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PREFACE

This thesis is a study of polytopes in finite dimensional Euclid-
ean space, En' So@e of the résults obtained, especially those in the
first part of Chapter I, are also valid in a more general setting. How-
ever, a polytope is always a finite dimensional set and hence a finite
dimensional setting is appropriate.

It should bé pointed out that in some mathematical writing the term
"polytope" may have a different or more general meaning than the one
used here. Possibly the terminology '"convex polytope'" should be used
for precision. However, to avoid a large number of repetitions of the
word "convex', the shorter term "polytope" is used. This practice is
also followed by Griinbaum, [2 ].

The terminology and symbolism used is either defined or is the same
as that used in Grinbaum, [ 2], and Valentine, [7 J. The end of a proof
is marked by the symbol Ia

Chapter I concerns itself with the support functional and the
facial cones of a polytope. In Chapter II, more information is obtain-
ed about the facial cones which in turn are used to characterize local
similarity of polytopes. The third chapter is a study of indecomposable
and decomposable polytopes.

I would like to express my deep appreciation to Professor E. K.
McLachlan for the inspiration he has provided over the past thrée years

and his assistance in the preparation of this thesis. My thanks go to
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Professors Hiroshi Uehara, John Jobe, and John Stone for their assist~
ance while serving as members of my committee. Also, I want to thank
my parents and my wife Esther for their encouragement and moral sup-
port during my graduaté studies.

Finally, I am indebted to the Department of Health, Education and

Welfare for providing an NDEA fellowship this past year.
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CHAPTER I
FACIAL CCNES OF POLYTOPES

Let C ©be the collection of all compact convex sets in Buclidean
n-space En. Then C can be given an algebraic structure by making

the following definitions:
A+B={a+b:a€ A, bEB ]},
oh = { aa: a € A} for any real a.

The collection € with these two operations has all of the de-
fining properties of a real linear space except for the existence of
additive inverses and the property (a + P)A = oA + BPA for & and P
arbitrary real numbers. It is easy to see that an element of C has
an additive inverse if and only if it is a singleton. The property
(o + B)A = cA + BA holds provided that ap 2 0, Proofs of these facts
about the collection ( can be found in Griinbaum, [ 21, p. 217. Al-
though in general elements cf (C do not possess additive inverses, it
can be shown that the cancellation law for addition holds, that is
A +C =B +C implies that A = B, For the proof of this fact, see
Radstrém, [ 41, p. 167,

Associated with each convex set K 1is a certain subset of K
called the set of extreme points of K. The extreme points of a con-

vex set will be very useful in the sequel and they are defined as



follows:

Definition 1-1, Let K be a convex subset of En and let XO € K.

Then x. is an extreme point of K, written X € ext(K), if and only

0
if there do not exist two distinct points X1 and X, of K and a
real number t, 0 < t <1, such that Xy = tx) + (1 - t)x2°

A fundamental result about the extreme points of a set in C 1is

the Krein - Milman theorem which is as follows:

Theorem 1-1. Let K € C. Then K = convlext(K)].

The proof of this theorem appears in many places, for example by
Grlinbaum, [2 ], p. 18.

The set of extreme points of any scalar multiple of a convex set
K is determined by the set of extreme points of K and the scalar as

follows:

Theorem 1-2. ILet K be a convex set in En and let o be any real

number. Then ext(akK) = a ext(X).

Proof: First note that in the case a = 0, ext(aK) = {0} = a ext(K).
Suppose then that o £ 0 and let ox & ext(aK), x ¢ K and assume
that x & ext(K). Then by Definition 1-1, there éxists two distinct

elements Xy and X, of K and a real t, 0<t <1, such that

X = tx) + (1 - t)xz. Then oax = t(axl) + (1 - t)(axz), which contra-

dicts the supposition that ax € ext(aK). Therefore x € ext(K) and



hence ox éra ext(K) and so ext(oK) € o ext(K)., This inclusion im-
plies the reverse inclusion, for
ext(K) = ext[(1/a)«a K] & (1/a)ext(aK)

which is equivalent to o ext(K) & ext(ax)j

In view of Theorem 1-2, one might expect that
ext(A + B) = ext(A) + ext(B).
However in general this is not the case and it can only be concluded
that ext(A + B) « ext(A) + ext(B). Later on, in Theorem 1-18, it is
determined exactly which elements of ext(A) + ext(B) are in

ext(A + B) in the case where A and B are polytopes.

Theorem 1-3, TFor convex sets A and B in En’
ext(A + B) & ext(A) + ext(B).
Moreover, if 2z € ext(A +B), z = x + y where x €A and yé€ B,

then x € ext(A) and y € ext(B).

Proof: Suppose that =x & ext(A). Then by Definition 1-1, there exist

elements xl and X, in. A, xl # XZ’ and a rea; number t,

0<t<1l, such that x = txl + (1 - t)xa. Then

Z2 =X +Yy

[

tx, + 1 - t)x2 +y

t(x1 +y) + (1 - t)(x2 + ¥),
which contradicts the fact that 2z € ext(A + B). Therefore, x € ext(A)
and similarly, y € ext(B).'

The following result is an easy consequence of Theorems 1-1 and

1-3, and will be used later to show that the sum of two polytopes is

a-



again a polytope. It also provides a practical method of obtaining

A +B from ext(A) and ext(B) (cf. Figure 1-1).

Theorem 1-4. If A and B €C, then A +B = convlext(4) + ext(B)].

Proof: By Theorem 1-3, ext(A + B) & exf(A) + ext(B), and therefore,
using Theorem 1-1, A + Be& conv[ext(A) + ext(B)]. Also, since
ext(A) + ext(B)e A +B and A + B is convex,
convlext(A) + ext(B)]le A + B.'
A very important concept to be used in the sequel is that of a
face of a polytope. However, this concept can also be defined for any

convex set as follows:

Definition 1-2. Let K be a convex subset of En. A set F is a

face of K if and only if F =K, F =@, or F =H N K where H is
some supporting hyperplane of K. The faces K and @ are called im-
proper faces of K. All other faces of K are called proper faces.

If dim(F) = j, then F is cailed a J-face of K, The O-faces of

K are also called exposed points of K, and the totality of such

points is denoted by exp(K).

Later in the development many results will depend upon the concept
of the support functional of a polytope. As in the case of Defipition
1-2, this functional can be defined for any compact convex set as
follows:

Definition 1-3, Let K¢ C. For any x € E , define f_(x) = sup x.y.
n K Y€K
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The functional fK is called the support functional of K.

Theorem 1-5. Support functionals have the following properties:
(a) real valued,
(b) sublinear,

(c) fA + f_ =1

B A+B’
(q) faA = afA for a > 0,
(e) £, = fy implies that 4 = B,

(f) A={x: xy< fA(y) for all y).

For the proof see Valentine, [73,pp. 58-59 and p. 153.

If A and B are two compact convex sets in En, then so are the
sets AN B and conv(A U B), (cf. Valentine, [ 71, p. 30, Th, 3.10).
By defining AAB =ANB and AV B =conv(A U B), the collection C
with the operations A and v form a lattice with respect to the order
relation set inclusion. The next tﬁeorem considers the support func-

tionals of AV B and A AB in terms of fA and fBn

Theorem 1-6. Let A4 and B € C. Then fAVB = max(fA,fB)u If also

AU BEC, then fang = mln(fA,fB).
Proof: Let x € En. Since Ac A v B,
fA(X) = sup{x.y: y € A} < sup{x.y: y € AVB} = fAVB(x).

Similarly, fp(x) < fAVB(x) and hence max[fA(x),fB(x)J < fAvB(x).

Now let y € conv(AUB). - Then there exists ¥y € A, Y5 € B and a real

t, 0<t<1l, such that y =ty, + (L - t)y, (cf. Valentine, [ 71,
RS 1 2



p. 16, Th, l&ig), Thus,

x.y = x-[ty, + (1 - t)y2]

t(x.yl) + (1 - t)(x»ya)

IA

t£,(x) + (1 - £)f5(x)

<t max[fA(x),.fB(x)] + (1 - t)max[fA(x), fB(x)]

max[fA(x), fB(x)]'
~and therefore fAVB(X) < max[fA(x), fB(x)].
Now assume that A {JB is convex and again let x € Eno Then

f,oo(x) = sup x+y < sup xy = £,(%x) and similarly, f, ,(x) < f (%)
A . - A -
A8 yEHEAB  yEA AnB B

and hence fAAB(x) < min[fA(x), fB(x)].

Now suppose that fAAB(X) < min[fA(x), fB(x)]. Then
fAAB(x) < f,(x) and fA,AB(x) < fp(x). There exists y; € A and
Y5 € B such that fA(x) = x.y; and fB(x) = XY, (cf. Valentine,
(7], p. 58, Th. 5.,2). Let t =inf{ a: 0 < a <1 and oy, +(1-0)y, € A}
and define y, = ty, + (1 - t)yz. Then y, € A since A is closed.
If t=0, then y =y, @B If >0, then ay, + (1-a)y, €B
for 0L a<t since A B is convex and hence T € B since B is
closed. Thus in any case, y, € AN B, Therefore, x-y, < fAAB(X)°

However,

1]

XYy x.[tyl + (1 - t)Y2]

t(x'yl) + (1 - t)(X°y2)

]

> thAB(x) + (1 - t)fAAB(x)

fAAB(X)s
a contradiction.l
Now suppose that K @ C and Xq € E %o #0. It will be con-

venient to use the notation H(K,xO) to represent {x: XX = fK(xo)}.



Thus H(K,xo) is a hyperplane in E . The following theorem gives
more information about H(K,xo) and also shows the reason for calling
f, a support functional.

K

Theorem 1-7. The set H(K,xo) is a hyperplane of support for K. Con-

versely, if H is any hyperplane of support for K, then there exists

an X, #Z 0 for which H = H(K,xo).

Proof: By Definition 1-3, y»xo‘s fK(XO) for every y €K, so that
H(Kyxy) bounds K. That H(K,xp) supports K follows from Valentine,
(71, (cf. p. 58, Th. 5.2).

Now suppose that H = { x: £f(x) =a )} is any hyperplane of sup-
port for K. Suppose, without loss of generality, that f£(y) <a ' for
all y € K. There exists some Xq #FO for which f(x) = ReX | for all
x €E (cf. Taylor, [ 6], pp. 44-45), Thus AL < a for ail vy € K,
which implies that fK(XO) < o. Also, if Yo is any element of HN K,

then fK(xO) > yo-xO = &, Therefore, fK(xo) = oo and so H::H(K,xo)qa

The remainder of this study will be concerned primarily with the

concept of a polytope. Polytopes are defined as follows:

Definition 1-4, Let P be a subset of E . Then P 1is a polytope if

and only if there exists a finite set A such that P = conv(Aa).

There are several different characterizations of a polytope (for
example, see Grilnbaum, [2], pp. 31-32). The following characteriza-

tion will be sufficient for the results to be obtained here.



Theorem 1-8, Let P be a subset of En° Then P 1is a polytope if

and only if P € C and ext(P) is finite,

Proof: Suppose first that P = conv(A) where A is finite. Clearly,
P is convex and also P is compact (cf. Valentine, [ 7], p. 40, Th,
3.10), To show that ext(P) is finite, it is sufficient to show that
ext(P) is contained in A. Suppose there exists some %, € ext(P) \ A.
Then A c P \ {xo} and it is easy to see that P \ {xo} is convex
since x5 € ext(P). This contradicts the fact that P, being the con-
vex hull of A, 1is the smallest convex set containing A.

Now suppose that P € C and that ext(P) is finite. Then Theo-
rem 1-1 implies that P = conv[ext(P)] and hence P is a polytopeeﬂ

Let P denote the collection of all polytopes in Enn Theorem
1-8 implies that P &« C. Moreover, Theorem 1-2 implies that P is
closed under scalar multiples and Theorem 1-4 shows that P is closed
under sums. Therefore, P is an algebraic sub-structure of C.

The next result shows that any face F of a polytope P is again
a polytope and characterizes the extreme points of F in terms of the
extreme points of P and the hyperplane of support for P which deter-

mines F.

Theorem 1-9, Let F be a face of a polytope P. Then F 1is a poly-

tope. In fact, if F =H NP where H 1is a hyperplane of support for

P, then ext(F) = H N ext(P).

The proof is given by Griinbaum, [ 2], (¢f. p. 18, Th, 2). From

Theorem 1-9, it is clear that a polytope has only a finite number of
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faces.

It can be shown that for any'convex set K in E , exp(K) e ext(K)
(cf. Griinbaum, [ 2], p. 18). In general, this containment is proper,
even for compact convex sets., An example of this in E2 is given by
Figure 1-2 in which X is the set obtained by taking the convex hull

of a disk and a point not in the disk. The point x_. in the figure is

0
in ext(X) but not in exp(K).

Figure 1-2.

The following theorem shows that for polytopes, extreme points and

exposed points coincide.,

Theorem 1-10." Let P € P. Then ext(P) = exp(P),

The proof of this theorem follows easily from two theorems of
Griimbaum, [ 2], (ef. Th, 3, p. 18 and Th. 9, p. 19).
The next two theorems characterize the support functional of a

polytoype.
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Theorem 1-11. Let P €P and x € En. Then fp(x) = max{x-v: v € ext(P)}.

Proof: Clearly, fP(x) > max{x.v: v € ext(P)}. Let y € P. By Theorem

m
1-1, P = convlext(P)] and therefore y ='§aivi where for each i,

m
vy € ext(P), a, > 0, and §ai =1, _Then

=4
8

Xoy =

[l ¢

ai(x=vi) <

—M

ai[max{x-v: v € ext(P)}] = max{x.v: v € ext(P)}.
Therefore, fP(x) < max{x.v: v € ext(P)}.I
Theorem 1-11 shows that the support functional of a polytope is

the maximum of a finite number of linear functionals. The next result

establishes the converse of this statement.

Theorem 1-12, Suppose that f 1is a functional such that for all xEJEn,
f(x) = max{x+v: v € A} where A is a finite set. Then f = fps where
P = conv(4). Also, A = ext(P) if and only if there does not exist a

proper subset A. of A such that f(x) = max{x.v: v € AO} for all x.

0]

Proof: Recall that in the proof of Theorem 1-8, it was shown that
ext(P) € A. Therefore, using Theorem 1-11,

fp(x) = max{x.v: v € ext(P)} < max{x-v: v € &} = f(x).
But also, f(x) = max{x-.v: v €A} < sup{x-y: y € P} = fP(x), and there-

fore f(x) = fP(x).

To prove the second part of the theorem, first suppose that

A = ext(P) and assume there exists a proper subset Ay of A such



12

that f(x) = max x.v. Then, as noted above, ext(P)c:AO, a contradiction.
vE A ‘
0

Now suppose that A # ext(P). Then ext(P) is properly contained
in A and therefore, in view of Theorem 1-11,
f(x) = max{x-v: v € ext(P)}, a contradictionw'

Theorem 1-11 prompts the following definition:

Definition 1-5. For P €P and v € ext(P), let

C(P,v) = {x: fP(x) = XoV}.

Also, if F is a face of P, let C(P,F) = N{C(P,v): v € ext(F)}.

When no confusion arises, the notations Cv and CF will be used
instead of C(P,v) and C(P,F).
Theorems l-13 and 1-14 give some useful‘information about the sets

of Definition 1-5.

Theorem 1-1%. For P &€P and any face F of P, CF is a closed

convex cone with vertex at the origin.

Proof: Let v € ext(P). From Theorem 1-11, it is cleaf that the
functional fP is continuous and hence the functional defined by
h(x) = fp(x) - xov is also continuous. Thus h +(0) = ¢, isa
closed set.

Now if x € CV and « 1is any nonnegative real number, then

fP(ax) = afp(x) = a(x-v) = (ax).v, which implies that ax € Cvo

Now suppose that x and y € Cvo Then
fP(x +y) < fP(x) + fp(y) = XV + yov = (X + y)ovVae
Also, fp(x + y) 2 (x+ y)ev by Definition 1-3. Therefore, x+y € C, e

Thus Cv is a closed convex cone with vertex at O and therefore
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so is Cp = H{QV: v € ext(F)}.l

The cone CF will be called the facial cone of P corresponding

to F.

Theorem 1—14. Let P €P. Then U{CV:'V € ext(P)} = En°

Proof: By Theorem 1-11, if x € En’ there exists some v € ext(R)

such that fP(x) = X.v, Therefore, x € CV e {C v € ext(P)},é
v

The next two theorems give a simple geometric description of the

facial cone (see Figure 1-3 for an example in EE)Q

Cp

Theorem 1-15. Let P € P and suppose that F is a face of P, Let

Xy € E > X # 0. Then X €Cp if and only if F c:H(P,xo)e

Proof: First suppose that Xy € CF

.v. This says then that v € H(P§Xo)a

and let v € ext(¥). Then Xy € CV

which means that fP(xO) = X,
Therefore ext(F).c:H(P,XO) and so F ¢ H(P,XO)o

Now suppose that F c:H(P,xO) and let v € ext(F). Then
v € H(P,xo), which implies that XV = fp(xo), This means that
XO € CV and hence XO € CF,'

Iet K Ybe a convex set in Enn In the sequel, the notation fh(K)
will be used to denote the minimal flat which contains K. Also,

relint(K) and relbd(K) will denote respectively the interior and

boundary of K, using the topology of K relative to fh(K).



Figure 1-3

7T
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Theorem 1-16. Let P €P and suppose that F is a face of P. Let

Xy € Eny x # 0. Then x, € rellnt(CF) if and only if F =P r1H(P,xo)o

Proof: Suppose first that X, € relint(CF). Then there exists some
g > 0 such that if || x - xo‘H < g and x €~<GF>, the linear span of

C then x € CF’

P
By Theorem 1-15, F e P f H(P;xo). Thus the proof will be com-

plete if it can be shown that P f H(P,xo) C F. Suppose that this is

not the case. Then there exists some vy € ext(P) \ ext(F) such that

o € H(P,xo). Choose X £ O such that F = H(P,xl) A P. Then

Xy 0V, < fP(xl) = XV for each v € ext(F). Also, Xy € CF by Theo-
-1

rem 1-15, Let X, = e(2 on -x D) (xl ~ xo) and let X3 = Xg = Xy

Then x3 €«<CF.> and ”x3 - xo | = ¢/2 < €. The desired contradiction

will be reached by showing that xB,E'CF, To do this, let v € ext(F),
It is clearly sufficient to show that xB_Q’Cv° This fact will be es-
tablished by the following sequence of inequalities in which the first .
inequality implies that x3 E’CQ’ each inequality is true if and only
if the succeeding one is, and the last inequality is known to be true:

v-x3 < voox3,

XB'(VO -v) >0,

[xg + e(2 llxg = % D7 xg = x)1e(vg = ¥) > 0,

-1
XO°(VO -v) + g2 on - %y I (xo - xl)v(vo -v) > 0,

XO°(VO -v) + xl-(v - vo) > 0,
xla(v - vo) > 0,
x1°VO < xlav.

Now for the proof of the converse implication, suppese that
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F = H(P,xo) NP. Given any v € ext(F) and v € ext(P) \ ext(F),
xo-(v - v) > 0. Therefore, there exists an &(v,v) > O such that if
lx - Xq | < e(vyv)y, then x.(v - ¥) > 0. Choose ¢ = min g(v,v)
where the minimum is taken over all choices of v € ext(F) and

v € ext(P) \ ext(F). Then for || x - %, | < &y x-v > xsv holds when-

ever v € ext(F) and v ¢ ext(P) \ ext(F), Now suppose that x ¢ <Cp >

and || x ~ X, I < €. The proof will be complete if it can be shown
that x € CF. Since x 6«(CF> = CF - CF, X = Xl - x2 where xl,
X, € Cp. Also, since I x - xoll < ¢ and by use of Theorem 1-11,

there exists some vy € ext(F) for which fp(x) = XV Now let v be
any element of ext(F). Then
XeV = X oV = XyeV
= fp(xl) - fp(x2>

f

Xl'VO - X2°VO

i
}—h
)
~~
"
g

Therefore, x € CFol

Corollary l-16a, With the hypothesis of Theorem 1-16, X € relbd(CF)

if and only if F is a proper subset of P N H(P,xo)n
Proof: This is true because relbd(Cp) = Cp \ relint(CF)os :

Corollary 1-16b, If F and G are two faces of P and if F 1is

not a subset of G, then CF'n relint(CG) = @,

Proof: Suppose there exists some Xy €Cp N relint(CG)o Then using
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Theorems 1-15 and 1-16, F c:H(P,xo) Nk =G, a cohtradictionO%

It will be shown later that for a polytope P in E , dim(Cv) =n
for each v € ext(P), so that in view of Theorems 1-10 and 1-16,
int(CV) # #. Hence there exists a finite number of the sets C, with

non-empty interiors for which En =LJCV and f is linear. The

P’Cv
next theorem shows that all sublinear functionals of this type are sup~

port functionals for some polytope.

Theorem 1-17. Let f be a sublinear functional and suppose that there

s V

exists sets Cl, CZ’ ceoy Cm and vectors Vis Voy cees Vo such that
m . 3
E = %?Ci, 1nt(Ci) A @ for each i, and C, = { x: £f(x) = Xev, e

Then f = f_. where P = conv{ Vi V

P c®oy Vm },

27
Proof: Let x € En. There exists some 1 such that x ¢ Ci’ that is,
f(x) = XeVso The proof will be complete if it can be shown that

Xevy > xevj, =1y 2y ¢++y m by Theorem 1-11, Suppose for some

that xev, < XV Choose y € int(Cj). For 0<t <1,

flty + (1 - t)x] < t£(y) + (1 - £)f(x)

[}

t(yevj) + (1 - t)(Xovi)

< tlyev,) + (1 - t)(xev,)
J J

]

[ty + (1 - t)x]«vjo
This contradicts the fact that y € int(Cj)ol

The next theorem shows how the facial cones of Definition 1-5 can
be used to characterize the faces of the sum of two polytopes. The

following lemma simplifies the proof:
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Lemma 1-18. Let A and B € C and Xy € En’ Xy # 0. Then

H(A+B;xo) A (A + B) = H(A,xo) N A+ H(B,xo) N B.

Proof: First let atb € H(A+B,x ) N (A+ B) where a € A and b €3
and suppose that a & H(A,xo). Then a-x, < fA(xO)’ which impliesthat

fA+B(XO) = fA(xO) + fB(xo) > aex. + b-xo = (a+b)ex., a contradlctlgn,

0 0

Thus a € H(A,x,) and similarly, b € H(B,x,).
Now let x+ y € H(A,xo) N A&+ H(B,xo) M B where x € H(A,xo) N A

and y € H(B,xo) fi B. Then x+ y € A+ B and
(x + y)exo = XeX. + yoX

o o = falxg) + fp(xy) = £, o(x.)

shows that x + y € H(A+B,xo).'

Theorem 1-18. Let P and Q € P and let F and G be faces of P

and Q, respectively, Then F + G is a face of P + @ 1if and only if

relint[C(P,F)] N relint[C(Q,G)] # ¢.‘

Proof: TFirst suppose that F + G is a face of P + Q. Then by Theo-
rem 1-7, there exists some X # 0 such tha£ F+G= H(P+Q,xo) N tP+Q),
By Lemma 1-18, F + G = H(P,xo) AP+ H(Q,xo) N Q. It will now be es-
tablished that F = H(P,xo) NP and G- H(Q,xo) NQ Let y€F and
suppose y & H(P,xo), Then fP(xo) > Y*Xy. Choose any ¥y € G. Then

y+yE€F+ G and thus (y + })-xo = (

) since F+G G:H(P+Q,xo),

' ¥

But 51n§e fP(xO) > yex. and fQ(xO) > yex

O’
(y + y)exo =YXy + Yexg < fP(xO) + fQ(xO) = fP+Q(xO)’

0]

a contradiction. Therefore, F < H(P,xo) A P and similarly,
G e H(Q,xo) t Q. Now since

F+ H(Q,xo) ngQe H(P,xo) nNpe+ H(Q,xO) AQ =F+ G
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it follows that H(Q,xo) N Qe G and similarly, H(P,xo) AnPcF.
Therefore F = H(P,xo) MP and G = H(Q,xo) N Q@ and so by Theorem
1-16, x, € relint{C(P,F)] N relint[C(Q,G)]. |
Conversely, suppose that x, € relint[C(P,F)] N relint[c(Q,G)].
By Theorem 1-16, F = H(P,xo) NP and G = H(Q,xo) n Q. Therefore,
using Lemma 1-18, F + G = H(P,xo) NP+ H(Q,xo) nQ-= H(P+Q,xo)ﬂ(BQ)ql
As was mentioned earlier, it will be shown later that int(Cv) % ]
for each v € exf(P). In view of this, the preceding theorem states as
a special case that if v € ext(P) and w € ext(Q), then v+wE€ext(P+Q)
if and only if int[C(P,v)] N int[C(Q,w)] # @ (cf. Theorem 1-3). An
example in E., which illustrates this result is given in Figure 1-4.

2
In the figure, int(Cvu) n int(sz) # @ and hence V), vy € ext(P+Q),

whereas Cv and Cw intersect only at the origin and hence

Z ext(P + Q).

Vv, + W

3 3



Figure l—'Ll‘o
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CHAPTER II

RELATION OF LOCAL SIMILARITY TO FACIAL CONES

In this chapter, two equivalence relations, positive homothety

and local similarity, will be defined on the collection P .

Definition 2-1, Let P and Q € P. The polytope P is said to be

positively homothetic to Q, written P ~@Q, if and only if there ex-

ists some o > O and X, € En such that P = aQ + Xy

Theorem 2-1. Positive homothety is an equivalence relation.

Proof: (i) Since P =1-P+ 0, P ~P.

(ii) Suppose that P ~Q, say P = aQ + x. where « > O,

0

Then @ = %ZP - %'L-x which implies Q ~ P.

O'i
(1i1) Suppose that P~Q and Q~R, say P =aQ+ x, and

Q = BR. + Yo where o > 0 and B> 0. Then

P =oaQ + xo

(PR + &O)'+ X

0

i)

.(QB)R + (ayo + xo)"-
shows that P ~ Roi

Suppose now that P and Q are two positively homothetic poly-
Also,

topes, say P = aQ + X By Theorem 1-3, ext(P) < ext(aQ)+ x

o’ o’

since C({xo},xo) = En’ C({xo},io)‘h C(aQ,z) = C(aQ,z) for any

21
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z € ext(aQ) and thus ext(aq) + Xy & ext(P) by use of Theorem 1-18.

Therefore, ext(P) = ext(aQ) + x. and hence by Theorem 1-2,

o)

ext(P) = a ext(Q) + x The next theorem shows that the facial cones of

Oo

a polytope P remain invariant under positive homothety.

O?

Theorem 2-2. If P and 4§ are‘positively homothetic, P = a + x

then for any w € ext(Q), C(Q,w) = C(P,ocw+xo)°

Proof: Let x € C(Q,w). This implies that f.(x) = x.w. Then

Q
£(x) = (x)

faQ+xO
(x)

anfx) + f(xo}

a(xew) + Xox

0

(ow + xo)vx

and therefore C(Q,w) C:C(P,aw+xo). By symmetry, C(P,aw+xo) ot C(Q,w),%

Definition 2-2. The polytope P 1is said to be lecally similar to the

polytope Q, written P =~ Q, if and only if
aimlH(P,x ) N P = aim{HQ,x,) N Q]

for every X4 # 0.

Theorem 2-3. Local similarity is an equivalence relation.

The proof of this theorem is immediate.
Suppose that P and Q are locally similar polytopes.and that
v € ext(P). Then by Theorem l—lO,'there exists an X, # 0 such that

{v} = H(P,xo) 1 P. Corresponding to v is the face H(sto) Qg of Q,

and by the local similarity, H(Q,xo) N Q is an extreme point, say w,



Figure 2-1. Positively Homothetic Polytopes in E

Figure 2-2. Localiy Similar Polytopes in E

e

e
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of Q. In general, the vextor x. used to determine v is not unique,

0
that is it may also be true that (v} = H(P,xl) N P where X # X9 and
there is no immediate guarantee that {w} = H(Q,xl) A Q, only that
H(Q,xl) N Q is some extreme point of Q. The next theorem shows that

the relationship described above is a function defined from ext(P) to

ext(Q).

Theorem 2-4. Let P and Q Dbe two locally similar polytopes and sup-

pose that v € ext(P), w € ext(Q) where {v} = H(P,xo) NP and

{(w} = H(Q,xy) N Q. If also (v} = H(P,x;) NP, then (w} = H(Q,xi)nQ.

Proof: Suppose that H(Q,xl) NQ=1{w} and w' # w. Then by Theo-
rem 1-16, xO’E int[C(P,v)] A int[C(Q,w')]. By Corollary 1-16b,

5 on the line segment Xo%y such that
L%, € bd[C(Q;w)]. Then by Corollary l-1léa, dim[H(Q,xz) nel>o.

%y & int[C(Q,w)]. Choose x

Therefore, by the local similarity, dim[H(P,xz)‘ﬁ Pl > O, Tgii;f??ﬁra-
dicts the fact that since int[C(P,v)] is convex, X, € intfcg?tfjj,
and hence H(P,xz) NP = (v} by Theorem 1-160' s

Although Theorgm 2-4 only establishes that fhe relatiOn that has
been defined from ext(P) to ‘ext(Q) is a function, it is aiyug}%g a

one to one correspondence, This is true because local similarity is
symmetric and hence Theorem 2-4 shows that the inverse relation from
ext(qQ) to ext(P) is also a function.

The next two lemmas are required for the proof of Theorem 2-5

which characterizes local similarity in terms of the facial cones of

Definition 1-5,
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Lemma 2-5a. Let P be a pdlytope in E_ and suppose that E ext(P),
If CE denotes n{Cv: v € E}, ‘then CE # {0} if and only if there ex-

ists a face F of P such that dim(F) < n -1 and conv(E) ¢ F.

Proof: First suppose that x, € CE’ X # 0. Define F = H(P,xo) A Pp.
Then F 1is a face of P whose dimension is not greater than n - 1

and since Xy €C it follows that E ¢ F and hence conv(E) ¢ F,

E'l
Now suppose that conv(E) ¢ F where F is a face of P,

dim(F) < n - 1. By Theorem 1-7, there exists some X, # 0 such that

F = H(P,xo) A P. Thus for each v €E, v € conv(E) o F & H(P,xo) and

therefore XoeV = fP(xO) which implies that X € Cv' gence Xq € Cfﬁﬁ

Lemma 2-5b. Let P be a polytope in En and let F be a face of P.
Let Ly = fh(F) - Yo where y, € ¥, Then L, and <C;> are orthogo-

nal complements.

Proof: The result will first be established for the special case when
F =P,

Case (1): Suppose dim(P) =1n. Then L, =E. In this case,
Cp = {0} by Lemma 2-5a. '

Case (2): Suppose dim(P) < n.. By Theorem 2-2, there is no loss
of generality if it is assumed that O € P so that LP = <P>. Iﬁ wiil
now be shown that CP = <P>L. Let X, € CP, Xy # 0. By Theorgm 1-15,
Pc H(P,xb). Since 0 € P e H(P,x,), it follows that fy(x,) = O. Now
let y € P. Then y € H(P,xo) and therefore y-x, = fP(xo) = 0. Thus
x, €5 =<,

K} K
Now let xl € <P» =P . This means that X 0y = 0 for every
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y € P and therefore fﬁ(xl) = O, Then for any v € ext(P),

v = 0 = fP(xl) which means that x, € Cv. Therefore x, € CP. This

X 1 1

completes the proof for the éaée F = P.
The remainder of the proof will be established by inducting down-

ward on the dimension of F. Thus suppose that for some k < dim(P) it

is true that if G is a face of P such that dim(G) = k then LG

and <CG> are orthogonal complements and suppose that dim(F) =k - 1.
Again assume that O € F so that LF = <F>, There exists a face G of
P such that F < G and dim(G) = k. By the induction hypothesis,

L 1
<CG> = <G> . It must now be shown that <CF> = <F> , Let X, € CF and
v € ext(F). Then XV = fp(xo) and since F & H(P,xo) by Theorem 1-15
L L
and since O € F, fP(xo) = 0. Therefore ext(F) ¢ C_. = <C> and

F F

L L
thus <> < <CF> which implies that <CF> © <F> . This inclusion also
gives dim(<CF>) <n-k+ 1., To complete the proof, it is sufficient

to show that dim(<CF>) >n-k+ 1, Let X €C Then using Theorem

o
1-15, G cC H(P,xl) N P and thus F is properly contained in

H(P,xl) 1 P. Therefore by Corollary 1-l6a, X, € relbd(CF) and hencg
Cq © relbd(CF)° Now this implies that dim(GG) < dim(CF), for if not
then dim(CG) = dim(CF), which implies that fh(CG) and fh(CF) are
the same, say K = fh(CG) = fh(CF); Choose x € relint(CG),»(cf;
Grinbaum, [ 2], p. 9, Th. 7). Then there exists an ¢ > O such that if
lx-%]l <e and x € XK, then x € Cge But since x € relbd(CF),
there exists some ﬁ € K\ CF c K\ CG such that Ix - % H < e, a
contradiction. Thus dim(CG) < dim(CF) and hence

L
dim(<CG>) = dim(<G@>" ) = n -~ k. There~

#

dim(<CF>) = dim(CF) > dim(CG)

fore dim(Cp) 2 n - k + l.'
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Theorem 2-5. Let P and Q € P. Then P=Q if and only if there ex-

ists a one to one correspondence between ext(P) and ext(qQ), say

v « w, such that C(P,v) = C(Q,w).

Proof: Suppose first that P=Q and let v+« w Dbe the one to one

correspondence established by Theorem 2-4. To show that C(P,v)=C(Q,w),

it‘is sufficient to show that int[C(P,v)] = int[C(Q,w)] (cf. Valentine,

7], p. 13, Th. 1.17). Let xq € int[C(P,v)]. Then by Theorem 1-16,

H(P,xo) NP = {v}. Then by local similarity, H(Q,xo) nQ=1{w}, and

thus X, € int[c(Q,w)], again by Theorem 1-16. Therefore,

int{C(P,v)] < int[C(Q,w)] and similarly, int[C(Q,w)] < int[C(P,v)].
Now suppose that v +«> w is any one to one ;orrespondence between

ext(P) and ext(Q) for which C(P,v) = C(Q,w). Let X, € En, X, £ 0,

and let F = H(P,xo) nPp, Gs= H(Q,xo) N Q. Suppose that

ext(F) = {Vl, Vo oee Vs}° It will now be shown that

ext(G) = {wl,,wa,loov ’ ws}o Let w € ext(G). By Theorem 1-15,

X, € C(Q,G) « ¢(Qy,w) = C(P,v). Thus by Theorems 1-9 and 1-15,

o0 v and hence
o e s V)

v € H(P,xo) A ext(P) = ext(F) = {vl? v
w € {wl, Way ter ws}.
Now let wj € {wl, Wa s

using Theorem 1-15, X, € ¢(pP,F) C(P,vj) = C(Q,wj) which implies that

“es » W }. Then Vs € ext(F) and again

vy € H(Q,xo) N ext(®) = ext(G). Therefore, ext(G) = {wl, Wos cec ws}
and hence C(P,F) = C(Q,G). Using Lemma 2-5b,
dim(F) + dim[C(P,F)] = n = dim(G) + dim[C(Q,G)],
and therefore dim(F) = dim(G) which means that P = Q by
Definition 2—2.!

It was seen in Theorem 2-5 that the facial cones C(P,v) of a
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polytope P play a fundamental role in the concept of local similarity.
In Theorem 1-16 ahd its‘corollaries, these cones and their relative in-
teriors and boundaries were described. Now a further investigation of

these cones will be made by determining their extremal elements. First,

two definitions concerning convex cones are in order.

Definition 2-3. Let C be a convex cone with vertex at the origin. A

point X #0 of C is said to be an extremal element of C, written

X, € extr(C), if and only if x. = x, + X

0 1 where Xy Xy € C implies

2

that there exists positive real numbers oy and oy such that

xl = alxo and x2 = qexo.

Definition 2-4. Let C Dbe a convex cone with vertex at the origin.

Then C is said to be salient if and only if there does not exist an

Xy € C, Xy # 0, for which also ~Xq € C.

A simple consequence of these definitions is the following{

Theorem 2-6. A non<salient cone C has no extremal elements,

Proof: If C 1is non-~salient, then there exists some Xy €cC, Xy # 0,

for which also —xo € C. Since x. = 2xo + (-xo) and there does not

0

exist an o > O such that —xo = axo, it is clear that Xq g extr(C)

and similariy, onbgbextr(C) for all real p. Now consider any

Xy € C which is not a multiple of x Then

O.
. = X 3 -
X, = B(xy + x5) + 2(xy - %)

shows that x, £ extr(C) because %(xl+xo) and %(xl—xo) are in C
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and %—(xl + x5) is not,a.poéitive multiple of x, or else x; would
¥

Since non~-salient cones have no extremal elements, it is appropri-

be a multiple of x
ate to determine which of the cones CF for a polytope P are salient.

Theorem 2-7. Let P be a polytope in En and suppose that F is any

face of P. If dim(P) = n, then each Cp

is salient. If dim(P)<n,

then each C. is non-salient.

F

Proof: Suppose that dim(P) = n and that CF is non-salient for some

face F of P. Then there exists an X # O such that both XO and

X, € CF' Now 51pce f_ is linear on CF’ fp(—xo) = -fp(xo). By the

P
definition of fP’ yex, < fP(xo) for every y € P and also

y-(-xo) < fP(-xo) = -fp(xo)

which implies that y.x. > fp(xo) for all y € P. Thus P C.H(P,xo)

0
and so dim(P) < n, a cohtradiction.

Now suppose that dim(P) < n. Then P is contained in some hyper-
plane, say P C:H(P,xo), XC # 0. By Theorem 1-15, Xq € Cpe The proof
will be cowplete if it can be shown that -, € CF‘ Let v € gxt(F)

and let y € P. Then since P CIH(P,xO), yex, = fP(xO) = v.x,. and

0.
thus »y-(-xo) = v-(fxo). Therefore fp(—xo) = v'(—xo) and henqe

0]

-X, € Cv' This implies then that fxo € CF.'
Now suppose that P is a polytope in Eh of dimension less than
n. Then by Theorem 2~7, CF' is non-salient for each face F of P.

The next result determines which of these facial cones are subspaces.

Theorem 2-8. If P is a pdlytope in E, dim(P) < n, and F is a
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face of P, then cF is a subspace if and only if F = P,
Proof: If F = P, then it was shown in the proof of Lemma 2-5b that
L
Cp = [£fh(P) - yo; where y, € P,
Suppose that ‘CF is a subspace. Since F is a face of P, there
exists some x, # O such that F = H(P,xo) N P. By Theorem 1-15,
x. €C and therefore, since C is a subspace, --xO € CF' Now since .

0 F F

f, is linear on C fP(—xo) = -fp(xo)° Let y € P. Then

P F’

yoxg < fP(xo) and y-(-xo) < fé(—xo) = -fP(xO), Therefore yex, =:%§xb)
which implies that P < H(P,xo) and s0 vP = F.'

The next result characterizes the extremal elements of the facial
cone C(P,F). Theorems 2~6 and 2-7 justify the reqﬁirement that

dim(P) = n in the hypothesis.

" Theorem 2-9. Let P be an n-dimensional polytope in En and let F

be a face of P. A point x, #0 of C

g isin extr(CF) if and only if

dim[H(P,xo) APl =n-~ 1,

Proof: Suppose first that x, € extr(CF) and let G = H(P,xo) N P, By

Theorems 1-15 and 1-16, F & G and Xy € relint(CG). Since CG C.CF,

it is clear from Definition 2-3 that X, € extr(CG). Thus
Xq € rellnt(CG) N extr(CG),
and it will now be shown that this implies that dim(CG) =1, Let
X € Cqs X # O.  Since Xy € rellnt(CG), there exists an ¢ > 0 such

that if |} x - X il <e and x € <C;>, ‘then x € C,. Define

- l . 4 E .
x, = x5 = (e/2) llx) I""x;. Then lix, - x I/l <e and x, € <C> =0

that %, € CG' Thus‘ X = %, } (e/2) Hxi ﬂ_lx

0 and therefore

1
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1 0
x5 € extr(CG). This shows that dim(CG) =1 and so dim(G) =n -~ 1 by

(e/2) ﬂxl Iﬂi?‘lxl and hence x, is a positive multiple of =x. since

Lemma 2-5b.
| Now suppose that dim(G) = n - 1. Then using Theorem 1-16, Lemma
2-5b, and Theorem 2—7; it follows that Xy € relint(CG) and that CG
is a ray. Suppose that Xg = X+ X5 Xy X € CF’ and suppose that
X, 4 CG. Then there exists some v € ext(3) such that X oV <pr(xl).
Now since fP is‘linear op CF"
Xg*V = X 0V +'x2~v'<_fp(xl) + fP(XZ) = fp(xo),

a contradiction. Therefore x1 € CG and similarly X5 € CG which im-

plies that' x, € extr(CF).|



CHAPTER III
INDECOMPOSABILITY OF POLYTOPES

In this chapter, the problem of expressing a given polytope P as
a sum of other polytopes will be considered. This problem is motivated
by the well-known fact that in E2’ every polytope can be written as a
finite sum of simplices, i.e. points, line segments and triangles (cf,
Yaglom and Boltyanski, [8], p.177). With this in mind, it is reason-
able to make the following conjectufe: In En' every polytope can be
written as a finife sum of simpliCes. However, it has recently been
shown that this conjectufe i§ false for n > 2 (cf. Shephard, [51).
The next theorem gives a necessary condition for a polytope to be ex-

pressable as a finite sum of simplices,

Theorem 3-1. Let P be a polytope in En. If P can be expressed as

a finite sum of simplices then all of its faces can be also.

t ’ ’
Proof: Suppose that P = %si where each Si is a simplex., Let F Dbe
a face of P, say F = H(P,xo) n p, X, # 0. Then by an easy generali-
zation of Lemma 1-18,
' (Es.,x) N ¥5, - S0HGS, k) N 8.1,
and each H(Si,xo) ns, is a Simplex.I
If all of the proper faces of a polytope P are expressable as a

finite sum of simplices, it does not follow that P has this property.

32
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This is true because as mentioned above, there exist polytopes in E

3

which cannot be decomposed into a finite sum of simplices, but every

polytope in E, has the property that its proper faces all have such a

3
decomposition.
Theorem 3-4 will provide a-useful characterization of when one i

polytope is a summand of another. First, some preliminary definitions

and results will be_needed.

Definition 3-1. Let P and Q be polytopes in En. Then P2 Q if

and only if dim[H(P,xO) nel> dim[H(Q,XO) n Q] for all Xy #Z 0.

Comparing this definition with Definition 2-2, the following result

is immediate.

Theorem 3-2. Let P and Q be polytopes in En. Then P=Q if and

oﬁly if P>Q and Q‘Z P.

The following theorem is the ahalogue of Theorem 2-5 and character-

izes the relation P> Q in terms of the facial cones.

Theorem 3~3%. Let P. and Q Dbe polytopes in En' Then P> Q if and

only if there exists a fﬁhcfiéh defined from-ext(P)>to ext(Q), say

v - w, such that C(P,v) C{C(Q,w)5

Proof: Suppose first that P 2 Q. If v € ext(P), then for some
X5 £ 0, {v} = H(P,xo) n P, Sinéé P > Q, H(Q,xo) N Q@ is some extreme

point, say w, of Q. The same proof as that of Theorem 2-4 shows that
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the correspondence v — w is a function from ext(P) to ext(Q). That
is, if also (v} = H(P,xl) NP, then (w} = H(Q,xl) N Q. Now to sho&

~ that c(pP,v) € c(Q,w), it is sufficient tp show that 7
int[C(P,v)] < int[C(Q,w)]. Let x, € int[C(P,v)]. Then by Theorem 1-16,
H(P,xl)-n P = {v}. Therefore H(Q,xl) N Q = {w} and so again by Theo-

rem 1-16, X € int[C(Q,w)].

Now suppose that v - w is any function from ext(P) to ext(Q)
for which C(P,v) € C(Q,w). For any Xy # 0O, let F = H(P,xo) AP and
G = H(Q,xo) N Q. Suppose that ext(F) = {vl, Ty coo, vm}o It will now
be shown that ext(G) = {wl, Wos oo wm}a Let w € ext(G). Using The-
orem 1«16,:Q)€;911nt[C(Q,G)] < int[C(Q,w)]. Now by Theorem 1~14, there
exists some v € ext(P) such thaf Xq € C(P,v). Then since |
C(P,v) N intfC(Q,w)] # ¥, it follows that C(P,v) € C(Q,w) and hence
v - w. Now since Xy € c(P,v), v € ext(P) N H(P,xo) = ext(F) =ﬁﬁ}ooog%g
and therefore w € {wl, coo, Qm]o

Now let wj € {w,, osoy wm}° Then vj € ext(F) and using Theorem
1-15, x, € C(p, F) © C(P,vj) c:C(Q,wj), which implies that
wj € ext(Q) N H(Q,xo) = ext(G). This completes the proof that

ext(G) = {wl, Woy oo0y wm]. From this fact it follows that

m m
C(P,F) = Qc(P,vj) c QG(Q,w ) = C(Q,8).

J
Therefore, using Lemma 2€5b,
dim(F) + dim{C(P,F)] = n = dim(G) + dim{C(Q,G)],
and hence, dim(F) - dim(G) = dim[C(Q,G)] - dim{C(P,F)] >.0, which im-
plies that dim(F) > dim(G)ol
Now suppose that P > Q and suppose that vv' is an edge of P.
Let v - wand v'>w'. If w#w', then ww' is an edge ;f‘ Q par-

allel to vv'. Thus w- w' =a(v - v') for some a > 0. If for every
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edge of P, the a so described satisfies the property o <1, then

the notation P 2 Q (rather than P > Q) will be used.

Theorem 3-4, Let P and Q be polytopes in En. Then Q is a sum-

mand of P if and only if P 2 Q.

The proof of this result is given by Shephard, [ 5]. See Figures
1-1 and 1- 4 for examples in EZ'
It is easy to see that any polytope P always possesses summands, for

if 0<+¢t S 1l and x is any fixed vector, then

0
P =[tP+ xO] + [(1-t)P ~ xO].
However, in this type of decomposition, the summands are positively

homothetic to P. This prompts the following definition:

Definition 3-2. Let P be a polytope in En. Then P is said to be

decomposable if and only if P has a non-degenerate summand which is
not positively homothetic to P. If P is not decomposable, then P

is called indecomposable.
Examples of decomposable polytopes are abundant. Some examples of
indecoﬁposable polytopes will be given later. The following theorem

characterizes indecomposability in terms of local similarity.

Theorem 3~5. Let P be abpolytope in En. Then P 1is indecomposable

if and only if P == Q implies that P ~ Q.

Proof: Suppose first that P is indecomposable and let P = Q. Choose
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areal a > O small enough so that aQ é P. Then by Theorem 3-4, af
is a summand of P, and hence by Definition 3-2, aQ ~ P which implies
Q~P,

Now suppose that P~ @ implies P~ Q and suppose that A is a
non+degenerate summand of P. Then by Theorem 3-4, A é P. Let v-—-a
denote the correspondence defined by Theorem 3-3. Siﬁce AL Py, for
each edge vivj of P, a - aj = aij(vi - vj), 0 < aij < 1. Choose
an a > 0 such that aaij < 1 for each edge of P and let AO = ad.
Then A, <P and so by Theorem 3-4, there exists a polytope B, for

0 0

whlch P = AO + BO. Now also»by Theorem 3>-4, B, <P, Let xi = aa,
for each a; € ext(A) and let the variable y (with subscripts) de-
note extreme points of BO where v - y 1is the correspondence from

ext(P) to ext(Bo) defined by Theorem 3-3. Now for any edge ViV

o
1.
b
i

of P, 6.j(vi - vj), 0<65,.<1 (6i, = a0, ),

i b i ij 3 ij

Byy(vy = v)y 0B <1

]

and Y. = Y.

]

Now using Lemma 1-18, x. +y, = v, and x,+ y, = v, and thus
i i i J J J

6. .+ B.. =1 which implies that each PB,. > O. This means that
13 1) 1]

BO =~ P. Thus by assumption, BO

Note that p < 1 since BO £ P. Thus,

pP + (1-p)P =P = A

~ P, say B, =pP + yo where p > O.

0

O’+ BO = AO + pP + yo,

which implies that AO = (1-p)P - Yo i.e« A, ~P and hence A~ P.E

0
Theorem 3-5 will now be used to show that all simplices are inde-

composable.

Theorem 3-6, Let P be a simplex in Eng Then P 1is indecomposable.

Proof: Suppose that Pz @ where ext(P) = {(vys vy =eey vm},
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ext(Q) = {wl, Wy oeey wm} and A is the correspondence between

ext(P) and ext(Q) of Theorem 2-4. Now since P is a simplex, Vi Vss
v2v3, ooy vm—lvm and vmyl are all edges of P. Since P =xQ,

Wy - Wy = p;l(v2 - vl), a > 0,

Wy = W, =,a2(v3 - VZ)’ o, > 0,

m T Yl T o‘m--l(vm - vm--l)’ am_f>0,

Wy - W= am(vl - vm), a > 0.

Adding corresponding sides of these equalities yields
0 = (ayray Jvy+lay-ay)vgtlagay)vgr oo vlay ooy vy g+ (o 1=0)7,

and (am-al)+(al~a2)+(a3-a2)+ soo +(am-2"am—l)+(am~1—am) = 0,

Therefore since ext(P) is affinely independent,

Letting o denote this common value, it follows that

W av. + (wl - avl)9

2 2

Wy = Ay + (w2 - ava) = vy + (wl - avl),
W= oV o+ (wm-l“ avm_l) =av + (wl «-mvl),
Wy = av, + (wm - avm) = av, + (wl - avl)°

Therefore, Q.-P.'
The following definition and theorem together with Theorem 36 will
provide numerous examples of indecomposable polytopes which are not

simplices and hence cannot be written as a sum of finitely many siplices.

Definition 3-3. Let P be a polytope in En and let K =&ﬁjF29.n,§h}

be a collection of r-faces of P, 2<r < n-l, such that
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dim(F, A F,, ) >0 for i=1,2, ., m-1. Then K is called a chain
of faces of P. The chain K 1is called an indecomposable chain if each
Fi is indecomposable. ‘Any extreme point or edge of Fl is sald to be

connected by K to any extreme point or edge of Fm.

Theorem 3-7. Let P De a polytope in En. If there exists an edge of

P to which each extreme point of P can be joined by an indecomposable

chain of faces of P, then P is indecomposable.

The proof of this theorem is given by Shephard, [51].
In view of Theorems 3-6 and 3-7, it is clear that any pyramid in

E3 formed by taking the convex hull of a 2-polytope ¥ and a point

Xy € fh(F) is indecomposable (see Figure 3-1), For such a pyramid P,

Jet X, be a point above one facet of P and below all the other fac-

ets of P. Then the polytope P, = conv(P U {xl}) is indecomposable.

This process can be repeated on one of the newly created facets of Pl’
or one of the other facets of P, each time resulting in an indecompos-
able polytope (see Figure 3-1).

Theorems 3-6 and 3-7 also show that any simplicial polytope, i.e.

one whose facets are all simplices, is:‘indecompos_able° The next result

gives a necessary condition for indecomposability.

Theorem 3-8, Let P be an indecomposable polytope in En, dim(P) > 2.
Then for each edge E of P, there exists some % € <c(P,E)>, XO%O, |
such that H(P,x ) N P € ext(P).

¢

Proof: Syppose that there exists an edge E of P such that for all
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Xy § <C(P,E)>, X5 # 0, dim[H(P,xo) N P] > 1. Choose ¥ Yo € E such
that "yl -, Il < lly -y I for every edge yy' of P. Let Q =%Y,
and it will now be shown that @ is a summand of P. Let X, € En”

X4 # 0. It will be shown first that dim[H(P,xo) npel> dim[H(Q,xo)FWQ],
If dim[H(Q,io) N Ql = 0, this is true. Otherwise, H(Q,xo) Q= Q.
Without loss of generality, assume that O € Q. Then using Theorem 1-15
and Lemma 2-5b, Xq € €(Q,Q) = QL =B = <C(P,E)>. Therefore, by as-

~ sumption, dim[HQ,xo) NQl =dim(Q) =1< dimEH(P,xO) n.P].

So far, it has been established that @ < P. By choosing yl and
¥, such that "yl - ¥ < lly -»y‘ I for all edges yy' of P, it
is clear that Q < P and so by Theorem 3-4, Q is a summand of P
which contradicts the assumption that P 1is indecomposable.a

It will now be shown that certain types of transformations from En

to En preserve indecomposabilitngnd decomposability.

Theorem 3-9. If f_ is a non-singular linear transformation from En

to En and P 1is a polytope in En, then P 1is indecomposable if

and only if f(P) is indecomposable.

Proof: First of all, f(P) is a polytope since
£f(P) = f(convlext(P)]) = conv(flext(P)]),

(cf. GrYnbaum, [2 ], p. 21, Th. 10)., Suppose now that P is indecom~

posable and that f(P) = A + B. Then P = L(a + B) = £3) + £71(B).

Thus f-l(A) = aP + X, and f-l(B) = BP + o where a > O and B > O.

Therefore, A = f(aP + xo) = af(P) + f(xo)g and similarly

B = Bf(P) + f(yo), which means that f(P) is indecomposable.

Now if f(P) is indecomposable, then P is indecomposable by



11

applying the preceding argument to f-l.l
Another type of transformation which preserves indecomposability

and decomposability is the affine transformation defined as follows:

Definition 3-4. Let g be a transformation from En to Ene Then g

is called affine if and only if glax + (l-a)y] = ag(x) + (l-a)g(y) for

all real o and x and y € En.

' The next resuit characterizes the affine transformations in terms

of linear transformations.

Theorem 3?10. Let g be a transformationh from En to Ena Then 8

is affine if and only if g has the form g(x) = f(x) + X, where f

is linear and X, is fixed.
Proof: Suppose first that g can be expressed as g(x) = f(x) + X,
where f is linear. Then,

flox + (1-a)yl +vx

glox + (1-a)y] 5
N = af(x) + (1-a)(y) + %,
= alf(x) + xo] + (L-alf(y) + xO]

i

ag(x) + (1-a)gly).
Now suppose that g is affine and define f as follows:
f(x) = g(x)'— g(0). The proof will be conipleted by showing that f is

linear.

it

(i) Homogeneity: flax) = flax + (1-a)0]

= glax + (1-a)0] ~ g(0)

= ag(x) + (1-a)g(0) - g(0)
= alg(x) - g(0)]

= af(x).
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f

(ii) Additivity: f(x+y) = fl2Gx + £y)1

2fEx + 3y)

11

2lgdx + 3y) - g(0)]

]

il

2[%@6{) + 5g(y) - g(0)]
Lglx) - g(0)] + [gly) - g(0)]
£f((x) + f(y).'

Now if g is an affine transformation, say g(x) = f(x) + X
where f 1is linear, then g 1is called non-singular if and only if £
is non-singular. As in the case of linear transformations, an affine

transformation is non-~-sihgular if and only if it is one to one and onto.

Theorem 3-11. Let g be a non-singular affine transformation from En

to En and let P be a polytope in En. Then P 1is indecomposable if

and only if g(P) is indecomposable.

Proof: By Theorem 310, g has the form g(x) = f(x)'+ Xy where f
is a non-singular linear transformation. By Theorem 3-9, P 1is inde-
composable if and only if f£(P) is indecomposable. Therefore, the %he—
orem follows since g(P) = f(P) + xonl

The remainder of this chapter will Be concerned with characterizing

the indecomposable polytopes in terms of their support functionals. To

do this, it is necessary to consider the Steiner point of a polytope.

Definition 3=5. Let P be a polytope in En and let Snmlz'ﬂx;ﬁliﬂéik

The Steiner point of P,¢;S(P),$ is defined as follows:

S(P) = T plC(Rw) N Sl v,

i=lu(s )

n-1
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w@ere ext{P) = {vl, Voy e vm}.
From this definition, and in view of Theorem 1-14 and Corollary 1l-
16b, it follows that S(P) is a strictly positive convex combination of

ext(P) and hence S(P) € relint(P). Some other properties of the

Steiner point are given in the following theorem.

Theoreﬁ 3-12. The Steiner point has the following properties:

(2) 8(P+ Q) =8
(b) S(GP) = aS(P),

(e) 8s{{x}) = x.

For the proof of these facts, see Grinbaum, [2 ], p. 308.
From this point on, only polytopes P for which S(P) = 0 will
be considered. In this setting, indecomposability has the following

form:

Theorem 3-13. Let P be a polytope in E , 5(P) = 0. Then P is in-
decomposable if and only if P = Q + R where 5(Q) = S(R) = O implies

that Q@ = aP and R = PP where a >0 and B > O.

Proof: First suppose that P is indecomposable and that P = Q + R

where 8(Q) = 8(R) = O. Then by Definition 3-2, Q = aP + X, and

R=0P + X where a > 0 and B > O. Then

"
el

0 = 8(Q) = S(aP + xo) = aS(P) + S({xo}) o

and similarly, X, = 0.

Now suppose that P = Q + R where S(Q) = S(R)

]

0O implies that
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Q and R are positive multiples of P. Let P = A + B. Then
0 = 8(P) = 8(A + B) = 8(4) + S(B),
and hence P = [4 - S(A)] + [B - 8(B)] and S[A - S(A)] = 8[B - S(B)j%:‘:oi
Therefore, A - S(A) =aP and B ~ S(B) = BP where a > 0 and B> 0
which implies that A~P and B~ P ahd hence P 1is indecomposable
by Definition 3-2..
Now lét S= {fP: P € Pand S(P) = 0}. ?he next result shows that

S is a convex cone in the space of functionals on En°

Theorem %*-14. The set S is a convex cone,

Proof: (1) If f_ and f. €S, then f_+ f =Tf and

P Q P Q P+Q
S(P+ Q) = S(P) + 8(Q) = 0 implies that "f’P + f €S,
(2) 1If fP € S and a > 0, then afP = faP and

3(aP) = aS(P) = O implies that afy €S °l
The next theorem characterizes the indecomposable polytopes as

those whose support functionals are extremal elements of S.

Theorem 3-15. Let P be a polytope in E , S(P) = 0. Then P is

indecomposable if and only if fj € extr(S).

Q R
and thus P = Q + R by Theo-

Proof: Suppose first that P 1is indecotiposable and that fP =f 4+ f

where S(Q) = S(R) = O. Then fP = fQ+RE

rem 1-5, part (e), Therefore, by Theorem 3-13, @ =aP and R = BP
where a > O and B > 0. Therefore fQ = faP = afp and va= fﬁP = ﬁfp
which implies that fj € extr(S) by Definition 2-3.

Now suppose that fj € extr(8) and let P =Q + R where
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S(Q) = S(R) = O, Then fp = fQ+R = fQ + fp, which implies that

fQ = afP and fR = BfP where o> 0 and B> 0. Thus f. = f

_ Q. aP
fp = fgp which implies that Q = aP and R = PP’ and hence P is in-

and

decomposable by Theorem 3—13°'



CHAPTER IV
SUMMARY AND CONCLUSICNS

Chapter I began with some elementary facts about convex sets which
apply in particular to polytopes. Two characterizations of the support
functional of a polytope were obtained, One of these characterizations
established that fP(x) = max{x.v: v € ext(P)}. This prompted the defi-
nition of facial cones, the sets C(P,F) = {x: x.v = fP(X) VY v € ext(F)}
where F 1is any face of P.

It was shown that these facial cones were all convex cones with
vertices at the origin. Also, useful characterizations of C(P,F),
relint[C(P,F)], and relbd[C(P,F)] were given using support hyper-
planes for P. These facial cones were also used to characterize the
faces of the sum of two polytopes. |

In Chapter II, the facial cones were used to characterize local
similarity of polytopes. The most important result needed was the fact
that for any face F of a polytope P, such that 0 € F, <F> and
<C(P,F)> are orthogonal complements.

It was then established that for n-dimensional polytopes in En,
each facial cone C(P,F) is salient whereas for lower dimensional poly-
topes in En, all of the facial cones are non-salient. This informa-
tion was used to characterize the extremal elements of the facial cones.

In Chapter III, the concepts of indecomposability and decomposa-

bility of polytopes were defined. Shephard, [ 51, characterized when

L6
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one polytope is a summand of another. This result was used to prove
that a polytope P 1is indecomposable if and only if every polytope
locally similar to P must be positively homothetic to P.

It was then shown that every simplex is indecomposable. In En,

n > 2, this result together with a sufficient condition for indecom-
posability due to Shephard yields many examples of indecomposable poly-
topes that are not simplices. Another result provided a necessary con-
dition for a polytope to be indecomposable in terms of its edges and
extreme points,

In E27 every polytope can be expressed as a finite sum of sim-
plices, however this result does not generalize to higher dimensions.
It was shown that a necessary condition for a polytope to be expressable
as a finite sum of simplices is that each of its faces be expressable
as a finite sum of simplices. An interesting problem which remains un-
solved is that of characterizing the polytopes which can be expressed
as a finite sum of simplices in En for n> 2.

~ It was established that non~singular linear and affine transforma-
tions preserve indecomposability and decomposability.

Finally, it was shown that the extremal elements of the convex
cone of support functionals of polyfopes with Steiner point at the
origin are precisely those of the indecomposable polytopes. &n unsolv-
ed problem concerning this result would be to characterize this cone of
functionals and its extremal elemehts in such a way as to shed new light

on indecomposability of polytopes.
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