~------~..--_ ... __ _., ______ .,....:~ 

Figure 143 

Case (2). 

1. Let. L be the given line and let a .be the given point, at L. 

2. Adjust the compass so that an arc with center a will intersect Lin 

two points :in and n (see Figure 144). 

3. 
- ...... .,,....,... 

using am= an as radii, construct circles centered at m and n. 

Since .these circles intersect at a they also intersect a,t a point 

on the side of L opposite a.. Call thh second point of intersec-

tion b. 

Statement (4) may be justified by t.l).e ai--gument used in Conatruc-

tion 8-2. 

. ... ,-~-~ 

L 

Figure 144 
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Construction 8-4. Construct the bisector of a given angle. 

1. Lee ~. paq be the given angle. 

2. With center~ and any radius swing an arc intersecting~ at band 

°;t at c, thus iib -;;;- ac • 
...,...,... 

3. With t;"adius be and centet'.b swing ap arc in the interior of~ paq, 

but not in the interior of A abc. 

·-4. With radius be and center c swing an arc intersecting the arc in 

step (3). (These arcs intersect by the two-circle postulate.) 

(See Figure 145.) 

5. Call this point of intersection d •. 

6. ~ is the b:J,seq tor of ~ paq. 

Figure 145 

To justify the statement in step (7) consider A abd and~ acd. 
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·ab~ ac from step (2). · · bd.-;- ~ since they are radii of congruent cir-
.....;_.· ~. 

cles and ad -;;;- ad.· The?;"efore ~ abd-;;;- 1l acd by Definitio:p. 5-3 •. Then 

~ bad -;- . ~ cad by Theorem 5-3 and thel;'efore ~ is the bisector of .. ~ paq 

byDefinition,6-5. 

Construction 8-:"5 •. Construct; an angle congruent to a given angle. 

Procedure: 

1. 
. ~ 

Let~ man.be the given angle and c;,p be any ray. 

2. 
~ 

With center a a1;1d any radius swing an arc intersecting am in band 

·~ in c. Then ~ bac :::; ··~ man (see Figure 146). 

3. With center at o and ra~iu~ ab-;;;~, construct a circle inteDsect~ 

ing op ind. 

4. With d as center and be as radius swing an arc intersecting the 

circle in q • 

.5. ~· qod -;- ~ bac and therefore ~ qod ~ ~ man. 

Figure 146 
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The statement in ste~ (5) is justified by the definition of con-
~ .......:.._~ 

gruent angles. The point d ts the point in op such that od = ac and 

~ ·---q is the point i'l;l oq such that oq.= ab, since the segments a.re radi;i. of 

congruent circles. dq ;;- '@;° 'for the same reason. Therefore .~ qod ~ 

~ bac by Definition 5-1. 

Construction 8~6. Construct a triangle congruent to a given tr;i.angle. 

Procedure: 

1. 

2. 

3. 

4. 

5. 

6. 

Let ..A abc be the g;i:V'en triangle and ~ be any, ray (see Figure 147). 

On~ construct pq ';;" ab. 

With verte~ p construct~ qpm ~ ~ bac. 
~ . _"""""".,._ 

On pm construct pn • ac. 

Then pq ~· ab, . ~. qpn. -;;;;- ~ bac and pn -;;;;- ~. 

Therefore A qpn-;;;- A bac by the S.A.~. theore~. 

c 

Figure 147 

Construction 8-7. Construct a right triangle •. 

Procedure: 
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1. Let ~ be any ray. 

2. At: point a ;i.n line It construct a. line tt perpendicular to ti. 
3. . ~ qap is a right angle; therefore, .A qap :Ls a .right triangle since 

one of its angles is a right angle (see Figure 148). 

I 

p 

Figure 148 

Construction 8-8. Construct a line parallel to a given line that 

contains a given point not in the given line. 

Procedure: 

1. Let ~ be a given line and p be a point such that pl ~ (see figure 

149). 

2. 
~. ( ~ 

Let pq be any line intersecting a6 and for definitenei;;s, assume 

a-q-b. 

3. With vertex p construct~· qpm ;;- ~ pqa such that m and a are on 

opposite s:i,.des of~. 

4. Then 1rct is a tra,nsversal of l't and ~ and ~ qpm and ~ pqa. are 
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alternate .interior ansies. 

5. Since ~ qpm-;; ~ pqa, line tt h parallel to line~ by Theot."em 7 .. 1. 

a b 



MEASURE 

The previous chapte~s have been concerned with non-metric geome­

try, that is, geometry wi~hout measure. In this chapter the concept of 

measure of point sets will be con,si<;lered. MeastJreinvolves the corre­

lation of point sets with positive real nuJI1bers. 'Xhe point sets are 

the entities to Pe measured and :tor a particular point set the number 

assigned to it in 1;1.ny correlatio11 process is called the measure of the 

point set. 

Units of Measure 

The above paragraph suggests that a particular point set may be 

assigned more than one number as a measure. This is a result of the 

existence of more than one "standard unit of measv.re. 11 l'he first step 

in measu;ring any point set is to select a particular point set, prefer­

ably of the same shape as the set to be measured, as a standard unit of 

measure. This standard unit of measure is assigned the number 1. The 

set to be measured is then compared in some way to the stan<;lard unit 

and a number is·assigned based on this comparison. Thus the use of 

different stanc;lards results in the assignment of different numbers to 

the same point set. For example, consider the question, "What is the 

meaflure of a yard stick?" The answer could be 1 or 3 or 36 dependi:ng 

on the standard upit of measure. If the standard unit is the yard, 
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then the answer is.l. If the standard unit is the foot, then the 

answer is 3, and if the standard unit is the inch, then the answer is 

36. Note that for a particular standard unit only one number is as-

signed as themeasure. In the discussion to follow a particular unit 

will be assumed in every instance. Subject to this assumption, if a 

point set has a measure, then its measure is unique. The number of 

standard units that constitute a point set Sis the measurement of S, 

denoted M(S). 

Measuring Segments 

The meas1,1re that is assigned to a particular·point set depends on 

. the size of the set to be measured relative to the standard unit of 

measure. The standard unit of measure for segments is some arbitrarily 

chosen segment which is assigned the number 1 as a mec:1.sure. Any seg-

ment to be measured is compared to this tinit segment and c:1.ssign!:!.da 

mec:1.sure based on this comparison. The measure of c:1. segment ab will be 

denoted "ab". Since congruent segments have the same size it is rea-

sonable to assign the same measure to each segment in any set of con-

gruent segments. 

Postulate 9-1. Two segments have the· same measure if and only if the 

two segments are congruent. In symbols, c:1.b = cd if and only. if ab ~ ed. 

- ·~ S1,1ppose ab is R unit segment and mn is any ray (see Figure 150). 
~ .. . -.· .... -

Let p be the point in mn such that mp= ab. For definiteness, asi;;ume 

~ -··--
m-p-n. Let q be the point in pq such thc:1.t pq = c:1.b. It follows from 

Postulate 9~ 1 that mp = pq == ab c:1.nd since ab is a unit segment ab = 1. 

Thus mp= 1 and pq = 1. .Note that the model was constructed so that 

- -·-mp O pq = p, that is, the intersection of mp and, pq is a single point. 
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Furthermore mp and pq are subsets of the same line. 

a b m p q r n 

Figure 150 

. Postulate 9-2. If two segments are subsets of the same line and their 

intersection is a point, then the measure of their·union is the sum of 

their individual measures. 

In Figure 150 'wi .. = ~ U pq. It follows from Postulate 9-2 that 

mq =·mp+ pq = 2. 

To e~tend this process, suppose that point q in Figure 150 is 

between p and n. Let r be the point in~ such that qr-;;- ab. Then 

qr n ;q = q and mr = (;j;' U pq) U ¥; therefore by Postulate 9 .. 2 

mr - (mp + pq) + qr. But mp = 1, pq = l and qr = 1, therefore 

mr = (l+l)+l ::;:: 2+1 = 3. 

·-. . d~' In general suppose ab 1.s a un1. t .segment an pq 1.s a ray. Let the 

{ } ""'?" set Po, pl' p2, ••• , p12 be a set of points in pq such that p0 = p and 

such that the segment determined by any two consecutive points in the 

set is congruent to ab. (Consecutive points are points having consecu-

tive subscripts$) Since the congruence relation is transitive it 

follows that p0p1 -;;;- p1p2 ;;- p2p3 etc., or that PiPi+l = PjP j+l for all i 

and j in {0,1,2,~ ••. ,ll}. Since each of these segments is congruent to 

the unit segment ab it f9llows from Postulate 9-1 that each segment has 



measure 1 (see Figure 151). 

a b 

Pg 

Figure 151 

Thus PoPl = 1 and from fostulate 9-1 p0p2 =\p0pl + PiP2 = 2. 

Similarly PQPJ = p0p2 + p2p3 = 2+1 = 3 and p0p4 = 4 etc. Thqs the 

measure of PoPj = j for all j e [1, 2, ••• , 12}. 

The segment p0p12 together with the points (p0, Pi, ••• , p12} is 

called a ruler. The subscript of the point Pj is th~ measure of the 

-,-
segment POPj• For e~ample p0p7 = 7 (see Figure 152). 

P5 Ps, Pg 

Figure 152 
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This particular ruler is a.twelve unit ruler. Ann-unit ruler ma,y 

be constructed by constructing n .congruent copies of some chosen unit 

segment an a ray such that the conse~uti.ve se&nents determined have 



175 

exactly one point in common. The measurement of an n~unit ruler is n 

units. If the point set is a segment and the unit is specified, then 

the measurement of the segment is referred to as the length of the 

segment. 
L 

The ruler described above is useful for determining the approxi-

--. ----mate measure of a given segment. Let mn be a given segment and p0p6 be 

a six-inch ruler. In Figure 153 the segment·;;;- is approximately coh-
.• 

gruent to p0p4; hence mn .is approximately 4. Using the symbol " ::;:::. " 

for. "approximately equal to" this is written mn::::: 4. In Figure 154, · 

the segment cd is compared to the six-unit ruler p0p6 • It appears that 

the measure of l>oPJ is less than.the measure of cd and that the meas-

--- -ure of cd is. less than the measure of p0p4 • Using the symbol " <" for 

the phrase "is less than," p0p3 < cd < PoP4 • But PoPJ = 3 and . 

p0p4 = 4; hence 3 < ed.< 4. Thus the numbers 3 and 4 are bothapprox.i­

mations of the measure o{ ed •. A better approximation of~ may be 

obtained by partitioning p3p4 as fol.lows. 

m 

P5 
' 

n 

Figure 153 

Let p b.e the midpoint 9{ p3J.>4 • Then p3p U PP4 = PJP4 and P3P n PP4 

p. So from Postulate 9:-2, p3p4 = PJP + pp4 • Hence P3P + PP4 = 1. 
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But PJP = P;P4 by the definition of midpoint, so p3p = PP4 by Postula.te 

9-1. It follows that PJP = \. 'l;'hen by Postulate 9-2, PoP = PoP 3 + p3p 

. = 3+~ = 3\. Figure 154 suggests that·~ is approximately congruent to 

· POP; therefore cd ··~ 3\. 

p 

c 

Figure 154 

This e~ample suggests that it is advantageous to partition a ruler 

into subunits. For definiteness consider a six-unit ruler PoP@'.: such 

that PiPi+l is congruent to some unit segment ab for each ie {O, 1, ••• , 

5}. Let mi be the midpoint of Pi-lPi for each ie {1,2, ••• ,6} (see 

Figure 155). Then pi-lmi = mipi, ie {1,2, ••• ,6} and in each case 

Pi-lmi l'l miPi = mi. Thus by Postulate 9--1 Pi-lmi = mipi and by 

Postulate 9·2 Pi-lPi = pi-lmi + miPi· Since pi-lP = 1 it follow!;! that 

Pi-lmi = ~- Then Pom1 = PoPi-l + \ = i-1+\ = i-\, ie {1,2, ••. ,6}. 

Thus p0m3 = 3-\ = 2\, Pom6 = 6-\ =5\, etc. In this process each unit 

segment in the ruler is subdivided into two subunits each having 

measure\. If each o:f; these subunits is partitioned at its midpoint 

the resulting segments will each have measure t. In general if this 

process is repeated n times the measure of each subunit thus determined 
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is ~n. An ordin1;1.ry ruler uses the "inch" as a standard unit and each 

unit is subdivided into sixteen subunits. The measurement of length of 

each subunit is 1/16 inch. Thus an ordinary ruler may be used to 

determine the measurement of a model of a segment to the nearest six­

teenth of an inch. For example if one measures a given segment and 

contends that the measurement is 3 3/16 inches, this me1;1.ns that the 

measurement is greater than 3 2/16 inches but less than 3 4/16 inches. 

mz P3 ms P5 

Figure 155 

The calibrations on measuring instruments are always rational 

numbers. In measuring a s.egment one pla.ces the initial point of the 

measuring instrument at one endpoint of the segment and attempts to 

match the other endpoint of the segment with one of the calibrated 

points on the measuring instrument. It may happen that no calibrated 

point on the instrument matches the second endpoint of the segment. In 

this case one chooses the calibrated mark that seems most appropriate 

in the situation and assigns the corresponding number of units as the 

measurement of the segment. Since this number is a rational number, 

measurement: is referred to as a rational approximation. The accuracy 

of the approximation depends on the precision of the instrument and the 

care with which it is used. 
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· Measul'.'ing Angles 

The pl'.'ocess of measuring angles is analogous to the proce~s of 

measuring segments. 4n angle is arbitrarily chosen as a standaJrd unit 

of measure and a given ari.gle is measured by comparing it to the stand-

ard unit. As with segments, congruent angles have the same measure • 

. Postulate 9-3. Two angles have the same measure if ~nd only if they 

are congruent • 

If M( ~ abc) = M( .~ mno) the:p. ~ abc and ~ mno have the same 

measure and if~ abc and.~ mno have the same measure, then M( ~ abc) = 

M( ~ mno). 

~ ~ ~ Postulate 9-4. Let ab be a ray and ap and aq be two rays with p and q 

in one of·the. half-planes determinec;l by !6. If~ bap and~ paq are 

adjac.ent angles, then M( ~ baq) = M( ~ bap) + M( ~ paq) (see Figute 

156). 

a 

Figure 156 

A common device used to measure angles is the protractor. The 

protl'.'actor i.s calibrated in standard units ca'.j.led a ."degree." Consider 
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a .semicircle with center o and radius oa. Let -;J;' be a diameter and~ 

-be a l:i,ne perpendicl.ll~r to ab at point o. Let c be the point of :i,nter-

section of t'ct and the semicircle (see.Figure 157). Then.~ aoc is a 

right angle. Suppose the arc 1i? is subdivided into ninety arcs such 

that if p and q are consecl.1tive points in the subd,ivision and m and rt 

are consecutive poi,.nts, then pq ~ ~n. If x and y are any two ~onsecu-

tive points in this subdivision, then the measu:i:-ement of-~ xoy is 1 

.degree. Thus M( ~ poq) = 1 degree and M( ~ mon) = l degree. Each pail;' 

of consecutive points together wil;:.h point o determines an a:ng;I.e wi.th 

measurement equal 1 degree. Since there are ninety such angles deter-

mined by this subdivisi,on, M( ~ aoc) = 90 degrees. Thus the measure~ 

ment of a right angle is 90° (the symbol 11011 means "degree''). 

1,P. 
.f c 

b ----------- a 0 

Figure 157 

If the arc ~ is subdivided as was arc 'at\ one obtains 180 points 

on the semic:f,.rcle. These points are numbered consecuti,vely beginning 

with point a using the set of integers (O,l,2, ••• ,180)r The semicircle 

together with the points dei;;c.ribed i.s a .ptotractor. 
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·'I'he approximate. measure of any·angle is obtained by placing the 

protractor so that O is at the verte:ic of the angle and oa coincides 

with one side.of the angle. One of the points of the pi:-otract;or wiU 

correspond. approximately with a point on.the othe:i;- side of the angle. 

The number associated wi~h that point is the measure of the angle.· In· 

Figure 158 M( ~ mon) ,.. 20° and M( .~ mop) ,.. 105° •. By definition .the 

sides of an a,ngle are not subsets of the same line. Consequently th~ 

measurement of any angle is less than 180°. If ~ mo:ic is any acute · 

. ·~ . 0 
angle, then ox is in the interior of ~ aoc and thus M( ~ mox) < 90 • 

If ~ may is any obtuse angle; then~ is in .the interior of ~ moy; 

hence M( ~ moy) > 90°. 

q m 

!n Figure l58 .~ rnop and .~ poq are supplementary angles. The sum 

of the measurements of these two anglea is · 1so0 • The measurement·. of 

~mop= 105° and the measurement of~ poq = 85°. If~ rst is any 

supplement of ~ mop,. then .~ rst -;;.- ~· poq and· thus M( ~ rst) = 85°. 

This suggests the following postulate. 
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Postulate 9-5. Two angles are supplementary if and only if the sum of 

their measurements is 180°. 

Theorem 9 ... 1. The sum o:e the measurements of the angles determined by a 

. triangle is 1800. 

Proof: ·. Refer to Figure 159. 

a 

c 

F;i.gui;-e 159 

1. Let ~ abt;! be any triangle and ·1:t be the line containing a that is·.· 

parallel to t't .. 
2. Let q be a point in tt such tha. t q-a-p. 

3. Then·~ qab ~ ~ abc and~ pac-;;;- ~ acb by T4eorem 7~1. 

4. Therefore M( ~ qab) = M( ~ abc) and M( ·~ pac) = M( }: acb) by 

Postulate 9-3. 

5. Since 1it. II t't, ~ qac is a supplen:ient Qf f acb by Th,eorem 7-8. 

6. The~efore M( ~ qac) + M( ~ acb) = 180° by l'ostulate 9-5. 

7. By .Postulate 9-4 M( .~ qac) = M( ~ qab) + M( ~ bac). 

8, By sl,lbstitution from step 7 to step 6, M( ~ qab) + M( ~ bac:). + 

M( ~ acb) ~ 180°. 



9 •. Substituting from step 4 to step 8, M( .~ abc). + M( ·~ bac) + 

M( * acb) = 180°. 

Suppo$e .A abc is a right· tria.1,1.gle and .~· abc is a right angle. 

Then M{ * acb) + M( * cab) + M( * abc) = 180° by Theorem 9 .. 1. But 

M(l abc) = 90°. Therefore by substitution, ( J: acb) + M( ~ cha) + 

90° = 180° and therefore M( ~ acb) + M( * cab) = 180° - 90° ::;: 90°. 
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Thus M( ~ acb) < 90° and M( * cab) < 90°; hence each of these angles is 

an acute angle. 

Definition 9-1. Two angles are q:>mplernentary angles if and only- if the 

sum of their measurements is 90°. 

Since the sum of the measurements of the acute angles of a right 

· triangle is 90° it follows from Definition 9-1 that the acute angles of 

a right triangle are complementary. 

Theorem 9 ... 2. lf two angles are complements of congruent angles, then 

they are congruent. 

Proof: Reter to Figure 160. 

a m 

Figure 160 



1. By hypothesis: 

(i) M( ~ abd) + M( * dbc) = 90°. 

(ii) M( ~ mnp) + M( ~ pno) = 90°. 

(iii) * abd ';;;;' ~ mnp~ 

2. From Postulate 9-3, M( ~ abd) = M( * mnp). 

3. From step l(i), M( ~ dbc) = 909 - M( ~ abd). 

4. Fro!ll step l(ii), M( * p110) = 90° .. M( ~ mnp). 
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5. Substituting from step 2 into step 4, M( ·~ pno) = 90° - M( ~ abd). 

6. Therefore from steps 3 and 5, M( ~ dbc) = M( * pno). 

7. From.Postulate 9-3, * dbc-; * pno. 

Measuring Polygons 

Every polygon partitions the plane into three disjoint subsets, 

the polygon, its interior and its exterior. The union of the polygon 

and its interi.or is called .a region and the polygon is the boundary of 

the region. 

The measure.of the boundary of a polygon is called the perimeter. 

Since a polygon is the union of segments the perimete,r of a polygon is 

just the sum of the measures of the segments which coni,;titute the 

polygon. ·rf abcde is a polygon, then the perimeter of abcde =ab+ be: 

+ cd + de+ ea. 

The measure of a region requires th~ introdi.lction of a standard 

unit of.measure whose shape is similar to the shape of a region. The 

standard unit COIIIIDoniy used for measuring regions is the unit square. 

!he unit square is a square such that each of its sides is congruent to 

a unit segment. The measure assigned the unit square is 1 and its 

measurement is 1 square unit. lhe measure of a region is commonly 
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referred to as the area of the polygon that determines the region. 

Thus the area of a unit square is 1. 

Postulate 9-6. If two polygons are congruent then their measures are 

equal. 

Rectangles 

Suppose that a rectangle abed is such that ab= 2 and ad= 3 (see 

Figure 161). Let m be the midpoint of ab and n be the midpoint of ed. 

Then rob= ma= 1 and nc= nd = 1. Similarly let rands be points of 

-be such that hr= rs= sc = 1 and let hand j be points of ad such that 

ah = hj = j d = 1. Then br II ah and hr -;;- ah hence abrh is a parallelo­

gram. Similarly rsjh and scdj are parallelograms. Since 'ab l ad and 

rh and sj are both parallel to ab it follows that rh and sj are both 

-perpendicular to ad. Therefore each of the three parallelograms is a 

rectangle. Let ~nrh = p and ~naj = q. Then mb II pr° II qs II~. and 

~ \\. ph I\ qj \\ ~. Further ma -;;- ~ and -;;; II nd; hence mnda is a paral­

lelogram. Therefore mn II ad but 'id II be hence ;;;- II ad II be •. Since rh 

and sj are both pe;rpendicular to ad, then rh and~ are both perpendic-

-ular to ad, then rh and sj are both perpendicular to mn. It follows 

that each of the six quadrilaterals in Figure 161 is a rectangle, 

Further their sides are congruent segments with measut"e l; hence each 

is a unit square. Therefore it is reasonable to assign the .number 6 as 

the measure of the rectangle abed. Note that this number is the 

product of the measure of ab and the measure of. ad. 

Postulate 9-7 •. If a region R is partitioned into n subregions such 

that the interiors of the subregions are disjoint, then the measure of 

the region R is the sum of the meas1,1res of the subregions. 
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b s c 

p q 
m n . 

h i a d 

Figure 161 

I,.et the unit ~quare a.bed be part;itioned as in Figur13 1,62, such 

-that j is the midpoint of ad and his the mid.point of be. Thus 

a.J = bh "'· jd == he = ~· .and ab = jh = de = 1. For the correspondence 

A a.bh ~ .A jhc, ~ ~ jhl ~ a.be ~ ~ jhc (J:,oth are right angles) and 

bh .;- he. Therefore A abh ':;' A jhc. Similarly .A ahj .;;- .A jcd. Hence 

abhj ~ jhcd. and thus by Postulate 9-6 M(abhj) = M(jhcd). Then by 

Postulate 9-7 M(abhj) + M(abcd) = 1 square unit. Therefore M(abhj) = \ 

square unit, and M(jhcd) = \ squafe unit. Again the measure of the 

rectangu~ar region is the product of the measures of its adjacent 

sides. Thi$ 4iscu$sion provides an intuitive basis fol;' the following 

definitioi;1. 

b h ,. 
' 

, 
I I 

I I 
I I 

I I 

I I 
, 't 

d a 
j 

Figure 162 
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Pefini.tion 9".°2, The measurement of a rectangl.llar regio1;1 is the product 

of the measurements of two adjacent sides. A(pcde) denotes the area ot 

the polygon having vertices P, c, d and e, 

The measurellle:nts of a pali.r of acljac.ent dde1;1 of a rectangle are 

ccnmnonly referred to as the length(/..) and the width (w) of the rec-

tangle_and the measurement of a region is called tb.e area (A). ·using 

this symbolism, I)efinit;i.on 9-2 prov;ides a forml.l-la for·determining the 

measurement o:f a rectangular region. Thus if abed is a rectangle such 
·-~~·~ .... ·::. 

that M(ab) =1 u-pi,ts ,i3,ncl M(~). === w units, then A{abcd) ===l ·w square 

·units. Thus a formula is used to determine·the measure of a region 

rather than a tool 1;1uch as a.ruler or a protractor. 

Since in ,a.ctual practice the measµres of the sides o:f a.rectangle 

are approxilllations, only the approximate measure of a rectangular 

region can be determined, 

The formula for determining the area of a rectangle provides a 

basis for formulas :l;or ·the area of ;regions determined by parallelograms 

and triangles. 

Parallelograms 

.Suppose abed is a parallelogram as in Figu,re 163. Const:i:-uct 

''bp 1 ti, and nc 1 tt. Tb.en bp II cii- since they are perpendicular to the 

same line,. Further ~ bpd and.~ end are right angles. Therefore bpnc 

is a rectangle. The oppos:l,te sides of a rectangle are congruent seg-

·ments, therefore bp = nc, If·a segt11ent has its endpoints in the lines 

containing the opposite side of a parallelogram and is perpendicular 

to one side of the ~arallelogram, it is perpendicular to the other 

side. Such a. segtDent is called an altitl.lde of the parallelagrf:Lm 
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relative ta either of the sides that contains an endpoint of the seg­

ment. Thus.hp is an altitude of the parallelogr,am abed relative to 
.,....._ . ,.._..' . .--.. 

sides be and ap., Similarly en h an altitl\de.of the parallelogram abed 

rEdative to tqe sides.be and ad. 

a._ ...... __ _. _________________ _, 

d p 

Fi,gure 16J 

I 
I 

I 
I 

- ... n 

By Definition 9 .. 2 A(bppc) = M(bc) • ~(hp) and by.Postulate 9-7 

A(abed) = A(abp) + A(l:>pc;lc). Consider· the correspondence .A ,apb ~ 

.A dnc. Segr(lents ab and de are opposite sides of a parallelogram; hence 

. -;i; ~ de •. Reiative to the paral).el lines ·tt and tt. and the transversal 

~ 
an, .. ~ bap an,d ~ cdn are corresponding angles and there;f;ore ~ bap -;;;;-

~ cdn. Since.~ b~a· and~ end are right angles, .A bpa and .A end are 

right triangles. Therefore ~ abp is a. complement o.f: ~ hap c1,nd ~ den is . 

a (;ompleme:nt o:e ~ cd,n. Since .~ bap ~ ~ cdn it follows from Theorem 9-2 

that ~ abp -;;;;- ~ den. Thus .A apb -;;;;- .A dnc by the A. S .A. theprel!l, There-

fore by Postulate 9,.6 A(dnc) = A(apb) •.. Since A(abcd) = A(abp). + 

A(bpdc) by substitution, A(abcd) = A(dnc) + A(bpdc). :aut the union of 

the l;'egions dnc and bpdc is the region bpnc. Then by,Postulate 9-7 

A(dnc). + A(bpdc) = A(bpnc). Therefore A(abcd) = A(bpnc). But 
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A(bpnc) = M(bc') • M(~) ~ hence A(abcd) = M(bc) • M(bp). Thus the i:1rea 

of the region determined by the parallel.ogr'i1m abed is the product of 

the measui;ement of one side and the measurement of an 1:1.ltitude relative 

to that aide. The measure of the altitude is called J:he height (h) and 

the relative side is called the base. The measurement of the base is 

· symbolized b. 

Theorem9-3. The measurement of a region determined by a parallelogram 

is the product of the measurement of one of the sides and the measure-

ment of an altitude relative to that side. 

In symbols, if the measurement of the base of a parallelogram abed 

is b units and the measurement of the al1:itude is h units, then· 

A(abcd) = b • h square units. 

Triangles 

-·- -Let .A abc be any triangle a,nd am, en and bo be segments such that 

-.~-~ _,.tt 
am 1 bt~ en l a,o and qo l. ac as in Figure 164. Each of the\ segments 

-am, en and bo are called altitudes of the triangle. An altitude is a 

. segment having one endpoint at a vertex and the other endpoint in the 

line determined by the side opposite that vertex such tha.t the segment 

is perpendicular to the line. '.!;'he measurement of the altitucj.e is 

called the height (h). 

~ tt Cons:i..der A abc and the line ap such t:hat ap II be, Let d be the 

point in ap such that "id';; bG (see Figure 165). Then abed is a quadri-

lateral such that a pair of OJ?posite sides are parallel and congruent. 

By Theorem 7 ... 11, abed is a parallelogl;'am. Let ;;; be an altitude of the 

parallelogram abed. Then am J_ t't c;1.nd therefore a)ll is an altitude of 

.A abc. Consider the correspondence A a.be~ A cda. The segments -;i;-
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---and cd l;l.re opposite sides of a parallelogram, hence ab ;; ed •. Similarly 

bc-;;- da. · Si.nee the congruence relati,on is :i;eflex!i.ve, 'ac'. ;;- -;r. There-

fore the corl:'ef,lpo,;iding sides of .A .abc and A cda at'e congr1,1.ent segments 

and hence ·.,i. abc -:; .A cda. Hence, 1:l;'om J?ostµlate 9-6, A,.(.A ab~) "" 

A(A cda). J3y .Post1,1.l.ate 9-7, A(A abc) + A(A cda) ;;;: A(abcd) and by 

Theorem 9-3. M(abcd) = M(~) • M(ain). Thµs A(A abc) + A{i. ed.~) = 

M(&) • M(a.m). then by substitut:l.ol:l A(,A abc). + A(A abc). = M(bc) • 

M(am) or 2A(A abc) = M(bc) • M('a;). Therefore A(A abc) = \M(bc) • 

M(~m). This proves the following theorem. 

a 

m 

Figure l.64 

a d p 
( ~zrs1 ) 

. m . . 

Figure 165 
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Theqrem 9-4. The measurement of a triangµlar region is one-lµilf the 

· product Qf the measurement of one side· an4 the mea.surarµent of th.e 

altitude to that side. 

In symbols let be be the base of .fl- abc and am be the al t;i tude to 

the side be •. If }1(bc) = b and M(ai) = h, then A(A abc) = \b • h. 

The Pythagorean Theorem 

The fol;'mula for the measurement of a. rectangular region provides a 

.basis for developing a .relation that e~ists between the sides of a 

right triangle • 

. ;t'heorem 9-5 •. 'J;he l.'ythogorean Theorem. The square of the measi,.re of 

·the hypotenuse ofa right triangle is equal to the sum of the squares 

of the measures of the other two sides. In symbols,. if ..A·acbis a 

right triangle such that c is the measure of the hypotenuse,·b is the 

measure of one side and a is the measure of the other side, then 

a2 + b2 = c2. 

Proof: . Let·~ be a segment and q be a point in ~ such that mq = a and 

qn = b. Let mnop l;>e a square having µm 1;1-s one side. Since the sides 
.. ---.""I--:-·----of a square are congruent segments, mn = no = op = pm (see Figure 166). 

Let r, sand. t be pointa on-;;;, op, and pm respectively such that 

mq = pr= os = ·pt = a, Then qn.= ro = sp .. = tm = b. 

C6nsider A tmq, . ..A qnr, A ros, and .A spt. 
-- . 

2. -~----- -------Ea.ch is a right. tr:i;angl.e,. tm = qn. = ro = sp and mq = ·nr = ·os = pt; 

therefore the four triangles are m~tually congruent by. the S .4.. S. 

theoJ.'em. 

. 3. 
,......,.... ......... -·- ........ ~ """'""'...,..... 

Thus tq =·qr= r~ = st. Let the measure of each of these be 

·denoted. bye. 
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4. Since ~ mqt and ~ tqn are suppl.eme11tary angles, M(~ mqt) + 

M(~ tqn) = 180°. 

5. But M(~ tqn) = M(~ tqr) + M(~ rqn}; hence M(~ mqt). + M(~ tqr) + 

M(~ rqn) = 180°. 

6. Since~ mqt and~ mtq are complementary, M(~ mqt) + M(~ mtq) = 9cf. 

7. But~ nqr ';;;;' ~ mtq, so M(~ nqr) = M(~ mtq). 

8. Therefore M(~ mqt) + M(~ nqr) i== 90° by subs ti t;ution. 

9. From steps 8 and 5 it foll.ows that M(1'. tqr) = 90°. 

10. Therefore qt .l qr. 

· ll. Similarly rs l q:i;-. 

12. Therefore qt \I rs and since qt·-;;;; it follows from Theorem 7-11 

that the quadrilateral tq:i;-s is a.pa'rallelogra!Jl. 

13. 
~-~--.,........~-

Since l tqr is a right angle and tq =qr= rs= st, the parallelo;.. 

gram tqrs is a squa'.(e. 

14. 2 From step 3 and Definition 9-2, A(tqrs) = c • c = c square units. 

. 15. Since mn = a + b, A(mnop) = .(a + b) (a + b) = a 2 + 2ab + b2 square 

units. 

16. From steps 1 and 2 and Theorem 9-4, A(A tmq) = A(11 qnr) = A(11 ros) 

= A(t;. spt) i== ~ab square units. 

17. From Postulate 9-7 A(mnop) = A(tqrs) + A(A tmq) + A(11 qnr) + 

A(1:t,. ros) + A(A spt). 

l-8. By substitution, a 2 + 2ab + b 2 = c 2 + \ab'+ \ab + ~ab + ~ab or 

a 2 + 2ab + b 2 = c 2 + 2ab • 

19. 2 2 2 Therefore a + b = c • 
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Figure 166 

Measuring Circles 

The bou.pdary of a. circular region is called the circumference and 

its measure is symbolized by the letterllc". Experimentat:i,on with 

various circular objects having different diameters will suggest that 

the ratio of the measure o,J: the circumference to the measure of the 

diameter is the same n1,1mber for all circles. One may conduct such 

experiments by measuring the circumference and diameter of vegetable 

cans or similar circular objects with a tape measure and dividing the 

measure of the cir~umference by the measure of the diameter. In 

advanced mathematics it is esta):>lished that this ratio is the same for 

all circles and is approximated by the numl:>er 3 1/7, This number is 

denoted by the GreE;:k letter TT· Using decimals, rr::::: 3 .1416. If the 

measure of the diameter of a circle is symbolized by the letter "d", 

then c/ d = TT· The measu:ire of the radius of a circ :i.e is denoted r an,d 

since a diameter is the union of 2 radii, d = 2r. Thete:l;ore c/d = 

c/2r = TT c;1.nd c = 2rrr. The expression c = 2TT r · is the formula for the 

measure of the circumference of a circle in terms of the radius. 

Consider a circle with center o and an i:p.scribed polygon 
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P1P2···P2o such that PiPi+l ~ PjPj+l for each i and je {1,2, ••• ,20}. 

That is, the sides of the polygon c:1,re mutually congruent segments (see 

F;i.gure 16 7) . 

PJ 
Pz 

~i! 

Pu Pl 

P20 

Figure 167 

Such a polygon is called a regular polygon, that is a polygon ;is a 

regular polygon if all, sides and angles are congruent. A regular poly-

gon having n sides is called an n-gon. If pi and Pi+l are consecutive 

vertices of an inscribed n-gon and o is the center of the circle, then . 

piopi+l is a triangle. A.ny other triangle determined by consecutive 

vertices of the n-gon and the cent$r of the circle is congruent to 

A PiOPi+l since the corresponding sides are congruent segments. 'l;hus 

~ p3op4 is one such triangle. l'hus an inscribed n-gon determines a set 

of n mutually congruent triangles in the interior of the circle. The 
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perimeter of the n-gon is an approximation of the measure of the cir-

cumference of the circle and the sum of the areas of the triangular 

regions is an c1,pproxiroation o-J: the area of the circular region. Larger 

values of n give rise to better approximations. For large values of n, 

the measure of the altitude of the associated triangle is approximately 

r. 

Suppose the measure of the side of an inscribed n-gon is ,l. ';Chen, 

the perimeter is approximat.ely n • J, • Thus ~p • J... The area of 

ec1,ch of the associated triangular regions is approximately % • r • 1; 

thus the area of the circular region is approximately n • % • r ·.l = 

% r • n .,l. But n .£-;;:;; c and c = 2TT r; hence the area of the circular 

region is approximately\• r • c = % • r • 2TT r = TT r2. Since the 

n-gon is inscribed in the circular region, the perimeter of the n-gon 

is less than the circumference of the circle. That is, n ·l< c. Also 

the altitude of each associated triangle is less than the radius of the 

circle. Consequently the area of any. :i,nscri]:>ed n-gonal region is less 

than the number 'IT r2. 

Now consider an n-gon such that the sides are tangent to the 

circle, called a circumscribed n-gon (see Figure 168). For large 

values of n tqe perimeter is an approximation of the circumference of 

the circle, but is greater than the circumference. If each side has 

measures th~n n • s >c, but n • s - c. The area of the n-gonal 

. region is n • % • r • s = % • r • n • s but n • s-::::; c = 2rr r; hence 

the area of the circular region is approximately \r • 2rr r = TT r 2 • In 

this case the area of the n-gonal region is greater than iT r2 since 

n · • s > c. Hence the area of any circumscribed n- gonal region is 

greater than the number TT r 2• 



195 

:Figure 168 

The e:ll::amples in the last two p~:,;ag;raphs sugg;est the foll.owing 

definition. 

Definitipn 9·3. · ;cf r is the measure of the radius of a circle, then 

the area of the circular region is n r 2 , that is A(O) = TI r 2 • 



CHABTER X 

POINT SETS IN 3-SPACE 

The point sets previously considered have been subsets of the 

plane. This chapter will consider certain point sets that are not 

subsets of a plane. 

A line may be thought of as a set in 1-space. Subsets of the 

plane are sets in 2-space. In Chapter II, it was noted that two inter~ 

secting lines determine a plane. In particular two perpendicular lines 

determine a plane and thus 3 mutually pe:i:-pendicular lines determine 

3-space. In the remainder of this discussion 3-space will be referred 

to as space. 

A plane pa.rtiUons space into three disjoint subsets. One is the 

plane and the other two are half-spaces. Two points are in the same 

half-spa(;!e if and only if the segment determined by the points does not 

intersect: the plane that determines the half-space. 

In Chapter U it was noted that U two planes intersect, then the 

intersection is a line. Suppose planes Mand N intersect in line~. 

The line ~ determines two half-planes in M. Let c be a point ~n one 

of these half-planes. Similarly :Let d be a point in one of the half­

planes in N determined by~. The union of the line t't,. the c-side of 

tt and the d .... side of ~ is called a dihedral angle (see Figu:i;-e 169). 

The line~ is called the edge of the dihedral angle and the two half-

planes are called faces of the dihedral angle. 

196 
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N 

.. d 

Figure 169 

Let m be a point in the edge tt of a dihedral angle. Let p be a 

point in op.e .. face of the angle and q be a point in the other face such 

that~- J_tt and tf ..L ~. Then ~ pmq .is called a plai:ie angle o:1; the 

dihedral angle •. A dihedral angle is a right dihedral 1;1.ngle if and only 

if the associated plane angle is a right angle. 

Definition 10'."l. Two planes are perpendicular if and only if they 

determine a right dihedral angle. 

Let M be a plane and~ and 'tt be lines in M such that itntt .= p. 

The line ~ is perpendicular to M if and only if·.~ l ~ and t<t l tl . 
• Definitio:n 10-2. ·. A line tt is· perpendicular to plane M at. a point p 

if and only, if ~ is perpendicular to at least two d:i,stinc t lines 'in 

M that contain p (see Figure 170). 

Simple Closed Surfaces 

A simple closed surface h a set of points that partitions space 

into three disjoint subsets, called the i.nterior of the surface, the 

exter;ior of the surface, and the surface. A simple closed surface 

which is the un:i.()n of a finite number of polygonal regions.is called a 
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polyhedron, The polygonal regions ar.e called faces of the polyhedron 

and any i:,egment deterl,llined by the intersection of two faces is called 

an edge of the polyhedron. 

q 

Figure 170 

. Prisms 

A proper subset .of the set of polyhedrop.s is the set of p;ris:qis. A 

prism is a pol~hedron such that two of its faces are congruent polygons 

in parallel planes and its other faces are regions determined by paral­

lelograms. The two. parallel congruent faces are called bases of the 

prism and an other faces are called lateral . faces. If the bases of a 

prism are p~ro;illelograms, then the prism is a parallelepiped. If the 

bases are rectanglel;l, then the prism is a.rectangular prism. and if the 

bases are triangular, then the prism is a.trianmlar:prisni (see Figure 

171). An alt:i,.t;:ude of a prism is.~ segment;: having its endpoints in the 

two planes determinec;l by the bases euch that the segment .is 
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perpendicular to the two planes. Each lateral face of·a. prism deter .. 

mines a plane that intersects the planes determined PY the bases, 

each lateral face together with a base determines a dihedral angle. 

each dihedral angle sodetermin~d is a right dihedral angle then the 

pt'ism is a right Rt'f.sm •. That :Ls, a prism is a r!~ht prhm if and only 

if its lateral faces are perpendicular to its bases. If each fac·e of a 

right prisi;n is a.square, then the prism is a~· 

Parallelepiped 

Rectangular pr:l,sm Triangular prism 

Figure 171 

Cylindet'S 

Consider two parallel planes, Mand N. Let C be a simple closed 

curve in Mand H; be a dmple closed curve in N such that c·';;' H. Let p 

be a point inC and q be a point in H. Let S be the 1,1nion of all. seg­

ments ~ such that x:e C, ye ll and 'iy° l\ pq. Then the union of regi,on C, 

. region H · and :reg;i.on S :Ls a cylinder, ~he regions determined by the 
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curves C and Hare called the bases of the cylinder. If it is possible 

for each segment in S to be perpendicular to the planes determined by 

the bases, then the cylinder is a .right cylinder. If the curves C and 

H are circ;iles, th.en the cylinder is a c;irct.i1ar cylinder. An ordinary 

vegetable can is a model of .a right circl.llar cylinder.(see Figure 172). 

An altitude of a cyl:Lnder is a. segment having its endpoints in the 

plane determ~ned by the bases si,Jch that;: the segment is perpendicular to 

these planes. The set Sis callec;l. the lateral surface of the cylinder. 

Figure 172 

Cones 

Consider a simple closed curve Cina plane Mand a point p suc;h 

that pJ,. ~. The union of the region determ:i,ned by the curve C with the 

set of all segments determined by points. in curve C and the point pis 

a~· lhe altitude of the cone is a segment with pas one endpoint 

and the other endpoint in the plane of curve C such that the segment is 

perpendicular to the plane. The point pis called the vertex and tl:te 
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region determined by C is called the~ of the cone. If the curve C 

is a circle then the cone is a. circular cone. If the intersection of 

the altitqde of a circular cone with the plane of the base is the 

center of the base, then the cone is a right circular cone (see Figure 

173). 

Figure 173 

Pyramids 

Consider a cone in which the curve C is a polygon abed in a plane 

Mand a point p not in M. Any two consecutive vertices of the polygon 

together with p determines a triangle. The union of the triangular 

regions thus determined with the polygonal region is called a pyramid 

(see F:Lgure 174). The polygonal region is called the base of the 

pyramid. The triangular regions a.re called lateral faces and pis 

called the vertex of the pyramid •. The altitude of the pyramid is the 
....,.._ 

segment pq where pis the vertex, q is in the plane of the base and pq 

is perpendicular to the plane of the base. 
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p 

b 

d 

a 

Figure 174 

Sphere 

The last simpie closed surface to be considered is the sphere. 

Leto be a point in space and ':ib be a segment. The set of all points p 

in ~pace such that op';;; ab is a sphere. If q is any point in the 
~ 

sphere, then oq is a radius of the sphere. The point o is called the 

ce~ter of the sphere (see Figure 175). A diameter is a segment that 

has its endpo:i,.nts on the sphere ,;1nd contains the center of the sphere. 

Figure 175 
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If a plane intersects a sphere, then the intersection is a point 

or a circle. If the inter1?ection is a point, then the plane is said to 

be tangent to the sphere. If a plane that intersects a sphere contains 

the center of the sphere, then the intersection of the plane and the 

sphere is calle~ a great circle of the sphere. 

Volume 

The measurement of a region in space determined by a simple closed 

surface is called its volume. The standard unit of measure for volume 

is a unit cube~ that is a cube such that each edge has length 1 unit. 

The volume of a unit cube is 1 unit• 1 unit· 1 unit= 3 cubic units. 

The volume of a region in space is the number of unit cubes that con­

stitute the region. 

Prisms 

Consider a prism having a parall~logram for a base and an altitupe 

having measurement 1 unit. If the measurement of one side of the 

parallelogram is b units and the measurement of the altitude is h 

units, then the area of the parallelogram is b • h square units. That 

is the numbel;" of square units that constitute the bc;l,se is b • h. Since 

the mec!,surement ot the altitude of the prism is 1 unit, then each 

square unit in the base gives rise to a cubic unit in the region. Thus 

the volume is 1 • (b • h) cubic units (see Figure 176). 

In general if the area of the base of a prism is b 'h square 

units and ~he measurement of the altitude is a units, then the volume is 

given by the formula V = a • b • h (see Figure 177), 
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Figure 176 

Figure 177 

If a prism is a triangular prism, then its bi3.se is a t:riangle. If 

the measurement of one side of the triangle is b unit:s and the meas-

urement of the iiltitude to that side is h units, then the area of the 

base of the pl:'ism is.~b • h square units. If the measurenient of the 

altitude of the prism is a, then the volume is ~b • h • a cubic units. 

Cylinders, Cones and Pyramids 

The formula for the volume of a circul.ar cylinder is determined in 

the same manner as the formulas for the volumes of prisms. If the 

measurement of the radius of the base of a cylinder is r units, then 
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the area of the base is TT r 2 square units. If the measurement of the 

altituqe :i,s h,_ then the volume is given by V = TT ri • h cubic units. 

The formula for the volume of a cone results from a relation that 

exists between the con~ and a cylinder such that the altitude of the 

cone is congruent to the altitude of the cylinder and the base of the 

cone is congl:'uent to the base of the cylinder. In Figure 178 the 

measureJnent of the radius of the base of the cone is r units and tq.e 

measurement of the radius of the base of the cylinder is r units. The 

measurement of the altitudes of both regions is h uni ts. If a cone and 

a cylinder are related in this manner, then the volume of the cone is 

1./3 of the volume of the cylinder. Thus the volume of a cone is given 

by, the formula V = 1/3,TT r 2 • h cubic units. 

h 

Figure 178 

The volume of a pyramid is related to the volume of a prism in the 

same way that the volume of a cone is related to the volume of a cylin­

der, Thus for a given pyramid and a given prism; if the base of the 
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pyramid is congruent to the base of the prism and their altitudes are 

congruent, then the volume of the pyramid is 1/3 the volume of the 

prism. Therefore the volume of a pyramid is given by the formula 

V = 1./3 Ab • a cubic unit1;1 where Ab represents the number of square 

units in the base. This number may be determined from one of the 

previous formulas if the base is a parallelogram or a triangle. 

Spheres 

The volume of a sphere is related to the volume of a cylinder and 

the volume of a cone as follows. Suppose the measurement of the radius 

of a given sphere is r units. Consider a cylinder and a cc:me such that 

the measurement of the radius of the base of each is r units and such 

that the measure of the altitude is 2r units. Then the volume of the 

sphere is the volume of the cylinder minus the volume of the cone. 

Hence the formula fc;,r the volume of the sphere is: 

V = TT r 2 • ( 2r) - 1 I 3 1i r 2 • ( 2r) 

..... 2TT r3 - 2/3 TT r 3 

= 4/3 TT r3 cubic units 

(see Figure 179). 

Figure 179 



CHAPTER X? 

CONCLUSION 

'.l;'he development in t;hi,s discourse was structured specifically to 

be of assistance in the training of elementary school mathemati.cs 

teachers.· Ith hoped that J:he study ,;;,t this material will provide the 

reader with sufficient depth of understanding to treat, with confidence, 

the geometric concepts that occur in the elementary school mathematics 

curriculum. No topics are included that are not relevant to the devel-

opment of such an 'understanding. This does not mean that the dev:elop-
,.. 

ment consists 6nly of material that is included in the elementary 

school mathematics curriculum. Modern mathematics education.requires 

on the part of the teacher a much greater cqmprehension than would be 

expected from elementary school students. 

The topics that were included in the study were considered appro-

priate in the sense that each belqngs to one or more of the following 

categories. 

1. Topics that occur in the elementary school curriculum. 

2. Topics that contr;i.but:1:1 to an understanding of the relations 

that exist between the geometric concepts that occur in the 

elementary school mathem,;1ticti curricuhun. 

3. TOJ?iC(:I that.help pr.ovide abasia for independent study in 

matqematics. 

Relative to today's textl:>ook,s, a reasot).ably accurate determination 
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of topics in the first category is possible. However, it is only 

reasonable to concltide that c:urricula will continue to change. Conse­

quently the concepts in tomorrow's texts· may be expec tec;l tq dif;fer from 

the concepts found in present editions. 'l.'his suggests that the topi,cs 

in the second and third categories are the most significant for elemen-

tary school mathematics teachers. 

Modern pedagogical procedures stress the importance of the struc-

ture of a discipline. Regarding the nature of structure, Bruner 

comments as follows: 

Grasping the structure of a subject is understanding it 
in a way that permits many other things to be related to it 
rneaningfully. To learn s true ti.ire, in short, is to learn how 
things are related ( /2/, p. 7). 

Mathematics education has often been criticized for offering 

students a collection of seemingly um:elated topics to be memorized. 

An objective of modern mathematics education is to present the subject 

in a way such that new ideas are developed through past experiences and 

understandings and also in a manner that may contribute to the develop-

ment of related concepts to be learned. Teaching mathematics in this 

manner requires an understanding of structure. Therefore relations 

such as congruence, parallelism and perpendicularity are emphasized :for 

more in this study than in the elementary school curriculum. 

In view of the ever changing curriculum it would be inappropriate 

to expect that preservice training could be. extensive enough to l~st a 

lifetime. As a consequence a teacher must expect to continue his own 

education indefinitely. Certainly most teachers will be involved in 

some formal training beyond the Bachelor's degree, either in in~service 

study or in summer school. Nevertheless, it is important that every 

teacher be prepared to d,o inc;l.ependent study in any field in which he 
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te~ches. It follows that formal coµrses should be designed so as to 

prepare the student to do independent study. Thus topics in the third 

category are appropriate in this study. 

Mathematics is by its nature a deductive science. Consequently an 

understanding of the nature of deductive inference is prerequisite to 

independent study in mathematics. l'his development places a great deal 

of emphasis on deductive techniques such as conditional statements, the 

nature of definitions, direct proofs and indirect proofs. While these 

topics a.re not a part of the elementary school curriculum they are em-

phasized here for two reasons: 

1. An understanding of these topics contributes to an understand-

ing of the structure of geometry. 

2. Most mathematics texts assume that the reader is familiar with 

these techniques and therefore an understanding of these 

topics is essential to independent study in mathematics, 

An effort has been made to make this material readable. The 

proofs and explanations are detailed. The sequence of the development 

is such that new ideas are introduced in terms of previous understand-

ings or are based on intuition and experience. However, the mathemati-

cal backg:i;-ound o~ those for v;rhom it is intended is limited. Consequent-

ly .this material is not intended for independent study but rather for 

use in an organized class under the supervision of a competent instruc-

tor. 

In the intel;'est of providing material for independent study in the 

area of elementary school geometry this writer suggests as a further 

study a programmed development of geometry designed specifically :l;or 

the elementary school mathematics teacher. 
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APPENDIX A 

SUMMARY OF GEOMETRIC CONCEPTS OCCURRING 
IN SELECTED ELEMENTARY SCHOOL 

MATHEMATICS TEXTS 
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Number of Series Number of Texts 
Concept in which ip which Orade 

Concept Occurs Concept Occurs Level(s) 

Acute Angles 2 3 5-6 

Acute Triangles 1 1 5 

Altitude 3 4 5-6 

Angles 7 24 2-6 

Arcs 3 5 5.-6 

Area .7 16 3-6. 

Area of Circle 4 6 3, 5-6 

Area of Triangle 5 7 3, 5~6 

Area of Rectangle 7 14 3-6 

Area of Square 6 11 3, 5-6 

Base of Parallelogram 3 5 5-6 

Base of Pyramid 1 1 6 

Base of Triangle 4 6 5-6 

Center of Circle 4 9 2-6 

Central Angle 3 3 4,6 

Chord 4 4 3,6 

Circle 7 31 1-6 

Circumference 2 2 5-6 

Concentric Circles 1 1 6 

Cone 4 5 4-6 

Congruence 4 11 2-6 

Congruent Angles 4 9 2,3,5,6 

Congruent Se~ents 3 9 2-p 

Congruent Triangles 2 6 2,3,5,6 
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Nuinber of Series Number of Texj:;s 
Concept in which in which Grade 

Concept Occui-s Concept Occurs Level(i;) 

Congruent: Polygons 1 1 3 

Construction 3 5 5-6 

Bisect Angle 2 3 5-6 

Circle 3 3 5-6 

Copy Angle 2 4 5-6 

Copy Segment 3 4 5 .. 6 

Copy Triangle 3 4 5-6 

Parallel Lines 1 1 6 

Perpendicular Bisector 2 3 5-6 

Perpendicular Lines 2 2 6 

Right Angle 1 1 6 

Triangles 3 3 5-6 

Cube 7 12 3-6 

Cubic Measure 5 5 6 

. Cylinder 4 6 4-6 

Diagonal 4 6 4-6 

· Diameter 7 12 3-6 

Dihedral Angles l 1 5 

Edge of a Cube 4 7 3~6 

Endpoint 4 14 1-6 

Equilateral Triangle 5 11 3-{;i 

Face of a Cube 4 7 3-6 

Equiangular Triangle 1 2 5-6 

Height 5 8 1,5,6 
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Number of Series Number o~ Texts 
. Concept in which in which Q:a<;le 

Concept Occµrs Concept Occurs Level(s) 

Half-plane 1 1 5 

Hexagon 3 5 4-6 

Hypotenuse 2 4 4 .. 6 

In!:!cribed Angle 2 2 4,6 

Intersecting Lines 7 10 2,4-6 

Intersecting Planes 2 2 4-5 

Isosceles Triangle 5 9 3-6 

Isosceles. Right Triangle 1 1 4 

.Legs of a Right Tri.angle 1 2 4,6 

Lengt;h 7 41 1-6 

. Lines 7 27 1-6 

Measurement 7 32 1-6 

Measurement of Angles 5 8 4-6 

Mea::;uremen t of Circles 2 3 5-6 

Measurement of Cubes 2 2 4,6 

Measurement of Cylinders 1 1 .5 

Measurement of Squares 5 5 4-6 

Measure111ent of Triangles 3 3 5-6 

Midpoint 2· 3 4-5 

Obtuse Angle 2 3 5-6 

Par.1;1.llel 6 10 4-6 

Parallel Lines 6 14 2,4-6 

Parallelograms 5 8 4-6 

. Pentagon 3 4 4-6 
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Number of Series· Number of.texts 
Goncept in.which .in which Grade 

Concept Occul;'s ConGept Occurs . Level (s) 

Perimete+ 7 . 17 3-6 

.Perpendicular Bisector 2 2 6 

Perperidic\llal:" l,ines 6 10 4 ... 6 

Pi 1 1 6 

·Planes 7 .. 14 4-6 

Plane Figure 4 6 4-6 

Point$ 7 29 1-6 

.Polygon 7 18 2-6 

Prism 6 9 4·6 

Protractor 4 .Q 4-6 

. Pyramid · 6 8 4-6 

Pythagorean Theorem 2 .3 4,6 

Quadri la t;:eral 6 20 1-6 

Radiui; 6 11 3-6 

~ay 6 17 2 ... 6 

Rectangle 7 32 1-6 

Rectangular Prhm 7 11 4-6 

Rectangular. J;>yra.micl 6 7 4-6 

Region 5 13 l-6 

Rhombus 2 4 4-6 

Right Angle 7 24 2-6 

Right Triangle 6 15 3,4-6 

·· Segment 7 26 1-6 

Sides 4 16 1-6 
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Number of Series Number of.';l'exts 
Concept ip which in wh:i,.ch Grade 

Concept Occurs Concept Occurs Level(s) 

Simple Clos~d FigU'fe 4 11 ~-6 

Skew. Lines 1 1 4 

Space 2 4 2-4,6 

Space Figures 2 3 4-6 

Space Geometry 1 2 5-6 

Sphere 5 10 3-6 

Squa.re 7 . 32 1-6 

Sums of Angle Measurement 2 2 6 

Suppl~mentary Angle 1 1 6 

Tangent Circles 1 1 6 

Trapezoid 2 4 4-6 

Trianglf;l 7 . 35 1-6 

Triangular . ~r~1:1m 6 7 4-6 
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Definition 

3-2. 

3 ... 4. 

3-5. 

3-6. 

4-1. 

4-2. 

4-3. 

4 .. 4. 

4-5. 

4·6. 

5-1. 

5-2. 
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. DEFINITION~ 

Space is the set; of all points. 

A set "S" of points is said to be cqllinear if and only if 
every point of the set belon~i; to the same l.ine. 

Two lines ar~ parallel if and only if th.ey are in the :,ame 
plane and thei,; intersection is empty. 

A line Land ~ plane P are parallel if and only if their 
intersection is empty. 

Two lines are skew if and only if their intersection is 
empty and they do not lie in the same plane. 

Two planes a.re parallel if and only if their intersection is 
empty. 

The set c;:on,sisting of the points a c11nd band all of the 
points between a. and b is called a segment. 

The ray at' is the union of the segment ~ and the set of all 
points p such that bis between a and p. 

An angle is t!:he union of two noncollinear rays having the 
same endpoint. 

A point pis an element of ~e interior of~ abc if and only 
if p is in the a-side of rc and p is in the c-side of tit,~ 

If.~ abc is a sµbset of a plane M, t:hen the set consi:,ting 
of all points of M that are not in~ abc or the interior 
of~ abc is called the ext~rior of~ abc. 

A set of points Sis said to be a convex set if and only if 
for every two points a and b of S the segment i5' is also 
in S. 

A polygon is a i;imple closed curve which is the union of 
segments. 

Let J abc and .~ mno be two given angles. Let p be the 
point in ray 'iit such that np • oa, and q be tp.e point in 
ray tit 1:1uch that nq ;;;- 15c. Then J: mno == ~ abc if and only 
ifpq==ac. 

If a, b and c are three nonc;ollinear points, then~ Ube U~ 
is a. t'):"iangle. 



220 

Defin:i,'.tion 

5•3. · . .A abc-; .A mno if and only if ab-;;;,-;, be~ ho apd ac'·';;' ~-

5,.4, 

6-1. 

6-2. 

6,-4. 

6-6. 

Two poJygons are·congruent; if and only if there is a 
partition i;,f the polygon into t:i:-iangles such that the 
corresponding triangles are cong;ruent. 

A triangle is an isosceles triangle if.and only if two of 
its Sides are congruent segments. 

·-·---.A .!!,be is -an equilateral tril:!.ng:,..e if and only if ab = be and 
bc·';.'ic, that is if all of its sides are congruent. 

A point pis the midpoint of a.segment ab if and only if p 
. is an interior pi;,int of 'ib' and .ip ~po. 

A point pis in the interior of .A abc if and only if pis 
in the interior of each of the three angles of the 
triangle. 

tJM!>li~~;r of.~ paqjis a ray 7o in the interior of ~ paq 
"- . $Uch that -~ pao ~ i oaq. 

~;angles. are ad~acent angles if and only if they have a 
· conimon verte~, a common side and their interiors are 
· disjoint sets. 

6-7. . TWo'.,.angles are supplementary adjacent angles if and only if 
· · (1) they a'l:'e adjacent angles, and (2) their non-common 

sides are oppo~ite rays. 

6-8. 
~ . -~ 

. Let~ mno be any angle and let ns be the ray opposite nm. 
Then~ ape is a supplement of~ mno if and only if 

· ~ abc -;;- ~ ans. That is, -~ abc is a. supplement of ~ mno 
if and only if -~ abc h congruent to an angle tha_t is 

.adjacent to and a. supplement of~ mno. 

6-9. 
t1;· 

Two angles determined by two intersecting lines are verti.; f: 
cal angles if and only if their sides determine. pairs of•'·· 
opposite.l;'ays. 

6.-:t.o. Two inters~cting lines Land Mare perpendicular lines if 
.and_only if the adjaceqt ~ngles determined are congruent. 

6 .. 11. ~ abc is a right angle if and only if~ abc is congruent to 
one of its sup)?Jements. 

6-12. Let ~ abc be a right angle: (1) -~ abd is an acute angle if 
and on,ly if ~- is in tJ;i.e interior of ~ abc. (2) ~ abe is 
an obtuse 1:1,ngle. if and only if ~ is in the interior of 
-~ abe. 
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7-1. 

7-3. 

7-4. 

7-5. 

221 

~ ~ ~ 
Let mn and cd be two c~lanar lines and let ab be a trans-

versal intersecting mn and~ in the distinct points a and 
b respectively. Then {~ ham, ~ abd} is a set of alternate 
interior angles if and on}y. if m and dare on opposite 
sides of the transversal~. 

Let ~ and tf be cut by a transversal ~ such that ~ mah and 
~ dba are alternate interior angles. The angles in 

. {~mah,~ cbq} are corresponding angles if and only if 
c and q are points such that the angles in {~ cbq, ~ dba} 
are vertical angles. 

Two lines are parallel if and only if they are coplanar and 
their intersection is empty. 

A quadrilateral is a convex quadrilateral if and only if its 
sides are such that no side of the quadrilateral inter­
sects the line determined by the opposite •ide. 

If a;bcd.is a quadrilateral thep. a point is in.the interior 
of abed if and only if it is ;i.n the interior of each of 
the anglei:, of the quadrilateral. 

7-6. +"wo s~ents ab and~ are parallel segments if and only 
. if aB'. and tit are parallel lines. 

7-7. A quadrilateral is a t;.rapezoid if and only if at least one 
pair of opposite sides of the quadrilateral are parallel 
segments. 

7-8. A quadrilateral is a parallelogram if and only if the oppo­
site S\des of the quadrilateral are parallel segments. 

7-9. A rectangle is a parallelogram which determines right 
angles. 

-8-1. Leto be a point in a plane Mand ab be a segment. The set 
of all points p in the plane M such that op~· a6' is a 
circle. 

8-2. If O is a circle in a plane M, then a point pe Mis in the 
interior of circle O if and only if the segment op doe1:1 
not intersect the 6ircle. 

8-3. If O ;j.,s a circle with center o and radius ~and K is a 
circle with center k and radiui; kq, then circle O '== circle 
Kif ap.d only if op~ iq. 

9-1. Two angle~ are complementary angles if and. only if the sum 
of their measurements is 90°. 
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9-3~ 

10-1. 
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The measurement of a rectangular region is the product of 
the measurements of two adjacent sides. 

If r is the measurement of the radius of a circle, then 
the area of the circular region is Ti r 2, that is A((j>) = 
,,. r2. 

Two planes are perpe;p.di<;:ular if and only _if they determine 
a right diheqral angle. 

10-2. A line tct is perpenqicular to plane Mat point p if and 
only if.~ is perpendicular to at least t;:wo 4istinct 
lines in M that contain p. 
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PosttJlate 

3.-1. If "L" is a line, then "L" i,s a. set of points. 

3-2. A line is a proper subset of space. 

3-3. If a and bare two different pc;>ints, then there is exactly 
one line that contains both a and b. 

3-4. If two distinct lines.Land M intersect, then the intersec­
tion is exactly one point. 

:3-5. If a pla'fle contains·two point~ of a line, then the plane 
contains every point of the line; that is, the plane 
contains the entire line. 

3-6. If a, band care noncoUinear points then there is exactly 
one plane that contains a, band c. 

3-7. Every plane contains more than one line. 

4..;1. If a is between b and c, then a, b and c .are collinear. 

4-2. If a, band care three points in the same line, then exact­
ly one of the points is between the other two.· 

4-3. Let L be a line in a plane M. If a and bare two points of 
M such that a and bare not in L, then a and bare on the 
same side of L .if c:1,nd only if i"6' n L = { } • 

5•1. If ab is any. segment an4 ~ is any ray, then there exists 
. exactly one paint p in 'ct such that the segment cP h con­

gruent. to the segment ao~ 
!? .. 2. For aU segments: (a) ab -;;;_ ab, (b) if 'ab'';;~ then ~ ';;' ~' 

and (c) if io';;;"cci anq cd';;'pq t~en iE' ';;;'p"q. 

5-3. 

6-2. 

·r 
.. ; 

6-3. 

Let~ abc be any angle and L be any line in a plane M. Let 
H be one of the half-planes in M determined by L. If~ 
is any ray in L, then there !xists exactly one ray~ 
with r in H such that~ rpq = ~ abc. 

--- -If ab is any segment, then ab has exactly one midpoint. 

Let .A abc be any triangle and for definiteness consider 
~ bac, t)len: (1) If q is an interior point of oc, then q 
is in the interior of~ bac. (2) If dis any point in the 
interior of 1'. bac, then every ~oint of. the ray at" .except i!t:.• 
is i:n the interior of 1'. bac.. (3) If 'at is any ray in the 
in.te_rior of ~ bac, then at' inter sec ts !:he side 'Sc is an 

- ··tri'tirior- po±rtt-·tif .her. .;_ '"'··, 

AlL right angles are congruent. 
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If.Lis a line and pis a point not in L, then there exists 
one and only one line M containing p, and coplanar with L 
such that.Mis parallel to L. - - -·-··--........, If pq and mn are diameters of the same circle, then pq ~ mn. 

8-2. · 'rhe two Circle Postulate. Let ~k, ;i; and.~ be distinct . 
. segments. Let q be the point in 'ot such that oq-;;;;- ao and . 

p be the point in ~ such that ki,,-;;;;- iiin, then: U) If 
oq Cilq, is a segment, tq.en the circle with center o and 
radius a:5' intersects the circle with center k and radius 
mn in two points on oppqsite sic;l.es of ·tt. If the two . 
circles intersect on om:1 side of tt, then they will inter .. 

· sect in the opposite side of tt . . (2) If oqt'lkp is a 
point, then the two circles in ~tatement (1) intersect in 
one point and are called tangent circles. (3) If op n kp = 
{, },. then the circles do not intersect. 

9-1. Two segments have the same measure if and only if the two 
. segments are congruent. 

9-2. If two segments a.re subsets of the same line and·their 
intersection is a point., then the measure of their uniot). 
is the sum of their individual measures. 

9-3. Two angles have the same measure if and only if they are 
congruent. 

9-4. Let ~ be a ray and~ and~ be two ran with p and q in 
. one of. the half.-planes determined by W. If ~ hap and 
·~ paq are adjacent angles, then M(~ hap)= M(~ hap)+ 
M(?: paq). . . 

9-5. Two angles are supplementary if and only if the sum of their 
meast,trements is 1'.aoo. 

9 .. 6. If two polygons are congruent then their measures are equal. 

9-7. If a. region R is pat;"titioned into n.subregions such that the 
interiors of the subregions qre disjoint, then the measure 
of the region R is the sum of the ~easures of the sub­
regions. 

' 
f' 
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