FACIAL CONES, LOCAL SIMILARITY AND
INDECOMPOSABILITYY OF POLYTOPES

By
JOE DALE FLOWERS
Bachelor of Science Southwestern State College Weatherford, Oklahoma 1965
Master of Science Oklahoma State Ưniversity Stillwater, Oklahoma 1966

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements \Rightarrow
for the Degree of
DOCTOR OF PHILOSOPHY
August, 1969

$$
\begin{aligned}
& 196 \\
& 17090 \\
& 644 f \\
& 0802
\end{aligned}
$$

This thesis is a study of polytopes in finite dimensional Euclidean space, E_{n}. Some of the results obtained, especially those in the first part of Chapter I, are also valid in a more general setting. However, a polytope is always a finite dimensional set and hence a finite dimensional setting is appropriate.

It should be pointed out that in some mathematical writing the term "polytope" may have a different or more general meaning than the one used here. Possibly the terminology "convex polytope" should be used for precision. However, to avoid a large number of repetitions of the word "convex", the shorter term "polytope" is used. This practice is also followed by Grünbaum, [2].

The terminology and symbolism used is either defined or is the same as that used in Grünbaum, [2], and Valentine, [7]. The end of a proof is marked by the symbol.

Chapter I concerns itself with the support functional and the facial cones of a polytope. In Chapter II, more information is obtained about the facial cones which in turn are used to characterize local similarity of polytopes. The third chapter is a study of indecomposable and decomposable polytopes.

I would like to express my deep appreciation to Professor E. K. McLachlan for the inspiration he has provided over the past three years and his assistance in the preparation of this thesis. My thanks go toProfessors Hiroshi Uehara, John Jobe, and John Stone for their assist-ance while serving as members of my committee. Also, I want to thankmy parents and my wife Esther for their encouragement and moral sup-port during my graduate studies.Finally, I am indebted to the Department of Health, Education andWelfare for providing an NDEA fellowship this past year.

TABLE OF CONTENTS
Chapter Page
I. FACIAL CONES OF POLYTOPES 1
II. RELATION OF LOCAL SIMILARITY TO FACIAL CONES 21
III. INDECOMPOSABILITY OF POLYTOPES 32
IV. SUMMARY AND CONCLUSIONS 46
SELECTED BIBLIOGRAPHY 48

CHAPTER I

FACIAL CONES OF FOLYTOPES

Let \mathcal{C} be the collection of all compact convex sets in Euclidean n-space E_{n}. Then C can be given an algebraic structure by making the following definitions:

$$
\begin{aligned}
& A+B=\{a+b: a \in A, b \in B\}, \\
& \alpha A=\{\alpha a: a \in A\} \text { for any real } \alpha .
\end{aligned}
$$

The collection C with these two operations has all of the defining properties of a real linear space except for the existence of additive inverses and the property $(\alpha+\beta) A=\alpha A+\beta A$ for α and β arbitrary real numbers. It is easy to see that an element of C has an additive inverse if and only if it is a singleton. The property $(\alpha+\beta) A=\alpha A+\beta A$ holds provided that $\alpha \beta \geq 0$. Proofs of these facts about the collection \mathcal{C} can be found in Grünbaum, [2], p. 317. Although in general elements of \mathcal{C} do not possess additive inverses, it can be shown that the cancellation law for addition holds, that is $A+C=B+C$ implies that $A=B$. For the proof of this fact, see Rádström, [4], p. 167.

Associated with each convex set K is a certain subset of K called the set of extreme points of K. The extreme points of a convex set will be very useful in the sequel and they are defined as

Definition 1-1. Let K be a convex subset of E_{n} and let $x_{0} \in K$. Then x_{0} is an extreme point of K, written $x_{0} \in \operatorname{ext}(K)$, if and only if there do not exist two distinct points x_{1} and x_{2} of K and a real number $t, 0<t<1$, such that $x_{0}=t x_{1}+(1-t) x_{2}$.

A fundamental result about the extreme points of a set in C is the Krein - Milman theorem which is as follows:

The proof of this theorem appears in many places, for example by Grlinbaum, [2], p. 18.

The set of extreme points of any scalar multiple of a convex set K is determined by the set of extreme points of K and the scalar as follows:

Theorem l-2. Let K be a convex set in E_{n} and let α be any real number. Then $\operatorname{ext}(\alpha K)=\alpha \operatorname{ext}(K)$.

Proof: First note that in the case $\alpha=0, \operatorname{ext}(\alpha K)=\{0\}=\alpha \operatorname{ext}(K)$. Suppose then that $\alpha \neq 0$ and let $\alpha x \in \operatorname{ext}(\alpha K), x \in K$ and assume that $x \notin \operatorname{ext}(K)$. Then by Definition l-l, there exists two distinct elements x_{1} and x_{2} of K and a real $t, 0<t<l$, such that $x=t x_{1}+(1-t) x_{2}$. Then $\alpha x=t\left(\alpha x_{1}\right)+(1-t)\left(\alpha x_{2}\right)$, which contradicts the supposition that $\alpha \mathrm{x} \in \operatorname{ext}(\alpha \mathrm{K})$. Therefore $\mathrm{x} \in \operatorname{ext}(\mathrm{K})$ and
hence $\alpha x \in \alpha \operatorname{ext}(K)$ and so $\operatorname{ext}(\alpha K) \subset \alpha \operatorname{ext}(K)$. This inclusion implies the reverse inclusion, for

$$
\operatorname{ext}(K)=\operatorname{ext}[(1 / \alpha) \cdot \alpha K] \subset(1 / \alpha) \operatorname{ext}(\alpha K)
$$

which is equivalent to $\alpha \operatorname{ext}(K) \subset \operatorname{ext}(\alpha K)$.

In view of Theorem 1-2, one might expect that

$$
\operatorname{ext}(A+B)=\operatorname{ext}(A)+\operatorname{ext}(B)
$$

However in general this is not the case and it can only be concluded that $\operatorname{ext}(A+B) \subset \operatorname{ext}(A)+\operatorname{ext}(B)$. Later on, in Theorem 1-18, it is determined exactly which elements of $\operatorname{ext}(A)+\operatorname{ext}(B)$ are in $\operatorname{ext}(A+B)$ in the case where A and B are polytopes.

Theorem 1-3. For convex sets A and B in E_{n},

$$
\operatorname{ext}(A+B) \subset \operatorname{ext}(A)+\operatorname{ext}(B)
$$

Moreover, if $z \in \operatorname{ext}(A+B), z=x+y$ where $x \in A$ and $y \in B$, then $x \in \operatorname{ext}(A)$ and $y \in \operatorname{ext}(B)$.

Proof: Suppose that $x \notin \operatorname{ext}(A)$. Then by Definition l-1, there exist elements x_{1} and x_{2} in $A, x_{1} \neq x_{2}$, and a real number t, $0<t<I$, such that $x=t x_{1}+(1-t) x_{2}$. Then

$$
\begin{aligned}
z & =x+y \\
& =t x_{1}+(1-t) x_{2}+y \\
& =t\left(x_{1}+y\right)+(1-t)\left(x_{2}+y\right)
\end{aligned}
$$

which contradicts the fact that $z \in \operatorname{ext}(A+B)$. Therefore, $x \in \operatorname{ext}(A)$ and similarly, $y \in \operatorname{ext}(B)$.

The following result is an easy consequence of Theorems l-l and 1-3, and will be used later to show that the sum of two polytopes is
again a polytope. It also provides a practical method of obtaining $A+B$ from $\operatorname{ext}(A)$ and $\operatorname{ext}(B)$ (cf. Figure 1-1).

Theorem 1-4. If A and $B \in C$, then $A+B=\operatorname{conv}[\operatorname{ext}(A)+\operatorname{ext}(B)]$.

Proof: By Theorem 1-3, $\operatorname{ext}(A+B) \in \operatorname{ext}(A)+\operatorname{ext}(B)$, and therefore, using Theorem l-l, $A+B C \operatorname{conv}[\operatorname{ext}(A)+\operatorname{ext}(B)]$. Also, since $\operatorname{ext}(A)+\operatorname{ext}(B) \subset A+B$ and $A+B$ is convex, $\operatorname{conv}[\operatorname{ext}(A)+\operatorname{ext}(B)] \subset A+B$.

A very important concept to be used in the sequel is that of a face of a polytope. However, this concept can also be defined for any convex set as follows:

Definition 1-2. Let K be a convex subset of E_{n}. A set F is a face of K if and only if $F=K, F=\varnothing$, or $F=H \cap K$ where H is some supporting hyperplane of K. The faces K and \varnothing are called improper faces of K. All other faces of K are called proper faces. If $\operatorname{dim}(F)=j$, then F is called a j-face of K. The $O-f a c e s$ of K are also called exposed points of K , and the totality of such points is denoted by $\exp (K)$.

Later in the development many results will depend upon the concept of the support functional of a polytope. As in the case of Definition l-2, this functional can be defined for any compact convex set as follows:

Definition 1-3. Let $K \in C$. For any $x \in E_{n}$, define $f_{K}(x)=\sup _{y \in K} x \circ y$.

The functional f_{K} is called the support functional of K.

Theorem 1-5. Support functionals have the following properties:
(a) real valued,
(b) sublinear,
(c) $f_{A}+f_{B}=f_{A+B}$,
(d) $f_{\alpha A}=\alpha f_{A}$ for $\alpha \geq 0$,
(e) $f_{A}=f_{B}$ implies that $A=B$,
(f) $A=\left\{x: x \cdot y \leq f_{A}(y)\right.$ for all $\left.y\right\}$.

For the proof see Valentine, [7],pp. 58-59 and p. 153.
If A and B are two compact convex sets in E_{n}, then so are the sets $A \cap B$ and $\operatorname{conv}(A \cup B)$, (cf. Valentine, [7], p. 30, Th, 3.10). By defining $A \wedge B=A \cap B$ and $A \vee B=\operatorname{conv}(A \cup B)$, the collection C with the operations \wedge and \vee form a lattice with respect to the order relation set inclusion. The next theorem considers the support functionals of $A \vee B$ and $A \wedge B$ in terms of f_{A} and f_{B}

Theorem l-6. Let A and $B \in C$. Then $f_{A V B}=\max \left(f_{A}, f_{B}\right)$. If also $A \cup B \in C$, then $f_{A \wedge B}=\min \left(f_{A}, f_{B}\right)$.

Proof: Let $x \in E_{n^{\prime}}$. Since $A \subset A \vee B$,
$f_{A}(x)=\sup \{x \cdot y: y \in A\} \leq \sup \{x \cdot y: y \in A \vee B\}=f_{A V B}(x)$.
Similarly, $f_{B}(x) \leq f_{A V B}(x)$ and hence $\max \left[f_{A}(x), f_{B}(x)\right] \leq f_{A V B}(x)$.
Now let $y \in \operatorname{conv}(A \cup B)$. Then there exists $y_{1} \in A, y_{2} \in B$ and a real $t, \quad 0 \leq t \leq 1$, such that $y=t y_{1}+(1-t) y_{2}$ (cf. Valentine, [7],
p. 16, Th. 1.3). Thue,

$$
\begin{aligned}
x \cdot y & =x \cdot\left[t y_{1}+(1-t) y_{2}\right] \\
& =t\left(x \cdot y_{1}\right)+(1-t)\left(x \cdot y_{2}\right) \\
& \leq t f_{A}(x)+(1-t) f_{B}(x) \\
& \leq t \max \left[f_{A}(x), f_{B}(x)\right]+(1-t) \max \left[f_{A}(x), f_{B}(x)\right] \\
& =\max \left[f_{A}(x), f_{B}(x)\right]
\end{aligned}
$$

and therefore $f_{A V B}(x) \leq \max \left[f_{A}(x), f_{B}(x)\right]$.
Now assume that $A \cup B$ is convex and again let $x \in E_{n}$. Then $f_{A \wedge B}(x)=\sup _{y \in A A B} x \cdot y \leq \sup _{y \in A} x \cdot y=f_{A}(x)$ and similarly, $f_{A \wedge B}(x) \leq f_{B}(x)$ and hence $f_{A \wedge B}(x) \leq \min \left[f_{A}(x), f_{B}(x)\right]$.

Now suppose that $f_{A \wedge B}(x)<\min \left[f_{A}(x), f_{B}(x)\right]$. Then $f_{A \wedge B}(x)<f_{A}(x)$ and $f_{A \wedge B}(x)<f_{B}(x)$. There exists $y_{1} \in A$ and $y_{2} \in B$ such that $f_{A}(x)=x \cdot y_{1}$ and $f_{B}(x)=x \cdot y_{2}$ (cf. Valentine, [7], p. 58, Th. 5,2). Let $t=\inf \left\{\alpha: 0 \leq \alpha \leq 1\right.$ and $\left.\alpha y_{1}+(1-\alpha) y_{2} \in A\right\}$ and define $y_{t}=t y_{1}+(1-t) y_{2}$. Then $y_{t} \in A$ since A is closed. If $t=0$, then $y_{t}=y_{2} \in B$. If $t>0$, then $\alpha y_{1}+(1-\alpha) y_{2} \in B$ for $0 \leq \alpha<t$ since $A \cup B$ is convex and hence $y_{t} \in B$ since B is closed. Thus in any case, $y_{t} \in A \cap B$. Therefore, $x \circ y_{t} \leq f_{A \wedge B}(x)$. However,

$$
\begin{aligned}
x \cdot y_{t} & =x \cdot\left[t y_{1}+(1-t) y_{2}\right] \\
& =t\left(x \cdot y_{1}\right)+(1-t)\left(x \cdot y_{2}\right) \\
& >t f_{A A B}(x)+(1-t) f_{A \wedge B}(x) \\
& =f_{A \wedge B}(x),
\end{aligned}
$$

a contradiction.
Now suppose that $K \in C$ and $x_{0} \in E_{n}, x_{0} \neq 0$. It will be convenient to use the notation $H\left(K, x_{0}\right)$ to represent $\left\{x: x \cdot x_{0}=f_{K}\left(x_{0}\right)\right\}$.

Thus $H\left(K, x_{0}\right)$ is a hyperplane in E_{n}. The following theorem gives more information about $H\left(K, x_{0}\right)$ and also shows the reason for calling f_{K} a support functional.

Theorem 1-7. The set $H\left(K, x_{0}\right)$ is a hyperplane of support for K. Conversely, if H is any hyperplane of support for K, then there exists an $x_{0} \neq 0$ for which $H=H\left(K, x_{0}\right)$.

Proof: By Definition $1-3, y \cdot x_{0} \leq f_{K}\left(x_{0}\right)$ for every $y \in K$, so that $H\left(K, x_{0}\right)$ bounds K. That $H\left(K, x_{0}\right)$ supports K follows from Valentine, [7], (cf。p. 58, Th. 5.2).

Now suppose that $H=\{x: f(x)=\alpha\}$ is any hyperplane of support for K. Suppose, without loss of generality, that $f(y) \leq \alpha$ for all $y \in K$. There exists some $x_{0} \neq 0$ for which $f(x)=x \cdot x_{0}$ for all $x \in E_{n}$ (cf. Taylor, [6], pp. 44-45). Thus $y \cdot x_{0} \leq \alpha$ for all $y \in K$, which implies that $f_{K}\left(x_{0}\right) \leq \alpha$. Also, if y_{0} is any element of $H \cap K$, then $f_{K}\left(x_{0}\right) \geq y_{0} \cdot x_{0}=\alpha$. Therefore, $f_{K}\left(x_{0}\right)=\alpha$ and so $H=H\left(K, x_{0}\right)$.

The remainder of this study will be concerned primarily with the concept of a polytope. Polytopes are defined as follows:

Definition 1-4. Let P be a subset of E_{n}. Then P is a polytope if and only if there exists a finite set A such that $P=\operatorname{conv}(A)$.

There are several different characterizations of a polytope (for example, see Grünbaum, [2], pp. 3l-32). The following characterization will be sufficient for the results to be obtained here.

Theorem 1-8. Let P be a subset of E_{n}. Then P is a polytope if and only if $P \in C$ and $\operatorname{ext}(P)$ is finite.

Proof: Suppose first that $P=\operatorname{conv}(A)$ where A is finite. Clearly, P is convex and also P is compact (cf. Valentine, [7], p. 40, Th. 3.10). To show that $\operatorname{ext}(P)$ is finite, it is sufficient to show that $\operatorname{ext}(P)$ is contained in A. Suppose there exists some $x_{0} \in \operatorname{ext}(P) \backslash A$. Then $A \subset P \backslash\left\{x_{0}\right\}$ and it is easy to see that $P \backslash\left\{x_{0}\right\}$ is convex since $x_{0} \in \operatorname{ext}(P)$. This contradicts the fact that P, being the convex hull of A, is the smallest convex set containing A.

Now suppose that $P \in C$ and that $\operatorname{ext}(P)$ is finite. Then Theorem $1-1$ implies that $P=\operatorname{conv}[\operatorname{ext}(P)]$ and hence P is a polytope.

Let P denote the collection of all polytopes in E_{n}. Theorem l-8 implies that $P \subset C$. Moreover, Theorem $1-2$ implies that P is closed under scalar multiples and Theorem $1-4$ shows that P is closed under sums. Therefore, P is an algebraic sub-structure of C.

The next result shows that any face F of a polytope P is again a polytope and characterizes the extreme points of F in terms of the extreme points of P and the hyperplane of support for P which determines F.

Theorem 1-9. Let F be a face of a polytope P. Then F is a polytope. In fact, if $F=H \cap P$ where H is a hyperplane of support for P, then $\operatorname{ext}(F)=H \cap \operatorname{ext}(P)$ 。

The proof iṣ given by Grúnbaum, [2], (cf.p.18, Th. 2). From Theorem l-9, it is clear that a polytope has only a finite number of

faces.

It can be shown that for any convex set K in E_{n}, $\exp (K) \subset \operatorname{ext}(K)$ (cf. Grünbaum, [2], p. 18). In general, this containment is proper, even for compact convex sets. An example of this in E_{2} is given by Figure l-2 in which K is the set obtained by taking the convex hull of a disk and a point not in the disk. The point x_{0} in the figure is in $\operatorname{ext}(K)$ but not in $\exp (K)$.

Figure $1-2$.

The following theorem shows that for polytopes, extreme points and exposed points coincide.

Theorem 1-10. Let $P \in P$. Then $\operatorname{ext}(P)=\exp (P)$,

The proof of this theorem follows easily from two theorems of Grümbaum, [2], (cf. Th. 3, p. 18 and Th. 9, p. 19).

The next two theorems characterize the support functional of a polytope.

Theorem 1-11. Let $P \in P$ and $x \in E_{n^{\prime}}$. Then $f_{p}(x)=\max \{x \cdot v: v \in \operatorname{ext}(P)\}$.

Proof: Clearly, $f_{p}(x) \geq \max \{x \cdot v: v \in \operatorname{ext}(P)\}$. Let $y \in P$. By Theorem l-l, $P=\operatorname{conv}[\operatorname{ext}(P)]$ and therefore $y=\sum_{l}^{m} \alpha_{i} v_{i}$ where for each i, $v_{i} \in \operatorname{ext}(P), \quad \alpha_{i} \geq 0, \quad$ and $\sum_{1}^{m} \alpha_{i}=1$. Then $x \cdot y=\sum_{1}^{m} \alpha_{i}\left(x \cdot v_{i}\right) \leq \sum_{1}^{m} \alpha_{i}[\max \{x \cdot v: v \in \operatorname{ext}(P)\}]=\max \{x \cdot v: v \in \operatorname{ext}(P)\}$. Therefore, $\quad f_{P}(x) \leq \max \{x \cdot v: v \in \operatorname{ext}(P)\}$

Theorem l-1l shows that the support functional of a polytope is the maximum of a finite number of linear functionals. The next result establishes the converse of this statement.

Theorem 1-12. Suppose that f is a functional such that for all $x \in E_{n}$, $f(x)=\max \{x \cdot v: v \in A\}$ where A is a finite set. Then $f=f_{p}$, where $P=\operatorname{conv}(A)$. Also, $A=\operatorname{ext}(P)$ if and only if there does not exist a proper subset A_{0} of A such that $f(x)=\max \left\{x \cdot v: v \in A_{0}\right\}$ for all x.

Proof: Recall that in the proof of Theorem 1-8, it was shown that $\operatorname{ext}(P) \subset A$. Therefore, using Theorem l-ll,

$$
f_{P}(x)=\max \{x \cdot v: v \in \operatorname{ext}(P)\} \leq \max \{x \cdot v: v \in A\}=f(x) .
$$

But also, $f(x)=\max \{x \cdot v: v \in A\} \leq \sup \{x \cdot y: y \in P\}=f_{P}(x)$, and therefore $f(x)=f_{p}(x)$.

To prove the second part of the theorem, first suppose that
$A=\operatorname{ext}(P)$ and assume there exists a proper subset A_{0} of A such
that $f(x)=\max _{v \in A_{0}} x \cdot v$. Then, as noted above, $\operatorname{ext}(P) \in A_{0}$, a contradiction.
Now suppose that $A \neq \operatorname{ext}(P)$. Then $\operatorname{ext}(P)$ is properly contained
in A and therefore, in view of Theorem l-1l,

$$
f(x)=\max \{x \circ v: v \in \operatorname{ext}(P)\}, \text { a contradiction. }
$$

Theorem l-ll prompts the following definition:

Definition 1-5. For $P \in P$ and $v \in \operatorname{ext}(P)$, let

$$
C(P, v)=\left\{x: f_{P}(x)=x \cdot v\right\}
$$

Also, if F is a face of P, let $C(P, F)=\cap\{C(P, V): v \in \operatorname{ext}(F)\}$ 。

When no confusion arises, the notations C_{V} and C_{F} will be used instead of $C(P, v)$ and $C(P, F)$.

Theorems l-13 and l-14 give some useful information about the sets of Definition 1-5.

Theorem l-13. For $P \in P$ and any face F of $F_{\vartheta} C_{F}$ is a closed convex cone with vertex at the origin.

Proof: Let $v \in \operatorname{ext}(P)$. From Theorem l-ll, it is clear that the functional f_{p} is continuous and hence the functional defined by $h(x)=f_{P}(x)-x \circ v$ is also continuous. Thus $h^{-1}(0)=C_{v}$ is a closed set.

Now if $x \in C_{v}$ and α is any nonnegative real number, then $f_{P}(\alpha x)=\alpha f_{P}(x)=\alpha(x \circ v)=(\alpha x) \circ v$, which implies that $\alpha x \in \mathcal{C}_{v}$.

Now suppose that x and $y \in C_{v}$. Then

$$
f_{p}(x+y) \leq f_{p}(x)+f_{p}(y)=x \circ v+y \circ v=(x+y) \circ v
$$

Also, $f_{p}(x+y) \geq(x+y) \cdot v$ by Definition $1-3$. Therefore, $x+y \in C_{v}$.
Thus C_{v} is a closed convex cone with vertex at 0 and therefore
so is $C_{F}=\cap\left\{C_{V}: \forall \in \operatorname{ext}(F)\right\} .1$

The cone C_{F} will be called the facial cone of P corresponding to F.

Theorem 1-14. Let $P \in P$. Then $U\left\{C_{V}: v \in \operatorname{ext}(P)\right\}=E_{n}$.

Proof: By Theorem l-ll, if $x \in E_{n}$, there exists some $v \in \operatorname{ext}(P)$. such that $f_{p}(x)=x \cdot v$. Therefore, $x \in C_{v} \in U\left\{C_{v}: v \in \operatorname{ext}(P)\right\}$.

The next two theorems give a simple geometric description of the facial cone C_{F} (see Figure $1-3$ for an example in E_{2}).

Theorem 1-15. Let $P \in P$ and suppose that F is a face of P. Let $x_{0} \in E_{n}, \quad x_{0} \neq 0$. Then $x_{0} \in C_{F}$ if and only if $F \in H\left(P, x_{0}\right)$.

Proof: First suppose that $X_{O} \in C_{F}$ and let $v \in \operatorname{ext}(F)$. Then $X_{O} \in \mathcal{C}_{V}$ which means that $f_{p}\left(x_{0}\right)=x_{0} \cdot v$. This says then that $v \in H\left(P, x_{0}\right)$. Therefore $\operatorname{ext}(F) \in H\left(P, x_{0}\right)$ and so $F \in H\left(P, x_{0}\right)$.

Now suppose that $F \in H\left(P, x_{0}\right)$ and let $v \in \operatorname{ext}(F)$. Then $v \in H\left(P, x_{0}\right)$, which implies that $x_{0} \cdot v=f_{p}\left(x_{0}\right)$. This means that $x_{0} \in C_{V}$ and hence $x_{0} \in C_{F}$.

Let K be a convex set in E_{n}. In the sequel, the notation $f(K)$
will be used to denote the minimal flat which contains K. Also, relint(K) and relbd(K) will denote respectively the interior and boundary of K, using the topology of K relative to $f h(K)$.

Figure 1-3.

Theorem 1-16. Let $P \in P$ and suppose that F is a face of P. Let $x_{0} \in E n, x_{0} \neq 0$. Then $x_{0} \in \operatorname{relint}\left(C_{F}\right)$ if and only if $F=P \cap H\left(P, x_{0}\right)$.

Proof: Suppose first that $x_{0} \in \operatorname{relint}\left(C_{F}\right)$. Then there exists some $\varepsilon>0$ such that if $\left\|x-x_{0}\right\|<\varepsilon$ and $x \in\left\langle C_{F}\right\rangle$, the linear span of C_{F}, then $x \in C_{F}$,

By Theorem l-15, F $\subset P \cap H\left(P ; x_{0}\right)$. Thus the proof will be complete if it can be shown that $P \cap H\left(P, x_{0}\right) \subset F$. Suppose that this is not the case. Then there exists some $v_{0} \in \operatorname{ext}(P) \backslash \operatorname{ext}(F)$ such that $v_{0} \in H\left(P, x_{0}\right)$. Choose $x_{1} \neq 0$ such that $F=H\left(P, x_{1}\right) \cap P$. Then $x_{1} \cdot v_{0}<f_{P}\left(x_{1}\right)=x_{1} \cdot v$ for each $v \in \operatorname{ext}(F)$. Also, $x_{1} \in C_{F}$ by Theorem 1-15. Let $x_{2}=\varepsilon\left(2\left\|x_{0}-x_{1}\right\|\right)^{-1}\left(x_{1}-x_{0}\right)$ and let $x_{3}=x_{0}-x_{2}$. Then $x_{3} \in\left\langle C_{F}\right\rangle$ and $\left\|x_{3}-x_{0}\right\|=\varepsilon / 2<\varepsilon$. The desired contradiction will be reached by showing that $x_{3} \notin C_{F}$. To do this, let $v \in \operatorname{ext}(F)$. It is clearly sufficient to show that $x_{3} \notin C_{v}$. This fact will be established by the following sequence of inequalities in which the first inequality implies that $x_{3} \notin C_{V}$, each inequality is true if and only if the succeeding one is, and the last inequality is known to be true:

$$
\begin{gathered}
v \cdot x_{3}<v_{0} \cdot x_{3} \\
x_{3} \cdot\left(v_{0}-v\right)>0 \\
{\left[x_{0}+\varepsilon\left(2\left\|x_{0}-x_{1}\right\|\right)^{-1}\left(x_{0}-x_{1}\right)\right] \cdot\left(v_{0}-v\right)>0,} \\
x_{0} \cdot\left(v_{0}-v\right)+\varepsilon\left(2\left\|x_{0}-x_{1}\right\|\right)^{-1}\left(x_{0}-x_{1}\right) \cdot\left(v_{0}-v\right)>0, \\
x_{0} \cdot\left(v_{0}-v\right)+x_{1} \cdot\left(v-v_{0}\right)>0, \\
x_{1} \cdot\left(v-v_{0}\right)>0, \\
x_{1} \cdot v_{0}<x_{1} \cdot v .
\end{gathered}
$$

Now for the proof of the converse implication, suppose that
$F=H\left(P, x_{0}\right) \cap P$. Given any $v \in \operatorname{ext}(F)$ and $\bar{v} \in \operatorname{ext}(F) \backslash \operatorname{ext}(F)$ ， $x_{0} \cdot(v-\bar{v})>0$ ．Therefore，there exists an $\varepsilon\left(v_{0} \bar{v}\right)>0$ such that if $\left\|x-x_{0}\right\|<\varepsilon(v, \bar{v})$ ，then $x \cdot(v-\bar{v})>0$ ．Choose $\varepsilon=\min \varepsilon(v, \bar{v})$ where the minimum is taken over all ohoices of $v \in \operatorname{ext}(F)$ and $\bar{v} \in \operatorname{ext}(P) \backslash \operatorname{ext}(F)$ ．Then for $\left\|x-x_{0}\right\|<\varepsilon, x \cdot v>x \circ \bar{v}$ holds when－ ever $v \in \operatorname{ext}(F)$ and $\vec{v} \in \operatorname{ext}(P) \backslash \operatorname{ext}(F)$ ．Now suppose that $x \in\left\langle C_{F}\right\rangle$ and $\left\|x-x_{0}\right\|<\varepsilon$ ．The proof will be complete if it can be shown that $x \in C_{F}$ ．Since $\left.x \in<C_{F}\right\rangle=C_{F}-C_{F}, x=x_{1}-x_{2}$ where x_{1} ， $x_{2} \in C_{F}$ ．Also，since $\left\|x-x_{0}\right\|<\varepsilon$ and by use of Theorem l－ll， there exists some $v_{0} \in \operatorname{ext}(F)$ for which $f_{p}(x)=x \circ v_{0}$ ．Now let v be any element of ext（F）．Then

$$
\begin{aligned}
x \cdot v & =x_{1} \cdot v-x_{2} \cdot v \\
& =f_{p}\left(x_{1}\right)-f_{p}\left(x_{2}\right) \\
& =x_{1} \cdot v_{0}-x_{2} \cdot v_{0} \\
& =x_{0} \cdot v_{0} \\
& =f_{p}(x) .
\end{aligned}
$$

Therefore，$x \in C_{F}$ ．

Corollary 1－16a。 With the hypothesis of Theorem $1-16, x_{0} \in \operatorname{relbd}\left(C_{F}\right)$ if and only if F is a proper subset of $P \cap H\left(P, x_{0}\right)$ 。

Proof：This is true because $\operatorname{relbd}\left(C_{F}\right)=C_{F} \backslash \operatorname{relint}\left(C_{F}\right)$ ．

Corollary l－16b．If F and G are two faces of P and if F is not a subset of G ，then $C_{F} \cap \operatorname{relint}\left(C_{G}\right)=\varnothing$ ．

Proof：Suppose there exists some $x_{0} \in C_{F} \cap \operatorname{relint}\left(C_{G}\right)$ 。Then using

Theorems $1-15$ and $1-16, F \subset H\left(P, x_{0}\right) \cap P=G$, a contradiction. It will be shown later that for a polytope P in $E_{n}, \operatorname{dim}\left(C_{v}\right)=n$ for each $\mathrm{v} \in \operatorname{ext}(P)$, so that in view of Theorems $1-10$ and $1-16$, $\operatorname{int}\left(C_{v}\right) \neq \varnothing$. Hence there exists a finite number of the sets C_{V} with non-empty interiors for which $E_{n}=U C_{V}$ and $\left.f_{P}\right|_{C_{V}}$ is linear. The next theorem shows that all sublinear functionals of this type are support functionals for some polytope.

Theorem 1-17. Let f be a sublinear functional and suppose that there exists sets $C_{1}, C_{2}, \ldots, C_{m}$ and vectors $v_{1}, v_{2}, \cdots, v_{m}$ such that $E_{n}=\bigcup_{1}^{m} C_{i}, \quad \operatorname{int}\left(C_{i}\right) \neq \varnothing$ for each i, and $C_{i}=\left\{x: f(x)=x \cdot v_{i}\right\}$. Then $f=f_{p}$ where $p=\operatorname{conv}\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ 。

Proof: Let $x \in E_{n}$. There exists some i such that $x \in C_{i}$, that is, $f(x)=x \cdot v_{i}$. The proof will be complete if it can be shown that
$x \cdot v_{i} \geq x \cdot v_{j}, j=1,2, \cdots, m$ by Theorem l-ll. Suppose for some j that $x \circ v_{i}<x \circ v_{j}$. Choose $y \in \operatorname{int}\left(c_{j}\right)$. For $0<t<I$,

$$
\begin{aligned}
f[t y+(I-t) x] & \leq t f(y)+(I-t) f(x) \\
& =t\left(y \cdot v_{j}\right)+(I-t)\left(x \cdot v_{i}\right) \\
& <t\left(y \cdot v_{j}\right)+(1-t)\left(x \cdot v_{j}\right) \\
& =[t y+(I-t) x] \cdot v_{j} \cdot
\end{aligned}
$$

This contradicts the fact that $y \in \operatorname{int}\left(C_{j}\right)$.
The next theorem shows how the facial cones of Definition l-5 can be used to characterize the faces of the sum of two polytopes. The following lemma simplifies the proof:

Lemma 1-18. Let A and $B \in C$ and $x_{0} \in E_{n}, x_{0} \neq 0$. Then

$$
H\left(A+B, x_{0}\right) \cap(A+B)=H\left(A, x_{0}\right) \cap A+H\left(B, x_{0}\right) \cap B .
$$

Proof: First let $a+b \in H\left(A+B, x_{0}\right) \cap(A+B)$ where $a \in A$ and $b \in B$ and suppose that $a \mathbb{Z}\left(A, x_{0}\right)$. Then $a \cdot x_{0}<f_{A}\left(x_{0}\right)$, which implies that $f_{A+B}\left(x_{0}\right)=f_{A}\left(x_{0}\right)+f_{B}\left(x_{0}\right)>a \cdot x_{O}+b \cdot x_{0}=(a+b) \cdot x_{0}$, a contradiction. Thus $a \in H\left(A, x_{O}\right)$ and similarly, $b \in H\left(B, x_{O}\right)$,

Now let $x+y \in H\left(A, x_{O}\right) \cap A+H\left(B, x_{O}\right) \cap B$ where $x \in H\left(A, x_{O}\right) \cap A$ and $y \in H\left(B, x_{0}\right) \cap B$. Then $x+y \in A+B$ and

$$
(x+y) \cdot x_{0}=x \cdot x_{0}+y \cdot x_{0}=f_{A}\left(x_{0}\right)+f_{B}\left(x_{0}\right)=f_{A+B}\left(x_{0}\right)
$$

shows that $x+y \in H\left(A+B, x_{0}\right)$.

Theorem 1-18. Let P and $Q \in P$ and let F and G be faces of P and Q, respectively, Then $F+G$ is a face of $P+Q$ if and only if $\operatorname{relint}[C(P, F)] \cap \operatorname{relint}[C(Q, G)] \neq \varnothing$.

Proof: First suppose that $F+G$ is a face of $P+Q$. Then by Theorem l-7, there exists some $x_{0} \neq 0$ such that $F+G=H\left(P+Q, x_{0}\right) \cap(P+Q)$. By Lemma l-18, $F+G=H\left(P, x_{0}\right) \cap P+H\left(Q, x_{0}\right) \cap Q$. It will now be established that $F=H\left(P, x_{0}\right) \cap P$ and $G=H\left(Q, x_{0}\right) \cap Q$. Let $y \in F$ and suppose $y \notin H\left(P, x_{0}\right)$, Then $f_{p}\left(x_{0}\right)>y \cdot x_{0^{\circ}}$ Choose any $\bar{y} \in G$. Then $y+\bar{y} \in F+G$ and thus $(y+\bar{y}) \cdot x_{O}=f_{P+Q}\left(x_{0}\right)$ since $F+G \subset H\left(P+Q, x_{0}\right)$. But since $f_{P}\left(x_{0}\right)>y \cdot x_{0}$ and $f_{Q}\left(x_{0}\right) \geq \bar{y} \cdot x_{0}$,

$$
(y+\bar{y}) \cdot x_{0}=y \cdot x_{0}+\bar{y} \cdot x_{0}<f_{p}\left(x_{0}\right)+f_{Q}\left(x_{0}\right)=f_{P+Q}\left(x_{0}\right),
$$

a contradiction. Therefore, $F \subset H\left(P, x_{0}\right) \cap P$ and similarly, $G \subset H\left(Q, x_{0}\right) \cap Q$. Now since

$$
F+H\left(Q, x_{0}\right) \cap Q \subset H\left(P, x_{0}\right) \cap P+H\left(Q, x_{0}\right) \cap Q=F+G,
$$

it follows that $H\left(Q, x_{0}\right) \cap Q \in G$ and similarly, $H\left(P, x_{0}\right) \cap P \subset F$. Therefore $F=H\left(P, x_{0}\right) \cap P$ and $G=H\left(Q, x_{0}\right) \cap Q$ and so by Theorem l-16, $x_{0} \in \operatorname{relint}[C(P, F)] \cap \operatorname{relint}[C(Q, G)]$.

Conversely, suppose that $x_{0} \in \operatorname{relint}[C(P, F)] \cap \operatorname{relint}[C(Q, G)]$ 。 By Theorem l-16, $F=H\left(P, x_{0}\right) \cap P$ and $G=H\left(Q, x_{0}\right) \cap Q$. Therefore, using Lemma l-18, $F+G=H\left(P, x_{0}\right) \cap P+H\left(Q, x_{0}\right) \cap Q=H\left(P+Q, x_{0}\right) \cap(P+Q)$.

As was mentioned earlier, it will be shown later that $\operatorname{int}\left(C_{v}\right) \neq \varnothing$ for each $v \in \operatorname{ext}(P)$. In view of this, the preceding theorem states as a special case that if $v \in \operatorname{ext}(P)$ and $w \in \operatorname{ext}(Q)$, then $v+w \in \operatorname{ext}(P+Q)$ if and only if $\operatorname{int}[C(P, v)] \cap \operatorname{int}[C(Q, w)] \neq \varnothing$ (cf. Theorem l-3). An example in E_{2} which illustrates this result is given in Figure 1-4. In the figure, $\quad \operatorname{int}\left(C_{v_{4}}\right) \cap \operatorname{int}\left(C_{w_{3}}\right) \neq \varnothing$ and hence $v_{4}+w_{3} \in \operatorname{ext}(P+Q)$, whereas $C_{v_{3}}$ and $C_{w_{3}}$ intersect only at the origin and hence $v_{3}+w_{3} \& \operatorname{ext}(P+Q)$.

Figure 1-4.

RELATION OF LOCAL SIMILARITY TO FACIAL CONES

In this chapter, two equivalence relations, positive homothety and local similarity, will be defined on the collection P.

Definition 2-1. Let P and $Q \in P$. The polytope P is said to be positively homothetic to Q, written $P \sim Q$, if and only if there exists some $\alpha>0$ and $x_{0} \in E_{n}$ such that $P=\alpha Q+x_{0}$.

Theorem 2-1. Positive homothety is an equivalence relation.

Proof: (i) Since $P=1 \cdot P+O, \quad P \sim P$.
(ii) Suppose that $P \sim Q$, say $P=\alpha Q+x_{0}$ where $\alpha>0$.

Then $Q=\frac{l}{\alpha} P-\frac{l}{\alpha} x_{0}$, which implies $Q \sim P$.
(iii) Suppose that $P \sim Q$ and $Q \sim R$, say $P=\alpha Q+x_{0}$ and $Q=\beta R+y_{0}$ where $\alpha>0$ and $\beta>0$. Then

$$
\begin{aligned}
P & =\alpha Q+x_{0} \\
& =\alpha\left(\beta R+y_{0}\right)+x_{0} \\
& =(\alpha \beta) R+\left(\alpha y_{0}+x_{0}\right)
\end{aligned}
$$

shows that $P \sim R$.
Suppose now that P and Q are two positively homothetic polytopes, say $P=\alpha Q+x_{0}$. By Theorem $1-3$, $\operatorname{ext}(P) \subset \operatorname{ext}(\alpha Q)+x_{0} . A l s o$, since $C\left(\left\{x_{0}\right\}, x_{0}\right)=E_{n}, \quad C\left(\left\{x_{0}\right\}, x_{0}\right) \cap C(\alpha Q, z)=C(\alpha Q, z)$ for any
$z \in \operatorname{ext}(\alpha Q)$ and thus $\operatorname{ext}(\alpha Q)+x_{0}=\operatorname{ext}(P)$ by use of Theorem 1-18. Therefore, $\operatorname{ext}(P)=\operatorname{ext}(\alpha Q)+x_{0}$ and hence by Theorem 1-2, $\operatorname{ext}(P)=\alpha \operatorname{ext}(Q)+x_{0}$. The next theorem shows that the facial cones of a polytope P remain invariant under positive homothety.

Theorem 2-2. If P and Q are positively homothetic, $P=\alpha Q+x_{0}$, then for any $w \in \operatorname{ext}(Q), \quad C(Q, w)=C\left(P, \alpha w+x_{0}\right)$.

Proof: Let $x \in C(Q, w)$. This implies that $f_{Q}(x)=x \cdot w$. Then

$$
\begin{aligned}
f_{p}(x) & =f_{\alpha Q+x_{0}}(x) \\
& =\alpha f_{Q}(x)+f_{\left\{x_{0}\right\}}(x) \\
& =\alpha(x \cdot w)+x \cdot x_{0} \\
& =\left(\alpha w+x_{0}\right) \cdot x
\end{aligned}
$$

and therefore $C(Q, w) \subset C\left(P, \alpha w+x_{0}\right)$. By symmetry, $C\left(P, \alpha w+x_{0}\right) \subset C(Q, w)$.

Definition 2-2. The polytope P is said to be locally similar to the polytope Q, written $P \approx Q$, if and only if

$$
\operatorname{dim}\left[H\left(P, x_{0}\right) \cap P\right]=\operatorname{dim}\left[H\left(Q, x_{0}\right) \cap Q\right]
$$

for every $x_{0} \neq 0$ 。

Theorem 2-3. Local similarity is an equivalence relation.

The proof of this theorem is immediate.
Suppose that P and Q are locally similar polytopes.and that $v \in \operatorname{ext}(P)$. Then by Theorem 1-10, there exists an $x_{0} \neq 0$ such that $\{v\}=H\left(P, x_{0}\right) \cap P$. Corresponding to v is the face $H\left(Q, x_{0}\right) \cap Q$ of Q, and by the local similarity, $H\left(Q, x_{0}\right) \cap Q$ is an extreme point, say w,

Figure 2-1. Positively Homothetic Polytopes in E_{2}.

Figure 2-2. Locally Similar Polytopes in E_{2}.
of Q. In general, the vextor x_{0} used to determine v is not unique, that is it may also be true that $\{v\}=H\left(P, x_{1}\right) \cap P$ where $x_{1} \neq x_{0}$, and there is no immediate guarantee that $\{w\}=H\left(Q, x_{1}\right) \cap Q$, only that $H\left(Q, x_{1}\right) \cap Q$ is some extreme point of Q. The next theorem shows that the relationship described above is a function defined from ext(P) to ext (Q).

Theorem 2-4. Let P and Q be two locally similar polytopes and suppose that $v \in \operatorname{ext}(P), w \in \operatorname{ext}(Q)$ where $\{v\}=H\left(P, x_{0}\right) \cap P$ and $\{w\}=H\left(Q, x_{0}\right) \cap Q$. If also $\{v\}=H\left(P, x_{1}\right) \cap P$, then $\{w\}=H\left(Q, x_{I}\right) \cap Q$.

Proof: Suppose that $H\left(Q, x_{1}\right) \cap Q=\left\{w^{\prime}\right\}$ and $w^{\prime} \neq w$. Then by Theorem l-16, $x_{0} \in \operatorname{int}[C(P, v)] \cap \operatorname{int}[C(Q, w)] . \quad B y C o r o l l a r y ~ l-16 b$, $x_{1} \notin \operatorname{int}[C(Q, w)]$. Choose x_{2} on the line segment $x_{0} x_{1}$ such that $x_{2} \in \operatorname{bd}[C(Q, w)] . \quad T h e n ~ b y ~ C o r o l l a r y l-16 a, ~ \operatorname{dim}\left[H\left(Q, x_{2}\right) \cap Q\right]>0$ 。 Therefore, by the local similarity, $\operatorname{dim}\left[H\left(P, x_{2}\right) \cap P\right]>0$. This contradicts the fact that since $\operatorname{int}[C(P, v)]$ is convex, $x_{2} \in \operatorname{int}[C(P, v)]$, and hence $H\left(P, x_{2}\right) \cap P=\{v\}$ by Theorem l-16.

Although Theorem 2-4 only establishes that the relation that has been defined from ext(P) to ext(Q) is a function, it is actually a one to one correspondence. This is true because local similarity is
 symmetric and hence Theorem 2-4 shows that the inverse relation from $\operatorname{ext}(Q)$ to $\operatorname{ext}(P)$ is also a function。

The next two lemmas are required for the proof of Theorem 2-5 which characterizes local similarity in terms of the facial cones of Definition 1-5.

Lemma 2-5a. Let P be a polytope in E_{n} and suppose that $\mathbb{E} \operatorname{ext}(P)$. If C_{E} denotes $\cap\left(C_{V}: v \in E\right\}$, then $C_{E} \neq\{0\}$ if and only if there exits a face F of P such that $\operatorname{dim}(F) \leq n-l$ and $\operatorname{conv}(E) \subset F$ 。

Proof: First suppose that $x_{O} \in C_{E}, x_{O} \neq 0$. Define $F=H\left(P, x_{O}\right) \cap P$. Then F is a face of P whose dimension is not greater than $n-1$ and since $X_{O} \in C_{E}$, it follows that $E \in F$ and hence $\operatorname{conv}(E) \subset F$. Now suppose that $\operatorname{conv}(E) \subset F$ where F is a face of P, $\operatorname{dim}(F) \leq n-1$. By Theorem 1-7, there exists some $x_{0} \neq 0$ such that $F=H\left(P, x_{0}\right) \cap P$. Thus for each $v \in E, \quad v \in \operatorname{conv}(E) \subset F \subset H\left(P, x_{0}\right)$ and therefore $x_{O} \circ v=f_{P}\left(x_{O}\right)$ which implies that $x_{O} \in C_{V}$. Hence $x_{O} \in C_{E}$.

Lemma 2-5b. Let P be a polytope in E_{n} and let F be a face of P. Let $L_{F}=f h(F)-y_{O}$ where $y_{O} \in F$. Then L_{F} and $\left\langle C_{F}\right\rangle$ are orthogoneal complements.

Proof: The result will first be established for the special case when $F=P$.

Case (1): Suppose $\operatorname{dim}(P)=$ n. Then $L_{P}=E_{n}$. In this case, $C_{P}=\{0\}$ by Lemma 2-5a.

Case (2): Suppose $\operatorname{dim}(P)<n$. By Theorem 2-2, there is no loss of generality if it is assumed that $0 \in P$ so that $I_{P}=\langle P\rangle$. It will now be shown that $C_{P}=\langle P\rangle^{\perp}$. Let $x_{0} \in C_{P}, x_{O} \neq 0$. By Theorem 1-15, $P \in H\left(P, x_{0}\right)$. Since $0 \in P \in H\left(P, x_{0}\right)$, it follows that $f_{P}\left(x_{0}\right)=0$. Now let $y \in P$. Then $y \in H\left(P, x_{0}\right)$ and therefore $y \cdot x_{0}=f_{P}\left(x_{0}\right)=0$. Thus $x_{0} \in P^{\perp}=\langle P\rangle^{\perp}$.

Now let $x_{1} \in\langle P\rangle^{\perp}=P^{\perp}$. This means that $x_{1} \cdot y=0$ for every
$y \in P$ and therefore $f_{p}\left(x_{1}\right)=0$. Then for any $v \in \operatorname{ext}(P)$, $x_{1} \cdot v=0=f_{P}\left(x_{1}\right)$ which means that $x_{1} \in C_{V}$. Therefore $x_{1} \in C_{P}$. This completes the proof for the case $F=P$.

The remainder of the proof will be established by inducting downward on the dimension of F. Thus suppose that for some $k \leq \operatorname{dim}(P)$ it is true that if G is a face of P such that $\operatorname{dim}(G)=k$ then L_{G} and $\left\langle C_{G}\right\rangle$ are orthogonal complements and suppose that $\operatorname{dim}(F)=k-1$. Again assume that $0 \in F$ so that $L_{F}=\langle F\rangle$. There exists a face G of P such that $F \subset G$ and $\operatorname{dim}(G)=k$. By the induction hypothesis, $\left\langle C_{G}\right\rangle=\langle G\rangle^{\perp}$. It must now be shown that $\left\langle C_{F}\right\rangle=\langle F\rangle^{\perp}$. Let $x_{0} \in C_{F}$ and $v \in \operatorname{ext}(F)$. Then $X_{0} \cdot v=f_{p}\left(x_{0}\right)$ and since $F \in H\left(P, x_{0}\right)$ by Theorem 1-15 and since $0 \in F, f_{P}\left(x_{0}\right)=0$. Therefore $\operatorname{ext}(F) \subset C_{F}{ }^{\perp}=\left\langle C_{F}\right\rangle^{\perp}$ and thus $\langle\mathrm{F}\rangle \subset\left\langle\mathrm{C}_{\mathrm{F}}\right\rangle^{\perp}$ which implies that $\left\langle\mathrm{C}_{\mathrm{F}}\right\rangle \subset\langle\mathrm{F}\rangle^{\perp}$. This inclusion also gives $\operatorname{dim}\left(\left\langle C_{F}\right\rangle\right) \leq n-k+1$. To complete the proof, it is sufficient to show that $\operatorname{dim}\left(\left\langle C_{F}\right\rangle\right) \geq n-k+1$. Let $x_{1} \in C_{G}$. Then using Theorem 1-15, $G \subset H\left(P, x_{1}\right) \cap P$ and thus F is properly contained in $H\left(P, x_{1}\right) \cap P$. Therefore by Corollary l-16a, $x_{1} \in \operatorname{relbd}\left(C_{F}\right)$ and hence $C_{G} \subset \operatorname{relbd}\left(C_{F}\right)$. Now this implies that $\operatorname{dim}\left(C_{G}\right)<\operatorname{dim}\left(C_{F}\right)$, for if not then $\operatorname{dim}\left(C_{G}\right)=\operatorname{dim}\left(C_{F}\right)$, which implies that $f h\left(C_{G}\right)$ and $f h\left(C_{F}\right)$ are the same, say $K=f h\left(C_{G}\right)=f h\left(C_{F}\right)$, Choose $\vec{x} \in \operatorname{relint}\left(C_{G}\right),(c f$. Grunbaum, [2], p. 9, Th. 7). Then there exists an $\varepsilon>0$ such that if $\|x-\bar{x}\|<\varepsilon$ and $x \in K$, then $x \in C_{G}$. But since $\bar{x} \in \operatorname{relbd}\left(C_{F}\right)$, there exists some $x \in K \backslash C_{F} \subset K \backslash C_{G}$ such that $\|x-\bar{x}\|<\varepsilon$, a contradiction. Thus $\operatorname{dim}\left(C_{G}\right)<\operatorname{dim}\left(C_{F}\right)$ and hence $\operatorname{dim}\left(\left\langle C_{F}\right\rangle\right)=\operatorname{dim}\left(C_{F}\right)>\operatorname{dim}\left(C_{G}\right)=\operatorname{dim}\left(\left\langle C_{G}\right\rangle\right)=\operatorname{dim}\left(\langle G\rangle^{\perp}\right)=n-k$. Therefore $\operatorname{dim}\left(C_{F}\right) \geq n-k+1$.

Theorem 2-5. Let P and $Q \in P$. Then $P \approx Q$ if and only if there exists a one to one correspondence between $\operatorname{ext}(P)$ and $\operatorname{ext}(Q)$, say $v \rightarrow w$, such that $C(P, v)=C(Q, w)$.

Proof: Suppose first that $P \approx Q$ and let $v \leftrightarrow w$ be the one to one correspondence established by Theorem 2-4. To show that $C(P, v)=C(Q, w)$, it is sufficient to show that $\operatorname{int}[C(P, v)]=\operatorname{int}[C(Q, w)]$ (cf. Valentine, [7], p. 13, Th. l.17). Let $x_{0} \in \operatorname{int}[C(P, v)]$. Then by Theorem 1-16, $H\left(P, x_{0}\right) \cap P=\{v\}$. Then by local similarity, $H\left(Q, x_{0}\right) \cap Q=\{w\}$, and thus $x_{0} \in \operatorname{int}[C(Q, w)]$, again by Theorem 1-16. Therefore, $\operatorname{int}[C(P, V)] \subset \operatorname{int}[C(Q, w)]$ and similarly, $\operatorname{int}[C(Q, w)] \subset \operatorname{int}[C(P, v)]$.

Now suppose that $v \rightarrow w$ is any one to one correspondence between $\operatorname{ext}(P)$ and $\operatorname{ext}(Q)$ for which $C(P, v)=C(Q, w)$. Let $x_{0} \in E_{n}, x_{0} \neq 0$, and let $F=H\left(P, x_{0}\right) \cap P, G=H\left(Q, x_{0}\right) \cap Q$. Suppose that $\operatorname{ext}(F)=\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}$. It will now be shown that $\operatorname{ext}(G)=\left\{w_{1}, w_{2}, \cdots, w_{s}\right\}$. Let $w \in \operatorname{ext}(G)$. By Theorem 1-15, $x_{0} \in C(Q, G) \subset C(Q, w)=C(P, v)$. Thus by Theorems l-9 and l-15, $v \in H\left(P, x_{0}\right) \cap \operatorname{ext}(P)=\operatorname{ext}(F)=\left\{v_{1}, v_{2}, \cdots, v_{s}\right\}$ and hence $w \in\left\{w_{1}, w_{2}, \cdots, w_{s}\right\}$.

Now let $w_{j} \in\left\{w_{1}, w_{2}, \cdots, w_{s}\right\}$. Then $v_{j} \in \operatorname{ext}(F)$ and again using Theorem 1-15, $\quad x_{0} \in C(P, F) \subset C\left(P, v_{j}\right)=C\left(Q, W_{j}\right)$ which implies that $w_{j} \in H\left(Q, x_{0}\right) \cap \operatorname{ext}(Q)=\operatorname{ext}(G)$. Therefore, $\operatorname{ext}(G)=\left\{w_{1}, w_{2}, \cdots, w_{s}\right\}$ and hence $C(P, F)=C(Q, G)$. Using Lemma 2-5b,

$$
\operatorname{dim}(F)+\operatorname{dim}[C(P, F)]=n=\operatorname{dim}(G)+\operatorname{dim}[C(Q, G)],
$$

and therefore $\operatorname{dim}(F)=\operatorname{dim}(G)$ which means that $P \approx Q$ by Definition 2-2.

It was seen in Theorem 2-5 that the facial cones $C(P, v)$ of a
polytope P play a fundamental role in the concept of local similarity. In Theorem l-16 and its corollaries, these cones and their relative interiors and boundaries were described. Now a further investigation of these cones will be made by determining their extremal elements. First, two definitions concerning convex cones are in order.

Definition 2-3. Let C be a convex cone with vertex at the origin. A point $x_{0} \neq 0$ of C is said to be an extremal element of C, written $x_{0} \in \operatorname{extr}(C)$, if and only if $x_{0}=x_{1}+x_{2}$ where $x_{1}, x_{2} \in C$ implies that there exists positive real numbers α_{1} and α_{2} such that $x_{1}=\alpha_{1} x_{0}$ and $x_{2}=\alpha_{2} x_{0}$.

Definition 2-4. Let C be a convex cone with vertex at the origin. Then C is said to be salient if and only if there does not exist an $x_{0} \in C, x_{0} \neq 0$, for which also $-x_{0} \in C$.

A simple consequence of these definitions is the following:

Theorem 2-6. A non-salient cone C has no extremal elements.

Proof: If C is non-salient, then there exists some $x_{0} \in C, x_{0} \neq 0$, for which also $-x_{0} \in C$. Since $x_{0}=2 x_{0}+\left(-x_{0}\right)$ and there does not exist an $\alpha>0$ such that $-x_{0}=\alpha x_{0}$, it is clear that $x_{0} \notin \operatorname{extr}(C)$ and similarly, $\beta x_{0} \notin \operatorname{extr}(C)$ for all real β. Now consider any $x_{1} \in C$ which is not a multiple of x_{0}. Then

$$
\dot{x}_{1}=\frac{1}{2}\left(x_{1}+x_{0}\right)+\frac{1}{2}\left(x_{1}-x_{0}\right)
$$

shows that $x_{1} \notin \operatorname{extr}(C)$ because $\frac{1}{\varepsilon}\left(x_{1}+x_{0}\right)$ and $\frac{1}{2}\left(x_{1}-x_{0}\right)$ are in C
and $\frac{1}{2}\left(x_{1}+x_{0}\right)$ is not a positive multiple of x_{0} or else x_{1} would be a multiple of x_{0}.

Since non-salient cones have no extremal elements, it is appropriate to determine which of the cones C_{F} for a polytope P are salient.

Theorem 2-7. Let P be a polytope in E_{n} and suppose that F is any face of P. If $\operatorname{dim}(P)=n$, then each C_{F} is salient. If $\operatorname{dim}(P)<n$, then each C_{F} is non-salient.

Proof: Suppose that $\operatorname{dim}(P)=n$ and that C_{F} is non-salient for some face F of P. Then there exists an $x_{0} \neq 0$ such that both x_{0} and $-x_{0} \in C_{F}$. Now since f_{P} is linear on $C_{F}, f_{P}\left(-x_{0}\right)=-f_{P}\left(x_{0}\right)$. By the definition of $f_{p}, y \cdot x_{0} \leq f_{p}\left(x_{0}\right)$ for every $y \in P$ and also

$$
y \cdot\left(-x_{0}\right) \leq f_{p}\left(-x_{0}\right)=-f_{p}\left(x_{0}\right)
$$

which implies that $y \cdot x_{0} \geq f_{P}\left(x_{0}\right)$ for all $y \in P$. Thus $P \subset H\left(P, x_{0}\right)$ and so $\operatorname{dim}(P)<n$, a contradiction.

Now suppose that $\operatorname{dim}(P)<n$. Then P is contained in some hyperplane, say $P \subset H\left(P, x_{0}\right), x_{O} \neq 0$. By Theorem 1-15, $x_{O} \in C_{F}$. The proof will be complete if it can be shown that $-x_{0} \in C_{F}$. Let $v \in \operatorname{ext}(F)$ and let $y \in P$. Then since $P \subset H\left(P, x_{0}\right), y \cdot x_{0}=f_{P}\left(x_{0}\right)=V \cdot x_{0}$ and thus $y \cdot\left(-x_{0}\right)=v \cdot\left(-x_{0}\right)$. Therefore $f_{p}\left(-x_{0}\right)=v \cdot\left(-x_{0}\right)$ and hence $-x_{0} \in C_{V}$. This implies then that $-x_{0} \in C_{F}$.

Now suppose that P is a polytope in E_{n} of dimension less than n. Then by Theorem 2-7, C_{F} is non-salient for each face F of P. The next result determines which of these facial cones are subspaces.

Theorem 2-8. If P is a polytope in $E_{n}, \operatorname{dim}(P)<n$, and F is a
face of P, then C_{F} is a subspace if and only if $F=P$.

Proof: If $F=P$, then it was shown in the proof of Lemma 2-5b that $C_{F}=\left[f h(P)-y_{0}\right]^{\perp}$ where $y_{0} \in P$.

Suppose that C_{F} is a subspace. Since F is a face of P, there exists some $x_{0} \neq 0$ such that $F=H\left(P, x_{0}\right) \cap P$. By Theorem $1-15$, $x_{0} \in C_{F}$ and therefore, since C_{F} is a subspace, $-x_{0} \in C_{F}$. Now since f_{P} is linear on $C_{F}, f_{p}\left(-x_{0}\right)=-f_{p}\left(x_{0}\right)$. Let $y \in P$. Then $y \cdot x_{0} \leq f_{p}\left(x_{0}\right)$ and $y \cdot\left(-x_{0}\right) \leq f_{p}\left(-x_{0}\right)=-f_{p}\left(x_{0}\right)$. Therefore $y \cdot x_{0}=f_{p}\left(x_{0}\right)$ which implies that $P \subset H\left(P, x_{O}\right)$ and so $P=F$.

The next result characterizes the extremal elements of the facial cone $C(P, F)$. Theorems $2-6$ and 2-7 justify the requirement that $\operatorname{dim}(P)=n$ in the hypothesis.

Theorem 2-9. Let P be an n-dimensional polytope in E_{n} and let F be a face of P. A point $x_{0} \neq 0$ of C_{F} is in $\operatorname{extr}\left(C_{F}\right)$ if and only if $\operatorname{dim}\left[H\left(P, x_{0}\right) \cap P\right]=n-1$.

Proof: Suppose first that $x_{0} \in \operatorname{extr}\left(C_{F}\right)$ and let $G=H\left(P, x_{0}\right) M P$. By Theorems $1-15$ and $1-16, F \subset G$ and $x_{0} \in \operatorname{relint}\left(C_{G}\right)$. Since $C_{G} \subset C_{F}$, it is clear from Definition $2-3$ that $x_{0} \in \operatorname{extr}\left(C_{G}\right)$. Thus

$$
x_{0} \in \operatorname{relint}\left(C_{G}\right) \cap \operatorname{extr}\left(C_{G}\right)
$$

and it will now be shown that this implies that $\operatorname{dim}\left(C_{G}\right)=1$. Let $x_{1} \in C_{G}, x_{1} \neq 0$. Since $x_{0} \in \operatorname{relint}\left(C_{G}\right)$, there exists an $\varepsilon>0$ such that if $\left\|x-x_{0}\right\|<\varepsilon$ and $x \in<C_{G}>$, then $x \in C_{G}$. Define $x_{2}=x_{0}-(\varepsilon / 2)\left\|x_{1}\right\|^{-1} x_{1}$. Then $\left\|x_{2}-x_{0}\right\|<\varepsilon$ and $x_{2} \in\left\langle C_{G}\right\rangle$ so that $x_{2} \in C_{G}$. Thus $x_{0}=x_{2}+(\varepsilon / 2)\left\|x_{1}\right\|^{-1} x_{1}$ and therefore
$(\varepsilon / 2)\left\|x_{1}\right\| \| x_{1}$ and hence x_{1} is a positive multiple of x_{0} since $x_{0} \in \operatorname{extr}\left(C_{G}\right)$. This shows that $\operatorname{dim}\left(C_{G}\right)=1$ and so $\operatorname{dim}(G)=n-1$ by Lemma 2-5b.

Now suppose that $\operatorname{dim}(G)=n-1$. Then using Theorem l-16, Lemma $2-5 b$, and Theorem 2-7, it follows that $x_{0} \in \operatorname{relint}\left(C_{G}\right)$ and that C_{G} is a ray. Suppose that $x_{0}=x_{1}+x_{2}, x_{1}, x_{2} \in C_{F}$, and suppose that $x_{1} \notin C_{G}$. Then there exists some $v \in \operatorname{ext}(G)$ such that $x_{1} \cdot v<f_{p}\left(x_{1}\right)$. Now since f_{P} is linear on C_{F},

$$
x_{0} \cdot v=x_{1} \cdot v+x_{2} \cdot v<f_{p}\left(x_{1}\right)+f_{p}\left(x_{2}\right)=f_{p}\left(x_{0}\right)
$$

a contradiction. Therefore $x_{1} \in C_{G}$ and similarly $x_{2} \in C_{G}$ which inplies that $x_{0} \in \operatorname{extr}\left(C_{F}\right)$.

CHAPNER III

INDECOMPOSABILITY OF POLYTOPES

In this chapter, the problem of expressing a given polytope P as a sum of other polytopes will be considered. This problem is motivated by the well-known fact that in E_{2}, every polytope can be written as a finite sum of simplices, i.e. points, line segments and triangles (cf. Yaglom and Boltyanski, [8], p.177). With this in mind, it is reasonable to make the following conjecture: In E_{n}, every polytope can be written as a finite sum of simplices. However, it has recently been shown that this conjecture is false for $n>2$ (cf. Shephard, [5]). The next theorem gives a necessary condition for a polytope to be expressable as a finite sum of simplices.

Theorem 3-1. Let P be a polytope in E_{n}. If P can be expressed as a finite sum of simplices then all of its faces can be also.

Proof: Suppose that $P=\sum_{l}^{t} S_{i}$ where each S_{i} is a simplex, Let F be a face of P, say $F=H\left(P, x_{0}\right) \cap P, x_{0} \neq 0$. Then by an easy generalization of Lemma 1-18,

$$
F=H\left(P, x_{0}\right) \cap P=H\left(\sum_{l}^{t} S_{i}, x_{0}\right) \cap \sum_{I}^{t} S_{i}=\sum_{l}^{t}\left[H\left(S_{i}, x_{0}\right) \cap S_{i}\right]
$$

and each $H\left(S_{i}, x_{0}\right) \cap S_{i}$ is a simplex.
If all of the proper faces of a polytope P are expressable as a finite sum of simplices, it does not follow that P has this property.

This is true because as mentioned above, there exist polytopes in E_{3} which cannot be decomposed into a finite sum of simplices, but every polytope in E_{3} has the property that its proper faces all have such a decomposition.

Theorem 3-4 will provide a useful characterization of when one polytope is a summand of another. First, some preliminary definitions and results will be needed.

Definition 3-1. Let P and Q be polytopes in E_{n}. Then $P \geq Q$ if and only if $\operatorname{dim}\left[H\left(P, x_{0}\right) \cap P\right] \geq \operatorname{dim}\left[H\left(Q, x_{0}\right) \cap Q\right]$ for all $x_{0} \neq 0$.

Comparing this definition with Definition 2-2, the following result is immediate.

Theorem 3-2. Let P and Q be polytopes in E_{n}. Then $P \approx Q$ if and only if $P \geq Q$ and $Q \geq P$.

The following theorem is the analogue of Theorem 2-5 and characterizes the relation $P \geq Q$ in terms of the facial cones.

Theorem 3-3. Let P and Q be polytopes in E_{n}. Then $P \geq Q$ if and only if there exists a function defined from ext(P) to ext(Q), say $v \rightarrow w$, such that $C(P, v) \subset C(Q, w)$.

Proof: Suppose first that $P \geq Q$. If $v \in \operatorname{ext}(P)$, then for some $x_{0} \neq 0, \quad\{v\}=H\left(P, x_{0}\right) \cap P$. Since $P \geq Q, H\left(Q, x_{0}\right) \cap Q$ is some extreme point, say w, of Q. The same proof as that of Theorem $2-4$ shows that
the correspondence $v \rightarrow w$ is a function from $\operatorname{ext}(P)$ to $\operatorname{ext}(Q)$ ．That is，if also $\{v\}=H\left(P, x_{1}\right) \cap P$ ，then $\{w\}=H\left(Q, x_{1}\right) \cap Q_{\text {．}}$ Now to show that $C(P, v) \subset C(Q, w)$ ，it is sufficient to show that $\operatorname{int}[C(P, v)] \subset \operatorname{int}[C(Q, w)]$ ．Let $x_{1} \in \operatorname{int}[C(P, v)]$ ．Then by Theorem 1－16， $H\left(P, x_{1}\right) \cap P=\{v\}$ 。 Therefore $H\left(Q, x_{1}\right) \cap Q=\{w\}$ and so again by Theo－ rem 1－16，$x_{1} \in \operatorname{int}[C(Q, w)]$ ．

Now suppose that $v \rightarrow w$ is any function from $\operatorname{ext}(P)$ to $\operatorname{ext}(Q)$ for which $C(P, v) \subset C(Q, w)$ ．For any $x_{0} \neq 0$ ，let $F=H\left(P, x_{0}\right) \cap P$ and $G=H\left(Q, x_{0}\right) \cap Q$ ．Suppose that $\operatorname{ext}(F)=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ ．It will now be shown that $\operatorname{ext}(G)=\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$ 。 Let $w \in \operatorname{ext}(G)$ ．Using The－ orem 1－16，$x_{0} \in \operatorname{relint}[C(Q, G)] \subset \operatorname{int}[C(Q, W)]$ ．Now by Theorem 1－14，there exists some $v \in \operatorname{ext}(P)$ such that $x_{0} \in C(P, v)$ ．Then since $C(P, v) \cap \operatorname{int}[C(Q, w)] \neq \varnothing$ ，it follows that $C(P, v) \subset C(Q, w)$ and hence $v \rightarrow W$ ．Now since $x_{0} \in C(P, v), \quad v \in \operatorname{ext}(P) \cap H\left(P, x_{0}\right)=\operatorname{ext}(F)=\left\{v_{1}, \cdots, v_{m}\right\}$ and therefore $w \in\left\{w_{1}, \ldots, w_{m}\right\}$ 。

Now let $w_{j} \in\left\{w_{1}, \cdots, w_{m}\right\}$ ．Then $v_{j} \in \operatorname{ext}(F)$ and using Theorem 1－15，$x_{0} \in C(P, F) \subset C\left(P, v_{j}\right) \subset C\left(Q, w_{j}\right)$ ，which implies that $w_{j} \in \operatorname{ext}(Q) \cap H\left(Q, x_{O}\right)=\operatorname{ext}(G)$ ．This completes the proof that $\operatorname{ext}(G)=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ ．From this fact it follows that

$$
C(P, F)={\underset{\bigcap}{M}}_{C}^{C}\left(P, v_{j}\right) \subset{\underset{1}{M} C\left(Q, W_{j}\right)=C(Q, G) .}^{m}
$$

Therefore，using Lemma 2－5b，

$$
\operatorname{dim}(F)+\operatorname{dim}[C(P, F)]=n=\operatorname{dim}(G)+\operatorname{dim}[C(Q, G)]
$$

and hence， $\operatorname{dim}(F)-\operatorname{dim}(G)=\operatorname{dim}[C(Q, G)]-\operatorname{dim}[C(P, F)] \geq 0$ ，which im－ plies that $\operatorname{dim}(F) \geq \operatorname{dim}(G)$ ．

Now suppose that $P \geq Q$ and suppose that $V v^{\prime}$ is an edge of P ． Let $v \rightarrow w$ and $v^{\prime} \rightarrow w^{\prime}$ 。 If $w \neq w^{\prime}$ ，then $w w^{\prime}$ is an edge of Q par－ allel to v^{\prime} ．Thus $w-w^{\prime}=\alpha\left(v-v^{\prime}\right)$ for some $\alpha \geq 0$ ．If for every
edge of P, the α so described satisfies the property $\alpha \leq 1$, then the notation $P \geqq Q$ (rather than $P \geq Q$) will be used.

Theorem 3-4. Let P and Q be polytopes in E_{n}. Then Q is a summand of P if and only if $P \geqq Q$.

The proof of this result is given by Shephard, [5]. See Figures l-1 and l-4 for examples in E_{2}.

It is easy to see that any polytope P always possesses summands, for if $0 \leq t \leq 1$ and x_{0} is any fixed vector, then $P=\left[t P+x_{0}\right]+\left[(1-t) P-x_{0}\right]$.

However, in this type of decomposition, the summands are positively homothetic to P. This prompts the following definition:

Definition 3-2, Let P be a polytope in E_{n}. Then P is said to be decomposable if and only if P has a non-degenerate summand which is not positively homothetic to P. If P is not decomposable, then P is called indecomposable.

Examples of decomposable polytopes are abundant. Some examples of indecomposable polytopes will be given later. The following theorem characterizes indecomposability in terms of local similarity.

Theorem 3-5. Let P be a polytope in E_{n}. Then P is indecomposable if and only if $P \approx Q$ implies that $P \sim Q$.

Proof: Suppose first that P is indecomposable and let $P \approx Q \cdot$ Choose
a real $\alpha>0$ small enough so that $\alpha Q \leqq P$. Then by Theorem 3-4, αQ is a summand of P, and hence by Definition $3-2, \alpha Q \sim P$ which implies $Q \sim P$.

Now suppose that $P \approx Q$ implies $P \sim Q$ and suppose that A is a non-degenerate summand of P. Then by Theorem 3-4, $A \leqq P$. Let $v \rightarrow a$ denote the correspondence defined by Theorem 3-3. Since $A \leqq P$, for each edge $v_{i} v_{j}$ of $P, a_{i}-a_{j}=\alpha_{i j}\left(v_{i}-v_{j}\right), \quad 0 \leq \alpha_{i j} \leq 1$. Choose an $\alpha>0$ such that $\alpha \alpha_{i j}<1$ for each edge of P and let $A_{0}=\alpha A$. Then $A_{0} \leqq P$ and so by Theorem 3-4, there exists a polytope B_{0} for which $P=A_{0}+B_{0}$. Now also by Theorem 3-4, $B_{0} \leqq P$. Let $x_{i}=\alpha a_{i}$ for each $a_{i} \in \operatorname{ext}(A)$ and let the variable y (with subscripts) denote extreme points of B_{O} where $v \rightarrow y$ is the correspondence from $\operatorname{ext}(P)$ to ext $\left(B_{0}\right)$ defined by Theorem 3-3. Now for any edge $v_{i} v_{j}$ of $P, \quad x_{i}-x_{j}=\delta_{i j}\left(v_{i}-v_{j}\right), \quad 0 \leq \delta_{i j}<l \quad\left(\delta_{i j}=\alpha \alpha_{i j}\right)$, and $\quad y_{i}-y_{j}=\beta_{i j}\left(v_{i}-v_{j}\right), \quad 0 \leq \beta_{i j} \leq I$.

Now using Lemma l-18, $x_{i}+y_{i}=v_{i}$ and $x_{j}+y_{j}=v_{j}$ and thus $\delta_{i j}+\beta_{i j}=1$ which implies that each $\beta_{i j}>0$. This means that $B_{0} \approx P$. Thus by assumption, $B_{0} \sim P$, say $B_{0}=\rho P+y_{0}$ where $\rho>0$. Note that $\rho \leq I$ since $B_{0} \leq P$. Thus,

$$
\rho P+(1-\rho) P=P=A_{0}+B_{0}=A_{0}+\rho P+y_{0}
$$

which implies that $A_{0}=(1-p) P-y_{0}$, i.e. $A_{0} \sim P$ and hence $A \sim P$.
Theorem 3-5 will now be used to show that all simplices are indecomposable.

Theorem 3-6. Let P be a simplex in E_{n}. Then P is indecomposable.

Proof: Suppose that $P \approx Q_{\text {, }}$ where $\operatorname{ext}(P)=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$,
$\operatorname{ext}(Q)=\left\{W_{1}, W_{2}, \cdots, W_{m}\right\}$ and $v_{i} \rightarrow w_{i}$ is the correspondence between $\operatorname{ext}(P)$ and $\operatorname{ext}(Q)$ of Theorem 2-4. Now since P is a simplex, $V_{1} V_{2}$, $v_{2} v_{3}, \ldots, v_{m-1} v_{m}$ and $v_{m} v_{1}$ are all edges of P. Since $P \approx Q$,

$$
\begin{aligned}
& w_{2}-w_{1}=\alpha_{1}\left(v_{2}-v_{1}\right), \quad \alpha_{1}>0, \\
& w_{3}-w_{2}=\alpha_{2}\left(v_{3}-v_{2}\right), \quad \alpha_{2}>0, \\
& \vdots \\
& w_{m}-w_{m-1}=\alpha_{m-1}\left(v_{m}-v_{m-1}\right), \alpha_{m-1}>0, \\
& w_{1}-w_{m}=\alpha_{m}\left(v_{1}-v_{m}\right), \quad \alpha_{m}>0 .
\end{aligned}
$$

Adding corresponding sides of these equalities yields

$$
\begin{gathered}
0=\left(\alpha_{m}-\alpha_{1}\right) v_{1}+\left(\alpha_{1}-\alpha_{2}\right) v_{2}+\left(\alpha_{3}-\alpha_{2}\right) v_{3}+\cdots+\left(\alpha_{m-2}-\alpha_{m-1}\right) v_{m-1}+\left(\alpha_{m-1}-\alpha_{m}\right) v_{m} \\
\text { and }\left(\alpha_{m}-\alpha_{1}\right)+\left(\alpha_{1}-\alpha_{2}\right)+\left(\alpha_{3}-\alpha_{2}\right)+\cdots+\left(\alpha_{m-2}-\alpha_{m-1}\right)+\left(\alpha_{m-1}-\alpha_{m}\right)=0 .
\end{gathered}
$$

Therefore since $\operatorname{ext}(P)$ is affinely independent,

$$
\alpha_{m}=\alpha_{1}=\alpha_{2}=\cdots=\alpha_{m-2}=\alpha_{m-1}
$$

Letting α denote this common value, it follows that

$$
\begin{aligned}
& w_{2}=\alpha v_{2}+\left(w_{1}-\alpha v_{1}\right), \\
& w_{3}=\alpha v_{3}+\left(w_{2}-\alpha v_{2}\right)=\alpha v_{3}+\left(w_{1}-\alpha v_{1}\right), \\
& \vdots \\
& w_{m}=\alpha v_{m}+\left(w_{m-1}-\alpha v_{m-1}\right)=\alpha v_{m}+\left(w_{1}-\alpha v_{1}\right), \\
& w_{1}=\alpha v_{1}+\left(w_{m}-\alpha v_{m}\right)=\alpha v_{1}+\left(w_{1}-\alpha v_{1}\right)
\end{aligned}
$$

Therefore, $Q \sim P$.
The following definition and theorem together with Theorem 3-6 will provide numerous examples of indecomposable polytopes which are not simplices and hence cannot be written as a sum of finitely many smplices.

Definition 3-3. Let P be a polytope in E_{n} and let $K=\left\{F_{1}, F_{2}, \ldots, F_{m}\right\}$ be a collection of r-faces of $P, 2 \leq r \leq n-1$, such that
$\operatorname{dim}\left(F_{i} \cap F_{i+1}\right)>0$ for $i=1,2, \ldots, m-1$. Then K is called a chain of faces of P. The chain K is called an indecomposable chain if each F_{i} is indecomposable. Any extreme point or edge of F_{I} is said to be connected by K to any extreme point or edge of F_{m}.

Theorem 3-7. Let P be a polytope in E_{n}. If there exists an edge of P to which each extreme point of P can be joined by an indecomposable chain of faces of P, then P is indecomposable.

The proof of this theorem is given by Shephard, [5].
In view of Theorems 3-6 and 3-7, it is clear that any pyramid in E_{3} formed by taking the convex hull of a 2-polytope F and a point $x_{0} \not \subset f h(F)$ is indecomposable (see Figure $3-1$). For such a pyramid P, let x_{1} be a point above one facet of P and below all the other facets of P. Then the polytope $P_{1}=\operatorname{conv}\left(P \cup\left\{x_{1}\right\}\right)$ is indecomposable. This process can be repeated on one the newly created facets of P_{1}, or one of the other facets of P, each time resulting in an indecomposable polytope (see Figure 3-1).

Theorems 3-6 and 3-7 also show that any simplicial polytope, i.e. one whose facets are all simplices, is indecomposable. The next result gives a necessary condition for indecomposability.

Theorem 3-8. Let P be an indecomposable polytope in E_{n} dim $(P) \geq 2$ 。 Then for each edge E of P, there exists some $x_{0} \in\langle C(P, E)\rangle, x_{0} \neq 0$, , such that $H\left(P, x_{0}\right) \cap P \in \operatorname{ext}(P)$.

Proof: Suppose that there exists an edge E of P such that for all

$x_{0} \in\langle C(P, E)\rangle, \quad x_{0} \neq 0, \quad \operatorname{dim}\left[H\left(P, x_{0}\right) \cap P\right] \geq 1$. Choose $y_{1}, y_{2} \in E$ such that $\left\|y_{1}-y_{2}\right\| \leq\left\|y-y^{\prime}\right\|$ for every edge y^{\prime} of P. Let $Q=y_{1} y_{2}$ and it will now be shown that Q is a summand of P. Let $x_{0} \in E_{n}$, $x_{0} \neq 0$. It will be shown first that $\operatorname{dim}\left[H\left(P, x_{0}\right) \cap P\right] \geq \operatorname{dim}\left[H\left(Q, x_{0}\right) \cap Q\right]$. If $\operatorname{dim}\left[H\left(Q, x_{0}\right) \cap Q\right]=0$, this is true. Otherwise, $H\left(Q, x_{0}\right) \cap Q=Q$. Without loss of generality, assume that $0 \in Q$. Then using Theorem l-15 and Lemma 2-5b, $\quad x_{0} \in C(Q, Q)=Q^{\perp}=E^{\perp}=\langle C(P, E)\rangle$. Therefore, by assumption, $\left.\operatorname{dim}\left[H Q, x_{0}\right) \cap Q\right]=\operatorname{dim}(Q)=1 \leq \operatorname{dim}\left[H\left(P, x_{0}\right) \cap P\right]$.

So far, it has been established that $Q \leq P$. By choosing y_{1} and y_{2} such that $\left\|y_{1}-y_{2}\right\| \leq\left\|y-y^{\prime}\right\|$ for all edges $y y^{\prime}$ of P, it is clear that $Q \leqq P$ and so by Theorem $3-4, Q$ is a summand of P which contradicts the assumption that P is indecomposable.

It will now be shown that certain types of transformations from E_{n} to E_{n} preserve indecomposability and decomposability.

Theorem 3-9. If f is a non-singular linear transformation from E_{n} to E_{n} and P is a polytope in E_{n}, then P is indecomposable if and only if $f(P)$ is indecomposable.

Proof: First of all, $f(P)$ is a polytope since

$$
f(P)=f(\operatorname{conv}[\operatorname{ext}(P)])=\operatorname{conv}(f[\operatorname{ext}(P)])
$$

(cf. Grennbaum, [2], p. 21, Th. 10). Suppose now that P is indecomposable and that $f(P)=A+B$. Then $P=f^{-1}(A+B)=f^{-1}(A)+f^{-1}(B)$ 。 Thus $f^{-l}(A)=\alpha P+x_{O}$ and $f^{-l}(B)=\beta P+y_{O}$ where $\alpha>0$ and $\beta>0$. Therefore, $A=f\left(\alpha P+x_{0}\right)=\alpha f(P)+f\left(x_{0}\right)$, and similarly $B=\beta f(P)+f\left(y_{0}\right)$, which means that $f(P)$ is indecomposable。 Now if $f(P)$ is indecomposable, then P is indecomposable by
applying the preceding argument to f^{-1}.
Another type of transformation which preserves indecomposability and decomposability is the affine transformation defined as follows:

Definition 3-4. Let g be a transformation from E_{n} to E_{n} Then g is called affine if and only if $g[\alpha x+(1-\alpha) y]=\alpha g(x)+(1-\alpha) g(y)$ for all real α and x and $y \in E_{n}$ 。

The next result characterizes the affine transformations in terms of linear transformations.

Theorem 3-10. Let g be a transformation from E_{n} to E_{n}. Then g is affine if and only if g has the form $g(x)=f(x)+x_{0}$ where f is linear and x_{0} is fixed.

Proof: Suppose first that g can be expressed as $g(x)=f(x)+x_{0}$ where f is linear. Then,

$$
\begin{aligned}
g[\alpha x+(1-\alpha) y] & =f[\alpha x+(1-\alpha) y]+x_{O} \\
& =\alpha f(x)+(1-\alpha) f(y)+x_{O} \\
& =\alpha\left[f(x)+x_{0}\right]+\left(1-\alpha\left[f(y)+x_{O}\right]\right. \\
& =\alpha g(x)+(1-\alpha) g(y)
\end{aligned}
$$

Now suppose that g is affine and define f as follows: $f(x)=g(x)-g(0)$. The proof will be completed by showing that f is linear.
(i) Homogeneity:

$$
\begin{aligned}
f(\alpha x) & =f[\alpha x+(1-\alpha) 0] \\
& =g[\alpha x+(1-\alpha) 0]-g(0) \\
& =\alpha g(x)+(1-\alpha) g(0)-g(0) \\
& =\alpha[g(x)-g(0)] \\
& =\alpha f(x)
\end{aligned}
$$

$$
\text { (ii) Additivity: } \quad \begin{aligned}
f(x+y) & =f\left[2\left(\frac{1}{2} x+\frac{1}{2} y\right)\right] \\
& =2 f\left(\frac{1}{2} x+\frac{1}{2} y\right) \\
& =2\left[g\left(\frac{1}{2} x+\frac{1}{2} y\right)-g(0)\right] \\
& =2\left[\frac{1}{2} g(x)+\frac{1}{2} g(y)-g(0)\right] \\
& =[g(x)-g(0)]+[g(y)-g(0)] \\
& =f(x)+f(y) .
\end{aligned}
$$

Now if g is an affine transformation, say $g(x)=f(x)+x_{0}$
where f is linear, then g is called non-singular if and only if f is non-singular. As in the case of linear transformations, an affine transformation is non-singular if and only if it is one to one and onto.

Theorem 3-11。 Let g be a non-singular affine transformation from E_{n} to E_{n} and let P be a polytope in E_{n}. Then P is indecomposable if and only if $g(P)$ is indecomposable.

Proof: By Theorem 3-10, g has the form $g(x)=f(x)+x_{0}$ where f is a non-singular linear transformation. By Theorem 3-9, P is indecomposable if and only if $f(P)$ is indecomposable. Therefore, the theorem follows since $g(P)=f(P)+x_{0} \cdot$

The remainder of this chapter will be concerned with characterizing the indecomposable polytopes in terms of their support functionals. To do this, it is necessary to consider the Steiner point of a polytope.

Definition 3-5. Let P be a polytope in E_{n} and let $S_{n-1}=\{x:\|x\|=1\}$ 。 The Steiner point of $P, S(P)$, is defined as follows:

$$
S(P)=\sum_{i=1}^{m} \frac{\mu\left[C(P, v) \cap S_{n-1]}\right)}{S_{n-1}} v_{i}
$$

where $\operatorname{ext}(\mathrm{P})=\left\{\mathrm{v}_{1}, v_{2}, \cdots, v_{m}\right\}$

From this definition, and in view of Theorem 1-14 and Corollary l16b, it follows that $S(P)$ is a strictly positive convex combination of $\operatorname{ext}(P)$ and hence $S(P) \in \operatorname{relint}(P)$. Some other properties of the Steiner point are given in the following theorem.

Theorem 3-12. The Steiner point has the following properties:

$$
\begin{aligned}
& \text { (a) } S(P+Q)=S(P)+S(Q), \\
& \text { (b) } S(\alpha P)=\alpha S(P), \\
& \text { (c) } S(\{x\})=x .
\end{aligned}
$$

For the proof of these facts, see Grünbaum, [2], p. 308. From this point on, only polytopes P for which $S(P)=0$ will be considered. In this setting, indecomposability has the following form:

Theorem 3-13. Let P be a polytope in $E_{n} s(P)=0$. Then P is indecomposable if and only if $P=Q+R$ where $S(Q)=S(R)=0$ implies that $Q=\alpha P$ and $R=\beta P$ where $\alpha>0$ and $\beta>0$.

Proof: First suppose that P is indecomposable and that $P=Q+R$ where $S(Q)=S(R)=0$. Then by Definition 3-2, $Q=\alpha P+x_{0}$ and $R=\beta P+x_{1}$ where $\alpha>0$ and $\beta>0$. Then

$$
0=S(Q)=S\left(\alpha P+x_{0}\right)=\alpha S(P)+S\left(\left\{x_{0}\right\}\right)=x_{0},
$$

and similarly, $x_{l}=0$.
Now suppose that $P=Q+R$ where $S(Q)=S(R)=0$ implies that
Q and R are positive multiples of P. Let $P=A+B$. Then

$$
0=S(P)=S(A+B)=S(A)+S(B)
$$

and hence $P=[A-S(A)]+[B-S(B)]$ and $S[A-S(A)]=S[B-S(B)]=0$.
Therefore, $A-S(A)=\alpha P$ and $B-S(B)=\beta P$ where $\alpha>0$ and $\beta>0$ which implies that $A \sim P$ and $B \sim P$ and hence P is indecomposable by Definition 3-2.

Now let $S=\left\{f_{P}: P \in P\right.$ and $\left.S(P)=0\right\}$. The next result shows that S is a convex cone in the space of functionals on E_{n}.

Theorem 3-14. The set S is a convex cone.

Proof: (I) If f_{P} and $f_{Q} \in S$, then $f_{P}+f_{Q}=f_{P+Q}$ and $S(P+Q)=S(P)+S(Q)=0$ implies that $f_{P}+f_{Q} \in S$.
(2) If $f_{P} \in S$ and $\alpha \geq 0$, then $\alpha f_{P}=f_{\alpha P}$ and $S(\alpha P)=\alpha S(P)=0$ implies that $\alpha f_{P} \in S$.

The next theorem characterizes the indecomposable polytopes as those whose support functionals are extremal elements of S.

Theorem 3-15. Let P be a polytope in $E_{n}, S(P)=0$. Then P is indecomposable if and only if $f_{p} \in \operatorname{extr}(S)$.

Proof: Suppose first that P is indecomposable and that $f_{P}=f_{Q}+f_{R}$ where $S(Q)=S(R)=0$. Then $f_{P}=f_{Q+R}$ and thus $P=Q+R$ by Theorem 1-5, part (e), Therefore, by Theorem 3-13, $Q=\alpha P$ and $R=\beta P$ where $\alpha>0$ and $\beta>0$. Therefore $f_{Q}=f_{\alpha P}=\alpha f_{P}$ and $f_{R}=f_{\beta P}=\beta f_{P}$ which implies that $f_{p} \in \operatorname{extr}(S)$ by Definition 2-3.

Now suppose that $f_{P} \in \operatorname{extr}(S)$ and let $P=Q+R$ where
$S(Q)=S(R)=0$. Then $f_{P}=f_{Q+R}=f_{Q}+f_{R}$, which implies that $f_{Q}=\alpha f_{P}$ and $f_{R}=\beta f_{P}$ where $\alpha>0$ and $\beta>0$. Thus $f_{Q}=f_{\alpha P}$ and $f_{R}=f_{\beta P}$ which implies that $Q=\alpha P$ and $R=\beta P$ and hence P is indecomposable by Theorem 3-13.

SUMMARY AND CONCLUSIONS

Chapter I began with some elementary facts about convex sets which apply in particular to polytopes. Two characterizations of the support functional of a polytope were obtained. One of these characterizations established that $f_{p}(x)=\max \{x \cdot v: v \in \operatorname{ext}(P)\}$. This prompted the definition of facial cones, the sets $C(P, F)=\left\{x: x \cdot v=f_{p}(x) \forall v \in \operatorname{ext}(F)\right\}$ where F is any face of P.

It was shown that these facial cones were all convex cones with vertices at the origin. Also, useful characterizations of $C(P, F)$, relint[C(P,F)], and relbd[C(P,F)] were given using support hyperplanes for P. These facial cones were also used to characterize the faces of the sum of two polytopes.

In Chapter II, the facial cones were used to characterize local similarity of polytopes. The most important result needed was the fact that for any face F of a polytope P, such that $O \in F,\langle F\rangle$ and $<C(P, F)\rangle$ are orthogonal complements.

It was then established that for n-dimensional polytopes in E_{n}, each facial cone $C(P, F)$ is salient whereas for lower dimensional polytopes in E_{n}, all of the facial cones are non-salient. This information was used to characterize the extremal elements of the facial cones.

In Chapter III, the concepts of indecomposability and decomposability of polytopes were defined. Shephard, [5], characterized when
one polytope is a summand of another. This result was used to prove that a polytope P is indecomposable if and only if every polytope locally similar to P must be positively homothetic to P.

It was then shown that every simplex is indecomposable. In E_{n}, $\mathrm{n}>2$, this result together with a sufficient condition for indecomposability due to Shephard yields many examples of indecomposable polytopes that are not simplices. Another result provided a necessary condition for a polytope to be indecomposable in terms of its edges and extreme points.

In E_{2}, every polytope can be expressed as a finite sum of simplices, however this result does not generalize to higher dimensions. It was shown that a necessary condition for a polytope to be expressable as a finite sum of simplices is that each of its faces be expressable as a finite sum of simplices. An interesting problem which remains unsolved is that of characterizing the polytopes which can be expressed as a finite sum of simplices in E_{n} for $n>2$ 。

It was established that non-singular linear and affine transformations preserve indecomposability and decomposability.

Finally, it was shown that the extremal elements of the convex cone of support functionals of polytopes with Steiner point at the origin are precisely those of the indecomposable polytopes. An unsolved problem concerning this result would be to characterize this cone of functionals and its extremal elements in such a way as to shed new light on indecomposability of polytopes.

1. Ewald, G., and G. C. Shephard, "Normed Linear Spaces Consisting of Classes of Convex Sets", Math. Z., 91 (1966), 1-19.
2. Grünbaum, B., Convex Polytopes, Interscience Publishers, London, 1967.
3. Klee, V., "Some Characterizations of Convex Polyhedra", Acta Math., 105 (1960), 243-267.
4. Rådstr8m, H., "An Embedding Theorem for Spaces of Convex Sets", American Mathematical Society Proceedings, Vol. 3, 1952.
5. Shephard, G. C., "Decomposable Convex Polyhedra", Mathematika, 10 (1963), 89-95.
6. Taylor, A. E., Introduction to Functional Analysis, John Wiley \& Sons, Inc., New York, 1958.
7. Valentine, F. A., Convex Sets, McGraw-Hill, New York, 1964.
8. Yaglom, I. M., and V. G. Boltyanski, Convex Figures, (English translation by P. J. Kelly and L. F. Walton), Holt, Rinehart, and Winston, Inc., New York, 1961.

VITA 3
Joe Dale Flowers
Candidate for the Degree of
Doctor of Philosophy

Thesis: FACIAL CONES, LOCAL SIMILARITY AND INDECOMPOSABILITY OF POLYTOPES

Major Field: Mathematics

Biographical:

Personal Data: Born at Sayre, Oklahoma, April 15, 1943, the son of Joe I. and Lois H. Flowers.

Education: Attended grade and high school in Eweetwater, Oklahoma and was graduated from Sweetwater High School in 1961; received the Bachelor of Science degree from Southwestern State College, Weatherford Oklahoma, with a major in mathematics, in July, 1965; received the Master of Science degree in mathematics from Oklahoma State University, Stillwater, Oklahoma, in August, 1966; completed requirements for the Doctor of Philosophy degree in mathematics from Oklahoma State University in August, 1969.

Professional Experience: Graduate Assistant, Department of Mathematics and Statistics, Oklahoma State University, 1965-68.

