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CHAPTER 1

INTRODUGCTION

1.1 Statement of the Problem. As automation becomes more common
in all aspects of industrial,.scientific, and domestic processes, the
digital computer is relied upon to accomplish more and more tasks. It
is obvious then that the spectrum of processes, from the simplest to
the most sophisticated, must be "systematized" to allow programming
for computer control. This "systematizing" implies development of
unified approaches in all procedures.

Synthesis of transfer functiomns is a primary consideration in any
process to be controlled. Adaptation of the synthesis procedure to
digital programming is probably the next consideration. At the present
time transfer functions cannot be synthesized with two-port linear
networks utilizing a unified procedure in the complex frequency or
s-~domain and the synthesis procedure varies depending on the function.
Neither are the present synthesis procedures easily programmable on the
digital computer. It is recognized that, in general, a topological
approach to the synthesis problem offers greater insight than the com-
plex frequéncy.approach; that the state-model provides network topo-
logical information; and that the state-model lends itself to digital
computer application.

The state-model of a general linear RLC network has the form:



d o . * 4
R ST R PR C R R vl ]
(1.1.1)
L3 ! % d *
Y =PX +t Yy R w Y

7

*
where Y1 and Xl corresponds to the terminal variables of the network
and the state-vector, Xl’ consists ofthe branch capacitor voltages and
chord inductor currents.

Equation 1.,1.,1 corresponds to the general RLC network, however we
shall consider the following reduced state-model which will simplify the
synthesis procedure.

S X = AX + BY
Tl S +
(1.1.2)
% *
Y =PX + QY

This state-model corresponds to a RLC network which has certain topo-
logical restrictions. These restrictions allow the above mentioned
procedural simplifications and they are presented later.

The Laplace transform of Equation 1.1.2 yields

% - %
Y (s) = [P(sU-4) s 4 QY (s) (1.1.3)
Then the characteristic polynomial of the restricted network is
[su-a] =0 (1.1.4)

The problem considered in this dissertation is to obtain a state-
model of the form given in Equation 1.1.2 from the s-domain transfer
functions: (1) short circuit transfer admittance, ylz(s), (2) open
circuit transfer impedance, 212(5), or (3) voltage transfer function,

T(s). At the same time the state-model should correspond to a RLC



network with or without transformers. Further the procedure should be
the same regardless of the type qf transfer function. This is achieved
here and since this is a state-space approach to t;ansfer function
synthesis, it is programmable on the digital computer.

1.2 Previous Work in this Area. Lucal (25) developed a procedure

to realize special classes of driving-point and transfer functions as
three-terminal RC networks. Guillemin (17) and Dasher (11) presented
other RC synthesis procedures resulting in two-port networks. Fialkow
and Gerst (14) have presented the conditions necessary for a transfer
function to be realizable, Ho (18,19) developed a transfer function
synthesis procedure resulting in two-port RLC networks and it was based
on a matrix factorization technique. Yengst (31), Karni (20), and
Weinberg (33)_have written texts which present some of these synthesis
procedures, Included in these texts is Guillemin's two-element-kind
parallel ladder realization of tramsfer functionms.

It must be emphasized that the synthesis procedures mentioned
above are complex frequency domain procedures.

Since Bashkow {(4) first defined the A-matrix in 1957 for use in
network and system theory, there has been a growing interest in the
state-model concept of system analysis and synthesis. Bryant (6) in
1962 considered the explicit form of Bashkow's A-matrix and determined
a general matrix expression of the state-model for a RLC network.
Brown (5) in 1963 considered the derivative-explicit differential
equations for a RLC network which has drivers. Rauch (29) in 1963
dealt with the realization of time-domain models of real linear biele-
ment systems. Dervisoglu (12,13) in 1964 considered the problem of

realizing the A-matrix for a RLC network under the condition that the



number of state-variables is equal to the number of reactive elements
in the mnetwork and the resistive subnetwork is connected. Levy and
Brown (24) in 1965 considered the time-domain description of a class
of RLC graphs in terms of a first-derivative-explicit system of differ-
ential equations. Kuh and Rohrer (22) in 1965 reviewed the state-
variable approach to network analysis. Layton (23) in 1966 considered
state equation descriptions of passive networks. Bacon (2) in 1966
established the comstraints on the topology and element values of the
n-port RLG network which are necessary and sufficient for the network
to have a given time-response. Daniel and Grigsby (10) in 1966 pre-
sented a procedure for testing a‘given state-model for realizability as
a passivé RLC one-port network. Anderson and Newcomb (1) in 1968 have
given state-space procedures for positive real matrices using RLC
networks, tramsformers, aﬁd gyrators. However all of the state-space
synthesis procedures are given for positive real matrices of functions.
Marshall {26) in 1966 presented the synthesis of a doubly term-
inated ladder network which is lossless except for resistances in the
terminal branches. This synthesis is accomplished by transforming a
singly terminated network intc an equivalent doubly terminated network
by successive perturbations of an associated tridiagonal matrix. Navot
(27) inA1967 developed a procedure for finding certain subclasses of
tridiagonal matrices with prescribed eigenvalues° Yarlagadda (34)
presented a procedure for obtaining a tridiagonal matrix with prescribed
eigenvalues and a transformation matrix that trénsforms the obtained
tridiagonal to a desired form. This transformed matrix is then equated
to the general A-matrix that Bryant (6) determined. This yields a

portless ladder network with a characteristic polynomial that has roots



equal to the eigenvalues of the obtained tridiagonal matrix. If there
are n eigenvalues then this procedure yields a ladder network that has
one resistor in a terminal branch and n reactive elements. The ideas

presented in the above three papers are fundamental to this thesis,

1.3 Research Necessary to Dévelope the Synthesis Procedure. In
the research to develope a procedure for the synthesis of two-port
transfer functions it is found tﬁat not only is the characteristic
polynomial realization a problem, but that obtaining the transmission
zeros or numerator polynomial is also a problem.

Using the one resistor network developed by Yarlagadda (34), it is
found that not all degrees of numerator polynomial can be obtained when
all possible port locations are tried. Therefore a realization of the
chafacteristic polynomial is developed that will yield a portless ladder
network with two resistors, one in each of the terminal branches, and
n reactive elements. This realization procedure uses a tridiagonal
matrix presented by Mavot (27) and a transformation presented by Yarla-
gadda (34). The resulting portless ladder network yields all possible
numerator degrees by properly selecting the port terminals, This
location is not unique for each numerator degree. Therefore a system-
atic procedure is developed to locate an acceptable position for every
possible numerator polynomial.

The A-matrix of Equation 1.1.2 must have a special form to yield
a ladder network in the characteristic polynomial realization procedure.
This form is obtained with the tridiagonal realization and transforma-
tion mentioned above. Now it is seen that the B and P matrices of
Equations 1.1.2 and 1.1.3 have certain relationships with this A-matrix.

Therefore when the transfer function is obtained from the state-model,



these relationships with respect to the numerator of the transfer
function have to be determined. However, it is first found advantageous
to develope an algorithm that yields the [adj(sU-A)] by simple recursive
calculations, With this done the general expressions for the state-
model transfer function numerators are determined and this gives the
desired relationships betﬁeen the A, B, and P matrices.

The component values of the ladder network resulting from the syn-
thesis procedure are now obtained by the following method. By using
the A, B, and P matrices above with Bryant's (6) general state-model
and the relationships determined above, a set of non-linear algebraic
equations are determined whose unknowns include the ladder network
component values. . A solution which will always work for this set of
equations is developed.

In the research that developes the above set of non-linear alge-
braic equations, it is found to be necessary to interconnect ladder
networks in such a manner so that all of the transfer function numerator
coefficients are satisfied. A procedure is established as to how many
ladder networks must be interconnected and what these interconnections
must be. This procedure is based on the coefficients of the transfer
function numerator and the type of transfer function.

These interconnections probably require the addition of trans-
formers to safisfy the validity test. Therefore a technique is devel-
oped to utilize the transformers in the synthesis procedure to yield
intercqanected ladder networks with corresponding components in the
ladder% which have unified values.

These research results are enumerated below.



2.

The restrictions on the s-domain transfer function are deter-
mined.

The topology restrictions on the resulting synthesized networks
are determined.

A realizable state-model for the restricted RLC network is
derived.

From 3. certain properties are determined.

An "A"™ matrix is derived which has the properties of 4 (27,35).
Using the MAY matrix of 5., a RLC network corresponding to the
given characteristic polynomial is obtained.

Drivers are properly inserted into the networks of 6. to

yield the transmission zeros of the transfer functions.

The network component values are determined and transformers
are added to satisfy the validity test and/or the numerator

coefficient magnitude and polarity,

Chapter 1I presents the necessary procedure for the synthesis of

the transfer functions.

Chapter 111 presents the ghort circuit transfer admittance synthe-

sis procedure in considerable detail.

Chapter IV presents the open circuit transfer impedance synthesis

procedure rather briefly since this is the dual of the material in

Chapter III.

Chapter V presents the voltage transfer function synthesis proced-

ure rather briefly. This is because this transfer function uses many

of the procedures of the other two transfer functions.

Chapter VI lists the conclusions.
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I

Given a transfer function, note its -
1. "Type - y,,(8), z;,,(s), or T(s)

2. Numerator degree and coefficients
3. Denominator degree and coefficients

/

I1

If the transfer function is improper,
use the procedures of Section 2.6.

I1I

Draw the ladder network using the pro-
cedures of Section 2.8 for y,,.(s), Sec-
tion 4.5 for Zl°(s)’ and Section 5.4
for T(s). <

/

v

Determine a K,-matrix using the proced-
ures of Appen%ices B and C.

v

Using the information of block I and IV
calculate the component values for the
ladder network of block III. Chapters
I1L, IV, and V provide the sets of non-
linear algebraic equations for this cal-

culation.

VI

Using the procedures given in Section
3.12, determine the transfer function
of the next ladder network.

Figure 1.4.1 Synthesis Procedure Flow Graph



1.4 BSynthesis Procedure Flow Graph. The synthesis procedure is

presented briefly in block diagram form in Figure 1.4.1, Each block
is programmed with a finite number of analytical equations and/or deci-

sion statements which are presented in the sections listed.

1.5 Definitions. Given below are definitions that are felt nec-

essary”for better comprehension in reading this paper.

1. TImproper function - A rational function that is a ratio of
polynomials with the degree of the numerator polynomial greater
than or equal to the degree of the denominator polynomial.

2. Proper function - A rational function that is a ratio of
polynomials with the degree of the numerator polynomial less
than the degree of the denominator polynomial.

3. Unimodular or E-matrix - A matrix, Bij’ of real elements where

the determinant of every square submatrix of 3B is 1, -1, ox

1]
0. Also every entry of Bij will be 1, -1, or 0O (30).

4, Minimal network - A synthesized network with n reactive ele-
ments that results from a characteristic polynomial of degree
n.

5. Positive semidefinite matrix - A matrix is positive semidefinite
if and only if each principal minor is non-negative (33).

6. Dual networks - If N and N* are dual two-port networks, then
the short circuit admittance matrix of either network is equal
to the open circuit impedance matrix of the other (30).

7., Hurwitz polynomiall- A polynomial with no zeros in the right
half plane (33).

8., Strictly Hurwitz polynomial - A polynomial with no zeros on

the imaginary axis or the right half plane (33).



CHAPTER II

STATE~-MODELS, TRANSFER FUNCTIONS, CHARACTERISTIC POLYNOMIAL
REALIZATION, AND FUNDAMENTAL GIRCUIT EQUATIONS

2.1 Introduction., Before presenting the synthesis procedures,

it is necessary to discuss some topics that are basic ideas to the
synthesis but which would aonfusg the presentation if left until later.
These toplcs are the network topology restrictionms, the desired state-
models, and the tranéfer function derivations. The first topic dis-

. cussed will be the topology vestrictions, since these will affect the

state-model derivations.

2.2 Synthesized Network Topology Restrictions. Simplification

of the synthesis procedure is allowed by placing certain restrictions
upon the netweork topology. This simplification is accomplished when
the topelogy restrictions allow the state-model, representing the
network, to be written im a fovm that displays desirable interrelation-
ships and matrix structure., These characteristics will be discussed
further in Chapter III.

The topological restrictions are:

1. Both branch resistors and chord resistors will not be per-
mitted in the same fundamental circuits.
2. Circuits of capacitors with or without voltage drivers will

not be permitted.

10
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3. Cut=sets of inductors with or without current drivers will

not be permitted.

These restrictions will now be used in the derivation of the various

desired state-models.

2,3 "Modified" General Sta;emModelo The network topology restric-
tions of Section 2.2 and the state-model given in Appendix A which
represents a general network will now be combined to obtain the desired
"quified" genexral state-model. However before this is done, the

matrix elements are defined as follows:

Va - Branch voltage source vector consisting of the two across

variables, v. and v_ .
a a
1 2
VbC - Bramnch capacitor vector consisting of the across variables,

V. v, vooy and v o
be,” “be.’ ' be
3 2 k
Vbr - Branch resistor wvector consisting of the across variable,
v ¢
bx
1
Vcr = Chord resistoxr vector consisting of the two across variables,
Ver and Vg ®
1 2
V - Chord inductor vector comsisting of the across variables,

v s V s coey And V o
czl cLz czj

Vt - Chord current source vectsr consisting of the two across

varigbles, v and v, o
t;l tz

Bij - Submatrices of a unimodular matrix with element values
of Q0 or ile
Ia - Branch veltage source vecter consisting of the two through

variables, i and 1 .
ay a,
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IbC - Branch capacitor vector consisting of the through vari-

ables, i i eooy and i o
be,’ “be,’ ’ be
1 2 k
: Ibr - Branch resistor vector consisting of the through variable,
i o
r
BTy
Icr - Chord resistor vector consisting of the two through vari-
ables, iCE ; and icr o
1 2
Icz - Chord inductor vector consisting of the through variables,

i , 1 s ewoy and i °
c c ch .,
4y L, EJ
It - Chotd current source vector comnsisting of the two through

variables, it and 1 .
1 2

Applying the network topology restrictions of Section 2.2 to the
fundamental circuit equation of Appendix A results in the following

reduced circuit equations, cut-set equations, and component equations.

| 7
By1 By O | UO O]V,
B31 B3, 333: OV O Ve
8,3 loovul|v
4 /
41 T42 T43 PR (D (2.3.1)
v
cr
cl
v
s-:t"-
B | oT T T 1 ]
VOO Bar By “Bar | 1y
T T T
0UQ|-B,, =By, =By 1| Tpe
T T
00U, 0 -B,, =B I
i i 33 Pasf| fer | _ (2.3.2)
1
cY
ct
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Cp 0 a_ Vbc _ Ibc (2.3.3)
0 L, dt Icg ch
Vbr _ Rb 0 Ibr (2.3.4)
1 10 G v T
cr c cr

Using these sets of equations and following a procedure similar to
Appendix A, the ™modified" general state-model can be formulated

and is shown below,

1T 1T
o | e[ 7% PaaSPaat % Pz | Vhe
.ang - 1 I o= 3 T
) e Ban 1l BasRuBas || Tey
(2.3.5a)
1T | 1. T
BRGNS N
+ |
-1 i , T
ke 31 7R PasRpBas it
T 3 T T ; T
Loy | ~Baabla ! B3y oo | | Pa18Pa1 1 Par v
o J2be2a b Tt ) Tbef | 21TeT2l e
v -B l.p, . m5e. |1 -B l.p R BL. |]1
t 42 4 TPa3tpU3 s 41 774343

(2,3.5b)

Note that Cb

and therefore their inverses will exist. Equation 2.3.5a is the set
of differential equations in the state-model and Equation 2.3.5b is
the set of algebraic equations. A change of variables in the state
vector will be necessary so that the desired "modified' general state-

model is obtained that displays the interrelationships mentioned pre-

viously and is as follows

and LC are diagonal matrices with real positive elements
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1 H
\' c.2 0 '
b b b
1= 3 .C (2.3.6)
I, o LFl1L,

Note than since Cb and Lc are diagonal matrices with positive entries,

i
2 will be diagonal matrices with their entries chosen to be

b

[N\

C. 2 and L~
c

b

% %
, and Vt are related to

positive. The terminal variables Va’ Ia’ It

Va’ Ia’ It’ and Vt by

%’;_ -
' '
al_ | a
T e
- T
I -1
al _ a
vl |y

Using the change of variables indicated in Equation 2.3.6 in the
state-model of Equation 2.3.5 and utilizing the terminal variables,

the desired "wodified" general state-model results as shown.

] [esbeanst | o |[n.
“ Iiﬁ “ NLZ%B3202% EWLZ%333“bB§3LZ% Iiz
(2.3.7a)
B | A
+-l. °L;%B31 i 'L;%Bsstst I,
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* T x X ' T | T *

fa | | P210P22% 1 Patle [ Vbe| | P21%Pa L,_'?ag Vs

* S e | | T || *

Vt B42Cb |B43RbB33LC Icﬂ B41 | B43RbB43 It
(2.3.7b)

This state-model is the basic expression in the synthesis procedure.
As comparisons will be made later with this state-model, it is written

in a simplified form.

] T T V*
. Ve K1 Ko || Vbe Bi11 Bi21 || Va
ECH L R 1 * B... B I (2-3.82)
Teol %2 Faa | ey 211 Pa21 || te
1 P., P v, R,. R v
al |71l Tiz gy The 1L 120 e (2.3.8b)
# ' *
Ve Po1 Pool| ey Ra1 Roo || T

This will ease the task of identifying a particular part of the state-

model. Note that

Byyy = <Py
Boo1 = ’sz
Bio1 = P§1
Byyy = Ppy

A reduced form of this state-model will be used in each of the derived

transfer functions to follow.
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2.4 S8State-Models and Transfer Functions. An idea of the unified

approach to transfer function synthesis considered in this thesis is
obtained when‘the Ymodified" general state-model of Equation 2.3.7

is compared with the state~models derived for each of the transfer
functions: short circuit transfer admittance, le(s), open circuit
transfer impedance, le(s), and voltage transfer function, T(s). The
assumed network driver configuration for each type of transfer function
is of interest as they are unique. Each transfer function will be
considered separately as it is felt that the '"derived" state-models

are significant enough to warranit this approach. The short circuit

transfer admittance is considered first.

2.4.,1 Short Circult Transfer Admittance, qu(s). In determining
L

the short civcuit transfer sdmittance by the state-~space approach,

it is first necessary to derive the "desired" state-model that repre-
sents the network with the correct driver configuration. Therefore
when determining Yig(s) by the state-space approach, the driver con-

figuration for the IZ-port network is assumed to be that of Figure 2.4.1.

The reason for this assumption will be apparent later.

Network

Figure 2.4.1 Network Driver Configuration for le(s)
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In deriving this "desired"™ state-model, the fundamental circuit
equations can be written in reduced form from those in Equation 2.3.1,
which were for the "modified" general state-model and did not consider
the restriction on the driver configuration. This restriction being
that the network only has voltage sources and no current sources. With
this further restriction on the driver configuration, the fundamental

circuit equations will be

ollv 7]
a
ulfv,,

VEr
rV

cr

= 0 (2.4.1)

ch

b —

Now determining the equivalent cut~-set equations and component equa-
tions, similar to Eguations 2.3.2, 2.3.3, and 2.3.4, and following a

procedure similar to Appendix A, we have the '"desired" state-model

X e e e
. be -G, "By p6 B 1oCy, | Cp Boole be
o il I fy- - - =-==-
ac I 1 9 1 1 '
- =5 -3 I_ ] T -3
lea L8220 7L BogRpBasle T 1] Tey
(2.4.2a)
51 *
“Cp 12811 V%]
R
-L “B
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1 |=|8T.¢ By,C -% | | sl 1% || v/ B (6B (2.4.2b)
a 1168126, | -Boqle be 11 .
1

Icﬁ

The similarities between Equations 2.3.7 and 2.4.2 are readily
obvious. Using Equations 2.3.8 for identification purposes, it is
- noted that the part of the state-models of Equations 2.3.7a and 2.4.2a

that correspond to the K11’ K12, and K,, elements would be identical

22
if the same fundamental circuit equation subscript notation had been

used. Also the B and B elements of Equation 2.3.8 would be the

111 211

ol

same as the coefficient matrix multiplied times V; of Equétion 2.4.2a
‘except that the subscript notation has been changed. This éomparison
is also true for the P11’ P12’ and R11 submatrices., This reduced form
of Equation 2.4.2 could then be obtained by setting I: and V: equal
to zero in Equation 2.3.7, which agrees with the network driver con-
figuration of Figure 2.4.1.

For purposes of identification in showing the interrelationships
of the state-model of Equation 2.4.2;, it is writtem in the simplified

form as shown

¥ ’1‘ ¥
d | Ybe| |“F1r Rz (] Vo 111
dt 1 - ¢ + (2.4.3a)
L K12 “Ka2 || Iey 2
& 2 .
[-Lamd i odl] o
: ]
1
Lot
It should be noted that elements B and R of

111 Bo11° P10 Byoo 11

Equation 2.4.3 are not identical with elements B111, B211, P11’ P12,
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and R of Equation 2.3.8. By inspection the relationship between the

11

elements, KfZ and -Klz, of Equation 2.4.2a is obvious. Also note that

T
Bygg = -F1g

T
By11 = F1p

To derive the short circuit transfer admittance, Yiz(s), from
the state-model of Equation 2.4.3, it is more desirable to write the
state-model in a form that lists the voltage sources individually.
The B, P, and R matrices have been expanded to allow the proper matrix

multiplication, which is as follows

¥ . ’T § e
Ve R K || Vpe(®) . Byy Byy Val(t)
dt ool , v %
Teat® ] [z M| Ter® ] [Bar Baz ||V (o)
(2.4.4a)
k3 5 ‘; ~ - 8 W%
lal(“f P11 Pro || Ve (E) Rip O Val(t)
B = V + . (2.4.4b)
1a2(t) Pyq Pyy Icﬁ(t) 0 8,5, Vaz(t)

To facilitate the presentation, Equation 2.4.4 is written in the simple

form

a " _ B3
Tr XK(£) = KX(t) + 8 V_(t) (2.4.5a)
¥ % '
Ia(t) =P X(t) +R Va(t) (2.4.5b)

Taking the Laplace transform of Equation 2.4.5 and solving for the

transformed state-vector, X{s), we have
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-1 *
X(s) = (sU-Kz) 8 Va(S)

%* *
Ia(S) =p X(s) +R Va(S)

Now,

%* ¥ *
I.(s) =2 (S)V.(s) + R V,(s)

where

D (s) =p (su-xz)‘loa (2.6.6)

% *
and after expanding I , V , 3, and

izl(s) »Dll(s) 21,(s) Vzl(s) Ryp O Vzl(s)
p _ ) + (2.4.7)
i, () | 712500 2500 [1 % (3 [T 0 Ryp ||V (o)

2 ) %2

The short circuit transfer admittance function is defined as

lai(S)
Y, (s) = ==
12 v (s) (2.4.8)
)

*
v, (s) =0
1

and le(s) can be obtained from Equation 2.4.7, which is

Yiz(s) = 312(5) (2'4°9)

if ® has the form shown in Equation 2.4.7.

Simplification of the state-space synthesis procedure results

when . has the form
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Rll 0

0 Ry

because le(s) is then only equal to the proper function, (s), of

212
Equation 2.4,7., Therefore f will only enter the synthesis procedure

as a restriction éf the matrix form and its non-zero element values
will not be important. This implies that B (s) in Equation 2.4.6 wiil
be the matrix that is to be presented in detail as is ‘done in Section
2.5.

Now we shall justify the network configuration as shown in Figure
2.4.,1. Considering the state-model of Equation 2.4.4 and the s-~domain
solution for the complementary variables of Equation 2.4.7, it is
obvious that the driver configuration of Figure 2.4.1 is the only |
configuration that will allow the calculation of le(s) by Equation
2.4.8 when applied to Equation 2.4.7.

The discussion of the open circuit transfer impedance is presented

next which will be similar to the discussion on the short circuit

transfer admittance.

2.4.2 Open GQircuit Transfer Impedance, Zlﬁ(s). In determining

the open circuit transfer impedance by the state-space approach, it

is first necessary to derive the "'desired" state-model that represents
the network with the correct driver configuration. Therefore when
determining le(s) by the state-space approach, the driver.configuration
for the 2-port network is assﬁmed to be that of Figure 2.4.2. The
reason for this assumﬁfion will be similar to the reasoning in Section

2.4.1., Note that for le(s) current sources will be used while for
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V% 4\* L w
1 v ” v i
t1 a lt1 Network t2 t2

Figure 2.4.2 Network Driver Configuration For le(s)

Y12(s) in Figure 2.4.1 voltage sources were used.

In deriving this "desired" state-model, the fundamental circuit
equations can be written in reduce& form from those in Equation 2.3.1,
which were for the *modified" general state-model and did not consider
the restriction on the driver configuration. This restriction being
that the ﬁetwork has only current sources and no voltage sources.

With this further restriction on the driver configuration,»the_funda—

mental circuit equatioms will be

B11 0 :U 00 Vbc
321 B22 :0 Uuo I Pr_
B31 B32 ’O 0Uu v = 0 (2.4.10)
cxr
cl
A2
|t

The cut-set equations and the component equations are given in Equation
2.3.4, Using these equations and following a procedure similar to

Appendix A, we have the *"desired" state-model
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' “5T o % ; 1%, T =% !
a Voo | _|7% P11%B11% | G Parke” 1| Vee
o 1 B oE :-L % pplrE||1
cl c 217 | 227b7227¢ ch |
(2.4.11a)
<L T *
2
% P31 [It]
+ L
L ?B..R BT

“He T227b732

{
* -5 T % H T K
p— 2 % )
[v] - [oasci® maeiprc ] i ]+ [ramend, ][] contorony
?

Icz

The similarities between Equations 2.3.7 and 2.4.11 are readily
obvious. Using Equation 2.3.8 for‘identification purposes, it is noted
that fhe part of the state-models of Equations 2.3.7a and 2.4.1l1la that.
correspond fo the'Kll’ K12, and K22 elements would be identical if the

same fundamental circuit equation subscript notation had been used.

Also that B 1 and B2 elements of Equation 2.3.8 would be the same

12 21

ke

as the coefficient matrix multiplied times I; of Equation 2.4.11a
except that the subscript notation has been changed. This comparison

is also true for the P21, P 99 and R submatrices. This reduced form

2 22
of Equation 2.4.11 could then be obtained by setting V: and I: equal
to zero in Equation 2.3.7, which agrees with the network‘driver con-
figuration of Figure 2.4.2.

For purposes of identification in showing the interrelationships

of the state-model of Equation 2.4,11, it is writtem in the following

simplified form
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H . T [} I“Jr
. Ve K1 Ko | Ve Bia1 || T
—— Vo= , . o+ (2.4.12a)
dt ICﬂ ’KIZ ~k22 Icg 3221
[v] = [eas oo [voe [+ [Re] [1]
t 21 “22 ?C 22 t (2.4.12b)
ICﬁ

It should be goted that elements B121’ B221, P21, P22, and R22 o£ Equa=-
tion 2.4.12 are not identical with elements B121’ B221, P21, P22, and

R22 of Equation 2.3.8. By inspection the relationship between the

elements, Kfq and mKlzg of Equation 2.4.11a is obvious. Also note that
do

T

Bia1 = Fyq
T

Boy1 = Py

To derive the open circuit transfer impedance, le(s), from the
state-model of Equaticn 2.4.11, it is more desirable to write the state-
model in a form that lists the current sources individually. The B,

F, and R matrices have been expanded to allow the proper matrix multi=

&

plication, which is as follows

T ' *

4a_ VieCEM | B Kyp || V(B . Byg By, ltl(t)
13 DL ¥ - :
Icz(t) Ky, K,y Icz(t) 8y, By, it (t)

. | 2

(2.4.133a)
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D ! F

t
= + . (2.4.13b)
t

* ¥ .
vt2(t) Py Pop || Ty () 0 R,y [| 1, (8D

c} 2
Note that the ﬁij”s, Pij’s, and ﬁii“s of Equation 2.4.13 are different
from the elements of like notation in Equation 2.4.4. To facilitate

the presentation, Equation 2.4.13 is written in the simple form

d %
I X(t) = KZX(t) + 8 -It(t) (2.4.143)
vi‘(t) =P X(t) + R If(t) (2.4.14b)

i

Taking the Laplace transform of Equation 2.4.14 and solving for the

)

complementary variable, Vh(s), by a procedure similar to that presented

in Section 2.4.1 will yield
V%’c _ I‘k . *
L (8) f-D ()T, (s) +® I, (s)

where

2 (s) =p (suwxz)"laa (2.4.15)

% *
and after expanding V ; I , 3, and &

i

E

% L% J*
v, (s) 211(5) 912(5) i, (s) @11 0 i (s)

1 _ 1 + 1

* * : *
VtZ(S) 221(5) 322(5) -itz(S) 0 Ry itz(S)

(2.4.16)

It should be noted that Equatioms 2.4.15 and 2.4.6 will be identical

if the entries of P and § are left as general unknowns and the KZ“s
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need to be determined from the same polynomial as shown in Appendices
B and . This cbservation will be used later in the synthesis proce-
dure.
The open circuit transfer impedance function is defined as
*
v, (s
. (9

1

. (s) (2.4.17)
2

Zyy(8) =

st

o+

V¥ ( ) 0
i (s) =
ty

and le(s) can be obtained from Equation 2.4.16, which is

Zy,(s) =2,,(s) : o (2e418)

if R has the form shown in Equatipn 2.4,16, The presentation. concern-
ing the importance of the form of R is Qery similar to the one given
in Section 2.4.1.

Simplification of the state-space synthesis procedure results
when § has the form shown in Egquationm 2.4.16, because le(s) is then
only equal teo the proper function, 312(5), of Equation 2.4.16., There=~
fore  will only enter the synthesiﬁ ﬁrocedure as a restriction of the
matrix form and its noen-zero element values will not be important.
This implies that 2(s) in Equation 2.4.15 will be the matrix that is
to be presented in detail as is done im Section 2.5.

Justification for the choice of the network driver configuration
is apparent from ﬁhe state-model of Equation 2.4.13 and the s-~domain
solution for the complementary variables of Equation 2.4,16,‘since the
driver configuration of Figure 2.4.2 is the only configuration that

will allow the calculation of le(s) by Equation 2.4,17 when applied



27

to Equation 2.4.16. The voltage transfer function, which is presented

(s).

next, will have some differences from le(s) and 212

2.4.3 Voltage Transfer Function, T(s). In determiming the voltage

transfer functiom by the state-space approach, it is first necessary
to derive the "desired" state-model that represents the network with the

correct driver configuration, which is given in Figure 2.4.3. The

Network

Figure 2.4.3 Network Driver Gonfiguratiom For T(s)

reason for this assumpiion will be similar to the reasoning used in the
choice of drivers in Sections 2.4.1 and 2.4.2. Note that while le(s)
used voltage sources and Ziz(s) used current sources, T(s) calculations
will be made with a voltage source on the input-port and a current
source on the cutput-port as shown in Figure 2.4.3. As may be thought,
this will complicate the state-model.

Since there is both a voltage source and current source, the fun-
damental circult equations used in deriving the "desired®™ state-model

will be the same as those in Equation 2.3.1. Alsoc the "desired" state-

model will be the same as the "modified" general state-model of
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Equation 2.3.7. The same interrelationships that were identified with

the aid of Equation 2.3.8 will still be true for the T(s) state-model.
To derive the voltage transfer function, T(s), from the state-

model of Equation 2.3.8, it is more aesirable to write this state-model

in a form that lists the individual voltage source and current source

as shown
4 ) T 7 %
d | YO K Kip || Vpe(® M EctRet! va, ()
dt ! h ' - *
I, Ky =Koy [ Ty (8D By1 By, i (t)
2
(2.4.19a)
K g %
O] [P Py [V | Ry 0 ||y, ®
= ' + (2.4.19b)
v, (r) Poy Pop [ 1 Ley () O Roo[li (&)

2 | t2

Note that ths ﬁiqu” @ij“sg and ﬂii"s of Bquation 2.4.19 are different
from the elements of like notation in Equations 2.4.4 and 2.4.13.
To facilitate the presentation, Equation 2.4.19 is written in the

simple form

|
»
]

= K(£) + 8 ¥ (£) (2.4.20a)
Y () =p X(t) +R Y*(t) (2.4.20b)

Taking the Laplace transform of Equation 2.4.20 and solving for the

comp lementary va:iable,.zﬂ(s)g by a procedure similar to that presented

in Sections 2.4.1 and 2.4.2 will yield

Y(s) =2 ()Y () + R Y (s)
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where
. -1
9 (s) =p (5U=K2) B (2.4.,21)

% 9
and after expanding XC, ch 2, and R

'i:l(s) 24,(s) 2,,(s) v':l(s) Ry O v’:l(s)
X - . + . (2.4.22)
vtzés} 2,,(s) 2,,(s) itz(S) 0 Ry, itz(S)

It should be noted that Equation 2.4.06, 2.4.15, and 2.4.21 will be
identical if the entries of P aﬁd i3 are left as general unknowns and
the Kz"s need to be determined from the same polynomial as shown in
fppendices B and €. This observation will be used in the synthesis
procedure.

The voltage transfer functiom is defined as

T(s) = — (2.4.23)

i (s) =0
1 S =
)

and T(s) can be ebtained from Equation 2.4.22, which is
T{s) = 321(5) (2.4.24)

If R has the form shown in Equation 2.4.22. Although we have only
considered a T(s) corresponding to a ratio of two voltages, we could

also consider a current transfer function, in which case
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%
i (s)
' a4
T (s) = ¥
1t2(5)

*
val(s) =0

This Tq(s) can also be obtained from Equation 2.4.22. The analysis
of the current transfer function follows along the same lines as that
for the voltage transfer function, therefore it will not be considered
furthefa

The form of R is important in tha; it simplifies the state-space
synthesis procedure. The presentation to justify this simplification
is the same as given in Sections 2.4.1 and 2.4.2, Because of the form
of f another topoclogy restriction must be imposed, which is not to
permit the voltage and current sources in the same fundamental circuit,

that is in Equation 2.3.1

By =0
This forces § to the desired form of
Rig O
R = -
0 &)

This characteristic will be discussed further in the restrictions given
in Section 6.1,

The matrix 3 (s) consists of elements of proper functions. .5 (s)
as glven in Equatioms 2.4.6, 2.4.15, and 2.4.21 is the same aléébraic
matrix expression and it will be presented at length in the next sec=-

tion.
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2.5 B (s) and [Adj(sU»Kz)] Algorithmg In sections 2.4.1, 2.4.2,

and 2.4.3 the expression

D (s) =¢ (sUwKz)"lﬁ (2.5.12)

241() Dlz(s)
D (s) = (2.5.1b)

2,51(s) 2,,(s)
was shown to be important in the transfer function analysis. It must
also be pointed out that the matrixz, %) (s), is a significant matrix in
the state-space synthesis proceduie because 9 (s) determines the num-~
erator functions of the transfer functions. This can be shown by ex-
panding the matrices B, P, and (sU-uKz)w1 which are multiplied together

to yield 9 (s) . How

11 P12

21 722
B=i . (2.5.2)

®

nl bn2

P P cso P

1P

T in (2.5.3)
P21 Fa2 *°° Pop

1 adj(sU-KZ) '
(SU»KZ) TR st (2.5.4a)

VAN
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(sU.K2)°‘1 = (2.5.4b)

L
VAN IR

where

Zﬁ& = IsU~K2|

By observing Equations 2.4.4, 2.4.13, and 2.4.19 it can be shown that

@ and P should have the dimensions as shown in Equations 2.5.2 and
| -1
2)

can be written as shown in Equation 2.5.4. Then Equation 2.5.1 can

2.5.3. The entries in @ and P are unknown constants and (sU-K

be written as

o (s) = -é- P [adj(sU-K)] B (2.5.5a)

or

241() 23,(»)

A A

2(s)= | | ,I (2.5.5b)
2915 254(s)

WAy

and the transfer functions can then be shown as

{1
v le(s) = A (2:\5@5(:)
when the drivers are voltage sources,
(s
a2 s
12 (2.5.5d)

() = A
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when the drivers are current sources, and

B e © (2.5.5e)
A

when the input is a voltage source and the output is a current source.
This illustrates the significance of 3 (s) in determining the numerator
functions of the traﬁsfer functions.

From Equation 2.5.5a, it is apparent that the entries of the ma-
trix, P [adj(sU»Kz)] @, must be determined for future use. Combining

Equations 2.5.2, 2.5.3, and 2.5.4 (b) into Equation 2.3.5a yields

P11 Pyp *o Piq

1
D (s) = mm . . _
I\ | Pa1 Pog eee Pop | @1 8pp coe 8y, |1 Doy by,

which is written in expanded form in Equation 2.5.5g.

From Equation 2.5.5a it is apparent that the entries of the matrix,
[adi(;UnKz)]g must be determined analytically. Therefore an algorithm
has been developed that will give the elements which are functions
of s in the [adj(sUuKZ)]o However it is first necessary to present
some relatiomships of K2 and K19 where\l(1 is the matrix from which
K2 is transfofmed°

In Appendix B it has been shown that by using Navot's (27) method

it is possible to determine from a given polynomial, D(s), a matrix,



b

l : .
P1281 P1nan1)b11! (Py1311 + Pyp2y P1n?n1'P12

+ (Pyga1y + Pypdyy + Pyg2gy Foeee tPya )by [ H(pygay, + Pyoay, + Pyaag, +oeee 4Py A )by,

|
plnanB)b31| +(py1a13 + Pyyas, P1n®n3'P32

. | .

+ (Pyja13 + Py,

|
. + (Pyqay, ¥ P1p3g, + Py3agy Foeee t P1nann)bn1, +(Pyyag, + Pypay, + Pygag, +oeee
3(5)=Z “““““““““““““““““““““ e
Pon?n1'P1)
b

Ponn1)P11 | (Ppy2q5 + Pprayg

)b

|
PonPn2)bay | H(Pygay, Pon®n2’%22

|
+ (pyya53 + Ppodng + Pygdgg + woe + Py b by | H(Pyia5 + Pyrayg + Pogagy +oees +pya )by,
|
: | .
|

)b

f
|+ (P2131n * Ppp®an + P23¥s, P2nPnn’Pn1 | H(Py121n + P22%2n P2n%nn’"n2 |

(2.5.5g)

0
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(sU-Kl), whose determinant will be equal to D(s) and that K1 can be

represented in general as

—
-f0 k1
-k1 0 k2
Kl = . . ° (2.506)
-kn-z ikn-l
-k -f
o n-1 n |

(Note that when n = 1, K, = -foa) Also in Appendix C it has been shown

1
that by using Yarlagadda's (34) transformation, it is possible to deter-

mine the matrix, K2, so that
K, = LK.L (2.5.7)

and K2 is shown when n is odd

n+1
=) () (

(1) () (3) ..o B (
~-f
o

(2.5.8a)



with

(1) (2) (3)

6 0
0 ©
i 0©
0 O
0 1
0 O
0 0

and when n is even

with

(1) (25 (3)

(1) (2

~f
o

~

- 00O OO

i

[eN RNl
OO = CO

o

o
o O .
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n+1 n+3 n+5 n+7
(2)(2)(2)(2)-”01)_
0 0 0 0 . 0 (1)
0 1 0 0 . 0 (2)
0 0 0 0 o 0 (3
0 0 1 0 . 0 (4)
0 0 0 0 ° 0 (5)
0 0 0 0 . 1 | (n-1)
1 0 0 0 ° 0 (n)
(2.5.8b)
n n n
(‘:2) l(°§+1) (§+2) eee (n=1) (n)_
|y (1)
1ok, kq (2)
| .« 7, .
| . o o .
| 2
n
e e A a1 | @
n
: 0 (-2"-}-1)
é . (5+2)
i . :
l ]
k ‘ * (n-1)
n-2 |1
-k ! -
oot fnu (n)
(2.5.%a)
n . 23 n
(30 5+1 (5+2) (5+3) - - . (n)_
0 0 0 0 e .. 0 (D
0 1 0 0 o » o« 0O (2)
0 0 0 0 o s o O (3
0 0 1 0 e s s 0 (4
0 0 0 0 « o o 0 (5)
i 0 0 0 s o » 0 [(n-1)
0 0 0 0 «.s 1 |(m

(2.5.9b)
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and
(sU«-Kz)nl = 'LT(sU_Kl)"lL (2.5.10)

Equation (2.5.10) is of interest since the algorithm will be for deter-
mining of the adj(sU»Kl) and the transformation to the adj(sUaKz) will
be made after this adjoint matrix is determined. The reasons for this
approach are that cofactors of K1 are easier to evaluate than those
of K2 and the matrix, (sUle), has the same form whether n is even or
odd.
. . th
Given an (nxn)-matrix, Kl’ that represents a general n order

polynomial, D(s), the matrix (sUle) can be written as

(s4—fo> mkl

k1 s akz
kz s ak3
° i °
Y ® . °
(SU"I{ij = ° Py ° (205011)
kn-3 s mkn=2
kn~2 s mknml

kn~1 (54-fn)~

and the algorithm for the matrix, adj(sUaKl), is given in Equation
205g12 on the following page. Note that [aij] identifies the element.
locations. In using this algorithm the (1,n)-elément is the first
element fo be evaluated,‘ Then the first row should be next, from right
to left. Next the nth column should be determined, from top to bottom.
Next the main diagonal and all elements above it are obtained. And
last the elements below the main diagonal are determined. It should

be noted that



adj(sU-Kl) =

1
—(
[

(ag] [“1,J] [“1,n-2] [“1,n-1] [“l.n]
. 1 .. , 1 @ ne1
sa12+k2n13)]...[k (=n1,1+1+kj+1"1,j+2)]"'[—kn z(sal,n-l+kn-lul,n)] k_llﬂ(h.*.f‘) n Ky
J - -1 ' .
i=1
(27,02 (a7,0-1] Laz,n]
. [ak'J] a a a a, a
) 1,\?-2 2,0 1,n-1"2,n 11,'n(5+l )
dllj"l:ln *1,n %1,n "1 °
a1,n
. ["‘3,n-1] [aa,n]
21 .n-1%3,n -1—(~‘a +k.a )
—-4;:--4— k, “F2,n T T1%1,n
1,n
. '(
Laj, 53 (aj,n)
n+a+1 nldahn —!—(sa +k, ja )
°1.n-z 2 kJ-l J=l,n " T3-2%4-2,n
( 1)n+m 1,m
N 24n-m
: n+r4q . .
. . (-1) 4 eq .
n
4 0e3 . . . .
n+1 n
“1,n.2 -0 42,02 * . fa_ ]
n,n
n (_1)n+1“ !
%1,n- 2,n-1 * 1
n+l 1.0 (*Unaz . (_1)n+rar n . . . [kn l(s“n-l,n+kn-2hn-2,n)]
? ’ ’ -

38

(2.5.12)
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- r=1, 2, scey 1
= (&1)n+°—+qa :

a = ' .
(n-q),v ro{n-q) * g=0;, 1, 2, coe, n~1

The proof of this algorithm is simple to see, but it vequires excessive
space and 86 is not given here. This algorithm is illustrated by an

, N . s , . R 2 - R ;
example which is presented below.  Consider a 5 order polynomial,

D{s} which is represented by (sU-K,} as shown

I~ i
rﬂ&\m £ = S
- - t
Ky B e,y
k, 5 =k, {2:5.13)
3
K, {s4+£.)
- 4 37
il don 2.5.12 vields
Lay,] Lays] Layq] Lays]
1 1 1 a 4 W
Tr(saptigagg) 1 (say+kgag ) (1 (sagk,a ) || B¢y — K
1 2 3 k, 5 Tt
i=1 |
Lay,] Lazs] Lazs] Lays]
a,.a _a a 7 Pa a 7 a B
12225 1325 14225 15
212 4 % A [}Z;'(S*'fo)
n ki [T T -
i=1. i=1 | i=1 |
| Las;] Las,] Lass)
| [a,.8.c | Ca, a.. 1[1
adj(sU-K,) = a ~a,, 12 35 12 35 [E;(sa25+-k1a15)]
T T
1=1 [t=1 |
Lags] (ays)
‘ ' —314345 ] T{—( sa35+k2a25)
"4 224 ‘ 434 4 3
TR
L1 =1
[355]
' L(sa, +kqa,0)
315 "825 235 “845 I, *%4s™ 3%3s
‘ -

(2.5.14)
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) Loyy] fag;] [ay5] lags] Lays)
[s%+1gs° k(504 £ 62 teghg(s2 4 £8 4 1) iyl k(s 4 £) RN
+adeidadys? +adads

+ 1,02 +12)s +12e]
+k§ki]
[ay,] Lay,] [2,5) Lay,] {ays]
-ap, e’ k2[53+(f°+ f5)52 1:21:3[52+(f +E0)s gl (54 1)
3 2 o . o
+ 24l 4 g )8 +(EE 4D +6.0.]
+[2e + 1 02411 +£ k2]
+I 5
[a5,] [a4,] [ag5] [ay,] [ays)
adj(su-r,) = ayq ~ay, [sl‘+(f°+ f5)53+(kf+ki l<3[53+(f°+f5)52 kaA(sZ+ fos+kf)
4 e8P (E 24 £ 4 (£ £, +E]) 54 £okl]
+624xD)]
La4yd Lag,] [a,3] Lag,] Lags)
~ay, a5, ~ay, sl‘-!»(fa-{»fj)s3 kl’[sgﬂ»fosz
vl erag st + 102 + G2 il
+1,02 +10)]s +1.20]
+E S
[asy] [as,] [a55) Lag,) lags]
ass ~a,s a5 -2, [sl’+£053+(l:i+kg+};§)52
+e,02+1dye
+x22]

(2.5.15)



41

which results in Equation 2.5.15. It can be seen that the [adj(sUwﬁl)]
agrees with Equation 2.5.15.

It should be noted that (n-1) is the highest degree of any element
of the (nzn)-matrix, [adj(sUaﬂi)]@ This implies that the numerator
function degree of any transfer function obtained while using the
[adj(sU-Kl)] will be at most one less than the denominator function
degree. How this affects the state~space synthesis procedure will be

presented in Section 2.6.

2.6 Obtaining Proper Transfer Functions. As has been observed

previously, the state~-space synthesis is simplified to the point of

feasib th

Pl
h

a

dlicy 1 transfer function is a proper function. As Bala=

banian (3) has shown, physically realizable transfer functions to be

synthesized will be encountered that are improper functions, with a

maximum of one greater than the denominator

function dezres. Therefore an s-domain synthesis procedure is pre-
I3

£

sented that will reduce the numerator function degree until the trans-

far function left to be synthesized

o

.5 a proper function. The first

fer funct

d that will be modified by this proce-

dure is the short circuit transfer admittance, Yl“(s)’
F4

2.6.1 ¥,.(s) Modificaticn. If a short circuit transfer admittance
Ee

o 4

to be synthesized is encountered which is an improper function as shown

-4 1 n n-1
3 S '*2- é { ecoo
d& i a_s + a ) + “+ als + a

Y, (8) =
12 ., N n-1
bs" 4+ b s

n n
the first step is to divide the denominator into the numerator until

the remainder is a proper function as shown
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sl L+ ds+d
ne-1 1 o)
le(s) =cys +c  + = — (2.6.2)
: bs +b s + ... +b,s +b
n n-1 1 o)
where
_an+1
¢ = b_
anbn an-i-i n-1
C —3
o) b2
n
and let
1
= 206-5
le(s) cys ( )
Y2 (s) = ¢ (2.6.6)
12 o)
a &l +d,s +d
wi o 60 1 o
2 (s) = —== s (2.6.7)
bs +b s + coo +b,s + Db
n n-1 1 o)
f-—==-- =
'|clifaxads :
] 1 »
| Tip(s)
3 ] | >
| S i
: [c iohms :
° >—@ " WA : —> ®
s > R ——— - >—@ ®
1:1
3
Tio(s) §§
Figure 2.6.,1 Modified Network, Y. .(s)

12
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Now as shown in Weinberg (33), if Yiz(s), Y%z(s), and Yiz(s) are placed
in parallel while observing the validity test, the short circuit trans-
fer admittance of the total network will be le(s) of Equation 2.6.1
and the resultant network is shown in Figure 2.6.1. The transformer
may or may not be necessary. Now Yzz(s) is a proper function and

can be realized by the state-space synthesis procedure of Chapter III1,.

2.642 Zlq(s) Modification. 1If an open circuit transfer impedance
&

to be synthesized is encountered which is an improper function as shown

n+1

n n-1
s + ens -+ en s + s +e.,8 + e

a1 -1 1

Z2,.(8) = (2.6.8)
12 s,n“1+°“+fs+fo

n e 1

the first step is to divide the denominator into the numerator until

the remainder is a proper function as shown

B 1sn°"1 + eoo + hys + B
Zj?(s> = ggs + g+ QA — (2.6.9)
- ' £ s £ .s + oo + L.+ £
n n-1 1 o
where
] en4-1
81T TI
n
o = @nfn en%—i ne-1
) £2
n
and let
21 (s) = g, s (2,6.10)
12 . 1 £2] o
2

(2.6.11)
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h Snmi"!"umo"‘hs‘;‘h
n-1 i o

N NP L R
n n-1 1

3
Ziz(s) = (2.6.12)

s + £
o

Now’és shown in Weinberg (33), if Ziz(s)s Ziz(s), and Ziz(s) are placed
in series while observing the validity test, the open circuit transfer
impedance of the total network will be le(s) of Equation 2.6.8 and the
resultant network is shown in Figure 2,6.2. The transformer may or may
not be necessary. Now Z;?(s) is.a proper function and can be fealized

by the state-space synthesis procedure of Chapter IV,

o e ! s

i |
{ 7; I
; 3 igllhenry {
L g !
I T

|
| i,
l zip(s) |
L
T 7 1
| l
l _ I
[ ig |ohm I
| I
i |
% l
l Z3,(s) :
L 1

1z1
P P
e |3
& . J

Figure 2.6.2 Modified Network, le(s)



45

2.6.3 T(s) Modification., Balabanian (3) has shown that a physi-

cally realizable voltage transfer function that is an improper function
will have a numerator function degree that at most equals the deﬁomin_

. ator function degree. Therefore if a voltage transfer function is
encountered which is an improper function, it can be written as

k s™ 4+ oo0 + k.5 + k
1 o)

n
zns + 0eo + ﬁis + 4

T(s) = (2.6.13)

The first step in obtaining a proper function is to divide the denom-

inator into the numerator until the remainder is a proper function as

shown
n-1
v mnmis 4 oo mis -+ mo
T(s) = r + " = (2.6.14)
ﬁns + En»ls + o0 le + Eo
where
k
r o=l
e} ,@,n
and let
i, ,
T7(s) = T (2.6.15)
n-1
9 mnsz 4+ cao mls -+ mo
T°(s) = : i (2.6.16)

nmls 4+ oao Eis + Eo

Now as shown in Weinberg (33), if Ti(s) and Tz(s) are placed with their
inputs in parallel and their outputs in series while observing the

validity test, the voltage transfer function of the total network will
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be T(s) of Equation 2.6.13 and the resultant network is shown in Figure
2.6.3. Now Tz(s) is a proper function and can be realized by the state=~
space synthesis procedure of Chapter V.

At this point the topics ﬁhat are basic ideas to the synthesis
procedure have been discussed and we are ready to proceed to the state-

space synthesis procedures.

i Ti(s) 1
! r 1 !
| o ' — e
| |
l |
| I
| |
! ! |
> e T
® > ®
&——@
TZ(S)
 J

Figure 2.6.3 Modified Network, T(s)

2.7 Realization of Characteristic Polynomial. Yarlagadda (34)

has presented the realization of a characteristic polynomial (see Equa-

tion 1.1.4) that resulted in a ladder network with one resistive element.
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This presentation required the network topology restrictions of Section

2.2, assumed a K,-matrix like that of Equation 2.5.8a only with fn

2
equal to zero, and assumed a state-model like that of Equation 2.4.5
with the sources equal to zero. This reference showed that since the
Kz-matrix can always be obtained from a given characteristic polynomial,
we can relate the characteristic polynomial and the network. In this
reference, given a characteristic polynomial of degree, n, only one
resistor in addition to the n reactive elements will result from this
synthesis procedure. This one resistor and n reactive elements network,
as can be seen in Appendix D, is inadequate for the general synthesis
procedure of transfer fumctions as presented here. Therefore the fol-
lowing presentation will be a synthesis procedure of the charactevistic
polynomial resulting in two resistive eiements in addition to the =n
reactive elements. Now the theorem.

Theorem 1l: Let D(s) be a polynomial with constant coefficients.
1f D{(s} has roots with non-positive real parts, then
a state-model with no sources and a D(s) as its char-
acterisgic polynomial can be obtained. This state-
model can be realized by a port-less network with a
minimum number of n reactive elements consisting of
inductors, capaecitors, and two resistors.

The proof of this thecrem is vital to the state-space synthesis and it

now follows.

2.7.1 Theorem Proof, 1In Section 2.5 and Appendices B and C,

it has been shown that a polynomial with constant coefficients and

roots with non-~positive real paxts can yield a Kzumatrix as shown in

Equation 2.5.8a or 2.5.9a. With this Kznmatrix and the presentation
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of Section 2.4, a state-model which has the characteristic polynomial,

D(s), can be given by

%g X(t) = KX(t) (2.7.1a)
] T ¢
d | Vpelt Kig Ko || Vpe(®)
=1 = X (2.7.1b)
Icz(t> “’I"lz ”1\22 Icz(t)
-k T =% | -5 T -k
2 2 2
a V() ~ ~Cp*B5,6.B,0C00% | Cp*BgoLy V(6D
N Y I it eyl | P
A ~L_*B4,Cy (=L By R BooL ch

(2.7.1c)

where the fundamental circuit equations for this state-model are

| v, ]
B,, O v 0] Ve
ls.. 8. 1oullv
32 733, L (2.7.2)
cr )
| Ves

Consider the degree of D{s) to be n and n is odd. Then from Equa-

tion 2.5.8a
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="fo : El . T
o 1=%2 %3
o | S e
. | .
0 ! ko3 Koo
"fn : . _kn-l
I<.2= ””””””””””””””””””””””” (2-7703)
“k, Lk '
1 2 I
A |
[
. |
d [
® kn-x3 |
- < |
N m2kmh N

Equate like parts of the partitioned matrix K, from Equations 2.7.1c

2

and 2.7.3. This will yield

’-’mf hn
(o}
0
5T g E = ‘e 7.4
“’Cb LZZGCbZZGb o (2¢ ° a)
0
~f
s nu-
- -
kl
=k k3
-l T ‘”lﬁ ® L4
% = ® e
Cb BBZLC ‘ . (2.7.4b)
mkn-B knmz
o "1
7 T . -%
% - 7
““LC BSBIszBBLC O (2.704(:)

It is noted that Cb’ LC’ Gc’ and Rb are diagonal matrices with positive

entries and that the Bjj's—are unimodular matrices with element values

of * or 0. OSince Cb and LC are positive diagonal matrices, the ma-
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trices Cg% and L;% are diagonal with entries chosen to be positive.

To obtain the network which yields the state-model of Equation
2.7.1, the fundamental circuit equations of Equation 2.7.2 must be
obtained. These can be determined by decomposing Equation 2.7.4 to

. .
yield the Bij S, Gc’ and Rb maf:rfmes°

LT -

2 2 .

b BZZGCBZZCb ) of Equation 2.7.4a, first remove
1

=2

the Cb s by premultiplication and postmultiplication of both sides

To decompose (G

L
of the Equation by ng This can be done since they are positive dia-

i

gonal matrices. Assume C_

b is a (mxm)-matrix. This yields

€11
0
LGB, = . (2.7.5)
227¢c722
0
e
B m,m |
. =% , .
where e q and em,m are functions of fo’ fn, and Gb « Since B22 is a
unimodular matrix, GC is a positive diagonal matrix, and (BngCBZZ)

is the matrix being considered, it is observed that these are the
conditions necessary of applying Cederbaum's (8) algorithm. Using

this algorithm for the decomposition of‘(Bngchz) will yield

O ==

e 0 10 ...00
| [o 0 eeo O {]
¢ 0 e
= i o]
227”22 (2.7.6)

l»—-soaae OOH

QO O aee

where 322 is a (2xm)-matrix and Gc is a (2x2)-matrix as shown
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— 10 ® 08 O O
B22 "[o 0 eeo O é] (2.7.7)
e 0
1
GC = é e (2.7.8a)
,m

or we shall identify GC for simplicity as

g, 0
G, =] , (2.7.8b)

Cederbaum (8) showed that the decomposition is essentially unique,
which can be seen from Equation 2.7.6 . where it is possible to select

other signs in B,, or permute the rows and colummns and still obtain

22

9 which

a correct decomposition., Further this decomposition gives a B2

is a non-redundant unimodular or e-matrix.
Substituting the B22 of Equation 2.7.7 and the GC of Equation

- =L
2.7.8b into -(c-*B' G B¢ 7

b P58 B5sCh ) results in

- ar, A 10...00]|[.r ]
21 cole @ [o 0 .ea O é] 1
3T -3 . .0 & *
Cp BBl = . e .
| O O 1
o “n]lo 1 n |
(2.7.9)

Now Equation 2.7.4a with Equation 2.7.9 yields



52

° = ° (207010)

and this equation implies that

h
i

(4
g,(c)° (2.7.11a)
.2
£, = g,(C) (2.7.11b)

- -%
Now considering Equatien 2.7.4b, where Cb2 and ch are positive

diagonal matrices and B,, is a unimodular matrix, it can be seen that

32
the decomposition of (C”%BT L"%) will be
- b 7327¢
— -1 -r -
C -1 1 Ly
,‘,l/ T w!ﬁ ° (-3 o L]
3 .
Cb B32Lc — o Q o ®©
o ﬂ o ("3 8 n
Cm =11 Lr
- <L -1 .
(2.7.12)
-} -
where Cb2 is a (mxm)-matrix, LC is a {(rxr)-matrix and B32 is a unique

(rxm)-matrix as shown

B32 = .. (2.7.13)
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Now Equation 2.7.4b with Equation.2.7.12 yields

- ]
k1 CIL'
1
"“kz k3 70 [
o © NCZLI C2L2
o ° = < o (207914)
- k © 3
n-3 n-2 t ¢ y v
=k _Cm-iLr-l Cm—lLr_
B n-1| bog
CL
Equation 2.7.14 implies that
. R
k1 = ClLl
T
kz = CZLI
il
ky = Gyl
o > (2.7.15)

-L
2

Since L is a non-singular matrix, Equation 2.7.4c implies that

C

T
B33RbB33 = ( (2.7.16)

From the fundamental circuit equations, B33 is a submatrix which corre-

sponds to the resistors in the positive diagonal matrix, Rb. This

implies that if either B,.,3 or Rb is zero, then the other is zero also.
a3

Therefore the equality in Equation 2.7.16 is satisfied when



and
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(2.7.17a)

(2.7.17b)

The fundamental circuit equations for the case when n is odd can

now be written utilizing the submatrices shown in Equations 2.7.7,

2.7.13, and 2.7.17a.

B
B

which can be written as

22 9
32 B33
ol 1
0.0
ol
|
"
|
o
g
0

U0

:OU

be
Vbr

e @ oo

v
o o

ch

3 a0 w @ @ am em s me e o  aw o

In symbolic form these are

(2.7.18a)

i
o

(2.7.18b)



55

From these fundamental circuit equations, it 1s easy to construct the
network graph which is shown in Figure 2.7.1 and the resulting network
of Figure 2.7.2 (21). This then is the network which has a character-

istic polynomial, D(s), of degree n with n odd. For the coefficients

Figure 2.7.1 Network Graph When n Is Odd

Ry % 1 CZl C3I Cne2 Ca-1 Ca %RZ

Figure 2.7.2 Synthesized Network

of D(s) to be the same as those in the characteristic polynomial obtain-

ed from the network of Figure 2.7.2, a solutiom of Equatioms 2.7.11 and

2.7.15 must be determined.
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It can be seen from Equations 2.7.1, 2.7.2, and 2.7.3 that if
there are m capacitors, r inductors, and the degree of D(s) is n, then
m+ r = n., Equations 2.7.11 and 2.7.15 involve n + 2 unknowns and
n 4+ 1 equations. Therefore a solution for this set of equations is
obtained when one of the unknowns 1is assigned an arbitrary value, such

as:

c, =1 (2.7.19a)

L, =k (2.7.19b)

o Rgky eee Kyrg gy

17 Rk e Ky o

s l<i<m (2.7.19¢)

k1k3 oo o k

- 2i-1
i k2k4 voo kz(inl)

s l<i<r (2.7.194)

where

Since a change of variables was made in Equatiom 2.3.6, the Ci"s and
Li“s of the synthesized network of Figure 2.7.2 will still have to

be calculated by

(2.7.20a)

(2.7.20b)

£
It
o)
£
N/
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From Equations 2.7.11 and 2.7.19, 84 and g, are evaluated by

g = I, (2.7.21a)
-2
K.k, voo K
274 n-1
Ll n (2.7.21b)
173 n-2
where
R :—"}m
i gl
R, = -
2 gz

|

Note that this solution is not unique since C1

was arbitrarily
chosen., The network has n reactive elements and two resistors as
stated in the theorem., This completes the proof when n is odd.

Now conszider the degree of D{s) to be n and n is even. Then

from Equation 2.5.%s

B3 ok 7]
¢ m : -k, kg
@ I ’ ‘
o I ’ ’
0 : axknw; kn«l
K, = SR 1 e Zel I (2.7.22)
1072
mk3 o D : - )
- | )
. : 0
B ﬁknmi | wqu

Again equate like parts of the partitioned matrix K, from Equations

2
2.7.1c and 2.7.22. This will yield
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-f
o
0
LT .
2 j—
-Cb BZZGCBZZCb = . (2.7.23a)
be. 0-—4
k1
L ok ky kg
~2 -2 .
Cb B32Lc = o e (2.7.23b)
R “Tne2 kn-1J
) -1
-% 2T =% _ | °
-Lc B33RbB33Lc = . (2.7.23c)
0
-f
el n—

Again the fundamental circuit equations of Equation 2.7.2 are
obtained by decomposing Equation 2.7.23. Applying a similar procedure

) ‘ . 5T -} .
as was used in the decomposition of Gb BZZGCBZZCb of Equaglon 2.7.43,

L ‘ -k
(Gb2B§2GcB220b2) of Equation 2.7.23a can be decomposed as
- _ - o -
o g ||t0o...0]]c
0
~Cp "B22%:B22% y . » .
* ot o

.. “u ]| 0] " %
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where B22 is a (1xm)-matrix and Gc is a (1x1);matrix as»sbown-
By, = [1 0...0] S (2.7.25a)
6, = [g,] =N ' (2.7.25b)

Now Equation 2,7.23 with Equation 2.7.24 yields

e — o —

. 1 2

= . | - (2.7426a)

and this equation implies that

v 2 )
£ =8,(C)) (2.7.26b)

_Now ccnsidering Equation 2.7.23b, it can be seen that the decom-

-X -k
position of (G ?BL.L %) will be

b 7327¢
- w— e — ‘mad —y
1 .
¢ 411 1
-1/ T -1/ @ . . o
2 2
Cb B32Lc m— -3 - o . .
(] n - - L] '
-11 L
- mj= - L T
(2.7.27a)
where B32 is a unique (rxm)-matrix as shown
-1 1 —
1.
B32 = .. | . (2i7027b)
e —1 : )
ke 1—




Now Equation 2.7.23b with Equation 2.7.27a yields

[~ ™ g
kl Cl
ky By -
. L — . 2
_ o . k

| n-2 n-1

and this equation implies
k1
k2
k3
kn»2

kn-»l -

]

'
C,L
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(2.7.,28a)

(2.7.28b)

Considering Equation 2.7.23c and applying a similar procedure as

was used in the decomposition of C

~53T ¢ p.. g%
b °22%"22%

-k T Xk
2 2 2 ;
(LC B33RbB33Lc ). of Equation 2.7.23c can be decomposed ag

S

1
- T -3 _
~L.BgaRyBysl ” = - .

0] l:rz:] [0...01]

of Equation 2.7.4a,

{(2.7.29a)
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where B33 is a (lxr)-matrix and Rb is a (1x1)-matrix as shown

Byg =1 " | - (2.7.29b)
1s |
1]

R =[r,] - (2.7.29¢)

Now Equation 2.7.23c with Equation 2.7.29 yields

* = * ’ (207.303)

and this equation implies that

)
fn = ;Z(Lr) (2.7.30b)

The fundamental circuit equations for the case when n is even can
now be written utilizing the submatrices shown in Equations 2.7.25a,

2:7.27b, and 2.7.29b. 1In symbolic form these are

B, 01U O[V,.
B._B_10 ullv
32 733 2 (2.7.31a)
cr ‘
| et |
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which can be written as

- - e w e m we ee

o - T (2.7.31b)

From these fundamental circuit equations, it is easy to construct the
network graph which is shown in Figure 2.7.3 and the resulting network
of Figure 2.7.4 (21). This then is the network which has a character-

istic polynomial, D(s), of degree n with n even. For the coefficients

Figure 2.7.3 Network Graph When n Is Even
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2i . Lr-1 it : r

2 3 e 1 m

Figure 2.7.4 Synthesized Netwoerk

of D(s) to be the same as those in the characteristic polynomial obtain-
ed from the network of Figure 29704, a solution of Equations 2,7.26b,
2.7.28b, and 2.7.30b must be determined.

It can be seen from Equations 2.7.1, 2.7.2, and 2.7.22 that if
there are m capacitors, r inductors, and the degree of D(s) is n, then
m+ 1 =n. Equations 2.7.26b, 2.7.28b, and 2.7.30b inQolve‘n + 2
unknowns and n + 1 equations. Therefore a solqtion for this set of
equations is obtained when one of the unknowns is assigned an arbitrary

value, such as:
Cc, =1 (2.7.323a)

This value with Equation 2.7.28b implies that

]
L, =k, (2.7.32b)
. k k 20 e k
] A s .
c, = kzk" 1,2(1 Dii<i<nm (2.7.32¢)
173 °*° T2i-3
Kk, oo0 Kk
' .
L 13 -1 i<i<r (2.7.32d)

i k2k4 oo kz(iui)
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where

Again because of the change of variables made in Equation 2.3.6, the

C.'s and L,'s will be calculated by

i i
-2
¢, = (Ci) (2.7.33a)
T -2
Li = (Li) (2:,7.33b)
From Equations 2.7.26b and 2.7.30b, 84 and r, are evaluated by
gl - fO ’ (207-34&)
ek, wee ko -2
r, = - — £ (2.7.34Db)
2 k2k4 aoe kn-2 n
where
R, ==
81
Ry =13

]

Note that this solution is not unique since C1

was arbitrarily
chosen. The network has n reactive eiements and two resistors as stated
in the theorem, This completes. the proof whenm n is even.

It has been shown that a polynomial with constant coefficients and
roots with nonaposiﬁive real parts can be represented by the state-model
of Equation 2.7.1, and that this state-model can be used to obtain the:

port-less network of either Figure 2.7.2 or Figure 2.7.4 with a minimum

number of elements consisting of inductors, capacitors, and two resis-
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tors. Thus we have related the characteristic polynomial to a network

and the proof is complete.

2.8 Transfer Functions And Their Resulting Fundamental Circuit

Equations. 1In deriving the port-less ladder ngtwork that' represents
a cﬁéracteristic polynomial, the fundamental circuit equations of
_ Equ;tion12.7.18b or—2.7.31b were obtained. The synthesis.Procedure
presented uses these ladder networks as the basic‘networks froﬁ which
‘Eo Build the éynthesized networks. Appendix D shows thé fransfer.admit-
tanée resulting from various ladder networks. Thére.are'six classifi-
vcations which includes all §f ;he possible transfer admittances that
will be synthesized. These claséiﬁications are: | |
1. Gase I - tﬁe traﬁsfer admittance numerator degree is odd and
the denominator degree is odd.
2. Case II - the transfer admittance numerator degree is even,
but not zero, and the denominator‘degree is odd.
3. Gase II - Special - ﬁhe_trénsfer admittance nﬁmerator is a
constant ﬁnd the denominator degree is odd.
4, Case IIl - the transfer admittance numerator degree'is odd and
the denominator degree is even.
5. Case IV =~ the transfer admittance numerator degree is even,
but not zero, and the denominatof degree is even.
6. Case IV - Special ~ the transfer admittance numerator is a
cOnséant and the denominator degree is even.
These classifications will now be discuséed individually. First we
will cdnsider the simplest cases which are Case II - Special and Case

IV-Special.
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‘Note 2.8.1: As is well known for all cases, all of the numerator
coefficients will be negative for the orientation of the drivers as
shown in Section 2.4.1. It can be shown that to obtain- all positive

numerator coefficients, just reverse the orientation of one driver.

2.8,1 Case 11 ~ Special. The transfer admittance of the Case II -
Special classification, as can be shown by using the material in Appen-

dix D is written as

a
]

(2.8.1)

ylz(S) = —
s + oo+ b,s +Db
n-1 o

1

where
a, = negative constant

n = odd integer

Figure 2.8.1 Network for Case II - Special

The ladder network for this case is shown in Figure 2.8.1 with the

resulting network graph shown in Figure 2.8.2. This network graph
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yields the following fundamental circuit equations in symbolic form as

' e
y 1
By By, O 1UO|[V,
i =
Byg Byp B3 (O U [V | =0

Vbr

o we e

(2.8.2a)

cr

ch

which can be written as

- oo ox oml ws m  m  em  w»  ax @@ om  mD

(2.8.2b)

where n=m + ¢

For a, positive; see Note 2.8.1. Now we will comnsider Case IV -

Special.
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Figure 2.8.2 Network Graph for Case II - Special

Figure 2,8.3 Network for Case IV - Special

2.8.2 Case IV ~ Special. The transfer admittance of the Case IV -

Special classification, as can be shown by using the material in Append-

ix D, is written

a
Q

n-1 v
‘ +.o. +b1

Y19(s) = (2.8.3)

s +b
o



where
a, = negative constant

n = even integer

The ladder network for this case is shown in Figure 2.8.3 with the

resulting network graph shown in Figure 2.8.4. This network yields

Figure 2.8.4 Network Graph for Case IV - Special

the following fundamental circuit equations in symbolic form as

i
B, B, 0 jUC][V
o v

Byg Bog Bog be
Vbr

<

\')
cr

cﬁd

which can be written as

69

e = ! . 7 (20894&)
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(2.8.4Db)

where

For a, positive, see Note 2.8.1. Now we will consider Case I.

2.8.3 (Case 1. The transfer admittance of the Case I classifi-

cation, as can be shown by using the material in Appendix D, is written

as
Xy : xlml .
a s + a [ + 00 + a,8 4+ a
Xy xl—l _ 1 0
¥q,(8) = ‘ : (2.8.5)
12 n- n-1
S ""bﬁls 4 cov +b15+bo
where
a, = negative constant; 1 = 0, 1, coco, Xy
X = odd integer

n = odd integer
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L, L

1 Iy
c o © I r)”Y\' Ti * TMT
Ci-i-l Cmul Cm :

G, 2 C C,
L 3
va

' 2

Figure 2.8.5 Network for Case I

ANV
o
N

-+

Figure 2.8.6 Network Graph for Case I

The ladder network for this case is shown in Figure 2.8.5 with (i)

representing the mesh consisting of the elements Ci’ Li’ 014_1, and

* *
va . Note that Xy determines the mesh in which the driver v, must
2 2

be located to yield the desired numerator degree of ylz(s) in Equation

2.8.5. (i) is related to x4 by

(2.8.6a)
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n=m+tx - (2.8.6b)
Mo r ook 1 (2‘806(:)

The graph corresponding to this network is given in Figure 2.8.6.
The fundamental circuit equations corresponding to this graph are sym-

bolically represented by

By By O U OV,
| By By Bpy | O U [ Vye | =0
| Vo | (2.8.7a)
Vcr
L. ¢4

Since there are no branch resistors in the graph, R, and B,, will be

b 23

zero, and the fundamental circuit equations can be written as

O =

1 -1
1 -1

O C e ¢ ¢ e o ¢+ OO OO

O Ce 2 o0 OO &« & OO

(2.8.7b)



. where
n=m<+r«r

i_fgr
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and the ith row of B has the -1 element in column 2. For the ai’s

21

of Equation 2.8.5 to be positive, see Note 2.8.1. Now we will consider

Case 11.

2.8.4 Case II, The transfer admittance of the Case II classifi-

cation, as can be shown by using the material in Appendix D, is written

&S
X X,=1
a s 2.+ a s 2 + ..o + a,8 + a
X x,=1 1 o)
g (s) = 2 2.
12 s"ab sy ebs b
T nel 1 o
where
a, = negative constant; i =0, 1, ..., Xy
X, = even integer
X, # 0

n = odd integer

Figure 2.8.,7 Network for Case II

(2.8.8)
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- Figure 2.8.8 Network Graph for Case II

The ladder network for this case is shown in Figure 2.8.7 with (i)

representing the mesh consisting of the elements Ci’ Li’ Cii—l’ and

*

*
va . Note that x2 determines the mesh in which the driver va must
2 2

be located to yield the desired numerator degree of y12(s) in Equation

2.8.8., (i) is velated to X, by

n«»xz + 1
1 5 e (20809&)
2
Further
n=m-4+r . (208.9]))
m=71x + 1 v (2.8.9¢)

The graph corresponding to this network is given in Figure 2.8.8.
The fundamental circuit equations corresponding to this graph are

symbolically represented as
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sooon.. o tuolfv ]
11 7z | &
o B B | Cu 7 = ()
21 %22 T23) 7 ]y Tbe
‘j‘_t -
DX (208«10&)
\‘/‘
cr
v
| ¢4

Since there are no branch resistors in the graph, Rb and B23 will be

zero, and the fundamental circuit equations can be written as

oo
(=N =]

A . T T T I R

OO ¢+ s Ore o ¢ OO

1-1

OCQe s ¢ OO+ » ¢+ OW

i
I
|
]
|
|
i 1.1
!
]
|
|
!
|

ch
i+1

(2.8.10b)

n=m+4 X
iigx:
and the ith row of B21 has the =1 element in column 2., For the ai“s

of Equation 2.8.8 to be positive, see Note 2.8.1, Now we will consider

Case 1II1I.
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2.8.5 Case I11. The transfer admittance of the Case.IIl classifi-

cation, as can be shown by using the material in Appendix D, is written

Xq x3-1
a_s + a s + .0 + a,s + a
Xq x3~1 1 o
ylz(s) =— ) . : (2.8.11)
s +b_ s 4+ oos +b,s+ Db
-1 1 o
where
a, = negative constant; 1 =0, 1, ..., X4
Xy = odd integer

n = even integer

Figure 2.8.9 ©Network for Case III

The ladder network for this case is shown in Figure 2.8.9 with (i)

representing the mesh consisting of the elements Ci’ Li’ Ci4—1’ and
v; . Note that X4 determines the mesh in which the driver v; must

2 ' 2.
be located to yield the desired numerator degree of ylz(s) in Equation

2.8.11. (i) is related to x, by

3



77

n»—x3 +1
i =——T—— (2.8.12a)
Further
n=m-+r (2.8.12b)
me=r (2.8.12¢)

The graph corresponding to this network is given in Figure 2.8.10.

Figure 2.8.10 Network Graph for Case 11T

The fundamental circuit equations corresponding to this graph are

symbolically represented as

lu oMy
Big Byp 0 U0V,
l ' =
Byg By By (0 UV | =0
Vi (2.8.13a)
cr
| CL |
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which can be written as

]
e s Oe s ¢« OO O

—_—— e e ———— -
.
.

OO+ o » O O
e o s OO o

O OCe o o
OO

{

{
o
(5]

(2.8.13b)

i < r

 th . .
and the 1~ vow of B,, has the -1 element in column 2. For the ai“s

L&

of Equation 2.8.11 to be positive, see Note 2.8.1. Now we will comsider

Case 1V,

2.8,6 Case IV. The transfer admittance of the Case IV classifica-

tion, can be shown by using the material in Appendix D, is written
y o ]

xq x4-1 ‘
a, s + a_ 15 + oo + a;s + a
e Xy , _ o
y:lz(s) = n n-l . (L¢8‘nl‘_£+)
s + bn—l 4+ aes + bls -+ bo
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where

a, = negative constant; i =0, 1, ..., X,

X, = even integer
X, #0

n = even integer

The ladder network for this case is shown in Figure 2.8.11 with (i)

representing the mesh consisting of the elements Ci’ Li’ , and

*

V.
2

Ci+1

Figure 2,.8.11 Network for Gase IV

3,

F
Note that X, determines the mesh in which the driver v; must be located
: 2
to yield the desired numerator degree of ylz(s) in Equation 2.8.14.

(i) is related to X, by

i= 7> (298.15a)

Further

n=m+zr (2.8.15b)
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m=r (2.8.15¢)

The graph corresponding to this network is given in Figure 2.8.12.

Figure 2.8.12 Network Graph for Case IV

The fundamental circuit equations corresponding to this graph are

symbolically represented by

y I
Big Bypy O U OV,
| e
21 Bz By 1O UV |70
_Vgr_ (2.8.16a)
Ccr
| CL_|

which can be written as



§
[
[
o
o
.
.
.
o
o
o

]
©C Ot *» s OFLs ¢ s OO ©

_Oe & 2 OO o » OO
— e e - e —
.

{
|
|
|
I
]
1 -1 !
|
|
I
t
i
|

O Oe ¢ &« OOse ¢ » OO

(2.8.16b)

n=m4 T

i<r

=

54 has the -1 element in column 2. For the ai"s of

o

. .th .
and the i row B
Eguation 2.8.14 to be positive, see Note 2.8.1,

in the next chapter these results will be used in the synthesis

procedure.

81



CHAPTER I11

SYNTHESIS OF THE SHORT CIRGUIT TRANSFER ADMITTANCE, Y, (s)

12

3.1 Introduction. This chapter will present the state-space
approach to the synthesis of the short circuit transfer admittance,
le(s), using the concepts presented in Chapter II. Only the general
RLC case and LC case will be considered. The restrictions on the network
topology and on the s~domain transfer function will be presented as they
apply to the short circuit transfer admittance only. The desired staté-
model for Yiz(s) synthesis will be given and using this state-model
certain short circuitrtransfer admittances will be synthesized to illus-

trate the developed procedures,

3.2 Resitrictions. The restrictions are of two types; those on

the s-domain short circuit transfer admittance function to be synthe-

(s).

sized and those of the resulting network that exhibits the given le
Discussions of these restrictions in general are presented throughout
Chapter I1. They are presented below as they apply only to the short

circuit transfer admittance, le(s)a

The short cirxcuit transfer admittance function restrictions are:

1. The degree of the numerator polynomial can be no more than
one greater than the degree of the denominator polynomial.
2. The coefficients of the numerator polynomial must be real

and finite.

82
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3. The denominator polynomial must be a strictly Hurwitz poly-

nomial (32).

If Y12(s) is an improper function, Section 2.6.1 presents the necessary
modification to complete before the state-space synthesis procedure
can‘be applied to the proper function portion of Y12(s) which ié repre-
sented as Yiz(s) in Equation 2.6.7.

The tdpological restrictions on the network to be synthesized

from the proper function Y (s) ares

1. Both‘branch resistors and cho:d resistors will not be per-
mitted in the same fundamental circuits.,

2. Circuits of capacitors with or without voltage drivers will
not be permitted.

3. Cut=-sets of inductors will not be permitted.

4, The network driver configuration must be that of Figure 2.4.1.

3.3 State-~Models and [a ](sUmk )] with n Odd. It is desirable

to recall the state-model developed in Section 2.4.1 as it will be used
in the synthesis procedure. This state-model is given here for ready

reference.

v T B0 BT o !
o | Voo | |7 212820 1 G2k || Ve,
el N TN T e
s "L BoC | =L “BysRyBoal ” [ | Iy
(3.3.1a)
% T %
~C, B1,6.Byg [& ]
TR I T s
~L-%B
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| =|8%c¢n % T % v 8l g B vl 3.3.10
al [ B118B12% I Baale” || Voo | F[B1a8cBaa || Va | (3-3-10)
1 .

Ic,(?,

Our objective at this time will be to derive a state-model of the
form in Equation 3.3.1 from the proper function Yiz(s). From here
onwards for simplicity, Yiz(s) will be referenced as ylz(s).

Let us consider a ylz(s) which has a denominator polynomial of
odd degree, n. Now using the developments presented in Sections 2.4
and 2.5 (Equations 2.4.5-2.4.9 and 2.5.1-2.5.10), it can be seen that

this can be represented in the state-model as

™ . o | o, —
v r-f Ik v
bc1 o I 1 bc1
0 -k, ©
|7%2
. M- | . .
[ [ i . o ©
. 0 ] * n-2 .
v - ] -k v
d bc:m _ n l n-1 bc
dt . | % )
i -l k, |
Lot 1 * 2 | Aot
o . 0 I L ]
. ® o I :
L] [ l
y k .k i
i -k 5
c,q,m_'_ r | i n-2 1n-1 | i cf,m+ r_J
_b b 1l
11 12 va1
: : x
v
s bu,1 P2 )
bm+1,1 bm+1,2
__bm+r',1 bn‘1.+r,2___

(3.3.2a)



* ’ ! N ]
: [ Do
1a1 P11+ p1,m| Pi,m+1 °°° Plomtr vbc1
* |
. | .
1a2 | Pyg »*» pZ,m |p2,nr+1 cee p2,m+r ;
L t
Ybe
i
1
Cﬂ‘m+1
-'.
')
. m+r |
where n is odd, n=m + r and m = r + 1,
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(3.3.2b)

Cbserve that there are m

capacitor voltages and r inductor currents in the state-vector. As

was done in Equation 2.4.5, Equation 3.3.2 can be written in a symbolic

form as

Now from Equations Z.4.6 and 2.5,5

2 (s) =p (sU—Kz)'lﬁ
2 (s) =1ZP [adj(sU-K))] &

2,1(8) 24,8

where

A =g,

(3.3.3a)

(3.3.3b)

(3.3.4a)

(3.3.4b)

(3.3.4c)
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and
1
y..(s) = El%iiz (3.3.5)
12 A - *oe
]
Equations 3.3.4b and 3.3.5 show that 312(5) is the product of certain
elements of P, B, and [adj(sU—Kz)]. Therefore one of the major ideas
in this synthesis procedure will be to select the correct network from
those of section 2.8 which will result in a network graph that specifies
the elements of P and § so that P [adj(quKz)] @ will yield the desired
)
312(5). Now we shall obtain the matrix [adj(sU—Kz)]. 'From Appendix C

it was shown that
[adj(sUnKz)] = LT[adj(sUaKl)]Lv (3.3.6)

where the matrix [adj(sU—Kl)] is given in Equation 2.5.12 and can be

written in symbolic form as

811 813 c° al,gj

B a21 a22 coe a2,n
[adJ(SU~K1}] =| : .. (3.3.7)

_an,1 an,2 ceo A ,n_‘

Using the transformation matrix, L, of Equation 3.5.8b and Equation

3.3.7 in Equation 3.3.6 yields
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. |
11 %13 t % %12 f1a ter B net
azq a3q oo d3,n ! 832 a3y ens a3’n__1
. : . [ . .
a a ves a_ a_ a oo
[adj(sU-K,)] = L omI o me3 S 10,2, S Bkl mpnzl
821 23 *** %2,n : 822 F4 vt 8y ni1
341 a43 20w aa,n ' 442 344 s e e a4’n-1
. . . [ . .
® s e l - . °
_an-l,l %h-1,3 °°° %n-1,n1 %n-1,2 %n-1,4 "¢ an-l,n-{J
(3.3.8)

where the aij elements of Equation 3.3.8 are the same aij*elements of
Equation 2.5.12.

Now substitute the §§ and P of Equation 3.3.2 and the [adj(sU«Kz)]
of Equation 3.3.8 into Equation 3.3.4b and it can be shown that the‘
D;Z(s) of Equation 3.3.5 will be as shown in Equation 3.3.9 on the
following page. Equations 3.3.1, 3.3.2, 3.3.7, and 3.3.9 will be used

frequently in the synthesis procedure that follows.

3.4 Synthesis of qu(s), Case IT - Special. Several features of
&

the synthesis procedure will become apparent with the synthesis of
ylz(s) that has a denominator function degree of n, which is odd, and
a numerator function that is a real and finite constant. The synthesis
procedurelwill produce an unbalanced ladder network as in Section

2.8.1 that has two resistors, n reactive elements, and no transformers.
Nete that in the special case of nm = 1, we will have one resistor and
one reactive element. This will be a subclass of the general case
which will become evident later. A ylz(s) with these characteristics
is presented first as it will have the simplest synthesis procedure and
it will give a good overall idea of the synthesis approach used in the

more complex short circuit transfer admittance to be synthesized.
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+(Pyy3y 4

+ P1ydng
+ P1r?3;
+ Pyy333
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+P1233,n

+ P13351
* Py13?s2
+ Py33s3
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+

+

+

+

+
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bpl,man,l + pl,m+
p1,man,2 + p1,111 +
p1,man,3 + pl,m +
pl,man,4 +p1,m+
pl,man,S + pl,m+
pl,man,n-l + pl:m +
pl,man,n + p1,m+

odd integer

=m+4+r

r+1

1821 Y Piag %
1222 *Pim4 2%
1223 Y Pim+ 2%
1226 Y Pimo4 2%
1225 YPru+ 2%s
1%2,n-1 % P1,§ + 2%,n-
laz,n + pl,m + Zah,n

ces + Py

eee + pl,nan-l,z

vee + p1

see + pl,nan-1,4

...+p1'a

,A n-l1,5

,nan-l ,y1

,nan-1,3

by,

)b

%

My 42,2

bg,

cee ¥ pl,nan—l,n-l)bm + r,2

cee ¥ P1,n%n-1,n )bm,z

(3.3.9)

m + 1,2.

8
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Assume that the Case II - Special short circuit transfer admit-
tance to be synthesized is

a
[¢]

s + b sn_1 + ve. + b,s +b
n-1 1 <}

y12(S)'?- (3.4.1)

where a, is an arbitrary real coefficient and the denominator polynomial
is a strictly Hurwitz polynomial. In Section 2.8.1 a ladder network
has been given that yields a transfer admittancé like that of Equation
3.4.1, Also the fundamental circuit equatioﬁs.for this network are
given in Equation 2.8.2. Utilizing this information allows the deter-
mination of the element values of this circuit and completion of the
synthesis procedure.

Proceeding as in Section 2.7.1 and considering the partiti9ned
matrix parts of Equations 3.3.1 and 3.3.2, it»is.obserQed that the

corresponding parts of the partitioned matrices can bevequated such as

¢ —
o)
0
: "’}é T '"1/2 : 4
ucb B12GCB12C = . (3.4.2a)
0
-f
e n—-
kq
-k2 k3
..1/ T -.1/ : Y
2 2 o L]
Cb B22LC = . . ) (3.4.2b)
® ®
-kn-3 kn-2
_ ot
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1 1
“%3 R BL 1% =
—I;"c B231\bB23Lc = 0 (3.4.2(:)
b11 12
L o1 Py
—/2 .
"Cb B12GCB11 - : : (3.402d)
m,1 bm,%_

Em+L1bm+1J

1 bm+L1bm+2ﬂ

-LC2B21 = : : (3.4.28)

_Pm+r,1bm+r,g

T
]Z p p L N p
-C;szzGcBll — | T2 l,m (3.4.2f)
Po1 Pog *+* Py
T
N p p cee D
mLC2B21 - wl,m%—l %1,m4-2 ~1,m4—r (3.4.2g)
Frm+1 ¥2,m+2 °°* Pomsr
r 0
T 11
BlchBll = 0 £, (3.4.2h)

There are four points that must be considered. First, the unimod-
ulég matrices, Bij’ are known from Equation 2.8.2. Second, a set of
indgpendent algebraic equations can be obtained from these sets of
matrix equations that will yield the network component values. Third,
Equations 3.4.2d, 3.4.2e, and 2.5.5g will designate which element of

Equation 3.3.8 will be a factor of the numerator constant. And fourth,
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in Equation 3.4.2h only the form of the matrix product need to be con-

sidered and the values of riyq and r_, ignored as shown in Equations

22
2.4.7 through 2.4.9.

Before obtaining equations in terms of component values, consider
Equation 3.3.1 and its development in éhapter II. It is noted thatACb,
Lc’ Rb’ and Gc are diagonal matrices with positive entries, that the
Bij's are unimodular matrices with elements ilvor 0, and that the state-
vector in Equation 3.3.2 implies that Cb will be a diagonal matrix of

order m and Lc will be a diagonal matrix of order r. Since C_ and LC

b

o

are positive diagonal matrices, the matrix Cb is a diagonal matrix of

[

order m and the matrix LC is a diagonal matrix of order r whose entries

are chosen to be positive.
Utilizing the discussion above while considering Equation 3.4.2a
and the unimodular matrix, B12’ of Equation 2,8.2, it is possible to

-k
decompose (CszT G B,.C

1588198, ) in the same manner as the decomposition of

Equation 2.7.4a and this decomposition results in

) i B ™ 1 .
c 1o0flg, 0 ||{10...00]]c
' ool * l:oo 01:I !
-1 T - g .10 8 )
“Cp B12CcB1n% = - . s .
n Cmd .0 1] i C@~

(3.4.3)
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Equation 3.4.2a with Equation 3.4.3 yields

— o o

£.2
—fO _gl(cl)

. = . (3.4.4a)

c '\2
ufn -gz(Cm) i
and this equation implies that

t 2 4
£= gl(Cl) (3.4.4b)
: ‘2 ’ 4.4
£ ~.g2(Cm) (3.4.4c)

Considering Equation 3.4.2b and using the B22‘submatrix of Equation

1. 1
D e o " 5T -k . . :
2.8.2, the decomposition of (CL‘BzzLCZ) is the same as in Equation
5] .

R ] a7 =
Y1 -1 1 b
m% T Wk o L] ¢ .
[-‘ “ ] < =2 » o L]
4y BZZLC o LI (3 [l' 5)
9 p 2 [ ] L] w
e -1 1 L
443
- - -1 o
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Equation 3.4.2b with Equation 3.4.5 yields

— Sy aad ' —
kg €11y
3§ 1 | . |
-k2 k3 -C2L1 C2L2
® [ ] [ ] °
. ° - L4 °
i °
¢ * r ot tot
-kn-3 kn-2 -CmﬁlLr-l cmplL;
-k )
L n-1_ 5 -Cer
(3.4.6a)
Equation 3.4.6a implies that
Ce
ky =G4l
H [ 3
ky = Cylyg
't
<3 = Cyly
\ (3.4.6b)

I} eoe
-
-

=~
i

Considering Equation 3.4.,2¢c, it follows from a similar argument
to that given in Section 2.7 that Rb = 0 and B23 = 0.

Considering Equation 3.4.2d .and using the Bll’ Gc and B12 sub-
matrices from Equation 2.8.2, the decomposition of (Cg%szGcBll) will

be
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"C' 71 o] g, 0 |[-1 0
1 00 0 -1
N . 0 &
-3,T _ . .
-Cb B12GCB11 - o ¢ = (3.407)
o 00
Cm 01
- - b -
Equation 3.4.2d with Equation 3.4.7 yields
Py Pro 8% 0
boy b22 0 0
: = : : (3.4.83.)
bmml,l bm—1,2 0 0 '
| m, 1 bm,2 | 0 gZCnb

and this implies that b11 and bm are the only two non-zero entries

32

of this matrix and are

t
b,, = glcl (3.4.8b)

bm$2 == gzcm (3.4.8¢)

The B,, of Equation 3.4.7 also satisfies the matrix product of

11

Equation 3.4.2b, since

g 0

115 o 5, (3.4,9)

submatrix of Equation 2.8.2

Consider Equation 3.4.2e with the B21

where B21 = 0 and this results in



bm+1,1bm+1ﬂ
bm+ 2,1 bm+ 2,2

—
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. . =0 (3.4.10)
fm+mlbm+m%_
Equation 3.4.2f with Equation 3.4.8a yields
bli 0
0 0 o
p1100000 O
2T 0 0o, (3.4.11a)
0 0 g
i 0 bm’zu
and this equation implies
b11 -Pqy (3.4.11b)
bm’2 "pz,m (3.4.11c)
Equation 3.4.2g with Equation 3,4.10 yields
P, . D soe P
I,m+1 "1,m+2 Lym+r | _ 0 (3.4.12)

Po,m+1 P2,m+2 *°* Poom+r

Using the § and §§ of Equation 3.3.3 with Equations 3.4.8a, 3.4.10,

3.4.11a, and 3.4.12 yields
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byy O
0 0
0 0
0b, ,
8= - - 2% (3.4.13)
0 0 »
[ 0 0 |

!
p11 O L R 4 0 O I 0»3.0 O

|
O C LA IR 4 0 pz,m: O .o 0 (3a£}.14)

P::

Substituting the entries of Equations 3.4.13 and 3.4.14 into

Equation 3.3.9 yields

?
212(5) = pllal,nbm,z (3.4.153a)
where a; o is an entry of the matrix of Equation 3.3.8 and has been
b
determined in Equation 2.5.12 as
ne- 1
algn = ll ki (3.4015]3)
i=1
T
Therefore 312(s> can be written as
. na=-1
312(5) = bm,2p11 T ki (3.4.16a)
i=1

and from Equations 3.3.5 and 3.4.1, we have

i
21,(8) = a_ (3.4.16b)
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which yields the result

a5 = by oPqg

TT k, (3.4.16¢)
Recall that this development assumes the network of Figure 2.8.1.
Now the network component values must be determined and Equations

3.4.4b & ¢, 3.4.6b, 3.4.8b & ¢, 3.4.11b & ¢, and 3.4.16c provide the

following set of (n + 6) non-linear algebraic equations with the (n+6)

1 1 ' 1
unknowns, 813 Bos Cl’ evcy Cm’ Li’ cees Lr’ bll’ bm,z’ Pqqs and p2,m°

1

n -1
a, = bm,Zpll I kg - (3.4.173)
i=1
) R
fo == gl(Cl) (3.4.171)
' 2
£ =18,(C)) (3.4.17¢)
1
b,y glcl (3.4.1748)
[
ba o = 85, (3.4.17¢)
by, = =Pqy (3.4.17£)
by2= Py (3.4.17g)
] 4
kg =G4l
: 0 (3.4.17h)
° T F
Kn-l = cer

A solution to this set of non~linear algebraic equations can be

found in the following manner. Equations 3.4.17d and 3.4.17e can be
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written as

b
1
gl = _....___.]" (3-4. 188.)
€1
bm 2
gy =1 (3.4.18b)
¢
m.

Then substitute 8 and &, into Equations 3.4.17b and 3.4.17c to yield

t

fo = b11C1 (3.4.19a)
¥
n = bm,ZCm (3.4.19b)
Solving for bll and um’z in Equation 3.4.19 gives
£
by =—7 (3.4.20a)
€1
fn
bm’2 = — (3.4720b)
C
m
From Equations 3.4.17f and 3.4.20a
il
)
pll = - ”T (3.4-21)
€1
Using Equation 3.4.17h, it can be shown that
¥
. kn—lkn-3kn-5 e k,Gy
T T & T (3.4.22)
n-2 n-4 n-6 °°° 72

Note that this is the same solution as that given in Equation 2.7.19c.

Substituting bm of Equation 3.4.20b and Pqy of Equation 3.4.21 into

»2
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Equation 3.4.17a yields

:
3} (&)
8o = =7 || =7 | (el ol g oo k) (3.4.23)
¢ |]c
m 1

‘ 1
Substituting C, of Equation 3.4.22 into Equation 3.4.23 and solving for

1
C1 results in
. b

[

i Y (kn-an-an-é ‘oo kl) (3.4.24)

where ag is a negative real constant. Substituting C, into Equation

- -

3.4.,17 will yield the other unknowns. Observe that Cl‘is positive

and real, since fo, £, kl, sses kn 1 are positive and real. Note that

n

in Equations 3.4.3, 3.4.5, and 3.4.7 a change of variables has been made

of
Lo 3.4,25
Ci = Ci (3.4.25a)
Li = Li (3.4.25b)

From these equations the network component values of the synthesized

network of Figure 2.8.1 will be given by

1.2
G, = (Ci) (3+4.26a)
-2
L, = (Li) (3.4.26b)
1
Ri ='é-_ (3.4026(:)
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It should be noted that for a ladder network of the type shown in
Figure 2.8.1 the numerator polynomiél of ylz(s) will have nggative
coefficients (32). This implies that a, of Equation 3.4.1 must be
negative. It is shown beléw that a; as calculated in Equation 3.4.16¢

will always be negative. Considering Equation 3.%.17 it is observed

that b11 and b must be positive comstants if only physically realiz-

m,2
able components are to be in the synthesized network. With‘b11 a pos-
itive constant, Equation 3.4.17f implies that P is a negative con-

stant. With

P << ©

>0

i,2

ki >0; i=1, ¢es, n-1

then

n-1

i=1

An important point to be considered is that for the denominator
polynomial of a given in(S)’ Navot'®s (27) method of Appendix B will
yield an infinite number of real positive values for\fo, fn, kl’ eooy
kn 1° This implies that there are infinitely many real positive values
of 81> 8y> Cl’ coey Cm, Ll’ coes Lr possible in the synthesized network
that yield the same ylz(s) and these are dependent upon the users
manipulation of Navot's method.
1f a, in Equation 3.4.1 is positive, Bll’ b11, and/or.bm,2 will

reflect the change in sign and should be handled accordingly. Or a
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1:-1 transformer can be added to either port to yield a positive a,-
This completes the presentation of the synthesis of ylz(s) with a con-
stant numerator and a denominator polynomial of odd degree. It is

felt that a summary of the synthesis procedure should follow.

3.5 Synthesis Procedure for Case II - Special Summarized. The
synthesis procedure for synthesizing a Case II - Special short circuit
transfer admittance, ylz(s), with a constant numerator and a denom-
inator polynomial of odd degree is given in the following enumerated
steps.

1, Take the proper function, ylz(s), and use Appendices B and C

to obtain the matrix, K,, of Equations 3.3.2 and 3.3.3.

2.’
2.- Write the state-model of ylz(s) in the form of Equation 3.3.2

using the element values determined in Step 1. Leave matrices

of ate
%

v o, Ihs B, #, and R in general terms as was done in Equation
3.3.2, This will allow you to determine their sizes and will
yield the number of capacitors and inductors.

3. 1If desired, write the resulting fundamental circuit equations
using Bquation 2.8.2 as a guide.

4o Draw the resulting ladder network using Figure 2.8.1 as a

5. Solve the set of (n + 6) non~linear algebraic equations of

]

Equation 3.4.17 by first solving for C1

of Equatioﬁ 3.4.24
and then wusing this result to solve for the other ﬁnknowns of ~
Equaticn 3.4.17. |

6. Obtain the synthesized network component values from Equation

3.4.26, which completes the synthesis of the transfer admit-

tance.
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An example will now be presented to illustrate this synthesis

procedure.

= 3.

3.6 Synthesis Example of yiq(s) with n

It is instructive

to observe a Case 11 - Special example, therefore a yiz(s) with a

constant numerator and an odd denominator function degree is given

to be synthesized.

Let

ylZ(S) - 53 + 5s

Using Appendices B and G, a possible K

R

- o

4+ 17s + 25

matrix is

(3.6.1)

(3.6.2a):

(3,6.2b)

It is now possible to write the state-model for this transfer

admittance usipng the results of Sections 3.3 and 3.4.

e o0 wm  am wo

by, O
0 b
o
0 0
L A

(3.6.3a)
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%*
r11 0 va1
; . (3.6.3b)
r v
22 a,
- %*
rbll 0 v
3
0 b *
v
22 %] 3.6.30)
0 0
*
r11 0 Va1
. (3.6.3d) -
0 r22 va2

From Section 2.8.1, the fundamental circuit equations in symbolic

‘a, Pyp O
_a‘r = 0
i P
d2 22
or
. .
rvb -1 0
¢
1 0 y
d vbCZ _ -4
dt b = S| - - =
Qﬂ 3
ﬂ* O
i P
ay ~ 11
laz 0 Py,
form are

Byy Byy

0

|
By1 Byp Bog !

'vo
o u

(3.6.4a)




which for this example can be written as

-1 0}1 o:o
0-110 1,0
0 0j1-1}0

-
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=0 (3.6.4b)

and after reducing the network graph of Figure 2.8.2 to fit this exam-

ple, it is shown in Figure 3.6.1 while the synthesized network is shown

in Figure 3.6.2.

Figure 3.6.1 Example Netwerk Graph

Now the following nine non-linear algebraic equations, which are

similar to those of Equation 3.4.17, will be
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-4 = 6by,pqq
'2
12
1
b1y = 810
b22 = g202 | \.,(3.6.5)
b14 = -Pqq
Doy = =Pyy
[ ]
2 = C,L,
1] ¥
3 = GyLy

These can be solved by starting with Equation 3.4.24 which yields

C D@ ?
=89 e

and resulting in the synthesized network of Figure 3.6.2 with component

values of

R1 = 4 ohms
R2 f 9/4 ohms
L1 = 1 henry .. | S (3.6.6)
G, = % farad

C2 = 1/9. farad
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and state-model element values of

=2
I
~
~
W

(3.6.7)

[
[y
—

Figure 3.6.2 Example Synthesized Network

To check these results, ylz(s) is determined in algebraic form

from the synthesized network as

y12(s) =

-1 . ,
2 4 . : : )
+ L;(R;Gy + R,G)s" + [L; + RyR(Cy + Cz)]‘s + (Ry +R,)

‘ 3
Rleclchls

(3.6.8a)
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and substituting in the calculated component values yields

-1
+ 5/432 + 17/4s + 25/4

}’12(5) = %53

(3.6.8b)

or

y12(s) = 3 2-4 (306-8C)
s” 4+ 58 + 17s + 25

which is equal to the short circuit transfer admittance of Equation
3.6.1 that was to be syntheéized.

When the degree of the denominator polynomial of ylz(s) is even,
there are soﬁe small differences in the synthesis procedure and in the

synthesized network. These are presented in the next section.

3.7 State-Models, [adj(sU»Kz)] and Synthesis of Case IV - Special

llzﬁill This section will be similar to the presentations in Sections
3.3-3.5. Whereas these sections were concerned with the synthesis of
a Case 11 - Special short circuit transfer admittance, ylz(s), this
section will present the synthesis procedure for a ylz(s) that is a
Case IV - Spe;iala

The stateumodel of Equation 3.3.1 will be used again in the same
role that it was in Sections 3.3 and 3.4. Also the developments of
Sections 2.4 and 2.5 are used to obtain this state-model that repre-

sents ylz(s) as
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' ‘ 1 7. ]
vbc1 -fo ! k1 _ Vbc1
1 0 K k !
v | 72 3 v
bc2 ° o o b02
| . |
. i ° ° .
'0 ® l [ ] ® I
d Vbe 0 { _kn-z kn-i Vbe
el o B el L L R -7 - - -
de i K,k | o, i,
."mqﬂl -k, * . { U] . m+1
' 'y
wm¥2 '.. ! 0 ”m+2
. n-2 , .
e . 5 l . e
_Cf’m+r__ L n-1| nJ _Cﬂ'm+r_
—5 b ] ¥
11 12 "a1
L] L3 i:
. . v,
b b Z
+ J- T}} - - T’g - -
Pt 1,1 Pnt 1,2
m+m1bm+m%_
(3.7.1a)
'7\ ‘ | = ™ | ¥
ta Pig o pl,m |p1,an1 s pl,m{-r Ybe 11 0 Va
~.'<1 = | 1 + )‘:1
T, || P2ttt Poum Pman 0t Pomtr S 0 3 Ya,
vbc
m
7
An+1
.
b sz-{—‘r‘_‘
(3.7.1b)

where n is even, n =m + r and m = r. Again there are m capacitor

voltages and r inductor currents. As presented in Section 3.3, the
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matrix P [adj(sU-Kz)] g will yield the numerator of ylz(s) and so the
1

[adj(sU;Kz)] and 212(5) must be obtained before proceeding with the

synthesis procedure. Using the transformation matrix, L, of Equation

2.5.9b and the [adj(sU-Kl)] of Equation 3.3.7 in Equation 3.3.6 yields

- , -
11 %13 vt fner %120 F1a ctt Bpp
) LR N 2 a l( LI BN
431 833 3,n-1 | %32 %34 23.n
. L L l * L] L ]
: . . boe . .
I
a a eseo & a a soe A
[adj(sU-K )] = | 2-20d rcldo o lielonel remho2 molyb o e-len
21 f23 vt fpuner M Faw et g
841 %43 **° %4 ,n-1 :aaz 844 °°* ¥y n
. . . - . .
° o ] I L) L) L3
han,l 8n,3 " #n,n-1 :an,Z %n,4 " %non N
(3.7.2)

where the aij elements of Equation 3.7.2 are the same aij elements of
Equation 2.5.12,

Now substitute the § and § of Equation 3.7.1 and the [adj(sU—Kz)]
of Equation 3.7.2 into Equation 3.3.4b and it can be shown that the
3;2(5) of Equation 3.3.5 will be as shown in Equation 3.7.3 on the
following page. ﬁquations 3.3.1, 3.7.1, 3.3.7, and 3.7.3 will be used
frequently in the synthesis procedure for the Case IV - Special ylz(s).

Assume that the Case IV - Special short circuit transfer admittance

to be synthesized is

c
(%}

¥15(8) = - ‘ (3.7.4)
2 sn n_lsn 1 + see + d15.+ do



' .
3y,(8) = (Pygay;  +Pyp333  tPy335y  teee v Py g0 FPias1%21 YPimga®  Foeeet Py a3y My
+ (pua12 + P1o%32 + Py33s, + eoe + P1,m%n-1,2 + Pi,m+ 1222 + Pi,m + 2%42 4+ aee + pl,nan,z )bm 1,2
b
+ (P23 F P33 FPi3®s3  ter FPrafniis FPrmaa®3 FPimaofz oo VP i Obyy
b
+(Pyyay,  +Pyp3,  tPi3¥s,  teee Py 04 FProa1%a FPiag s toees F Py s u 40
: b
+(Pygays  +Pipd3s  FPy33ss b Py g6 FPiaa1%5 FPramyofus  tees F Py 305 by,
b
+ (P1181 pe1 Y P12%3,001 Y P13%5 1 ot F P p®nii 0t P Pim 4+ 1%2,0-1 P Pim 4 2%,n-1 oot F Py 80 010,
b
+(Ppgay n FP3 g FPgds g et Pyt a0 YPiat 12 tPlm+2®mn ot FPiofnan Wanynr,
n = even integer
n=m<4+7r
m=1rr
(3.7.3)

o1t
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where cqlis an arbitrary real negative coefficient and the denominator
polynomial is a strictly Hurwitz polynomial of even degree n. Since
this transfer admittance is a Case IV - Special tyée, the synthesis
procedure will produce an unbalanced ladder network with two resistors,
n reactive elements, and né transformers as shown in Section 2.8.2.

The fundamental circuit equatiéns for this Gase IV - Special are given
in Equation 2.8.4. Again this information will be used in determining
the network component values as was done in the previous section when
n was odd.

Proceeding as in Section 3.4, the corresponding parts of the parti-

tioned matrices of Equations 3.3.1 and 3.7.1 are equated to yield

-f
o)
R, - 0
-Gy #B],G By ,Cp % = . (3.7.5a)
= 0—
kq
k) Ky
~%5pT 1-% L 3.7.5b
cbzch_ o.o. (3.7.5b)
L no2 n-1 |
- _
-1 T % .
2 2
~L7%B_,R B.L % = . (3.7.5¢)
-f
) n_-
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b1 by
LT 21 b22
-Cb2B12GCB11 = : : (3.705d)
me,l bm,za

|

c“%BT G B (3.7.5e)
“Mp C12°¢711 T T < /€

bm+ 1,1 bm-l— 1,2

4 Pt 2,1 Pnt2,2
GLC B21 = : : (30705f)

_obzn+ r,l bm+ r,2 ]

T
1 Py P ses P
L%, = | ot bmdz ol (3.7.5g)
“ Foom+1 P2m+2 *** Pomgr
r 0
11

3l 6B, = ) (3.7.5h)

i ¢ 11 O 122

of the network component values can be obtained from these

considering the four points which were presented in Section

3.4 immediately after Equation 3.4.2. As in Section 3.4, the matrices,

1
(o]

Bij's will be unimodular or E-matrices with elements il or 0. C;

¢, %, L°%, G, and R, will be diagonal with positive entries and the
¢’ e b )

%

1
will be g matrix of order m and ch will be a matrix of order r.

Considering Equation 3.7.5a and applying a similar procedure as

in Section 3.

~%_T -%
2 ” 2
4, (Cb BlzGCB12 b J can be decomposed as



-C-%BT G B,.C

L
)

[ o

AN

b 7127c¢7127b

- — - P 9 oy
0 0

and this matrix equation implies that

v.2
fo - gl(C1)

C cac
.
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(3.7.6)

(3.7.7a)

(3.7.7b)

Now considering Equation 3.7.5b, it can be seen that the decom-

ek T -k
. 3 RN -
position of (G, Boole ) will be
- T 4 - -
€y -1 1 Ly
w;é T n..lé _ ° o o -
Cb BZZLC s - ° © L
o Y ° o . [
C -1 1 L
'm T
Lin oned  Sowes ad s e

(3.7.8)



Now Equation 3.7.5b with Equation 3.7.8 yields

and this matrix equation implies that

k

k.,

™.

i

” LR

[
C,L

1

1t
c,L

2

m r-1

1

1
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(3.7.9a)

(3.7.9b)

Considering Equation 3.7.5c and again using a similar procedure

- T =%
o 2 2
as in Section 3.4, (LC BZBRbBZBLc
4
Ly
-3 T . ~% _ °
~LoBoaRypBosl, " = - .
L

) can be decomposed as

oy

o

[oY O s e

[edloen]lm
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Now Equation 3.7.5c with Equation 3.7.10 yields

. = . (3.7.11a)

fn. lz(L].) (3';"11b)

Now considering Equation 3.7.5d with the B11’ B12 and GC of Equa-

p X
tion 2.8.4, it can be seen that the decomposition of (ngszccBll)

will be

o |[ldL
G 1l]le -1 é}
1 0 1
X T ¢ .
‘“Cb B12GCB11 — = o : (3-7&12)
R
- %]’

Equation 3.7.5d with Equation 3.7.12 yields

b g
11 °12 g.C. 0
b 171
21 22 0 0
° ® = © - (3-7.133)
_bm,l bm,zg | 0 q_

and this matrix equation implies

(3.7.13b)

11 = 8%y
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and the remaining bij's in Equation 3.7.13a are identically zero.
Equation 3.7.5d and ¢ with Equation 2.7.13a implies that the only non-

zero entry in Equation 3.7.5e is

Pyq = --b11 (3.7.14)
Considering Equation 3.7.5f, it can be seen that using the B21 of
L
Equation 2.8.4 the decomposition of (LC2B21) will be
- . —— -
L, 0 0
12 I
‘LC B21 = e . O O (3.7-15)
‘o
L 0 -1
s r—a aad ——
Equation 3.7.5f with Equation 3.7.15 yields
Pa+1,1 Pma1,2 00
. . =3 3 (3.7.16a)
bn~=1,1 bn-1,2 0 0, )
_ﬁm+r51bm+r,{. _OLQ_
and this equation implies that the only non-zero entry is
|

b i = L (307016b)

Equation 3.7.5f with Equation 3.7.5g implies that the only non-zero

entry is

bm_'_r,2 = p2,m4—r (3.7.17)

When B11 of Equation 2.8.4 is substituted into Equation 3.7.5h, the

correct form results as shown
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B110B P11 l: ][glj[ 1 o] (3.7.18a)

_(3.7.18b)

Substituting the zero entries of Equations 3.7.13a and 3.7.16a

into the P and @ matrices of Equation 3.3.3 yields

Pjq 0 eec 000 0
P = i (3.7.19)
0 G ° % @ U|O oces G p2,m+r
and
b11 0
0 0
g=2__.090__ (3.7.20)
0 0
o - 0
__0 bm-i—r,2_J

Substituting the bij“s and pij“s of Equations 3.7,19 and 3.7.20

into Equation 3.7.3 yields

§
212(8) = P1134 Puyr,2 (3.7.21a)
where 2y 4 is an entry of the matrix of Equation 3.7.2 and has been
H
determined in Equation 2.5.12 as
n-1
al’n = ki (3.7.21b)
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1
Therefore 312(5) can be written as

' n-1
i=1
and from Equations 3.3.5 and 3.7.4
¢ :
which yields the desired result
n -1
c, = bm4—r,2p11 T ki (3.7.22¢)
i=1

Recall that this development assumes the network of Figure 2.8.3.
Now the network component values must be determined. Equations
3.7.7b, 3.7.9b, 3.7.11b, 3.7.13b, 3.7.14, 3.7.16b, 3.7.17, and 3.7.22a

provide the following set of (n + 6) non-linear algebraic equations with

? H

¥ )
the (n + 6) unknowns, Bys Tys Cys oves C s L1, oy L, b11, b

r m+1r,2°

p11’ and p2,m+r’

1n=1
CO = m+r’2p11 ,l k]‘_ (3-70233)
i=1
"2
£, = g,(C,) (3.7.23b)
.2
n = rz(Lr? (3.7.23c)
t
by, = &0, (3.7.23d)
t
= I (3.7.23e)
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by = -pyy (3.7.23f)
bm4—r,2 = Prm+r (3.7.23¢)
]
ky = Cyly
: Tt
kn—l = Cer (3.7.23h)

A solution to this set of non-linear algebraic equations can be

found in a manner similar to that presented in Section 3.4. This re-

sults in
)
. kn~2knm4kn—6 cae kzcl
Ca ™ & k& K (3.7.24)
n-3 n-5n-7 °°° 1
and
1
2
¥ ‘-fo k
Cl = """E‘;' ( n-lkn-3kn-5 ess kl) . (3.7-25)

where o is a negative real constant. Substituting C, into Equation

w =t -

3.7.23 will yield the other unknowns. Observe that C1 is positive and

real, since fo’ fn, kl, caesy kn-l are positive and real. As in Section
4 b
3.4 after the Ci\s and Li“s are determined, the Ci’s and Li"s of the
LI
synthesized network of Figure 2.8.3 will be calculated by Ci = (Ci) 2,
= Y,

2 2

Again note that for a ladder network of the type in Figure 2,8.3,

T =2
Li = (Li) s R1 = 1/g1, and R

the numerator polynomial of y12(s) will have negative COefficients.‘r
Therefore R of Equation 3.7.4 must be negative. It is shown below
that c, as calculated by Equation 3.7.23a will always be negative,
Considering Equations 3.7.23d and 3.7.23e it is observed that b11 and

bm+r 2 must be positive constants if only physically realizable com-
H
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ponents are to be in the synthesized network. With b11 a positive

constant, Equation 3.7.23f implies that Piq is a negative constant.

With
Py
bm+r,2>0
ki >0; i=1, ¢eey n-1
then

=]

C =

o bm-l—r,2p11 i

=)
o~
A

[ N

. ynthesis Example of vy, (s) with n = 4, As in Section 3.6,
3.8 S hesis E 1 £ 1 (s) with 4 in S i 3.6
A ) '

it is felt that a brief example of a Case IV - Special transfer admit-
tance will be instructive. The y12(s) to be synthesized has a negative

constant numerator and an even denominator function degree of 4. Let

)

V,,(8) = (3.8.1)
12 s* + 253 + 1052 + 105 + 17
Using Appendices B and G, a possible K2 matrix is
| -
[-£, 0 | k, O
0 0 '-k, k
Ky=f - - -~ L2l L3 (3.8.2a)
-k, k, : 0 0
0 k,! 0 -f
B 31 4
-1 012 0
K, =} 0 _0_::1_ 2 (3.8.2b)
-2 1,0 0 :
0-20-~1
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Using the state-model of Equation 3.7.1, substituting in the K2

matrix of Equation 3.8.2b, and using the results of Section 3.7 yields

[~y B | NI
v -1 01 2 0 v,
ECI 0 0 ; 1 2 ?Cl
v | - v
_(_i_ i bCz L _:- o i l-)Cg
“ly 2 110 ofl1
i - | i
o4y | by
0-2, 0-1]]1i
| | L | ] 42
* ! T T
i p,, 010 O v
a 11 be
170 o =o Y
i 10 p v
a2 | 24 - ?cg
.F
ch
. 1
czz

it > o e

*
Va v
21
Va .
21 (3.8.3a)
&%
v
21 (3.8.3b)
va
2

From Section 2.8.2, the fundamental circuit equations in symbolic

form are

<

be
Vbr

cr

cs

(3.8.4a)
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which for this example can be written as

o > wr wm]| m m e e e -

= 0 (3.8.4b)

Figure 3.8.1 Example Network Graph

after reducing the network graph of Figure 2.8.3 to fit this example,
the network graph is shown in Figure 3.8.1 while the synthesized network

is shown in Figure 3.8.2.



123

& —@—

Figure 3.8.2 Example Synthesized Network

Using the solution of Equations 3.7:23 and 3.7.25 yields for the

component values

R1 =z ohm
R2‘=’ 1/5 ohm
L, = 4/5 henry
L2 = 1/5 henry
¢y = 5/16 farad

C. = 5/4 farad

and for the state-model element values

N5
b11 =73
by, = N5

N5
P11 =~ 7~
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Since short circuit transfer admittances with other than constant

numerators must be considered, these will be presented next.

3.9 Synthesis of qu(s) with Numerator Degree Greater than Zero.
&

In the previous sections of this chapter, transfer admittances with
constant numerators were considered, Howe?er it is common to have a
transfer admittance numerator polynomial with a degree greater than
zero. The synthesis procedure for such transfer admittance functions
will use much of the presentation for zero degree numerators. This
will be seen in the following material.

First it is assumed that if the ylz(s) to be synthesized is an
improper function, the procedures of Section 2.6.1 have been executed
until a proper function is left to be considered.

Next it must be pointed out that this synthesis procedure will
satisfy only one coefficient in the numerator. polynomial per ladder
network. Tﬁerefore if the numerator degree is (i) then in general
there will be (i) ladder networks paralleled in the resulting network
that synthesizes the transfer admittance. This paralleling procedure
is justified with validity test remarks in Weinberg (33).

It will be necessary to present the peculiarities of each of the
Cases, I through IV, of Section 2.8. Then an outline of the synthesis
procedure will be presented and last, examples will be presented to

illustrate the synthesis procedure.

3.9.1 Case 1. Tor this case, the numerator and denominator

degrees are both odd, and the network and fundamental circuit equations
to be used are given in Section 2.8.3 with the transfer admittance of

Equation 2.8.5. Since n is odd, the state-model to be used is given in



Equation 3.3.2. Because the fundamental

differ from those in Case II -~ Special only in submatrices B
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circuit equations for this case

and B

11 21’

the results in Equations 3.4.4 and 3.4.6 will apply to this case and are

P2
fo = gl(Cl) (3.9.1a)
£ "2 9
PN §
ky =G4l
. (3.9.1¢)
* L
kn-l = Cer
Since Bll for Case I is
_1=-10
B11 _[ 0 0] (3.9.2)
from Equation 3.4.2d it follows that
[~ ] ™ v
b1 Py 8,6, O
a1 Py 0 o
° = o . (3»9.33)
_bm’l bmsZJ i 0 9J
This matrix equation implies that b is the only non-zero element and

11

equals

b1y = 810

(3.9.3b)
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of Equation 2.8.7 yields

Considering Equation 3.4.2e with the B21

— - -
bor1,1 Pas1,2] [©0©

. : . !,. -
bm4—i,1 bm4—i,2 =]|0 Li (3.9.4a)
_bm4-r,1 bm4—r,2_ _0 0 _

which implies that b is the only non-zero element and equals

m+1i,2

bm4—i,2 = Li ' (3.9.4Db)

Equation 3.4.2d with Equation 3.4.2f implies that

b11 = -Pyq (3.9.5)
Equation 3.4.2e with Equation 3.4.2g implies that

Now following a procedure similar to that in Section 3.4, § and P can

be written as

r'b11 0

p=| ¢ ° (3.9.7)
6bm+°i,2
R
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|
p11 LI ] Oloooo 0 t oo O

! ’ (3.9.8)
O LN 4 OIO LN 4 p2,m+i L N O

P‘._—..
Substituting the entries of B and § from Equations 3.9.7 and 3.9.8

into Equation 3.3.9 yields

t
where
15; i<r

and from Equation 2.8.6a

2i =n =~ Xy

has been determined in Equation 2.5.12. It can be shown that the

a4 94 element is a polynomial of (n-2i) degree, which for this case is
R .
]
equal to Xy This implies that Dl”l(s) of :Equation 3.9.9 can be written
‘ Z
as
' Xy xl-l
3121(5) = cxls“ + Cxl-ls F ocen +vcls + <, (3f9.10a)
while from Equation 2.8.5
. Xy x1-1
le(s) = axls + axl_ls + ,.,.+ a s + a, (3.9.10b)

Once the K, matrix is determined, the coefficients in a are

2 1,21

1
fixed. TFurther the coefficients in 9121(5) will be fixed once bm4—i,2
and Pyq 8re determined. Under these two conditions it can be seen that

1
only one coefficient of 2121(5) can be equated to a "like" coefficient

. ‘
of 312(5) and, in general

D1,1(8) #2,,(5)
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Therefore we shall equate only the "like"™ coefficients,»cx~ and a_ s

1 1
in Equation 3.9.10. :
From Equations 2.5.12 and 3.9.9 it can be shown.that
2i-1 : _
Cxl = pllbm+i,2 “ kj . (3.9.11)
j =
and so
2i-1
axl = pllbm4-i,2 ,l kj (3.9.12)
i=1

The element values in the synthesized network whichvyields_the

transfer admittance

2191(8)

Y121 © A

can be obtained from the following (n + 6) non-linear algebraic equa-

tions:

2i-1
“, = P11ty 1,2 [k . (3.9.13a)
j=1
'y2 3.9.13b
fO - gl(cl) _(" b 3 )
£ 'y2 | 3.9.13
=5, @.130)
oy
k, = C,L, |
: (3.9.13d)
° [
kK ,=0CL
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by = g1¢; N (3.9.13¢)
byy = Py ;.,(3.9.1§g)
1. (509.13h)

bati,2 = Pom+i

Using the set of equations in Equation 3.9.13d, it can be shown that

' ——k1k3 o e @« kzi-l

L, =
i k2k4 ees K

Cr' C (3.9.14)
2(i-1)%1 o

And from Equations 3.9.13b, e, and g it can be shownnthat “__ ‘

.(3.9.15)

Now using Equations 3.9.14 and 3.9.15 in Equations 3.9.13a and 3.9.13f

yields

C, = ‘5"" k1k3 ces kzi-—l . (3¢9'16)

]

Substituting this value of C1

into Equation 3.9.13 will yield all of the
unknowns in Equation 3.9.13. Then the synthesized network component
. o Ne2, e
values can be obtained by Ci = (Ci) § Li = (Li) » and Ri;*'l/gi°_
The above procedure yields
t .
y (S)—a——————lzl(S)-
121777 T TN



130

t ’ t
where 3 (s) only satisfies the a coefficient in 3,.(s). The other

121 Xy 12

. .
coefficients of 3121(5) will be determined from Equation 3.9.9. Most
H

likely these will not be equal to the desired coefficients of 312(5).
Therefore the next coefficient will have to be satisfied by placing
in parallel with the network just synthesized, another synthesized

network. that will yield a coefficient which is the differén;é between

a and c resulting from the first synthesized network. This
xl-l x1—1 : .

procedure will possibly have to be repeated until there are (x1 + 1)
synthesized networks in parallel, as will be shown in Secéions 3.11
and 3.12. It should be noted that each new synthesized network placed
in pafallel,will yield a transfer admittancé numer ator degfee that is
one less than the previous network, however all of the networks will
yiel& transfer admittance denominators that are identical.

The procedure above is also applicable to a 3;2(5) Whe;e one or
more of the coefficients are zero. When writing Equation 3,9.10b,
be sure and include the zero coefficients as such and complete the
synthesis procedure as presented above.

Note that it is not necessary to write down the fundamental circuit
equations or the state-model in order to execute the synthesis proce-

dure. However, if desired, they can be obtained.

3.9.2 Gase II. The transfer admittance for Case II is given in
Equation 2.8.8 and the numerator degree is even with the denominator
degree being odd. The qetwork and the fundamental circuit equations to
be used are given in Section 2.8.4. Since n is odd, the state-model to
be used is given in Eﬁuation 3.3.2. Because the fundaméntal circuit

equations for this case differ from those in Case IL - Special only in
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submatrices By and B21, the results in Equations 3.4.4 and 3.4.6 will

apply to this case and are

1.2 .

f0 = g1(01) (3.2.17a)
1.2

fn ~‘g2(Cm) (3.9.17b)
Pt
ky =G4y

. (3.9.17¢)
° [
kn--1 = Cer

From Equation Z.8.10, B,, = 0. Then from Equation 3.%4.2d it follows

that

e
o
(]
(]

11 12
. . =|° : (3.9.18)
© < o ©

) 60

> . b,
myl m,2

Considering Equation 3.4.2e with the B,, of Eguation 2.8.10 yields

21
- _ - - -
b . b L
m+ 1,3 m+1,2 le G
o @ < ©
° £ ] (-3
(] G o Uﬁ
b b . 1= 0 L, (3.9.1%2)
wmd i, m41,2 i
L] o [ L3
o L -] o
@ @ ) @
. .
b . b 0 ¢
| wmtr,l m+r,2
and this matrix equation implies that b and b . are the onl
- * =d pLles m+1,1 m+ 1,2 b

non-zero elements and are equal to

]
-Ly (3.9.19b)

bm+1,1z



t

Pnt+i,2 = Ly

Equations 3.4.2d, 3.4.2f, and 3.9.18 imply that

P11 *** Pim
p21 oo e pz’m

=0

Equation 3.4.2e with Equation 3.4.2g implies that

P+ 1,1 = Pim+1

Pnti,2 = Po,m+i

132

(3.9.19¢)

(3.9.20)

(3.9.213a)

(3.9.21b)

Now following a procedure similar to that in Section 3.4, @ and f can

be written as

T 0 S0 ]
L 0.

m+ 1,1 0

“ = . .
0 m41i,2

|
o= 0 ... 0 Ipl,m4-1 “os 0
- l . e 9 e
0_00. OI 0 p2,m+i

(3.9.22)

(3.9.23)

Substituting the entries of §§ and £ from Equations 3.9.22 and 3.9.23

into Equation 3.3.9 yields
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3121(5) (3.9.24)

= P1m+1%2,2i%041,2
where

1.5521:5 r+1
and from Equation 2.8.9a

2i =n - x, + 1

2
&y o4 has been determined in Equation 2.5.12. It can be shown that the
s .
3y o3 element is a polynomial of (n - 2i + 1) degree, which for this
b

!
case, is equal to Xoe This implies that 9121(5) of Equation 3.9.24

can be written as

. x2 x2-1
3121(5) =c s +ec s +oees +cys + o5 (3.9.25a)
2 2
while from Equation 2.8.8
¢ X2 x2-1
312(5) == axqs + aszls 4+ eee + a;s + a (3.9.25b)

“t

Again as in Bectiom 3.%.1 only one set of "like"™ coefficients

in Equations 3.9.25a and b can be equated. As before the coefficients

b
PN

e

of the s 7 terms shall be equated.
From equations 2.5.12 and 3.9.24 it can be shown that
CXZ = Pi,mﬁ-lbmﬁ-i,zg i=1 (3.9.26a)
and
2i-1
¢ =7p b , o k...
x, 1,m+ 1 m+1,2 IV il 1>2 (3.9.26b)
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Note that when i = 1, there is no kj term in the . expression. As
2
shown in Equation 2.8.9a, X, =1 = 1 and therefore only the diagonal

terms of Equation 2.5.12 are considered. It cam be seen the coeffi-
*2
cients of the s © terms in the diagomal entries are equal to one. Thus

no kj terms.

Since a_ 1is being equated to c_ , then
*2 *2

axz - p1,m+1bm+i,2; i =1 , (3-9.27&)
and
2i-1
ax2 - pi,mﬂ-lbm4-i,2 ] ’j 3 122 (3.9.27b)
j=2

The element values in the synthesized network which yields the
¥
polynomial, 21°1<S)’ can be obtained from the following (n + 6) non-

linear algebraic equations:

axz = p1,111+ lbm+ i,Z; i=1

\ (3.9-28&)

) -5 ’—1: » 9
ﬁXz l13m4~1bm4-i,2 /) (j -

T

fo = gl(Cl) (3.9.28b)
= )2 9.28

fn —~g2(Cm) (3.9.28c)

T

kl = ClLl
. (3.9.28d)

* t

k = 'L
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Pt 1,1~ -Ly (3.9.28e)
Pt i,2 = L; ©(3.9.28f)
bat+1,1 = Pi,m+1 (3.9.238)
bm+—i,2 = Pym+i (3.9.28h)

Using the set of equations in Equation 3.9.13d, it can be shown that

k.k, ¢eo k
7 i -
L, = —2 21-1 (3.9.29)
k2k4 ces k2(i-1)cl

and
1 kl
L1 =— (3.9.30) -
C1
From Equations 3.9.28e, 3.9.28g, and 3,9.30
kl
Py a4l =T (3.9.31)
H] Cl

Now using Equations 3,9.28f, 3.9.29, and 3.9.31 with Equation 3.9.28a

when i > 2, it can be shown that

T 1.
— - - ‘2 - o "
Cl -(-dX2) k1k3 ceo kZi-l (3.9.32)

and using Equations 3.9.28e, 3.9.28f, and 3.9.28g with Equation 3.9.28a

when i = 1, it can be shown that

(3.9.33)
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1 )
or L

Substituting the value of C, 1

into EQuation 3.9.28 will
yield all pf the unknowns. Then the synthesized network component
vglues can be obtained by Ci = (C;)-z, Li = (L;)-Z, and Ri = 1/gi.
The above‘procedure yields
_j9121(5)

V121 7 A

T 1
where 9 (s) only satisfies the a coefficient in 3, (s). To satisfy
121 x2 12
1
the other coefficients of le(s), a procedure like that in Section

3.9.1 should be followed. This procedure is shown in the examples of

Sections 3.11 and 3.12.

3.9.3 Case III. The transfer admittance for Case III is given

in Equation 2.8.11 and the numerator degree is odd while the denomin-
ator degree is even. The network and the fundamental circuit equations
to be used are given in Section 2.8.,5. Since n is even, the state-
model to be used is given in Equation 3.7.1. Because the fundamental
circuit equations for this case differ from those in Case IV - Special
only in submatrices Bli and Bﬂl’ the results in Equations 3.7.7, 3.7.9,

2

and 3.7.11 will apply to this case and are

1.2
fo = gl(Cl) (3.9.34a)
] !
K1 = Cqly |
. (3.9.34b)
DO I |
1 o
K1 = Caly
L2 §
£ 0= lZ(Lr) (3.9.34¢)
From Equation 2.8.13 it is seen that the submatrices B g and B21

have the same entries as in Case II. This'implies that the following



equations will result

t
m+1,1 = -Ll
2
m+1i,2 i
— 0 0
i3 = bm+ 1,1 0
0 bm4—i,2

I
Ouooo:pl’m_l_lou- 0 .o e 0

o= X
| 0.0l o ver O

tt Pom+i

t
212103) = Pq 011%2,2iPa+41,2

. g x3—1
Dypq(8) =c s~ +c s + .o oy F e

3 *3

7 Hq 3
912(9) =a, s +a_. s 4+ ... + a,s + a,

ax,, = p1,m+ 1bm+ i,2; 1=1

2
or

2i-1
8y =P1,m+1bm+iv,2 IV 73 3122
v j=2

3

137

(3.9.35)

(3.9.36)

(3.9.37)

(3.9.38)

(3.9.39)

(3.9.40a)

(3.9.40b)

(3.9.413)

(3.9.41b)
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The element values in the synthesized network which yields the

. .
- polynomial, 3121(5), can be obtained from the followingv(n 4+ 6) non-

linear algebraic equations:

-
%, " Pl,m+ 1Pmgi,28 151
' (3.9.42a)
2i-1
ax3=p1,m+1bm+i,2 MR R
j=2
- Y2
£ = gl(Cl) (3.9.42b)
J
| S
kl = ClLl
. (3.9.42¢)
. * t o
kn-l = Cer
, -
£ rZ(Lr) (3.9.424)
i
' 4
bm4~i,2 = Li (3.9.42f)
(
bm+ 1,1 = Pl’m+1 (3.9.42g)
= (3.9.42h)

Pati,2 = Pomti

By comparing Equation 3.9.42 with Equation 3.9.28, it can be

seen that
o "k K 3.9.43
Cl"'(-aXS) 1 3 LA 2_1, l>2 ( . ° )
or
Ly =(a )% i=1 (3.9.44)
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1 i
4 or L, into Equationm 3.9.42 will yield

Substituting the value of C
' , LNEY) T.-2
all of the unknowns. Again Ci = (Ci) s Li = (Li) , R1 = 1/g1, and
R2 = r2.

This synthesis procedure satisfies only the coefficient, a -
: 4 3
For every other coefficient in the transfer admittance numerator that

is to be satisfied, other ladder networks will have to be synthesized

and placed in parallel as discussed in Section 3.9.1.

3.9.4 Case IV. For this case the transfer admittance is given in

Equation 2.8.14 and the numerator and denominator degrees are both even.
Also the network and fundamental circuit equations to be used are given
in Section 2.8.,6. Since n is even, the state-model to be used is given
in Equation 3.7.1. Because the fundamental circuit equations for this
case differ from those in GCase IV - Special only in Submatrix B21, the
results in Equations 3.7.7, 3.7.9, 3.7.11, and 3.7.13 will apply to

this case and are

8
fo = gl(Cl) (3.9.45a)
Kk t
1= Sk
. (3¢9.45b)
R T
kn-—l = CL L]f
£ =r,(L)? (3.9.45¢)
n 27
1
b,y =86 (3.9.45d)
From Equation 2.8.16 it is seen that the submatrix B,, has the

21

same entries as in Gase I. This implies that the following equations

will result
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mei2 =L (3.9.46)
v 0 T
oo
s=| © ° (3.9.47)
6 m+.i,2
o o

Pyq voe 0:0... 0 eee O
P nl v “ (3.9.48)
O e \)'G R pz,l’n-’—i.'. §] .
) b 4
3121(5) == pllal,Zi m+i,2 (3.9.48)
. xy x4-1
2121(5) =c, s + c, .15 4+ eee + cys + <, (3.9.49a)
4 4
] ;{4 x4-1
,212(5) =a, s + a 4% + eos +ays + a_ (3:.9.49b)
4 4
and '
2i-1
ax4=p11bm+i’2 Tk (3.9.50)
j=1

The (n + 6) non-~linear algebraic equations used to determine the

network componént values are

',—l k (3.9.51a)
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£ =g,(C)) (3.9.51b)
t 1
kl =_C1L1
. (3.9.51¢)
° [ ]
kn—1'= Cer
£ o= (L) (3.9.51d)
2r . J o
1
by =8,C (3.9.51e)
t
wii,2 = (3.9.51f)
by = -Pyyq (3.9.51g)
(3.9.51h)

bm+iJ:=me+i ¢

By comparing Equation 3.9.51 with Equation 3.9.13, it can be seen

that

[N

(3.9.52)

¥
Substituting this value of Cy into Equation 3.9.51 will yield all

- o . _ -2 -2
of the unknowns. Again Ci —~(Ci) , Li = (Li) » Ry = l/gl, and R2 =I,.
This synthesis procedure satisfies only the coefficient, a - For
e 4
every other coefficient in the transfer admittance numerator that is

to be satisfies, other ladder networks will have to be synthesized and

placed in parallel as discussed in Section 3.9.1.

3.10 Synthesis Procedure Qutline. The synthesis procedures for

synthesizing Case I, Case 1I, Case 111, and Case IV short .circuit trans-
fer admittances are given in outline form in the following enumerated

steps.
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1. Take the proper function, ylz(s), and use the methods of Appegd-
ices B and C to obtain the matrix, K2, of either Equation
3.3.2 of 3.7.1 depending on n being odd or even.

2. 1f desired, the state-model can bé written using the K2 of
Step 1, and the § and P of the appropriate case in Sectien
3.9.

3. 1If desired, the fundamental circuit equations can be written
using the results of the appropriate case in Section 2.8,

4.  Draw the ladder network that will result using the appropriate
case in Section 2.8.

5. Use the explici; solutions of the appropriate set of (n + 6)
non-linear algebraic equations given for each case in Section
3.9.

6. Obtain the network component values from:

(a.) Ci = (C;)—Z; l<i<mand Li = (L;)-Z; 1.5 is r for
Cases 1, II, I1II, and IV. |
(b.) R, = 1/gi for Case I and II.

(c.) R1 = 1/g1 and R, = for Cases III and 1V. .

r
2 2
7. 1f there is more than one coefficient in the numerator to

be satisfied, return to Step 2 and continue through the other

steps as presented in Section 3.9.1.

3.11 Example of Case 1 Synthesis. Consider the Case I short

circuit transfer admittance of

a,s + a,
Y1,(8) =—3 (3.11.1)

2
s + bzs + bls + bo
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where a4 and a, are arbitrary real coefficients, the numerator degree
is one, and the denominator degree is three.
We shall synthesize ylz(s) in two stages. 1In the first stage, a

network will be obtained which has the transfer admittance of

t
als + ao
(3.11.2)

?
Vi,(8) =
12 $3 4+ b252 +Dbys 4 b

' -
where a, will be accepted as generated from the synthesis procedure.
In the second stage, a network will be obtained which has the transfer

admittance of

t ao - ao
Y1,(8) =3 5 (3.11.3)

ST + bzs + bls + bo

Whather a positive or negative constant results in the numerator of

v
Equation 3.11.3 depends on whether a, is greater than or less than age
These two networks will be paralleled using an isolation transformer,
if necessary, [See Weinberg (33)] to obtain the desired transfer ad-

mittance of Equation 3.11.1.

The particular transfer admittance to be synthesized is

(3.11.4)

v, (s) = -2s5 = 12
J08%7 =73 2
s” + 587 + 17s + 25

Using the material of Section 2.8.3 and Equation 3.11.4
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and the synthesized network is shown in Figure 3.11.1 with the funda-

1
Figure 3.11.1 Network for ylz(s)

mental circuit equations in symbolic form as

i R
B11 B12 0 |U 0 Va
3 B I ==
521 By 323 l0 U Vbc 4] (3.11.5a)
br
cr
| Ver ]

which can be written as
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. . = (3.11.5b)

v
Bt

Using the material of Section 3.9.1 and the results above yield

11
g= 9.9, (3.11.6)
0 b,,
" | -
Pqiq 0! O
P - O O : = (3.11'7)
| ¥23

Using the K, matrix of Section 3.6 and Equations 3.11.6 and 3.11.7,

2

1
the state~-model for ylz(s) will be

s 1 T P ar s 1 r .=
v -1 0 2}}v b G v
be be 11 a
[ 1 . 1 1 a‘rl
vbc 0 -4 1-3 vbc 0 0 Va
d 2 | 2 2
Ao S N I O e .11.8
dt [ 7 = : ; + (3 a)
i -2 3 0 i 0 b
cd I cl 32
ST N oJdL L L ..J
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13 | t *
i P 01 O V. r 0 v
:1 - 11 : ?Cl + 11 721
i 0 0 |p23 vbC 0 r22 va (3.11.8b)
2 i 2 “2
- - = :
. 1
i

Using the above results, the 9 non-linear equations of Equation

3.9.13 can be written as

-2 = py41b3,(2)

2
12
'] L
2 =qL,
L 4
3 =,L, (3.11.9)
1
by =810
by =1y
biy =-Pyy
D3y = Pog

Now their solution can be obtained by using Equation 3.9.16

. %
S '“‘[':'E] (2)

c;= N2
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and the network component values are

C, = % farad

1 2

02 = 2/9 farad

L, = % henry (3.11.10)
Rl = 2 ohms

R2 = 9/8 ohms

with state-model element values of

1
bi1=—0=
N2
byp = V2
) (3.11.11)
p23 = Mz-

From Equation 3.9.9, a,, is the element in Equation 3.3.8 that will

12

1
be synthesized in Dlz(s) by this network. From Equation 2.5.12, a12 is

asaq

13
a1, —»-E; (s%-fB) (3.11.123)
ag, = 2(s+ 4) (3.11.12b)
From the above, '
! -2s - 8 »
s + 58 + 17s + 25
and then from Equations 3.11.2, 3.11.3, and 3.11.13
" -ly
Yq0(8) =—3 (3.11.14)

s” + 532 + 17s + 25
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20) th 9/8Q)
[ —AA—8 Y Y\ ® ®
,  —
st 2/9f
° ' > D e 4 )
40 1h . 9/4 0y

L LT
| L

Figure 3.11.2 Synthesis of Case 1 y12(s)

Since the synthesis of yzz(s) is the same as the example of Section
3.6, it will not be repeated here. . The network that was synthesized
from ylz(s) is shown in Figure 3.11.2.

It should be pointed ocut that if the resulting constant in the
numerator of yiz(s) would have been less than -12, ygz(s)'would need
a positive constant in its numerator. This would be accomplighed by
synthesizing Y:Z(S) with a ﬁegative numerator constant and then placing
a 1:~1 transformer at one end of the synthesized network.

If the constant term in the numerator of Equation 3.11.4 would
have been zerc instead of -12, the synthesis procedure would have been
the same as shown above. Equation 3.11.14 wouldbhave had -8 as the
constant in the numerator and a 1:-1 ﬁransformer would bé needed.

It is worthwhile to point out that the synthesis procedure can

be completed without writing down the state-model and the fundamental
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circuit equations. This approach will be used in the next example.

3.12 Synthesis Example of qu(s) with Cases III and IV. Consider
- L

the short circuit transfer admittance of

3 2
« 257 = 587 « 35 - 9

s + 253 ¥>1052 + 10s + 17

As in Section 3.11, the synthesis of this transfer admittance will be
done in four stages corresponding to the four coefficients in the ylz(s)

numerator. This will be done by first synthesizing'each of the transfer

admittances:
1 I ¥ 1
. a3s? + a252 + als + ao
s + 2s” + 10s” + 10s + 17 B
1" 2 " "
" azs + als + ao
Y1,(8) =3 3 5 (3.12.2b)
s <+ 2s” 4+ 10s” + 10s + 17
3 ais + az
' s + 2s” 4+ 10s” + 10s + 17
4
4 %o
s + 287 + 105 + 10s' + 17
where
v
-2 = 33 (3-12-28)
i 14]
-5 = a, + a, (3.12.2£)
¥ " 3
-3 = ay + ay + aj (3.12.2¢)

9 = ' + + 3 + 4 (3.12.2h)
-9 =a +a +a +a .12,
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These transfer admittances will then be put in parallel with trans-
formers added if necessary.
t
First y12(s) is to be synthesized. This is a GCase III transfer

admittance; therefore the material of -Section 2.8.5 is applicable and

yields
n=4
x3 = 3
i=1 (3.12.3)
m= 2
r=2

and the synthesized network is shown in Figure 3.12.1.

1
L1 L2
—TL Y M Y L,
Cq
=
c, gkz
%
v

.
Figure 3.12.1 Network for y12(s)

Since the denominator of Equation 3.12.2 is identical to that of

the example transfer admittance of Section 3.8, the K

2 matrix of Equa-
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tion 3.8.2 will also be used here and is

-1 0] 2 0
K, = | 0 _0_{:1, 2 (3.12.4)
2 1,0 0 ~
0-2, 0 -1

Using the above results, the 10 non-linear equations of Equation

3.9.42 can be written as

-2 = Py3P3
'.2
1 =g,(C))
H
2 = ClLl
1 ¥
=Gk
gt
2 = CZLZ
(3.12.5)
1 )2
7
b3y = -1y
B3y = Iy
b3y = Py3
b3z = Pp3
Now their solution can be obtained by using Equation 3.9.44
t 1
Ll = [‘(“2)]2
(3.12.6)

1
L, = N2
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and the network component values are
¢, = % farad
02 = 2 farads
L1 = % henry
L2 = 1/8 henry (3.12.7)
Ry =2 ohms
R2 = 1/8 ohm
From Equation 3.9.39
g o
2121¢8) = P3359P3,
and Equation 2.5.12 yields
.3 2
322 = 5" + 28" + 58 + 4
and this resulis in
3 2
[ = o o -
y12(5>_= 2s 4s 10s - § (3.12.8)

Upon comparing Equation 3.12.8 with

clents can be obtained gnd are

7 2 .
s¥ 4 287 + 1082 & 10s + 17

7
Equation 3.12.2a, the a; coeffi-

b
By = -2
g
a, = s
I
a, = =10
ki
a = =8
0

144 .
Now from Equations 3.12.2b and £ and the above results, ylz(s) can be

written as
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2 141 12
- 5 <+ als + aO

2

141
ylz(s) =7 (3.12.9)
S

+ 255 + 10s% + 10s + 17

This is a Case IV transfer admittance, therefore the material of Section

2.8.5 1s applicable and yields

n=4
x4 = 2

i=1 (3.12.10)
m o= 2

r o= 2

The synthesized network is shown in Figure 3.12.2.

1 1 2
VAVAAVS £Y 7\ (YY)
bi 02 R2
o+
v
aq

L3
Figure 3.12.2 WNetwork for yiz(s)

It is not necessary, but for ease of computation, use the same K

2

matrix of Equation 3.12.4 with the above results and then the 10 non-

linear equations of Equation 3.%2.51 cam be written as



o2
]
2 =c¢,lL
1 1 8
= Cyly
[
2 =G,L,
1.2
= rz(Lz)
v
11 = 8194
T
by =1y
11 = "P11
b3y = Py

Their sclution can be obtained by using Equation 3.9.52

1
2
' -1
¢ = [‘ZT:I (2)
)
¢, = 2
and the network component values are
-Gy =% farad
C2 = 1 farad
L1 = 1 henry
L2 = % henry
R, = 4 ohms
R, = % olm

154

(3.12.11)

(3.12.12)

(3.12.13)
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From Equation 3.9.48
]
2121(8) = P1q315P3,

and Equation 2.5.12 yields

2
8y, = 2(s"+s+4)
and this results in
2
" _ = 8 = 8 =~ &4

s’ 4+ 287 + 10s° + 10s + 17

2] . .
Upon comparing Equation 3.12.14 with Equation 3.12.2b, the a; coef-

ficients are

a2 1
11

a4 1
Y

a = =4
o

. , n in s 3
Now from Eguations 3.12.2c¢c and g and the above results, ylz(s) can be
written as

8s + ai
(3.12.15)

71(s) =
74 - 4

2 ' 4 250 + 1082 + 10s + 17
This is & Case III transfer admittance with a 1l:-1 transformer added
after the synthesis procedure is completed. Therefore the material of

Section 2.8.5 is applicable and yields
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n=4
x3 = 1

i=2 (3.12.16)
m = 2

r= 2

The synthesized network that will yield negative coefficients is shown

in Figure 3.12.3.

Again, for ease of computation, use the same K, matrix of Equation

2

3.12.4 with the above results and then the 10 non-linear equations of

1
AWAA-
Ly !
\ N ~
Gy
— |
c, § R,
*
v
2

Figure 3.12.3 Network for yizl(s)

Equation 3.9.42 can be written as
"8 = P3Py (2)

"2
1 =g,(Cp
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(3.12.17)

Now their solution can be obtained by using Equation 3.9.43

¢, = [-(-8T &)
(3.12.18)
c, = N3

and the network component values are

C, =% farad

2 farads

O
i

Ly = % henry (3.12.19)

L2 = 1/8 henry

R1 = 2 ohms

R2 = 1/8 ohm

It should be noted that it was just a coincidence that these are the

1
same network component values as those for ylz(s).
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From Equation 3.9,39
L]
2121(8) = P1335,04,
and Equation 2.5.12 yields

aoy = 2(s+ 1)

and this results in

- 8 - 8

3 ()
yI,.(s) =
121 s% 4 267 + 1082 + 10s + 17

but by placing a 1:~-1 transformer at either port, the following transfer

admittance results

3 - 8s + 8
Y1p(8) =3 3 (3.12.20)

s* + 267 + 1082 + 10s + 17

Upon comparing Equation 3,12.20 with Equation 3.12.2¢, the ai coeffi~

clents are

= &

O W= W

a’ = 8
Now from Equations. 3,12.2d and h and the above results, yiz(s) can be

written as

A =5
Yi,(8) =% 3 (3.12.21)

s% 4+ 287 + 1082 + 10s + 17

Since this is the same transfer admittance as that synthesized in Sec~
tion 3.8, only the network and component values are given in Figure
3.12.4, 1f the paralleling of these four synthesized transfer admit-

tances satisfies the validity test then
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2 o Bt b
t‘
Vo & | ziff,
") r”; H
Bk Mo
40 | K
a—
>——9
o WL % £ Ko
%JCT I%:“ |

Figure 3.12.5 Network for ylz(s)
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715(5) = 71,08 + ¥3,(5) + ¥a,(5) + y7,(s)

The resultant network is shown in Figyre 3.12.5 and the synthesis pro-

cedure is complete.

16/5QL 4/5h 1/5h 1/50
W@ VY gl Y YA WA
+ i+
To/16f iES/éf

Figure 3.12.4 Network for y?z(s)

3.13 Unified Element Value Synthesis, 1In the previous sections,

transfer admittance synthesis is obtained by paralleling seveéal ladder
networks. The first ladder network satisfies the first coefficient in
the transfer admittance numerator. The first and secoﬁd ladder networks
satisfy the second coefficient and the rest are satisfied in a like
manner. Further the characteristic equations of each of these ladder
networks are identical. In Section 2.8 we observed that a transfer
admittancg with a numerator polynomial of given degree can be achieved
by inserting two drivers at specified locationmns in the synﬁhesized net-
work of the characteristic polynomial. This implies that if we are not
interested in the magnituae of the first coefficient in the numerator of

the resulting transfer admittance, then by proper insertion. of the
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drivers into any synthesized network of the characteristic polynomial we
can always realize a given transfer admittance which has a desired num-
erator degree., The fi;st coefficient. of the numerator can be altered to
a desired value by connecting a two-port transformer with the proper
turns ratio.

This idea can be implemented into the general synthesis procedure
by modifying one equation and adding one equation to the (n+46) non-
linear algebraic equations that are used to obtain the network component
values. This can be shown by considering the Case I11-development of
Section 3.9.

If a n,:n

1 transformer is placed on the output port of the Case III

2

ladder network, Equation 3.9.39 becomes

¢ ne
3121(5) = E; pl,up+1a2,21bmm+i,2‘ (3.13.1)
This will change Equation 3.9.41 to
!
aXS =‘;; pl,mi—lbmﬁ—i,Z (3.13.2a)
n, 2i.1
L cmemas ~— k 3
ax3 n2 Pi’m_l_ 1bm+i,2 ll j (301Jo2b)
i=1

and this places the added unknown, nl/nz, into the set of equations.

Next another equation must be added. A possibility which is chosen for

]

'
ease of computation is C1 =1 or L1 = 1. Now a solution to the modified

set of equations of Equation 3.9.42 is available. If this modification

is done to the synthesis procedure for each ladder and the same equation
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is added each time, then *"like" components for each ladder will have
identical valﬁes.

| This will be illustrated by synthesizing the transfer admittance of
Equation 3.12.1 using the procedure just presented. In each case, Fhe‘
added equation will be C; = 1 and the unknown, ni/nz, will be found from
Equation 3.13.2. It is understood that the selection of ny (or n2) is
arbitrary. Using the procedure above results in the synthesized network
of Figure 3.13.1. A similar approach can be uéed with the other three
cases.

It would appear that this idea could have an application in fabri-

cating transfer functions with integrated circuit chips.

3.14 Synthesis with a Modified K -Matrix. It would appear that a
A
general synthesis procedure would result from a Similarity transform-

ation on the K2~matrix that would interchange the role of the capacitor

voltages and the inductor currents of the state-model, ' However it does
not and this is shown by the following presentation.

Perlis (28) has shown that two similar matrices exhibit the same

f

characteristic polynomial. Consider the two matrices, K2 and K2, which

are related by the similarity transformation, P, such that

v -1
K, = P7K,P (3.14.1)

where K2 is given in Equations 2.5.8a and 2.5.9a and is given here in

symbolic form for ready reference.

T
-K,, K

K, = Kll 2 (3.14.2)
Tt12 Th22
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Figure 3.13.1 Unified Network for y12(s)
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The above mentioned interchange of roles can be achieved with a

K2 of

K2 %19
Ky=| T . (3.14.3)
\.12 "L\.ll

which can be obtained with a similarity transformation of

P = , (3.14.4)

where the Ui's are unit matrices.

It can be seen that if the K; of Equation 3.14.3 were used in
Equation 3.3.2a, there would be r capacitor voltages and m inductor
currents. Another way to reflect this transformation and still be

able to use the previous material is to write Equation 3.3.1 as

I
g 34 Lo Bo3RpBaake : c 227b Icz
-&-g 5% fe e e m e e e m o ; --------
" iom 1 1 1 ¢
=Fnl =% e %nT np o2 |1+
Vbe Cp Baobe” O P128P12% || Vbe
-% *
-L B21 [&%]
S
-5 T
“Cp B128:B11
(3.14,5a)
30 I I QNP I -% y T *
[I%] = ['Bz1Lc 1B118cP10% " | Teg [ P115P11 | Va
: |
v

be (3.14.5b)



The fundamental circuit equations for this state-model are

0 Y 0

12 |
Byp By Bpy | 00

B11 B

W

-

vbc
vbr

cr

| Vet ]

Figure 3.14.1 Ladder Network for n odd

W§ o1 o

-1

Figure 3.14.2 Ladder Network for n even
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(3.14.6)

Following a procedure similar to Section 2.7 and realizing the ladder

networks of the characteristic polynomial that is placed in the state-
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model form shown above, results in the ladder networks shown in Figure
3.14.1 and Figure 3.14.2. As in Section 2.8, the drivers can be in-
serted into these networks to obtain the transfer admittances. However
it can be shown that it is impossible to obtain a transfer admittance
with a numerator degrece of one for the ladder network of Figure 3.14.1.

This implies that we will not obtain a general synthesis procedure

using the KZ matrix, However special cases are possible and these

need further investigation.

It is interesting to note that the ladder network corresponding
3

to the even order K, matrix, will yield the same synthesis procedure

rA

as presented in the previous sections.

3.15 One Resistor Ladder Networks. Investigation of ladder net-

works with one resistor was made to see if these could be used in a
general synthesis procedure. It was found that they will not yield
a general procedure as is shown.

Following a procedure similar to Section 2.7 and realizing the
ladder networks of the chavacterdstic polynomial as done by Yarlagadda

{34}, results in the ladder networks shown in Figure 3.15.1 and Figure

3.15.2.
L L. L
1 2 r
, I
“15 Cl Cz C3 Icm-l T “nn

Figure 3.15.1 Ladder Network for n odd
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Figure 3.15.2 Ladder Network for n even

It can be shown that it is impossible to obtain a transfer admit-
tance with a constant in the numerator for the ladder network of Figure
3.15,1., However it is possible while using these one resistor ladder
networks to obtain transfer admittances with other coefficients in the
numerator which may be used in conjunction with the two resistor ladder
networks.

Since one resistor ladder networks do not give a general synthesis
procedure for transfer admittances and they are a special case of the
general case (Special Case of the two resistor ladder networks), there

will be no further discussion concerning them.

3.16 Special Case - LG Transfer Function Synthesis. Previously

we have restricted the synthesis procedure to transfer gdmittance
functions that have strictly Hurwitz characteristic polynomials.
Here we shall consider transfer admittance functioms with characteristic
polynomials which have roots on the imaginary axis.

Given a transfer admittance function with a Hurwitz polynomial

such as

¥15(8) =—-——g§§; (3.16.1)
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It is possible to factor the denominator into two components. One
that is strictly Hurwitz, Dl(s), and one that has roots only on the

imaginary axis, D,(s). Then Equation 3,16.1 can be written
ginary 5 q

Nl(s) NZ(S)
yip(8) = D, (5) + 5_(s)

(3.16.2a)

Y1(8) =¥154(8) +y,,,(s) - (3.16.2b)

Now ylzl(s) can be synthesized by the procedures presented previously.
The y122(s) characteristic polynomial realization will be handled in
the manner that Yarlagadda (34) has presented with the drivefs being
inéerted to obtain the transmission zeros according to the ideas of
Appendix D;

Now to complete the synthesis of ylz(s), parallel the networks

obtained for y121(5> and ylzq(s)o



CHAPTER IV
SYNTHESIS OF THE OPEN CIRCUIT TRANSFER IMPEDANCE, le(s)

4,1 Introduction. This chapter will briefly present the state-

space approach to the synthesis of the open circuit transfer impedance,
zlz(s), using the concepts presented in Chapters II and III1. The brev-
ity of this chapter results from the duality property existing between
the shoert circuit transfer admittance and the open circuit transfer

impedance (30). Therefore just the results will be presented with only

the duality property being given as justification.

4,2 Restrictions. The s-domain restrictions for the open circuit

transfer impedance will be the same as those given in Section 3.2.
The topological restrictions on the network to be synthesized from the

transfer impedance will be similar to those given in Section 3.2 and

are:

1. DBoth branch resistors and chord resistors will not be per-
mitted in the same fundamental cut-sets.

2. Circuits of capacitors will not be permitted.

3. Cut-sets of inductors with or without current drivers will
not be permitted.

4, The network driver configuration must be that of Figure 2.4.2.

4.3 State-Models. It is desirable to recall the state-model

developed in Section 2.4.2 and is given here for ready reference.
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t -5 T -% % T .} ' -5 T o
4 2 P 2 2
o | Toe| L% PuabePu® 1 % Pt be % P31 [I;I
o— == - T T T - =" I -------- + -------
& | R I S
) Lo BaC R BaRBogke || Tes | [He B22®Pa2
(4.3.1a)
* L T -1 ' T *
= 21 E .3.
[&t] [é3lcb . B32Rszch:] Ve +'[B32RbB32:I[I;] (4.3.1b)
[ .
I,

The fundamental circuit equationms for this state-model are

1 — —
Byg O :U 0011V
Boy By (O U OV,
| =
Byy By, 100U (=0 (4.3.2)
cr
cl
v
-t‘_

To utilize the presentation in the previous chapters and by use of
the duality principle, we shall write the state-model in the following

form

' T - -
2 2 2
o | Ter || e PaafhPate | The Ban% ch
A B B jo T, T T T
de 1 y! %557 1-% -%,T I
Ve C,"By1ke I-C"3116311% " || Vbe
% T *
| “he P22%032 [It]
1
-% T
Cp B34

(4.3.3a)
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|
o T _-%1 -% t T «
[Vt:l ~|:B32RbBZZLC i B31Cb:| I, +[}332Rb}332] [It:l (4.3.3b)
1

Vbc
and written in symbolic form as
d x=x - » 4.3.4
* *
V. =P X+RI, (4.3.4b)

When the open circuit transfer impedance denominator is of odd degree,

then

l
|
l
!
|
I
[
K, =k oo - - B o-1 (4.3.5)
l
!
1
l
1
s
l
|
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and when the denominator degree is even, then

- | ]
r fO l kl
0 ]—kz‘ k3
. | . .
i | ® .
[ ] l @ -]
0] -k k
K2 e 4 -------- 9"2 _n:l_ (4.3.6)
-k1 k2 p 0 .
k. ® ]
3 . ' ®
* . ] °
®
° n~2! 0
B mkn-ll -fh |

4.4 Realization of Characteristic Polynomial. Using a procedure

similar to that in Section 2.7 with the state-model of Equation 4.3,3a

without the driver and written as

I
Ll (4.4.1)

it is possible to synthesize a network that exhibits the characteristic

polynomial that is obtained when the K, matrices of Equations 4.3.5 and

2
4,3.,6 are substituted into Eguation 4.3.7. These synthesized networks
are shown in Figures 4.4.1 and 4.4.2. As should be expected, these
networks are the duals of those shown in Figures 2.7.2 and 2.7.4.

As in Section 2.7 this procedure yields the following equations

when n is odd:
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L
£y =1Ly
't 2
. fn - r2(Lm)
1 ]
kl = Llcl (4.4,2)
]
ky = LGy
: [ |
k =L C
n-1 mr

and as in Equation 2.7.19, a solution to this set of equatioms is ob-

tained when one of the unknowns is assigned an arbitrary value, such as

Ly = 1 (4.4.3)

The remaining unknowns in the set of equations of Equation 4.4.2 can be

solved in a manner similar to that of Section 2.7, The element values
. ‘o

of the network components are related to these unknowns by G, = (Ci) s

. . _
Li = (Li) s R1 = r, and R2 =I,.

L2 Lm—l
m I fw\ T c e @ AI fm - I m
R1§ C1 C2 Cr”1 Cr R2§

Figure 4.4.1 Polynomial Realization with n odd
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When the polynomial degree is even, the network of Figure 4.4.2

and the following set of non-linear equations result.

12

fo = rl(Ll)
1
k1 = Llcl

. (4.4.4)

¢ Tt

k =1, C
n-1 mr
.2

fn - gz(cr)

and as in Equation 2.7.32, a solution to this set of equations can be

obtained in a similar manner as above. Let
t
L1 =1 (4.4.5)

and the remaining variables of Equation 4.4.4 can then be determined.
The networl component values are related to these variables by

P t-2 e to-2 > I —
c; = (Ci) s Li = (Li) s Ry =14, and R2 = 1/g2.

]
B

. L,‘ Il
‘_J‘VY‘\_T.J’V’Y\_T . o . _I Y™ YN I
€y €y Crot |

>
Rlé

Figure 4.4,2 Polynomial Realization with n even
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4.5 Synthesis of zlﬁ(s). Since the presentation of the transfer
L .

impedance is based on the principle of duality with respect to the
transfer admittance, the transfer impedances are again classified into
six typeé. These classifications are for transfer impedances which
are proper functions. If the given 212(5) is an improper function, it
is assumed that the procedures of Section 2.6.2 are followed until a
resulting proper function is obtained. Further the denominator poly-
nomial of zlz(s) must be a strictly Hurwitz polynomial.

Now each of the classifications will be presented.

4,5.1 Gase I1 - Special. For this transfer impedance case, the

numerator is & constant and the denominator function is of odd degree
and 1s written as

a
[o]

z,.(8) = (4.5.1)
12 st + b sn-1 4+ see +b,s + Db
n-1 1 o)

where
\\

a, = positive constant

n = odd integer

Using the inforimation in Chapter III and the principle of duality,

we have the relationships:

m=r + 1
where
n = degree of characteristic polynomial
m = number of inductors

r = number of capacitors
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Figure 4.5.1 Case II - Special Realization of zlz(s)

Using the procedures of Ghapter II and III with Equation 4.5.1
results in the network of Figure 4.5.1 and the following set of non-

linear equations.

=
]
~
fuy
~
=
fuy
o’

=
i

e
O

" eo
-
-
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P11 = Py
bm’2 = pz’ru (4.5.2)
This set of equations has the solution of
L
2
! fofn
Ll = "'a';— (k1k3 s e kn-z) (405.3)

1 §
After the Ci’s and Li's are determined the component values still have

to be determined by

. ] _2
1 -2
Li = (Li) (4.5.4)
R, = r,
1 1

4.5.2 Case IV - Special. For this transfer impedance case, the

numerator is a constant and the denominator function is of even degree
and is written as

a

o]
12 sS+b ™l 4bs +b
n-1 1 o

(4.5.5)

where
a, = positive constant
n = even Integer

n=m-=+zxr
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Figure 4.5.2 Case IV - Special Realization of zlz(s)

Using the procedures of Chapters II and III with Equation 4.5.5
results in the network of Figure 4.5.2 and the following set of non-

linear equations.

n-1
8 = bm-{-r,2p11 I ki
i=1
.2
fo - rl(Ll)
[
kl = Llcl
k_ ]
2 = 16
oy
kn-2 = mer-l
]
k =1L¢GC
n-1 mr
V.2
1
by =1yl
1
~-C



byg =-Pyy

bm+r,2 = p2,m+r

This set of equations has the solution of

1 fo
L, = I (kjky oee k)
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(4.5.6)

(4.5.7)

() V.2
where c; = (Ci) s Li = (Li) s Ry = ?1, and R2 = 1/g2.

4,5.3 Case I. For this transfer impedance case, the numerator

and denominator polynomials are both of odd degree. This transfer

impedance 1s written as

x1 x1-1
a_s + a s + oo + a,s4+ a
Xy x1-1 1 " o
z,.(8) = (4.5.8)
12 n n-1
s +b _18 + ees + bls + bo
where
a; = positive constant; 1 =0, 1, ..., Xy
X, = odd integer

n = odd integer
n=m--4+r
m=1r + 1

H—Xl
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Figure 4.5.3 Case I Realization of zlz(s)

Using the procedures of Chapters II and III with Equation 4.5.8
results in the network of Figure 4.5.3 and the following set of non-

linear equations.,

=
i
-

O

(4.5.9)

w
I
=

BO



This set of equations has the solution of

1.=-2 1.-2
where c; = (Ci) » Ly = (Li) , and R, =1,.
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(4.5.10)

4.5.4 Case 1I. This transfer impedance case has a numerator

polynomial of even degree and a denominator polynomial of odd degree

and is written as

Xy x2-1 :
a_s 4+ a s 4+ ¢oe +a,54+ a_
X x,-1 1 o
2. .(s) = 2 2
12 n n-1
s + bnnls + aes + bls + bo
where
a, = positive constant; i =0, 1, .., X,
S
x, = even integer
%, # 0

n = odd integerxr
n=m-4+7yx
m=1xr+1

n—xz 41

2

(4.5.11)

Using the procedures of Chapters II and III with Equation 4.5.11

results in the network of Figure 4.5.4 and the following set of non-

linear equations.
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ax2 = p1,m+ 1bm+ i,Z; i=1

2i-1
%, = Pl,m+ Pmti,2] )

ifs i>2

j=2
12
fo rl(Ll)
12
fn rZ(Lm)
t
k, =L,C, (4.5.12)
: 1t
k . =LC
n-1 mr
t
bot1,1 = "%
b 1
m+i,2 = 04
brt1,1 “Pimy1
R .
m+4+1i,2 2,m+1i
L L1

L

m
-* :
e, fuj C. Ry

Figure 4.5.4 Case II Realization of zlz(s)
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This set of equations has the solution of

t 1/2.

C, =(a_ )% i=1 (4.5.13a)
2

1
— -3 .
L, = (a ) k1k3 eee k

y 3 i>2 (4.5.13b)
) -

2
] 1.2
where Ci == (Ci) s Li = (Li) , and Ri = 1/gi.

4.5.5 GCase 111, This transfer impedance case has a numerator

polynomial of odd degree and a denominator polynomial of even degree

and is written as

X p g |
4 s 3 + a s 3 + <o + a,s+ a
Rq x3~1 1 o
z12(s) = = —7 (4.5.14)
s +b s + ... +b,s+Db
-1 1 e}
where
a; = positive constant; i =0, 1, ..., Xq

Xy = odd integer

n = eveun integer

n =i+ T
m = i
n-x, + 1
. 3
1 o=

Using the procedure of Chapters II and III with Equation 4.5.14
results in the network of Figure 4.5.5 and the following set of non-

linear equations.
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a i=1

%y = Pl,m+ 1Pmt 1,2

3

2i-1
a TT k. lsi=>2

X =p1,m+1bm+i,2 h| -

3 j=2

LG (4.5.15)

bm+i,2 - 1
bm+1,1 i
p1,m+1

bm+ 1,1

bti,2 " Pomti

Figure 4.5.5 Case III Realization of zlz(s)
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This set of equations has the solution of
B .

01 = (aX Y4, i=1 (4.5.16a)

i -k
- 5
L, = (ax ) “k

anok.
1 3.

(ks i3 122 (4.5.16b)

P .2 Po=2 _ _
where C; = (Ci) s Li = (Li) s R1 =TIy and R2 = 1/g2.

4.,5.6 Case IV, This transfer impedance case has numerator and

denominator polynomials which are both of even degree. This transfer

impedance is written as

X x,=-1
a s 4 + a s 4 + oo + a,s + a
X x4—1 1 o)
zlz(s) = = —7 (4.5.17)
s + Db s + .o +b,s+ Db
-1 1 o
where
a;, = positive constant; 1 = 0, 1, «.4, X
x, = even integer
X, # 0

n = even integer

n=m-4+rzx

Using the procedures of Chapter II and III with Equation 4.5.17
results in the network of Figure 4.5.6 and the following set of non-

linear equations.



a
x4

= P11b;n+i,2 155

2i-1
k.

i=1

= £, (L)

‘mn+i,2 T

]
-
[

| eee
=
(@]

p2,m4—i

186

(4.5.18)

Figure 4.5.6 Case 1V Reallzatlon of z1
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This set of equations has the solution of

[Led

L, = — k.k, «o0 k (4.5.19)

L) 1.2 _ . _
where c, = (Ci) , Li = <Li) » Ry = r,, and R2 = 1/g2.

4,6 Synthesis of a General Open Circuit Transfer Impedance.

Recall that for a general short circuit transfer admittance, the syn-
thesis procedure as presented in Section 3.9.1 satisfied, in general,
only one numerator coefficient of the transfer admittance per ladder
network. Also when paralleling these ladder networks, it was sometimes
found necessary to add a 1:1 tranéformer so that the validity test

would be satisfied. Or a 1l:-1 transformer was sometimes added to obtain
positive coefficients in the numerator polynomial.

The synthesis procedure for a general open circuit transfer imped-
ance will be very siwmilar to that for the transfer admittance. Each
resulting ladder network will, in general, satisfy only one numerator
coefficient ¢f the transfer impedance. If the numerator degree is
X then there will be a maximum of (xi + 1) ladder networks placed
in series to satisfy the numerator coefficients. When putting the
ladder networks in series, it will sometimes be necessary to add a 1:1
transformer so that the Validity.test will be satisfied. Sometimes
a l:-1 transformer will have to be added to obtain negative numerator
coefficientgo

A unified element value synthesis procedure for transfer impedances
is very similar to that for transfer admittances as presented in Section

3.13. This procedure for transfer impedances will not be presented
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here because it is so similar to that for transfer admittances. An
open circuit transfer impedance synthesis example will now be pre-

sented to illustrate the above procedures.

" 4,7 Synthesis Example of zlq(s). Consider the open circuit
A

transfer impedance of

253 + 552 4+ 3s + 9

z,,(8) =
12 s% + 287 + 1052 + 10s + 17

(4.7.1)

The four transfer impedances, whose ladder network will be placed in

series, are

§ 03 ? ?

"+ oa 2 + a s 4+ a

0 [=3
2, (8) = == = 2’ — (4.7.2a)
} 5 + 4 10s” 4+ 10s + 17
134 2 L 1] L K
o azs + als + ao
212(5) == 3 > (4.7.2b)
s 4+ 287 4+ 10s” + 10s + 17
~ ais + a3
3, . o
zqziﬁ) = -7 P 5 (4.7.2¢)
B s 4+ 287 + 108“ + 10s + 17
4
2y, (8) = = 2 (4.7.2d)
’ g 4+ 287 + 105 + 10s + 17
where
§
2 =a, (4.7.2¢e)
7 ¥
5=a, + a (4,7.28)
Z 2
o 4 1 21 3
3 = .d.l 4 dl + ayq (4»7025;)
¢ 1] 3 4 4 l
9 = a ta +a +a (4.7.2h)

So as to utilize the material of Section 3.12, a K2 matrix for

the denominator polynomial will be determined as
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- -

- == (4.7.3)

This K2 matrix will be used in the synthesis of each ladder network of

this example.

|
Using the material of Section 4.5.5, realization of zlz(s) yields

the network of Figure 4.7.1 and

25> + 452 4+ 10s + 8
+ 10s + 17

?
z,.{s) = (4.7.4)
: 12 s4 + 253 + 1Os2

1
Figure 4.7.1 Network for zlz(s)

. on
Figure 4.7.2 Network for z12(s)
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1]
Using the material of Section 4.5.6 realization of 212(5) yields

the network of Figure 4.7.2 and

52 + s+ 4

z'l'z(s) = — (4.7.5)

s +-253 + 1052 + 10s + 17

b3

80 i

Figure 4.7.3 Network for z§21(s)

Since z?z(s)'must have a negative coefficient, the network of
Figure 4.7.3 is first realized. This yields positive coefficients
and is labeled zi21(s). When this ladder network is placed in series
_with the others, a l:-1 transformer will be added at one of its ports.

When this transformer is added to the network of Figure 4.7.3, its

transfer impedance will be

23, (8) = —p——p =228 (4.7.5)
s 4+ 2s” 4+ 10s” 4 10s 4+ 17

Now ziz(s) must be

(4.7.6)

sy = 5
12 s 4+ 2% 4 1082 4 10s + 17
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and this is realized using the material of Section 4.5.2 with the

network of Figure 4.7.4.

5/16h 5/4h

*
t
2
. 4
Figure 4.7.4 Network of zlz(s)
The network that synthesizes the transfer impedance of Equation

4,7.1 is given in Figure 4.7.5. The port connections that are shown

in this figure are necessary to satisfy the validity test.
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—
2 A Je
(0§ \e—
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Figure 4.7.5 Network of zlz(s)



CHAPTER V

SYNTHESIS OF THE VOLTAGE TRANSFER FUNCTION, T(s)

5.1 Introduction. This chapter will‘brigfly present the state-
space approach of the voltage transfef function, T(s), using the con-
cepts presented in Chapters II, III, and IV. The brevity of this
chapter results from the similarities between the voltage transfer
function and the transfer admittances and impedances. Therefore pri-
marily just the results will be presented with the property of similar-

ity being given as the justification.

5.2 Restrictions., The s-domain restrictions for the voltage

transfer function, T(s), ares

1. The degree of the numerator polynomial can not be greater
than the degree of the denominator (3). If the numerator
degres equals the demominator degree, see Section 2.6.3.

~

2. The coeificients of the numerator polynomial must be real

and finite.
3. The denominator polynomial must be a strictly Hurwitz poly-

nomial (32).

The topological restrictions on the network to be synthesized

.from the proper function, T(s), are:

193
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1. Both branch resistors and chord resistors will not be per-
mitted in the same fundamental circuits.

2. Circuits of capacitors with or without voltage drivers will
not be permitted,

3. Cut-sets of inductors with or without current drivers will not
be permitted.

4., The network driver configuration must be that of Figure 2.4.3.

]
5.3 State-Models, K_-Matrices, and 221(5). It is desirable to
recall the state-model developed in Section 2.4.3 to be used in the
state-space synthesis of the voltage transfer function. This state-

medel is given here for ready reference.

T | R b :
o
4 7% B1%P1% 1 % Bk | Ve
dt I e ;
1.7 2p % b 1" %p T . -%
¢ LZZCb | Lc j)23R‘0E‘23Lc Icz
=% T | i T *
2 2
LS P % P Va
_______ Ry
,% % T %
- |-
LeBar | ~he PasRpPas | fe
(5.3.1a)
* T o =51 _gT % - T | T *
ol [ Baa®B12% 1 Barke Yoo | [ P19l P || Va
P o e e = [ mmmmmmmmmmm l —————
* - T L ] T o
2 } ] 2
Ve B3oCp™ | BaoRuBaske || Ty Byr BasRpBas || e



The fundamental circuit equations for this state-model are

Byy By, O i voa|fv,

Ba1 Byp Bpz 1 O U 01V,

By Byy Byy 0 OV Vor
vcr
"

e S
Y =PX+RY

Following a procedure like that in Section 2.4.3 yields

2(s) =p (sU-K,)" 'R

2(s) = :
o

- /f.‘ r

4\ E .
21887 2y(
and as showo in Section 2.5

T(s) = 2,,(s)
2,,(8)

A

T(s) =

where

/\ = |sU-1<2|

and

2'(s) = p [adi(sU-K,)] @

s)
5)
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(5.3.2)

(5.3.3a)

(5.3.3b)

(5.3.4a)

(5.3.4b)

(5.3.5a)

(5.3.5b)

(5.3.5¢)

(5:3.54)
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(5.3.5e)

? 4
; 2.4,(8) 2,,(s)
2 (s) = }1 12

2,,(s) 2,,(s)

As in the previous chapter, 1f the voltage transfer function has

an odd denominator degree, then the K_ -matrix will be

2
— I a——
--fo : kl .
09. I "'kz . ® .
0 | . kn-2
nfn : —kn-l
Ky=f === ommew Do D2 (5.3.6a)
“ki kz :
o . ~ . I
. ]
-k | l
o 1’1=-2 n-1| .

2

When the denominator degree is even, then the K, -matrix will be

- |
mfo : kl
o l wkz ks
[ ' [ ] ®
@ i ® [ ]
e ' L] ®
g | -k k
N n-2_m-l (5.3.6b)
2 . |
-k, k, 0
£ Zu I o
@
=l ® I hd
3 o @ : .
. kn~2| 0
] 1] “En

Using these K _-matrices in the same manner as shown in Equations 3.3.8,

2
1
3.7.2, and 5.3,.5d yields the 221(5) of Equation 5.3.7 when the T(s)

denominator degree is odd and that of Equation 5.3.8 when the denom-

inator degree is even.



3;1(5) = (pyyay; ¥ Pppa3y  F P35y Feee ¥Pp o,y FPyoig8 Py teer Py gy by
+(Py131y  FPypsyy  FPp3dsy  Foees F Py Ao F Py nu1%;  FPyagogdhy  toeeed Pz,nan-1,zb o411
+ (Py1313  F P33z FPyydsy  teee By B g v Py 49803 v Py oy 083 heee F Py n3n 9.3 by
+(Pyya1s  F P33, Y Ppadsy tees By Al YRy L% FPrayo®ae teee Py g Puy o
+ (Pyqay5  + Pyyd35  +t Pp3dss b oeee + Ry a5 P2,m + 1%25 +Pym4 285  toeee Py g5 by
+ (Pyy8y o1 F Py23 oy FPo3d5 g oo F P 8 0 PPy o 122,01 PP m g 2% ner T Pz,na§-1,n-1)bm + 1,1
+ .2 b

(Pyy®1,n  *+Ppa33,n FPp35, FoeeeFtPyaan FPyni%n tPramgfan FereFPyaa 0 n MWnn

n = odd integer
n=m+r
n=T+ 1"

(5.3.7)

L6T



3;1(5) = (Pyyay;  +Ppp33;  FPpjdgy P b Py a0 FPyag18 FPamagg® Foeee Py 3, by
+(Pyya1y  + P33y FPp3ds; Fees F Py 8005 FPraga%;  FPraoagfhy  toeee v Py n3n5 P4
+(Pyya13  +Py833  tEpydsy  toeee Py ndn g3 bRy o183 PPy a4 0843 hoeee $P, 3,5 by
+(Pyyay,  *tPp33y  tPyydsy  teee v Py dn g4 tPrag1% FPrmagfas Feer F Py, gy o
+(Py1a15  +Pyya35  F Ppydss  F oo F PoPno1,5 T Pam41%25 T Pama2fs Yot TPy atns )by
+(Pp12y o1 FPo33, 01 F P33 gt oo F Py 30 1 00 + Po,m+ 122,01 T P2om 4+ 234 n-1 F =00 ¥ Py 3, 119001
+ + eoe 4 + eee +p, )

(p21a1,n + p22a3’n + P2335,n p2,111‘—‘n=-1,n + pZ,m + laz,n + p2,m + 2a1+,n ,nan,n bm + r,l

n = even integer
n=m+r
m=1r

(5.3.8)

Q6T
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Also using the above K, ,-matrices to obtain the realizations of the

2
characteristic polynomials of the voltageitransfef functions will result,
as before, in the networks of Figures 2.7.2 and 2.7.4. These then will
be the basic networks in which the drivers will be inserted in the

appropriate fashion as to yield the desired numerator and denominator

degrees in the voltage transfer function.

v

5.4 Synthesis of T(s). Since the presentation of the voltage

transfef function is so similar to that for the transfer admittance
and impedance, the same classification of the proper functioh§ to be
synthesized will be used here. It will not be necessary to consider
the Case I1 - Special T(s) since this case will be included in‘the
Case 11 T(s).

Now each of the classifications will be presented.

5.4.1 GCase IV - Special. For this transfer function case, the

numerator is a constant and the denominator function is of even degree

and is written as

a
o

T(s) = (5.&.1)

" n-1
n_.15 + aes + bls + bo

where

a, = positive constant

i

n even integer
n=m++r

m=r

A transfer function of the form in Equation 53.4.1 will result
if the network drivers are inserted into the network realizatiom of

the characteristic polynomial as shown in Figure 5.4.1 (See Appendix D).
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Figure 5.4.1 CGase IV - Special Realization of T(s)

This network yields the fundamental circuit equations of

-111 0...0 ol oj1! BIEA
S IV S e B T s
0[1»1 'OI '1 l —v-_
01 1 = :01: 1 1 be,
,,,l ® ° .l ° L]
| co oot " } :
o: ool o{, 1 vbcm
0, 111 | 1 - =|=0 (5.4.2)
B T L [
| 040 0 ..o 0 0f =1 | ]| P
v
crl
c£1
o7t
el 2—

which is written in symbolic form as shown in Equation 5.3.2.
Using these fundamental circuit equations, the state-model of

Equation 5.3.1 and the K_ -matrix of Equation 5.3.6b with the procedures

2

of Chapters II and III results in the set of equations given in Equation

3.7.5 which can be written as

'.2 ,
fo = gl(Cl) (5.4.53a)



-
I

o

=

1 171
: [
k -1 7 Ymr
1.2
fn = rz(Lr)
H
P11 =816
H
bmﬁ-r,Z rer
bi1 = -Pyy

bm+m22'@Lm+r
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(5.4.5b)

(5.4.5¢)

(5.4.5d)

(5.4.5e)

(5.4.5¢f)

(5.4.5g)

Using the non-zero bij and pkﬂ of Equation 5.4.5 in Equation 5.3.8 and

noting that n = m 4 r, we have

1
251(8) =p; n3, 4Pyy

From Equation 2.5.12

%n,1° "%1,n
and
n -1
-a = - T k.
i,n ,‘ J
i=1
From Equations 5.3.5b, 5:.4.1, and 5.4.6
n-1
8 5 - 2,nb11 I kj
j=1

(5.4.6)

(5.4.7a)

(5.4.7b)

(5.4.8)
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Using the procedures of Chapter III, it would appear that Equation

5.4.8 could again be used in the set of (n + 6) non-linear equations
that were solved to obtain the synthesized network component values.
This is not true as can be seen when Equations 5.4.5a and d are combined

to cobtain

f
b o= (5.4.9)
11 C“
1
and Equations 5.4.5 b, ¢, and e are manipulated to obtain
o~ 'f '
wAanﬁnmzkn~4 oo kzcl "
Pom+r = k. LK eoe K (5.4.10)
T n-1n-3 1
Then Equations 5.4.8, 5.4.,9, and 5.4.10 imply that
. 2 .2 2
g = £ £ k ceoa } b .
“o “o'n n=2 n-4 “2 (5.4.11)

acd in general this will be an inequality if a is specified.

The szolution teo this problem is to use a procedure like that of

Section 3.13. By placing a a3 transformer at either port of the

2

lder modifies Bguation 5.4.8 to

n-1
1.30 == N pzsnoll ,\ kj (504»12)
j=1
where
n
N =2
B

This introduces another unknown to the set of (n + 6) equations; there-

fore, arbitrarily add another equation such as
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g, =1 (5.4.13)

Now the remaining variables of the set of equations of Equation 5.4.5
can be determined and the network component values are related to these

. -2 L B B
variables by Ci = (Ci) s Li = (Li) , R1 = 1(g1, and R2 = I,.

5.4,2 Case 1. TFor this transfer function case, the numerator and

denominator degrees are both odd and the transfer function is written

X x1~1
a_ 8§ + a s + .o + 2,8 +a
X *p-1 vt
T(s) = - ) (5.4.14)
s + bimls + co. + bls + b0
where
aj = positive constant; j = 0, 1, <.., Xy
x, = odd integer
n = odd integer
n=m+ v
m=1x + 1
‘I_I::]‘;‘A_I
ng Cll. CZ Ci

Figure 5.4.2 Case I Realization of T(s)
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A transfer function of the form shown in Equation 5.4.14 will
result if the network drivers are inserted into the network realization
of the characteristic polynomial as shown in Figure 5.4.2 (See Appendix

D) where

i=—a— (5.4.15)

0}l 0... 0 OjOt1 | TV, T
010 0 «.. O 110: 11 : "
R N
0j1 -1 Fol 11 | be,
Sy 1 :o: : 1 | .
11 t o ° .. | -
9| e e Iel I ™ ' VbC
:, -1 1o I N |
1 |

R el N | BT
__0!0 Ooee O 1'0' I '1- Crl
VCI.'
2
-
chl
ch
-
e 2-—

which is written in sywbolic form as shown in Equation 5.3.2.
Using these fundamental circuit equations, the state-model of

Equation 5.3.1 and the K, -matrix of Equation 5.3.6a with the procedures

2

of Chapters II and III results in the set of equations given in Equation

3.4.2 which can be manipulated to yield
.2
f = gl(Cl) (5.4.17a)

£ =g,(c)° | (5.4.17b)



) 1t
Ky = ClLl
; : i1
“p-1 = Gl
1
m,2 m
1
bm+ i, 1 Ly
bm,Z = p2,m

b

m+i,1° Plm+1i
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(5.4.17¢)

(5.4.17d)
(5.4.17e)
(5.4.17€)

(5.4.17g)

Using the non-zero bij and pk£ of Equation 5.4.17 in Equation

5.3.7 yields

L]
3211<5)=C S T+ see +C15+Co

¢
2211(8) =Py

%

*

From Equation 2.5.12 it can be seen that

and this implies that

an,Zi = (-Da

2i,n

a b ,
s n,2i m+1i,1

(5.4.18a)

(5.4.18b)

(5.4.193)

(5.4.19b)

Using a procedure similar to that of Section 3.9.1 with Equations

2:5.12, 5.4.18, and 5.4.19 yields

C

X

1

=(Dpy ot

n=-21

n

j=1

k.
n-j]

(5.4.20)
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As for the Case IV - Special transfer function, if a, is equated to
1

the Cy of Equation 5.4.20, in general, there will result an inequality.
1

As in Section 5.4.1, the solution is to place a My iy transformer at

either port of the synthesized ladder amd this results in

n-21i
axl = ('1)N1P2,mbm4-i,1 I} "n-j (5.4.21)
i=1
where
n,
11
and with an arbitrary choice for an added equation of
gy =1 (5.4.22)

Now the remaining variables of the set of equations of Equation 5.4.17

can be determined and the network component values are related to these

“ q -2 -2
variables by Ci m‘(Ci) s Li = (Li) s and Ri = 1/Si°

5.4.3 GCase Il., ¥or this transfer function case, the numerator

degree 1s even and the denominator degree is odd with the transfer

function written as

X, xzml
a s ”© + a s + ¢es + a,8 4+ a
%, xzml 1 el
T{s) = = —7 (5.4.23)
s 4+ b s 4+ .o +b,s+ Db
ne1 1 o}
where
aj = positive constants; j = 0, 1, «c., X,
X, = odd integer including zero
n = odd integer
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n=m+r«r
m=r1r+ 1
A transfer function of the form shown in Eéuation 5.4.23 will
result if the network drivers are inserted into the network realization
of the characteristic polynomial as shown in Figure 5.4.3 (See Appendix

D) where

i = —— (5.4.24)

-141 0... 0 olol1 | NIEA

010 o,..,ouo{ 1! | 1

__________ I R | R 8

ol1 -1 | 0] | 1 .: "bc1

ol 1 jol 11 .

® : L ] cl ; N I :

° . . V.

,,’ « o |°| | . l bC

0 | -1 o0l O | P N

0! 1-110| ' 1 br |

S R S R TN N B B

010 ecee 1o 07 0 ! ,{J cry
VCI
| 2
chl
czm
ok
—2—

(5.4.25)

which is written in symbolic form as shown in Equation 5.3.2.
Using these fundamental circuit equations, the state-model of

Equation 5.3.1 and the K, -matrix of Equation 5.3.6a with the procedures

2

of Chapters II and III results in the set of equations given in Equation

3.4.2 which can be manipulated to yield
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1.2
fO = gl(Cl) (5.4.25a)
_ 2
fn = gz(Cm) . (5.4.25b)
t
1 =S4y
. (5.4.25¢)
A
kn-»l = Cer
]
b11 = g101 (5.4.25d)
)
bi’2 = Ci (5.4.25¢€)
b11 = -Pyq (5.4.25%)
bi’2 = pZ,i (5.4.25g)

Figure 5.4.3 GCase 11 Realization of T(s)

Using the non-zero bij and pkz of Equation 5.4.25 in Equation

5.3.7 yields

]
2911¢8) =Py 3395.1,1P11 (5.4.26a)
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t X"
D,,4() = ¢ s L+ cys + ¢ (5.4.26b)
2

From Equation 2.5.12 it can be seen that

2(n+ 1-1)

25.1,1 = (1) 81,211 (5.4§g7a)

and this implies that
aZiul,l =8y i1 (5.4.27b)

Using a procedure similar to that of Section 3.9.2 with Equations

2.5:12, 5.4.26, and 5.4.27 yields

ng = ngibllg i=1 (5.4.28a)
2(i-1)
LX? —-pz,lbll l! kj H 122 (504@28}3)
4 j=1
As L

or the Case I transfer function, if a, is equated to the c,
N 2
eneral, there will result an inequality. As

2
of Equation 5.4.28, in

in Seceion 5.4.2, the solution is to place a n transformer at

12592

egither port of the sgyanthesized ladder and this results in

a, = N2p251b115 i=1 (5.4.2%9a)
2
2(1i-1)
- - o el .1 b
axz = Zfzgibil ’\ zf.j s 1 2 2 (5@4 2913)
. jo1
where
n
2
N2 T n



210
and with an arbitrary choice for an added equation of
gy =1 (5.4.30)

Now the remaining variables of the set of equations of Equation 5.4.25
can be determined and the network component values are related to

. =2 PR B
these variables by Ci —-(Ci) s Li = (Li) , and Ri = 1/gi.

5.4.4 Case 111. For this transfer function case, the numerator

degree is odd and the denominator degree is even with the transfer

function written as

Koy X1
3 3
a 5 + a_ 5 + ¢oo0 + a,s5 4+ a
‘ Xq x3w1 1 o
T(5> == - =1 (504'31)
51+ b ,SL + e 6 e + b S +b
n-1 1 °
where

a; = positive constant; j = 0, 1, ..., x4

= 0dd integer

¥
!

m = T

A transfer function of the form shown in Equation 5.4.31 will
result if the network drivers are inserted into the network realization
of the characteristic polynomial as shown in Figure 5.4.4 (See Appendix

D.) where

(5.4.32)
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Figure 5.4.4 Case III Realization of T(s)

This network yields the fundamental circuit equations of

~- ) [ [ g —
61 0...0 0 O 11 I v
- °"| """"""""" ' """"" l- - al
0f1 -1 ot 1 IS
1 I I o : 11 I ¢
* . » l :
1 ' ' o | { *. i .
® ' 14 . | o ’ l . I Vbc
o «=11 0| | 1 IS PP
_O_l . l.l” i. b 1] Vi
] I R
’_O ! O O o 0w O O: ‘-1 B : : 1— —V— -2-
: cry
Cﬂ,l
czr
-v; -
b 2 ot

(5.4.33)

which is written in symbolic form as shown in Equation 5.3.2.
Using these fundamental circuit equations, the state-model of

Equation 5.3.1 and the K, ~-matrix of Equation 5.3.6b with the procedures

2

of Chapters II and III results in the set of equations given in Equation

3.7.5 which can be manipulated to yield
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- .2

£o = gl(cl) (5.4.34a)
b

Ky =0Cly
o (5.4.34b)

° [

kn-l = Cer
£, = rp1)° (5.4.34c)

2 ol

7
m+i,1 - "N (5.4.34d)

bl
mtr,2 rer (5.4.34e)
ﬂl+igi = pl,[n.}.i (504034f)
b = -p (5.4 34g)

m4+r,2 Zym+r

Using the non-zero bij and pkz of Equation 5.4.34 in Equation

5.3.8 and noting that o =m + r, we have

¥

211080 =Py 08 2iPat 1,1 (3.4.33a)

ol e *3 -
3211{”” = QKQQ + o0o F cys + <, (5.4.35b)

4
From Bquation 2.5.12 it can be seen that
n+ 21

a = (=1 . b,

Ny 2i (-1) aZl,n (5.4.36a)
and this implies that

an,Zi = aZi,n (5.4.36b)

Using a procedure similar to that of Section 3.9.3 with Equations

2.5.12, 5.4.35, and 5.4.36 yields
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c, = p2,nbm4—i,1 3 1=1r (5.4.37a)

3

n-21i

c = pz,nbmm}i,i ‘l n- j H
j=1

< i<r (5.4.37b)

3

As for the Case II1 transfer function, if a, is equated to the Cy
3 3
of Equation 5.4.37, in general, there will result an inequality. As in

Section 5.4.3, the solution is to place a n transformer at either

13 %23

port of the synthesized ladder and this results in

N NPo,nPmyi,1 3 BT - (5.4.38a)
n~21
R N B TS ) P (5.4.38b)
where
n
N, = 23
n13

and with an arbitrary choice for an added equation of
gy = 1 (5.4.39)

Now the remaining variables of the set of equations of Equation 5.4.34
carn be determined and the network component values are related to

; s . 1 =2 _ 1.-2 _ _
these variables by bi = (Ci) o Li == (Li) s R1 = 1/g1 and R2 =T,

5,4,5 Case IV. For this transfer function case, the numerator

and denominator degrees are both even and the transfer function is

written as
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X, xqul
a_ s +'av 15 4 eee +'als + a
(Lll ¢L4 wa
T(s) = (5.4.40)
n n-1 .
5 -+ b 1s + ocee - bls + b

where
a, = positive constants; j =0, 1, ..., Xy

= even integer

n = gven integer

n=1m-++ r

A transfer function of the form shown in Equation 5.4.40 will

3

£

result if the network drivers are inserted into the network realigzation

w

stic polynomial as shown in Figure 5.4.5 (See Appendix

[N

of the character

D.) where

+ 1 (5.4.41)

e e

L
T
141 Cm 1\2

Figure 5.4.5 Case IV Realization of T{(s)
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This network yields the fundamental circuit equation of

(041 0.0 0loity IR
111 -1 10 1 L F- -
o: 1 - oy, 1 | bcy
| U }: | . { :
0l 1107 | 11 || Vbe
K U O B e =0
i o ! br
010 cee 1 aee 0] 0 | SN (5. 4.42)
ycr1
chl
czm
-
el 2—

which is written in symbolic form as shown in Equation 5.3.2;

Using these fundamental circuit equations, the state-model of
Equation 5.3.1 and the K2~matrix of Equation 5.3.6b with the proéedures
of Chapters II and III results in the set of equations given in Equation

3.7.5 which can be manipulated to yield

1.2
fo = gl(Cl) (5.4,43a)
2
kl = ClLl
. (5.4.43b)
* it
kn--l = Cm;r
'y2 A
f rZ(Lr) (5.4.43¢)
T
m+1’1 = "Ll (504-43(1)
1
b. = C. (5.4.43e)
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bor1,1 =Py att (5.4.43F)

by o =Py, (5.4.43g)

Using the non-zero bij and pkz of Equation 5.4.43 in Equation

5.3.8 yields

'
211(5) = Py,5%4.1,2Pm4 1,1 (5.4.442)
¥ LA

Dle(s) = c){as + eee + oS+ (5.4, 44b)

From Equation 2.5.12 it can be seen that

_ 2(n-i)+1
23.2].“_,1,2 = (-1) 512’21_.1 (5.4.453a)

and this implies that
= - 5- .

11,2 = 18 514 (5.4.45b)

Using a procedure similar to that of Section 3.9.4 with Equations

25,12, 5.4.44, and 5.4.45 yields

2(i-1)
ce = U0, by | T (5.4.46)

-,
bid

j=2

As for the Case II1I transfer function, if a, is equated to the
4
c, of Equation 5.4.46, in general, there will result an inequality.
4

As in Section 5.4.4, the solution is to place a n transformer

14324

at either port of the synthesized ladder and this results in
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2(i-1) ‘
*x, = CGONPy Pagva,a| 1K (5.4.47)
j=2
where
n
14

and with an arbitrary choice for an added equation of
gy = 1 (5.4.48)

Now the remaining variables of the set of equations of Equation 5.4.43
can be determined and the network component values are related to these

©

. b2 PR N 3
variables by C, = (Ci) s Li = (Li) s R1 = 1/g1, and R2 =1,

5.5 Synthesis of a General Voltage Transfer Function. Recall

that for a general short circuit transfer admittance the synthesis
procedure as presented in Section 3.9.1 satisfied, in general, only

one numerator coefficient of the transfer admittance per ladder network.
Also when paralleling these Tladder networks, it was sometimes found

necessary to add a n in, transformer to either satisfy the validity

1 .
test or to obtain positive coefficients in the numerator polynomial.
The synthesis procedure for a general voltage transfer function

will be very similar to that given for transfer admittances imn Section
3.9.1. Each resulting ladder network will, in general, satisfy only
one numerator coefficient of the transfer function. If the numerator
degree is X then there will be a maximum of (xi + 1) ladder networks
placed in parallel-series to satisfy the numerator coefficients (33).
When connecting the ladder networks in parallel-series, it will not be

necessary to consider the validity test since each ladder will contain

a transformer. However it may be necessary sometimes to change the
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positive turns ratio on a transformer to a negative turns ratio so as to
obtain negative numerator coefficients.

This synthesis procedure will result in a unified element value
network if the same equation is added for each ladder synthesis as
presented in Section 3.13.

A voltage transfer function synthesis example will now be pre-

sented to illustrate the above procedures.

5.6 Synthesis Example of T(s). Consider the voltage transfer

function of

T(s) =

2
. 4s” 4+ 8s + 3 (5.6.1)

s” + 552 + 17s + 25

So as to utilize previous material, the K -matrix of Equation 3.6.2

2

will be used with the procedures of Sectiomns 5.4,2 and 5.4.3. These

procedures yield the three transfer functions of

2
Tl(s) _ 34; +216s + 36 (5.6.2a)
s” 4+ 58" 4+ 17s 4+ 25
with
)
N2 =
T(s) = 5 2.z 8 (5.6.2b)
“ s” + 58° + 17s + 25
with
N1 = ~8/9
_ -25
T3(s) =3 (5.6.2¢)

s -+ 552 + 17s + 25
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with

no.25

e o

2 9

=

and the synthesized network shown in Figure 5.6.1.

X | /24

Figure 5.6.1 Realization of Example T(s)



CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary. The objective of this study was to develope a

state-space approach to the synthesis of the following transfer func-
tions; short circuit transfer admittance,open circuit transfer imped-
ance, and voltage transfer functiomn.

To develope this synthesis procedure, in Chapter II it was nec-
essary to derive an algovithm that would yield (sU—Kl)-l, where K1 is
a tridiagonal matrix that represents a ladder network. Also in this
chapter it was necessary to present the realization procedures for =z
characteristic polynomial that yields a ladder network with two resis-
tors.

Chapters III, IV, and V present a unified state-space synthesis
procedure for the realization of y12(5>’ zlz(s), and T(s) with the

following propertiess

ladder networks connected in parallel, series or parallel-
series and with transformers.,

2. There are restrictions on the s-domain transfer functions to
be synthesized.

3. There are restrictions on the topology of the resulting syn-

thesized network,

220
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11,
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There are no restrictions on the transmission zeros of the
transfer functions.

In general the resulting networks are not minimal except for
the Special Cases.

Each ladder network is planar, but in general, the total
resulting network will not be planar.

It is possible to obtain all of the ladder networks in the
total synthesized network with unified component values.
There are special cases that can be realized with one resistor
per ladder network.

The network driver configuration for each transfer function
is presented. Also since the location of the drivers in each
ladder network is mnot unique, an acceptable location is pre-
sented.

& tridiagonal Kimmatrix is utilized with the derived state-
model.

This synthesis procedure is programmable for the digital

computer .

6.2 QConclusions., It is possible to derive a unified state-space

procedure for synthesizing s-domain transfer functions. This procedure

determines a state-model that can be represented by a RLC network with

or without transformers and the network component values can be deter-

mined.

Also one procedure is used for all three types of s-domain

transfer functions.

The four advantageous results of this synthesis procedure are:

1.

This is a unified synthesis procedure,
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2. There are no restrictions on the transfer function transmission
Zeros,

3. This synthesis procedure can be programmed for the digital
computer, | |

4, N6 previous knowledge of graph theory or state-models is

necessary to use this synthesis procedure.
The two disadvantages in the results obtained are:

1. The synthesized networks are not minimal.

2. Transformers are required in 7most cases.

6.3 Recommendations for Further Study. An interesting extension

of this study would be to determine a K,-matrix that would represent

2
lattice networks and then determine if this would eliminate the re-
quirement of needing transformers.

Another idea to investigate is whether for a given state-model it
is possible to be transformed into a recognizable form that yields
paralleled ladder networks.

A straight forward investigation would be the determination of
what types of transfer functions can be synthesized by one resistor
ladder networks, by permuted state-vectors in the derived state-models,
or by inserting the drivers into different locations of the ladder
networks than were presented in this sfudy.

Another area of investigation is to determine how Navot®s method

of Appendix B might be manipulated to regulate the values of the network

components in the synthesized ladder networks.



BIBLIOGRAPHY

(1) Anderson, B. D. O. and R. W. Newcomb. "Impedance Synthesis
via State Space Techniques.® Proceedings of the IEE, Vol.
115, No. 7 (1968), 928,

(2) Bacon, C. M. "Time Domain Transformations for the n-Port RLC
Network.* Froceedings of the 9th Midwest Symposium on -
Circuit Theory, Oklahoma State University, (May, 1966)

(3) Balabanian, N. WNetwork Synthesis. Englewood Cliffs: Prentice-
Hall, Inc., 1958,

(4) Bashkow, T. R. *'The A-Matrix, New Network Description.' IRE
Transactions on Circuit Theory, Vol. CT-4, (September,
1957), 117~ 119,

(5} Brown, D. P. ‘'Derivative~Explicit Differential Equations for
RLGC Graphs." Journal of the Franklin Institute, Vol. 273,
(1963), 503-514.

(6) Bryant, P. Rs *The explicit Form of Bashkow's A-Matrix.' IRE
Transactions on Circuit Theory, Vol. GT-9, (September,
19625, 3032306,

(7) Gauer, W. Synthesis of Lenear Communication Networks. New York:
McGraw-Hill, 1956, 184-188,

(8) Cederbaumn, L. "Applications of Matrix Algebra to Network Theory.®
IRE Transactions on Circuit Theory, Vol. CT-6, (May, 1959),
127-137,

(9) Chen, Wo H. Linear Network Design and Synthesis. New York:
McGraw-Hill, 1964, 341-355,

(10) Daniel, M. E. and L. L. Grigsby. %Some t-Domain Realizability
Criteria.® Proceedings of the 9th Midwest Symposium on
Gircuit Theory, Oklahoma State University, (May, 1966).

(11) Dasher, B. J. *Synthesis of RG Transfer Functiomns as Unbalanced
' Two-~-Terminal Pair Networks.* 1IRE Transactions on Circuit
Theory, Vol. CT-1, (December, 1952), 20-34.

(12) Dervisoglu, Ahmet. "Realization of the A-Matrix of Half-Degen-
erate RLC Networks." (umpub. Ph. D. thesis, University
of Illinois, 1964).

223



(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(25),

(26)

224

Dervisoglu, Ahmet. %The Realization of the A-Matrix of a Certain
Class of RLC Networks." IEEE Transactions on Circuit Theory,
Vol. CT=-13, No. 2, (June, 1966), 164-170.

Fialkow, A. and I. Gerst. "The Transfer Function of General,
Two-Terminal Pair Networks.®™ Quarterly of Applied Math-
ematics, Vol. 10, (July, 1852), 113-127.

Frame, Jo. S. "Matrix Functions and Applications.' IEEE Spectrum,
Pts, I-1IV, (March-July, 1964).

Gantmacher, Fo R. The Theory of Matrices. New York: Chelsea
Publishing Co.,, Vol. 1 & 2, 1959. :

Guillemin, E. A. Communication Networks. New York: John Wiley
and Soms, 1935, Vol., II, Chapters 4 & 5.

Ho, E« Co “A Ganeral Matrix Factorization Method.'™ IRE Trans-
actions on Circuit Theery, Vol. CT-2, (June, 1955), 146-153.

Ho, Eo Co "RLC Transfer Function Synthesis.' IRE Transactions
on Circuit Theory, Vol. CT-3, (September, 1956), 188-190.

Karni, S0 Network Theory: Analysis and Synthe51se Boston:
Allyn and Bacon, 1966,

Kim, W. and R, T. Chien. Topological Analysis and Synthesis of
Comaunication Networks. New Yorks Columbia University
Fre e88 ‘.J(e‘[zo

Fuh, E. S. and R. &. Rohrer, "The State~Variable Approach to
Wetwork Analysis.' 1EEE Proceedings, Vol. 53, No. 7, (July,
19633, 672-685,

L. M, ®State Representations, Passivity, Reciprocity,
d a-Port Synthesis.®™ Proceedings of the 4th Annual Aller-
ten Conference on Circuit and System Theory, University

of Tilinods, (1966)

Levy, Do M. and Do P, Brown. "Time Domain Synthesis of a Class
of RLC MNetworks.®™ Proceedings of the 3rd Annual Allerton
Conference on Circult and System Theory, University of
Illinois, (1963},

Lucal, H. M. "Synthesis of Three-Terminal RC Networks." IRE
Transackions on Circuit Theory, Vol. CT-2, No. 4, (December,
1955), 308-316.

Marshall, T. G. "Primitive Matrices for Doubly Terminated Ladder
Networks.® Proceedings of the 4th Allerton Conference on
Circuit and System Theory, University of Illinois, (1966,
935-943,




(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

225

Navot, I. "The Synthesis of Certain Subclasses of Tridiagonal
Matrices with Prescribed Eigenvalues.™ SIAM Journal of
Applied Mathematics, Vol. 15, No. 2, (March, 1967).

Perlis, S. Theory of Matrices. Reading: Addison-Wesley, 1958.

Rauch, Do Jo *On the Realization of Time Domain Models of Real
Linear Bielement Systems." (unpub. Ph. D. thesis, Michigan
State University; 1963). o

Seshu, S, and N. Balabanian. Linear Network Analysis. New York:
John Wiley and Sons, New York, 1959,

Seshu, 8. and M. B, Reed. Linear Graphs and Electrical MNetworks.
Reading: Addison-Wesley, 1961, 201-212.

Van Valkenburg, M. E. Network Analysis. Englewood Cliffs:
Prentice-~Hall, 1935,

Weinberg, L. WNetwork Analysis and Synthesis. New York: McGraw-
Hill, 1962.

Yarlagadda, R. "An Application of Tridiagonal Matrices to Network
Synthesis."” SIAM Journal of Applied Mathematics, (November,
1968), 1146,

Yarlagadda, R. 'Network Synthesis = A State Space Approach."
(To be published in the Proceedings of the IEE.)

Yarlagadda, R. and Y. Tokad. "Synthesis of LC Networks - A
State Model Approach.® Proceedings of the IEE, Vol. 113,
Ho. 6, {June, 1966}, 975-981,

Yengst, W. G, Procedures of Modern Network Synthesis. New York:
Macmillan, 1964.




APPENDIX A
GENERAL STATE-MODEL REPRESENTATION FOR RLC NETWORKS

Recently the following has been given which presents a general
state-model representation for RLC networks (35).

Consider an n~port network comsisting of two-terminal RLG com-
ponents only, and let the type of the drivers (voltage or current)
at the ports be specified. The state-model for such a network has been
derived by several authors, and the explicit expressions for the state-
model in terms of a general circuit equation are given in several
papers (6,5). In this appendix the results and details are given
that can be obtained from one of the references or that can bg derived.

By a proper selection of the tree, the fundamental circuit equa-

tions for an RLC network can be written ass

- S
By By, 0 O {UOOQ v,
Byg Byy By 0 jO VOOV,
B3y By B 33 Byy 100U 0NV,
B,, B , 000UV
| 41 742 Buz Bas I 1 7 IO (A.1)
v
cc
v
cr
Vs
e

where Va-voltage source vector, Vbcuvoltage vector of branch
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~-voltage vector of branch resistors,

br ~voltage vector

capacitors, v Vbz
of branch inductors, Vccwvoltage vector of chord capacitors, Vcr-voltage
vector of chord resistors, chmvoltage vector of chord imductors, and
Vt-voltage vector of current sources. In Equation A.1 U represents

the identity matrix. The cut-set equations can be written in terms of

their complementary variables. Let the terminal equations of the

components be written in the formg

Gy Ve Lic
Lc d Icz ch
L Tl |Tv (4.2)
b by bg
C v 1
N c ] | cc ] |ec
and
br| | % 9 || Tor (a.3)
10 G \'% *
cr C cr

where be C Lb’ ch Rb9 and GC are diagonal matrices, having positive

entries. The system of Equations A.1-A.3 can always be reduced to the

state-model form by eliminating the variables Ibc’ Ibz’ Ibr’ Icr’ ch,

V .,V __, and V__ using the circuit and cut-set equations.
cc® br cr
Ifwelet I =1,V =V ,V =V d1° =-I_, where th
W == = - = an = - where the

e et by t? Tt t? "a a’ a a’
star variables represent the vectors of terminal variables for an

n-port RLC network, the final form of the state-model is
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APPENDIX B

TRIDIAGONAL MATRICES

B.1 uIntroductiqp. Several authors have been interested in the
close association between ladder networks and tridiagonal matrices
(27, 34, 26). This appendix is concerned with presenting Navot's (27)
method of oEﬁaining a tridiagonal matrix from a strictly Hurwitz poly-
nomial that has'eigenvalues which are equal to the;roops of the poly-

nomial.,

B.2 Navot's Method. Given a strictly Hurwitz polynomial, called

the primary polynomial,

Sl h, (B.2.1)

4 n
Hn(s) s +h
from which a tridiagonal matrix is to be obtained, it is necessary to

first generate a secondary polynomial from Hn(s). This secondary poly-

nomial, Gn(s), is written

n n-1
Gn(s)b~ s +8, 48 oo gy | (B.2.2)
and is obtained by the relation
Gn(s)Gn(-s) = Hn(s)Hn(~s)-c (B°2°3)
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where

O<c<m - : (B.2.4)

and

m = min{[nn(jw)l 2. coew< oo} (B.2.5)

After determining c¢ from Equations B.2.4 and B.2.5, then Equation B.2.3
is used to obtain the 8 of Equation B.2.2. From Equation B.2.4 it is
obvious that ¢ will net be unique, which in turn implies that the 85
will not eithe£o

Next construct the rational function

Hn(s) + Gn(s)

w(s) ’=‘Hn(s) = G_(s)

(B.2.6)

which is used to obtain z continued fraction expansion of the form

Hn(s) - Gn(s)

2
1 R = - (B.2.7a)
(nnmlugnwl)Ll-rw(s)] (hn-l gn-l)[Hn(s)]
‘ o
_ 1
B 3
£, +s + %
s + 2 (B.2.7b)
S + .
o. fn
+
s+
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where

-f -,
1 0 -f,
1 o.-_f4
K= e e (B.2.8)
[ ]
° ® °
1 0 -f
il

and K has eigenvalues equal to the roots of Hn(s).

B.3 Example. Given the strictly Hurwitz primary polynomial

3 2

HB(S) = 5 + 25 + 35 + 1 (30301)

and defining £(&0) as

£(w) = [B,Gw)|?

then

£~
fw) = w® - 200" + 5% + 1

and

yields ep = 0 for the argument value where f(e)) is a minimum which

implies that

and

0cL 1 (B.3.2)



232

Arbitrarily choose ¢ = 0.5 and then

G4(s)8,(-s) = - s® - 25 - 557 4 0.5 (.3.3)
Assume
G4(s) = s> + as® + bs + d (B.3.4)
then
G()Gy(-5) = - s° = (2-a)s" - (b2-2ad)s? + & (8.3.5)

Equating coefficients of Equations B.3.3 and B.3.5 yields

d = ,707 (B.3.6a)

and
4 2
a -+ 43 - 5»663. - 16 = 0 (Ba306b)

A solution is

a = 1.875 (B.3.7)
which implies that

b = 2076 (30308)

Now from Equations B.3.4, B.3.6a, B.3.7, and B.3.8

3

Gy(s) =7 + 1.875s2 + 2.76s + .707 (B.3.9)

From Equations B.2.7a, B.3.1, and B.3.9

Hy(s)-G4(s) 2 | 1 926 4 2,344

(hp-g ) H(s) 3 4 532 4 35 4 1

(B.3.10a)
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and this result with Equation B.2.7b yields

52 + 1.92s + 2.346 1

53 + 252 4+ 3s + 1

f1 + s + (B.3.10b)

Evaluating the fi above and substituting into Equation B.2.8 yields

-.08 -.503 O
1 0 -2.34 (B.3.11)
0 1 -1.92

K

]

This tridiagonal matrix will yield the primary polynomial of
Equation B,3.1. There will be an error in the ho coefficient due

to slide rule inaccuracies.



APPENDIX C

TRANSFORMATION FOR TRIDIAGONAL MATRICES

C.1 Introduction, The tridiagonal matrix obtained in Appendix
B is not of the same form as the K-matrix of the "modified" general

state-model of Section 2.3. The desired form being

K11 Ky
K = -YT . - (C.1.1)
\.12 -1\22 S

C.2 Transformation Procedure. The procedure to transform the

K-matrix of Appendix B into the form of Equation C.1.1 will be done
in two steps. The first step is to use a similarity transformation

on the initial tridiagonal matrix

-fy £,
1 0 _f3
[ ) [ °
Kl = ¢ ® * ° L J (0.2.1)
[ ]
1 0 -f£
N ! -fni-{J
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to obtain the tridiagonal matrix

-£, £,
£, 0 3
* L ]
K, = e, . . - (C.2.2)
-, 0 £
N oty 1

Then anmother similarity transformation is made in step two to oebtain a

K-matrix of the form in Equation GC.1.1.

Cs2.1 Similarity Transformation of Step.One. Perlis (28) has

shown that in a similarity transformation the K2 of

-1
K2 = PKlP (C.2.3)

will have the same eigenvalues as K. There can be determined a trans-

formation matrix, P, such that when given K1 of Equation C.2.1 and



that

-f

Q.
N
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(C.2.4)

Equating like entries from Equations C.2.2 and C.2.4 and solving

for the di entries yields
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This set of (n-1) equations has n unknowns. Therefore a solution is

d1 = 1
%
d2 (fz)
= 3 (C.2.5)
d3, (f2f3)
: 3
dn = (f2f3 o fn-lfn)
Now K2 can be obtained from K1 and is
T - 7
fi \/fz
f2 0 - Vf3
‘Vf 0 -VYf£
| 3 . 4
[{2__ . ., .o ., (C.2.6)
‘\/fn~1 0 - an
N an 'fni-y_

C.2.2 Similarity Transformation of Step Two. Using the P of

Equation C.2.3 to obtain a similarity transfoxmation from K2 to K has

been done by Varlapgadda (35} and requires when n is odd that

) o 3 5. . 7
D@ @ .. GRS ER EEH ERD L ()
1 0 0 o o » 0 0 0 0 R 0 (D
0 0 O o o o ] 1 0 0 o 0 (2)
0 1 0 & ¢« & 0 0 0 0 R 0 (3)
0 0 0 o o « 0 0 1 0] . 0 (4)
P = 0 ¢ 1 4 6 o 0 0 0 0 . 0 - (5)
0 0 0 o o & 0 0 0 0 . 1 (n-1)
0o 0 0 ... 1 0 0 0 . 0 ()
(Ce2.7)
The similarity transformation
T
K=PK.P (00208)



will yield

-1 1
(@ @ .. & &Y @& @l
|
-5y | £
0 : -£4 £
| -f
|
* |
|
;o
- |
K=] e = = = v 0 = & w w w = Btl_l
-f f |
2 |
-f 5 |
|
® |
|
. |
c
L n )

e e s we me e e a8 s e ew e = ]
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(1
(2)
(3)

n-1

(n)

(C.2.9)

When n is even this similarity transformation requires that

(1) (2) ()

1

SO OO

O G e

QQ OO

O e

[l R av R ab R b)

O O e

@ G+ G+2) G+3)

OO OO0

Q0O OO

o e

O = QOO0OO0O

Y e s

[eNoNeNoNo

O O e

[oNeNoN e N o Ry

(1)
(2)
(3)
(4)
(5)

(nll)

O e

(n)

(C.2.10)
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which yields

(D@ B GHD G+2) ... (-1 (n)

_fl

-f3 £, (2)

® ' L
- e w m e o e o mr we ae ew e we e we

0 (nll)

-fn +1] (n)

(C.2.11)
This completes the second step as the K-matrices of Equations

€.2.9 and C.2.11 are of the form of that in Equation C.1.1.

C.Z2.3 Another Transformation. In Section 2.5 an algorithm is

given that determines (sUmK?)ul and Perlis (28) has shown that

(sU-K)~T = pT(sU_KZ)“lp (C.2.12)



APPENDIX D
TRANSFER FUNCTION TRANSMISSION ZEROS

D.1 Introduction. In the synthesis procedure presented in the

preceding chapters, the characteristic polynomial of the three differ-
ent transfer fumctions was realized in a ladder network., The numerator
polynomial was obtained by the drivers being inserted at the appropriate
locations of the ladder network. The primary concern was that the
driver insertions yield the desired degree in the numerator polynomial.
Since the number of transmission zeros is equal to the degree of the

3 numerator polynomial, this appendix will present avmethod for deter-

mining the transmission zeros of ladder networks.

D.2 Transmission Zeros. Seshu and Reed (31) present the fol-

lowing theorem on transmission zeros.

Z' ZS ZS Zzy—l sz-n

>——& ® é > P N

Figure D.2.1 Ladder Network
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Theorem D.2.1 -~ The zeros of transmission of the ladder network
in Figure D.2.1 are contained among the zeros

of YZ’ Y4, uuo,,an and Zl, 23, ceey Z

Chen (9) has given the following two theorems concerning zeros

of transmission.

Theorem D.2.2 - The poles of the impedance Zl(s), as shown in

Figure D.2.2, of a series branch other than the

241

series branch ZZ(S) is a zero of the open circuit

transfer impedance zlz(s) of that ladder network.

i

LADDER
Network

# |

Figure D.2.2 Ladder Network for Theorem D.2.2

Theorem D.2.3 ~ The poles of the admittance Yl(s), as shown in
Figure D.2.3, of a parallel branch other than

the parallel branch YZ(S) is a zero of the short

L ADDER
NeTwoRK

HL

Z ()

circuit transfer admittance ylz(s) of that ladder

network.,



1, !
LapbER LADDER
NeTwork Y (o) Nerwork
— | * . # 2
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Y@

Figure D.2.3 Ladder Network for Theorem D.2.3

Consider the ladder network of Figure D.2.4 and the chain para-

meters or general circuit parameters can be written

v AB v
1 2
. = ’ (D.Z.l)
11 CD 12
where
A=1 +‘ZlY2 + ZIY4 + Z3Y4 + 21Y223Y4
"B = Z1 + Z3 + 25 + ZlYZZS + ZlezS -+ 21Y425 + Z3Y4Z5 + 21Y223Y425
C = Y2 + Y4 +_Y223Y4
D=1+ YZZS + Yzzs + Y435 + Y223Y4ZS
11 - i,
. - &
I ‘
e £, ¢ ZS * Z—<e
v v
! Ve V4 2
[ ~ —e * -

Figure D.2.4 Ladder Network for Chain Parameters
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It can be seen that

T(s) =§ (D.2.2)
¥1,(8) = - %— (D.2.3)
212(5) = % (D.2.4)

From Equations D.2.1 and D.2.2 it can be seen that poles of the
Zi and Yj will be the zeros of tramsmission for the voltage transfer
function. Note that the poles of 25 are not considered. Note that

if 21 is a short, then the poles of Y, are not considered.

2
From Equations D.2.1 and D.2.3 it can be seen that the poles of
the Zi and Yj will be the zeros of transmission for the shert circuit
transfer admittance. Note that if Z5 is a short circuit then the poles
of Y4 are not considered. This commen£ is also true for 21 and Yzo
From Equations D.2.1 and D.2.3 it can be seen that the poles of

23 and the Yi will be the zeros of transmission for the open circuit

and Z. are not consid~

transfer impedance. Note that the poles of Zl 5

ered.
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