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 PREFACE

This dlssertatlon is concerned with minimizing the
total cost of allocatlng resources in the act1v1t1es or
stages of a project. A serlal-actlvlty project is con-
sidered and treated as a finite state Markov Process.
Three tlme estlmates for each act1v1ty are used to define
a triangular probablllty density funotlon of completion
time for the act1v1ty,~the most likely tlmevestlmate is
resoufce level;modified.‘ There is ah allowable range in
which the level of reSourcevmustvlie for each activity.

In addition, the over-all mean project dufation_is |
| specified. | |

The resulting set of eguations are linear in the case
where the periodic review time interﬁaldis iess than the
most likely activity duration; this case is solved by lin-
ear programming technigues. The case where the review
time interval is gfeater than the most likely activity
duration yields mnonlinear equations and is solved by
Legrange multiplier techniques.
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CHAPTER I
TINTRODUCTION

A problem old to management is one of allocating re-
sources among thelvarious Stéges of a given_project.
Project in this context is a singular effort rather than a
repétitive one completéd’onva production basis. Mahage-

- ment must continually plah and schedule largely on the
basis of experience with similar projects. This experience
is varied_aﬁd not always‘appliCable; management needs more
quantitative approachesvthat reduce value judgments and
deéision err¢rs. It‘is this problem that shall be con-
sidered inlthis paper. | |

Historically, the first approach considered is ﬁhat
of Capital Budgeting where selection of projects to which
time énd money are allocated is well treated in the liter-
ature. For exampie5 William Karush (1) has developed an
algorithm for maximizing the payoff from activities using
piecewise linear return functions subject to the allowable
resource range of each activity. H. Martin Weingartner
(2) considers the problem of project interrelationships
such as mutual exclusion and interdependenciess; the model
he develops also includes non-linear utility functions.

To anyone primarily concerned with Capital Budgeting,



these papers prévide a good approach tb the problém and
can yield further developments, Howéver, this thesis is
concerned with resource allocation in the stages of a
selected project énd thé following references were found
to be more relevant. |

Critical Path Methods (CPM) were developed in the
late 1950's andjinvolve a gréphiéal portrayal of the ele—
ments or stages and theirvinterrélationships as a networks
they inclﬁde.an arithmetid procedure whichvidentifies the
relative.importance of each eléﬁent in the over-all proj-
ect. The budgeting of time and money within the stages or
activities of a given projeCt is treated in the literature
by means of;a cbst versus activity time‘relationship for
each project stage. For example, D. R, Fulkerson (3) con-
siders a linear (with time) cost function defined by a
normai_activity time cost ‘and a crash or expedited activ-

ity time cost as shown by the following Figure 1.

Activity direct costs

crash 1
cost
normal + Activi
ctivity
cost — — duration
erash normal time

time o time

Figure 1. Linear Activity Cost Time Function



J. E. Kelley (4)‘deveiops a parametric linear pro-
gramming model, using linear éctivify cost‘functions, by
means of a computer search. All feasible solutions
(including the minimum cost) are found for a given over-
all project duration. E. B. Bermanﬁ(S) treats the case of
a non—linéarvconCave ﬁpWard time-cost relationship of the

following form:

. o e
C(t) = a+bt+:E:_—'d

where a, b, ¢, and,d are positivé coﬁstants and t is the
activify time duration..bIt is seen that'cdst will increase
for both short and long times in this type of expression.
Berman has developed an iterative'algofithm_ih which the
resources are allocated so that the time-cost functions
have equal slbpes along a Serial path. Bérman cohsiders
unéertainty in one acﬁivity at a time along a serial path
with the_aCtiVity'timeldﬁﬁatiOn distributiép gs“pomtrayed

in Figure 2

Probability
of
conpletion
| .50~F '
{
4 . |
.25 3 | H
! ' ! .
oL — ; : } Time
T-2 T T+2 '

Figure 2. Activity Time Duration Probability
Distribution
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Berman finds the effect on the system is to shift the
uncertain event and its predecessors to shorter duration
.times; thus maintaining the same over-all project time.
This thesis, in contrast, considers the activity or
'project stage to have a probabilistic time duration whose
most likely gompletionvtime'is a function of the résource
level applied to the activity as illustrated in Figure 3.
The shoftest andvléngest time durations are aséumed un-

affected by.the stage'reséurce level,

Distribution

- of
completion
times
1 |
i 0 .
e ‘ — Time
- shortest most most longest

likely likely
at high at low
resource resource

Figure 3, Distribution of Activity Completioh Times

The type of system studied in this work is a projéct
made up of a series of étages that are carried out consec-
utively with each stage being completed before the next
one is permitted to begin. The nature of each stage

dictates the allowable range of resource applied to it.
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For exaﬁple,'there is a minimum as well as a maximum amount
of‘mOney’which mﬁst be spent in order to completé a stage.
Spending less than the minimum money, the stage will not
be completed and spénding bver the maximum will result in
excessive waste. Furthermore, there is a defined length of
time in which a project can be undertaken and completed.
The optimization of the sequential stage project in this
papef is bééed on constraining the expected duration of
 the over-all project to some specified time and adjusting
the resource level at each stage to meet this constraint.
at minimum resoﬁrée cost. This over-all time constraint
is in.additiOn to the ihdividualvstage resource
constfaints. |

The approach ﬁsed in énalyzing’this problem is to
consider each stage of.the‘project as having a certain -
probability of being completed during a given review time
interval. ASsumiﬁg'the stages are independent and the
probabilities of completion do not change with time or the
project's progress, the state of the system can be de-
scribed as a first ordef finite state Markov Prodess.
Because the system 1is reviewed at constant time intervals,
it can be treated as a discrete time Markov Chain. This
treatmént is poséible since a finite Markov Chain 1s a
stochastic-or fime varying pfocess which moves through a
finite number of states; the probability of entering a
certain‘state only depehding oh the‘last state occupied.

(For examples of Markov Processes, .see Reference (6)).



CHAPTER II
MARKOV CHAIN FORMULATION

“'The projectvié consideréd as a. series bf sequential
steps, or stages, each of which must be completed before
the subsequent stage is started. The probability of com-
pletion of each stage during é given time interval can be
represented as a Markov prdcess probability transition
matrix. o |

Cbnsidering thé probabilities'to.Befindependent of
time and history'of the system the transition matrix takes
the following form for a fiVe stage project.

| Future Stage
S1 S2 53 S4 S5

Present Stage — » - —
' ol Pn P P, Py Pis

S2 |Pa Py Pam Pum P |
83 |Pa Pm Pm Py  Px| =

Id

S5 |Pm Pz Pw Pu Ps

Here, Pij is the conditionél probability of the project
going from stage i to stage J during one review time
interval.

Assuming that completed stages of the project cannot

become undone, the P, . terms equal zero where i> j. If it

J

6
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is assumed that the probabilities are essentially zero for
completion of more than one stage during a review period,
then P, terms equal zero where j>i+1. With these

assumptions, P becomes:

Future Stage

' S1 S22 S3 S4 85

Present Stage — _ —
T T 81 |Pn Py O O 0
s2 {0 Pa Py O 0

§3 |0 0 Pp Py =P

s4 |o 0 0 Pu Pa

85 |o 0 0 0 P

— —

The bnly.steps,allpwed aré tO'staj'or advance one stage}
no mqré than one activity‘cén be'cdmpleted during a review
time pefiéd.' Thié,can‘be insuréd by making the review
“time interval sufficiently small. 'The‘prﬁbability of two

steps, which is desired to be negligible, is the following:

i, i+2':¢£TPdfi(ti>[éI“ti pafy,(ty )8t Jaty

where T = time duration of review period and the Paf(t)'s

are the completion probability density functions of stages

i and i-»l.  |
Since the_fow.prqbabilities sum to unity in a transi-

tion matrix (the future states are completely described),g

can be rewritten as .



Future Stage

51 s2 8% sS4 S5
Present Stage R —
si |1-Pm Py 0 0 0
sk |o 1Py Py O 0
s3 |o 0 1-Py, Py O | =P.
s4 |o 0 0 1-Ps P
s5 |o o 0o o 1

Stage 5 is an absorbing stage and may be considered as
completion of the project.

The matrix P is rearranged and partitioned as follows
using the notation of Reférence (6), Chapter III, for
absorbing finite Markov Chains where the submatrix § rep-
resénts the process in transient states, submatpix R con-
cerns the'transition from transient to absérbing states,
‘and submatrix I represents the absorbing states. Sub-

matrix O consists of zeros.

55

, 81 - 82 83 S4
. - ! ""\
S5 | 1 o 0 0 0
! ]
o e — e m m = -
. Bl }oO , 1-Pp Py 0 0
| _
112} !
P =l =1=—=]=82 10 ) 1-Pgy  Pgy 0
- R }Q _ 1
I
83 |0 , 0 0 1-Pay P
- | .
. B4 | Pg t O 0 0 1-Pg

where:



is a unit mgtrix representing the absorbing stage

f—

or project completion.

is a zero matrix representing the absorbing to

e

non-absorbing stage; Once the project is
completed it cannot become undone, hence
Pij'=~o here.

is the non-absorbing to absorbing stage which is

B

- the probability of reaching completion.
Q is the non-absorbing to non-absorbing stage which
represents the stage transition probabilities
before coipletion.

The following is obtained from the Q matrix:

s1 . 82 S3 sS4
81 | Py Py O O
i-9 = S .
83 |o 0 Pe  -Pg

By computing the fundamental matrix, §==[l-95_1 from the

transient stages as below:

s1 s2 83 sS4

S1 1/Pia 1/Pxy 1/Pg 1/Pss
1 s2 0 1/Pm  1/Pa  1/Ps
.IE = [l - .Qi] = - . °
. 83 o 0 1/Pay 1/Ps
sS4 0 0 0 1/Pss
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The fundamental matrix N yilelds the mean number of
times the system is in the transient states (see page 46,
Reference (6)) from which the time per stage is found as:
' - 1/p

Time in stage jJ = n J=1, 2, 3, or &4

iJ Jsd+l
and 1 £ J.
The total time then for the project becomes:

N = Ny + 0y, +‘n15 + Ny, = l/P12 + l/P25 + l/P54
+ l/P45 = 1y + 0y n5 + 1y,

when the 1 subscript is dropped. This is used as one_of
the constraint equations in the model being developed.
Note that the initial probability vector describing
the system initially Would always start the system at the
first stage. The next chapter presents the method of

computing individual probability terms.



CHAPTER ITI

TIME ESTIMATES AND PROBABILITY DENSITY FUNCTIONS

Inlblace»of having actual distributions of completion
times for each of thevprojéct stages, it was.decided to
use an assumed distribution fitfed tao three time estimates
as in the PERT System. The activity‘estimates, a, My, by
~are defined as: a = the shortest time, m = the most likely
time, and b = the 1ongestltime-the stage 1is possible to
take. .

The reference '"An Anaiytical Study of PEBT Assumptions'
by K. R. MacCrimmon and C. A. Rayavec (7) proposes the
use of a triangular distribution as one alternative for
the assumed distribution of dompletion times. They have
found that the‘PERT model,would have‘yielded approximately
the same results using a triangular distribution instead
of a beta distribution. The triangular distribution is
completely defined by the three time estimates.

The resource application»level is assumed to affect
the most likely compleﬁion time.ohly. The assumption that
the shortest and longest'times‘remain‘unchanged is Justi-
fied since they are the results. of unusual circumsténces
having "taken plécé in the activity which are often beyond

control.

11
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The‘probability of transition to the next stage in

one review time period denoted by P 141 is giVen by

rgJ.,
Pi9i+1‘g g £(t)at | (3=1)
where T is the length of the review time interval. For

the triangulérv'di_stribu’tion (Figure 4),'

‘fbf(t)dt =1 (3=-2)

Py 441 T 4

- £(%)

|

I |

| I

I |
, B R
0 a m T . D
Figﬁi‘e 4, Trlangular Distrlbutlan for Probable '
R ' Activity Completlon Times -

sFe(e)at = 0 0<Tga (3-3)
o o : |
B SCTI- I CagTgm (3-4)
= mel (t - a)df + thKg (t-m) : (3-5)
a : m o :
+ Ky (m-a)ldt ‘ - m<T<b
= 1 - S | b<T (3-6)

where K, and K, are the slopes of the distribution between

a and m and between m and b, respectively.



13

K, and K, are evaluated from the pdf boundary conditions,
f(t) = 0O at t = a, and t = b, and by setting the area

under the curve equal to one. The result is:

2
S YL Gy
. =2
K = ooy (vmay

Hence, P[transition to next stage in one review time period]

-0 - 0<T<a (3-7)
e
- 1. S . b<T v<3-10>

Applying the resource modifiéd modal time in the expreSs—
ions- (5~8) and (5 9) where m= f(R) and R ig the stage

resource level ylelds

By a1t vth(g:Z%z(b-a) 0 agT<f®) (3-11)
=1 Es )(s(ﬁ%%z(b. 2) E(R)LTLD. (3-12)

Solving the Equatiohs'(ﬁ-ll) and (3-12) for £f(R) in terms
of n; the mean time spent in each stage, yields the

following:

(may = & * ~pa - asT<E®)
(3-13)
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(I-b)? (T-b)?

=b - (T°F, L) -a) ~ ® - (15178, T(5=a)

T(R)ST<b.  (3-14)

Consider the resource allocation for each stage to
have both an upper and é iower boundg the resource applied
must be betWeen these limits: If more than:the upper
limit were allocated, the waste would'be:excessive;‘if
less than the lower limit,were app1ied, the activity could

not be completed. These limits are designated RH and RL

for the high and low levels. Corresponding to these re-
souréellevel bounds are the ﬁost likely completion time
estimates‘designated My and mr s respectively.

| The assumption of a linear relétion between.the most
likely completion time m and the resource level R applied
to thebstage yieldé Equation (3-15).

‘ R-R '
f(R) =nm = EE:%; (mH-mL) + mp. (3-15)

Rearranging terms to solve for R in terms of f(R) yields

Equation (3-16).

R =[f(R) - m

Dy

L] + RL° (3-16)

gl

Introducing the i stage subscripts for all of the terms

and combining Equations (3-1%), (3-14), and (3-16) yields:

- 2 . — :
| n; (T-a,) By - Ry
Ri = [ai + 5. - a ; - le] . m"— + RLi
i~% S S
a. <T<m (3-17)
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and
(T - Db, )2 R.. -R..
r . Hi Li
By = L°y -t IvA; )(b 5) " mr; ) - Byi g * Ry
. ‘ Li
mlg_T<b . (3-18)

Thus, the. reSOﬁrce at stage 1, Rl; is expressed in terms
of the ranges of resource, of most- llkely completlon and
of act1v1ty time; the expected stage tlme n; is the
independent variable. These two equations take care of
theecomplete:stageeectivity time renge.

Equation (5%17) is-linear with respect ta n, and can
be rewritten es follows where constants for the stage

equation are combined into'Ai’and‘Bi.

_Ri = Ai _+ Bi_ni | ai_gT_<_mi | (23-19)
R.. =R
: Hi “Li
where A, = (a -—m..) . + R and
1 L1' mHl"mLi Li

- 2 -

g LB me )l Ry - Ry

17 by -ay gy - By

Equation (5—18) is not linear with respect to n; and can
be rewritten as follows where the stage equation constants

are combined into Di and Ei.

, n. : ’
, 1 ' : _
Ri =.Di-Ei£"i—j_—T | miS_Tgbi ., (2 20)_
R.,. - R..
Hi Li
where D. = (b, -m.) . + R,
i i Li mHl-mei i
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and

Equation (3-19) is linearp With'respect to n; and rep-
resents the case where the review period T falls between
the shortest (a) ahd most likely (m) completion times for
stage i. The model formulated from this relationship is
solved by 1inéér programming techniques and will be re-
ferred to as Case I,' |

Equation (3—20)’is nonlinear in n; and represents the
case wheré thévreView period T falls between the most
likely (m)_and‘the longest (b) completion times for stage
i. The model forﬁulatedvfrom this relétionship is solved
by Lagrange muitiplier techniunS‘and will be referred to
as Case II. |

The seleéfion‘of‘the review time interval length must
take into account the probability of completion of each
stage during the interval. Eﬁery,stage_must héve a finite
probability of being completed. 'In addition, the’probabil~
ity of completion of two or moré sequential.stages during
the interval must be essentially zero.

Both of these models are optimized by minimizing the
total cost of reséurce used subject to the allowable range
of resource application'and a maximum expécted over-all

project'duration.



CHAPTER IV
THE SOLUTION OF CASE I

Case.I is the condition where the stage resource
level is a linear function of the mean time spent in each
stage. This occurs when the review period T lies between
the shortest and most 1ikeiy completion time (ag<T<m),

Formulating this case as a linear programming problem
for an M stage project (stage M =completion) results in

the following:

Objective function

o M-1 - |
Minimize: f = igl-ciRi | (4-1)
where G, is the cost of the resource at the 180 stage. and
R, is replaced by Equation (3-19), yielding
"‘f Ml 6 a4+ Bn.
£= % Cs(hy +Byng)
Constraints
Mg v
Subject to: & n, <N (4-2)
_ i=1 17
and nizrﬁ.min i =1y 24 0asy M=1
(4-3)

17
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Ili_<_ni max i = ‘l, 2? « s 9 M“’l
| (4-4)
where N min and ni max 2T the_allOwable probable comple-

tion time ranges for the maximum and minimum stage resource
allocation respectively.

min,and nimax are computed from
Equations (4-5) and (4-6):

The terms’ni’

(mHi - a'i)(bi -a,;)

%i min © (T-a; )? = (4-5)
gy - a0, - ay)
N, ax f };(T{-ai%z i . (4-6)

~where ﬁLi and mHi are'the most likely 6ompletion times for
the lowest.and highest,levels'of stage i resource applica-
tion;‘réspecti#ely. |

| The following'example:serves to illustrate Case I.
Considef a four stage research proposél (sfate 4 equals
completion) whose over-all duration (N) is specified to be
a mean of fifteen days; ~The activities are'Serial§ each
stage of the work must be'cbmpleted before the Sucéeeding
étage can be started. The.stétu81of-theVproposal is
reviewed at five day intervals (T). These timés would
correspond'té‘a five day work Week_and’é threé week period

in which the work is scheduled to be completed.



For Stage Number

12 3
3 2 3
9 10 8

50 100 40
150 200 80

10 4 6

19

a-shortest possible duration (days)

‘b-longest possible’dﬁration (days)

RL-lowest stage resource allocation
(man-hours)

L—most 11ke1y duratlon at lowest resource
v level (days

RH—hlghest stage resource allocation

(man-hours)

' H—most likely duration at highest

resource level (days)

C-cost of resource ($/hour)

The following graphically illustrates this data:

Stage 1 £

Stage 2 £

1 ()
1/,,441'?”"“h~\\,
. |
a=3 _ mg=5 m=7 b=9 ©
- Rg=150 'RL=5O Cl=lO
5(t)

oy - - ,f v, . - i | t
az2 mp=5  m[=8 b=1C
~ Rg=200 Rp=100 c
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Stage 3 f;(t)

a=3 m ~5mL 7 =8 _
RH-BORL—4O | .05=6;

Figure 5. Distributlon of Completlon Times
_ . for Three Stage Example,‘Case‘I :

Computingfﬁhe‘coefficients of the objective function below:

A = (a mL)<m L) + Ry from Eqﬁation (3-19)
_ QRPR . o
37= <Tb7?i, mﬁ__mi ' from Equation (3-19)

vields the following stage‘values:

Stage 1 A, = 250, B, = =-33%.3, C, = 10
‘Stage 2 A = 300, B, = -37.5, C, =4
Stage 3 Ay = 120,  B; = -16, G = 6.

So, the objective function (3-1) becomes_EquationA(4—7):

f = 10(250 - 33.3n, ) + 4(300 - 37.5n, ) + 6(120 - 1615 )
= 4420 - 3331 -,150n,2 - 96n; . G (4=7)
Computlng the constraint values N: pax and i min from the

Equations (4-5) and (4-6) yields the following:

Stage 1 N ey = © ,‘_', M nin = 3
Stage 2 B2 pax-© 543 B Dy i = 27

Stage 3 T o nin



So the constraints (4-2), (4-%), and (4-4) become:

'.n3‘

N3

+
2
<
2
hS

2

£

n, +mn; <15 | | (4-8)
5 | (4-9)
6 - | - (4-10)
23 T L (a-11)
A o (4-12)
5. | (4-14)

Thus, minimizing the objective function Equation (4-7) is

equivalent to}makimizing its variable portion and can be

written as Equatioh (4=7a):

- maximize 4

M-1 4
- % C,B,n, (4-7a)
i=1 .

ft

33%m + 150m, + 96,

subject to the constraint Equations

ﬁ1‘+ né + n3v+ Sy ; 15 | (4-8a)
¢h1~ Sp + 4 =3 ) - (4-9a)
ni‘f By = 6 - o (4~1Ca)
Zn, = S¢ + A =8 (4~11a)
30, +'Ss :v16 :  , - - (4-i2a)

™
&
i
0
ju]
=
W
i}
Ul

| (4-13a)
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2ns + S7 = 10 | (4-14a)

where terms S5; through SQ are slack variables and terms
Ay, Ay, and A; are artificial variablés, The solution of
this system of equations is carried out in Appendix I by

the Simplex Method and'yields the following solution:

m = 6 days - 5, = 3 S, =0 A, =0
n, = '51/3»days Sy = 8 Sy =0 4 =0
n,'=_3a0' 8 =2 8 =0 A, = 0
Z - 3,152 B2

with a total cost of

£ = 4,420 - Z = $1268.

The alloWable fange of résourqe cost for each stage
for this solution ig fbund from the iinear programming
final tableau as follows: ' for the noﬁ—basic variables,
compute the ratio of cost iﬁcrement tobvariéblé coéfficient
which lies in the row of the desired basic variable; add
thié ratio algebraically to the initiai tableau cost
coefficient of the basic variable. When this is done for
all the non-basic variables, the minimum‘interval geherv
ated by these terms yields:a limiting range for the

respective basic variable.

Stage 1 B0y = 33 + 10 = 333 (=333 in tablesu)
BiCiSs _ 237 _ o3y -33% + 237 = -96
8oa 1
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no lower limit

e =BGy < =96 or C, > 2.88

Stage 2  B,C, = 3742 « 4 = 150 (-150 in tableau)
B, oS _ 18 _ 5y -150 + 54 = -96

asm N 1/3_
.*. -B,C, < ~96 or C, > 2.56

Stage 3 B;C; = 1€ + 6 = 96_ (=96 in tableau)

(BB 3 _gg ~96 + 96 = O

ass 1.7

B;C:8; _ 237

o v b= -237 96 - 237 = -333
ByC3Ss _ 18 _ .
e i i o -9 - 54 = -150

.‘,‘ —150 <°—B3C3 < O or 9058> 03 > O

Therefore, for thiS'solution‘the.resourceléost for
Stage 1 must be'greatér than 32,88:per man~hours; the re-
source cost for-Stage'2_mﬁst,be greater than $2.56 per
man-hours) the resource éOSt for Stage 3 mﬁst lie between
zero .and $9.328 per man-hour.

The linéar progrémming final tableau also gives the
incremental cost associated with each binding constraint, -
where S; = O. The over-all time restriction (S; =0) has a
cost of $96 per day assog¢iated with it. The maximum time

constraint on Stage 1 (Sg = 0) has a corresponding cost of
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$237 per day, while'the‘maximum time constraint on Stage 3
(Ss = 0) has a marginal cost of $18 pér day. bThis shows
that restrictions, such as re@uired man-hours, are most
costly on Stage 1 of this example project.

In summary the results fof each‘stagé are:

Stage

l_ 2 —— 2 ‘

6 53 23 n_nean time in stage (days)

50 100 - 61.3 R-resoﬁrqe'aﬁplied (man-hours)
5'00. 400. 368  CR-cost :iof resource applied ($)

.Thgse:résults indicate the expeéted tiﬁe eéch activity of
the project will require;’ﬂfhe resourcé level applied at
each stage yields a minimum total resource cost subject to
the specified time.and resource constraints, = This infor-
mation, combined with the.ihcremenfal costs associated
with the binding timevconstraints, can enable a manager to
more effectiveiy plan the levels of effort in a cost—time}
trade off. |

Case}I, wifh its 1inear‘objective fun@tion, can be
applied to any size sequential stage project; Each stage
adds one variable'and twobconstnaint equations so the size
of problem fof feasible hand computatioﬁ may be considered
as five or sixbstages; maéhine compufétion is.advised for

larger systems.



CHAPTER V

 THE SOLUTION OF CASE II

Case II is the condition where the stage resource

level is not a linear function of-the mean time spent in

each stage, but varies as n,/(n, -1) from Equation (3-20).

' This occurs when the review periodlelies,between the most

likely and longest completion time (m<T<b).

Formulating this,caSe”as a honlihear programming

~ problem where the constraints are linear and the objective_

function is1nonlinear'results-ih-the‘f0110wing for an M

stage project where' the MphAStage is completion,

Objective Functién |

M-l

Minimize £ = I  C,R,
: : i=1
M-1 | n )
= %:.C, (D, =E, ——)
Coi=1 ' -?. 1-ntf'l
where C, is thé.resource cost at the ith.stage.
Constraints
» . M-~-1
Subject to: & n <N
_ . i=1
n! __Ilt min l=l’ 2, oe,M"l
al’ld | nt S ni max i=l,2’ a.e,M—l

(5-1)

(5-2)

(5-3)

(5-4)
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where n, and n, are, as in Case I, the range of

min max

stage completion times.
Equations (5 .5) and (5 6) are obtained from Equation

(3-12) and yleld n, min‘and n, max

1 ', '
(b —mHl)(ﬂb1 -a,) |

n .
! min

el TR
. i Li i b |
whére mHi:and‘mLilare the‘stage most likely ¢ompletion
times for the hiéhest and lowést resource levels,
'_reSpectiveiy. “ |
Testing the objective function for convexity yields

"the follawiﬁg‘equations:

- M-1 | '
of _ CiEy . . .
EH;- = lzl (-—-—_—Ijz— <« O,$ _s:.nce, Ei < Q0 (5-7)
' M—l ‘ :
92 f 20 E » : '

Since a&f < 0] and 3——y >0 for 1 <n, <

f is a monotonically decreasing convex function as n, in-
creases, as 111ustrated in Flgure o. The function doés

not have a local mlnlmum because Gf/ani is always negatlve,
hence the lowest cost occurs at large activity durations.

Becanse the activity duratioﬁsvni'arevéonstrainad; the
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solution of the system.will have at least one constraint

binding.

Activity f,
cost .

i - ' = —n
Time duration of activity !

Figure 6. Cost Versus Time Duration of Activity for
~ Case II - B

Writing Equations (5-1) through (5-#) in Lagrange

Multiplier notation (8) and formulating the composite

function:
| | C2M-1 o o a
F(n,N\) = f - T MNgi(n) . (5-9)
M-1 o M-1
= z CicDi -Ei ‘, "_’_L'—) - }\'1 Z ni - N (5"’9)
n, =1 .
1= ‘ i=1
M-1 M-1
—viE 51+1(n, n"min)" L Mew(ng -n, max’

where g, (n) = O when the constraint is binding.

Equation (5-9) is the new objective function subject

to 2M-1 constraints. Because the optimization is over M-l

th

activities (the M'" stage is completion) and each activity
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is subjeét to two time duration constraints, 2M-2 equations
arise. The over-all projeét time duration constraint pro-
duces an additional equation, hence there is a total number
of 2M-1. The A multiplier is associated with the over-
all project ConStraint; Kg‘through Ay are associated with
the stage 1 through M-l minimum time duration constraints,
respectivély; while Ay+; through A> y-1 a@re associated with
the stage 1 through M-1 maxiﬁum‘time duration constraints,
respectively. | | o _ |

Compﬁting the partial derivatives of Equatibn (5-9)
with respect tO-eaCh_variabie and‘eQuating.it to zero
‘results in the following‘set Qf[equatidns:

orF C,E

- on, =t (Ili-,-ljz‘ f'}\'l - .)‘”14'1 " }\'1+M.= 0

) i = l, 2, LAY M’-l (5—10)
M-1 - e ' o
A < - iEl.gn*' N) =0 S {5_11)
Thar - - M pan) =0
B i =1y 2y seey M=1  (5-12)
BF oy | |
OAyew <n*"n? max)vz.o' o .
i‘ = l, 2, oo;; M"'lo ) (5_13)

For a given i‘iﬁ the Equation (54105,.either K;+1 or
Ayew will eéual zero as, at most, only one of these con-
straints can be-bihding on.the'term ny .

Consider the folléwing numerical example to illus-
trate Case II. | |

Assume a project consisting of 4 sequential stages,
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where Stage 4'is completion, is desired to be completed in
15 days and that it is reviewed at five—day intervals
(this example is similar to the one used in Case I).

For Stage Number

1 2 3
1 4 2 a-shortest possible-duration (days)
11 8 16 b;longest'possible duration (days)

50 100- 40 RL-lowest stage resource allocatlon
. ‘ _ ’ (man—hours)

5 7. 5‘ L-most llkely duratlon at lowest resource
' , level (days)

150 200 80 ‘RH-hlghest stage resource allocation
: - . S , - (man—hours)

3 6 4 H—most likely duration at highest
- ' ' : ’resource level days)

10 1 6 C cost of resource (ﬁ/man-hour)

and M = 4, T = 5, N = 15.

Stage 1 and 3 have the review time T lying bétween m
and b while Stage 2 was selected with T 1ying between a
and m. Stage 2 waé'purposely chosen to have a relatively
Small'probability of-qompietion during one reviéw time
period because, in the model, it is necessary for the
‘probability of completion of two or more éctivitiés during
one review time period to be negligible. Computing the
coefficients of the objective funetion from Egquation
(3-20) for Stages 1 and 3 where: |

 R.-R
H L

D=(b-m)
L<IHH- L

()2 ARy

b-a *\mH—mL

and E =
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and from Equation (3-19) for Stage 2 where:

A = (a—mL)<mH L + RL - and B = (L= a)3<

H my, mH‘mL

yields the follow1ng stage values

Stage 1 D1 = -250, By = -180, cl,= 10
Stage 2 A, = +400, B, = =25, G = 4
Stage 3 Dy = -400, E; =

=2420/7, G5 = 6.
So, the objective functioh becomés:
£ = 1o'(-25o.+-1ao~5?51) + 4(4@01-25n,) "

6 (400 , 2420 D 1) - 3300 + 8900 _

7 1 -1
100n, + 292&31.
.- Il;“l
Computing the constraint values Ny pin and'n1 max Lrom the

‘Equations (5-5) and (5-6) for Stages 1 and 3 and from
Equations (4-5) and (4-6) for Stage 2 yields the following:

Stage 1. m min.= 18/ Doy = o1/2
"Stage ‘2 n, _mi‘n = 8 N oy * 12
Stage 3 = ng nin = 27/ & P 42/3

Sc the conpstraints become:

m +m +1n; <15 - (5-—15‘)
ny Z 19/11 | o ' - '(5-16)

n28 G



ny > 74 (5-18)
m g 2V | - - (5-19)
n <12 o o | f (5-20)
mogwn o (5-21)

Equations (5-9) through (5-13) can be written as the
following for this example: '

= M(ng +m;p +1y -8)-A,(my ~1.818)

. .-x,,(n,”- 8.000) - M(n, ~3,574) = As (n, = 2.500)

| < Ae (ng -512.060); '—'-M(n, - 4.,666) o (5-22)
a'a;'F;;'? - 100 = Ay - Ay - A = 0 '. -. (5-24)
%,_% - N '._fx,, “An =0 (5-25)
3‘:&?: - -:.'.'.(‘nl'_-nl-vne,.én-' 5 =15) = O R (5-26)
é_‘;\;ﬁ.;.- - (n - 15818)_:0 o N ¢
a"?? =T (n, - _'8_-'0_Oo> - o (5-28)
= - - (ng - 3.574)‘ =0. (5-29)
5’3XF? = - (py - 2.500) =0 (5-30)
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é%% = = (5 - 12,000) = 0 - (5-31)

oF

e - - (- 4.666) - 0. (5-32)

To solve this systém of equations, assume initially
“that one conétfaint, Equation (5-26), is binding; there-
fore, A, through A, aré equal to zero.

Solving for Ay from Equation (5-24) and substitubing
it into Equations (5-23) and (5Q25) yields:

Ay = r%lOO,
mo= 1+ (~1800/A, )2 = 5.243
ns = 1+ (=2074/A, )Y2 = 5,554,

Substitﬁting n, and ns. into Equation (5~-26) yields:
n, = 15~ 5.2% - 5.554 = 4,203, .
Checking the values of n, with the constraints

1.818 < m < 2.500  ny = 5.243

8.000 < 1y < 12.000 1, = 4,203
3.574 < ny < 4,666 ny = 5.554

m and ng exceed their maximum limit'while n, is less than
its minimum limit. Therefore, constraint Equation (5~-28)
will be used for n, as it is the furthest outside of

bounds:
n, = 8.000, Ay £ O.
From Equation (5-24), Ay = -A; - 100.

Substituting into Equation (5-26) yields:



33
1 + (=1800/A1)%2 + 8,000 + 1 + (=2074/0y )H2 = 15 = O

which gives Ay = =309,

therefore,

1,

Bl
It

1 + (~1800/\y )Y2 = 3,418

and

i
#

ny = 1 + (=2074/A; Y112

5.595,

~ Checking the values of m. and n; with their constraints
1.818 < n; £ 2.500 ny = 3,418

5.595

3.574°< n; < 4.666 n,

n, is found to exceed its maximum limit. Therefore, con-

straint Equation (5-30) must be used yielding:

n = 2.500, As # O.

1800 -

- Egy? - 800.

From Equation (5-2%2), Ag = =My

Solving for n;-from Equation (5-26):

i

ns 15 - 2.500 =~ 8.000 = 4.500
therefore,

2.500 n, = 8.000 ns = 4.500

nm
which satisfies all of the constraints.
- Obtaining A, from Equation (5-25) yiélds:

Ay = 2074

(&.500-1)F = ~169.
Also,
Ay = -A; ~ 100 = 169 - 100 = 69

and
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Ae = Ay - 800 = 169 - 800 = -631.

The Kuhn-Tucker condition which descrifes optimal
solutions to nonlinear programming problems will now be
used to test the.optimality of this selution. The minimi-
zation of a convex function over convex constraint equa-
tions saﬁisfying’these conditions is an optimal solution.

The conditions are:
2M-1

, T of 3 i
If n¥*> 0, then T, " jgl Ay 6%? =0 (5-33)
. at l’li = ni* fOI‘ i: l’ 2, s 0 9 M"‘lq
2M-1
. of dey
If af = 0, then g3- - '21 M ogar £ 0 (5-34)
at l'l! =, n"* fOI‘ i = 1‘9 2, 20 e 9 M"‘lc

Checking the solution in Equation (5-33) yields:

1800 -
R e Ll B L

_ 1800 _
= T (2500 - 1

+ 169 ~ 0 + 631 = =800 + 169 + 631 = 0

&
1

100 = A = Ay = Ag == 100 + 169 = 69 -~ 0 = O

and

2074
.1'132 “.(ﬁ;z—]jjrm?\l —)\.4—7\.7:

- (4.§8gi1)z + 169 - 0 - 0 = -169 + 169 = 0

which satisfies the first condition and since n¥*> O, the

second condition does not applys; therefore, the solution



obtained 1s ocptimal.
The total resource cost then can be found from Equa-
tion (5-22) as:

1800 (2.500) 2074 (4.500)
5 E00 =1 ~ - 100(8.000) + =557

F = -3300 +
- (—169)(2;500-+8.ooo-+4.5oo.-15)
- 0(2.500-1.818)-69(8.000-8.000)
- 0(4}500-5.574)-(—651)(2.5oo-fé;5oo)
P,o(aooo..12,000)},0(4.506-4,666)
= =3%00 + 3000 - 800 + 2667 = $1567.

The A, multiplier.may be interpreted as the cost of
an incremental change in the over-all project duration
time. For example, a 1/10 day increase in the over-all
project duration would reduce the project cost by $16.90
b(approximately sihce this is a nonlinear system). Simi~
larly, the As; multiplier may be interpreted as the cost of
an incremental change in the minimum time constraint of
activity 2. Reducing the minimum time by 1/10 of a day
would result in approximately a $6.90 reduction in project
cost.,

Finally, the Ls nultiplier would represent the cost
of an incremental change in the maximum time constraint of
activity 1. A 1/10 of a dayvincrease in the activity time
duration would save approximately $6%.103 of the three
binding constraints, this one is thé most costly. The

sign of Ay differs from that of Ay and As because it is a
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ninimum constraint whereas Ay and As are associated with

maximum constraints., bummarizing the results for each

stage:
Stage
1 2 )
2.5 8.0 4.5 n-mean time in stage (days)

50.0 200.0 44.5 R-resource applied (man-hours)
500.0 800 . 267 CR-cost of resource applied (%)

where A, = -169 overgall prbject duration constraint multi-
» plier, A\; = &9, Stage 2 minimum duration consﬁraint multi-
plier and As = -631, Stage 1 maximum durétion constraint
multiplier. The intefpretation.of-these results is the
same as for Caée I discussed in the preceding chapter.

As seen from this example, determining the optimum
for thé nonlinear 6bjective function is not particularly
straightforward. Increasing thé number of stages will
further complicate the method Qomputationally, but it
should Stiil be possible to obtain a constrained optimal
solution. - Bringing in constraints only as required_will

minimize the work for hand computation.



CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

This study has shown that it is pOseible to relate a
sequential stage project to a Markov Procees. The tran-
slent state probabilitiestrepresent the project stages
while the absorbing state represents the project completion
stage. By relating the probability of completion during a
given,time interval fo the level of resource applied to &
stage, a minimum resource cost iseobteined for the over-
all project duratien and‘stage‘resource eonstraints. The
»approech developed in this work can be used as a supple-
bment to a relatively large scale project menagement)tool
sﬁch as PERT (9).

The use of this system as a practical management tool
requires that the equations be programned for digital
computation. Computer logic can be used to select the
appropriate equations when the range of the mode of the
completion distribution inciudes the review time period.

Future work on this'technique would include taking
into consideration the pessibility of more than one stage
being completed during a review timelperiod. This inclu-
sion would be necessary if a distribution with a finite

probability of very short activity duration were used.

57
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Another area for further investigation would be the
assignment of a probability of completion to the over-all
project duration. A dynamic programming approcach might be

used for the model in this case.
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APPENDIX

The numerical example given in Chapter IV involves the
maximimization of the following objective function subject

to constraints.

Maximize Z=1000n,+150n,496n, subject to:
n) 41,4048, =10 |
n,~S,+A, =2

n +85=3

5

2n3-S6+A3F5

2n3+87=10.

The following pages give the initial tableau and the five
iterations obtaining the optimal solution by the Simplex .
Method. |

1



APPENDIX

The numerical example given in Chapter IV involves
the maximization of the following objecti#e functicn sub-
ject to constraints:

Maximize Z = %%%n, + lSOné + O6n,

Subject to: |

ny + N, + 0z + 5 =15

n, + Sy

i
(0)

n, = Sy + A, =8

A, + Se = 16
2113 - Ss + A; = 5
2ns + S, = 10,

The following pages give the initial tableau and the six
iterations obtaining the optimal solution by the Simplex

Method.

41



Initial Tableau

n, n, n3 S 3 Su 85 S¢ S A A b Var 6 _
1 1 1 ¢ o0 o0 o o0 o 0 0| 15 5, 15
@ o o -1 0 0 0 0 0 o o 3 A 3
1 o 90 c 1 & o0 o 0 00 '6' S5
o 3 0 o o -1 0 ©0 © 1 0] 8 4
6 3 o o o 0o 1 0 0 o o | 16 sg
0 0o 2 o o 0o 0o -1 0 0o 1| 5 A,
-0 0 2 e o o o o0 1% 00 10 5,
~333% 450 =96 o o o o0 o0 © +M M | 0 zZ
/f .

2



n, ny S; S, 83 5 S5 S5 S, A A A5l b Var ]

1 1 1 1 0 0 0 0 0 -1 0 0 12 sy 12

0 b 0 - =1 0 0 0 0 d. 1 0 0 5 mg -3

o o0 0 (:>' 1 0 0 0 0 -1 0 0 5 85 e
3 0 o0 0 0 -1 0 0 0 0o 1 of 8 A,

3 o o o o o 1 o0 o0 o o ol 16 Sg

0 2 0 0 0o 0 0 =1 0 0 0 1 5 A,

0 2.0 0 0 0 0 0 1 0. 0 0 10 S,

-150 =96 0 -333. 0 0 O 0 0 4 M M| 1000 2
r .

Pirst Iteration

=

\ N



n, mn, mng S, S3 S, Sg S5 S, A Ay Agl b var @
o 1 1 6 -1 0 0 c 0 -2 0 0 9 8, 9

i 0 0 0 1 0 o o0 o0 o 0 0 6 n,

o 0 0 i 1 0 0 0 0 -1 0 0 38,

0 0 0 0 -t c 0 0 0 1 0 8 A, | 8/3 & |
0 3 o0 60 0 o0 1 6 o0 0 0o © 16 s, 16/3

o o0 =2 0o 0 c 0 -1 o o0 o0 1 5 Ag

o o0 2 o o0 o© o 0 1 0 6 o] 10 s,

0 ~-19 -96 0 333 0 0 0 o M M M {2000 Z

| Second Iteration



Third Iteratiocn

n, ng. S, 83 8§ 's5 S¢ Ay Ay Ag b Var @
o 1 0 -1 /3 0 e © -2 -1/3 0[19/3 5; 19/3
o o o 1 o o o o o 6 ofes ny
¢ o t 1 o 0o © 0 -1 . o0 o0 3 szl
10 6 o -1/3 6 ¢ o 0 /3 0 8/3 n,
¢ 0 o o 1 i ¢ _@ d ;2, o 8 ssﬁ
o @ ©o o o o -t 0 0 0 1| 5 4y 524
o 2 ©o o o o o 1 o o of 10 S, 10/2
0 =96 0 333 -50' -0 0 0 M M M 2400 Z
f



Fourth Iteration

n, n3 Sz 83 Sy, S5 Sg S7 _Al | sz, A3_ b Var

0o 0 0 -1 13 0 12 0 -2 -1/3-1/2| 23/6 55 23/2
o o © 1 o o o o o o ol e ni’

0 0 1 1 e 0 0 0 -1 0 0 3 8,

1 0 0 0 -1/3 0 0 0 'o' 1/3 o] 8/3 .nz -8

o o 0 o:" (1) 1 o o 0 -1 o 8 5.5 s¢—
o 1 o o o o -1/2 0 o 0 1/2{ 5/2 ny

o 0 o o o o 1 1 o o 1| s s,

0 °c N N n 2640z

o



" Fifth Iteration

ny 8y S; 8y S5 8¢ S, Ay Ay Ay b var o
o 1 -1 0O ~1/3 0 -2 0 =127 8 7/3 <
o 0 1 ¢ 0 .o. 6 o0 o0 o0} 6 n,

9 0 T+ 0 © o0 ©0 <1 O 0} 3 S,

9 0 o © 1/3 oo o 0 0116/3 n,

0 0 o 1 1 0 © 0 -1 o| 8 5,

10 o o 0 -i/2 o o o u/2| s/ nj‘ 5

o o 70 o o 1 1 0 ©o -1]| 5 8, 5

0 © 333 0 50 -48 © M M M |Z%040 z



. Six’th IteratiommOptimal

n, ny by S3 8, S5 S¢ S, A 4, b Var
o o 2 2 0 -2/3 1 0 4 o = 7/3  Sg
0 0 0 1 0 0 Ao‘ o 0 o 6 n,
o o0 o0 1 0o o 0o o -1 o 3 S,
i 0 0 0 0 '1/3 0€ & 0 ~0‘-O.,-16/3_nz’
8 o0 0 o 1 1 o 0 0 -1 o |8 s
o 1 1 -1 0 «'-'1.‘/3’ 0 0. -2 0 Q__'11/3 n,
0 0 -é 2 | 0 2/3 o0 ) i. ¥ 6 o |8/3 5,
0 o0 96 237 0 18 o o M m 3_15}2. z

Bt
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