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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Probleni. As automation becomes more common 

in all aspects of industrial, scientific, and domestic processes, the 

digital computer i.s relied upon to accomplish more and more tasks. It 

is obvious then that the spectrum of processes, from the simplest to 

the most sophisticated, must be "systematized" to allow programming 

for computer control. This "systematizing" implies development of 

unified approaches in all procedures. 

Synthesis of transfer functions is a primary consideration in any 

process to be controlled. Adaptation of the synthesis procedure to 

digital programming is probably the next consideration. At the present 

time transfer functions cannot be synthesized with two-port linear 

networks utilizing a unified procedure in the complex frequency or 

s-domain and the synthesis procedure varies depending on the function. 

Neither are the present synthesis procedures easily programmable on the 

digital computer. It is recognized that, in general, a topological 

approach to the synthesis problem offers greater insight than the com

plex frequency approach; that the state-model provides network topo

logical information; and that the state-model lends itself to digital 

computer application. 

The state-model of a general linear RLC network has the form: 

1 



2 

(1.1.1) 

* * where Y1 and ! 1 corresponds to the terminal variables of the network 

and the state-vector, x1 , consists of the branch capacitor voltages and 

chord inductor currents. 

Equation 1.1.1 corresponds to the general RLC network, however we 

shall consider the following reduced state-model which will simplify the 

synthesis procedure. 

E__ X === AX + BY* 
dt 

* * Y ===PX+ QY 

(1.1.2) 

This state-model corresponds to a RLC network which has certain topo-

logical restrictions. These restrictions allow the above mentioned 

procedural simplifications and they are presented later. 

The Laplace transform of Equation 1.1.2 yields 

* -1 * Y (s) === [P(sU-A) B + Q]Y (s) (1.1.3) 

Then the characteristic polynomial of the restricted network is 

lsU-AI = 0 (1.1.4) 

The problem considered in this dissertation is to obtain a state-

model of the form given in Equation 1.1.2 from the s-domain transfer 

functions: (1) short circuit transfer admittance, y12(s), (2) open 

circuit transfer impedance, z12(s), or (3) voltage transfer function, 

T(s). At the same time the state-model should correspond to a RLC 



network with or without transformers. Further the procedure should be 

the same regardless of the type of transfer function. This is achieved 

here and since this is a state-space approach to transfer function 

synthesis, it is programmable on the digital computer. 

1.2 Previous Work in this Area. Lucal (25) developed a procedure 

to realize special classes of driving-point and transfer functions as 

three-terminal RC networks. Guillemin (17) and Dasher (11) presented 

other RC synthesis procedures resulting in two-port networks. Fialkow 

and Gerst ( 14) have presented the conditions necessary for a 'transfer 

function to be realizable. Ho (18,19) developed a transfer function 

synthesis procedure resulting in two-port RLC networks and it was based 

on a matrix factorization technique~ Yengst (31), Karni (20), and 

Weinberg (33) have written texts which present some of these synthesis 

procedures. Included in these texts is Guillemin's two-element-kind 

parallel ladder realization of transfer functions. 

It must be emphasized that the synthesis procedures mentioned 

above are complex frequency domain procedures. 

Since Bashkow (4) first defined the A-matrix in 1957 for use in 

network and system theory, there has been a growing interest in the 

state-model concept of system analysis and synthesis. Bryant (6) in 

1962 considered the explicit form of Bashkow 1 s A-matrix and determined 

a general matrix expression of the state-model for a RLC network. 

Brown (5) in 1963 considered the derivative-explicit differential 

equations for a RLC network which has drivers. Rauch (29) in 1963 

dealt with the realization of time-domain models of real linear biele

ment systems. Dervisoglu (12,13) in 1964 considered the problem of 

realizing the A-matrix for a RLC network under the condition that the 

3 



number of state-variables is equal to the number of reactive elements 

in the network and the resistive subnetwork is connected. Levy and 

Brown (24) in 1965 considered the time-domain description of a class 

of RLC graphs in terms of a first-derivative-explicit system of differ

ential equations. Kuh and Rohrer (22-) in 1965 reviewed the state

variable approach to network analysis. Layton (23) in 1966 considered 

state equation descriptions of passive networks. Bacon (2) in 1966 

established the constraints on the topology and element values of the 

n-port RLC network which are necessary and sufficient for the network 

to have a given time-response. Daniel and Grigsby (10) in 1966 pre

sented a procedure for testing a given state-model for realizability as 

a passive RLC one,-port network. Anderson and Newcomb ( 1) in 1968 have 

given state-space procedures for positive real matrices using RLC 

net,itorks, transformers, and gyrators. However all of the state-space 

synthesi.s procedures are given for positive real matrices of functions. 

Marshall (26) in 1966 presented the synthesis of a doubly term-

inated ladder network which is lossless except for resistances in the 

termi.na 1 branches,, Th is synt.hes is is accomp 1 ished by tr ansf arming a 

singly terminated network into an equivalent doubly terminated network 

by successive perturbations of an associated tridiagonal matrix. Navot 

4 

(27) in 1967 developed a procedure for finding certain subclasses of 

tridiagonal. matrices with prescribed eigenvalueso Yarlagadda (34) 

presented a procedure for obtaining a tridiagonal matrix with prescribed 

eigenvalues and a.transformation matrix that transforms the obtained 

tridiagonal to a desired form. This transformed matrix is then equated 

to the general A-matrix that Bryant (6) determined. This yields a 

portless ladder network with a characteristic polynomial that has roots 



equal to the eigenvalues· of the obtained tridiagonal matrix. If there 

are n eigenvalues then this procedure yields a ladder network that has 

one resistor in a terminal branch and n reactive elements. The ideas 

presented.in the above three papers are fundamental to this thesis. 

1o3 Research Necessary to Develope the Synthesis Procedure. In 

the research to develope a procedure for the synthesis of two-port 

transfer functions it is found that not only is the characteristic 

polynomial realization a problem, but that obtaining the transmission 

zeros or numerator polynomial is also a problem. 

5 

Using the one resistor network developed by Yarlagadda (34), it is 

found that not all degrees of numerator polynomial can be obtained when 

all possible port locations are tried. Therefore a realization of the 

characteristic polynomial is developed that will yield a portless ladder 

network with two resistors, one in each of the terminal branches, and 

n reactive elements. This realization procedure uses a tridiagonal 

matrix presented by Navot (27) and a transformation presented by Yarla

gadda (34). The resulting portless ladder network yields all possible 

numerator degrees by properly selecting the port terminals. This 

location is not unique for each numerator degree. Therefore a system

atic procedure is developed to locate an acceptable position for every 

possible numerator polynomial. 

The A-matri.x of Equation 1.1. 2 must have a special form to yield 

a ladder network in the characteristic polynomial realization procedure. 

This form is obtained with the tridiagonal realization and transforma

tion mentioned above. Now it is seen that the Band P matrices of 

Equations 1.1.2 and 1.1.3 have certain relationships with this A-matrix. 

Therefore when the transfer function is obtained from the state-model, 



6 

these relationships with respect to the numerator of the transfer 

function have to be determined. However, it is first found advantageous 

to develope an algoritlun that yields the [adj(sU-A)] by simple recursive 

calculations. With this done the general expressions for the state

model transfer function numerators are determined and this gives the 

desired relationships between the A, B, and P matrices. 

The component values of the ladder network resulting from the syn

thesis procedure are now obtained by the following method. By using 

the A, B, and P matrices above with Bryant's (6) general state-model 

and the relationships determined above, a set of non-linear algebraic 

equations are determined whose unknowns include the ladder network 

component values •. A solution which will always work for this set of 

equations is developed. 

In the research that developes the above set of non-linear alge

braic equations, it is found to be necessary to interconnect ladder 

networks in such a manner so that all of the transfer function numerator 

coefficients are satisfied. A procedure is established as to how many 

ladder networks must be interconnected and what these interconnections 

must be. This procedure is based on the coefficients of the transfer 

function numerator and the type of transfer function. 

These interconnections probably require the addition of trans

formers to satisfy the validity test. Therefore a technique is devel

oped to utilize the transformers in the synthesis procedure to yield 

interconnected ladder networks with corresponding components in the 

ladder~; which have unified values. 

These research results are enumerated below. 
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1. The restrictions on the s-domain transfer function are deter-

mined. 

2. The topology restrictions on the resulting synthesized networks 

are determinedo 

3. A realizable state-model for the restricted RLC network is 

derived. 

4. From 3. certain properties are determined. 

5. An "A'' matrix is derived which has the properties of 4 (27,35). 

6. Using the nAu matrix of 5., a RLC network corresponding to the 

given characteristic polynomial is obtained. 

7. Drivers are properly inserted into the networks of 6. to 

yield the transmission zeros of the transfer functions. 

8. The network component values are detennined and transformers 

are added to satisfy the validity test and/or the numerator 

coefficient magnitude and polarity. 

Chapter II presents the necessary procedure for the synthesis of 

the transfer functions. 

Chapter III presents the short circuit transfer admittance synthe

sis procedure in considerable detail. 

Chapter IV presents the open circuit transfer impedance synthesis 

procedure rather briefly since this is the dual of the material in 

Chapter III. 

Chapter V presents the voltage transfer function synthesis proced

ure rather briefly. This is because this transfer function uses many 

of the procedures of the other two transfer functions. 

Chapter VI lists the conclusionso 
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~w 
I 

Given a transfer function, note its -
1. Type - y 12(s), z12(s), or T(s) 
2. Numerator degree and coefficients 
3. Denominator degree and coefficients 

II 

If the transfer function is improper, 
use the procedures of Section 2.6~ 

III 

Draw the ladder network using the pro-
cedures of Section 2.8 for y 1ls), Sec-
tion 4.5 for z1~(s), and Sect on 5.4 
for T(s). "' 

IV 

Determine a K~-matrix using the proced-
ures of Appen ices Band c. 

v 
Using the information of block I and IV 
calculate the component values for the 
ladder network of block III. Chapters 
III, IV, and V provide the sets of non-
linear algebraic equations for this cal-
culation. 

VI 

Using the procedures given in Section 
3.12, determine the transfer function 
of the next ladder network. 

H 

Figure 1.4.1 Synthesis Procedure Flow Graph 
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1. 4 Synthesis Procedure Flow Graph. The synthesis procedure is 

presented briefly in block diagram form in Figure 1.4.1. Each block 

is progranuned with a finite number of analytical equations and/or deci-

sion statetnents which are presented in the sections listed. 

1.5 Definitions. Given below are definitions that are felt nee-

essary for better comprehension in reading this paper. 

1. Improper function - A rational function that is a ratio of 

polynomials with the degree of the numerator polynomial greater 

than or equal to the degree of the denominator polynomial. 

2. Proper function - A rational function that is a ratio of 

polynomials with the degree of the nunerator polynomial less 

than the degree of the denominator polynomial. 

3. Unimodular or E-mat:rix ~ A matrix, B .. , of real elements where 
l.J 

the determinant of every square submatrix of B .. is 1, -1, or 
.J.J 

O. Also every tmtry of H .. will be l, -1, or O (30). 
l.J 

4. Minimal network - A synthesized network with n reactive ele-

ments that results from a characteristic polynomial of degree 

n. 

5. Positive semidefinite matrix - A matrix is positive semidefinite 

if and only if each principal minor is non-negative (33). 
,,"( 

6. Dual networks - If N and N are dual two-port networks, then 

the short circuit admittance matrix of either network is equal 

to the open circuit impedance matrix of the other (30). 

7. Hurwitz polynomial - A polynomial with no zeros in the right 

half plane (33). 

8. Strictly Hurwitz polynomial - A polynomial with no zeros on 

the imaginary axis or the right half plane (33). 



CHAPTER II 

STATE-MODELS, TRANSFER FUNCTIONS, CHARACTERISTIC POLYNOMIAL 
REALIZATION, AND FUNDAMENTAL CIRCUIT EQUATIONS 

2.1 Introductiono Before presenting the synthesis procedures, 

it is necessary to discuss some topics that are basic ideas to the 

synthesis but which would confuse the presentation if left until later. 

These topics are the network topology restrictions, the desired state-

models, and the transfer function derivations. The first topic dis-

cussed will be the topology restrictions, since these will affect the 

state-model derivations. 

2o2 Synthesi.zed Network Topology Restrictions. Simplification 

of the synthesis procedure is allowed by placing certain restrictions 

upon the network topologyo This simplification is accomplished when 

the topology restrictions allow the state-model, representing the 

network, to be written in a form that displays desirable interrelation-

ships and matrix structureu These characteristics will be discussed 

further in Chapter Illo 

The topological restrictions areg 

1. Both branch res:i.stors and chord resistors will not be per-

mitted in the same fundamental circuits. 

2. Circuits of capacitors with or without voltage drivers will 

n9t be permittedo 

10 
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3. Cut-sets of inductors with or without current drivers will 

not be permittedo 

These restrictions will now be used in the derivation of the various 

desired state-modelso 

2.3 'ti1odified11 General State-Model. The network topology restric-

tions of Section 2.2 and the state-model given in Appendix A which 

represents a general network will now be combined to obtain the desired 

''modifiedtt general state=model. However before this is done, the 

matrix elements are defined as followsg 

V - Branch voltage source vector consisting of the two across 
a 

vari.ables, v 
. al 

Vbc - Branch capacitor vector consisting of the across variables, 

vbcl, vbc2 9 • o., and vbck. 

Vbr - Branch resistor vector consisting of the across variable, 

vbr • 
1 

V = Chord resistor vector consisting of the two across variables, 
er 

v e.nd v cr1 cr2 
V - Chord inductor vector consisting of the across variables, 

cf, 

v j v ~ » 000 9 and v n o 
c;, 1 c~2 c~j 

Vt - Chord current source vector consisting of the two across 

variables, v and v • 
t1 t2 

l3 .. - Subro.atri.ces of a uni.modular matrix with element values 
l.J 

+ of O or -L, 

I - Branch voltage source v~ctor consisting of the two through 
a 

variables, i and i o 

a1 a2 



lb - Branch capacitor vector consisting of the through vari
c. 

ables, ib , ib , ••• , and ib • 
c1 c2 ck 

I - Branch resistor v,ector consisting of the through variable, br . 

ibr1 o 

I - Chord resistor vector consisting of the two through varier 

ables, i. , and i • cr1 cr2 
I - Chord inductor vector consisting of the through variables, 

Ci, 

in ' in ' ••o, and in • ch 1 ch2 c~j 

I - Chord current source vector consisting of tj:le two through 
t 

variables~ i and i o 

ti t2 

Applying the network topology restrictions of Section 2.2 to the 

fundamental circuit equation of Appendix A results in the following 

reduced circuit equationsj cut-set equations, and component equations. 

v 
a 

B~l B32 B~~ IOU O 
., • J.~ I 

12 

[
B·2···i B22 0.. : U O OJ 

B41 B42 B43 IO OU 

vbc 
v br = 0 (2.3.1) 

U O O I -BT 1 
T 

I 2 
-B31 

0 u T T 
O I -B22 -B32 

0 0 ul 0 T 
-B33 I 

T 
-B41 

T 
=B42 

T 
-B43 

v er 

Vcf, 

v 
t 

I 
a 

1bc 

1br 

I er 

Ici, 

It 

= 0 (2.3.2) 
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(2.3o3) 

(2.3.4) 

Using these sets of equations and following a procedure similar to 

Appendix A, the ''modified" general state-model can be formulated 

and is shown belowe 

(2.3.5a) 

[Ia] =[-~;!G=B!2_! __ B;1_T-.][vbc]+[-~;!G=B!l_, __ B;1_T-J.[va] 
Vt l -B42 1 ~B43~B33 1ct -B41 I -B43~B43 1 t 

(2.3.5b) 

Note that Cb and Lc are diagonal matrices with real positive elements 

and therefore their inverses will existo Equation 2~3.Sa is the set 

of differential equations in the state-model and Equation 2.3.Sb is 

the set of algebraic equations. A change of variables in the state 

vector will be necessary so that the desired "modified" general state-

model is obtained that dhplays the interrelationships mentioned pre

viously and is as follows 
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(2.3.6) 

Note than since Cb and Lc are diagonal matrices with positive entries, 

~~ and L~\ will be diagonal matrices with their entries chosen to be 

* * * * positive. The terminal variables Va, la, It' and Vt are related to 

Va' la, It, and Vt by 

[:f]= [::] 

Using the change of variables indicated in Equation 2.3.6 in the 

state-model of Equation 2e3.5 and utilizing the terminal variables, 

the desired "modi.fied'n general state-model results as shown. 

(2.3.7a) 
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(2.3.7b) 

This state-model is the basic expression in the synthesis procedure. 

As comparisons.will be made later with this state-model, it is written 

in a simplified form .. 

(2.3.8a) 

(2.3.8b} 

This will ease the task of identifying a particular part of the state-

model. Note that 

T 
B111 = -PU 

T 
B221 = -P22 

T 
B121 = p21 

T 
B211 = F21 

A reduced form of this state-model will be used in each of the derived 

transfer functions to follow. 
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2.4 State-Models and Transfer Functions. An idea of the unified 

approach to transfer function synthesis considered in this thesis is 

obtained when the '1modified" general state-model of Equation 2.3. 7 

is compared with the state-models derived for each of the transfer 

functions: short circuit transfer admittance, Y12(s), open circuit 

transfer impedance, z12(s), and voltage transfer function, T(s). The 

assumed network driver configuration for each type of trans.fer function 

is of interest as they are unique. Each transfer function will be 

considered separately as it is felt that the "derived" state-models 

are significant enough to warrant this approach. The short circuit 

transfer admittance is considered first. 

2.4.1 Short Circuit Transfer Admittance, Y12(s). In determining 

the short circuit transfer admittance by the state-space approach, 

it is first necessary to derive the "desired'' state-model that repre

sents the network with the correct driver configuration. Therefore 

when determining Y 1z< s) by the state-space approach, the driver con

figuration for the 2-port network is assumed to be that of Figure 2.4.1. 

The reason for this assumption will be apparent later. 

Network 

Figure 2.4.1 Network Driver Configuration for Y12(s) 
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In deriving this "desired" state-model, the fundamental circuit 

equations can be written in reduced form from those in Equation 2.3.1, 

which were for the "modified" general state-model and did not consider 

the restriction on the driver configuration. This restriction being 

that the network only has voltage sources and no current sources. With 

this further restriction on the driver configuration, the fundamental 

circuit equations will be 

[Bil B12 0 IU ~] v 
I a 

B21 B22 B23 10 vbc I 

vpr = 0 (2.4.1) 

v er 

V ct 

Now determining the equivalent cut-set equations and component equa-

tions, similar to Equations 2.3.2, 2.3.3, and 2.3.4, and following a 

procedure similar to Appendix A, we have the "desired" state-model 

d 
dt = ·-

+ -

r 
v be 

(2.4.2a) 



The similarities between Equations 2.3.7 and 2.4.2 are readily 

obvious. Using Equations 2.3.8 for identification purposes, it is 

noted that the part of the state.,-models of Equations 2.3.7a and 2.4.2a 

that correspond to the K11 , K12 , and K22 elements would be identical 

if the same fundamental circuit equation subscript notation had been 

used. Also the B111 and B211 elements of Equation 2.3.8 would be the 

* same as the coefficient matrix multiplied times V of Equation 2.4.2a a 

·except that the subscript notation has been changed. This comparison 

is also true for the P11 , P12 , and R11 submatrices. This reduced form 

* * of Equation 2o4.2 could then be obtained by setting It and Vt equal 

to zero in Equation 2.3.7, which agrees with the network driver con-

figuration of Figure 2.4o1o 

For purposes of identification in showing the interrelationships 

of the state=model of Equation 2.4.2, it is written in the simplified 

form as shown 
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(2.4.3a) 

[1:J = [Pu P12] r:~c] + [Ru] [v:J 
L ct 

(2.4.3b) 

It should be noted that elements B111 , B211 , P11 , P12 , and R11 of 

Equation 2.4.3 are not identical with elements B111 , B211 , P11 , P12 , 



and R11 of Equation 2.3.8. By inspection the relationship between the 

T elements, K12 and -K12 , of Equation 2.4.2a is obvious. Also note that 

T 
B111 = -Pll 

T 
B211 = p12 

To derive the short circuit transfer admittance, Yi2(s), from 

the state-model of Equation 2.4.3, it is more desirable to write the 

state-model in a form that lists the voltage sources individually. 

The.!!_, P, and R matrices have been expanded to allow the proper matrix 

multiplication, which is as follows 
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(2.4.4a) 

* i (t) 
al 

* v (t) 
al 

* v (t) 
a2 

(2.4.4b) 
* i (t) 
a2 

To facilitate the presentation, Equation 2.4.4 is written in the simple 

form 

(2. 4.5a) 

* * I (t) = p X(t) + ~ V (t) a a (2.4.5b) 

Taking the Laplace transform of Equation 2.4.5 and solving for the 

transformed state-vector, X(s), we have 



Now,· 

where 

* * I (s) ~ p X(s) +~ V (s) a · a 

-1 :l (s) = P (sU-K2) B 

* * and after expanding I , V, :l, and~ 

* i (s) 
al 

* . i (s) 
a2 * v (s) 

a2 

* v (s) 
al + [&1.11 0] 

O ~22 · 

* v (s) 
al 

* v (s) a . 
2 

The short circuit transfer ad~ittance function is defined as 

* v (s) = 0 
al 

and Y12(s) can be obtained from Equation 2.4.7, which is 

if~ has the form shown in Equation 2.4.7. 
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(2.4.6) 

(2.4. 7) 

(2.4.8) 

(2.4.9) 

Simplification of the state-space synthesis procedure results 

when,,i. has the form 



i = r-~11 0 J 
Lo ~22 

because Y1iCs) is then only equal to the proper funct-ion,-:)~is), of 

Equation 2.4.7. Therefo:i;e at will only enter the synthesis proc~dure 

as a restriction of the matrix form and its non-zero element values 

will 'not be important. This implies that ::l (s) in Equation 2.4. 6 will 

be the matrix that is to be presented in detail as is -done in Section 

2.5. 

Now we shall justify the network configuration as shown in Figure 

2.4.1. Considering the state-model of Equat~on 2.4.4 and the s-domain 

solution for the complementary variables of Equation 2.4.7, it is 

obvious that the driver configuration of Figure 2.4.1 .is the only 

configuration that will allow the calculation of Y12(s) by Equation 

2.4.8 when applied to Equation 2.4.7. 
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The discussion of the open circuit transfer impedance is presented 

next which will be similar to the discussion on the short circuit 

transfer admittance. 

2.4.2 Open Circuit Transfer Impedance, z12(s). In determining 

the open circuit transfer impedance by the st.ate-space approach, it 

is first necessary to derive the "desired" state-model that represents 

the network with the correct driver configuration. Therefore when 

determining z12(s) by the state-space approach, the driver configuration 

for the 2.:.port network is assumed. to be that of Figure 2.4.2. The 

reason for this assumption will be similar to the reasoning in Section 

2.4.1. Note that for z12(s) current sources will be used while for 
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Network 

Figure 2.4.2 Network Driver Configuration For z12(s) 

Y12(s) in Figure 2.4.1 voltage sources were used. 

In deriving this "desired" state-model, the fundamental circuit 

equations can be written in reduced form from those in Equation 2.3.1, 

which were for the "modified" general state-model and did not consider 

the restriction on the driver configuration. This restriction being 

that the network has only current sources and no voltage sources. 

With this further restriction on the driver configuration, the funda-

mental circuit equations will be 

rll 0 I u o 

~] 
v be 

B21 B22 ! 0 U v br 
B31 B32 I O O = 0 (2.4.10) v er 

V Ci, 

Vt 

The cut-set equations and the component equations are given in Equation 

2~3.4. Using these equations and following a procedure similar to 

Appendix A, we have the "desired•.• state-model 
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The similarities between Equations 2.3.7 and 2.4.11 are readily 

obvious. Using .Equation 2.3.8 for.identification purposes, it is noted 

that the part of the state-models of Equations 2.3.7a and 2.4.11a that 

correspond to the K11 , K12 , and K22 elements would be identical if the 

sa:qie. fundamental circuit equation subscript notation had been used. 

Also that B121 and B221 elements of Equation 2.3.8 would be the same 

* as the coefficient matrix multiplied times It of Equation 2.4.11a 

except that the subscript notation has been changed. This comparison 

is also true for the P21 , P22 , and R22 submatrices. This reduced form 

* * of Equation 2.4.11 could then be obtained by setting V and I equal a a 

to zero in Equation 2.3.7, which agrees with the network driver con-

figuration of Figure 2.4o2. 

For purposes of identification in showing the interrelationships 

of the state-model of Equation 2.4.11, it is written in the following 

simplified form 
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(2.4.12a) 

(2.4.12b) 

It should be noted that elements B121 , B221 , P21 , P22 , and R22 of Equa

tion 2.4012 are not identical with elements B121 , B221 , P21 , P22 , and 

R22 of Equation 2.308. By inspection the relationship between the 

l "T d K f E t · 2 4 11 is obvi' ous. Al t th t e ements, i:'-12 an· = 12 ~ o · qua ion & · • a .· so: no e a 

T 
B121 = p21 

T 
B221 = -P22 

To derive the open circuit transfer impedance, z1z<s), from the 

state-model of Equation 2.4ol1, it is more desirable to write the state-

model in a form tha.t :Lists the current sources individually. The ~' 

P, and R m.atrices have been expanded to allow the proper matrix multi@ 

plication, which is as follows 

* i (t) 
t1 

* i ( t) 
t2 

(2. 4e 13a) 
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* v (t) * it (t) 
t1 

*· Vt (t) * 
1 (2.4.13b) 

2 
it (t) 

2 

Note that the Bij's, r 1 .ts, and ~ii's of Equation 2.4.13 are different 
J . 

from the. elements of like notation in Equation 2.4.4~ To facilitate 

the presentation, Equation 2 .. 4.13 is written in the simple form 

(2 .. 4.14a) 

(2., 4.14b) 

Taking the Laplace transform of Equation 2.4.14 and solving for the 

* complementary variable, V (s), by a procedure similar to that presented 

in Section 2 .. 4.1 will yield 

where 

(2.4.15) 

* * and after expanding V , I , !l 1 and R, 

* * * Vt (q) :l11 (s) :l1i(s) it (s) ~11 0 it (s) 
1 1 1 

= + 
* !l21 (s) :l2z's) * * Vt (s) ·it (s) 0 ilt,22 it (s) 

2 2 2 . 

(2.4.16) 

It should be noted that Equations 2.4 .. 15 and 2.4.6 will be identical 

if the entries of P and Bare left as general unknowns and the K2 1 s 
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need to be determined from the same polynomial as shown in Appendices 

Band c. This observation will be used later in the synthesis proce-

dure. 

The open circuit transfer impedance function is defined as 

* Vt (s) 
1 

* i (s) 
(2.4.17) 

t2 * it (s) = 0 
1 

and z12(s) can be obtained from Equation 2.4.16, which is 

if i has the form shown in Equation 2.4Q16. The presentation concern-

ing the importance of the form of~ is very similar to the one given 

in Section 2.4.1. 

Simplification of the state-space synthesis procedure results 

when~ has the form shown in Equation 2e4~16, because z12(s) is then 

only equal to the proper function, :l12(s), of Equation 2.4.16. There-

' fore i will only enter the synthesis procedure as a restriction of the 

matrix form and its non-zero element values will not be important. 

This implies that :)(s) in Equation 2.4.15 will be the matrix that is 

to be presented in detail as is done in Section 2.5. 

Justification for the choice of the network driver configuration 

is apparent from the state-model of Equation 2.4.13 and the s-domain 

solution for the complementary variables of Equation 2.4.16, since the 

driver configuration of Figure 2.4.2 is the only configuration that 

will allow the calculation of z1z<s) by Equation 2. 4.17 when applied 



to Equation 2.4.16. The voltage transfer function, which is presented 

next, will have some differences from Y12(s) and z12(s). 
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2.4.3 Voltage Transfer Function, T(s)o In determining the voltage 

transfer function by the state-space approach, it is first necessary 

to derive the ''desired" state-model that represents the network with the 

correct driver configuration, which is given in Figure 2.4.3. The 

Network 

Figure 2.4o3 Network Driver Configuration For T(s) 

reason for this assumption will be similar to the reasoning used in the 

choice of drivers in Sections 2e4o1 and 2.4.2. Note that while Y12(s) 

used voltage sources and z12(s) used current sources, T(s) calculations 

will be made with a voltage source on the input-port and a current· 

source on the output-port as shown in Figure 2.4.30 As may be thought, 

this will complicate the state-model. 

Since there is both a voltage source and current source, the fun

damental circuit equations used in deriving the "desired" state-model 

will be the same as those in Equation 2.3.1. Also the "desired" state

model will be the same as the ''modifiedu general state-model of 
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Equation 2.3.7. The same interrelationships that were identified with 

the aid of Equation 2.3.8 will still be true for the T(s) state-model. 

To derive the voltage transfer function, T(s), from the state-

model of Equation 2.3.8, it is more desirable to write this state-model 

in a form that lists the individual voltage source and current source 

as shown 

* v (t) 
a1 

* i ( t) 
t2 

(2.4.19a) 

(2.4.19b) 

Note that the ia .. 1 si P .. 1s, and &x- •• 1 s of Equation 2.4.19 are different 
1J 1J . 11 

from the elements of like notation in Equations 2.4.4 and 2.4.13. 

To facilitate the presentation, Equation 2.4~19 is written in the 

simple form 

d . ' * dt X(t.) = K2X(t) + 3 Y (t) (2.4.20a) 

* * Y (t) = P X(t) + ~ Y (t) (2.4.20b) 

Taking the Laplace transform of Equation 2.4.20 and solving for the 

complementary variable, i*<s), by a procedure similar to that presented 

in Sections 2.4.1 and 2.4.2 will yield 

* * * Y (s) = ~ (s)Y (s) +RY (s) 
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where 

() . )-1 2 s = f-l (sU=K2 6 (2.4.21) 

'f~ "' and after expanding}, Y, 2, and~ 

+ [&t-11 0 ] 
O ~22 

* v (s) 
al 

* i (s) 
t2 

(2.4.22) 

It should be noted that Equation 2.4-06, 2.4.15, and 2.4.21 will be 

identical if the entries of rP and ia are left as general unknowns and 

the K2 1 s need tc, be determined from the same polynomial as shown in 

Appendices Band c. This observation will be used in the synthesis 

procedure. 

The voltage transfer function is defined as 

(s) 

s) -·---
v a •. (s) 

l * it (s) = 0 
2 

and T(s) can be obtaineq from Equation 2.4.22, which is 

T(s) = 2 21 (s) (2.4.24) 

If ~ has the form shown i.n Equation 2.4.22. Although we have only 

considered a T(s) corresponding to a ratio of two voltages, we could 

also consider a current transfer function, in which case 
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·* i (s) 
, al 

T (s) = ~*-
it (s) 

2 * v (s) = 0 
al 

This T (s) can also be obtained from Equation 2.4.22. The analysis 

of the current transfer function follows along the same lines as that 

30 

for the voltage transfer function, therefore it will not be considered 

further. 

The form of i is important in that it simplifies the state-space 

synthesis procedure. The presentation to justify this simplification 

is the same as given in Sections 2.4.1 and 2.4.2. Because of the form 

of R another topology restriction must be imposed, which is not to 

permit the voltage and current sources in the same fundamental circuit, 

that is in Equation 2.3.1 

B41 = 0 

This forces~ to the desired form of 

=:[R11. 0 J R . o ~ 
~22 

This characteristic will be discussed further in the restrictions given 

in Section 6.1. 

The matrix 2 (s) consists of elements of proper functions •. 2 (s) 

as given in Equations 2.4.6, 2.4.15, and 2.4.21 is the same algebraic 

matrix expression and it will be presented at length in the next sec-

tion. 
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2.5 !l (s) and [Adj(sU-K2)] Algorithm. In sections 2.4.1, 2.4.2, 

and 2.4.3 the expression 

(2.5.1a) 

(2.5.1b) 

was shown to be important in the transfer function analysis. It must 

also be pointed out that the matrix, !l (s), is a significant matrix in 

the state-space synthesis procedure because !l ( s) determines the num-

erator functions of the transfer functions. This can be shown by ex-

-1 panding the matrices£, P, and (sU-K2) which are multiplied together 

to yield!) (s) • Now 

b11 b12 

b21 b22 
a= (2.5.2) . 

• 
bn1 bn2 

=[P11 P12 ••• P1nJ 
p p " p 

21 1'22 • • • 2n 
(2.5.3) 

(2.5.4a) 
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au a12 ... aln 

(sU-K2)-l 1 
a21 a22 a2n 

=- .. • (2.5. 4b) 
6. • . 

·• • 
a n1 a n2 ... a µn 

.where 

By observing Equations 2.4.4, 2.4.13, and 2.4.19 it can be shown that 

a and P,should have the dimensions as shown in Equations 2.5.2 and 

-1 2.5.3. The entries in a and pare unknown constants and (sU-K2) · 

can be written as shown in Equation 2.5.4. Then Equation 2.5.1 can 

be written as 

(2.5.5a) 

or 

:}(s)= (2.5.5b) 

and the t.ransfer functions can then be shown as 

(2.5.5c) 

when the drivers are voltage sources, 

(2.5.5d) 
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when the drivers are current sources, and 

t 

:l21 (s) 
T(s) = 

6 
(2.5.Se) 

when the input is a voltage source and th~ output is a current source. 

This illustrates the significance of !l (s) in determining the numerator 

functions of the transfer functions. 

From Equation 2.5.Sa, it is appatent that the entries of the ma-

trix, f> (adj(sU-K2)] B, must be determined for future use. Combining 

Equations 2.5.2, 2.5.3, and 2.5.4 (b) into Equation 2.5.Sa yields 

1 L11 P12 .... P1nJ all a12 ... aln b11 b12 
:l(s)=-

b21 b22 6 P21 Pz2 . . . P2n a21 a22 0 •• a2n 

• • . . . • • • • • • 
anl an2 ... a b b 

nn n1 n2 

(2.5.Sf) 

which is written in expanded form in Equation 2.5.Sg. 

From Equation 2.5.Sa it is apparent that the entries of the matrix, 

[adj(sU-K2)], must be determined analytically. Therefore an algorithm 

has been developed that will give the elements which are functions 

of sin the [adj(sU-K2)],, However it is first necessary to present 

some relationships of K2 and K1, where K1 is the matrix from which 

K2 is transformed. 

In Appendix Bit has been shown that by using Navot•s (27) method 

it is possible to determine from a given polynomial, D(s), a matrix, 



:l (s) 
1 

=-
Di. 

(pllall + P12a21 + P13a31 + 

+ (p118 12 + P12a22 + P13a32 + 

+ (p11a13 + P12a23 + P13a33 + 

+ P1nanl)bll: (p118 11 + P12a21 + P13a31 + 

+ P1nan2)b21 I +(p11a12 + P12a22 + P13a32 + 

I + P1nan3)b31 I +(p11a13 + P12a23 + P13a33 + • • • 

I 
I 

. . 

+ P1nanl)b12 

+ P1nan2)b22 

+ P1nan3)b32 

+ (pllaln + P12a2n + P13a3n + ••• + P1nann)bnl: +(pllaln + P12a2n + P13a3n + ••• + P1nann)bn2 

- - - - - - - - - - - - - - - - - - - - - - - r - - - - - - - - - - - - - - - - - - - - - - ~ 

(p21a11 + P22a21 + Pz3a31 + "•" + Pznanl )bll I <P21a11 + Pz2a21 + Pz3a31 + " 0 0 + Pznanl )_b12 

+ (p21a12 + P22a22 + P23a32 + 

+ (p21a13 + P22a23 + P23a33 + 

. . 
+ (p21a1n + P22a2n + Pz3aJn + 

I 
+ Pznbn2)b21 I +(p21a12 + P22a22 + P23a32 + ••• + P2nan2)b22 

I 
+ P2nbn3)b31 I +(p21a13 + p228 23 + p238 33 + 

l 
I 
I 

. . 
+ P2nbnn)bn1 : +(p21aln + Pz2a2n + P23aJn + 

+ P2nan3)b32 

+ p a )b 2n nn n2 

(2~5.5g) 

w
.j::"' 
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(sU-K1), whose determinant will be equal to D(s) and that K1 can be 

represented in general as 

• 
• • 
-k O .k 1 n-2 n-

-k 1 -f ·n- n 

(2.5.6) 

(Note that when n = 1, K1 = -f .) Also in Appendix Cit has been shown 
0 . 

that by using Yarlagadda 1s (.34) transformation, it is possible to deter-

mine the matrix, K2, so that 

(2.5.7) 

and K2 is shown when n is odd 

( 1) (2) (3) 0 •• 
(n-1) cE.±1> (n+ 3) (n+5) . • (n) 2 2 I: 2 2 

-f I kl (1) 
0 I 

0 I -k2 k3 (2) 

0 
I 

-k4 (3) I • 
• I • • I • • • 

I • (n-1) 0 I • k n-2 
cn;1> -£ I -k n I n.:.1 

K = - - - - - - - - - -I - - - - - - - - (n+3) 2 
-kl k2 I 

I 2 
-k3 k4 I (n+5) 

I 2 
• I • 

• I • I • • I • 
-k k I (n) 

n-2 n-1 I 

(2.5.8a) 
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with 

(1) (2) (3) . . . (n+ 1) 
2 

(n+ 3) 
2 

(n+5) 
2 

(n+ 7) 
2 . . ' (n) 

1 0 0 . . • 0 0 0 0 0 (1) 
0 0 0 . . .. 0 1 0 0 0 (2) 
0 1 0 . • . 0 0 0 0 0 (3) 
0 0 0 . 0 . 0 0 1 0 • 0 (4) 

L= 0 0 1 0 0 0 0 0 (5) 
0 •' ... • 

• • . • 0 • • 
0 0 0 . • • 0 0 0 0 1 (n-1) 
0 0 0 • • • 1 0 0 0 • 0 (n) 

(2.5.8b) 
and when n is even 

(1) (2) . • (.!!) 
2 I<-¥+ 1) <1+ 2) ... (n-1) (n) 

-f I kl (1) 
0 I 

0 l -k2 k3 (2) 

• • • • • • • • • 
(.!!) 0 -k k 

K = n-2 n-1 2 
..., ..... - """ - - - - ------2 

-kl k 0 <i+ 1) 2 

-k3 • • <¥+ 2) 
• • • • • • • le (n-1) 

n-2 
-k 

n-1 
-f (n) 

n 

(2.5.9a) 
with 

(1) (2) (3) . • ~ (!!.) 
2 <1+ 1) (,~+ 2) <-¥+ 3) . . . (n) 

1 0 0 . Q . 0 0 0 0 • . .. 0 (1) 
0 0 0 • • 0 0 1 0 0 • . . 0 (2) 
0 1 0 . • . 0 0 0 0 • .. . 0 (3) 
0 0 0 .. . . 0 0 1 0 . • . 0 (4) 

L= 0 0 1 . " • 0 0 0 0 . . • 0 (5) 

" . . .. 0 • . • 
• • • 0 • • 
0 0 0 . • . 1 0 0 0 .. • . 0 (n-1) 
0 0 0 • • • 0 0 0 0 • . . 1 (n) 

(2.5.9b) 
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and 

(2.5.10) 

Equation (2.5.10) is of interest since the algorithm will be for deter-

mining of the adj(sU-K1) and the transformation ~.o the adj(sU-K2) will. 

be made' after this adjoint matrix is determined.. The reasons for this 

approach are that cofactors of K1 .are easier to evaluate than those 

of K2 and the matrix, (sU-K1), has the same form whether n is even or 

odd. 

th Given an (nxn)-matrix, K1, that represents a general n order 

polynomial, D(s), the matrix (sU-K1) can be written as 

(s+f0 ) -k1 

kl s -k2 

k2 s -k3 

• • 
• • 

• 
• 

• • • 
k s -k 
n-3 n-2 

kn-2 s -k 1 n-
k (s + f ) n-1 n 

(2.5.11) 

and the algorithm for the matrix, adj(sU-K1), is given in Equation 

2.5 •. 12 on the following pageo Note that (a .. ] identifies the element. . 1J -

locations. In using this algorithm the (1,n)-element is the first 

element to be evaluated. Then the first row should be next, from right 

to left. th Next then column should be determined, from top to bottom. 

Next the main diagonal and all elements above it are obtained. And 

last t;he elements below the main diagonal are determined. It should 

be noted that 



(-l)n•l,n-3 

(-l)n.+ 1•1,n-2 

<· 1>0 •1,n-1 

(.l)n+ 1•1,n 

[~1 
1,n J 

(-tl0 •2,n-2 

(-l)n + 1" 
2,n-1 

(-l)n•2,n 

[~1 
1,n J 

[
n • I J 'ii' 1'1 
i = 1 

C•2,n] 

[~(sH0 )] 

[• ] 3,n 

1,: ... 1 l 1n [. " ] 
1,n 

[•j,nl 

[ - 1-(sa +k • i] kJ·I j-1,n J-2 j-2,n 

[• ] n,n 

[ _l_(sa +k a >] 
k0 .. 1 n-1,n n-2 n-2,n 

(2.5.12) 



a 
(n-q)ir 

( .,)n+r+q 
- =! a ·r,(n=q) 

r:::::: 1, 2, 

q = o, 1, n-1 
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The proof of t.his algorith,n is simple to see, but it requires excessive 

space and so is not given here. 

example which fa presente.d below,, 

This algorithm is illustrated by an 

th ', 
Consider a 5 order polynomial, 

D(s) whfch is by ( 

( 

[a1f25] 
11 ki 

i = 1 

[a1t2s] 
JI ki 

i = l 

[alr35 l .. 
11 ki I 

i = 1 _J 

[ I~ k1] 
i = 1 

[alf25 J 
11 ki 

i = 1 

(2.5.14) 



[•11) [•12) 

[•4+f5•3 k1[•J+f5•2 

+(I.~+ k~ + "i>•2 + (k~ + k!>• 

+f5(k~+1,;i· +k~f5] 

+k~k!J 

8 15 

[-22) 

s4+f5•3 

+o,;+k!+fof5)s2 

+ (k~f 5 + [ 0 (k~ + k!) Js 

+ fof5k; 

[•13) 

k11·2<•2 +ts•+ i:!i 

[•23] 

1:2[•3 + (fo + f5l•2 

+ ( f 0 f 5 + k!)s 

+ f 0 k!J 

[•14) 

k1k2ki•+f5l 

[•24] 

klJ•2+(fo+i5l• 

+ fofs] 

[•15] 

(l,1k/3k4l 

[•25] 

:\k31'4 (s + i 0 ) 
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[•33] [•34] [•35] 

[s4+(f 0 +f5)s3+(ki+k! k 3[s3 +(t0 +f5)s 2 k3k 4(s 2 +f0 s+kil 

+ f 0 f 5)s2 + (f0 k! + f 5kil• + (f0 f 5 + kil s + f 5kiJ 

+ (ki+ k!>J 

[•44] [•45] 

s 4 + (f0 + f 5)s3 kJs 3 + f 0 s 2 

+ (ki + k~ + f 0 f 5)s2 + [f 0 1,~ + (l;i + k;), 
+ t 5(ki+ k~)]s + l,~f 0 ] 

+ f 0 f 5k~ 

[•55] 

[,4 + r.,3 + c1:f + k~ + k;>,2 
+f 0 (k~+k;)s 

+ kik;J 

(2.5.15) 
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which results in Equation 2.5.15. It can be seen that the [adj(su-K1)] 

agrees with Equation 2.5.15. 

It should be noted that (n-1) is the highest degree of any element 

of the (nxn)-matrix, [adj(sU-K1)]. This unplies that the numerator 

function degree of any transfer function obtained while using the 

[adj(sU-K1)] will be at most one less than the denominator function 

degree. How this affects the state-space synthesis procedure will be 

presented in.Section 2.6e 

2.6 Obtaining Proper Transfer Jt.inctions. As has been observed 

previously, the state-space synthesis is simplified to the point of 

feasibility if the transfer function is a proper function. As Bala~ 

banian (3) has shown, physically realizable transfer functions to be 

synthesized ·will be encountered that are improper functions, with a 

n.umE!rator function degree a maxi.mum of one greater than the denominator 

function degreee Therefore ans-domain synthesis procedure is pre-

sented that will reduce the numerator function degree until the trans-

fer function left to be synthesized is a proper function. The first 

transfer function to be presented that will be modified by this proce-

dure is the short circuit transfer admittance, Y12(s). 

2.6.1 Y12(s) Modification. If a short circuit transfer admittance 

to be synthesized is encountered which is an improper function as shown 

(2.6.1) 

the first step is to divide the denominator into the nUt~erator until 

the remainder is a proper function as shown 



where 

and let 

n-1 
d 1s + ••• + d1s + d n- o Y12(s) = c 1s + c + 

.o b 5 n + b n-1 . 
1s + .~. + b1s + b n n- o 

8 n+ 1 
c1 = b 

n 

a b -n n 
a b 
n+ 1 n-1 

c =-------
O b2 

n 

1---- ---, 

: I c 11 farads : ~~~---~~~----l---~~~--' 
1 .. t 

. Y12(s) I 

r------, 
I [ c 0 1 ohms [ 

1:1 

Figure 2.6.1 Modified Network, Y12(s) 
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(2.6.2) 

(2.6.5) 

(2.6.7) 
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Now as shown in Weinberg (33), if Yi2(s), Yi2(s), and Yi2(s) are placed 

in parallel while observing the validity test, the short circuit trans-

fer admittance of the total network will be Y12(s) of Equation 2.6.1 

and the resultant network is shown in Figure 2o6.1o The transformer 

may or may not be necessary. Now Yi2(s) is a proper function and 

can be realized by the state-space synthesis procedure of Chapter III. 

2.6.2 z12(s) Modification. If an open circuit transfer impedance 

to be synthesized is encountei;:ed which is an improper function as shown 

n n-1 
es + e 1s + ••• + e 1s n n- · 

f S n-1 £ f 
1 + •o• + 1s + n- o 

+e 
0 

the first step is to divide the denominator into the numerator until 

the remainder is a proper function as shown 

Z12(s) = gls + g + 
O f s0 + f sn-l f 1 + ••• + ·ls+ fO n n= 

(2.6.9) 

where 

and let 

(2.6.10) 
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(2.6.12) 

1 2 3 Now as shown in Weinberg (33), if z12(s), z12(s), and z12(s) are placed 

in series while observing the validity test, the open circuit transfer 

impedance of the total network will be z12(s) of Equation 2.6.8 and the 

resultant network is shown in Figure 2.6e2. The transformer may or may 

not be necessaryo Now zf2(s) is a proper function and can be realized 

by the state-space synthesis procedure of Chapter IV. 

e 
r--- -- -- --1 

• I t I I t 
I I 
I I g 1! henry I 
l I 
I 
I 1 ( ) I 
I z12 s I 
L _________ d1 

r---------, 

I 
2 I 

I Z12<s) I 
L ________ _J 

1:1 

Figure 20602 Modified Network, z 12(s) 
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2.6.3 T(s) Modification. Balabanian (3) has shown that a physi-

cally realizable voltage transfer function that is an improper function 

will have a numerator function degree that at most equals the denomin-

ator function degree. Therefore if a voltage transfer function is 

encountered which is an improper function, it can be written as 

(2.6.13) 

The first step in obtaining a proper function is to divide the denom-

inator into the numerator until the remainder is a proper function as 

shown 

where 

and let 

T(s) = r 
0 

1. 
T (s) = r 0 

n=l 
m 1s + .•. + m1s + m 2 n- o 

T (s) = --------------
i, sn+ x, 5n-1 + .R, n n-1 ••• + .R,ls + o 

(2.6.14) 

(206015) 

(2.6.16) 

Now as shown in Weinberg (33), if T1(s) and T2(s) are placed with their 

inputs in parallel and their outputs in series while observing the 

validity test, the voltage transfer function of the total network will 
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be T(s) of Equation 2.6.13 and the resultant network is shown in Figure 

2.6.3. Now T2(s) is a proper function and can be realized by the state-

space synthesis procedure of Chapter V. 

At this point the topics that are basic ideas to the synthesis 

procedure have been discussed and we are ready to proceed to the state-

space synthesis procedures. 

r---1-----1 
I T (s) I 
I r : 1 I 

.-------1~~---.o ..-------;.I--------------------• I 
I 
I 
I 
I 
I 

Figure 2o6.3 Modified Network, T(s) 

2. 7 Realization of Characteristic Polynomial. Yarlagadda (34) 

has presented the realization of a characteristic polynomial (see Equa-

tion 1.1.4) that resulted in a ladder network with one resistive element. 
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This presentation required the network topology restrictions of Section 

2.2, assumed a K2-matrix like that of Equation 2.5.Sa only with f . n 

equal to zero, and assumed a state-model like that of Equation 2.4.5 

with the sources equal to zero. This reference showed that since the 

K2-matrix can always be obtained from a given characteristic polynomial, 

we can relate the characteristic polynomial and the network. In this 

reference, given a characteristic polynomial of degree, n, only one 

resistor in addition to then reactive elements will result from this 

synthesis procedure. This one resistor and n reactive elements network, 

as can be seen in Appendix D, is inadequate for the general synthesis 

procedure of transfer functions as presented here. Therefore the fol-

lowing presentation will be a synthesis procedure of the characteristic 

polynomial resulting in two resistive elements in addition to then 

reactive elements. Now the theorem. 

Theor:em it Let D(s) be a polynomial with constant coefficients. 

If D(s) has roots with non-positive real parts, then 

. a state'=model with no sources and a D(s) as its char-

acteristic polynomial can be obtained. This state-

model can be realized by a port-less network with a 

minimum number of n reactive elements consisting of 

inductorss capacitors, and two resistors. 

The proof of this theorem is vital to the state-space synthesis and it 

now follows. 

2. 7 .1 Theorem Proofo In Section 2.5 and Appendices B and C, 

it has been shown that a polynomial with constant coefficients and 

roots with non-positive real par.ts can yield a K2-matrix as shown in 

Equation 2.5.8a or 2.5.9a. With this K2-matrix and the presentation 
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of Section 2.4, a state-model which has the characteristic polynomial, 

D(s), can be given by 

where the fundrunental circuit equations for this state-model are 

V· be 
vbr 
: - - = 0 
v er 

vcJ, 

(2.7.1a) 

(2.7.1b) 

( 2 .. 7. le) 

Consid(;lr the degree of D(s) to be n and n is odd. Then from Equa-

tion 2.5.8a 



K = 
2 

-f 
0 

-
-k1 

-

0 
• 

- -
k2 

"'."k3 • 

• 

• 
• 

- - -

• 
• • 
• k 

-k 

0 

-f 
n - -

n-3 

n=2 
k 

n-11 

• • • • • 
-k n-3 

k 
n-2 

-k n-1 - - - - - - - - - - - - . 
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(2.7.3) 

Equate like parts of the partitioned matrix K2 from Equations 2.7.1c 

and 2.7.3. This will yield 

-f 
0 

• 

0 

• 

• • • 

• 
• 

--k 
n-3 

0 
-f 

n 

k 
n-2 

-k n-1 

(2.7.4a) 

(2. 7 .4b) 

( 2. 7 .. 4c) 

It is noted that Cb, Le, Ge' and 1\ are diagonal matrices with positive 

entries and that the B .. 1s-are unimodular matrices with element values 
lJ 

+ of -1 or O. Since Cb and Le are positive diagonal matrices, the ma-



trices C-b\ and L-\ are diagonal with entries chosen to be positive. 
c 

T.o obtain the network which yields the state-model of Equation 

2.7.1, the fundamental circuit equations of Equation 2.7.2 must be 

obtai:i:ied.. These can be determined by decomposing EquatiQn 2. 7 .4 to 

yield the B .. 's, G, and R. matrices. 
1J C -b .. 

-\ T -\ To decompose (Cb B22GcB22cb) of Equation 2.7 .. 4a, first remove 

the Cb\ 's by premultiplication and posti:nultiplication of l>oth sides 

of the Equation by C~. This can be done since they are positive dia

gonal matrices. Assume Cb\ is a (mxm)-matrix. This yields 

ell 
0 

50 

(2.7.5) 
.. 

0 
e m,m 

-\ where e11 and e are functions off , f, and Cb. m,m o n 

unimodular matrix 1 G is a positive diagonal matrix, 
c 

Since B22 is a 

T and (B22GcB22 ) 

is the matrix being considered, it is observed that these are the 

conditions necessary of applying Cederbaum 0 s (8) algorithm. Using 

this algorithm for the decomposition of·(B~2GcB22) will yield 

1 0 feu e:.JG 0 .... 0 ~] 0 0 i O 
0 ... 0 

T . . 
B22GcB22 = ll.- (2.7.6) 

0 0 
0 1 

where B22 is a (2xm)-matrix and Ge is a (2x2)-matrix as shown 
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[ 1 0 
n22 = o o 

... ... 

G = [e11 0 J 
c O elrl: m ' . 

(2.7.8a) 

or we shall identify Ge for simplicity as 

(2.7.8b) 

Cederbaum (8) showed that the decomposition is essentially unique, 

which can be seen from Equation 2.706.where it is possible to select 

other signs in n22 or permute the rows and columns and still obtain 

a correct decompositiono Further this decomposition gives a B22 which 

is a non-redundant unimodular ore-matrix. 

Substitu~ing the B22 of Equation 2o7o7 and the Ge of Equation 

-\ T . -\ 2.7.8b into -(Cb B22GcB22cb) results in 

[:1 O JD 0 0 •• 0 ~] I 
1 0 

0 0 c1 
0 0 

... 
g2 ~ 

0 • .. . • 
• 
• 
• 0 .. • 0 0 • 

0 1 cm 

(2 .. 7.9) 

Now Equation 2.7.4a with Equation 2o7o9 yields 



-f 
0 

0 

52 

" 
= (2.7.10) 

0 

0 
-f. 

n 

and this equation implies that 

• 
Q I 2 

-g (C) 2 m 

(2.7.11a) 

(2.7.11b) 

Now considering Equation 2.7.4b, where Cb\ and L;\ are positive 

diagonal matrices and B32 is a unimodular matrix, it can be seen that 

the decomposition of (C-\BT L-\) will be 
b 32 c 

u 
c 

m 

1 
-1 1 

" 0 . . • 

-1 1 
-1 

(2.7.12) 

where Cb\ is a (mxm)-matrix, L~\ is a (rx:i:)-matrix and B32 is a unique 

(rxm)-matrix as shown 

1 -1 
1 • . . 

• 1 
-1 1 
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Now Equation 2.7.4b with Equation.2o7.12 yields 

= (2.7.14) 

-k k n-3 n-2 
-k n-1 

Equation 2.7.14 implies that 

k 

k 

k 

= n-3 

= 
n-2 

-· n-1 

0 

i • i 

-C L m-1 r-1 

0 

G L m-1 r-1 
u i 

C L m-1 r 
u 0 

G L 
m r 

i i 

Cm-11r. 
o a 

C L m r 

• -=i2 Since L is a non-singular matrix, Equation 2.7.4c implies that 
c 

(2.7.16) 

From the fundamental circuit equations, B33 is a submatrix which corre-

sponds to the resistors in the positive diagonal matrix, Rb. This 

implies that if either B33 or Rb is zero, then the other is zero also. 

Therefore the equality in Equation 2.7.16 is satisfied when 
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(2.7.17a) 

and 

~ = 0 (2.7.17b) 

The fundamental circuit equations for the case when n is odd can 

now.be written utilizing the submatrices shown in Equations 2.7.7, 

2.7.13, and 2.7.17a. In symbolic form these are 

which can be written as 

1 0 
0 0 . - - -
1 -1 

1 

" = -
0 

.. 0 - -

e =1 
1 

[ I J B22 0 I U O vbc 

B32 B33 : 0 U vbr 
=O 

v er 

V Ci, 

O IO I 1 0 
1 IO I O 1 " . . 

= =I - I= - - = - - - - -
IO I 1 
I O I 1 
I I 
I O I 
I O I 
IO I 1 

-1 IO I 

0 v 
0 

bc1 
v bc2 

=O 
v • 

bcm-1 

1 vbc 
m - - - -

vbr - - - -
v cr1 
v 

cr2 
v . 

ci,1 

v 
c£,2 

v • 
ci,r-1 

v 
cJ, r 

(2.7e18b) 
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From these fundamental circuit equations, it is easy to construct the 

network graph which is shown in Figure 2.7.1 and the resulting network 

of Figure 2.7.2 (21). This then is the network which has a character-

istic polynomial, D(s), of degree n with n oddo For the coefficients 

Figure 2.7.1 Network Graph When n Is Odd 

c ~2 

L 
r-1 

c m-1 

Figure 2.7.2 Synthesized Network 

L 
r 

c m 

of D(s) to be the same as those in the characteristic polynomial obtain-

ed from the network of Figure 2.7.2, a solution of Equations 207.11 and 

207.15 must be determined. 
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It can be seen from Equations 2.7o1, 2o7.2, and 2.7.3 that if 

there are m capacitors, r i~ductors, and the degree of D(s) is n, then 

m + r = n. Equations 2.7.11 and 2.7.15 involve n + 2 unknowns and 

n + 1 equations. Therefore a solution for this set of equations is 

obtained when one of the unknowns is assigned an arbitrary value, such 

as: 

(2. 7 .19a) 

This value with Equation 2.7.15 implies that 

(2.7.19c) 

k2(i-1)·; 
1 <i<r (2.7.19d) 

where 

n+ 1 m= 2 

n - 1 
r = 2 

Since a change of variables was made in Equation 2.3.6, the c. 0s and 
- 1. 

Li's of the synthesized network of Figure 2.7.2 will still have to 

be calculated by 

(2.7.20a) 

L. = (L~)- 2 
1. 1. 

(2 .. 7.20b) 



57 

From Equations 2.7.11 and 2.7.19, g 1 and g 2 are evaluated by 

g - f 1 o (2.7.21a) 

ID o O J -2 
kn=1 

f k 2 n 
n-

(2.7.21b) 

where 

R1 
1 

= -·-
81 

R2 
1 

=-
82 

i 
Note that this solution is not unique since c1 was arbitrarily 

chosen. The network has n x:e,1ctive elements and two resistors as 

stated in the theorem. This completes the proof when n is odd. 

Now consider the degree of D(s) to be n and n is even. Then 

~·f 
0 

0 

0 
.•• ""i 

k 
n-2 

,c,k 
n-1 

I 

kl 
-k 

2 k3 

0 

-k k 
n-2 n-1 

0 

-£ n 

(2.7.22) 

Again equate like parts of the partitioned matrix K2 from Equations 

2.7.lc and 2.7.22. This will yield 



-£ 
0 

0 

• 
0 

-k k n-2 n-1 

0 

• 

0 
-f 

n 
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(2.7.23a) 

(2.7.23b) 

(2.7.23c) 

Again the fundamental circuit equations of Equation 2.7.2 are 

obtained by decomposing Equation 2.7.23. Applying a similar procedure 

-\ T -\ as was used in the decomposition of Cb B22GcB22cb of Equation 2.7.4a, 

-~ T -\ (Cb B22GcB22cb) of Equation 2.7.23a can be decomposed as 

• 
• f 

c 
m 0 

• ¥ 

cµi 

(2.7.24) 
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where B22 is a (1xm)-matri,x and Ge is a (1x1)-mati:-ix as shown 

B22 = (1 0 ••• O} 

Now Equation 2.7.23 with Equation 2.7.24 yields 

-f . 
0 

0 
• 

• 

and this equation implies that 

0 
= 

0 

.·· (2. 7 .25a) 

· .· (2. 7 .25b) 

(2.7.26a) 

0 

(2.7.26b) 

Now considering Equation 2.7.23b, it can be seen that the decom

-\ T -\ position of (Cb B32Lc.) will be 

• 

I 

c 
~ 

'1 
-1 1, . . 

. . 
-1 1 

where B32 is a unique (rxm)-matrix as shown 

1 -1 
1 • 

• -1 
1 

. . ' 
L 

r 

(2. 7 .27a) 

(2.7 .. 27b) 



Now Equation 2o7.23b with Equation 2.7.27a yields 

kl 

-k k3 . 2 ... 
• 0 

• • 
-k k n-2 n-1 

and this equation implies 

• • 
• 

• I V I I 

-CL CL m r-1 m r 

I I 

k =CL n-2 m r-1 

I V 

k =CL n-1 . m r 
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(2.7.28b) 

Considering Equation 2.7.23c and applying a similar p;ocedure as 

-\ T -\ was used in the decomposition of Cb B22GcB22cb of Equation 2.7.4a, 

-\ T -~ (Lc B33~B33Lc) of Equation 2.7.23c can be decomposed as 

• •. 

u 
L 

r 

(2.7.29a) 



where B33 is a {lxr)-matrix and Rb .is a {1x1)-matrix as shown 

0 

Now Equation 2.7.23c with Equation 2.7~29 yields 

0 
• 

• 

0 

and this equation implies that 

-f 
n 

= 

0 

' 2 f = r 2{L) 
n . r 
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{2.7.29b) 

{2.7.29c) 

{2.7.30a) 

{2 •. 7 .30b) 

.The fundamental circuit equations for the case when n is even can 

now be written utilizing the submatrices shown in Equations 2.7.25a, 

2o7.27b, and 2.7.29b. In symbolic form these are 

v er 
v 

cl, 

{2.7.31a) 



which can be written as 

1 0 • • • 0 : 0 I 1 
- - I_ -

1 -1 I I 

1 • . . 
IO I 
I • I 
I • I 
I I 

• • " I 
• -1 : 0 I 

1 I 1 I 

1 
- - ·- -

" 

1 
1 

v 

. 
• • 

be 1 m-
vbc 

m 
v 
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=O 

br 2 
(2.7.31b) 

• v 
ci,r-1 

v 
Ci, 

r 

From these fundamental circuit equations, it is easy to construct the 

network graph which is shown in Figure 2.7.3 and the resulting network 

of Figure 2.7.4 (21). This. then is the network which has a character-

istic polynomial, D(s), of degree n with n even. For·the coefficients 

Figure 2~7.3 Network Graph When n ls Even 



.. •· ·• 

c m-1 

L r-1 

Figure 2.7.4 Synthesized Network 
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m 

·L 
r 
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R2 

of D(s) to be the same as those in the characteristic polynomial obtain-

ed from the network of Figure 2.7.4, a solution of Equations 2.7.26b, 

2.7.28b, and 2.7.30b must be determined. 

It can be seen from Equations 2.7.1, 2.7.2, and 2.7.22 that if 

there are m capacitors, r inductors, and the degree of D(s) is n, then 

m + r = n. Equations 2.7.26b, 2.7.28b, and 2.7.30b involve n + 2 

unknowns arid n + 1 equations. Therefore a solution for this set of 

equations is obtained when one of the unknowns is assigned an arbitrary 

value, such as: 

(2.7.32a) 

This value with Equatie>n 2.7.28b implies that 

(2.7.32b) 

v k2k4 .. & • k2( i-1~ c = l<i<m 
i k1k3 .... k2i-3 - (2.7.32c) 

I k1k3 ... k2i-1 
L. = 

k2k4 k2( i-1) 
1< i<r 

1 
(2. 7 .32d) 



where 

n m=-
2 

64 

Again because of the change of variables made in Equation 2.3.6, the 

C 1 s and L 1 s will be calculated by . i i 

Ci = (c:)-2 (2.7.33a) 

L. = (L'.)-2 
l, l, 

(2.7.33b) 

From Equations 2.7.26b and 2.7o30b, g1 and r 2 are evaluated by 

0 = f 
0 1 0 

(2.7.34a) 

~

-2 

k.n.-1 f 
kn-2 n 

(2.7.34b) 

where 

u 
Note that this solution is not unique since c1 was arbitrarily 

chosen. The network has n reactive elements and two resistors as stated 

in the theorem. This completes the proof when n is even. 

It has been shown that a polynomial with constant coefficients and 

roots with non-positive real parts can be represented by the state-model 

of Equation 2. 7 .1, and that this state-model can be used to obtain __ .the, 

port-less network of either Figure 2. 7. 2 or Figure ._2. 7. 4 with a minimum 

number of elements consisting of inductors, capacitors, and two resis-
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tors. Thus we have .related the characteristlic polynomial to a network 

and the proof is complete. 

2.8 Transfer Functions And Their Resulting Fundamental Circuit 

Equations. In deriving the port-less ladder network that represents 

a characteristic polynomial, the fundamental circuit equations of 

Equation 2. 7.18b or 2. 7 .31b were obtained. The synthe·sis .procedure 

presented uses these ladder networks as the basic netwo.rks from which 

)to build the synthesized networks$ Appendix D shows the transfer admit

tance resulting from various ladder networks. There are six classifi

cations which includes all of the possible transfer admittances that 

will be synthesized. These classif.ications are: 

1. Case I - the transfer admittance numerator degree is odd and 

the denominator degree is odd. 

2. Case II - the transfer admittance numerator degree is even, 

but not zero, and the denominator degree is odd. 

3~ Case II - Special - the.transfer admittance numerator is a 

constant and the denominator degree is odd. 

4o Case III - the transfer admittance numerator degree is odd 

the denominator degree is eveno 

5. Case IV - the transfer admittance numerator degree is even, 

but not zero, and the denominator degree is even. 

6. Case IV - Special - the transfer admittance numerator is a 

constant and the denominator degree is even. 

and 

These classifications will now be discussed individually. First we 

will consider the simplest cases which are Case II - Special and Case 

IV-Special. 
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'Note 2.8.1: As is well known for all cases, all of the numerator 

coefficients will be negative for the orientation of the drivers as 

shown in Section 2.4. L Lt can be shown that to obtain"all positive 

numerator coefficients, just reverse the orientation of one driver. 

2.8.1 Case II - Special. The transfer admittance of the Case II -

Special classification, as can be shown by using the material in Appen-

dix Dis written as 

a 
0 

Y12(s) = ------------- (2.8.1) 

where 

+ 

n + b n-1 s n- ls + ..... + b 1 s + b O 

a = negative constant 
0 

n = c;>dd integer 

Q, 

c m-1 

L 
r 

c 
m 

Figure 2o8.1 Network for Case II - Special 

The ladder network for this case is shown in Figure 2.8.1 with the 

resulting network graph s');1own in Figure 2.8.2. This network graph 

+ 
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yields the following fundamental circuit equations in symbolic form as ., 

O l U OJ 
B23 : 0 U 

which can be written as 

-1 O I 1 0 0 . . 0 O I O I 1 I 
0 -1 IO 0 .. • 0 0 1 IO I 
~ ..... - - = -

1 

0 o I 1 -1 Io I 
0 I Io I O I 1 • 

i • 
I 

• I I 
0 . 

• I I o I 
" 0 

I • • I I 

1 

0 O I .. -1 ,o I 
0 O I 1 -1 10 I 

where n·= m + r 

1 

v 
a 

v be 
v br 

v er 
v 

cJ, 

= 0 

... -· - -

1 

-

1 

(2.8.2a) 

v 
a1 

v 
a2 

v be1 
=O v bc2 

• v be 1 m-v be 
m 

vbr -- .... v cr1 
v er2 
v 

c.e.1 
v 

eJ,2 
.. 
• v 

ci, 1 r-
v cl, 

r 

(2.8 .. 2b) 

For a positive, see Note 2.8.1. Now we will consider Case IV -
0 

Special. 
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Figure 2.8 .. 2 Network Graph for Case II - Special 

.. .. . 

c m-1 

L r-1 

Figure 2~8.3 Network for Case IV - Special 
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2.8.2 Case IV,. Special. The transfer·adtp.ittance of the Case IV -

Special classification, as can be shown by using the material in Append-

ix D., . . is written 

Y12(s) =. 
a 

0 

n b n-1 s + 1s + n-
.... + b1s + b 

0 

(2.8.3) 



where 

a = negative constant 
0 

n = even integer 

The ladder network for this case is shown in Figure 2.8.3with the 

resulting network graph shown in Figure 2~8.4. This network yields 

Figure. 2.8.4 Network Graph for Case IV - Special 

the following fundamental circuit equations in symbol.ic form as 

v 
a 

v be 
=O 

69 

vbr 
· (2~8.4a) · 

which can be written as 

v er 

V cJ, 



where 

-1 _o_ 1 ; _o_._ •• 
I o o I 1 -1 

O o I 1 o 

• • I • • 
.. I • e 

o a' I 
0 -1 I 

0 : 0 I 1 - - .. -
IO I 
IO I 
I I 

I O I 
I • I 
I o I 

-1 IO I 
1 I 11 

1 
1 .. 

• 
1 

1 

' 
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v 
al 

v 
a2 - - - -v bc1 

= 0 v bc2 
• • • 

vbc 
m - - - -v br2 - - -··-v cr1 

v 
c,tl 

• . 
• v 

cl, 1 r-v 
cJ,r 

(2.8.4b) 

n=m+r 

For a positive, see Note 2.8.1. Now we will consider Case I. 
0 

2.8.3 Case I. The transfer admittance of the Case I classifi-

cation, as can be shown by using the material in Appendix D, is written 

as 

where 

ai = negative constant; i = o, 1, ••• , x1 

x1 = odd integer 

n = odd integer 

(2.8.5) 



R1 L1 L. L. 
l. r 

" .. 
I 

··.rm r· 
c. Ci+ 1 c c 

l.' m-1 II/, 

+ 

/ 
Figure 2.8 .. 5 Network for Case 1 

Figure 2.806 Network Graph £.or Case l 

The ladder network for this case is shown in Figure 2.8.5 with (i) 

representing the mesh consisting of the elements Ci, Li, Ci+ 1, and 

* v • 
a2 

* Note that x1 determines the mesh in which the driver va 
.. 2 

must 
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R2 

be located to yield the desired numerator degree of y12(s) in Equation 

2.8.5. (i) is related to x1 by 



12 

n=m+r (2.8.(>b) 

m = r + 1 (2.8.6c) 

The graph corresponding to this network is given in Figure 2.8.6. 

The fundamental circuit equations corresponding to thi-s-graph are sym-

bolically represented by 

~] v 
a 

v. 
be 

vbr 

v er 
v 

Ci, 

= 0 

(2.8.7a) 

Since there are no branch resistors in the graph, Rb and B23 will be 

zero, and the fundamental circuit equations can be written as 

-1 0 11 0 0 
001000 ••• 
- - ·1· - - - - - - - - - - - - - -
0 0 11.-1 
0 0 J 1 -1 
• • I 

: : I 
0-1' 1-1 
0 0 I 1 -1 
• • I 
. • I 
• • I 
0 01 
0 01 

o o ol1 _ 
2 _o_ ! L _1_ -· - - - - - - - - - - -

I 1 
1 

1 

1 -1 1 
1 -1 i 

v • 
. bci 

=O v 
bci+ 1 
• . 

vb~ 
m-1 

vbc 
lll 

·v 
cr 1 

V. 
cr2 

v . 
. c£1 

v 
c.1.2 

VC~ 

v i 
ci.:i.+ 1 

v • 
c.l.i:-1 

·V 
c.l.i: 

{2.8.7b) 
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, where 

n=m+r 

i <r 

d h .th f B h h 1 1 t . 1 2 F h i an t. e i row o 21 . as t e - e emen in co umn • . or t e ai s 

of Equation 2.8.5 to be positive, see Note 2.8.1. Now we will consider 

Case II. 

2.8.4 Case II. The transfer admittance of the Case II classifi-

cation, as can be shown by using tl1e material in Appendix D, is written 

as 

(2.8.8) 

where 

ai = negative constant; i = O, 1, ••• , x2 

x 2 = even integer 

n = odd integer 

11 12 L. 1 
l. r 

·r-r· 
Rl cl c2 c3 c c R2 Ci Ci+l·· m-1 rn 

+ 

Figure 2.8.7 Network for Case II 



. Figure 20808 Network Graph for Case II 

The ladder network for this case is shown in Figure 2.8.7 with (i) 

representing the mesh consisting of the elements C., L., C. + 1 , and 
l. l. 1. 

* Note that x 2 determines the mesh in which the driver v must 
a2 

be located to yield the desired numerator degree of y 12(s) in Equation 

2.8.8. (i) is related to x2 by 
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n-x2 + 1 
i - 2 

(2.8.9a) 

Further 

n=m+r 

m = r + 1 (2e8.9c) 

The graph corresponding to this networkis given in Figure 208.8. 

The fundamental circuit equations corresponding to this graph are 

symbolically represented, as 
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[Bl! B12 0 I lJ ~] v 
I a 

B21 B22 B I O v - 0 
23 I be 

v br (2.8.10a) 

v er 

V ct 

Since there are no branch resistors in the graph, Rb and B23 will be 

zero, and the fundamental circuit equati.ons can be written as 

0 0:1 0 0 
o_~t.o_~_o ___ ._ •• 
1 0 1 -1 
0 0 1 -1 

0 -1 
0 0 

0 0 
0 0 

1 -1 
1 -1 

0 0 0 11 
0 0 1 l 1 --------

1 

1 -1 
1 -1 

n = in + r 

i<r 

1 

1 
1 

1 
1 

vb~ 
m-1 

vbc 
m 

v 
ci: 1 

v 
CJ:2 

v 
c.tl 

v 
c.t2 . . 

v • 
c.ti 

·v 
c.t.i+ 1 

(2.8.lOb) 

th and the i row of n21 has the -1 element in column 2 .. For the a1 °s 

of Equation 2.8 .. 8 to be positive, see Note 2 .. 8 .. 1. Now we will consider 

Case Ilio 



76 

2.8 • .5 Case III. The transfer admittance of the Case III classifi-

cation, as can be shown by using the material in Appendix D, is written 

where 

x3 x3-1 
a s + a l.s + ••• + a 1s + a x3 x3- O 

Sn ·+ b 1. sn-1 + . b b n- 0 • • + 1 s + o 

ai = negative constant; i = O, 1, o••, x3 

x 3 = odd integer 

n =even integer 

----· . 
C,.. 
~ 

Li 

·11· 
C. c .. -I 1 l. l. -

• • 

c m-1 

L r-1 

Figure 2.8.9 Network for Case III 

c 
m 

L r 

R2 

The ladder network for this case is shown in Figure 2.8.9 with (i) 

representing the mesh consisting of the elements c1 , Li, Ci+ 1, and 

* * Note _that x3 determines the mesh in which the driver v must a , 
2 

be located to yield the desired numerator degree of y12(s) in Equation 

2.a~1i. (i) is related to x3 by 



Further 

n-x3 + 1 
i = 2 

n=m+r 

m=r 
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(2.8.12a) 

(2.8.12b) 

(2.8.12c) 

The graph corresponding to this network is given in Figure 2.8.10. 

\ 
\ 
\ 

vcr~ 

\ 
\ 

\ 
\ 

Figure 2.8.10 Network Graph for Case.III 

The fundamental circuit equations corresponding to this graph are 

symbolically represented as 

lu OJ V I · a 
Io u· vb 
I c 

v 
- ~+ 
v er 

V Ci, 

= 0 

(2.8.13a) 



which can be written c:u:; 

o.2L1.2_0_ . . . - - - - - - - - -
1 011 -1 
0 01 1 -1 

• I 
• I 

. • I 
o -1 I 1 -1 
O 01 1 -1 

I 

: I 
0 ol 
0 ol 

0 O I O 1 1 
- I- _, - - - - - -

Io I 
Io I 
I I 
I , I 
I , I 
I • I 
lo I 
,o I 
I , I 
I • I 
I • I 

1 -1 I O 
1 I 1 

n,.::::m+r 

- - - - - - -

1 

v bc1 
v 

bc2 . 
v • 

bc1 
v 
bci + 1 = O 

v • 
bcm-1 

vbc 
m 

v br2 

v • 
ci,i 

v 
c.e,i+ 1 . . 

v • 
ci,r-1 

vc.e 
r 

(2.8.13b) 

tl· 
and the i _, row of B,'>1 hns the -1 element in column 2. For the a. 1 s 

L~ 1 
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of Equation 2~8.11 to be positive, see Note 2.8.1. Now we will consider 

Case IV. 

2.8.6 Case IV. The transfer admittance of the Case IV classifica-

tion, can be shown by using the material in Appendix D, is written 

(2.8.14) 



where 

ai = negative constant; i = O, 1, ••• , x 4 

x 4 = even integer 

n = even integer 

The ladder network for this case is shown in Figure 2.8.11 with (i) 

representing the mesh consisting of the elements C., L., C. + 1, and 
]. . ]. ]. 

* 

. " . . . 

c m-1 

Figure 2.8.11 Network for Case IV 

"le 

c m 
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Note that x, determines the mesh in which the driver v must be located 
~ a2 

to yield t,he desired numerator degree of y 12 (s) in Equation 2.8$14. 

(i) is related to x 4 by 

Further 

n-x4 
i =-2-

n=m+r 

(2.8.15a) 

(2.8.15b) 
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m=r (2.8.15c) 

The g~aph corresponding to this network is given in Figure 2.8.12. 

Figure 2.8.12 Network Graph for Case IV 

The fundamental circuit equations corresponding to this graph are 

symbolically represented by 

v 
a 

vbc = O 

vbr (2.8.16a) 

v er 

V Ci, 

which can be written as 



-! _o_l ! _o_ ~ __ ! _ 

0 0 1 -1 
0 0 1 -1 

0 -1 
0 0 

0 0 
0 0 

1 -1 
1 -1 

• o 0 1011 
- - - - - -' - r - - - - -

Io 1 1 
Io I 1 
I • I 
I • 
I • I 
Io I 
Io I 
I I • I 
I • I 
I • I 

1 -1 IO I 
1 11 I 

n=m+r 

i<r 

1 
1 

and the ith row 1:1 21 has the -1 element in column 2. 

Equation 2.8014 to be positive, see Note 2.8.L, 

1 
1 v • 

bcm-1 
vbc 

m 
v br2 
v cr1 
v . 
. c.tl 
v 

c.1.2 . . 
v • 

c.ti 
v 

ci.i + 1 . 
v • 

Ci.r-1 
v c.tr 

(2.8.16b) 

For the a. 's of 
1 

In the next chapter these results will be used in the synthesis 

procedure,, 

81 



CHAPTER III 

SYNTHESIS OF THE SHORT CIRCUIT TRANSFER ADMITTANCE, Y12(s) 

3.1 Introduction. This chapter will present the state-space 

approach to the synthesis of the short circuit transfer a~~ittance, 

Y12(s), using the concepts presented in Chapter II. Only the general 

RLC case and LC case will be considered. The restrictions on the network 

topology and on the s-domain transfer function will be presented as they 

apply to the short clrcuit transfer admittance only. The desired state

model for Y12(s) synthesis will be given and using this state-model 

certain short circuit transfer admittances will be synthesized to illus

trate the developed procedureso 

3.2 Restrictions. The restrictions are of two types; those on 

t,he s-domain short cixcu:Lt transfer admittance function to be synthe

sized and those of the resulting network that exhibits the given Y12(s). 

Discussions of these restrictions in general are presented throughout 

Chapter II. They are presented below as they apply only to the short 

circuit transfer admittancej Y12 (s). 

The short circuit transfer admittance function restrictions are: 

1. The degree of the numerator polynomial can be no more than 

one greater than the degree of the denominator polynomiaL 

2. The coefficients of the numerator polynomial must be real 

and finite. 

82 
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3. The denominator polynomial must be a strictly Hurwitz poly-

nomial (32). 

If Y12 (s) is an improper function, Section 2.6.1 presents the necessary 

modification to complete before the state-space synthesis procedure 

can be applied to the proper function portion of Y12(s) which is repre

sented as Yi2(s) in Equation 2.607. 

The topological restrictions on the network to be synthesized 

3 from the proper function Y12(s) are: 

1. Both branch resistors and chord resistors will not be per-

mitted in the same fundamental circuits. 

2~ Circuits of capacitors with or without voltage drivers will 

not be permitted. 

3. Cutwsets of inductors wi.11 not be permitted. 

4. The network driver configuration must be that of Figure 2.4.1. 

to recall the state=model developed in Section 2.4.1 as it will be used 

in the synthesis procedure.. This state-model is given here for ready 

reference. 
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(3.3. lb) 

Our objective at this time will be to derive a state-model of the 

form in Equation 3.3.1 from the proper function Yi2(s). From here 

onwards for simplicity, Yf2(s) will be referenced as y 12 (s). 

Let us consider a y12(s) which has a denominator polynomial of 

odd degree, n. Now using the developments presented in Sections 2.4 

and 2.5 (Equations 2.4.5-2.4.9 and 2.5.1-2.5.10), it can be seen that 

this can be represented in the state-model as 

I 
t 

v -f I kl v 
bc1 0 I bc1 

0 -k2 • 
• • • • 0 • k 

n-2 l i 

vbc -f -k n-1 vbc 
d n 

m m = - - - - - - - -dt i 

i -k1 k i 
cf.,m+ 1 J. 2 c.e,m+ 1 

• • 
• • 

• • i I 

i 
c.e,m+r 

-k 
n-2 

k 
n-1 

i 
ci,m+ r 

~·, 
bll b12 v 

al 

* 
b b v 
~,; a2 

+ - - - ~'~ 
b m+ 1,1 b m+ 1,2 

b 
m+r,1 b' 2 m+r, 

(3.3.2a) 
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. 
• 

+ [r11 o J 
. 0 r22 
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(3.3.2b) 

where n is odd, n = m +rand m = r + 1. Observe that there are m 

capacitor voltages and r inductor currents in the state-vector. As 

was done in Equation 2.4 .• 5, Equation 3.3.2 can be written in a symbolic 

form as 

d * -X=KX+fi.V 
dt 2 a (3.3.3a) 

* * I =t>X+RV a a (3.3.3b) 

Now from Equations 2.4.6 and 2.5.5 

(3.3.4a) 

1 . . 
!) (s) =~fl [adj(sU-K2)] 8 (3.3.4b) 

(3. 3. 4c) 

where 
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and 

(3.3.5) 

u 
Equations 3.3.4b and 3.3.5 show that :212(s) is the product of certain 

elements of r, a, and [adj(sU-K2)]. Therefore one of the major ideas 

in this synthesis procedure will be to select the correct network from 

those of section 2.8 which will result in a network graph that specifies 

the elements of rand i so that r [adj(su-.K2)] ta will yield the desired 
i 

:2 1/s). Now we shall obtain the matrix [adj(sU-K2)]. From Appendix C 

it was shown that 

where the matrix [adj(sU-K1)] is given in Equation 2.5.12 and can be 

written i.n symbolic form as 

all a12 a 1,n 

a21 a22 a 2,n 
[adj(sU K1 ) J = (3e3o7) . 

" 
a a n,2 a 
n, 1 n,n 

Using the transformation matrix, L, of Equation 3.5.8b and Equation 

3.3.7 in Equation 3.3.6 yields 



... a 1,n-1 
a 3,n-1 

. 
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... a _ nzn:1 __ ... 
... 

. . 
an-1,1 a.n-1,3 ... 

a 2,n-1 
a 4,n-1 

. 
a n-1,n-1 

(3 .. 3.8) 

where the aij elements of Equation 3.3.8 are the same aij elements of 

Equation 2.5.12. 

Now substitute the ta and f' of Equation 3.3.2 and the [adj(sU-K2)J 

of Equation 3.3.8 into Equation 3.3.4b and it can be shown that the 

' ::t12(s) of Equation 3.3.5 will be as shown in Equation 3.3.9 on the 

following page. Equations 3.3.1, 3.3.2, 3.3.7, and 3.3.9 will be used 

frequently in the synthesis procedure that follows. 

3.4 Synthesis of y12(s), Case II - Special. Several features of 

the synthesis procedure will become apparent with the synthesis of 

y12(s) that has a denominator function degree of n, which is odd, and 

a numerator function that is a real and finite constant. The synthesis 

procedure will produce an unbalanced ladder network as in Section 

2.8.1 that has two resist.ors, n reactive elements, and no transformers. 

Note that in the special case of n = 1, we will have one resistor and 

one reactive element. This will be a s.ubclass of the general case 

which will become evident later. A y12(s) with these characteristics 

is presented first as it will have the simplest synthesis procedure and 

it will give a good overall idea of the synthesis approach used in the 

more complex short circuit transfer admittance to be synthesized. 



I 

!l12<s) = (p11a11 + P12a31 + P13a51 + •• • + P1,man,1 .j. P1,m + la21 + P1,m + 2a41 + ••• + Pi,nan-1,1 )b12 

+ (p11a12 + P12a32 + P13a52 + •• • + P1,man,2 + P1,m + 1a22 + P1,m + 2a42 + ••• + Pi,nan-1,2 )bm + 1,2 

+ (p11a13 + P12a33 + P13a53 + • • • + P1 ,man,3 + P1,m + 1a23 + P1,m + 2a43 + ••• + Pi,nan-1,3 )b22 

+ (p11a14 + P12a34 + P13a54 + ••• + Pi,man,4 + P1,m + la24 + P1,m + 2a44 + ••• + Pl,nan-1,4 )bm + 2,2 

+ (plla15 + P12a35 + P13a55 + • • • + P1 ,man,5 + P1,m + la.25 + P1,m + 2a45 + ••• + Pi,nan-1,5 )b32 

. . . 
+ (pll al 1 + P12a3 1 + P13a5 1 + • • • + Pi a 1 + P1 1 a 1 + P1 ~a4 1 + • • • + P1 a 1 1 )b 2 ,n- . ,n- ,n- ,m n,n- ,m + 2,n- ,m + ~ ,n- ,n n- ,n- m + r, 

+ (pllal,n + P12a3,n + P13as,n + • • • + P1 ,man,n + P1,m + la2,n + P1,m + 2a4,n + • •• + P1,nan-l,n )b 2 m, 

n = odd integer 

n=m+r 

m=r+l 

(3.3.9) 

():) 
():) 
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Assume that the Case II - Special short circuit transfer admit-

tance to be synthesized is 

(3.4.1) 

where a0 is an arbitrary real coefficient and the denominator polynomial 

is a strictly Hurwitz polynomial. In Section 2.8.1 a ladder network 

has been given that yields a transfer admittance like that of Equation 

3. 4.1. Also the fundamental circuit equations. for this network are 

given in Equation 2.8.2. Utilizing this information a_llows the deter-

mination of the element values of this circuit and completion of the 

synthesis procedure. 

Proceeding as in Section 2.7.1 and.considering the part.itioned 

matrix parts of Equations 3.3.1 and 3.3.2, it is observed that the 

corresponding parts of the partitioned matrices can be equateu such as 

-f 
0 

0 

• • 

• 

• • 
• • 

-k n-3 

0 

(3.4.2a) 

-£ n 

(3.4.2b) 

k 2 n-
-k 1 n-
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(3.4.2c) 

(3.4.2d) 

b b m, 1 m,2 

b m+ 1, 1 
b m+ 1,2 

b m+ 2, 1 b 
m+ 2,2 -~ 

-Lc B21 = (3.4.2e) 

b 
m+ r,1 b m+ r,2 

(3.4.2f) 

-\ -L Bl c 2 
=[~1,m+l 

f-'2,m+l 
(3.4.2g) 

=[r11 OJ 
O r 22 

(3.4.2h) 

\ 

There are four points that must be considered. First, the unimod-

ula:.r matrices, Bij, are known from Equation 2. 8. 2. Second, a set of 

ind~pendent algebraic equations can be obtained from these sets of 

matrix equations that will yield the network component values. Third, 

Equations 3.4.2d, 3.4.2e, and 2.5.Sg will designate which element of 

Equation 3.3.8 will be a factor of the numerator constant. And fourth, 



J 
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in Equation 3.4.2h only the form of the matrix product need to be con-

sidered and the values of r 11 and r 22 ignored as shown in Equations 

2.4.7 through 2.4.9. 

Before obtaining equations in terms of component values, consider 

Equation 3.3.1 and its development in Chapter II. It is noted that Cb,

L, Rb, and G are diagonal matrices with positive entries, that the 
c c 

B .. 1 s are unimodular matrices with elements +1 or O, and that the state-
1J - . 

vector in Equation 3.3.2 implies that Cb will be a diagonal matrix of 

order m and Lc will be a diagonal matrix of order r. Since Cb and Lc 

-\ are positive diagonal matrices, the matrix Cb is a diagonal matrix of 

order m and the matrix L-~ is a diagonal matrix of order r whose entries 
c 

are chosen to be positive. 

Utilizing the discussion above while considering Equation 3.4.2a 

and the unimodular matrix, B12 , of Equation 2.8.2, it is possible to 

-\ T -\ decompose (Cb B12GcB 12cb) in the same manner as the decomposition of 

Equation 2.7.4a and this decomposition results in 

I [gl OJ[~ ~] t 

c1 1 0 0 ... 0 c1 
0 0 0 ... 0 

0 82 • . . . . 
I 0 0 • I 

c c m 0 1 m 

(3.4.3) 



Equation 3.4.2a with Equation 3.4.3 yields 

-f 
0 

0 
• • • = 

d 
-f 

n 

and this equation implies that 

r 2 
f = o (C) 
n °2 m 

0 
• • • 

0 
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(3.4.4a) 

(3.4.4b) 

(3.4.4c) 

Considering Equation 3.4.2b and using the B22· submatrix of Equation 

Of (cb-~BT22L-c\) 2.8.2, the decomposition is the same as in Equation 

2.7.12 and is 

v 
c 

m 

1 
-1 1 

. . . . 
-1 1 

-1 

• t 

L r 

(3.4.5) 



Equation 3.4.2b with Equation 3.4.5 yields 

• 
• 

• 
• 

• • 
-k k n-3 n-2 

-k n-1 

• 
= • • 

• • 
• • • -C L lll-1 r-1 

I I 
O L m-1 r 

I 

' t -CL mr 
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(3.4.6a) 

Equation 3.4.6a implies that 

. 
• 
• I t 

k = C L n-3 m-1 r-1 

' ' k = C . L 
n-2 m-1 r 

I I 

k l =CL n- m r 

(3.4.6b) 

Considering Equation 3.4.2c, it follows from a similar argument 

to that given in Section 2.7 that~= 0 and B23 = O. 

Considering Equation 3.4.2d and using the B11 , Ge and a12 sub

-\ T matrices from Equation 2.a.2, the decomposition of (Cb B12GcB11) will 

be 



= -
• I 

c 
m 

1 0 
0 0 

. . . . 
0 0 
0 1 

Equation 3.4.2d with Equation 3.4.7 yields 

I 

bll b12 g1C1 0 

b21 b22 0 0 

. 
= • 

b 
ID= 1, 1 b m-1,2 

0 0 
1 

b 
m,1 

b 
m,2 

0 g2Cm 
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(3.4.7) 

(3.4.8a) 

and this implies that b 11 and b are the only two non-zero entries m,2 

of this matrix and are 

f 

b ? = g2Cm m,_ 

(3.4.8b) 

(3.4.8c) 

The B11 of Equation 3.4.7 also satisfies t~e matrix product of 

Equation 3.4.2b, since 

Consider Equation 3.4.2e with the B21 submatrix of Equation 2.8.2 

where B21 = 0 and this results in 



b b m+l,1 m+l,2 
b b m+ 2,1 m+ 2,2 

• . 
• 

b b m+r,1 m+r,2 

= 0 

Equation 3.4.2£ with Equation 3.4.8a yields 

b11 0 
T 0 0 _ [PH O ••• O O J • • - - 0 0 O P2,m . . . .. 

0 0' 
0 b m,2 

and this equation implies 

b = -p m,2 2,m 

Equation 3.4c2g with Equation 304.10 yields 
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(3.4.10) 

(3.4.11a) 

(3.4.11b) 

(3. 4.11c) 

(3.4.12) 

Using the p and B of Equation 3.3.3 with Equations 3.4.Sa, 3.4.10, 

3.4.lla, and 3.4.12 yields 



b 11 o 

B=-

••• 
.... 

0 0 

. 
• 
0 0 
O b __ m1 2_ 

0 
• .. 
• 
0 

0 
• 

0 

o o I o 
I 

0 . I O 
Pz,m I 
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(3.4.13) 

::: ~] (3. 4.14) 

Substituting the entries of Equations 3.4.13 and 3.4.14 into 

Equation 3.3.9 yields 

v 
~12 (s) = p a b 11 1,n m,2 (3.4.15a) 

where a 1 is an entry of the matrix of Equation 3.3.8 and has been 
,n 

determined in Equation 2.5.12 as 

' 

a = 1,n 

Therefore ~ 12(s) can be written as 

n - 1 

II ki 
i = 1 

and from Equations 3.3.5 and 3.4.1, we have 

=a. 
0 

(3. 4.15b) 

(3.4.16a) 

(3.4.16b) 
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which yields the result 

(3.4.16c) 

Recall that this development assumes the network of Figure 2.8.1. 

Now the network component values must be determined and Equations 

3.4.4b & c, 3.4.6b, 3.4o8b & c, 3.4.llb & c, and 3.4.16c provide the 

following set of (n + 6) non-linear algebraic equations with the (n+ 6) 
f t V I 

unknowns; g1, g2, Cl' ••• , c.r,' L1, ••• , Lr' b11 , bm, 2' p11 , and P2,m. 

I 

b = g c m,2 2 m 

b = -p m,2 2,m 

V I 
k =CL n-1 m r 

(3.4.17a) 

(3.4.17b) 

(3.4.17c) 

(3.4.17d) 

(3. 4.17e) 

(3.4.17f) 

(3.4.17g) 

(3. 4.17h) 

A solution to this set of non-linear algebraic equations can be 

found in the following manner. Equations 3.4.17d and 3.4.17e can be 
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written as 

(3.4.18a) 

(3.4.18b) 

Then substitute 81 and 8z into Equations 3.4.17b and 3.4.17c to yield 

(3.4.19a) 

t 

f = b c n m,2 m 
(3. 4.19b) 

Solving for b11 and b in Equation 3.4.19 gives 
m,2 

(3.4.20a) 

f 
n 

b 2 = -i m, C 
(3.4.20b) 

m 

From Equations 3.4.17f and 3.4.20a 

(3. 4. 21) 

Using Equation 3.4.17h, it can be shown that 

f 

I k k k ••• k 1c1 n-1 n-3 n-5 c = ~~-,-~-,-~~~~~ 
m k 2k . 4k 6 • • • k2 .n- n- · n-

Note that this is the same solution as that given in Equation 2.7.19c. 

Substituting bm,Z of Equation 3.4.20b and p11 of Equation 3.4.21 into 
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Equation 3.4.17a yields 

(3.4.23) 

I 
Substituting C of Equation 3.4.22 into Equation 3.4.23 and solving for m 

1 

C1. results in 
I 

' [-f f J\ = 0 ..P (k k k 
Cl a0 . n-2 n-4 n-6 

where a 
0 

is a negative real constant. Substituting 

3.4.17 will yield the other unknowns. ·observe that 

(3.4.24) 

I 

c1 into Equation 
I 

c1 is positive 

and real, since f 0 , fn' k 1, ••• , kn-i are positive and real. Note that 

in Equations 3.4.3, 3.4.5, and 3.4.7 a change of variables has been made 

of 

(3.4.25a) 

(3.4.25b) 

From these equations the network component values of the synthesized 

network of Figure 2.8.1 will be given by 

1 
R =

i g. 
1 

(3.4.26a) 

(3.4.26b) 

(3.4.26c) 
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It should be noted that for a ladder network of the type shown in 

Figure 2. 8.1 the numerator polynomial of y 12(s) will have negative 

coefficients (32). This implies that a of Equation 3.4.1 must. be 
0 

negative. It is shown below that a as calculated in Equation 3.4.16c 
0 

will always be negative. Considering Equation 3.4.17 it is observed 

that b11 and bm, 2 must be positive constants if only physically realiz

able components are to be in the synthesized network. With b11 a pos

itive constant, Equation 3.4 .. 17f implies that p11 is a negative con

stant. With 

then 

b >O m,2 

k . > 0; i = 1 , ••• , n-1 
1. 

An important point to be considered is that for the denominator 

polynomial of a given y1is), Navot's (27) method of Appendix B will 

yield an infinite number of real positive values for. f 0 , fn' k1 , ••• , 

k 1• This implies that there are infinitely many real positive values 
n-

... ' C, 1 1, ••• , L possible in the synthesized network m r 

that yield the same y1z<s) and these are dependent upon the users 

manipulation of Navot I s method. 

If a0 in Equation 3. 4.1 is positive, B11 , b11 , and/or bm, 2 will 

reflect the change in sign and should be handled accordingly. Or a 



1:-1 transformer can be added to either port to yield a positive a • 
0 

~ 
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This completes the presentation of the synthesis of y1/s) with a con-

stant numerator and a denominator polynomial of odd degree~ It is 

felt that a summary of the synthesis procedure should follow. 

3.5 Synthesis Procedure for Case II - Special Sunnnarized. The 

synthesis procedure for synthesizing a Case II - Special short circuit 

transfer admittance, y12(s), with a constant numerator and a denom

inator polynomial of odd degree is given in the following enumerated 

steps. 

1. Take the proper function, y1is), and use Appendices Band C 

to obtain the matrix, of Equations 3.3.2 and 3.3.3. 

2 •. Write the state-model of y 12(s) in the form of Equation 3.3.2 

using the element values determined in Step L Leave matrices 

"k .. 1,: 

V , I , IS, r, and &i in general terms as was done in Equation 

3.3.2. This will allow you to determine their sizes and will 

yield the number of capacitors and inductors. 

3~ If desired, write th.e resulting fundamental circuit equations 

using Equation 2.8.2 as a guide. 

4. Draw the resulting ladder network using Figure 2.8.1 as a 

guide. 

5. Solve the set of (n + 6) non-linear algebraic equations of 
i 

Equation 3.4.17 by first solving for c 1 of Equation 3.4.24 

and then using this result to solve for the other unknowns of " 

Equation 3.4.17. 

6. Obtain the synthesized network component values from Equation 

3 .. 4.26, which completes the synthesis of the transfer admit-

tance. 



An example will now be presented to illustrate this synthesis 

procedure. 

3.6 Synthesis ExamEle of y1ls) with n = 3. It is instructive 

to observe a Case II - Special example, therefore a y12(s) with a 

constant numerator and an odd denominator function degree is given 

to be synthesized. Let 
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-4 (3.6.1) 
s3 + 5s2 + 17s + 25 

Using Appendices Band C, a possible K2 matrix is 

-f O I k1 o I 
K = 0 -f3 I -k2 

2 - - - - -I - -
(3.6.2a): 

-k1 k2 : 0 

t-1 o I 2d 
K = 0 -4 1-3 

2 - - .. I_ -
-2 3 I O 

(3.6.2b) 

It is now possible to write the state-model for this transfer 

admittance using the results of Sections 3.3 and 3.4. 

11 I 11 * v -f 0 I kl v b11 0 v bc1 0 bc1 al 
I 

v 
-f '-k 

I * v 0 v 0 b22 v 
d bc2 3 I 2 bc2 + a2 (3.6.3a) = dt ·----,--

B I I 
i -kl k2 0 i 0 0 

ci,1 I c.t,1 
I 
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* i * i Pu 0 10 v r11 0 v 
al I bc1 al 

= I i + 
* 

(3.6.3b) ,'< I i 0 Pzz I O v 0 r22 v 
a bc2 a2 2 I 

i 
i 

c..e.1 

or 

I o: v * v -1 2 v bu 0 v 
bc1 I 

bc1 al 
i I i * v 0 - L+ I -3 v 0 b22 v 

d bc2 bc2 a2 
dt = I + (3.6.3c) - -1 - -

31 
u 

i -2 0 i 0 0 
ct I c..e.1 1 I 

* I u * :L P11 0 JO v r11 0 v 
al I 

bc 1 al 
(3.603d) 1: - I 2 + ~'< 

i 0 P22 IO v 0 r22 v 
a2 

I 
bc2 a2 

i 

i 
CX,1 

From Section 2~8~ 1, the fundainental circuit equations in symbolic 

form are 

[
Bl1 B12 0 : U 01 Va 

B21 B22 B23: O Uj vbc 

vbr 

v 
er 

V cJ, 

=O (3.6.4a) 
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which for this example can be written as 

n QI 1 0 :o i 1 0 OJ v I al -11 0 _1_: 2 :-0_1_0_ 0 (3. 6.4b) - v = 
ol 1 -1,0,001 a2 

v bc1 
v 

bc2 

vbr 
v cr1 
v cr2 
v . 

c,R,1 

and after reducing the network graph of Figure 2.8.2 to fit this exam-

ple, it is shown in Figure 3.6.1 while the synthesized network is shown 

in Figure 3.6.2. 

Figure 3.6.1 Example Network Graph 

Now the following nine non-linear algebraic equations, which are 

similar to those of Equation 3.4.17, will be 



t 2 
4 = g (C ) 2 2 

These can be solved by starting with Equation. 3.4.24 which yields 
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(3.6.5) 

and resulting in the synthesized network of Figure 3.6.4 with component 

values of 

R1 = 4 ohms 

R2 = 9/4 ohms 

(3.6.6) 

c1 = \ farad 

c2 = 1/9 farad 
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and state-model element values of 

b22 = 4/3 

(3.6.7) 

p 22 = -4/3 

Figure 3.6.2 Exrunple Synthesized Network 

To check these results, y 1is) is determined in algebraic form 

from the synthesized network as 

-1 

(3.6.8a) 
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and substituting in the calculated component values yields 

-1 

y12(s) = \s3 + 5/4s2 + 17/4s + 25/4 
(3.6.8b) 

or 

-4 (3.6.Sc) 
s3 + 5s2 + 17s + 25 

which is equal to the short circuit transfer admittanGe of Equation 

3.6.1 that was to be synthesized. 

When the degree of the denominator polynomial of y12(s) is even, 

there are some small differences in the synthesis procedure and in the 

synthesized network. These are presented in the next section. 

3o7 State-Models, [adj(sU-K2)] and Synthesis of Case IV - Special 

~ 12 (s). This section will be similar to the presentations in Sections 

3.3-3.5. Whereas these sections were concerned with the synthesis of 

a Case II - Special short circuit transfer admittance, y1z<s), this 

section will present the synthesis procedure for a y12(s) that is a 

Case IV - Special. 

The state-model of Equation 3.3.1 will be used again in the same 

role that it was in Sections 3~3 and 3.4. Also the developments of 

Sections 2.4 and 2.5 are used to obtain this state-model that repre-

sents y12(s) as 



r 

vbc 
' 1 

v bc2 . 
• •• 

vbc 
d m - i - - -dt i 

c.l,m+ 1 
I .. 

i ' 
ci,m+ 2 

' . i • 
cJ,m+r 

. . . 

-f 
0 

0 
• 

• 

= - - - - -
-kl k2 

• -k3 • 
• • 

P1,m : P1,m+ 1 
I 

P2,m j P2,m+ 1 

.1 
kl. I 

'-k I 2 
I • 
I • I 

0 I 
- -' -

I 0 
I • 
I 

• I k n-2 I • 
-k n-1 

I 
I 

P1,m+r] ... 
... P2,m+ r 
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I 

v bc1 
k3 

i 

v bc2 • 
• • 

• • I • 

-k k ' v 
n-2 n-1 be m - - - .. - - j - - -

i 
;tm+l • i • c.l,m+ 2 0 

• 
r • 

:..f i • 
n c.tm+ r 

b11 b12 [:~:] • • 
• 

b b 
+ 

m,1 - ~,3 -. - -
b m+ 1,1 b m+l,2 

• 

b 
m+r,1 Pm+r,2 

(3.7.1a) 

' 
+t11 0 J [v;J 

v bc1 

O r22 va2 
i. 

vbc 
m - - - -

I 

i 
c..e,m+1 . 

• 
I • 

i 
c.tm+r 

(3.7.1b) 

where n is even, n = m +rand m = r. Again there are m capacitor 

voltages and r inductor currents. As presented in Section 3.3, the 



matrix p [adj(sU-K2)] B will yield the numerator of y12(s) and so the 
t 

[adj(sU-K2)] and :l12(s) must be obtained befor.e proceeding with the 

synthesis procedure. Using the transformation matrix, L, of Equation 
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2.5.9b and the [adj(sU-K1)] of Equation 3.3.7 in Equation 3.3 .. 6 yields 

all a ., a I 
a14 a 13 ... 1,n-1 I a12 . .. 1,n 

a31 a33 ... a 3,n-1 : a32 a.34 . .. a 3,n 
• I • • • I . • . 
• • • 

a ~-!,! a n-11 3 . . . a ~-!,~-! 
I a . a n-1,4 • 0 • a 

[adj(sU-K2)] = I !:-! ,3 - ~-!,~ - - - r - - - --
8 21 a23 ... a 2,n-1 I a22 

I 
a24 . .. a 2,n 

a41 a43 a4,n-1 I a42 
I 

a44 ... a 4,n 

I . • . . • 
I 

a n,1 a n,3 ... a n,n-1 1a a n,4 a 
I n,2 n,n 

(3.7.2) 

where the aij elements of Equation 3.7.2 are the same aij elements of 

Equation 2.5.12. 

Now substitute the Band P of Equation 3.7~1 and the [adj(sU-K2)] 

of Equation 3.7.2 into Equation .3.3.4b and it can be shown that the 
¥ 

:l12(s) of Equation 3.3.5 will be as shown in Equation 3.7.3 on the 

following page. Equations 3.3.1, 3.7.1, 3.3.7, and 3.7.3 will be used 

frequently in the synthesis procedure for the Case IV - Special y 1z< s.). 

Assume that the Case IV - Special short circuit transfer admittance 

to be synthesized is 

co 
Y12< s) = -----.....,--------n n-1 

s + dn_ 1s + ••• + ct1s + d0 

(3.7.4) 



. . 
2 12<s) = (p11a11 + p12a31 + P13a51 + ••• + P1 a 1 1 ,m n- • + P1,m + 18 21 + P1,m + 28 41 + ••• + P1,n8 n,l )b12 

+ (p118 12 + P128 32 + p138 52 + ••• +_P1,m8 n-1,2 + P1,m + 18 22 + P1,m + 28 42 + ••• + P1,n8 n,2 )bm + 1,2 

+ (p118 13 + P128 33 + P13&53 + • • • + Pi,man-1,3 + P1,m + 1a23 + P1,m + 28 43 + ••• + P1,n8 n,3 )b22 

+ (p118 14 + p128 34 + p138 54 + ••• + P1,m8 n-1-,4 + P1,m + 18 24 + P1,m + 28 44 + • • • + P1,n8 n,4 )bm + 2,2 

+ (p118 15 + p128 35 + p138 55 +- ••• + P1,m8 n-1,5 + P1,m + 18 25 + P1,m + 28 45 + ••• + P1,n8 n,5 )b32 

+ (p 8 + p 8 + p a + ••• + p a + p a + p a + ••• + p a )b 11 1,n-1 12 3,n-1 13 5,n-1 1,m·n-1,n-1 1,m+ 1 2,n-1 1,m+ 2 4,n-1 1,n n,n-1 m,2 

+ (p118 1 + P12•3 + P138 5 + • •" + P1 8 1 + P1 + 18 2 + P1 + 28 4 ,n ,n ,n ,m n- ,n ,m ,n ,m ,n + ••• + P1,n8 n,n )bm+ r,2 

n = even integer 

n=m+r 

m=r 

(3.7.3) 

f-l 
i-:-' 
0 
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where c is an arbitrary real negative coefficient and the denominator 
0 

polynomial is a strictly Hurwitz polynomial of even degree n. Since 

this transfer admittance is a Case IV - Special type, the synthesis 

procedure will produce an unbalanced ladder network with two resistors, 

n reactive elements, and no transfonners as shown in Section 2.8.2. 

The fundamental circuit equations for this Case IV Special are given 

in Equation 2.8.4. Again this information will be used in determining 

the network component values as was done in the previous section when 

n was odd. 

Proceeding as in Section 3.4, the corresponding parts of the parti-

tioned matrices of Equations 3.3.1 and 3.7.1 are equated to yield 

-f 
0 

0 

• • 
• • 

• • 

0 

Q 

(3.7.5a) 

0 

(3.7.5b) 

(3.7.5c) 

-f 
n 



b11 b12 

-~ T 
b21 b22 

-Cb B12GcB11 = . 
• 

b m,1 b m,2 

T 

-C-\BT GB =. [P11 P12 
... 

P1,~ 
b 12 c 11 p21 p22 ... P2,m 

-\ -L B..., 1 C L 

L-\B --- 1 c 2 

[
pl ,m+ 1 

= P2,m+ 1 

b b m+1,1 m+l,2 
b b 
m+ 2,1 m+ 2,2 

b b m+r,1 m+r,2 

P1,m+ 2 

Pz,m+ 2 ... 
T 

P1,m+ r], 

P2,m+ r 

BT G B = 11 [
r OJ 

11 c 11 0 r 22 
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(3. 7 .5d) 

(3.7.5e) 

(3.7.5f) 

(3.7.5g) 

(3.7.5h) 

The solution of the network component values can be ~btained from these 

equations by considering the four points which were presented in Section 

3.4 immediately after Equation 3.4.2. As in Section 3.4, the matrices, 

-\ -1z Cb , Lc, Gc 9 and~, will be diagonal with positive entries and the 

B .. • s will be unimodular or E-matrices with elements ±.1 or O. 
1.J 

1: 
will be a matrix of order m and L- 2 will be a matrix of order r. 

c 

Considering Equation 3.7.5a and applying a similar pr()cedt1re as 

-\ T -\ in Section 3.4, (Cb B12GcB 12cb) can be decomposed as 



i 

c 
m 

0 

· Now Equation 3.7.5a with Equation 3.7.6 yields 

-f 
0 0 

= 

0 

and this matrix equation implies that 

0 

• ¥ 

c 
m 
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(3.7.6) 

(3.7.7a) 

(3.7.7b) 

Now considering Equation 3.7 • .Sb, it can be seen that the decom

position of (Cb~\BT27L-\) will be 
·- c 

i 

c 
m 

l 
=1 1 

-1 1 
I 

L 
r 

(3.7.8) 



Now Equation 3.7.5b with Equation 3.7.8 yields 

• 
• 

• 
• 

• 
• 

-k k n-2 n-1 

= 

and this .matrix equation implies that 

. 
0 

t t 
k =CL n-2 m r-1 

r v 
k =CL n-1 m r 

• 

• 

. . 
• 

• 
' ' . ' ' -CmLr-1 CmLr 
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(3. 7 .9a) 

(3. 7 .9b) 

Considering Equation 3o7Q5c and again using a similar procedure 

-~ T -\ as in Section 3.4, (Lc B23~B23tc) can be decomposed as 

• • 
L 

r 

o [r2] [o ... o 1] L~ . 
• 

0 

1 

• 
t 

L r 

(3.7 .. 10) 



Now Equation 3.7.Sc with Equation 3.7.10 yields 

0 

• 

0 
-f 

n 

= 

0 

and this matrix equation implies that 

I 2 
f = r 2(L) n r 
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(3. 7 .11a) 

(3.7.11b) 

Now considering Equation 3.7o5d with the B11 , B12 and Ge of Equa

-\ T tion 2.8.4, it can be seen that the decomposition of (Cb B12GcB 11 ) 

will be 

• 
= - • (3. 7.12) 

1 

G O 
m 

Equation 3.7.Sd with Equation 307.12 yields 

b11 b12 
t 

g1G1 0 

b21 b22 0 0 
• = (3. 7 .13a) 

b b m, 1 m,2 0 0 

and this matrix equation implies 

(3.7.13b) 
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and the remaining b .. •sin Equation 3.7.13a are identically zero. 
l. J 

Equation 3.7.5d and c with Equation 2.7.13a implies that the only non-

zero entry in Equation 3.7.5e is 

(3.7.14) 

Considering Equation 3.7.5£, it can be seen that using the B21 of 
_1, 

Equation 2.8.4 the decomposition of (Lc 2B21 ) will be 

v 

Ll 0 0 

~~ ~,L B = -c 21 0 0 
I 

L 0 -1 
r 

Equation 3.7.5£ with Equation 3.7.15 yields 

b b O O m+ 1,1 m+ 1,2 

= 
b b 
n-1,1 n-1,2 

b b _ m+r,1 m+r,2 

. . 
0 0 

t 

O L 
r 

and this equation implies that the only non-zero entry is 

I 
b I = L 
m+r,2 r 

(3. 7 .15) 

(3.7.16a) 

(3. 7 .16b) 

Equation 3.J.Sf with Equation 3.7.Sg implies that the only non-zero 

entry is 

b - p m+r,2 - 2,m+r (3.7.17) 

When B11 of Equation 2.8.4 is substituted into Equation 3.7.Sh, the 

correct form results as shown 
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(3.7.18a) 

[ r11 01 [g1 OJ 
O r 22J O O 

(3.7.18b) 

Substituting the zero entries of Equations 3.7.13a and 3.7.16a 

into the panda matrices of Equation 3.3.3 yields 

... 
and 

B = -

010 
olo 

I 

b11 
0 

0 -
0 

... 

. .. 

0 

0 

0 -
0 

. . 
• 

0 0 

0 0 J 
O P2,m+ r 

O b m+r,2 

(3.7.19) 

(3.7.20) 

Substituting the b .. vs and p .. rs of Equations 3. 7 .19 and 3. 7. 20 
l.J l.J 

into Equation 3.7.3 yields 

i 

"' (s) = p a b ~12 11 1,n m+r,2 (3.7.21a) 

where a 1 is an entry of the matrix of Equation 3.7.2 and has been ,n 

determined in Equation 2.5.12 as 

n - 1 
a1,n = II ki 

i = 1 

(3.7.21b) 



I 
Therefore ~ 12(s) can be written as 

and from Equations 3.3.5 and 3.7.4 

which yields the desired result 

=c 
0 
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(3.7.22a) 

(3.7.22b) 

· (3.7.22c) 

Recall that this development assumes the network of Figure 2.8.3. 

Now the network component values must be determined. Equations 

3.7.7b• 3~7.9b, 3.7.llb, 3.7.13b, 3.7.14, 3.7.16b, 3.7.17, and 3.7.22a 

provide the following set of (n + 6) non-linear algebraic equations with 
t t I I 

the (n + 6) unknowns, g1, r 2, c1, ••• , Cm' L1, ·~·, Lr' b11 , bm+r, 2' 

P 11' and P 2 ,m + r' 

I 2 
f = r,..(L) n 1t.. .r._ 

' b =L m+r,2 .r 

(3.7.23a) 

(3.7.23b) 

{3.7.23c) 

(3.7.23d) 

(3.7.23e) 
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(3.7.23£) 

b = p m+r,2 2,m+r 

• • 
I 1 

k l =CL n- m r 

(3.7.23g) 

(3.7.23h) 

A solution to this set of non-linear algebraic equations can be 

found in a manner similar to that presented in Section 3.4. This re-

sults in 

and 

I 

I k 2k 4k 6 ••• k2Cl C = n- n- n-
m k 3k 5k 7 ••• k1 n- n- n-

C 1, -- [-fcooJ\ (k k k ••• kl) · n-1 n-3 n-5 

I 

(3.7.24) 

(3.7.25) 

where c0 is a negative real constant. Substituting c1 into Equation 
I 

3.7.23 will yield the other unknownse Observe that c1 is positive and 

real, since f , f , k1, .... , k 1 are positive and real. As in Section o n n-
1 t 

3. 4 after the Ci 1.s and Liv s are determined, the Ci' s and Li I s of the 

synthesized network of Figure 2.8~3 will be calculated by Ci= (C~)- 2, 

r -2 
Li= (Li) , Rl = 1/g1 , and R2 = r 2• 

Again note that for a ladder network of the type in Fi,gure 2.8.3, 

the numerator polynomial of y12(s) will have negative coefficients.· 

Therefore c of Equation 3.7.4 must be negative. It is shown below 
0 

that c as calculated by Equation 3.7.23a will always be negative. 
0 

Considering Equations 3.7.23d and 3.7.23e it is observed that b11 and 

b must be positive constants if only physically realizable com
m+r,2 



ponents are to be in the synthesized network. With b11 a positive 

constant, Equation 3.7.23f implies that p11 is a negative constant •. 

With 

then 

Pu< 0 

b + 2 > 0 m r, 

k i > 0; i = 1, ••• , n-1 
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3.8 Synthesis Example of y12(s) with n = 4. As i~ Section 3.6, 

it is felt that a brief example of a Case IV - Special transfer admit-

tance will be instructive. The y12(s) to be synthesized has a negative 

constant numerator and an even den<;>minator function degree of 4. Let 

-5 =....,.~~~~....,.....,.~....,.....,.~~-

s4 + 2s3 + 10s2 + 10s + 17 
(3.8.1) 

Using Appendices Band C, a possible K2 matrix is 

-f 0 I 
k1 0 

0 I 

0 0 I -k k3 
K2 = 

I 2 (3.8.2a) · 
I 

-k1 k2 I 0 0 

0 k I 
31 

0 -f4 

(3.8.2b) 
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Using the state-model of Equation 3.7.1, substituting in the K2 

matrix of Equation 3.8.2b, and using the resu.lts of Section 3. 7 yields 

t ' [:~:] v -1 0 2 0 v· b11 0 
bc1 bc1 
I ' v 0 0 -1 2 v 0 0 

d bc2 be2 
+ (3.8.3a) 

dt = 
I I 

i -2 1 0 0 i 0 0 
ct1 . ci,1 
' . I 

i 0 -2 0 -1 i 0 b42 c.t2 c.t2 

(3.8.3b) 

From Section 2.8.2, the fundamental circuit equations in symbolic 

form are 

v 
a 

V = 0 be 
vbr 

v er 
v ct 

(3.8.4a) 



which for this example can be written as 

L
-; _o_j ! _0_!2 i-1_0_0] 

0 0: 1 -1 IO IO 1 0 
0 -1 1 0 1 I 1 I O O 1 

= 0 

Figure 3.8.1 Example Network Graph 
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(3.8.4b) 

after reducing the network graph of Figure 2.8.3 to fit this example, 

the network graph is shown in Figure 3.8.1 while the synthesized network 

is shown in Figure 3.8.2. 



Figure 3.8.2 Example Synthesized Network 

Using the solution of Equati~t1s 3.7.23 and 3.7.25 yields for the 

component values 

16 
Rl = 5 ohm 

Rz. = 1/5 ohm 

L1 = 4/5 henry 

L" = 1/5 henry 
L 

c1 = 5/16 farad 

c2 = 5/4 farad 

and for the state-model element values 

b - IVS 
11 - 4 

b42 = A/5' 

A[§ 
P11 = - -z;-
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Since short circuit transfer admittances with other than constant 

numerators must be considered, these will be presented next. 

3.9 Synthesis of y12(s) with Numerator De&ree Greater than Zero. 

In the previous sections of this chapter, transfer admittances with 

constant numerators were considered. However it is connnon to have a 

transfer admittance numerator polynomial with a degree greater than 

zero. The synthesis procedure for such transfer admittance functions 

will use much of the presentation for zero degree numerators. This 

will be seen in the following material. 

First it is assumed that if the y12(s) to be synthesized is an 

improper function, the procedures of Section 2.6.1 have been executed 

until a proper function is left to be considered. 

Next it must be pointed out that this synthesis procedure will 

satisfy only one coefficient in the numerator polynomial per ladder 

network. Therefore if the numerator degree is (i) then in general 

there will be (i) ladder networks paralleled in the resulting network 

that synthesizes the transfer admittance. This paralleling procedure 

is justified with validity test remarks in Weinberg (33). 

It will be necessary to present the peculiarities of each of the 

Cases, I through_ IV, of Section 2.8. Then an outline of the synthesis 

procedure will be presented and last, examples will be presented to 

illustrate the synthesis procedure. 

3.9.1 Case I. For this case, the numerator and denominator 

degrees are both odd, and the network and fundamental circuit equations 

to be used are given in Section 2.8.3 with the transfer admittance of 

Equation 2.8.5. Since n is odd, the state-model to be used is given i~ 
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Equation 3.3.2. Because the fundamental circuit equations for this case 

differ from those in Case II - Special only in submatrices B11 and B21 , 

the .results in Equations 3.4.4 and 3.4.6 will apply to this case and are 

Since B11 for Case I is 

' 2 f = g (C) o 1 1 

• 

' t k =CL 
n-1 m r 

·c-1 ol B11 = 0 Oj 

from Equation 3.4.2d it follows that 

t b11 b12 g1C1 0 
b21 b22 0 0 

.. • = . . • 
b b 

m, 1 m,2 0 0 

(3.9.la) 

(3.9.lb) 

(3.9.lc) 

(3.9.2) 

(3.9.3a) 

This matrix equation implies that b11 is the only non-zero elemen.t and 

equals 

(3. 9.3b) 
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Considering Equation 3.4.2e with the B21 of Equation 2.8.7 yields 

b m+ 1,1 b 
m+ 1,2 0 0 

. . 
• . . . ' 

b b = 0 L . (3.9.4a) m+ i,1 m+ i,2 i 

. • 
b m+r,1 b m+ r,2 0 0 

which implies that b . 2 is the only non-zero element and equals m+ 1, 

(3.9.4b) 

Equation 3.4.2d with Equation 3.4.2f implies that 

(3.9.5) 

Equation 3.4.2e with Equation 3.4.2g implies that 

bm+ i,2 = P2,m+ i (3.9.6) 

Now following a procedure similar to that in Section 3.4, Band f> can 

be written as 

b11 0 

0 0 - -
a= 0 0 (3.9.7) 

0 b 
m+ i,2 

0 0 



. . . 

... 
O IO 

I 

o 1 o I 

... 
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0 ... ~] (3.9.8) 

Substituting the entries of 113 and p from Equations 3.9.7 and 3.9.8 

into Equation 3.3.9 yields 

9 

2 121 (s) = P11al,2ibm+ i,2 (3.9.9) 

where 

1<i<r 

and from Equation 2.8.6a 

2i = n - x 1 

a 1, 2i has been determined in Equation 2.5.12. It can be shown that the 

al,Zi element is a polynomial of (n-2i) degree, which for this case is 
I 

equal to x 1• This implies that :i121 (s) of Equation 3.9.9 can be written 

as 

while 

I x1 x1-1 
::l121<s) = c s + c 15 + ... + c1s + c 

x1 xl- 0 
(3.9.lOa) 

from Equation 2.8.5 

I x1 x1-1 
212<s) = a s + a s + ••• + a 1 s + a 

xl x1-1 . 0 
(3.9.lOb) 

Once the. K2 matrix is determined, the coefficients in a 1, Zi are 
t 

fixed. Further the coefficients in :t121 (s) will be fixed once bm+ i,Z 

and p 11 are determined. Under these two conditions it can be seen that 
i 

only one coefficient of :t121 (s) can be equated to a ''like" coefficient 
f 

of :t12 (s) and, in general 
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Therefore we shall equate only the ''like" coefficients, c and a , 
x1 x1 

in Equation 3.9.10. 

From Equations 2.5.12 and 3.9.9 it can be shown that 

(3.9.11) 

and so 

(3.9.12) 

The element values in the synthesized,network which yields the 

transfer a~nittance 

I 

~121 (s) 
Y121 = 6 

can be obtained from the following (n + 6) non-linear algebraic equa-

tions: 

(3.9.13a) 

(3.9.13b) 

(3.9.13c) 

(3.9.13d) 
I I 

k =CL n-1 m r 
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(3.9.13e) 

.·. (3.9.13f) 

. 1(3.9.13g) 

b = p m+i,2 2,m+i (3.9.13h). 

Using the set of equations in Equation 3.9.13d, it can be shown that 

• k1k3 ••• k2i-1 
L. = . ,. (3.9.14) 

J. k2k4 ... k2(i-1) 01 

And from Equations 3.9.13b, e, and git canl;)e shown:tlia:tO·.· 

·. (3.9.15) 

Now using Equations 3.9.14 and 3.9.15 in Equations 3.9.i3a and 3.9.13f 

yields 

' 

• • • k2' 1 J.-· 
(3.9.16) 

Substituting this value of c1 into Equation 3.9.13 will yietd all of the 

unknowns in Equation 3.9.13. Then.the synthesized network coinponent 

I •2 I •2 
values can be obtained by Ci = (Ci) , Li = (Li) · , and -~i ~ -1(~1• 

The above procedure yields 



t 

where :l121(s) only satisfies the a 
x1 

I 

t 

coefficient in :l12(s). 
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The other 

coefficients of :i121(s) will be determined from Equation 3.9.9. Most 
I 

likely these will not be equal to the desired coefficients of :l12(s). 

Therefore the next coefficient will have to be satisfied by placing 

in parallel with the network just synthesized, another synthesized 

network that will yield a coefficient which is the difference between 

a 1 and c 1 resulting from the first synthesized network. This 
x1- x1-

procedure will possibly have to be repeated until there are (x1 + 1) 

synthesized networks in parallel, as will be shown in Sections 3.11 

and 3.12. It should be noted that each new synthesized network placed 

in parallel will yield a transfer admittance numerat<>r degree that is 

one less than the previous network, however all of the networks will 

yield transfer admittance denominators that are identical. 
I 

The procedure above is also applicable to a :i12(s) where one or 

more of the coefficients are zero. When writing Equation 3.9.10b, 

be sure and include the zero coefficients as such and complete the 

synthesis procedure as presented above. 

Note that it is not necessary to write down the fundamental circuit 

equations or the state-model in order to execute the synthesis proce-

dure. However, if desired, they can be obtained. 

3.9.2 Case II. The transfer admittance for Case II is given in 

Equation 2.8.8 and the numerator degree is even with the denominator 

degree being odd. The network and the fundamental circuit equations to 

be used are given in Section 2.8.4. Since n is odd,. the state-model to 

be used is given in Equation 3.3.2. Because the fundamental circuit 

equations for this case differ from those in Case 11 - Special only in 
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submatrices B11 and B21 , the results in Equations 3.4.4 and 3.4.6 will 

apply to this case and are 

• a 
k1 = ClLl 

• . 
" t a 

kn-1 = CmLr 

(3.9.17a) 

(3.9.17b) 

(3.9 .. 17c) 

From Equation 2.8.10, B11 = Oe Then from Equation 3.4.2d it follows 

that 

b11 b12 0 0 

.. . • (3.9.18) . .. = 
• • 

b 
m,1 

b 
m,2 

0 0 

Considering Equation 3.4.2e with the B21 of Equation 2.8.10 yields 

b b v 
m+ 1,1 m+ 1,2 -Li 0 

. " • • I 

b b = 0 Li (3.9.19a) m+ i, 1 rn+ i.,2 
• • 

b 
m+r,1 

b 
m+ r,2 

0 0 

and this matrix equat:i.on implies that bm+l,l and bm+i,Z are the only 

non-zero elements and are equal to 

(3.9.19b) 



t 

b +. 2 = L. m 1., l. 

Equations 3.4.2d, 3.4.2f, and 3.9.18 imply that 

P1.,m.J = 0 
P2,m 

Equation 3.4.2e with Ec'juation 3.4.2g implies that 

b - p m+ 1,1 - 1,m+ 1 

bm+ i,2 = P2,m+ i 
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(3.9.19c) 

(3.9.20) 

(3.9.21a) 

(3.9.21b) 

Now following a procedure similar to that in Section 3.4, Band r can 

be written as 

0 

... 
0 - - -

b m+ 1,1 
a= 

0 

0 

I 
O I P1,m+ 1 

oj o 

0 

0 - -
0 

b m+ i,2 

0 

0 

P2,m+ i 

... 01 

. • • OJ 

(3.9.22) 

(3.9.23) 

Substituting the entries of 8 and r from Equations 3.9.22 and 3.9.23 

into Equation 3.3.9 yields 
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I 

:l121<s) = p a b 1,m+12,2im+i,2 
(3.9.24) 

where 

1<i<r+1 
. -

~nd from Equation 2.8.9a 

2i = n - x2 + 1 

a 2, 2i has been determined in Equation 2.5.12. It can be shown that the 

aZ,Zi element is a polynomial of (n - 2i + 1) degree, which for this 
I 

case, is equal to x2• This implies that :2 121(s) of Equation 3.9.24 

can be written as 

(3.9.25a) 

while from Equation 2.8.8 

(3.9.25b) 

Again as in Section 3e9.1 only one set of "like" coefficients 

in Equations 3.9.25a and b can be equated. As before the coefficients 

X2 
of the s t.E:rms shall be equated. 

From equations 2.5.12 and 3.9.24 it can be shown that 

c -p b ·i=l 
x - 1,m+l m+i,2' 

2 
(3.9.26a) 

and 

c = p b x2 1,m+ 1 m+ i,2 (3.9.26b) 
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Note that when i = 1, there is no k. term in the c expression. As 
J x2 

shown in Equation 2.8.9a, x2 = n - 1 and therefore only the diagonal 

terms of Equation 2.5.12 are considered. It can be seen the coeffi
x2 

cients of the s terms in the diagonal entries are equal to one. Thus 

no k. terms. 
J 

Since a is being equated to c , then 
x2 x2 

a =p b ·i=l x2 1,m+l m+i,2' (3. 9. 27 a) 

and 

[
2i-1 J =. b - k 

Pi,m+lm+i,2 .JI j 
J = 2 

i>2 (3.9.27b) 

The element values in the synthesized network which yields the 
t 

polynomial, !L,., 1(s), can be obtained from the following (n + 6) non-
.L "-

linear algebraic equations: 

a -p b ·i=l x2 1,m+ 1 m+ i,2' 

(3.9.28a) 

i > 2 

(3.9.28b) 

f 
i 2 

= gz<c_) n 11l 
(3.9.28c) 

' f 

kl ~ C1L1 
(3.9.28d) 

I I 

k = C L 
n-1 m r 
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I 

b = -L m+ 1, 1 1 (3.9.28e) 

(3.9.28f) 

(3.9.28g) 

bm+i,2 = P2,m+i (3.9.28h) 

Using the set of eqqations in Equation 3.9.13d, it can be shown that 

(3.9.29) 

and 

(3.9.30) 

From Equations 3.9.28e, 3.9.28g, and 3.9.30 

(3.9.31) 

Now using Equations 3.9.28f, 3.9.29, and 3.9.31 with Equation 3.9.28a 

when i ? 2, it can be shown that 

(3.9.32) 

and using Equations 3.9.28e, 3.9.28f, and 3.9.28g with Equation 3.9.28a 

when i = 1, it can be shown that 

(3.9.33) 



' ' Substituting the value of c1 or L1 into Equation 3.9.28 will 

yield all of the unknowns. Then the synthesized network component 

' -2 values can be obtained by C. = (C.) , L. 
. 1 1 1 

' -2 = (L1.) , and R. = 1/g .• 
1 1 

The above procedure yields 

' :l121 (s) 
Y121 = ~ 

' ' 
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where =1 121(s) only satisfies the ax2 coefficient in :t12(s). To satisfy 

' the other coefficients of 2 12(s), a procedure like that in Section 

3.9.1 should be followed. This procedure is shown in the examples of 

Sections 3.11 and 3.12. 

3.9.3 Case III. The transfer admittance for Case III is given 

in Equation 2.8.11 and the numerator degree is odd while the denomin-

ator degree is even. The network and the fundamental circuit equations 

to be used are given in Section 2.8.5. Since n is even, the state-

model to be used is given in Equation 3.7.1. Because the fundamental 

circuit equations for this case differ from those in Case IV - Special 

only in submatri.ces B11 and B21 , the results in Equations 3.7.7, 3.7.9, 

and 3.7.11 will apply to this case and are 

f 
I 2 -- 81 (Cl) 0 

(3.9.34a) 

r I 

k 1 = C1L1 

r f 
k 

n-1 = C L m r 

f 
I 2 

= r/Lr) n (3.9.34c) 

From Equation 2.8.13 it is seen that the submatrices B11 and B21 

have the same entries as in Gase II. This implies that the following 
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equations will result 

(3. 9. 35) 

I 

b . 2 = L. 
m+1., l. 

(3.9.36) 

0 0 

.. 
0 0 

ai = 
b 
m+ 1,1 

0 (3.9.37) 

0 b 
m+ i,2 

0 0 

I 

o:P1,m+l 
O I O 

I 

0 ~] (3.9.38) 

I 

2 . (s) = p, .. a .b . 12.1 1,m+l 2,21. m+1.,2 (3.9.39) 

v 
:l121(s) 

x3 x3-1 
= cv s + cv3_1s + ••• + c 1s + c0 "'3 ... 

(3.9.40a) 

i XJ X3 
~ 12 (s) = a s + a s + ... + a1s + a x3 x3 o (3.9. 40b) 

and 

i = 1 (3.9.41a) 

or 

[
2i-1 J a = . b - k 

x 3 P1,m+ 1 m+ i. ,2 . 11 j 
. J = 2 

i>2 (3.9.41b) 
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The element values in the synthesized network which yields the 
t 

p<;>lynomial, :2121 (s), can be obtained from the following (n + 6) non-

linear algebraic equations: 

a = p b . ; i = 1 x3 1,m+1m+i,2 

a = b - k [
2i-1 J 

x3 P1,m+1m+i,2 _II j 
J = 2 

1 2 
f = g (C) 

0 1 1 

t I 

k. l = C .1 n- m r 

t 2 
f = r 2(1) n r 

t 
b . 2 = 1. m+ i, l. 

b = p m+ i,2 2,m+ i 

(3.9.42a) 

i>2 

(3.9.42b) 

(3.9.42c) 

(3.9.42d) 

(3.9.42e) 

(3.9.42f) 

(3. 9. 42g) 

(3.9.42h) 

By comparing Equation 3.9.42 with Equation.3.9.28, it can be 

seen t.hat 

(3.9.43) 

or 

' 1 1 1 = (-a )~; i = 1 
X3 

(3.9.44) 
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l I 

Substituting the value of cl or Ll into Equation 3.9.42 will yield 

all of the unknowns. 
1 -2 r -2 

= 1/gl' Again c. = (Ci) ' Li = (Li) ' Rl and 
l. 

This synthesis procedure satisfies only the coefficient, a • 
X3 

For every other coefficient in the transfer admittance numerator that 

is to be satisfied, other ladder networks will have to be synthesized 

and placed in parallel as discussed in Section 3.9.1. 

3.9.4 Case IV. For this case the transfer admittance is given in 

Equation 2.8.14 and the numerator and denominator degrees are both even. 

Also the network and fundamental circuit equations to be used are given 

in Section 2.8.6. Since n is even, the state-model to be used is given 

in Equation 3.7.1. Because the fundamental circuit equations for this 

case differ from those in Gase IV - Special only in submattix B21 , the 

results in Equations 3.7.7, 3.7.9, 3.7.11, and 3.7.13 will apply to 

this case and are 

f 
t 2 -- g1(C1) 0 

(3.9.45a) 

f i 
k = C1Ll 1 

(3.;9.45b) 
1 t 

k 
n-1 = C L m r 

f 
v 2 

= r/Lr) n 
(3.9. 45c) 

r 

bll = g1C1 (3.9.45d) 

From Equation 2.8.16 it is seen that the submatrix B21 has the 

same entries as in Case I. This implies that the following equations 

will result 



I 

:2121 (s) 

f 

2 12<s) 

and 

t 

I 

b +. 2 = L. m l., l. 

bll 0 

0 0 - - -
8= 

0 0 

0 b m+ i,2 

0 

010 
I o:o 

• 

0 

0 ~] 
:l121(s) = p11al,2ibm+i,2 

X4 x4-1 
= c s + c ls + ••• + c1s + c0 X4 X4-

X4 x4-1 
= a s + a s + ••• + a1s + a0 X4 x4-1 
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(3.9.46) 

(3.9.47) 

(3.9.48) 

(3.9.48) 

(3.9.49a) 

(3.9.49b) 

(3.9.50) 

The (n + 6) non-linear algebraic equations used to determine the 

network component values are 

(3.9.Sla) 



that 

t ' k =CL n-1· m r 

r 

bm+ i,2 = Li 
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(3.9.Slb) 

(3.9.Slc) 

(3.9.Sld) 

(3.9.Sle) 

(3.9.Slf) 

(3.9.Slg) 

(3.9.Slh) 

By comparing Eq\.lation 3.9.51 with Equation 3.9.13, it can be seen 

(3.9.52) 

I 

Substituting this value of c1 into Equation 3.9.51 will yield all 

• I -2 f -2 
of the unknowns. Again Ci= (Ci) , Li= (Li) , R1 = 1/g1, and R2 =r2• 

This synthesis procedure satisfies only the coefficient, a • For 
. X4 

every other coefficient in the transfer admittance numerator that is 

to be satisfies, other ladder networks will have to be synthesized and 

placed in parallel as discussed in Section 3.9.1. 

3.10 Synthesis Procedure Putline. The synthesis procedures for 

synthesizing Case I, Case II, Case III, and Case IV shoi;'t.circuit trans-

fer admittances are given in outline form in the following enumerated 

steps. 
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1. Take the proper function, y 12(s), and use the methods of Append

ices Band C to obtain the matrix, K2, of either Equation 

3.3.2 or 3.7.1 depending on n being odd or even. 

2. If desired, the state-model can be written using the K2 of 

Step 1, and the Sand p of the appropriate case in Section 

3.9. 

3. If desired, the fundamental circuit equations can be written 

using the results of the appropriate case in Section 2.8. 

4. Draw the ladder network that will result using the appropriate 

case in Section 2.8. 

5. Use the explicit solutions of the appropriate set of (n + 6) 

non-linear algebraic equations given for each case in Section 

3.9. 

6. Obtain the network coruponent values from: 

(a.) 
i -2 

1 < i < m and L. 
1 -2 

1< i<r for Ci= (Ci) ; = (Li) ; 
l. 

Cases I, II, III, and IV. 

(b.) R. = 1/gi 
1. 

for Case I and II. 

(c.) R = 1/gl and R = r2 for Cases III and IV. 1 2 

7. If there is more than one coefficient in the numerator to 

be satisfied, return to Step 2 and continue through the other 

steps as presented in Section 3.9.1. 

3.11 Example of Case I Synthesis. Consider the Case I short 

circuit transfer achnittance of 

(3.11.1) 
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where a 1 and a . 0 are arbitrary real coefficients, the numerator degree 

is one, and the denominator degree is three. 

We shall synthesize y12(s) in two stages. In the first stage, a 

network will be obtained which has the transfer admittance of 

I 

a 1s + a 
. 0 (3.11. 2) 

I 
where a will be accepted as generated from t.he synthesis procedure. 

0 

In the second stage, a network will be obtained which has the transfer 

admittance of 

(3.11.3) 

Whether a positive or negative constant results in the numerator of 
r 

Equation 3.11.3 depends on whether a is greater than or less than a & 
0 0 

These two networks will be paralleled using an isolation transformer, 

if necessary, [See Weinberg (33)] to obtain the desired transfer ad-

mittance of Equation 3.11.1. 

The particular transfer admittance to be synthesized is 

-2s - 12 

s3 + 5s2 + 17s + 25 

Using the material of Section 2.8.3 and Equation 3.11.4 

n = 3 

x 1 = 1 

i = 1 

(3.11. 4) 
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m=2 

r = 1 

and ~he synthesized network is shown in Figure 3.11.1 with the funda-

+ 

R 
2 

I 

Figure 3.11.1 Network for y12(s) 

mental circuit equations in symbolic form as 

which can be written as 

v a 

vbc 

vbr 

v er 

V cJ, 

=O (3. 11.5a) 
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t-1 o: 1 o Io: 1 o oj 
. Q _OJ Q _lj Q1_0_1_0.-. 

I I I 
0 -11 1 -1 I 01 0 0 1 

=O 

(3.11.5b) 

Using the material of Section 3.9.1 and .the results above yield 

ia = (3.11.6) 

-[Pu o I o J 
r - o o : Pz3 

(3.11.7) 

Using the K2 matrix of Section 3.6 and Equations 3.11.6 and 3.11.7, 

I 

the state-model for y12(s) will be 

I I I 

[:~~ v -1 0 I 2 v bll 0 
be bc1 
I 1 I I 

v 0 -4 I -3 v 0 0 
.2._, bc;:2 I bc2 

(3.11.8a) - - - -,- .. ---dt = + I I r 
i -2 3 0 i 0 b32 c.e,1 I ct 1 

I 



146 

(3.11. 8b) 

Using the above results, the 9 non-linear equations of Equation 

3.9.13 can be written as 

(3.11.9) 

Now their solution can be obtained by using Equation 3.9.16 

\ 
' [-lJ .c1 =. -=°2 (2) 



and the network component values are 

c1 = \ farad 

c2 = 2/9 farad 

L1 = \ henry 

R1 = 2 ohms 

R2 = 9/8 ohms 

with state-model element values of 

1 
bu=-. 

tfi. 
b32 = A/2. 

1 
p =- -

11 A/2 

P23 = fi/2 
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. (3.11.10) 

(3.11.11) 

From Equation 3.9.9, a 12 is the element in Equation 3.3.8 that will 
, 

be synthesized in :112(s) by this network. From Equation 2.5.12, a 12 is 

(3.11.12a) 

a 12 = 2{s+4) {3.11.12b) 

From the above, 

I -2S - 8 
Y12(s) = 3 2 

s + 5s + 17s + 25 
(3.11.13) 

and then from Equations 3.11.2, 3.11.3, and 3.11.13 

ft -4 
Y1z's) = 

s3 + 5s2 + 17s + 25 
(3.11.14) 
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2.11 9/80-

2/9f 

4..'1 1h 9/4fl.. 

tf 1/9f 

Figure 3.11.2 Synthesis of Case I y12(s) 

" Since the synthesis of y12(s) is the same as the example of Section 

3.6, it will not be repeated here. The network that was synthesized 

from y12(s) is shown in Figure 3.11.20 

It should be pointed out that if the resulting constant in the 
f If 

numerator of y 12(s) would have been less than -12, y 1/s) would need 

a posi.tive constant in its numerator. This would be accomplished by 

" synthesizing y 12(s) with a negative numerator constant and then placing 

a 1:-1 transformer at one end of the synthesized network. 

If the constant term in the numerator of Equation 3.11.4 would 

have been zero instead of -12, the synthesis procedure would have been 

the same as shown above. Equation 3.11.14 would have had -8 as the 

constant in the numerator and a 1:-1 transformer would b.e needed. 

It is worthwhile to point out that the synthesis procedure can 

be completed without writing down the state-model and the fundamental 
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circuit equations. This approach will be used in the next example. 

3.12 Synthesis Example of y12(s) with Cases III and IV. Consider 

the short circuit transfer admittance of 

- 4 3 ,.. . 2 
s + 2s + 10s + 10s + 17 

3 2 
- 2s - 5s - 3s - 9 (3.12.1) 

As in Section 3.11, the synthesis of this transfer admittance will be 

done in four stages corresponding to the four coefficients in the y 1z<s) 

numerator. This will be done by first synthesizing each of the transfer 

admittances· 

where 

f 3 t 2 • 
a3s + a2s + a1s + a0 =---,.~~--~--~-----------

s4 + 2s3 + 10s2 + 10s + 17 

"2 " " a 2s + a 1s + a 0 
= -,.------------~~~-----

s 4 + 2s3 + 10s2 + 10s + 17 

-9 

s4 + 2s3 + 10s2 + 

-2 

-5 = 

t 

t 

= a3 

I 

4 
a 

0 

,, 
a2 + a2 

" -3 =al+ al + 

I 11 3 =a + a + a 
0 0 0 

3 
al 

+a 

10s + 17 

4 
0 

(3.12.2a) 

'(3.12. 2b) 

(3.12.2c) 

(3.12.2d) 

(3.12.2e) 

(3.12.2f) 

(3.12.2g) 

(3.12.2h) 
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These transfer admittances will then be put in parallel with tran.s-

formers added if necessary. 
t 

First y12(s) is to be synthesized. This is a Case III transfer 

admittance, therefore the material of Section 2.8.5 is applicable and 

yields 

n = 4 

x 3 = 3 

i = 1 (3.12.3) 

m=2 

r = 2 

and the synthesized network is shown in Figure 3.12.1. 

+ 

t 

Figure 3.12.1 Network for y12(s) 

Since the denominator of Equation 3.12.2 is identical to that of 

the example transfer admittance of Section 3.8, the K2 matrix of Equa-



tion 3.8.2 will also be used here and is 

t-1 O I 2 OJ o o I -1 2 
K2 = - - -, - - -

-2 1 I O O 
0 -2 I O -1 
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(3.12.4) 

Using the above results, the 10 non-linear equations of Equation 

3.9.42 can be written as 

(3.12.5) 

Now their solution can be obtained by using Equation 3.9.44 

t 1-
L 1 = [-(-2)] 2 

(3.12.6) 



and the network component values are 

From Equation 3.9.39 

and Equation 2 • .5.12 yields 

and this results in 

u 

c1 = \ farad 

c2 = .2 farads 

L1 = \ henry 

L2 = 1/8 henry 

R1 =. 2 ohms 

R2 = 1/8 ohm 

~121(s) = P13a22b32 

= s 3 + 2s 2 + 5s + 4 

3 2 
- 2s - 4s .. 10s - 8 ·- -------------

s 4 + 2s3 + 10s2 + 10s + 17 

0 

Upon comparing Equation 3012.,8 with Equation 3.12 .. 2a, the ai coeffi-

cients can be obtained and are 

v 
a 3 = =2 

u 
a 2 = -4 
D 

a 1 = -10 
u 

a = -8 
0 

lt 
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Now from Equations 3.12 .. 2b and f and the above results, y 12(s) can be 

written as 
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(3.12.9) 4 3 2 · ' 
s + 2s + 10s + 10s + 17 

This is a Case IV transfer admittance, therefore the material of Section 

2.8e5 is applicable and yields 

n = 4 

m=2 

r = 2 

The synthesized network is shown in Figure 3.12e2. 

c 1 

+ 

" Figure 3.12.2 Network for y 12(s) 

It is not necessary, but for ease of computation, use the same K2 

matrix of .Equation 3.12,,4 with the above results and then the 10 non-

linear equations of Equation 3.9.51 can be written as 
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(3.12.11) 

Their solution can be obtained by using Equation 3.9.52 

.l.: 
0 

= [:}]2 c1 ( 2) 

(3.12.12) 
0 

C = 2 1 

and the network component values ar:e 

cl =\ farad 

c2 = 1 farad 

Ll = 1 henry 
(3.12.13) 

12 = t henry 

Rl = 4 ohms 

R2 = \ ohm 
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From Equation 3.9.48 

i 

2 121(s) = P11a12b32 

and Equation 2.5.12 yields 

2 a 12 = 2(s +s+4) 

and this results in 

2 
=S -s-4 (3.12.14) 

s 4 + 2s 3 + 10s2 + 10s + 17 

" Upon comparing Equation 3012.14 with Equation 3.12.2b, the a. coef-
l. 

ficients are 

H 

a = -1 
2 

Of 

a = -4 
0 

3 Now from Equations 3.12.2c and g and the above results, y 12(s) can be 

written as 

= ·~ .. 
8s + a 3 

0 

s 4 + 2s3 + 10s2 + 10s + 17 
(3.12.15) 

This is a Case III transfer admittance with a 1:-1 transformer added 

after the synthesis procedure is completed. Therefore the material of 

Section 2.8 • .5 is applicable and yields 
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n ::=: 4 

X3 = 1 

i = 2 (3.12.16) 

m= 2 

r = 2 

The synthesized network that will yield negative coefficients is shown 

in Figure 3.12.3. 

Again, for ease of computation, use the same K2 matrix of Equation 

3.12.4 with the above results and then the 10 non-linear equations of 

Figure 3a12.3 

Equation 3.9.42 can be written as 

3 Network for y 121 (s) 



157 

I t 

2 = C1L1 

' I 

1 = c2L1 

i i 

2 = c2L2 

t 2 
1 = ri<L2) 

' b31 = -Ll 

I 

b42 = L2 

b31 = P13 

b42 = P24 (3.12.17) 

Now their solution can be obtained by using Equation 3.9.43 

(3.12.18) 

and the network component values are 

c - \ 1 - farad 

C = 2 2 
farads 

Ll = \ henry (3.12.19) 

L2 = 1/8 henry 

R1 = 2 ohms 

R2 = 1/8 ohm 

It should be noted that it was just a coincidence that these are the 
I 

same network component values as those for y l.Z ( s). 
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From Equation 3.9.39 

I 

~121(s) = P13a24b42 

and Equation 2.5.12 yields 

a24 =2(s+1) 

and this results in 

- 8s - 8 
4 3 2 s + 2s + 10s + 10s + 17 

but by placing a 1:-1 transformer at either port, the following transfer 

admittance results 

8s + 8 (3.12.20) 
s 4 + 2s3 + 10s2 + 10s + 17 

Upon comparing Equation 3.12.20 with Equation 3.12.2c, the af coeffi-

cients are 

3 
a 1 = 8 

3 
a = 8 

0 

4 Now from Equations, 3.12.2d and h and the above results, y1/s) can be 

written as 

4 -5 
Y12(s) = 

s 4 + 2s3 + 10s2 + 10s + 17 
(3.12.21) 

Since this is the same transfer admittance as that synthesized in Sec-

tion 3.8, only the network and component values are given in Figure 

3.12.4. If the paralleling of these four synthesized transfer admit-

tances satisfies .the validity test then 

ri · 
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4.11. 

1-S 

2.n... 

Figure 3.12.5 Network for y12(s) 
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The resultant network is shown in Fig4re 3.12.5 and the synthesis pro-

cedure is complete. 

16/5.Ct 4/5h 1/5h 1/5..Cl. 

5/16f 5/4£ : 

Figure 3.12.4 
4 . 

Network for y1iCs) 

3.13 Unified Element Value Synthesis. In the previous sections, 

transfer admittance synthesis is obtained by paralleling several ladder 

networks. The first ladder network satisfies the first coefficient in 

the transfer admittance numerator. The first and second ladder networks 

satisfy the second coefficient and the rest are satisfied in a like 

manner. Further the characteristic equations of each of these ladder 

networks are identical. In Section 2.8 we observed that a transfer 

admittance with a numerator polynomial of given degree can be achieved 

by inserting two drivers at specified locations in the synthesized net-

work of the characteristic polynomial. This implies that if we are not 

interested in the magnitude of the first coefficient in the numerator of 

the resulting transfer admittance, then by proper insertion of the 
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drivers into any synthesized network of the characteristic polynomial we 

can always realize a given transfer amnittance which has a desired num-

erator degree. The first coefficient of the numerator can be altered to 

a desired value by connecting a two-port transformer with the proper 

turns ratio. 

This idea can be implemented into the general synthesis procedure 

by modifying one equation and adding one equation to the (n+ 6) non-

linear algebraic equations that are used to obtain the network component 

values. This can be shown by considering the Case III development of 

Section 3.9. 

If a n1:n2 transformer is placed on the output port of the Case III 

ladder network, Equation 3.9.39 becomes 

(3.13.1) 

This will change Equation 3.9.41 to 

nl 
ax3 = n2 P1,m+ 1bm+ i,2 (3.13.2a) 

nl 
= n2 P1,m+ 1bm+ i,2 

and this places the added unknown, n1/n2, into the set of equations. 

Next another equation must be added. A possibility which is chosen for 
a I 

ease of computation is c1 = 1 or L1 = 1. Now a solution to the modified 

set of equations of Equation 3.9.42 is available. If this modification 

is done to the synthesis procedure for each ladder and the same equation 
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is added each time, then "like" components for each ladder will have 

identical values. 

This will be illustrated by synthesizing the transfer admittance of 

Equation 3.12.1 using the procedure just presented. In each case, the 
I 

added equation will be c1 = 1 and the unknown, n1/n2, will be found from 

Equation 3.13.2. It is understood that the selection of n1 (or n2) is 

arbitrary. Using the procedure above res1Jlts in the synthesized network 

of Figure 3 .13 .1. A similar approach can be used with the other three 

cases. 

It would appear that this idea could have an application in fabri-

eating transfer functions with integrated circuit chips. 

3.14 Synthesis with a Modified K2-Matrix. It would appear that a 

general synthesis procedure would result from a similarity transform-

ation on the K2-matrix that would interchange the role of the capacitor 

voltages and the inductor currents of the state-model. However it does 

not and this is shown by the following presentation. 

Perlis (28) has shown that two similar matrices exhibit the same 

v 
characteristic polynomial. Consider the two matrices, K2 and K2, which 

are related by the similarity transformation, P, such that 

(3.14.1) 

where K2 is given in Equations 2.5.Sa and 2.5.9a and is given here in 

symbolic form for ready r~ference. 

(3.14.2) 



I JL J111..£ }f 1, .ri.. 

J11-~ I: 2 

45-

/ .Jl.. 

15 

5: Ito 

Figure 3.13.1 Unified Network for y12(s) 
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The above mentioned interchange of roles can be achieved with a 

(3.14.3) 

which can be obtained with a similarity transformation of 

= [o u1] p U O 
2 

where the U. 1 s are unit matrices. 
l. 

r 

(3.14. 4) 

It can be seen that if the K2 of Equation 3.14.3 were used in 

Equation 3.3$2a, there would be r capacitor voltages and m inductor 

currents. Another way to reflect this transformation and still be 

able to use the previous material is to write Equation 3.3.1 as 

v -~ T -~ I -\ -~ I 

I 
c!, -Le B23 R, B23L I -Lc B22Cb Ic,e 

d o c I 

dt = ~ - - - - - - - _, - - - - - - - -
I ~ i $ C-~BT L-~ I - 2 T -'2 t 

vbc b 22 c I -Cb B1f cB12cb vbc 

(3.14.5a) 

[ -1~] [ T -\ I T -~J [ ' J [ T . J [ *] la = -B21Lc : B11GcB12Cb )t + B11GcB11 Va 

· be (3.14.5b) 



The fundamental circuit equations for this state-model are 

R 
1 

[
Bl1 B12 0 : U 01 V 

B21 B22 B23 : 0 Uj v:c = 0 

vbr 

v er 

V cf, 

L m-1 

c 
r-1 

Figure 3.14.1 Ladder Network for n odd 

• 6 • 

c r-2 c 
. r-1 

Figure 3.14.2 Ladder Network for n even 

L. m 
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(3.14.6) 

Following a procedure similar to Section 2.7 and realizing the ladder 

networks of the characteristic polynomial that is placed in the state-
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model form shown above, results in the ladder networks shown in Figure 

3.14.1 and Figure 3.14.2. As in Section 2.8, the drivers can be in-

serted into these networks to obtain the transfer admittances. However 

it can be shown that it is impossible to obtain a transfer admittance 

with a numerator degree of one for the' ladder network of Figure 3.14.1. 

This implies that we will not obtain a general synthesis procedure 
I 

using the K2 matrix. However special cases are possible and these 

need further investigation. 

It is interesting to note that the ladder network corresponding 
I 

to the even order K2 matrix, will yield the same synthesis procedure 

as presented in the previous sections. 

3.15 One Resistor Ladder Networks. Investigation of ladder net-

works with one resistor was made to see if these could be used in a 

general synthesis procedure. It was found that they will not yield 

a general procedure as is shown. 

Following a procedure similar to Section 2.7 and realizing the 

ladder networks of the characteristic polynomial as done by Yarlagadda 

(3l,), results in the ladder networks shown in figure 3.15.1 and Figure 

3.15.2. 

L 
r 

nc m-1 m 

Figure 3.15.1 Ladder Network for n odd 



c m-1 

L 
r-1 

Figure 3.15.2 Ladder Network for n even 

c m 
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r 

It can be shown that it is impossible to obtain a transfer admit-

tance with a constant in the numerator for the ladder network of Figure 

3.15.1. However it is possible while using these one resistor ladder 

networks to obtain transfer admittances with other coefficients in the 

numerator which may be used in conjunction with the two resistor ladder 

networks. 

Since one resistor ladder networks do not give a general synthesis 

procedure for transfer admittances and they are a special case of the 

geni~ral case (Special Case of the two resistor ladder networks), there 

will be no further discussion concerning them. 

3.16 Special Case - J.C Transfer Function Synthesis. Previously 

we have restricted the synthesis procedure to transfer admittance 

functions that have strictly Hurwitz characteristic polynomials. 

Here we shall consider transfer admittance functions with characteristic 

polynomials which have roots on the imaginary axis. 

Given a transfer admittance function with a Hurwitz polynomial 

such as 

(3.16.1) 



It is possible to factor the denominator into two components. One 

that is strictly Hurwitz, D1(s), and one that has roots only on the 

imaginary axis, n2(s). Then Equation 3.16.1 can be written 
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N1(s) N2(s) 

Y12(s) - n1(s) + n2(s) (3.16.2a) 

(3.16.2b) 

Now y 121(s) can be synthesized by the procedures presented previously. 

The y122(s) characteristic polynomial realization will be handled in 

the manner that Yarlagadda (34) has presented with the drivers being 

.inserted to obtain the transmission zeros according t·o the ideas of 

Appendix D. 

Now to complete the synthesis of y12(s), parallel the networks 

obtained for y 121 (s) and y122(s). 



CHAPTER IV 

SYNTHESIS OF THE OPEN CIRCUIT TRANSFER IMPEDANCE, z12(s) 

~ntroduction~ This chapter will briefly present the state

space approach to the synthesis of the open circuit transfer impedance, 

z12(s), using the concepts presented in Chapters II and III. The brev

ity of this chapter results from the duality property existing between 

the short circuit transfer admittance and the open circuit transfer 

impedance (30). Therefore just the results will be presented with only 

the duality property being given as justification. 

4.2 Restrictions. The s-domain.restrictions for the open circuit 

transfer impedance will be the same as those given in Section 3.2. 

The topological restrictions on the network to be synthesized from the 

transfer imp12.dance will be sim.ilar to those given in Section 3.2 and 

are: 

1. Both branch resistors and chord resistors will not be per

mitted in the same fundamental cut-sets. 

2. Circuits of capacitors will not be permitted. 

3. Cut-sets of inductors with or without current drivers will 

not be permitted. 

4. The network driver configuration must be that of Figure 2.4.2. 

4.3 State-Models. It is desirable to recall the state-model 

developed in Section 2.4.2 and is given here for ready reference. 
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(4.3.la) 

(4.3.lb) 

The fundamental circuit equations for this state-model are 

(4.3.2) 

To utilize the presentation in the previous chapters and by use of 

the duality principle, we shall write the state-model in the following 

form 

d 
dt 

(4.3.3a) 
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(4.3~3b) 

and written in symbolic form as 

(4.3.4a) 

* * Vt= p X + ~ It (4.3.4b) 

When the open circuit transfer impedance denominator is of odd degree, 

then 

-f I 
kl 0 I 

0 1-k • • I 2 • • • 
• I • • 0 I • k 

n-2 
-f I -k 

K = n I n-1 (4.3.5) 
2 -1 - - - - -

-kl k2 I 
I 

• • I 
• • I 

I • • I 

-k k I 
n-2 n-1 I 
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and when t.he denominator degree is even, then 

-f I kl 0 I 
0 I -k2 k3 

• I • • • I • • • I • • 
0 -k k 1 

K2 
I n-2 n- (4.3.6) = - - - - - -, 

-kl k2 I 0 

-k3 I • • 
• I • 

• • I • • kn-2 I 0 • 
-k I -f n-1 I n 

4.4 Realization of Characteristic Polynomial. Using a procedure 

similar to that in Section 2.7 with the state-model of Equation 4.3.3a 

without the driver and written as 

(4.4.1) 

it is possible to synthesize a network that exhibits the characteristic 

polynomial that is obtained when the K2 matrices of Equations 4.3.5 and 

4.3.6 are substituted into Equation 4.3.7. These synthesized networks 

are shown in Figures 4.4.1 and 4.4.2. As should be expected, these 

networks are the duals of those shown in Figures 2.7.2 and 2.7.4. 

As in Section 2.7 this procedure yields the following equations 

when n is odd: 
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(4.4.2) 

I I 

k t =LC n- m r 

and as in Equation 2.7.19, a solution to this set of equations is ob-

tained when one of the unknowns is assigned an arbitrary value, such as 

(4.4.3) 

The remaining unknowns in the set of equations of Equation 4.4.2 can be 

solved in a manner similar to that of Section 2.7. The element values 

I -2 
of the network components are related to these unknowns by Ci= (Ci) , 

I -2 
Li= (Li) , R1 = r 1 and R2 = r 2• 

. . . 
L 
m-1 

c r-1 

L 
m 

Figure 4.4.1 Polynomial Realization with n odd 
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When the polynomial degree is even, the network of Figure 4.4.2 

and the following set of non-linear equations result. 

(4.4.4) 
I I 

k =LC n-1. . m r 

and as in Equation 2.7.32, a solution to this set of equations can be 

obtained in a similar manner as above. Let 

' L1 = 1 (4.4.5) 

and the remaining variables of Equation 4.4.4 can then be determined. 

The network component values are related to these variables by 

••• ··-It---' 

c r-1 

L 
m 

Figure 4.4.2 Polynomial Realization with n even 
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4.5 Synthesis of z12(s). Since the presentation of the transfer 

impedance is based on the principle of duality with respect to the 

transfer admittance, the transfer impedances are again classified into 

six types. These classifications are for transfer impedances which 

are proper functions. If the given z12(s) is an improper function, it 

is as.sumed that the procedures of Section 2.6.2 are followed until a 

resulting proper function is obtained. Further the denominator poly-

nomial of z12(s) must be a strictly Hurwitz polynomial. 

Now each of the classifications will be presented. 

4.5.1 Case II - Special. For this transfer impedance case, the 

numerator is a constant and the denominator function is of odd degree 

and is written as 

where 

a 
0 

z12(s) = 
·sn + n-1 b 1s + ••• + b1s + b 

n- o 

a = positive constant 
0 

n = odd integer 

(4.5.1) 

Using the information in Chapter III and the principle of duality, 

we have the relationships: 

n=m+r 

m = r. + 1 

where 

n = degree of characteristic polynomial 

m = number of inductors 

r = number of capacitors 



----- ... 
L 

m 

R 

Figure 4.5.1 Case 11 - Special Realization of z12(s) 

Using the procedures of Chapter II and III with Equation 4.5.1 

results in the network of Figure 4.5.1 and the following set of non-

linear equations. 

. . ' ' k = L C 
n-2 m-1 r 

I 1 

k =LC 
n-1 m r 

' b = -r L 
m,2 2 m 
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bll = p - 11 

b = p m,2 2,m (4.5.2) 

This set of equations has the solution of 

(4.5.3) 

I I 
After the Ci's and Li's are determined the component values still have 

to be determined by 

C. = (C~)- 2 
]. 1 

= (L~)-2 Li l. 

R1. = r 
i 

(4.5.4) 

4.5.2 Case IV - Special. For this transfer impedance case, the 

numerator is a constant and the denominator function is of even degree 

and is written as 

a 
0 (4.5.5) 

n + b n-1 + b b s n-ls ••• + ls+ o 

where 

a0 = positive constant 

n = even integer 

n=m+r 

m=r 



L m 

c r-1 

Figure 4.5.2 Case IV - Special Realization of z12(s) 

Using the procedures of Chapters II and III with Equation 4.5.5 

results in the network of Figure 4.5.2 and the following set of non-

linear equations. 

I f 

k =LC n-2 m r-1 

I I 

k l =LC n- m r 

' 2 f = g 2(c) n · r 

1 

b = -C 
m+r,2 r 
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b11 = p - 11 

(4.5.6) 

This set of equations has the solution of 

(4.5.7) 

where Ci 

4.5.3 Case I. For this transfer impedance case, the numerator 

and denominator polynomials are both of odd degree. This transfer 

impedance is written as 

where 

x1 x1-1 
ax1s + ax1-1s + ••• + a1s + ao 

sn + bn-1sn-1 + ••• + b1s + bo 

a 1 = positive constant; i = 0, 1, ••• , x1 

xi= odd integer 

n = odd integer 

n=m+r 

m = r + 1 

n - x 1 
i = 

2 

(4.5.8) 



••• 

Figure 4.5.3 Case I Realization of z12(s) 

Using the procedures of Chapters II and I;II with Equation 4.5.8 

results in the network of Figure 4.5.3 and the following set of q.on-

linear equations. 

' 2 f = r 2(L) n m 

180 

. (4.5.9) 
• f I 

k l = L C n- m r 

I 

b . 2 = -c. m+ 1, 1 
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This set of equations has the solution of 

••• k2i-1 (4.5.10) 

4.5.4 Case II. This transfe~ impedance case has~ numerator 

polynomial of even degree and a denominator polynomial of odd degree 

and is written as 

where 

ai = positive constant; i = O, 1, ••• , x 2 

x2 = even integer 

n = odd integer 

n=m+r 

m = r + 1 

n-x2 + 1 
i = 2 

(4.5.11) 

Using the procedures of Chapters II and III with Equation 4.5.11 

results in the network of Figure 4.5.4 and the following set of non-

linear equations. 



a =p b ;i=1 x2 1,m+ 1 m+ i,2 

t 2 
f = r 2(L) n m 

• . 
t I 

k 1 =LC n- m r 

f 

b = -c1 m+ 1,1 

1 

b +. 2 = -C. m 1, 1 

b - p m+ 1,1 - 1,m+ 1 

b =p 
m+ i,2 2,m+ i 

i > 2 

Figure 4.5.4 Case II Realization of z1is) 
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(4.5.12) 

L 
m 
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This set of equations has the solution of 

I l 
c1 = (a ) 2 • i = 1 

x ' 
2 

(4.5.13a) 

(4.5.13b) 

where Ci ' -2 (11.) , and R. = 1/g .• 
1. 1. 

4.5.5 Case III. This transfer impedance case has a numerator 

polynomial of odd degree and a denominator polynomial of even degree 

and is written as 

(4.5.14) 

where 

a 1 = positive constant; i = 0, 1, ••• , x3 

x 3 = odd integer 

n = even integer 

n=m+r 

m=r 

n-x3 + 1 
i=---

2 

Using the procedure of Chapters II and III with Equation 4.5.14 

results in the network of Figure 4.5.5 and the following set of non-

linear equations. 



a -p b · i=1 x3 - 1,m+ 1 m+ i,2' 

[
2i-1 J a = b . - k. x3 P1,m+ 1 m+ 1,2 . II J 
J = 2 

• • 
• I t 

k =LC 
n-1 m r 

1 2 
f = g2(c) n r 

b -p m+ 1 1 - 1 m+ 1 ' ' . 

b = p 
m+ i,2 2,m+ i 

L. 
1 

c. 1 1.-

i>2 

... 

<i+t 

Figure 4.5.5 Case III Realization of z12(s) 

L 
m 
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(4.S.15) 
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This set of equations has the solution of 

(4.5.16a) 

(4.5.16b) 

where Ci 

4.5.6 Case IV. This transfer impedance case has numerator and 

denominator polynomials which are both of even degree. This transfer 

impedance is written as 

where 

ai = positive constant; i = O, 1, ••• , x4 

x4 = even integer 

x4 ':/z O 

n = even integer 

n=m+r 

m = r 

(4.5.17) 

Using the procedures of Chapter II and III with Equation 4.5.17 

results in the network of Figure 4.5.6 and the following set of non-

linear equations. 



• 

' . k =LC 
n-1 m r 

# 2 
f = g (C) 

n 2 r 

bm+ i,2 = Pz,m+ i 

c. 1 J.-

Figure 4.5.6 Case IV Realization of z12(s) 
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(4.5.18) 

_I 
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This set of equations has the solution of 

(4.5.19) 

where Ci 

4.6 Synthesis of a General Open Circuit Transfer Impedance. 

Recall that for a general short circuit transfer admittance, the syn-

thesis procedure as presented in Section 3.9.1 satisfied, in general, 

only one numerator coefficient of the transfer admittance per ladder 

network. Also when paralleling these ladder networks, it was sometimes 

found necessary to add a 1:1 transformer so that the validity test 

would be satisfied. Or a 1:-1 transformer was sometimes added to obtain 

positive coefficients in the numerator polynomial. 

The synthesis procedure for a general open circuit transfer imped-

ance will be very similar to that for the transfer admittance. Each 

resulting ladder network will, in general, satisfy only one numerator 

coefficient of the transf,:!r impedance. If the numerator degree is 

x .. then there will be a maximum of (x. + 1) ladder networks placed 
1' 1 

in series to satisfy the numerator coefficients. When putting the 

ladder networks in series, it will sometimes be necessary to add a 1:1 

transformer so that the validity test will be satisfied. Sometimes 

a 1:-1 transformer will have to be added to obtain negative numerator 

coefficients. 

A unified element value synthesis procedure for transfer impedances 

is very similar to that for transfer admittances as presented in Section 

3.13. This procedure for transfer impedances will not be presented 
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here because it is so similar to that for transfer admittances. An 

open circuit transfer impedance synthesis example will now be pre-

sented to illustrate the above procedures. 

· 4.7 Synthesis Example of z12(s). Consider the open circuit 

transfer impedance of 

2s3 + 5s2 + 3s + 9 =--,.~~--,-~~~~~---~~-
s4 + 2s3 + 10s2 + 10s + 17 

( 4. 7 .1) 

The four transfer impedances, whose ladder network will be placed in 

series, are 

where 

i 3 i 2 I 
a 3s + a 2s + a 1s + a0 

= 
s 4 + 2s~ + 10s2 + 10s + 17 

4 3 2 s + 2s + 10s + 10s + 17 

3 3 
a1 s + a0 =o·~~~~~--~~~------

s4 + 2s3 + 10s2 + 10s + 17 

4 
a 

0 =·-,.~~~~--~~~~-----
L~ 3 2 

s + 2s + 10s + 10s + 17 

2 = a 3 

ff 

5 - a + a 2 2 

8 " 3 4 9=a +a +a +a. 
0 0 0 0 

(4.7.2a) 

(4.7.2b) 

(4.7.2c) 

(4.7.2d) 

(4.7.2e) 

(4.7.2f) 

( 4. 7. 2g) 

(4.7.2h) 

So as to utilize the material of Section 3.12, a K2 matrix for 

the denominator polynomial will be determined as 



[ 
I ] 

-1 0 I 2 0 

K = 2 _O_l:1_ ~~ 
2 -2 1: 0 0 

0 -2 I O -1 
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(4.7.3) 

This K2 matrix will be used in the synthesis of each ladder network of 

this example. 
I 

Using the material of Section 4.5.5, realization of z12 (s) yields 

the network of Figure 4.7.1 and 

2s3 + 4s 2 + 10s + 8 

s 4 + 2s3 + 10s2 + 10s + 17 

t 
Figure 4.7.1 Network for z12(s) 

lh 

1f tf 

" Figure 4.7.2 Network for z12(s) 

(4.7.4) 

a.n. 

4.0. 
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fl 

Using the material of Section 4.5.6 realization of z1z<s) yields 

the network of Figure 4.7.2 and 

s 2 + s + 4 = ~~~~~~~~~~~~~ 

s 4 + 2s3 + 10s 2 + 10s + 17 
(4. 7 .5) 

~'( 
1- ("\ i 
2~'- t 

1 

Figure 4.7.3 

2h 

1/8£ 

3 Network for z121(s) 

3 Since z 1 ,.,(s)·must have a negative coefficient, the network of 
.LL. 

Figure 4.7.3 is first realized. This yields positive coefficients 

3 and is labeled z 121 (s). When this ladder network is placed in series 

with the others, a 1:-1 transformer will be added at one of its ports. 

When this transformer is added to the network of Figure 4.7.3, its 

transfer impedance will be 

3 - 8s - 8 
z12(s) = 

s 4 + 2s3 + 10s 2 + 10s + 17 
(4.7.5) 

Now 4 
z12(s) must be 

4 5 
z12(s) = 4 

s + 2s3 + 10s2 + 10s + 17 
(4.7.6) 



and this is realized using the material of Section 4.5.2 with the 

network of Figure 4. 7. 4. 

5/16h 5/4h 

5/16Jl. 4/5f 

4 Figure 4.7.4 Network of z12(s) 

5..0.. 

The network that synthesizes the transfer impedance of Equation 

4.7.1 is given in Figure 4.7.5. The port connections. that are shown 

in this figure are necessary to satisfy the validity test. 
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4.n. 

IS 

. l--t 

I:-/ 

8n 

5..(l 

Figure 4.7.5 Network of z12(s) 



CHAPTER V 

SYNTHESIS OF THE VOLTAGE TRANSFER FUNCTION, T(s) 

5.1 Introduction. This chapter will briefly present the state

space approach of the voltage transfer function, T(s), using the con

cepts presented in Chapters II, III, and IV. The brevity of this 

chapter results from the similarities between the voltage transfer 

function and the transfer admittances and impedances. Therefore pri

marily just the results will be presented with the property of similar

ity being given as the justification. 

5.2 Restrictions. The s-domain restrictions for the voltage 

transfer function, T(s), are: 

1. The degree of the numerator polynomial can not be greater 

than the degree of the denominator (3). If the numerator 

degree equals the denominator degree, see Section 2.6.3. 

2~ The coefficients of the numerator polynomial must be real 

and finite. 

3. The denominator polynomial must be a strictly Hurwitz poly

nomial (32). 

The topological restrictions on the network to be synthesized 

from the proper function, T(s}, are: 

193 
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1. Both branch resistors and chord resistors will not be per-

~itted in the same fundamental circuits. 

2. Circuits of capacitors with or without voltage drivers will 

npt be permitted. 

3. Cut-sets of inductors with or without current drivers will not 

b~ permitted. 

4. Tpe network driver configuration must be that of Figure 2.4.3. 

I 

5.3 State-Models, K2-Matrices, and !l21 (s). It is desirable to 

recall the state-model developed in Section 2.4.3 to be used in the 

state-space synthesis. of the voltage transfer function. This state-

model is given here for ready reference. 

+t-~:BJ2:c~1;!- _ ~~B~2- -J[v=J 
-\ I -\ T * 

-LC B21 I -LC B23~B33 1 t 

(5.3.1a) 

[I:]= tB}1:.c~1f~\-! _ :n31. :~: -.J [v~c. J + tBI1~c~1: l- --~;: -] [v:J 
. * -\ I T -~ ' I T * 

Vt B32Cb I B33~ B23Lc. 1c1, B31 I B33~B33 It 

(5.3.lb) 
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The fundamental circuit equations for this state-model are 

(5.3.2) 

Writing Equation 5.3.1 in symbolic form as in Equation 2.4.20 yields 

..£... Y = K X + ia y* dt ,.. 2 ~ .. 

* * Y =f->X+IR,Y 

Following a procedure like that in Section 2.4.3 yields 

. s -~ [!111 (s) !l12<s)J 
::J.( ) - ""' 's) "'I (s) 

""21" -22 

and as shown in Section 2.5 

where 

and 

i 

T(s) =221 (s) 

v 

!l21(s) 
T(s) = ~ 

6 = lsU-K2I 

!l (s) = f-> [adj(sU-K2)] B 

(5.3.3a) 

(5.3.3b) 

(5.3.4a) 

(5.3.4b) 

(5.3.5a) 

(5.3.5b) 

(5.3.5c) 

(5.3.5d) 
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(5.3.5e) 

As in the previous chapter, if the voltage transfer function has 

an odd denominator degree, then the K2-matrix will be 

-f 
I 

kl 0 I 
o. I -k2 I . 0 I k 

n-2 
-f I -k 

¥ 
n I n-1 

'"2 - i - - - -
-k k I 1 2 I 

I 
I 

-k k I 
n·-2 n-11 

When the denominator degree is even, then the K2-matrix will be 

-f 
0 

-k., ,. 

0 

k2 

-k3 
@ 

• 
(II • 

• 
@ 

I 
I 
I 
I 
I 
I 

• I 
O I 

I - ,-
1 

I 
I 

k I 
n-21 

-k I n-1 1 

kl 
-k 

2 

0 

k3 

• • 
• 

• 

- - -
• • • 

• 
• 

-k 
n-2 - -

0 

k 
- n-1 - -

-f 
n 

(5.3.6a) 

(5.3e6b) 

Using these K2-matrices in the same manner as shown in Equations 3.3.8, 
~ 

3.7.2, and 5.3.Sd yields the !l21 (s) of Equation 5.3.7 when the T(s) 

denominator degree is odd and that of Equation 5.3.8 when the denom-

inator degree is even. 



' !l21<s) = (p21a11 + p22a31 + Pz3a51 + • • • + P2,man, l + Pz,m + 1a21 + P2,m + 2a41 + ••• + P2 a 1 1 .,n n- , )bu 

+ (p21a12 + Pz2a32 + P23a52 + ••• + Pz,man,2 + Pz,m + 1a22 + Pz,m + 2a42 + ••• + P2 a 1 2 ,n n- , )bm + 1,1 

+ (p21a13 + P22a33 + P23a53 + • • • + P2,man,J + Pz,m + 1a23 + P2,m + 2a43 + ••w + P2 a 1 3 ,n n- , )b21 

+ (p21a14 + P22a34 + P23a54 + ••• + P2,man,4 + P2,m + 11l.z4 + P2,m + 2a44 + ••• + P2~nan-1,4 )bm + 2,1 

+ (p21a15 + P22a35 + P23a55 + • • • + P2 ,man,5 + P2,m + 1a25 + P2,111 + 2a45 + • •• + P2 a 1 5 ,n n- , )b31 . 
.. . 

+ (p a + p a + p a + ••• + p a + p a + p a + ••• + p a . )b 21 1,n-1 22 3,n-1 23 5,n-1 2,m n,n-1 2,m + 1 2,n-1 2,m + 2 4,n-1 2,n n-1,n-1 m + r,1 

+ (p21al,n + P22a3,n· + P23a5,n + • • • + P2,man,n +p a 2,m + 1 2,n +p a 2,m + 2 4,n + ••• + P2 a 1 ,n n- ·,n )b 1 m, 

n = odd integer 

n = m + r 

m=r+1 

(5.3. 7). 

I-' 
\0 
-..J 



' :l21<s) = (p21a11 + P22a31 + P23a51 + ••• + P2,man-l,l + P2,m + 1a21 + P2,m + 2a41 + ••• + P2,nan,l )bll 

+ {p21a12 + P22a32 + P23a52 + ••• + P2 a 1 2 ,m n- , . + P2,m + la22 + Pz,m + 2a42 + ••• + P2 a 2 ,n n, )bm + 1,1 

+ (p21a13 + P22a33 + P23a53 + ••• + P2,man-1,3 + Pz,m + la23 + P2,m + 2a43 + ••• + P2,nan,3 )b21 

+ (p21a14 + P2za34 + Pz3a54 + ••• + P2,man-1,4 + P2,m + la24 + Pz,m + 2a44 + ••• + P2 a 4 ,n n, )bm + 2,1 

+ {p21a15 + P22a35 + Pz3a55 + ••• + Pz,inan-1,5 + Pz,m + 1a25 + P2,m + 2a45 + ••• + P2 a 5 ,n n, )b31 

+ (p a + p a + p a + ••• + p a + p a + p a + ••• + p a )b 21 1,n-1 22 3,n-1 23 5,n-1 2,m n-1,n-1 2,m + 1 2,n-1 2,m + 2 4,n-1 2,n n,n-1 m,1 

+ (p21a1,n + Pzza3,n + P23as,n + ••• + Pz,man-1,n + P2,m + 1a2,n + P2,m + 2a4,n + ••• + P2,nan,n }bm + r,1 

n = even integer 

n = m + r· .. 

m.• r 

(5.3.8) 

·~ 
"° ():) 
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Also using the above K2-matrices to obtain the r.ealizations of the 

characteristic polynomials of the voltage,transfer functions will result, 

as before, in the networks of Figures 2.7.2 and 2.7.4. These then will 

be the basic networks in which the drivers will be inserted in the 

appropriate fashion as to yield the desired numerator and denominator 

degrees in the voltage transfer function. 

5.4 Synthesis of T(s). Since the presentation of the :voltage , 

transfer function is so similar to that for the transfer admittance 

and impedance, the same classification of the proper functions to be 

synthesized will be used here. It will not be necessary to consider 

the Case II - Special T(s) since this case will be includecl in the 

Case II T(s). 

Now each of the classifications will be presented. 

5.4.1 ·case IV - Special. For this transfer function case, the 

numerator is a constant and the denominator function is of even degree 

and is written as 

where 

a = positive constant 
0 

n = even integer 

n=m+r 

m=+ 

(5.4.1) 

A transfer function of the form in Equation 5.4.1 will result 

if the network drivers are inserted into the network realization of 

the characteristic polynomial as shown in F,±gure 5. 4.1 (See Appendix D). 
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Rl 11 L 
r-1 L r .... 

* c1 c ,... 
" R .. it ',: 

m-1 
....; 

2 m 
2 

Figure 5.4.1 Case IV - Special Realization of T(s) 

This network yields the fundamental circuit equations of 

I 0 0 OI Q I 11 I -1 I 1 . 0. - -' - ,_ I v. 
- r - - - - - - -I i - al 
O I 1 -1 I O I I 1 I I I I 

vbc1 01 1 " O I I 1 I I . I • .. • I I I • I I • I I . . • I • I I I . 
o' • -1 I O I I 1 I vbc 
o' 11 1 I I 11 m 

= 0 (5.4.2) - '- - -, - ,- i v 
o:o 0 ... 0 o: -1 I I , 1 br2 

v cr1 
- -v. 
t.tl 

VC~ 
r 

v. 
t2 

which is written in symbolic form as shown in Equation 5.3.2. 

Using these fundamental circuit equations, the state-model of 

Equation 5.3.1 and the K2-matrix of Equation 5.3.6b with the procedures 

of Chapters II and III results in the set of equations given in Equation 

3.7.5 which can be written as 

(5.4.5a) 



t , 

k =CL 
n-1 rn r 

' 2 f = r (L) n 2 r 

I 
b = r L m+r,2 2 r 
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(5.4.5b) 

(5.4.5c) 

(5.4.5d) 

(5.4.5e) 

(5. 4.5f) 

(5.4.5g) 

Using the non-zero bij and pkt of Equation 5.4.5 in Equation 5.3.8 and 

noting that n = m + r, we have 

From Equation 2.5.12 

and 

I 

~21 (s) = p a b 
2,n n,1 11 

a = -a n,1 1,n 

[
n - 1 J 

-al,n = - . II kj 
J = 1 

From Equations 5.3.5b, 5.4.1, and 5.4.6 

(5.4.6) 

(5. 4. 7 a) 

(5.4.7b) 

(5.4.8) 
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Using the procedures of Chapter III, it would appear that Equation 

5.4.8 could again be used in the set of (n + 6) non-linear equations 

that were solved to obtain the synthesized network component values. 

This.is not true as can be seen when Equations 5.4.5a and dare combined 

to obtain 

and Equations 5.4.5 b, c, and e are manipulated to obtain 

i 

=f k 2k 4 ••• k2c1 n n- n-
Pz,m+r= k 1k 3 ••• k 1 n- n-

Then Equations 5.4.8, 5.4.9, and 5.4.10 imply that 

a =ff k2 k2 
o o n n-2 n-4 

k2 
".. 2 

and in general this will be an inequality if a is specified. 
0 

(5.4.9) 

(5.4.10) 

(5.4.11) 

The solution to this problem is to use a procedure like that of 

Sect.ion 3.13. By placing a n1:n2 transformer at either port of the 

synthesized ladder modifies Equation 5.4.8 to 

(5.4.12) 

where 

This introduces another unknown to the set of (n + 6) equations; there-

fore, arbitrarily add another equation such as 



203 

(5.4.13) 

Now the remaining variables of the set of equations of Equation 5.4.5 

can be determined and the network component values are related to these 

5.4.2 Case I. For this transfer function case, the numerator and 

denominator degrees are both odd and the transfer function is written 

where 

x1 x 1-1 
a s + ax 1 s + • • • + a 1 s + a0 x1 1-

T(s) = ----------------
sn + b sn-i + ••• + b1s + b0 n-1 

aj = positive constant; j = O, 1, ••• , x1 

x1 = odd integer 

n = odd integer 

n=m+r 

m=r+1· 

+ 

c m-1 

Figure 5.4.2 Ca~e I Realization of T(s) 

(5.4.14) 
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A transfer function of the form shown in Equation 5.4.14 will 

result if the network drivers are inserted into the network realization 

of the characteristic polynomial as shown in Figure 5.4.2 (See Appendix 

D) where 

x1 + 1 
i = 2 

This network yields the fundamental circuit equations of 

0 : 1 0 ... 0 O j O I 1 I I v 
O IO 0 ... 0 1 I O I 11 I £11 

- -, - - - - - - - - = 1- -1 -
11 v 

O I 1 -1 IO I I bc1 
: I 1 • Io I I 1 I I I I 1 I : I 

. 
: I 

I • I I vbc 
.-1 IO I 1 I 

m 
• I 
o, 1 -1 I O I 1 I vbr - - - - - -, -o: o: 

I 
I 1 v 

0 0 ... 0 1 I I I er 1 
v cr2 - -v 

ci,1 

. 
V Ci, 

r 
v 

t2 

= 

which is written in symbolic form as shown in Equation 5.3.2. 

(5.4.15) 

0 (5.4.16) 

Using these fundamental circuit equations, the state-model of 

Equation 5.3.1 and the K2-matrix of Equation 5.3.6a with the procedures 

of Chapters II and III results in the set of equations given in Equation 

3.4e2 which can be manipulated to yield 

' 2 f = g2(c) n m 

(5.4.17a) 

(5.4.17b) 



. 
• 

i I I 

k =CL n-1 m r 

' b = c m.,2 m 

b =p m+ i,1 1,m+ i 
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(5.4.17c) 

(5.4.17d) 

(5.4.17e) 

(5.4.17£) 

(5.4.17g) 

Using the non-zero bij and pkt of Equation 5.4.17 in Equation 

5.3.7 yields 

v 

~211(s) = P2 a 2·b · 1 ,m n, 1 m+ J., 

From Equation 2.5.12 it can be seen that 

and this implies that 

a = n,2i 

a 2.· = (-1)a2i n, 1. ,n 

(5.4.18a) 

(5.4.18b) 

(5.4.19a) 

(5.4.19b) 

Using a procedure similar to that of Section 3.9.1 with Equations 

2.5.12, 5.4.18, and 5.4.19 yields 

[
n-2i J 

c = (-1)p2 b + . 1 -, 1 k . x1 ,m m i, n-J 
j = 1 . 

(5.4.20) 



As for the Case IV~ Special transfer function, if a is equated to 
x1 
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the c of Equation 5.4.20, in general, there will result an iriequality. 
x1 

As in Section 5.4.1, the solution is to place a n11 :n21 transformer at 

either port of the synthesized ladder and this results in 

(5.4.21) 

where 

and with an arbitrary choice for an added equation of 

(5.4.22) 

Now the remaining variables of the set of equations of Equation 5.4.17 

can be determined and the network component values are related to these 

v =2 = (L~) , and R. = 1/g .• 
1 1 1 

5.4Q3 Casello For this transfer function case, the numerator -
degree is even and the denominator degree is odd with the transfer 

function written as 

where 

T(s) = 

aj = positive constants; j = O, 1, ••• , x2 

x2 = odd intege~ including zero 

n = odd integer 

(5.4.23) 
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n=m+r 

m = r + 1 

A transfer function of the form shown in Equation 5.4.23 will 

result if the network drivers are inserted into the network realization 

of the characteristic polynomial as shown in Figure 5.4.3 (See Appendix 

D) where 

x 2 + 1 
i =-----2 

n -
(5.4.24) 

This network yields the fundarnental circuit equations of 

I 
O I O I 1 I -1 I 1 0 0 I v 

0 10 0 .. ~ 0 1 I o I 11 I al - - - - - - - - r _, - -1- 1 -
I 1 v 

0 -1 Io I I 1 I bc1 
0 I 1 • I o I I 1 

I . . I I I . I I : I I 
. . vbc . I I • I 

O i .-1 I O I 1 
m 

1 -1 I o I I vbr = 0 
O I 11 - - ,- -, - -1- "j -I v 
0 10 0 •• 1 • Q" O I O I I ,1 cr 1 

v cr2 
v 

c£,1 

. 
v ci, 

m 
v 

t2 

(5.4.25) 

which is written in symbolic form as shown in Equation 5.3.2. 

Using these fundamental circuit equations, the state-model of 

Equation 5.3.1 and the K2-matrix of Equation 5.3.6a with the procedures 

of Chapters II and III results in the set of equations given in Equation 

3.4.2 which can be manipulated to yield 
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t 2 
(5.4.25a) f = g (C) 

0 1 1 

t 2 
fn = giCm) . (5. 4. 25b) 

t v 
kl= C1L1 

' . (5.4.25c) 
v t 

k =CL n-1 m r 

• 
b11 = g1C1 (5. 4. 25d) 

v 

bi,2 = Ci (5. 4. 25e) 

b11 = -p11 (5.4.25f) 

b. 2 
l.' 

= P2 . 
'l. 

(5.4.25g) 

R1 L1 L. L 
l. r 

" .. •• 4' 

* c1 c2 c. it Ci+ 1 c cm R2 l. 2 m-1 

Figure 5o4.3 Case II Realization of T(s) 

Using the.non-zero bij and pkt of Equation 5.4.25 in Equation 

5.3.7 yields 

I 

~211(s) = P2,ia2i-1,1b11 (5.4.26a) 
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x2 
= c s + ••• + c 1s + c x2 o (5.4.26b) 

From Equation 2.5.12 it can be seen that 

and this implies that 

(S.4.27b} 

Using a procedure similar to that of Section 3.9.2 with Equations 

2.5.12, 5.4.26, and 504.27 yields 

i = 1 (S.4.28a) 

i>2 (5.4.28b) 

As for the Case I transfer function, if a is equated to the c 
x2 x2 

of Equation 5oL~o28t in general, there will result an inequalityo As 

in Sectton 5"t,.2, the solution is to place a n 12:n22 transformer at 

either port of the synthesized ladder and this results in 

i = 1 

i>2 (5.4.29b) 

where 
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and with an arbitrary choice for an added equation of 

g. = 1 
1 (5.4.30) 

Now the remaining variables of the set of equations of Equation 5.4.25 

can be determined and the network component values are related to 

these variables by Ci 1/g .• 
1. 

5.4.4 Case III. For this transfer function case, the numerator 

degree is odd and the denominator degree is even with the transfer 

function written as 

where 

aj = positive constant; j = O, 1, ••• , x3 

x3 = odd integer 

n = even integer 

n=m+r 

m=r 

(5.4.31) 

A transfer function of the form shown in Equation 5.4.31 will 

result if the network drivers are inserted into the network realization 

of the characteristic polynomial as shown in Figure 5.4.4 (See Appendix 

D.) where 

x1 + 1 

i = ,2 (5.4.32) 



Ll Li L r ... 
t 

{YY) 

I • •• 

Rl c1 c2 Ci+ 1 c R2 ]. m 

+ 

Figure 5.4.4 Case III Realization of T(s) 

This network yields the fundamental circuit equations of 

O I 1 
-1-

0 ... 0 

0 11 -1 . I 1 • 
• I 1 

. . 
I . • . I . 

01 -o-: ~ - - - -
0 ... 0 

I 

~ I_ 0 
I 0 
I 0 
I 
I . . • 

·-11 0 
11 1 - ~: - -

-1 

I 
1 I 

-: ~ 
I 
I 
I 
I 
I 
I 

I 
I -----,--

1 
• 

' I 
I 
I 

1 I 
I 

1 I -,---- - - :- 1-

' 

• 

== 0 

which .is written in symbolic form as shown in Equation 5.3.2. 
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* it 
2 

(5.4.33) 

Using these fundamental circuit equations, the state-model of 

Equation 5.3 .. 1 and the K2-matrix of Equation 5.3.6b with the procedures 

of Chapters II and III results in the set of equations given in Equation 

3.7 .. 5 which can be manipulated to yield 



I i 

k 1 = C L n- m r 

i 2 
f = r 2(L) n r 

I 

b = -Li m+ i,1 

i 

b = r L m+r,2 2 r 
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(5.4.34a) 

(5.4.34b) 

(5.4.34c) 

(5.4.34d) 

(5.4.34e) 

(5.4.34£) 

(5.4.34g) 

Using the non-zero b .. and pkh of Equation 5.4.34 in Equation 
l.J JIJ 

5.3.8 and noting that n = m + r, we have 

v 

~211(s) = P2 a 2'b · 1 ,n n, l. m+ i, 

From Equation 2.5.12 it can be seen that 

= (-l)n+2ia . 
an,2i 2i,n 

and this implies that 

a 2. = a2. n, 1. i,n 

(5.4.35a) 

(5.4.35b) 

(5.4.36a) 

(5.4.36b) 

Using a procedure similar to that of Section 3.9.3 with Equations 

2.5.12, 5.4.35, and 5.4.36 yields 
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c = p b x3 2,nm+i,1 i = r (5.4.37a) 

[
n-2i J c =p b - k 

x 3 2 , n m + i , 1 . J I n- j 
J = 1 

i<r (5.4.37b) 

As for the Case II transfer function, if a is equated to the c 
X3 . X3 

of Equation 5.4.37, in general, there will result an inequality. As in 

Section 5.4.3, the solution is to place a n13 :n23 transformer at either 

port of the synthesized ladder and this results in 

a = N3p~ b . l 
x 3 L.,n m+ 1., 

i = r (5.4.38a) 

[
n-2i J a =Np b - k 

x 3 3 2, n m + i, 1 . . JI n- j 
J = 1 

i<r (5.4.38b) 

where 

and with an arbitrary choice for an added equation of 

(5.4.39) 

Now the remaining variables of the set of equations of Equation 5.4.34 

can be determined and the network component values are related to 

these variables by c 1 

5.4.5 Case IV. For this transfer function case, the numerator 

and denominator degrees are both even and the transfer function is 

written as 



where 

T(s) = 

x4 x4-1 
a s + a 1s + ... + a 1s + a x4 x4- O 

Sn+ n-1 
b n- 1 s + . . • + b 1 s + b O 

aj = positive constants; j = O, 1, ••• , x4 

x4 = even integer 

n = even integer 

n=m+r 

m=r 
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(5.4.40) 

A transfer function of the form shown in Equation 5.4.40 will 

result if the network drivers are inserted into the network realization 

of the characteristic polynomial as shown in Figure 5.4.5 (See Appendix 

D.) where 

(5.4.41) 

R1 .... 

Li L. L 
1 r 

• 0 • . .. 
Cl 

c. Ci+ 1 c R2 1 m 

Figure 5.4.5 Case IV Realization of T(s) 



215 

This network yields the fundamental circuit equation of 

O l 1 0 0 O I O I 1 1 I v ... -'-- -1 - -1- -,-1- - - I al 
1 I 1 -1 I O I I 1 I 
o' 

v· 
1 . Io I I 1 I bc1 I 

: I I : I I I 
• I • I . • I • I • 

o, • -1 I o I I 1 I vbc 

0_1 - 1 1 1 I I 1 I m 

- - r -, -1- - - - -,- v =O 
0 : 0 1 0 1 0 1 I I 1 

br2 
(5.4.42) 

v cr1 - -v 
cl,1 . 

• . v 
c..e .. · m ·- -v 
t2 

which is written in symbolic form as shown in Equation 5.3.2. 

Using these fundamental circuit equations, the state-model of 

Equation 5.3o1 and the K2-matrix of Equation 5.3.6b with the procedures 

of Chapters II and III results in the set of equations given in Equation 

3.7.5 which can be manipulated to yield 

t I 

k =CL n-1 m r 

' 2 f = r 2(L) n r 

' b = -L1 m+ 1,1 

' b. 2 = c. 
l.' l. 

(5.4.43a) 

(5.4.43b) 

(5.4.43c) 

(5.4.43d) 

(5.4.43e) 
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(5.4.43f) 

b. 2 = Pz . 1., ,1. 
(5.4.43g) 

Using the non-zero bij and pkt of Equation 5.4.43 in Equation 
) 

5.3.8 yields 

I 

:l211<s) = P2,ia2i-1,2bm+l,1 (5.4.44a) 

I 

2211 (s) 
X4 

= C s + 0 e e + els + C x4 0 
(5.4.44b) 

From Equation 2.5.12 it can be seen that 

= (-l)2(n-i) + la 
a2i-1,2 2,2i-1 (5.4.45a) 

and this imp lies that 

a2i-1,2 = (-l)a2,2i-1 (5.4.45b) 

Using a procedure similar to that of Section 3.9.4 with Equations 

2.5.12, 5.4.44, and 5u4.45 yields 

(5.4.46) 

As for the Case III transfer function, if a is equated to the 
x4 

c of Equation 5.4.46, in general, there will result an inequality. 
X4 

As in Section 5.4.4, the solution is to place a n14:n24 transformer 

at either port of the synthesized ladder and this results in 
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(5.4.47) 

where 

and with an arbitrary choice for an added equation of 

(5.4.48) 

Now the remaining variables of the set of equations of Equation 5.4.43 

can be determined and the network component values are related to these 

variables by Ci 

5.5 Synthesis of a General Voltage Transfer Function. Recall 

that for a general short circuit transfer admittance the synthesis 

procedure as presented in Section 3.9.1 satisfied, in general, only 

one numerator coefficient of the transfer admittance per ladder network. 

Also when paralleling theseTadder networks, it was sometimes found 

necessary to add a n1:n2 transformer to either satisfy the validity 

test or to obtain positive coefficients in the numerator po·lynomial. 

The synthesis procedure for a general voltage transfer function 

will be very similar to that given for transfer admittances in Section 

3.9.1. Each resulting ladder networ~ will, in general, satisfy only 

one numerator coefficient of the transfer function. If the numerator 

degree is xi, then there will be a maximum of (xi+ 1) ladder networks 

placed in parallel-series to satisfy the numerator coefficients (33). 

When connecting the ladder networks in parallel-series, it will not be 

necessary to consider the validity test since each ladder will contain 

a transformer. However it may be necessary sometimes to change the 
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positive turns ratio on a transformer to a negative turns ratio so as to 

obtain negative numerator coefficients. 

This synthesis procedure will result in a unified element value 

network if the same equation is added for each ladder synthesis as 

presented in Section 3.13. 

A voltag~ transfer function synthesis example will now be pre-

sented to illustrate the above procedures. 

5.6 Synthesis Example of T(s). Consider the voltage transfer 

function of 

4s2 + 8s + 3 
T(s) = --------

s3 + 5s2 + 17s + 25 
(5.6.1) 

So as to utilize previous material, the K2-matrix of Equation 3.6.2 

will be used with the procedures of Sections 5 .• 4.2 and 5.4.3. These 

procedures yield the three transfer functions of 

with 

with 

4s2 + 16s + 36 

s 3 + 5s2 + 17s + 25 

v 
N = 4 2 

- Bs - 8 

s3 + 5s2 + 17s + 25 

-25 

s3 + 5s2 + 17s + 25 

(5.6.2a) 

(5.6.2b) 

(5.6.2c) 



with 

11 -25 
N2 = -9-

and the synthesized network shown in Figure 5.6.1. 

If 

15 

IS 

-9:B 

-C/;25 

Figure 5.6.1 Realization of Example T(s) 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

6.1 Summary. The objective of this study was to develope a 

state-space approach to the synthesis of the following transfer func-

tions; short circuit transfer admittance,open circuit transfer imped

ance, and voltage transfer function. 

To develope this synthesis procedure, in Chapter II it was nec

essary to derive an algorithm that would yield (sU-K1)- 1, where K1 is 

a tridiagonal matri.x that represents a ladder network. Also in this 

chapter it was necessary to present the realization procedures for a 

characteristic polynomial that yields a ladder network with two resis-

tors. 

Chapters III, IV, and V present a unified state-space synthesis 

procedure for the realization of y12(s), z12(s), and T(s) with the 

following properties: 

1. This realization results in nonminimal networks made up of 

ladder networks connected in parallel, series or parallel

series and with transformers. 

2. There are restrictions on the s-domain transfer functions to 

be synthesized. 

3. There are restrictions on the topology of the resulting syn

thesized network. 
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4. There are no restrictions on the transmission zeros of the 

transfer functions. 

5. In general the resulting networks are not minimal except for 

the Special Cases. 

6. Each ladder network is planar, but in general, the total 

resulting network will not be planar. 

7. It is possible to obtain all of the ladder networks in the 

total synthesized network with unified component values. 
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8. There are special cases that can be realized with one resistor 

per ladder network. 

9. The network driver configuration for each transfer function 

is presented. Also since the location of the drivers in each 

ladder network is not unique, an acceptable location is pre

sented. 

10. A tridiagonal Ki-matrix is utilized with the derived state

model. 

11. This synthesis procedure is programmable for the digital 

computer .. 

6.2 Conclusions. It is possible to derive a unified state-space 

procedure for synthesi.zing s-domain transfer functions. This procedure 

determines a state-model that can be represented by a RLC network with 

or without transformers and the network component values can be deter

mined. Also one procedure is used for all three types of s-domain 

transfer functions. 

The four advantageous results of this synthesis procedure are: 

1. This is a unified synthesis procedure. 
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2. There are no restrictions on the transfer function transmission 

zeros. 

3. This synthesis procedure can be programmed for the digital 

computer. 

4. No previous knowledge of graph theory or state-models is 

necessary to use this synthesis procedure. 

The two disadvantages in the results obtained are: 

1. The synthesized networks jire not minimal. 

2. Transformers are required in most cases. 

6.3 Recommendations for Further Study. An interesting extension 

of this study would be to determine a K2-matrix that would represent 

lattice networks and then determine if this would eliminate the re

quirement of needing transformers. 

Another idea to investigate is whether for a given state-model it 

is possible to be transformed into a recognizable f-0rm that yields 

paralleled ladder networks. 

A straight forward investigation would be the determination of 

what types of transfer functions can be synthesized by one resistor 

ladder networks, by permuted state-vectors in the derived state-models, 

or by insertingthe drivers into different locations of the ladder 

networks than were presented in this study. 

Another area of investigation is to determine how Navot•s method 

of Appendix B might be manipulated to regulate the values of the network 

components in the synthesized ladder networks. 



BIBLIOGRAPHY 

(1) Anderson, B .. D. Oo and R. W. Newcombo "Impedance Synthesis 
via State Space Techniques,," Proceedings 2.f the IEE, Vol. 
115, No., 7 (1968), 928. 

(2) Bacon, C. M. "Time Domain Transformations for then-Port RLC 
Network .. u Proceedings 21. ~ i!:!; Midwest Syznposiuin 2E 
Circuit T~ory, Oklahoma State University, (May, 1966). 

(3) Balabanian, N. Network Synthesis. Englewood Cliffs: Prentice
Hall, Inc .. , 1958. 

(4) 

(5) 

( 6) 

(7) 

(8) 

Bashkow, T .. R .. "The A-Matrix, New Network Description." IRE 
Transactions on Circuit Theory, Vol. CT~4, (Septembe-;;:-
1957), 117-119°: 

Brown, Do P .. "Derivative-Explicit Differential Equations for 
RLC Graphs." Journal of the Franklin Institute, Vol. 275, 
(1963), 503-514.. - -

Bryant, P.., R,; "The explicit Form of Bashkow's A-Matrix." IRE 
Transactions on Circuit Theory, Vol. CT-9, (September,--
1962), 303=30°6: 

Cauer, W.. Synthesj.s .£!. Linear Communication Networks •. New York: 
McGraw-Hill, 1958, 184=188 .. 

Cederbaum, I. "Applications of Matrix Algebra to Network Theory." 
~ Transactions B!! Circuit Theory, Vol. CT-6, (May, 1959), 
127-137., 

(9) Chen, Wo H .. Linear Network Design~ Synthesis. New York: 
McGraw-Hill, 1964, 341-355.. ' 

(10) Daniel, Mo Eo and Lo Lo Grigsby~ "Some t-Domain Realizability 
Criteriao n Proceedip._gs 2.f t.he 9th Midwest Symposium_£!! 
Circuit Theory, Oklahoma State University, (May, 1966). 

(11) Dasher, B .. J., "Synthesis of RC Transfer Functions as Unbalanced 
Two-terminal Pair Networkso 11 IRE Transactions on Circuit 
Theorz, Volo CT-1, (December, i952), 20-34. - . 

(12) Dervisoglu, Ahmeto "Realization of the A-Matrix of H~lf-Degen-
. er;ilte RLC Networks.'' (unpub., Ph .. D. thesis, University 

of Illinois, 1964). 

223 



224 

(13) Dervisoglu, Ahmet. ''The Realization of the A-Matrix of a Certain 
Class of RLC Networks .. " IEEE Transactions on Circuit Theory, 
Vol. CT-13, No. 2, (June,~6), 164-170. 

(14) Fialkow, Ao and lo Gerst. "The Transfer Function of General, 
Two-Terminal Pair Networks.'' Quarterly of Applied Math
ematics, Volo 10, (July, 1952), 113-127. 

(15) Fr'ame, J. S.. "Matrix Functions and Applications.n IEEE Spectrum, 
Pts~ I-IV, (March-July, 1964). 

(16) Gantmacher, F .. R., The Theory£! Matrices. New York: Chelsea 
Publishing Co., Vol. 1 & 2, 1959. 

{17) Guillemirt, E. A .. Cmmnunication Networks. New York: John Wiley 
and Sons, 1935, Vol. II, Chapters 4 & 5. 

(18) 

(19) 

Ho, E., Co "A General Matrix Factorization Method." IRE Trans
actions ,££ Circuit :f,Ae,o,r1,, Vol. CT-2, (June, 1955), 146-153. 

Ho, E.., c .. 0 RLC Transfer Function Synthesis. 11 IRE Transactions 
.£!! Circuit Theor_y, Volo CT-3, (September, 1956), 188-190. 

(20) Karni, S. Network -~~eory~ Analysis and Synthesis. Boston: 

(21) 

(22) 

(23) 

(24) 

(25), 

(26) 

Allyn and Bacon, 1966. 

Kim, W. and Ro To Chienu Topological Analysis~ Synthesis of 
f£_mmunicatiop Networks. New York: Columbia University 
Press, 1962. 

Kuh, Eo S. and Ro Ae Rohrero HThe State-Variable Approach to 
Network Analysis.rt rn Proceedings, Volo 53, No. 7,. (July, 
1965), 672=686,, 

Layton, D0 M., HState Representations, Passivity, Reciprocity, 
and n=Port Synthesis .. '' Proceedings of the 4th Annual Aller
!.£E: Confer~ 2E Circuit and System Theory, University 
of 111:i.nois, (1966)., 

Levy, D., M., and Do Po Brown., uTime Domain Synthesis of a Class 
of RLC Networks."· Proceedings of the~ Annual Allerton 
Conference ~ Circuit ~ System Theory, University cif 
Illinois, (1965) .. 

Lucal, H. M., 11Synthesis of Three-Terminal RC Networks." IRE 
Transactions on Circuit Theory, VoL CT-2, No. 4, (December, 
1955), 308-316.° 

Marshall, To G. 
Networks." 
Circuit and 
935-9430-

0 Primitive Matrices for Doubly Terminated Ladder 
Proceedings of the 4th Allerton Conference on 
System TheorY: Univ~ity of Illinois, (1966), 



(27) Navot, I. 11The Synthesis of Certain Subclasses of Tridiagonal 
Matrices with Prescribed Eigenvalues." SIAM Journal of 
Applied Mathematics, VoL 15, No. 2, (March, 1967). -

225 

(28) Perlis, So .. Theory ~ Matrices. Reading: Addison-Wesley, 1958. 

(29) Rauch, D., Jo ttOn the Realization of Time Domain Models of Real 
Linear Bielement Systems .. •• (unpub. Ph. D. thesis, Michigan 
State University, 1963). 

(30) Seshu, So and N. Balabanian. Linear Network Analysis. New York: 
John Wiley and Sons, New York, 1959. 

(31) Seshu, S. and M. B .. Reed. Linear Graphs and Electrical Networks. 
Reading: Addison-Wesley, 1961, 201-212. 

(32) Van Valkenburg, M. E. Network Analysis .. Englewood Cliffs: 
Prentice-Hall, 19550 

(33) Weinberg, L .. Network Analysis~ Synthesis. New York: McGraw
Hill, 1962. 

(34) Yarlagadda, R .. "An Application of Tridiagonal Matrices to Network 
Synthesis.n ~ Journal of Applied Mathematics, (November, 
1968), 1146. 

(35) Yarlagadda, R. ''Network Synthesis - A State Space Approach." 
(To be published in the Proceedings.£!. the~.) 

(36) Yarlagadda, R .. and Y., Tokado usynthesis of LC Networks - A 
State Model Approach .. " Proceedings of~ IEE, Vol. 113, 
No. 6, (June, 1966), 975-981 .. 

(37) Yengst, Wo Co Procedures of Modern Network Synthesis. New York: 
Macmillan, 1964. 



APPENDIX A 

GENERAL STATE-MODEL REPRESENTATIO~ FOR RLC NETWORKS 

Recently the following has been given which presents a general 

state-model representation for RLC networks (35). 

Constder an n-port network consisting of two-terminal RLC com-

ponents only, and let the type of the drivers (voltage or current) 

at the ports be specified~ The state-model for such a network has been 

derived by several authors, and the explicit expressions for the state-

model in terms of a general circuit equation are given in several 

papers (6,5). In this appendix the results and details are given 

that can be obtained from one of the references or that can be derived. 

By a proper selection of the tree, the fundamental circuit equa-

tions for an RLC network can be written as~ 

BU B12 0 0 I u o o o v 

'o 
a 

B21 B22 B23 0 U O O vbc I . 
B31 B32 B33 B34 IO O U O vbr 

I 0 0 U vb..e B41 B42 B43 B44 IO 
= 0 (A.1) 

v cc 
v er 

V cf, 

Vt 

where Va-voltage source vector, Vbc-voltage vector of branch 

226 



227 

capacitors, Vb -voltage vector of branch resistors, Vb -voltage vector 
. r J 

of branch inductors, V -voltage vector of chord capacitors, V -voltage cc er 

vector of chord resistors, Vc.t-voltage vector of chord inductors., and 

V -voltage vector of current sources. In Equation A.1 U represents 
t . 

the identity matrixo The cut-set equations can be written in terms of 

their complementary variables. Let the terminal equations of the 

components be written in the form: 

~ vbc 1bc 
L d lei, v 

c cJ (Ao2) = 
~ dt lb£, vbJ 

c v I 
c cc cc 

and 

[:::] = [; ~J [:::] (A.3) 

where Cb, Cc, Lb, Le' ~j and Ge are diagonal matrices, having positive 

entries., The system of Equations A.1-Ao3 can always be reduced to the 

state-model form by eliminating the variables Ibc' IbJ' Ibr' Icr' VcJ' 

V Vb, and V using the circuit and cut-set equations. 
cc' r er 

* * * * If we let I = I , V = -V, V = V, and I =-I, where the 
t t t t a a a a 

star variables represent the vectors of terminal variables for an 

n-port RLC network, the final form of the state-model is 



B~!Gc (U + B23RbB~3Gc)-IB22 

-Bi1 cce1z<cb + Bif cB12>-1Bi2G/U + B23~e;Jcc)-IB22 

e;1cc (U + e 23Rbe;3cc )- 1u21 

-Bil CcBl/Cb + 8if c8 12)-!Bif c(U + 8 2JRbBif c)-lB21 

: ~;f c(U + 82lb8;f c)-IB2JRbB!3-B!1 
I T T -1 T . 
I -B11CcB12(Cb + 81fc8 12l [B22Gc(U 

I T -1 T T ] 
I + 8 2Jl\82fc) 8 2J~8 43-8 42 

+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1- - - - - - - - - - - - - - - - - - - - -
T T -1 I T T -1 T 

B4ce43RbB2JGc (U + e 23RbB 2f 0 ) e21 1 n43Rb[U-B 23c 0 (U+ e 23RbB 2f 0 ) B2JRb]B 43 

+ B44LbB;4 (LC+ B34L1,B;4>-'[B3JAbB;3cc (U + »23Q1,B;Jcc)-l821: -B44Lbe;4<Lc + 8341,,B ;4i-'e33Rb[u 

I T T -1 T 
-B31J : -!23Gc(U+ 823RbB23Gc) 82JRb]B43 

(A.3a) 

. 
v 

a 

(A.3b) 

228 



APPENDIX B 

TRIDIAGONAL MATRICES 

B.1 _Introduction. Several authors have been interested in the 

close ass9ciation between ladder networks and tridiagonal matrices 

(27, 34, 26)~ This appendix is concerned with presenting Navot's (27) 

method of obtaining a tridiagonal matrix from a strictly Hurwitz poly-

nomial that has eigenvalues which are equal to the roots of the poly-

nomialo 

B.2 Navot 1 s Methodo Given a strictly Hurwitz polynomial, called 

the primary polynomial, 

H ( ) = n + h n-1 + h . n s s n-1 s + • • • o (B.2.1) 

from which a tridiagonal matrix is to be obtained, it is necessary to 

first generate a secondary polynomial from H (s). This secondary polyn 

nornial, G (s), is written 
n 

G (s) 
Il 

n n-1 = s + g 1s + ••• + g 
n- o 

and is obtained by the relation 

G (s)G (-s) = H (s)H (-s)-c n n n· .. n 
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(B.2.2) 

(B •. 2. 3) 
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where 

O<c< m (B.2.4) 

and 

(B.2.5) 

After determining c from Equations B.2.4 and B.2.5, then Equation B.2.3 

is used to obtain the g. of Equation B.2.2. From Equation B.2.4 it is 
1 

obvious that c will not be unique, which in turn implies that the g. . 1 

will not either. 

Next construct the rational function 

H (s) + G (s) 
n n 

W(s) ~ ll (s) - G (s) 
n n 

(B.2.6) 

which is used to obtain a continued fraction expansion of the form 

...,.(h,.....n---1--g-n--1...,.)..,..[..,...l -+-W..,...( 5 ) J = (hn-1-gn-1) [~n( 5) J 
2 H (s) - G (s) 

n n (B.2.7a) 

. r 

(B.2.7b) 
s + 

• f 
n +----

s + fn+ 1 



where 

-f 
3 

0 -f ·4 
K= • • • • • • • • • 1 0 -f 

l1 

1 -fn + 1 

and K has eigenvalues equal to the roots of H (s). 
n 

B.3 Example. Given the strictly Hurwitz primary polynomial 

and defining f(a>) as 

then 

and 

f(W) = w6 - 2W4 + 5(1)2 + 1 

df(W) = 0 
d(L) 
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(B.2.8) 

(B.3.1) 

yields c.o = 0 for the argument value where f(C.«J) is a minimum which 

implies that 

m = 1 

and 

0 < c~ 1 (B.3.2) 
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Arbitrarily choose c = 0.5 and then 

6 4 2 G3(s)G3(-s) = - s - 2s - 5s + 0.5 (B.3.3) 

Assume 

3 2 G3(s) = s + as + bs + d (B.3. 4) 

then 

6 
s -

2 4 2 2 2 (2b-a )s - (b -2ad)s + d (B.3.5) 

Equating coefficients of Equations Bo3.3 and B.3.5 yields 

d = • 707 (B.3.6a) 

and 

a4 + 4a2 - 5.66a - 16 = 0 (B.3.6b) 

A solution is 

a= 1.875 (B.3.7) 

which implies that 

b = 2.76 (B.3.8) 

Now from Equations B.3.4, B.3.6a, B.3.7, and B.3.8 

3 2 G3(s) = s + 1.875s + 2.76s + .707 (B.3.9) 

From Equations B.2 .. 7a, B.3.1, and B.3.9 

(B.3.10a) 
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and this result with Equation B.2.7b yields 

s2 + 1.92s + 2.344 1 
3· 2 . . -

s + 2s + 3s + 1 (B.3.10b) 

Evaluating the fi above and substituting into Eq\lation B.2.8 yields 

[
-.08 -.503 0 J 

K= 1 0 -2.34 
0 . 1 -1.92 ·. 

(B.3.11) 

This tridiagonal matrix will .yield the primary polynomial of 

Equation B.3. L, There will be an error in the h coefficient due 
0 

to slide rule inaccuracies. 



APPENDIX C 

TRANSFORMATION FOR TRIDIAGONAL MATRICES 

c.1 Introduction. The tridiagonal matrix obtained in Appendix 

B is not of the same form as the K-matrix of the '"modified'' general 

state-model of Section 2.3. The desired form being 

(C.1.1) 

C.2 Transformation Procedure. The procedure to transform the 

K-matrix of Appendix B into the form of Equation c.1.1 will be done 

in two steps. The first step is to use a similarity transformation 

on the initial tridiagonal matrix 

• • • (C.2.1) • • • • 
1 0 -f 

n 
1 -f n+l 
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to obtain the tridiagonal matrix 

• • 
• • 

• • 
. . • • 

-f O f n-1 n 
-f -f 1 n n+ 

235 

(C.2.2) 

Then another similarity transformation is made in step two to obtain a 

K-matrix of the form in Equation c.1 .. 1. 

c. 2.1 Similarity Transformation of Step One. Perlis (28) has 

shown that in a similarity transformation the K2 of 

(C.2.3) 

will have the same eigenvalues as K1• There can be determined a trans

formation matrix., P, such that when given K1 of Equation c.2.1 and 



that 

0 

• 
• • 

• d • 
n-1 er- 0 
n-2 

d 

• 
• 
-£ d n n-1 

d n 

n 
-d -f 1 n+ n-1 
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(C.2.4) 

Equating like entries from Equations c.2.2 and C.2.4 and solving 

for the di entries yields 

[:n ]2 = fn 
n-1 
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This set of (n-1) equations has n unknowns. Therefore a solution is 

dl = 1 

d - (f )\ 
2 - 2 

d (ff)\ (C.2.5) 
3 = 2 3 

• • 

d : (f2f3 ••• f f )\ n n-1 n 

Now K2 can be obtained from K1 and is 

K -
2 

-f 1 -VF;_ 
vr; 0 - YI; 
~ 0 -~ • • • • • • • • • 
~ 0 -"fl: 
~ -fn+l 

(C.2.6) 

c.2.2 Sil'l!f!_!rity Transformation of Step Two. Using the P of 

Equation C.2 .. 3 to obtain a similarity transformation from K2 to K has 

been done by Yarlagadda (35) and requires when n is odd that 

(1) (2) (3) .. .. .. en+ 1) 
2 

(n+3) 
2 

(~) 
2 

(n+7) 
2 

(n) 

1 0 0 .. • • 0 0 0 0 • 0 ( 1) 
0 0 0 0 G • 0 1 0 0 • 0 (2) 
0 1 0 Q .. 0 0 0 0 0 • 0 (3) 
0 0 0 • • . 0 0 1 o· • 0 (4) 

P= 0 0 1 ,. . 0 0 0 0 0 0 . (5) 

• • • " • .. • • • • 
• • • .. . .. .. . • • • 
0 0 0 • • . 0 0 0 0 • 1 (n-1) 
0 0 0 • .. • 1 0 0 0 • 0 (n) 

(C.2.7) 
The similarity trans·formation 

T 
K = P K2P (C.2.8) 
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will yield 

( 1) (2) (3) ... (n-1) (n+ 1) (n+ 3) cE..±1.) . • (n) 
2 2 2 2 

-fl 
I 

£2 (1) 
I 

0 I -f3 £4 (2) 
I a I -fs (3) • • I • • I • • • 
I • 

(.!!:l) 0 • f 
I n-1 2 

-fn+ 1 I -f (n+ 1) 
K= 

n - - - - - - - -1 - - - - - ... - - - - - ..,.. 2 

-f2 f3 I (n-F3) 
I 2 

-f4 f5 I <n\5) 
I 

• • I 
• • I 

• • I 

-f f I (n) 
n-1 n i 

(C.2.9) 

When n is even this similarity transformation requires that 

(1) (2) (3) . . • (!!) <-¥ + 1) <%+ 2) <%+3) . (n) - 2 
l 0 0 0 0 0 0 • . . 0 ( 1) 

0 0 0 • . . 0 1 0 0 . . . 0 (2) 
0 1 0 • ~ . 0 0 0 0 . . " 0 (3) 

p = 0 0 0 . • " 0 0 1 0 . . . 0 ( 4) 
0 0 l 0 0 0 0 0 (5) 

. . . . • • 
" • 

0 0 0 1 0 0 0 . .. • 0 (n-1) 
0 0 0 . e • 0 0 0 0 " .. . 1 (n) 

(C.2.10) 



which yields 

n 
(1) (2) ••• <2) <¥+ 1) 

I 

0 

• 
• 

• • 
• 

• 

• 

I f2 
I -f 
I 3 

I 
I 

o I 
- - L 

I 
I 
I 
I 

0 

• f I 
n-1 I 

-f 
n 

( ¥ + 2) • • • ( n- 1) 

• • 
• 

• 

0 

• 
• 

• 

• 
• 

-f n-1 

0 

(n) 

( 1) 

(2) 

• 

. 
f ( .!:) 

n 2 

-<¥+ 1) 

<¥+ 2) 

(n-1) 

-fn +1 (n) 

This completes the second step as the K-matrices of Equations 

C.2.9 and C.2.11 are of the form of that in Equation c.1.1. 

C.2.3 Another Transformation. In Section 2.5 an algorithm is 

given that determines (sU=K2)-l and Per.Us (28) has shown that 
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(C.2.12) 



APPENDIX D 

TRANSFER FUNCTION TRANSMISSION ZEROS 

D.1 Introduction. In the synthesis procedure presented in the 

preceding chapters, the characteristic polynomial of the three differ

ent transfer functions was realized in a ladder network. The numerator 

polynomial was obtained by the drivers being inserted at the appropriate 

locations of the ladder network. The primary concern was that the 

driver insertions yield the desired degree in the numerator polynomial. 

Since the number of transmission zeros is equal to the degree of the 

numerato;r polynomial, this appendix will present a method for deter.,. 

mining the transmission zeros of ladder networks. 

D.2 Transmission Zeros., Seshu and Reed (31) present the fol

lowing theorem on transmission zeros. 

·1-----1-- ••• ------I 

Figure D.2.1 Ladder Network 
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Theorem D.2.1 - The zeros of transmission of the ladder network 

in.Figure Do2.1 are contained among the zeros 

Chen (9) has given the following two theorems concerning zeros 

of transmission. 

Theorem D.2.2 - The poles of the impedance z1(s), as shown in 

Figure D.2.2, of a series branch other than the 

241 

series branch Z/s) is a zero of the open circuit 

transfer impedance z12(s) of that ladder network. 

- l,~) - - l(A,) -- - -
~ 

LADDER LADDER 
NETWORK NETWORK 

.# I ::#: ,e - --

Figure D.2.2 Ladder Network for Theorem D.2.2 

Theorem D.2 .. 3 = The poles of the admittance Y1(s), as shown in 

Figure D.2.3, of a parallel branch other than 

the parallel branch Y/s) is a zero of the short 

circuit transfer admittance y 1/s) of that ladder 

network. 
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- - - --
T T -

LADDER LADDER 

NETWORK Y, (A-) NETWORK ~(4) 

- *- I l :/:1:: 2 l -- - - -

Figure D.2.3 Ladder Network for Theorem D.2.3 

Consider the ladder network of Figure D.2.4 and the chain para-

meters or general circuit parameters can be written 

(D.2.1) 

where 

A= 1 + z1Y2 + z1Y4 + z3Y4 + z1Y2z3Y4 

. B = z1 + z3 + z5 + z1Y2z3 + z1y2z5 + z1Y4z5 + z3y4z5 + z1Y2z3y4z5 

C = y2 + Y4 + Y2Z3Y4 

D = 1 + y2z3 + Y2z5 + Y4z5 + Y2z3Y4z5 

l.1 -. l.2 
- -· ~I r. Z.5 --- -- - - -+ 3 + 

v1 ~ y4 v2 

- --· - ·-.. - - -
Figure D.2.4 Ladder Network for Chain Parameters 



It can be seen that 

1 
T(s) =A 
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(D.2.2) 

(D.2.3) 

(D.2.4) 

From Equations D.2.1 and D.2~2 it can be seen that poles of the 

Zi and Yj will be the zeros of transmission for the voltage transfer 

function. Note that the poles of z5 are not considered. Note that 

if z1 is a short, then the poles of Y2 are not considered. 

From Equations D.2.1 and D.2.3 it can be seen that the poles of 

the z. and Y. will be the zeros of transmission for the short circuit 
l. J 

transfer admittance. Note that if z5 is a short circuit then the poles 

of Y4 are not considered. This comment is also true for z1 and Y2• 

From Equations D.2.1 and D.2.3 it can be seen that the poles of 

z3 and the Yi will be the zeros of transmission for the open circuit 

transfer impedance. Note that the poles of z1 and z5 are not consid-

ered. 
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