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NOMENCLATURE 

A random variable representing the demand against 
a productive process, assumed to be represented by 
some probability density 'function 9 f(x) 1 which in 
turn implies a time domaino 

The decision variable representi.ng the level of 
productive capacity, under control of the decision 
maker" 

Cost per·unit for production up to the level of c 
(applicable for X s c)o 

Cost per unit for production in excess of the 
level of c (applicable for X > c)o 

The degree of flexibility allowed 9 being a 
multiple of the basic time periods for which the 
probability distribution functions of X applyo 

The probability distribution function for the 
random variable Xo 

The cumulative distribution function for the 
random variable Xo 

The tth convolution of f(x)o 

The cumulative distribution of ft(x)o 

The Laplace transform of f(x)o 

The z transform of f(x)o 
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CH.APTER I 

INTRODUCTION 

Operating a production process requires some form o:f 

decision makingo In simple casesp the decisions may be 

obviouso However, in the more general (and usual.) case 9 

a decision is often one of many in a sequence of a decision 

making process, and once made 9 has a relationship to the 

feasibility of remaining decisi.onso This research is 

concerned with one such decision from a sequenceo 

Statement of Problem 

This research is set in a production context P with the 

production manager as the primary decision m.akero Sa1.es 9 

adverti.singi profit 1 transportation)) a;nd many other 

important aspects of the business are thus removed from his 

control and his concentration is upon rnin.imizing production 

costsv given that he has some indication of the magnitude 

of his expected level of production for some time period 

into the futureo 

The following assumptions are made in :framing the 

context of the proble.m.g 

·i o The decision is a. planning decision~ and once 
made can be used as an input to suich operational. 
decisions as the scheduling of regular and 
overtime hours at work centers~ levels of 

1 



inprocess inventories 9 timi.ng of raw material 
requirements, etco 

2 

2o Two basic alternatives are available; regularly 
scheduled production with its associated cost 
parameter and what will be referred.to as premium 
capacityo Premium capacity can be the utilization 
of the same resources available for regular 
capacity, such as overtime or multiple shift work, 
or it may be considered as subcontracting a 
portion of the total work or the buying of 
production from an outside source to supplement 
that available on a regular basiso Thus the type 
of premium capacity applicable will also carry 
its specific cost parametero 

3a Th$ input to the decision is a probabilistic 
distribution of demand, obtained from a separate 
planning decision dealing wi.th forecasting of 
future demand for the firm 0 s goods and serviceso 

4o The lead time in which demand must be honored 
is specified and determines the length in time 
of the planning horizono 

Chapter II will discuss in more detail the meaning and 

interrelationships that exist between capacity 9 costs~ 

demand~ and time in the production processo For now the 

problem can be visualized in a broad sense as in Figure 1o 

TRANSFER 
INPUT 

FUNCTION 

Figure 1o A Planning Decision Process 

For the problem at hand 9 the input is the probabilistic 

demand into the future, the transfer function is a 
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mathematical model (developed in Chapter III) that relates 

the variables involved and the output i.s the economic 

capacity level ( the decision) o 

Det.ermining the economic level of capacity direct :from 

the expected load to be placed upon that capacity would seem 
" 

to have usefulnessj rather than consi.deri.ng the capacity 

level. as fixed and then working with the often complex 

production scheduling problem of fitting whatever de.ma:r1d 

occurs against the production fac:i.lityo It is this aspect 

which places the decision of this research at the planning 

levela No attempt will be made to integrate the decision 

in·to a complex working system for any given production 

sy·stem, but its useful.ness 1 once developed, will be 

discussed latero 

Li.terature Search 

Most textbooks written in the area of production 

p1a.nning or production control do an adequate job of out= 

l.:i.ni.ng the areas of interest to the production envi.:ronmen·ta 

They fail, i.n general 9 however 9 to effectively do mo:re th:a..n 

expose the existance of re1ationshi.ps between main areasa 

Abri:u.uowi tz ( 1 J presents a thorough concept o:f capa:city as 

it relates to a very genera~l produet.ion model.a Magee and 

Boodman [9] present a strong development of the role of 

:inventory in the production system.a In most cases 1 the 

textbook approach eventually comes down to decision making 

:procedures dealing with either deterministic or probabilistic 



demand j} imposed upon some assume,d level of capa.ci ty and the 

development of operational. procedures for then scheduling 

the demand on to the current capacity o It is the in tent of 

this research to explore a way in which the capacity level 

itself can be economically evaluatedj} at a planning level 9 

prior to the scheduling problemo 

Attempts to more explici.tly involve the interrelation= 

ships between demand~ work force (a form of capacity) and 

inventory levels can be found in the teehnical journalso 

One of the earliest involves the work of Holt~ Modigliani 

4 

and Simon [7] in applying a linear decision rule (developed 

mathematically in [6]) to a paint facto:ryo The cost functi.on 

utilized is& 

Oil 

c = \ 
N L 

t=1 

where the subscript t indicates the t:ime period; Wv the 

work force level; Pt, the aggregate production; I.t 9 the net 

inventory; and Otj the ordered shipmentso All C values 

represent cost parameters except c13 whic:h is a constant 

· (61 cost term not affected by scheduli.ng decisionso Their .. 1 

explanation of the problem is given asg 

The problem we then face is the followingz To 
choose a decision ru1e (strategy) for making 
production and labor force decisions in successive 



time periods that will minimize the expected 
value of total costs over a large number of 
periodso Since costs are influenced by the 
interaction between current actions and future 
orders, forE;icasts of the future are indispensable 
even though such forecasts are subject to errorso 
The passage of time makes new information 
available which allows i.mprovemen ts in the 
accuracy of the forecastso The design of an 
optimal decision rule should take these 
considerations into accounto 

In general, however? future orders are 
u.n,r:,ertain; that is to say, information about 
orders in each future period may be cast in the 
form of a probability distri but:i.ono 

5 

Minimization of the cost flmction was based upon using 

e.ach future period 0 s expected number of orders (demand upon 

the oapaci ty) and then by taking the t;otal derivati.ve of the 

coS't functiono This resulted in a system of equations which 

was solved by matrix inversion procedureso Solution was 

possible by this procedure due to the quadratic form. of the 

cost functiono 

Fetter [4] applied linear programming procedures to 

the problem of long range capaoity planr.1ing 11 given future 

demandso His model was based upon capare:i.ty having the 

following market characteristicsg 

1 o Ovv:nership implies a long term capi ta.l investmento 

2a Leasing is an available alternative and implies 
a different capital com.mi tment than ow:nership,, 

Jo Capacity is available on a short term or spot 
basiso 

4o Capacity prices are variable over time and may 
vary in terms of their relative relationship for 
the various al.ternativeso 

His objective function minimized. the present worth of all 

·future costs~ subject to stated constraints (among others) 



that required demand be met and capacity be retired at the 

appropriate time determined by replacement policy methodso 

Other studies are ava:ilable that attack the production 

smoothing problem ( the relationshi.p between production 1 

inventory and demand) such that costs over some planning 

horizon are minimum [8]o Studies involving employment 

planning in the face of varying demand. have also been 

made [11]o 

In [7] 9 the model was applied to past years data and 

results were compared with what would have been~ had the 

model been in effect~ compared to what actually occurredo 

6 

A cost savings of 805 percent per year in favor of the model 

resultedo An underlying assumption of this study involved 

the ability o:f the firm to mani.pu.la:be the level of the work 

force and the magnitude of the overtime hours simultaneously, 

a condition not always available., .AJ..so~ <~apacity was 

defined as work force aloneo 

Impl:ic.i t i.n Fetter 0 s model [4] is a planning horizon 

sufficiently long enough to account fo:r the retirement of 

installed capacity (and that purchased. d.ur:i.ng the planning 

horizon) or the inclusion of them ou.ts.ide the model for 

shorter planning horizonso Since machinery life is oft;en 

expressed in years, this complicates the forecasting 

p:roblem 9 as accuracy of forecasts over several. years become 

unrelia.bleo Alsof giving the demand of :future pe:ri.ods a 

probabilistic nature 9 increases the number o:f constrain ts to 

th.e problem signi.fican tly o 



The smoothing studies attempt to distribute the demand 

across the planning horizon to some assumed level of 

available capacity, that capacity in itself not being a 

variable o 

7 

It is the author's opinion that the capacity level 

itself can be viewed as a variable, at least at the planning 

stagev and that it can be economically determined allowing 

interactions of demand in interim periods of ·the planning 

horizon to occuro Once this has been determined, then the 

approaches of smoothing could be appliedo 



CH.APTER II 

THE PRODUCTION PROCESS 

General 

The production process for manufacturing (as opposed to 

services) can be depicted as in Figure 2 [1]o Decisions 

necessitated by this dynamic environment can 1 in general 1 be 

grouped into two main categories; planning and operationalo 

In this research, attention is directed at the planning 

level for the specific purpose of determining capacity 

lev·els economicallyo This decision then becomes an input 

to other required decisions until finally w operational 

decisions that involve detailed production schedules, 

inventory poli_cies and other related in:formati.on such that 

a fundamental operational schedule can be set for some 

planning horizono 

Demand 

Demand against a productive process is usually measured 

in such common terms as man.hours, mac;b.ine hours, standard 

hours, etco Thus once forecasts have been made 9 regardless 

of the unit of measurement used (dollars, unitsp tons) these 

should be converted into units compatable with the con­

trolling function of the production process that is 

8 



CONSUMER DEMANDS 

Design, quality, quantity, ""'---------------1 

time, location, price 

' 
Upon 

CAPACITY 

Machine, process, human 

Creates 

THE M.ANUF AC TURING PJ,:,ANNING ALTERNATIVES 

1o Inventories 
2o Extra equipment and manpower 
3o Overtime -
4o Make or buy 
5o Internal action, methods, time study 
60 Combination of any or al.l 

Forming basis for 
' 

"' l __ M,..._A_S_T..,...ER..........-S_C_HE_DUL __ 1:_ I -

Necessitating 

MANUFACTURING CONTROLS 

1 o Production 
2o Inventory 
)o Quality 
4. Cost variance 

Figure 2o The Manufacturing Process 
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responsible for creating the utility possessed by the firm 0 s 

goods and servicesa 

In this research interest is in determining a capacity 

level, economically, in view of a variable demand placed 

upon that capacitya There exists considerable difficulty in 

obtaining the input required to start such analysis 9 but 

certain procedures have been developed, generally under the 

name of "forecasting methodso" Abramowitz and Ma.gee[ 1 s 9] 

present most of these procedures and discuss their relation­

ship to the production planning and control areaso Such 

forecasts are seldom taken as point estimates of the actual 

demando They can be viewed as random variables 1 possessing 

a mean. and finite variance o They may be assumed to follow 

some well known (with respect to behavior) probability 

dj.stribution function such as the normal, Poisson 1 expo­

nential, etca Or they may be empirically described based 

mainly on historical recordso The degree to whi.ch these 

random variables behave as related to major pricing changes, 

advertising efforts and significant changes in the economy 

could be considered in applied caseso 

Assuming that the probability distribution functions 

are available, the decision of setting a capacity level for 

~ ~ period into the future must be madeo Naturally, 

the decision is related to the time period for which the 

distribution functions are considered valid and the time 

peri.od for which the decision on capacity levels is to be 

optimalo This requires two considerationso Given that a 
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demand has occurred, when should it be met? (ioeo, How much 

lead time does the production manager have?). This variable 

will be referred to as 11 flexibility 11 and is discusseg. iater 

separatelyo The other consideration that arises is the 

distribution of demand over multiples of the time periods 

for the demand distributions as giveno This last consider­

ation is handled by finding the convolutions of demando The 

theory end development of convolution is presented in 

Appendix A along with specific examples of various proba­

bility distributi.on functions which have been convolutedo 

Here concern is directed towards understanding. ~hat the'· 

convolution procedure accomplishes. 

Consider a simple demand distribution for a manu-

facturing process based on a monthly time basis: 
I \ 

Demand (x) Probability p(x) 

x(min) 1200 manhours Oo15 
1300 man.hours Oo40 
·1400 manhours Oo35 

x(max) 1500 manhours Oo 10 

The probability distribution of demand for a six-month 

period is desired under the assumption that in each sub­

sequent month the demand will follow the same distributiono 

In a statistical context, a random sample of size six is 

taken from the basic monthly distribution and the 

distribution of the sum of the. random variables is to 

'be determinedo Intuition indicat.es that the minimum 

demand for the six-month pepiod will be at least six 
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times x(min) and the maximum demand will be at most six 

times.x(max)o What about the probabilities of th~se events? 

The minimum will occur with prob~bility P[x(min)] 6 = (Oo15) 6 , 

and the maximum with probability P[x(max)J 6 = (Oo10) 6
o For 

small problems one can enumerate all possible outcomes of 

the sum and find their probability of occurrence by using 

the conditional probabilities that comprise the specific 

outcome evento As this becomes quite cumbersome, the con= 

volution procedure which finds the distribution of the sum 

for all values may be invoked to completely determine the 

distribution of the sumo 

Note that the minimum and maximum values occur with 

much smaller probabilities than in the basic one-month time 

perioda These facts would suggest that the variance of the 

six-month distribution is larger than for the basic one-

month distributiono By the same logic, knowing that the 

distribution for the six-month period must sum to unity, one 

suspects that there is a larger probabil;i.:ty in the six-

month case than in the one-month case, associated with the 

event that the actual demand will be within + Y percent of 

the mean., 

What has been asserted is nothing more than the power­

ful conclusions of the Central Limit Theoremo This useful 

theorem is applicable when n (the sample size 9 and in the 

above discussion six) approaches infi.nityo Further 11 this 

theorem asserts that this sum is distributed normallya As 

long as it is not always true that a particular few of the 
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· member random variables dominate the sum, then the random 

variables need not come from identically the same distri­

butiono Why then become concerned with the convolution 

procedure? The answer is to have an applicable procedure 

for finding demand distribution when only a small number of 

time periods are to be considered,, The decision as when to 

use the convolution concept and as to when the Central Limit 

Theorem is applicable will depend upon the circumstances to 

which the models (yet to be developed) would apply ( see 

Example 1 in Appendix A)o Concern here is that there is a 

way to generate q.emand distributions for any multiple number 

of time periods for which the basic demand distributions are 

k:nowno 

A final observation closes this discussion of demand 

distributions,, If for some reason!' such as strong seasonal 

factors!' a completely different demand distribution is to 

fol.low in a subsequent period!l these two densities -can. be 

oonv·o11ite,d together and this resultant can. be corrvo~luted 

with yet another different density for yet another period a 

This procedure may be indefinitely followedo When the 

assumption that each period has essentially the same density 

holds 9 the mathematics are simply less .. cumbersome than 

otherwise a 

Capacity 

Capacity is a concept w involving an understanding of 

factors that affect it and time as a parametero What is an 



effectiv.e capacity today may be obsolete tomorrow due to 

changes over time in the factors that affect it. The 

14 

relationship of these factors to capacity can be represented 

as in Figu.re 3 [ 1 J • 

Factors affecting capacity Limits to capacity 

Physical factors -
c Material 

Product factors A 
-

p 
Labor 

Process factors A 

c Finance 
Operational factors I 

-
T Markets 

Human factors 
y 

-

Figure 3. Major Factor Categories in Capacity Analysis 
and the Major Outside Limits to Capacity 
Change 

Furthermore, the following definitions are helpful [ ·1 J: 

Ca;eacity--The maximum output of acceptable goods 
or services that a machine or process is capable 
of producing without the influence of external 
or internal factors. 

Effective Capacity--The total goods and services 
that can be produced at a given time period with 
specific operating conditions, work intensity, 
product mix, product specifications, plant, and 
equipment. 

Efficiency--The relationship between the output 
actually achieved and the ~ffective capacity .. 
This relationship is usually expressed as a 
percentage .. 
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The restraints of the factors of Figure 3 give a measure 

of effective capacityo For the purpose at hand 9 capacity 

as required by a probabilistic demand is soughto That 

considerable effect is necessarily required to make effective 

capacity as near to capacity as possible is not at all to be 

de=emphasizedo To the contrary 9 once an economic capacity 

level as a function of expec·ted demand has been determined, 

it may well be that the best way to obtain that level is by 

re-evaluation and adjustment of the factors affecting 

capacity such that effective capacity can be increased to 

the desired economic capacity level a Modern industrial 

engineering techniques in the areas of plant design and 

layout ll materials handling, environmental. factor analysis 9 

standardization an.d simpli:fication 1 queJ..i ty design and 

control 9 and effective incentives 9 all are the tools 

available for attacking the factors affecting capaci tyo 

Capacity and Demand 

Typically, the relationship of profit (or loss) as a 

result of a men demand can be shown by break-even chartso 

Figure 4 indicates three possible profitable eventsi 

1o A demand (1) occurs that is less than 100 percent 
capacityo If the demand is above the break-even 
point a profit will result, otherwise a loss is 
incurredo For the case depicted a profit of 
(ab) resul tso 

2o A demand (2) occurs equal to 100 percent capacity 
(probabilistically rare) o Unit cos·ts are minimum 9 

and the process is operating at its highest levelo· 
A profit of (cd) resultso 



$ 

I Variable Costs 

I Fixed Costs 

Demand 1 Demand 2 Demand 3 

Breakeven 100% 

CAPACITY(%) 

Figure 4. Breakeven Chart Relating Demand and 
Capacity Levels 
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3o A demand (3) occurs that is greater than 
100 percent capaci.tyo Supplementary means must 
be used if demand is to be meta 

The last situation is more generally the case and a.ff ords 

17 

production management the more complex decision environment., 

Break-even analysis requires cl.assifyi.ng costs~ such 

that total costs can be separated into those that are fixed 

and those that are variable" For pu.rposes of' this study, 

fixed expenses are a function of time end variable expenses 

are a function of operational volume (all fixed expenses 

become variable if time is increased su.fficiently)o The 

planning horizons that are to be meaningful. will be limited 

in length by the ability of the forecasting methods to 

project into the future accurately» a."'.ld will be considered 

as 1ushort term01 relative to the term of fixed expenseso 

Thus~ the emphasis of the production manager for a gi.ven 

pla.Yln:i:ng horizon is upon con tro1 of the variable costfZ; o 

Vari.able costs in the short term a:re l:a.rgely Gonsti·= 

tuted of direct labor and di.rect material chargeso Of 

th.ese ~ his control of direct ma:terial :i.s largely the control 

of s(::rap and. :rewo:rk 9 a quality control :f1.1ncti.ono Given that 

demand will be met (or some speci:fied 1eve1 cf it) 9 material 

will be expensed in some proportion to tha·t level and the 

be tte:r the scrap and rework job 9 the srnal.ler the proportion o 

Direct labor is however a different matter 9 i.n break=,even 

analysis the labor rate is assumed to be a constant per 

unit of demando In actuality, all the labor going into any 

given demand may not occur at the same rate per unit of time, 



as when overtime hours are scheduledo Al.soi the fixed 

expenses for any given planning horizon will be expensed, 

whether recovered or noto Recognizing the rand.om variation 

of demand over time, the decision of a desired capacity 

level can be represented by Figure 5o 

Interpreting the figure t total. expected costs (TEC) 

are a function of the capacity level (c) and demand for 

some planning horizon of interest is probabilistico Once 

a c value has been selected!) it wi.11 be expensed at a rate 

of L ($/unit) 1 but demand greater than c must be met by 

utilizing some supplemental means with an associated rate 

of P ($/unit)o Then if c 1 is selected as the capacity 

level and a demand equivalent to c4 occurs~ c .. 1 i.:rni.ts of the 

to·tal will be expensed at $L/u.rdt; 11 and (e 4 -· c 1) will.be 

expensed at $P/unit~ if total demand. is meto At the other 

extreme v if capacity is selected at c4 and a demand 

equivalent to c .1 occurs 9 an expense of· $Le 4 wi.11 h9 expensed 

but only $Lc 1 would have been requiredo Clearly th.e problem 

of selecting the i1 beston ci depends upon the relative ratio 

of L and P a.rid the shape of the probabi1.istie d.emand.o 

Models to handle this problem are pre,sented i.n Ch.apter IIIo 

Flexibility 

Fle:x:ib:ility as used here implies the amount of ti.me 

available to the production manager to plan his eapac::L ty 

level such th.at all demand ( or a manageria,lly specified per= 

c:ent of it) occurring within the planning horizon is meta 
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Figure 5. Total Expected Costs as a Function of 
c, 1 and P; Given That Demand is 
Probabilistic 
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The degree of flexibility could be determined by the market 

or by internal management policy or by some combination of 

botho Flexibility, as used i:n. thi.s context~ is not to be 

confused with any ability to shift work or oapa.oi ty level so 

Such decisions fall into the category of operational 

decisions a 

Three general degrees of flexibility are to be 

consideredo No flexibility means that a unit demand must be 

met within the same time period 9f the minimum demand 

distributiono In this case, a unit of demand in any one day 

must be completed on that same day where the basic proba­

bility distribution function is in units of demand per day .. 

The more general case i.s that o:f i.ntermedi.ate flexibility, 

in which case, a unit of dema.nd in any one period must be 

met .!_i~~~JX1· some finite multiple of that ti.me period, for 

example, any unit of demand on any given day must be met 

within sayp five days., In this context the total distri.~u 

bution of demand vvi thin the fl.exibi.lit;y period. :Ls assumed to 

al.1 be due 1 which requires that in any given period of time 

of durati.on equal to the fle:xi bili ty per:i.ods the work 

deferred from previous periods into the current planning 

hor:izon is not significantly different in magnitude from 

that which will be deferred from this planning period into 

the nexto 

The extreme and highly theoretical. limit o:f flexibility 

is that of infinite or full flexibilityo This. implies that 

a unit of demand is only require,d to be processedp but due 



at any future time periodo This non practi.ca.J.. case has 

only academic usefulnesso 

Service Level 

It may be a management decision in certain circum-
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.. stances that not aJ.l work .demanded will be processed.. It is 

logical to turn away work which must be processed at the 

most expensive productive rateQ Recalling that associated 

with a probability distribution function, f(x) 9 is its 

cumulative distribution function, F(x) 9 then.if only a.F(x) 

is considered, where~ can be thought of as a service level 

factor, then this decision can easily be handled .. 

Conclusion 

In closing this chapter, the need to approach the 

capacity problem from a plari..ning stage wi.11 be defendedo 

Three things can happen 9 either the economic capacity will 

be above O on 0 or below the effec"tive capa.c:i ty level 

considered available at that point i.n time o If the model 

yields an economic capacity level above the current 

considered attainable effective cap_.aci ty level, either 

additional capacity is called for .2! a re=evaluation and 

adjustment of the factors causing effective c:apaci ty to be 

below full potential can be initiatedo This problem most 

likely involves an economic evaluation of alternatives 

available and would be related to the investment limitations 

that are imposed upon the firmo For the economic level to 
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fall exactly on the current considered attainable effective 

capacity level would be rare, but at least would give 

indication of the need for planning now for the next planning 

horizon depending upon an expected increase or decrease in 

demando When the economic level is below the current attain­

able effective capacity level, this points to need for 

consideration of stimulation of demand or the creation of 

new products in order that '-'llit costs may be decreasedo 

The magnitude of the difference between the econom~c 

level and the current effective level of course could 

determine what. courses of action are reasonableo But by 

having measured this magnitude, allowing the probabilistic 

nature of future demand to interact 9 such that future 

courses of action may be implemented at ar1 early point in 

time~ may well.be the best defense of the methodo In other 

words~ planning in the manner suggested by this research for 

some :fixed planning horizon may yield as much useful infor­

mation for such areas as long range expansion plans and the 

timing of improvement projects in the industrial engineering 

area as it does for just the immediate planning horizon 

under considerationo 



CH.APTER III 

MODEL DEVELOFMENT 

The purpose of this chapter is to define the logic of 

the models, which will explicitly be utilized in Chapters IV 

and v. 

A model, in most cases a mathematical expression 

relating various dependent and independent variables, is 

nothing more than a logical expressiono As stated in 

Chapter I, the objective is to meet demand, but to do so in 

such a way that costs are minimizedo It is not surprising 

then that the model concept shall be in terms of cost per 

time period, since the input to the model is a demand which 

implicitly carries with it a time domain, (i.eo, units/day, 

units/year, etco) and the production process requires time 

which is chargable as cost per unit time. 

The measure of·effectiveness is to be total exp~cted 

costo The decision needs to be made, for planning purposes, 

at what level should capacity be set, when the demand 

against ·that capacity itself is a random variable o An 

understanding of expected values imply ·that future demand 

may occur over a rather wide range of values and for any 

given planning horizon the decision may not have been the 

best, after the facto But the problem is one under risk, 

23 
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not certaintyo Indeed in subsequent planning horizons, the 

decision will need to be repeated, and if the capacity level 

is selected such that total expected costs are minimized 

within each planni.ng horizon, then over the sequence of 

decisions 9 the total costs would be minimized across all 

planning horizonso 

Statement equations will attempt to emphasize the logic 

involved, a;nd these equations will be followed by symbolic 

ones expressing the relationships among the parameterso 

No Flexibility 

total. Expectedj ~ost of Work Performedj ~ost of Work J 
Cost = on Regularly Available + Performed on 

· Capacity Premium Capacity - . . 

TEC =Le+ PS (x-c) f(x)dx 
c 

TEC = Le t Pl (x-c) f(x) 
c 

x ,., continuous 

x - discrete 

As discussed in Chapter IIv a fixed effective capacity 

level can be considered as a fixed investment within the 

production planning horizono The cost represented by the 

first term in the above expression will be incurredv whether 

.2£ not it is utilizedo Since no flexibility exists 9 even if 

the random variable of input (x) is less than c, Le dollars 

will be committed and charged against the production processo 
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Modern production management systems yield several. exampleso 

Work forces are not flexible with respect to variations in 

work load over short periods, sometimes clearly specified in 

union contracts and sometimes b.Y design of the controlling · 

management philosophy to maintain a skilled work forceo 

Fully or highly automated processes, once set at~ 

capacity level, represent costs in many cases, that depreci­

ate more with respect to time and productive obsolescence 

than with utilizationo 

The second term appearing in the TEC equation implies·. 

its dimensions as cost/time period, the time period 

compatible with f (x) o 

As P·is a "premium" cost per unit of work 9 the integral 

should yield a quantity in unitso Note that the lower limit 

of the integral is at c, the threshold for premium work as 

all levels of x s c can be handled by the available capacityo 

The term (x - c) is the amount of deman.d by which x has 

exceeded c and therefore is a random variable in itself 

since xis a random variableo The behavior of xis 

determined by f(x), its distribution functiono Thus the 

integral gives the expectation of the number of units 

applicable to the P cost parametere 

Intermediate Flexibility 

~
otal Expecte1 tost of Work Performedj ~ost of work J 

Cost = on Reg~larly Available+ Performed on 
Capacity Premium Capacity 



TEO= Le 1 P s (X-c) f(X) dX 
c 

TEC =Lo+ I (X-c) f(X) 
c+1 

26 

X ,,... continuous 

X,,... discrete 

In the intermediate case, the demand over some multiple 

of the time periods for which the basic probability 

distribution(s) of demand is(are) valid, requires use of the 

convolutions of demand as discussed in Chapter !Io In the 

first term, o is expressed as units of capacity over the 

entire planning horizon and the second term follows the same 

logic as above, exce.pt that the distribution function of 

demand is now the convoluted distribution functi.ono 

Production to inventory within any one basic ·time period 

could~ feasible, up to c/t units, but in effect the total 

demand is constituted as a random sample of size t from 

either a parent population or from up tot different 

populations, each with their specific parameterso Thus ft(x) 

is utilized to determine the beha~ior of to~al demand, f(X) 9 

for the entire planning horizon (t units of time in length)o 

As mentioned in Chapter II, some carry forward from the 

previous planning horizon would be expected and the likeli­

hood of unused capacity (X < c) will depend upon the level 

of capacity that is establishedo In a:ny case, as the measure 

of effecti"\reness is cost, the ~ame arguments concerning Lo 

as a fixed cost, regardless of X., still holdo 
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Full Flexibility 

This highly impractical level of flexibility illustrates 

the limiting ca.sea In Chapter II full flexibility was 

defined to imply an infinite amount of time at the discretion 

of the production manager as to when -~11 work must be 

finished., If an·attempt is made to convolute the basic 

distribution functions an infinite number of times, the 

result is a rather flat normal curve~ one with an infinite 

mean and varianceo So the approach must be alteredo 

Consider the effect of full flexibility upon the production 

manager within any basic time periodo He knows that he 

would like to keep his capacity at full utilizationv but 

any demand above that level would be deferred until some 

subsequent period in which he had °' slack time on due to a 

demand less than his capacity levelo Intuitively 9 he may 

suspec~t that i:f his capacity level i.s at the mean of the 

total demand 9 then in any given time period 9 he could 

balance work carried forward with ot;her per1ods i.n whi.ch 

demand levels are less than the mean 9 and i.n. the long run 

never be requi.red to process work on a premium time basiso 

To 00 prove 10 this intuitive thoughtv consider the Law of 

Large Numbers [3 9 10]o In words)) the law states that as t 

gets large (approaches infinity) 9 the probability that the 

average of t independent experimental values of the random 

variable ( derna.11..d) differs from the expected value of demand 

by more than any nonzero t goes to zero.,, Symbolicallyg 



Let 

t 
- 1 \ x = ,"t L xi 

i=1 
then 

E(X) ~ µ. 

and from the Law of Large Numbers 

lim· Prob [ I X - µ. I ~ e] = 0 t--· 
or alternatively 9 

1 im Prob [ I X - µ. I < , J :::: 1 o O 
t--· 

0 

Thus for the full flexibility case 9 c would be set at 

the mean of the convoluted distribution functiono This 

fact is used only in the limit to converge the optimal 

capacity level as a function of an increasing to 

.. Service Level 
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If the decision is made to only process up to some 

percentage of the total demand 9 say a 9 then the upper limit 

of the integral (summation) sign need only be changed to a 

from the theoretical. o:o In this manner 9 all work turned 

down ( 1 = a) would be that applicable· to the more expensive 

processing rateo This modification is independent of the 

flexibility rule imposedo 



CHAPTER IV 

CONTINUOUS CASE 

The random variable of demand is considered to be 

represented by continuous probability distributions which 

result from, or are forecasts of 9 demand over the planning 

horizono The approach will be to minimize the total 

expected costs per planning horizon under the three general 

cases of flexibility, in ordero 

No Flexibility 

In this limited case 9 the forecast must be made to 

project the demand over a minimum period of timeo All work 

received is due out within the same time period fo~ which it 

was forec.asted 9 and no work may be carried forward int;o the.· 

next periodo The model from Chapter III for this case isg 

TEC .=Le+. PS (x=c) f(x) dx 0 (4o1) 

C' 

To minimize TEC 9 with respect to the ~athematical variable 

c 9 the first derivative is set to zerog 

0 • ~~a) = 1 + PD a( (x-~~ f(x)l dx 

+ [(-c) f(x)J di~) - [(c-c) f(x)J di~l] 
29 



since 

Fx(c) = 

then 

or 

c 

s 

0 = L +PS (-1) f(x) dx 
c 

c:c 

f(x) dx 1 an,.d s f(x) dx 
,ff 

-c:c c 

1 - L = F (c) p x 0 

30 

= 1o0-Fx(c) 

(4 .. 2) 

Thus the decision criteria for minimizi.ng expected costs as 

a function of c is given by equation (4o2) a..~d is seen to .be 

a function of Lj P and the cumulative of total. demand .. 

Discussion 

Before developing the models for the other flexibility 

cases 9 a more detailed explanation than given in Chapter III 

of the second term of equation (4o 1) is i.n ordero 

PS (x=c) f(x) dx o 

c 

Repeating briefly the discussion of Chapter III, Pis the 

applicable cost coefficient to the quantity of work expected 

to exceed the capacity level Co Dimensionally the expression 

yieldsg 

J_ ~pected # of units 
unit x planning horizon 0 

Thus the integral. should give a measure in quantity,, A 

small example should aid in understandingo 
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Let x be distributed uniformly on the intervaJ. [4,10]o 

Arbitrarily set c = 6 (this could be optimal for some value 

of Land P but interest here is directed towards the expected 

quantity (x-c)) o Define a new random variable y "by the 

trans:formationi 

y = 0 

y = x - 6 

for 

for 

x s 6 

x > 6 0 

Thus y becomes the number of units within the planning 

horizon that. must be 11 carried over" above the set capacity 

of six and processed at the P rate/unit 9 as any level of 

demand< 6 could be processed within cat the lower rate Lo 

It will be shown that: 

PS (x-c) f(x) dx =PS y f(y} dy o 

c 

The right hand term clearly appears as the expected value 

of y 9 E(Y) 9 and P E(Y) represents the expected cost 

applicable to that portion of work processed on 91 premium" 

timeo 

For the exampleg 

f(x) f(y) 

1/6 1/6 

I 

·~~~_..~....-.R~~~~·~ X 
4 6 10 
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Notice that f(y) appears both discrete and continuouso 

Recognizing the es.sence of the transform.ationp this is 

understandableo For all values of x s CvY is defined to be 

zeroo For the set value of c = 6, Fx(6) - 1/3i or in words 

one-third of the time 11 there would be no work done on "P 

ti.mej)u if x is uniform on [4P 10] and c = 60 Or stated 

differently 1 4 s x s 6 maps into y = Oo Note also that 

s f(y) dy 

o+ 

is not unity inasmuch as the event (y > 0) is not certain 

(one-third of the time y is zero)o But expressing y as the 

sum of an. impulse function 1 (for the discrete portion) and 

as a regular integral (for the continuous portion) the sum 

over the y=domain is unity; ioeo~ 
CQ O+t 

s .f(y) dy = c-0 s 
=o:; 0-c 

= f ( O), 
t-.ip,Q 

= 1/3 [1~ 

= 1/3 + t 

f(y) 6 (y-0) dy + 

15(y=O) dy + 
4 
\ 
J 

O+e 

4 

+ ~ ( 1/6) dy 

4 

I = '1/3 -- 4/6 ::,; 

0 

4 

s 
O+t 

f(y) dy 

( 1/6) dy 

100 0 

1see Appendix B for a brief discussion of the impulse 
functiono 



Thus y as described is a distribution function 9 as it is 

everywhere positive on its domain and sums to unity over 

its domaino 

Now to showi 

P S (x-c) f(x) dx = P S y f(y) dy o 

c 

First the left hand term is evaluated; 

cc 10 

S (x-c) f(x) df .= S (x-6)(1/6) dx = 1 1/3 o 

c 6 

Now for the right hand side; let 

then 

y f(y) = g(y) 

s y f(y) dy = s g(y) dy 

O+t cc 

=c.--oS g(y) o(y-0) dY; + S g(y) dy 
0-g O+e 

O+c 4 
= g(y) ,-oS o(y-O) d;x- + S y( 1/6) dy 

O=t O+e 

4 

= y f(y) 100 + 1/6 e-'PoS y dy 
O+t 

= (0)(1/3) + 8/6 = 1 1/3 0 
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Thus 9 the expected quantity is given by the second term of 

expression (4o1)o Since the event y = 0 has nonzero 

probability, this probability has a weighting effect in 

the E(Y), as expectedo 

Intermediate Flexibility 
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In the intermediate case, the convolution of the basic 

demand forecasts within the planning horizon must be dealt 

withe The model from Chapter III is: 

TEC -· Le + P ~ (X=c) f(X) dX 

c 

0 

In (4o3), f(X) is the resultant or convoluted distribution 

function of total demand within the planning horizon, which 

implies 
t 

x = I xi O 

i=1 

Letting * represent the mathematic&11 operation of convo--

lution, 

where xi represents the distribution fun.ction of demand for 

th .th b . . d d t t. th b f h · e J. asic per10 an represen ,s e num er o. sue 

basic periods allowed by the flexibility levelo In the 

special case where 

then 

i = 1 9 2' '" " " t 0 
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Otherwise, the model is the same as in the no flexi­

bility case, and the remarks concerning the expected quantity 

carried over into the higher processing rate, P, still applyo 

Proceeding as before, the model is minimized with 

respect to the mathematical variable cg 

O = d( TEC) = L p [s® o[ (X-c) f (X)} dX 
de + · oc 

c 

+ [ (-c) f(X)] di~l - (c-c) f(x} d~~2 l 
cc 

0 = L -+: p s (-1) f(X) dX 
c 

0 = L - p [1 - Fx(c)J 

or 

1 
L 

Fx(c) - p = (4o5) 

which is general in nature and for the special case given 

by equation (4o4) becomes 

.. i = 1, 2 p O O O t O 

Again, the decision criteria for minimizing expected 

costs as a function of c is given by either equation (4o5) 

or (406) and is seen to be a function of L 9 P and the 

cumulative of total demand .. 



Full Flexibility 

As shown in Chapter III, the Law of Large Numbers 

implies that the economic capacity level c would be set at 

the mean of the convoluted distribution function., Thus, 

fort time periods 

TEC ( t) = L µX 9 

and for one time period 

TEC ( 1) = L µ . t x 0 

Obviously 1 if full flexibility vvere allowed, no work 

would be processed at the more expenseive rate P, it would 

only be deferred into the futureo Thus as tis allowed to 

increase 9 the c value, in the limit~ becomes the mean of 

the total distribution function 9 regardless of Land Po 

The convergence of c will be more evident in the examples 

of Chapter VIo 
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CHAPTER V 

DISCRETE CASE 

In thi.s .chapter, the random variable of demand is 

assumed to only take on discrete valueso The basic approach 

is the same as in Chapter IV except fo~ this differenceo 

No Flexibility 

Under the no flexibility assumption, all work forecasted 

for some basic planning horizon is due within that same 

periodo 

caseg 

The model from Chapter III is repeated for this 

TEC =Le+ P l (x-c) f(x) o 

c+1 

The mathematical variable c must take on the possible 

values of x, end one or at most two, of these possible 

values will be optimal in the sense that it will y~eld a 

lower TEC value than all otherso (When two optimal values 

of c occur, they have equal TEO values and are equally 

optimal o) Identifying the optimal value of c as c0 , i., e o: 

(5o2a) 

and 

(5o2b) 
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(5o2C) 

by definition of optimala 

The approach will be to find TEC 0 1 and TEC 0 _ 1 in 
o+ o 

terms of TEC0 o 

0 

since 

TEC00+1 = L(c 0 +1) + P l [x - (c 0 +1) J f(x) 
x=(c 0 +1 )+1 

= Lc 0 + 1 + p 

= Lc 0 + 1 + p 

co 

l [x -
x=c 0 +2 

co 

I [x = 

X=C 0 + 1 

X=C + '1 
0 

(c0 +1) J 

(c 0+1)] 

I f(x) ~ 1 - F(c0 ) 

X=C 0+1 

f(x) 

f(x) 

TEC 0 +1 = TECc + L - P + P F(c0 ) o (5o3) 
0 0 



Proceeding similarly for TEC 0 _ 1g 
0 

CIO 

TEC 0 _ 1 
0 

= L ( c O -1 ) +,P l [ x - ( c O -1 ) ] f ( x) 
x=(c0 -1 )+1 

= 
= Le - L + P 0 . l [x - (c0-1)] f(x) 

X::::00 

CIO 

= Lc 0 - L + p l [x "".' (c0-1)] f(x) 
X=C 0 +1 

= 
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= Lc0 - L + P l (x-c0 ) f(x) + P l f(x) 

since 

x=c0 +1 x=c0 +1 

CIO 

= TEC 0 - L + P I rcx) - Pf(e) 
0 

TEC0 _ 1 = TEC 0 
0 

0 
X=C 0 

- L + P [1 - F(c0-1)] 
0 

X=C 0 

f(x) = 1 - F(c -1) 
0 

From the relationships (5a2) it follows~ 

TEC0 +1 = TEC 0 > 0 
0 0 

TEC0 _ 1 = TEC > 0 
O co 

0 

+ Pf(c0 ) 

(5o4) 



substituting (5.3) and (5o4), this becomes 

L - P + P F(c0 ) > 0 

-L + P - P F(c0-1) > 0 

which can be combined into~ 

L F(c -1) < 1 - - < F(c) 
O P O 

Q 

In application, it may turn out that the term 
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is equal to either F(c0-1) or F(c0 ), but obviously not botho 

If c is such that 
0 

then both c0 and c0 -1 are equally optimal, and if c0 is 

such that 

F(c -1) < 1 - l! = F(c) O p O 

then c0 and c0 + 1 are equally optimal o 

The important observation is that the cumulative 

distribution of the random demand through equation (5o5) 

allows for the determination of c0 o 

Intermediate Flexibility 

Intermediate flexibility allows for either the same 

basic distribution of demand to follow in subsequent 

periods or a series of different distributions to occur 

within the time domain encompassing the planning hori.zono 

From Chapter. III, the model for this case is 

'\' t TEC =Le+ PL (x=c) f (x) 
c+1 

0 (506) 



The only difference in this case than in the previous 

section is that the convoluted distribution of demand will 
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appear in the decision criteriao Either the total possible 

demand that is expected to occur over the time domain of 

the planning horizon is the tth convolution of the basic 

demand distribution or a derived convolution of total demand 

due to different (up tot) basic demand distributions 

existing within the planning horizono 

The development follows ·the sa.rne logic of the previous 

section with respect to some value of demand being optimal, 

and leads to the decision criteriag 

C) { 5o 7) 

The same possibilities exist for two optimal vaJ.ues of 

c to occur in specific cases when the inequality is not met 

but occurs as an equalitya In any case 9 given intermediate 

flexibility, the convoluted cumulative distribution function, 

through (5o7), allows for the determination of c0 a 

Attention should be directed to the fact that as 

certa.in discrete distributions are increas.ingly convoluted, 

the resultant takes on a normal formp although the function 

naturally remains discreteo In these cases, computational 

ease may be gained by using the normal distribution to 

approximate the resultant, the error being a function of 

the original discrete distributions and the number of time 

periods encompassing the planning horizon<;> 



Full Flexibility 

The same argument made in Chapter IV relative to the 

behavior of a convoluted continuous distribution function 

as the number of convolutions increase indefinitely holds 

in the discrete caseo Only the method of performing the 

convolutions differo Thus it can be stated that, in the 

limit~ as t increases indefinitely 1 the economic capacity 

level c0 would be set at the mean of the convoluted 

distribution functiono 
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CHAPTER VI 

.APPLICATIONS 

In this chapter, the decision criteria of Chapters IV 

and V will be used with hypothetical example ii·~'; In this way 9 

the interactions of basic demand distributions. with each 

other in determining the totaJ.. demand over the. planning 

horizon and the effect of increased flexibility should be 

clarifiedo Al though the examples deal with rather common 

distribution functions, the approach would be no different 

for more complex caseso 

Example 1o Normally Distributed Demand 

Oonsiderg X - N ( 100 9 10)/wk 0 

It is desired to find the optimal capacity level, c, 

for various sets of L and P val.ues 9 for vari.ous levels of 

allowed flexibility o Whatever the values of L and P, P 

will be measured proportional to L, for computational easeo 

Table 1 gives the values for which calculations are presentedo 

Consider first 9 t = 1 9 or the no flexibility case o The. 

deci.sion criteria for the continuous case from Chapter IV 

isi 

(4o2) 

43 
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TABLE I 

L, P VALUES AND DEGREE OF FLEXIBILITY FOR EXAMPLE 1 

Curve 1 p 1/P Flexibility (in weeks) 

1 1 o O 1o5 2/3 1 ' 3, 6, 20, 30, 40 
2 10 0 2o0 1/2 1 , 3, 6, 20, 30, 40 
3 100 3o0 1/3 1 , 3, 6, 20, 30, 40 

As Fx(c) represents the cumulative distribution of x, 

the transformation to the standard unit normal will be used~ 

c - t,.L 
ZN = a (c i~ some value of x) 

and in general 

for the first case, t = 1 (1 = 1o0 and P = 1o5); 

c 

F x ( c) = 1 - 2/ 3 = 1/ 3 ·- 0 o 3 3 3 = s f ( x) dx 
-OQ 

which implies a ZN of -Oo43o Thus 

(-Oo43)( /fO) + 100 = c = 98064 Q 

Increasing the flexibility, and holding 1 and P fixed, 

causes no difficulty, if equation (601) is modified to be 

compatible with the .increased flexibility and the decision 

criteria is changed to the intermediate case, as followss 

since 

(4o4) 



applies 

f(X) t = f (x.) 
1 0 0 O t 

which implies 

and the decision criteria is equation (4o6)g 

L . t 
1 - 'p = F (c) 

xi 
i = ,, 2, 0 0 0 t 

but so long as L end P remain fixed, (406) yields 

L 1 1 = - = - = 00333 p 3 
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for all cases of flexibility~ and in general, equation (601) 

can be expressedg 

c = ( ZN)( at wks) + µ.t wks 

or (~) r;~ + t(~k) 
c/wk = --~~~~....-==~=- Q (602) 

Using equation (602), as many points on the taxis 

(flexibility) as desired may be computed 9 since ZN remains 

constant for fixed Land Po The optimal. c is then measured 

as a percentage of the weekly mean ( the basic demand mean) o 

The results for L = 1 oO and P = 1 a 5 can be summarized 

as in Table IIo 

Now consider the second cmrve, L = 1o0, P = 2o0 9 

Equation ·(406) yieldsg 

L t ) 1 - p = Fx.(c = Oo50 
J. 

which implies a~ of zero 9 and equation (602) becomesg 
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0 + t(~k) 
c/wk = t = ~k o 

This interesting result shows the optimal capacity level to 

be invariant for this particular set of L and P values, 

regardless of the flexibilityo This. is intuitively 

appealing; as long as it costs twice a.s m'll;eh to process 

work that is carried .over above an established ea.paci ty 

level 9 why not set the capacity level at .suoh a point that 

the probability of work being carried over into the high.er 

rate P» is one=halfo 

TABLE II 

OPTIMAL c/wk FOR FIXED L = 1 ., 0 .AND P == 1 o 5 ( Curve # 1 ) 

L = 1 oO p = 10 5 

t c/wk 

1 98064 
3 99 .. 21 

6 99 .. 45 
20 99070 

30 99 .. 75 

40 99079 

Comparing this result with that .. obtained for the first 

curve (L =· 1o0 9 P = 1o5) 9 the patterr1 of behavior for c is 

starting to appearo The lower the P valuev the larger the 

portion of work that will be carried :forward in.to it, and 



as P increases, the smaller this portion, as will be seen 

by analyzing curve threeo 

For the third curve, L-= 1o0 1 P = 3o0, equation (406) 

yieldsi 
L 

1 = F = 

which· implies a ZN of +Oo43 9 and equation (602) becomesg 

. (+Oo43) Jt a;k + t(µ.wk) 
c/wk = =-==,,_,..==-===-=t===-======== 

and as befor$, as many points as desired on the taxis can 

be generated, those calculated are given in Table IIIo 

The three curves considered so far are depicted 

graphically in Figure 60 

TABLE III 

OPTIMAL c/wk FOR L = 1o0 .AND P = 3o0 (Curve# 3) 

L = 1o0 p = 3o0 

t c/wk 

1 103016 

3 100079 
6 100055 

20 100030 
30 100025 
40 100022 
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c as% of IJwk 

Curve# 3 
L = 1.0 

P = 3.0 Curve# 2 
L = 1.0 

P = 2.0 

- 0- - - - -o--

99 '/ 
98 ./ 

~ 
----Curve # 4 

L = 1.0 

P = 1.5 
a.= 0.90 

10 

- -

20 

Curve# 1 
L = 1.0 

P = 1.5 

30 

Figur~ 6:o. Qptimal CJapaaj.ty EtB a:;:}?UllQ~i~<?n e.f- L,- P. and-Flexibility 
... ·~ .,. · ... ;-·'. -- ·~1--s-~·.,..- . ·• -- - - .. --- .. -- -

40 t 

.i:=,. 
O'.) 



Example 2o Normally Distributed Demand 

With A Service Level Imposed 

49 

The effect of imposing a service level will be developed 

in this exam.plea The model from Chapter III is repeatedg 

TEO= Le+ PS (x=c) f(x)-dx. o 

c 

The service level implies that only a portion of the 

expected demand is desired to be processed 9 and thus the 

upper limit of the integral becomesi 

. Cl 

TEC =Le+: PS (x=c) f(x) dx 

c 

proceeding as beforei 

· since 

or 

Cl 

O = d(TEC) L = p 
de = S (:f(x) dx 

c 

Cl 

S f(x) d.x = Fx (a.) = Fx(c) 

c 

0 

Thus, Fx(a.) replaces the constant ·iaO in the decision 

criteria expressiono 

For convoluted cases 9 the decision criteria would beg 



Thus equations (603) or (604) provide the determination of 

the optimal co 

Applying this result to curve one of the previous 

example, with a set at 0090 9 the following results are 

obtained~ 

which implies a ZN of -Oo74o Equation (602) givesg 

(=Oo74) ~!k + t (µwk) 
c/wk = ----~~~~-=!'"""""'~~~= 

and. the generated points are given in.Table IVo 

TABLE IV 

OPTIMAL c/wk FOR L = 1o0 9 P = 1o5 AND a= Oo90 
(Curve# 4) 

1 = 1o0 P = 1o5 a= Oo90 

t c/wk 

1 97066 
3 98.,65 

6 99004 
20 99.,48 
30 99057 
40 99064 

Comparison of Tables II and. IV indicate the effect of 

a as lowering the optimal. c value, which is logicaJ. 9 since 

the percent of demand turned awayw (1 = a) 9 would be that 
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applicable to the higher processing ra·teo 

. Example 3o· Uniformly Distributed Demand 

Consider Example 1 of Appendix A in which the uniform 

distribution on [0 1 1] was convoluted three times (results 

are graphically reproduced in Figure 7)o As the resulting 

curve is quickly approaching a normal shape i, if this 

distribution were to be studied as a function of increasing 

flexibility, clearly the normal could be used to approximate 

the actual distributiono Calculations for various degrees 

of flexibility will be presented~ using both the actual 

distribution and the normal as an approximation for the 

cost values of L = 1o0 a.:nd P = 1o5 (Curve 1) and L = 1o0 

end P = JoO (Curve 2)o The. inputs for the e:xample are 

summarized in Figure '7" The actual method. would yield the 

optimal. value by integrating the c1.;unul.a"tive function up to 

c such that the probability of a deman.d be s ( ·1 = L/P) o 

Using the approximate methodp the fixed ZN value (for any 

set of Land P values) would imply the optimal vaJ.ue by use 

of equation (6a2)g 

c/wk = 0 

The results obtained by both methods are summarized.in 

Table Vo 



A. 
f(y) 

l. 

B. 
f2(y) 

t = 1 (No Flexibiii ty) 

1 - y 

1-L1 = 1/2 
2 

01 = 1/12 

t = 2 (Flexibility of Two Basic Periods) 

0----------1------~2--_.. Y. 

c. 3 t = 3 (Flexibility of Three Basic Periods) 
. f (y) 

= 1.5 

= 1/4 

0 1.0 1.5 2.0 3.0 
D. Standard Unit Normal Actual Decision Criteria: 

~igure 7. 

N(0,1) 
c-µ 

ZN = a 
(4.6) F!.(c) = 1 - ~ 

l. 

Approximate Decision 
Criteria: 

(ZN)Vta12 + t(µ1) c 
(6.2) =t 

Inputs for Actual Versus Normal Approximation 
to Optimal Capacity Determination 
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TABLE V 

ACTUAL VERSUS .APPROXIMATE COMPARISONS FOR 
INCREASING FLEXIBILITY 

Flexibility Actual Method Approximate 

Curve# 

1 

2 

3 

Curve# 

·1 

2 

3 

Method 

1 
1=1.,0 
P=1 o 5 

00333 00376 

00408 00412 

00427 00428 

2 L==1 oO 
P=3o0 

Oo667 Oo624 

00592 00588 

00573 00572 

Example 4., Uniform Discrete Demands== 

Fixed Flexibility 
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Per Cent 
Error 

12090 

.. O.o98 

Nil 

6045 

0068 

Nil 

Suppose that a planning_ horizon is to encompass one 

year and that three four=month forecasts are available 9 

each different and considered independento The particular 

demand. interest is measured i.n di.scre-te u:nitso The 

distributions are as follows: 

f(x1) = {1/3 x 1 ::, 10~ 11 ~ 12} 

O elsewhere 

Forecast period 1g 



Forecast period 2g 

elsewhere 

Forecast period 3g 

Let u = x1 + x2 o The z transform of u. is given as& 1 

since 

and 

then 

= 1/3 10 z + 1/3 z 11 + 1/3 z12 

fx (z) = 1/4 z12 + 1/4 z13 + 1/4 z14 + 1/4 z15 
2 

[ 1/ 4 z 12 + 1/ 4 z 13 + ·1/ 4 z ·14 + 1/ 4 z 1 5] 

which implies that~ 

1/12 u = 22v 27 

2/12 u~ 23p 26 
f(u) = 

3/12 u = 24p 25 

0 elsewhere 

Now define 

then 

fw(z) = fu(z) fx3(z) 
I 

1For convenience 9 Appendix B contatn.s a general 
discussion of Transform Theoryo 

0 
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since 

f (z) = 1/6 z8 + 1/6 z9 + 1/6 z 10 + 1/6 z 11 
X3 

+ 1/6 z12 + 1/6 z13 

and fu(z) has been obtained above, theng 

fw(z) = [1/12(z 22 + 2z23 + Jz 24 + Jz 25 + 2z 26 + z27)] 

_.[1/6(z8 + z9 + z10 + z11 + z12 + z13)] 

fw(z) = 1/72[z30 + 3z31 + 6z32 + gz33 + 11z34 + 12z35 

+ 11z36 + 9z37 + 6z38 + 3z39 + z40] 

which is represented by Figure 80 

The decision criteria of Chapter V isg 
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and the cumulative of W can be used to specify_the solution 

of c0 as is shown in Table VIo The behavior of c0 to 

various L and P values i.s shown in Figure 9 o 

Di.scussion 

Certain characteristics of the economic capacity 

determination problem are becoming clearer after the 

results of the examples are consideredo Table VII briefly 

summarizes some of these characteristicso 



1.2 f(w) 
j • W = x 1 + x2 + x3 

0 I I . 

30 31 32 33 34 35 36 37 J8 39 40 

f(x 1) 
1 I 

3 

10 11 12 

1 
4 

1 
b 

12 13 14 15- · 8 9 10 11 1 2 1 3"' 

w 

Figure 8. Probability Distribution of w, Where w is the 
Sum of Three Uniform Discrete Random 
Variables 
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L/P 

2/3 

1/2 r 
1/3 1-
1/4 I 

[ 
Figure 

33 

9o Relat:i.onship of c 0 for Fixed Flexibility 

to Various 1 and. P Values 

TABLE VI 

OPTIMAL c 0/yr FOR VARIOUS L AND P VALUES 

~-~ . ~· -~=--·- ™· 

w f(w) F(w) co L p 1 L 
= p 

-=== ...... ==··==-:, ·-

JO 1/72 1/72 
31 3/72 4/72 
32 6/72 ·10/72 
33 9/72 19/72 3.3 100 1 Q 5 Oa.33 
34 11/72 30/72 34 1 o O 2o0 Oa50 

35 12/72 42/72 35 1 a O 3a0 Oa66 

36 11/72 53/72 36 1 oO 4o0 Oa75 
37 9/72 62/72 
38 6/72 68/72 
39 3/72 71/72 
40 1/72 72/72 
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Example 

1 

2 

3 

4 
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TABLE VII 

OBSERVATIONS ON EXAMPLES 

Conditions 

X ,,.., Normal. 

Same as 1 . except 
service level 
imposed 

X,.., Uniform 

X ,.., Uniformly 
Discrete 
Fixed Flexibility 

Main Observations 

1) effect of Land P with 
respect to level setting 

2) rapid approach of optimal. 
towardsµ as flexibility 
increased 

1) effect of level on µ 9 

below the unimposed 
case 

1) rapid convergence of 
convoluted demand towards 
normality 

2) magnitude of error of 
approximate method is small 
as flexibility increases 

1) rapid approach towards 
normal shape 9 even within 
short :flexibility 

2) usefulness of transform 
theory in obtaining totaJ. 
de.mand within planning 
horizon 



CHAPTER VII 

SUMMARY, CONCLUSIONS AND RECOl\lffifENDATIONS 

The capacity determination decision has been discussed 

within the context of production managementv and described 

as a planning decision~ made prior to operating decisionso 

The input for such a .decision is the forecast of demand on 

the capacity system, projected from the futureo Recognizing 

the variability involved, it was proposed that such fore­

casts be described probabilisticallyo It was further 

proposed that the cost of processing demand be considered in 

two general classes 9 regular and premiumo 

Given the·probabilistic nature of future demand and 

the applicable costs associated with proeessi.ng all or a 

portion of that demand 1 a decision criteria of minimizing 

expected costs was ·presenteda In general 9 the decision 

criteria was seen to be a function of the relative costs 

and the flexibility allowed in processing work with respect 

to timeo Examples were presented, under various conditionsv 

which exemplified application of the modelsa 

Using the decision criteria 9 it was demonstrated thati 

1 a The optimal capacity level 9 for given inputs 9 can 

be obtainedo 

2a The optimal level rapidly approaches the mean of 
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total demand within the planning horizon as 

flexibility is allowed to increaseo 

60 

3o The relative location of the optimal level to the 

mean of total demand within the planning horizon 

is a function of the Land P cost ratioo When P 

is low relative to L, the optimal capacity level 

falls below the mean level and when Pis high 

relative to L, it falls above the mean levelo 

These basic observations from the application of the 

models are intuitively logical, but go further than to just 

reinforce intuitiono The models could be used to generate 

complete families of curves for various cost ratios and for 

various degrees of flexibilityp-and thus 9 numerically yield 

the range of optimality for parameter changeso Such a 

sensitivity analysis could also be made relative to forecast 

errors on future demandso 

In addition to the obvious extension of the analysis 

to test the optimality range via. sen_si tivity ~ certain other 

recommendations become apparent~ 

1o Relaxation of the requirement that future fore­

casts conform to probability distributions and 

the application. of either non-parametric 

analysis or quantitative .. distribution free 

analysis based upon only partial informationo 

2o Relate the model results to the appropriate 

timing of major additions to capacity (merging 

the model vvi th engineering economic anal.ysis in 



such a way that major outl~ys for expansion are 

economically timed)o Such an analysis could 

impose both budget restrictions and upper limits 

on allowable premium time available within any 

planning horizono 

3o Relaxation of only two classes of costs relative 

to processing to include mixes of premium typeso 
' 

4o Extension of the results of the models as inputs 

to the operational decision area, where the 

scheduling of total demand within the planning 
. . 

horizon is accomplishedo 
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APPENDIX A 

CONVOLUTION [3, 59 10] 

General Case 

Given~ X and Y are random variables 

f(x,y) is the joint pdf of X and Yo 

The pdf of Wis desired where W = X + Yo The event 

space isi 
y 

the event W s w 

'W=w=x+y 

• w-x 

Pr(W s w) = F(w) = S s f(X11Y) dx dy 

x=-• Y=-• 

f( ·) dF(w) 
w = d = . 'fl 

dx -1,;ISx f(x,y) 

x=-• ~==• 
s 

performing the derivative 

f(w) ,= S f(x 9 w-x) dx o 
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In general., the integral can be analyzed no further without 

specific knowl.~dge of f(x 9y) 9 the joint distribution 

functiono 

Case: 

0 0 

X and Y Independentg 

Independence:::> f(x,y) = f(x) f(y) 

f(w) ,= S f(x) f(w-x) dx o 
X=-co 

This integral is known as the convolution of f(x) and-f(y)o 

Integrating over x first rather than y, results in the 

equivalent expressiont 

f(w) ,= S f(y) f(w-y) dy 

The above integrals may also be obtained by the following 

approachi 

f(x 9y) - £(x) f(y) 0 

Let 

z = x + y w ::.:,; x 

then 

y = z - x X = W O 

The Jacobian is 

~ .A! 
oz ow 0 1 

= = -1 

.M'.: §. 
oz aw 1 1 

f ( z , w) = f ( w) o f ( z-w) 0 j J j = f ( w) f ( z=w) 0 
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To obtain the density of Zp integrate out wi 

co 

f(z) = S f(w) f(z-w) dw 

which, except for the symbols is the same integraJ.o 

To illustrate some of these concepts and to draw 

attention to the approximation of convoluti.on to . the :resul. t. 

obtained via the Central Limit Theorem 9 the remainder of. 

thi.s appendix will deal with exampleso 

Let 

Defineg 

Example 1o Convoiution of Uniform 

Distribution Function 

OS xi S 1} 
elsewhere 

U = x1 + X2 o 

The convolution integral yields the pdf of U& 

0 

In evaluating the convolution integraJ. 9 care must be taken 

to consider the domain for which the density functions are 

non=zeroo 

The range space of u, ~ is [0,2]o 



U=2 

x 1=u-X,-,=1 .. ,::;, 

. With the aid of the sketch, the limits of integration 

with respect to x1 can be obtained. 

Note also: 

U = x1 + x2 

U - x1 = x2 

f(u - x1) = f(x2) - {1 0 S x2 .:S. 1} 

- 0 elsewhere 

which is equivalent to 

u - 1 $ X,I su 

and 
0::, 

f(u) = s f ( u -· x1) f(x1) dx1 
-ex, 

becomes u 
f(u) = s f(u - x1) f(x1) dx1 0 

u-1 

66 



Consider the range space of u in two intervals: 

1o OS US 1 

2o 1 S U S 2 o 

1. For Os us 1: 

2o 

a. The lower limit (u-1) is bound -1 s u - 1 s. O, 

but f(x 1) = 0 for all values of x1 < O; this 

implies that u - 1 = 0 is the only valid lower 

limit for f(x1) to remain non-vanishingo 

b. The upper limit (u) is bound Os us .1, and 

f(x1) is non-vanishing over this entire domain; 

this implies the upper limit of u is valid. 

Then for O S u S 1: 
u 

f(u) = 
.·1 

s f(u - x1) f(x1) dx 1 
0 

u 

X1 r f(u) = s ( 1 )( 1 ) dx1 = ::: u 

0 0 

or 
f(u) = u. 0 :sus 1 0 

For 1 su s 2: 
u 

f(u) = s f(u - x1) f(x) dx1 1 
u-1 

a. The lower limit (u-1) is bound Os u - 1 $ 1, 

and f(x1)- is non-vanishing for this domain. 

b. The upper limit (u) is bound 1 s us 2, but 

f(x1) = 0 for all x > 1; this implies that only 

u = 1 need be consideredo 
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Then for 1 s us 2& 
1 

f(u) = S f(u - x 1) f(x1) dx1 
u-1 

1 1 

f(u) = S (1)(1) dx1 = x 1 = 1-(u-1) = 2 - u 
U-1 U=1 

or 

f(u) = 2 - u for 

The result is 

f(u) 

1 

Notice 9 beginning with f(xi) uniform on (0 9 1] the sum of 

two xi yields a triangular density functiono Assume it is 

desired to convolute the result above u 9 with yet a third 

observation of x1 o 
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That is~ define Y = U + x3 = (x1 + x2) + x3a· The pdf 

of Y is desired 9 recognizing the range space of Y 9 Ry=[0 9 3]o 

By the convolution integrali 

f(yl = S .f(y - u) f(u) du 
=er:, 



then 

Again 

1 0 

Jo1 f(x3) = f(y.- u) = l 

y 

05y-us1}, 

elsewhere 

f(y) = S f(y - u) f(u) du o 

y-1 

consider the range space in interval.a~ 

1 0 0 SYS 1 

2o 1 < y < 2 - -
3o 2 :s Y s 3 0 

For 0 SY :S 1 ~ 

a .. The lower limit (y-1) is bound -1 SY- 1 so, 
f(u) i~ non-vanishing only for O in this domain; 

this implies the only val.id lower limit is o .. 
bo The upper limit (y) is bound Os y s 1 9 and f(u) 

is non-vanishing over this domain; this implies 

y is a valid upper limito 
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2 o For 1 < y < 2 i - -

3 .. 

ao The lower limit (y-1) is bound Os y - 1 s 1 9 

f(u) is non-vanishing over this domain; this 

implies y-1 is a valid lower limito 

bo The upper limit (y) is bound 1 s y $ 2 9 f(u) is 

non-vanishing over this domain; this implies y is 

a val.id upper limito 

For 2 < y < 3x - -
ao The lower limit (y-1) is bound 1 s y - 1 s 2 9 



Thus 

Then 
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f(u) is non-vanishing over this domain; this 

implies that y-1 is a valid lower limito 

bo The upper limit (y) is bound 2 sys 3~ f(u) is 

non=vanishing only for y = 2 of this domain; this 

implies that y = 2 is the only valid upper limito 

co 

f(y) = s f(y - u) f(u) du 

-= 
y 

= s f(y - u) f(u) du ~ for O :Sys 19 
0 

y 
f(y) = s f(y - u) f(u) du p for 1 s y < 2 ~ 

y-1 

2 

f(y) = s f(y - u) f(u) du 
' for 2 Sy S 3o 

y=1 

Previously, the following have already been foundg 

( 1 ) 

( 2) 

f (u) :: u 

f(u) = 2 = u 

y 

s (1) f(u) du= 

0 

y 

s (1) f(u) 

y-1 

y 

s u 
0 

2 
du = ;[~ 

2 

y 

u du+~ (2=u) du 

1 

05u.51 

"1 SU S 2o 

1 SYS 2 

2 3 1 2 = =y + 3Y = 2 = 2 ( =2y + 6u - 3) o 
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2 2 

(~) S (1) f(u) du= S (2 - u) du 
y-1 . y-1 

2 SY 5 3 

2 2 
u 1 ( ) 2 = 2u- 2 = 2 y-3 o 

y-1 

The result is: 
f(y) 

1 2 y =2 (y-3) 

y 
1 2 

Note the similarity of y = x1 + x2 + x3 to a normal 

curve when in fact xi are uniform [0,,1]o This 11 evidence" of 

the applicability of the Central. Limit Theorem is rewarding~ 

Letg 

Define& 

Example 2o Convolution of a Normal 

Distribution Function. 

X - N (0, 1) 

Y - N (O, 1) 

f(x) 

0 

·2 
-x /2 e 

The convolution integral yields the pdf of Zo 
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f(z) = S f(x) f(z - x) dx 

2 co 2 
= 1 e-z /2 s.. e-(x -zx) dx o 

flrr ;, 

Complete the square in the exponent to obtain 

then 

[
. 2 2 J 2 ·, z z 

x - zx = -~ - i) - 4 

2 2 · co 2 
f(z) = fn e-z /2 ez /4 s e-1/2[{2 (x - z/2) J dx o 

-co 

Letting 

f2 (x - z/2) = u 

f(z) = 

co 

now 
--l.. S e-u2/ 2 du= 1o0 
/2rr -co 

0 



Thus 

' 
but this is the pdf of a random variable with distribution 

N(0,2)o 

Thus, via convolution we obtain a result normally 

obtained by the moment generating function techniqueo 
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.APPENDIX B 

TRANSFORM THEORY AND THE UNIT IMPULSE 

FUNCTION [2, 3] 

Laplace Transform 

The Laplace transform (sometimes referred to as the s 

transform or the exponential transform) is defined ass 

£ [f(x) J = fx(s) = E(e-sx) = S sx . e- f(x) dx o 
-oo 

Its usefulness in probability;theory will be illustrated by 

example 1 9 but basically is an alternative way to determine 

the distribution function of a sum of random variableso 

The Impulse Function and Z Transforms 

The impulse function o(x) is defined by the relations: 

( 1) 6(X - a) = 0 x~a 
a+- e 

(2) s !>(x - a) dx = 1 oO £ > 0 0 

a-e 

.It is generated by starting with a rectangular pulse of 

unit area and considering the limit as the width of the 

pulse goes to zeroo 
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P(x-a) 

t b 

1/b 

Lim 
q~o 

o(x-a) 

a 

The usefulness of the impulse function in probability 

lies m the fact that a discrete distribution can be 

expressed in a continuous formo This is possible by 

utilizing condition ( 2) o 

Consider: 
c 

S f(x) o(x - b) dx 
a 

The impulse occurs at b, and is within the limits of the 

integralo But the impulse function is zero except at 

x = b 9 which implies: 

c b+e: 

~ f ( x) . 6 ( x - b) d~ = S f ( x) 6 ( x - b) dx 
a ~c 

e > O 

Q 

Q 
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As c-=-0, if f(x) is continuous at x = b 11 the change in f(x) 

becomes small and approaches f(b) 9 theng 

~t ~c l f ( x) o ( x - b) dx ___..... f ( b) S o ( x = b) dx 
b=-c e ......... o ~c 

t > 0 Q 

The last integral is equal to unity 9 thus 



c 

S f(x) 6(x - b) dx = f(b) 

a 

Using this relationship, consider: 

f(x);: 

which can be expressed as: 

o. 50 x = 1 

0.25 

0 

x = 2, 4 

elsewhere 

f(x) = 0.50 6(X - 1) + 0.25 6(x - 2) + Oo25 6(x - 4) 

and -depicted graphically asg 
, f(x) 

1 

• 

2 

discrete 

f(x) 

1 ' d 

continuous 
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: x 

Having expressed f(x) in a continuous form, the Laplace 

transform can now be obtained& 

;f [f(x)] = fx(st = S e-sx f(x) dx 
-ao 

0 



The Laplace transform is defined for the distribution 

function of any random variableo .However, for random 

variables which are discrete.and which take on only non­

negative integer value (as in the case of discrete demand 

uni ts) 3 a special transform has been def'ined and called 

either the discrete or z transform, given asg 

fx(z) = E(zx) ,: L . zx f(x) · o 

X=O 

Applying this .. transform to the previous example, 

c» 

fx(z}.= r zx f(x) = Oo50 z + Oo25 z2 + Oo25 z4 

X=O 

. -s and, as can be se~n, z has simply replaced e o 

Transforms of the Probability Density Function 

for the Sum of Independent Random Variables 

Continuous Case~ Let 

W = X + Y 9 x and y independent random variables 

X - f(x) X,Y Continuous 

y - f(y) 0 

The Laplace transform of Wis 

-sx -sy ( ) e e · f x,y d:x;dy 

77 
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fw(s.) = r.· sx s sy j e- f(x) :Q;X .. ·· e= f(y) dy 

X=-oo .. Y=-= 

(Bo 1) 

Discrete Casei Let 

W= X+Y 

X,.., f(x) X9Y Discrete 

y,.., f(y) 0 

The z transform of Wis 

CIO 00 CIO 

fw(z) -I - . zw f(x,y) =I l z(x+y) f(x) f(y) 

W=O x=o y::o 

Cltl CIO 

fw(z) =I zx f(x) l zY f(y) 
X=O Y=O 

(Ba2) 

Example 1g This example will find the distribution of the 

sum of two normaJ. distribution functions ustng Laplace 

tra:nsforms 9 a result previously obtained in Example 2 of 

Appendix A 9 via eonvolution.methodso 

Let 
2 

X ...., N (µx ox ) 

Q 
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Define Z = X + Y, and the pdf of Z is desiredo The Laplace 

transform of Xis 

s 2 ox2 /2 - sE(x) 
= e 

and for Y 

0 

By the relationship (Bo ·1), 

= e 

2 2 s ox /2 - sE(x) · 

2 2 2 s /2[ ( ox +oy ) ] - s(E(x) + E(y)) 
e o 

Notice that fz(s) is in the form of both fx(s) and 

fy(s))I except tha.t the variance of z is the sum of ox2 and 

oy2 and the mean of z is the sum of 1-Lx and µyo Ifll as in 

Example 2 of Appendix A 9 

then 

0 
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