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NOMENCLATURE

A random variable representing the demand against
a productive process, assumed to be represented by
some probability density funection, f£(x), which in
turn implies a time domain.

The decision variable representing the level of
productive capacity, under conirol of the decision
maker,

Cost per unit for production up to the level of ¢
(applicable for X < ¢).

Cost per unit for preduction in excess of the
level of ¢ (applicable for X > ¢).

The degree of flexibility allowed, being a
multiple of the basic time periods for which the
probability distribution functions of X apply.

The probability distribution function for the
random variable X.

The cumulative distrivbution function for the
random variable X.

The t™ convolution of T(x).
The cumulative distribution of f°(x).
The Laplace transform of f(x).

The z transform of f(x).

viii



CHAPTER I
INTRODUCTION

Operating a production process requires some form of
decigsion making. In simple cases, the decisions may be
obvious. However, in the more general (and usual) case,

a decision is often one of many in a sequence of & decisgion
making process, and once made, has a relaticnship to the
feasibility of remaining decisions. This research is

concerned with one such decision from & seguence.
Statement of Problen

This research is set in a production context, with the
production manager as the primary decision maker. Sales,
advertising, profit, tramsportation, and many other
important aspects of the business are thus removed from his
gontrol and his concentration is upon minimizing production
costs, given that he has some indication of the magnitude
of his expected level of producticn for some time periocd
into the Tfuture.

The following assumptions are made in framing ithe
context of the problems

1o The decision is a planning decision, and once

made can he used as an input to such operational

decisions as the scheduling of regular and
overtime hours at work centers, levels of



inprocess inventories, timing of raw material
requirements, etce.

2 Two basic alternatives are available; regularly
scheduled production with its associated cost
parameter end what will be referred to as premium
capacity. Premium capacity can be the utilization
of the same resources gvailable for regular
capacity, such as overtime or multiple shift work,
or it may be considered as subcontracting a
portion of the total work or the buying of
production from an outside source fto supplement
that available on a regular basis. Thus the type
of premium capacity applicable will also carry
its specific cost parameter.

3 The input to the decision is a probabiligtic
distribution of demand, obtained from a separate
planning decision dealing with forecasting of
future demand for the firm's goods and services.

4 The lead time in which demand must be honored
is specified and determines the length in time
of the planning horizon.

Chepter II will discuss in more detail the meaning and

interrelationships that exist between capacity, cosis,
demand, and time in the production process. For now the

problem can be visualized in a broad sense as in Pigure 1.

TRANSFER |
INPUT ——d e QUTRUT
PUNCTION

Figure 1. A Plamning Decision Process

For the problem at hand, the input is the probabilistic

demand into the future, the tranasfer function is a2



mathematical model (developed in Chapter IIT) that relates
the variables involved and the output is +the economic
capacity level (the decision).

Determining the economic level of capacity direct from
the expected load to be placed upon that capacity would seem
to have usefulness, rather than éonsidering the capacity
level as fixed and then working with the often complex
production scheduling problem of fitting whatever demand
oceurs against the production facility. 1t is this aspect
which places the decision of this research at the planning
level. No attempt will be made to integrate the decigion
into & complex working system for any given production
system, but its usefulness, once developed, will be

discussed later.
Literature Search

Most textbocks written in the axrea of production
planning or production control do an adeguate job of out-
lining the areas of interest to the production environment.
They fail, in general, however, ftoc effectively do moere than
expose the existance of relationships between main areas.
Abramowitz [ 1] presents a thorough coacept of capacity as

+

it relates to a very general production model. Magee and

Boodman {9] present a strong development of the rocle of
inventory in the production system. In most cases, the

textbook approach eventually comes down %o decision making

procedures dealing with either determinisiic c¢r probabilistic



demand, imposed upon some assumed level of capacity and the
development of operational procedures for then scheduling
the demand onto the current capacity. It is the intent of
this research to explore a way in which the capacity level
itself can be economically evaluated, at a2 planning level,
prior to the scheduling problem.

Attempts to more expliecitly involve the interrelation-
ships between demend, work force (a form of capacity) and
inventory levels can be found in the technical journals.
One of the earliest involves the work of Holt, Mcdigliani
and Simon [7] in applying a linear decision rule (developed
mathematically in [6]) to a paint factory. The cost function
ntilized iss

-

oy = z: [(Cq = Cg) Wy + Cy (Wy = Wy o = Cyy
T=1

)z
C,(P, - C,W )2 + CP, + C.P.W
t Valdyg ‘4 5 1254y

et

+ Co(Iy - Cg - c9ot>2 + Cyql
where the subscript t indicates the time period; Wi the
work force levelj Pt’ the aggregate productiong Itg the net
inventory; and Oy, the ordered shipments. All C values
represent cost parameters except 013 which is a constant
cost term not affected by scheduling decisions. Their [6]
explanation of the problem is given ass

The pr@blem-we then face is the followings: To

choose a decision rule (strategy) for making
production and labor force decisions in successive



time periods that will minimize the expected

value of total costs over & large number of

periods. Since costs are influenced by the

interaction between current actions and future

orders, forecasts of the future are indispensable

even though such forecasts are subject fto errors.

The passage of time makes new information

available which allows improvements in the

accuracy of the forecasts. The design of an

optimal decision rule should take these

considerations into accounts. ‘

In general, however, future orders are

uncertain; that is to say, information about

orders in each future periocd may be cast in the

form of a probability distribution.

Minimization of the cost functicn was based upon using
each future period's expected number of orders (demand upon
the capacity) and then by taeking the total derivative of the
cost function. This resulted in a system of equations which
was solved by matrix inversion procedures. Solution was
possible by this procedure due to the guadratic form of the
cost funetion,

Fetter [4] applied linear programming procedures to
the problem of long range capacity planning, given future
demands. His model was based upon capacity having the
following market characteristicss

1o Ownership implies a long term capital invegtment.

2o Leasing is an available alternative and implies
a different capital commitment than ownership.

3a Capacity is available on a short term or spot
basis.

4o Capacity prices are variable over itime and may
vary in terms of their relative relationghip for
the various alternatives,

His obkjective function minimized the present worth of all

future costs, subject to stated constraints (among others)

>
4



that required demand be met and capacity be retired at the
appropriate time determined by replacement policy methods.

Other studies are available that attack the production
smoothing problem (the relationship between production,
inventory and demand) such that costs over some planning
norizon are minimum [8]. Studies involving employment
planning in the face of varying demzmd have also been
made [117.

In [7], the model was applied tc past years data and
resul ts were compared with what would have been, had the
model been in effect, compared to what actually occcurred.

A cost savings of 8.5 percent per year in favor of the model
resulted. An underlying assumption of this study invoelved
the ability of the firm to manipulate the level of the work
force and the magnitude of the overtime hours simul fanecusly,
a condition not always available. Also, capacity was
defined as work force alone.

Implicit in Fetter's model [4] is a planning horizon
sufficiently long enocugh to account for the retirement of
installed capacity (and that purchased during the pianning
horizon) or the inclusion of them cutside the model for
shorter planning horizons. Since machinery lifé ig often
expressed in years, this complicates the forecasting
prceblem, as accuracy of forecasts over several years become
unreliable. Also, giving fthe demand of future periods a
probabilistic nature, increases the number of constraints to

the problem significantly.



The smoothing studies attempt to distribute the demand
across the planning horizon to some assumed level of
available capacity, that capacity in itself not being a
variable.

It is the author's opinion that the capacity level
itself can be viewed as a variable, at least at the planning
stage, and that it can be economidally determined allowing
interactions of demand in interim periods of the planning
horizon to occur. Once this has been determined, then the

approaches of smoothing could be appliedo



CHAPTER 1I
THE PRODUCTION PROCESS
General

The production process for manufacturing (as opposed to
services) can be depicted as in Pigure 2 [1]. Decisions
necessitated by this dynamic environment can, in general, be
grouped into two main categories; planning and operational.
In this research, attention is directed at the planning
level for the specific purpose of determining capacity
levels economically. This decision then becomes an inpui
to other required decisions until finally, operationsal
decisions that involve detailed production schedules,
inventory policies and other related information such that
a fundamental operational schedule can be set for some

planning horizon.
Demand

Demand against a productive process is usually measured
in such common terms as manhours, machine hours, standard
hours, etec. Thus once forecasts have been made, regardless
of *the unit of measurement used (dellars, units, tons) these
shouwld he converted into units compatable with the con-

trolling function of the production process that is



CONSUMER DEMANDS

Desgign, quality, quantity,
time, location, price

Upon

CAPACITY

Machine, process, human

) . | . )

Creates

THE MANUFACTURING PLANNING
1. Inventories

3. Overtime
4. Make or buy

2. Extra equipment and manpower

5. Internal action, methods, time study
6., Combination of any or all

ALTERNATIVES

Y

Forming basis for

MASTER SCHEDULE

Necegsitating

1. Production
2. Inventory
3. Quality -

MANUFACTURING CONTROLS

4., Cost wvariance

INFORMATION SYSTEM

Figure 2. The Manufacturing Process
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responsible for creating the utility possessed by the firm's
goods and services.

In this research interest is in determining a capacity
level, economically, in view of a variable demand placed
upon that capacity. There exists considerable difficulty in
obtaining the input required to start such analysis, but
certain procedures have been deveIOpeda.generally under the
neme of "forecasting methods." Abramowitz and Mageel 1, 9]
present most of these procedures amd discuss their relation-
ship to the production planning and contrecl areas. Such
Torecasts are seldom taken as point egtimates of the actual
demand. They cen be viewed as random variables, possessing
a mean and finite variance. They may be assumed to follow
some well known (with respect to behavior) probability
distribution function such as the normal, Poisson, expo-
nential, etc. Or they may be empirically described basged
mainly on historical records. The degree %o which these
random variables behave as related to major pricing changes,
advertising efforts and significant changes in the economy
could be congidered in applied.caseso

Assuming that the probability distribution functions

are available, the decision of setting =z capacity level for

some time period into the future must be made. Naturally,
the decision is related to the fime period for which the
distribution functions are considered valid and the time
period for which the decision on capacity levels is to be

cptimal. This requires two considerations. Given that a
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demand has occurred, when should it be met? (i.e., How much
lead time does the production manager have?). This variable
will be referred to as "flexibility" and is discussed later
separately. The other consideration that arises is the
digtribution of demand over multiples of the time periods
for the demand distributions as giveno‘ This last consider-
ation is handled by finding the convolutions of demand. The
theory and development of convolution is presented in
Appendix A along with specific examples of various proba~-
bility distribution functions which have been convoluted.
Here concern is directed towards understanding what the -
convolution procedure accomplishes. |

Consider a simple demand distribution for a manu-

facturing process based on g monthly time basisz

Y

Demend (x) Probability p(x)
> JI 1200 manhours 0.15
(min) 1300 manhours 0.40
- 1400 manhours 0.35
1500 manhours 0,10

X(max) :

The probagbility distribution of demand for a six-month
period is desired under the assumption that in each sub-
sequent month the demand will follow the same distribution.
In a statistical context, a random sample of size six is
taken from the bagic monthly distribution and the
distribution of the sum of the random variables is to

be determined. Intuition indicates that the minimum

demend for the six-month period will be at least six
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times X(min) and the maximum demand will be at most six
timeslx(max)o What about the probabilities. of these events?
The minimum will occur with probability P[x(min)]6'~_x (0015)6,
and the maximum with probability P[X(max)]6 = (0010)60 For
small problems one can enumerate all possible outcomes of
the sum and find their probability of occurrence by using
the conditional probabilities that comprise the specific
outcome event. As this becomes guite cumbersome, the con-—
volution procedure which finds the distribution of the sum
for all values may be invoked to completely determine the
distribution of the sum.

Note that the minimum and maximum values occur with
much smaller probabilities than in the basic one-month time
preriod. These fécts would suggest that the variance of the
six~month distribution is larger than for the basic one~
month distribution. By the same logiec, knowing that the
distribution for the six-month period must sum to unity, one
suspects that there is a larger probability in the six-
month case than in the one-month case, asscciated with the
event that the actual demand will be within 4+ Y percent cf
the mean.

What has been asserted is nothing more than the power-
ful conclusions of the Central Limit Theorem. This useful
theorem is applicable when n (the sample size, and in the
above discussion six) approaches infinity. Purther, this
theorem agserts that this sum is distributed normally. As

long as it is not always true that a particular few of the
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member random variables dominate the sum, then the random
variables need not come from identically the same distri-
bution. Why then become concerned with the convelution
procedure? The answer is to have an applicable procedure
for finding demand distribution when only a small number of
time periods are to be considered. The decision as when to
use the convolutibn concept and as to when the Central Limit
Theorem is applicable will depend upon the circumstances to
which the models (yet to be developed) would apply (see
Example 1 in Appendix A). Concern here is that there is a
way to generate demand distributions for any multiple number
of time periods for which the basic demand distributions are
knowno.

A final observation closes this discussion of demand
distributions. If for scme reason, such as strong seasonal
factors, a completély different demand distributicn is fo
follow in a subsequent period, thesze two densities can be
convoluted together and this resultant can be convoluted
with yet another different density for yet another period.
This procedure may be indefinitely followed. When the
assumption that each periocd has essentially the same density
holds, the mathematics are simply less. cumberscme than

otherwise,
Capacity

Capacity is a concept, involving an understanding of

factors that affect it and time as a parameter. What is an
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effective capacity todey may be obsolete tomorrow due to
changes over time in the factors that affect it. The
relationship of these factors to capacity can be represented

as in Figure 3 [1].

Factors affecting capacity Limits to capacity

Physical factors —>

C le— 1MNaterial
Product factors —— A

P le——  rLabor
Process factors S

C e Finance
Operational factors ——i I

| T le—— Narkets

Human factors — Y

Figure 3. Major Factor Categories in Capacity Analysis
and the Major Outside Limits to Capacity
Change

Furthermore, the following definitions are helpful [1]:

Capacity-—The maximum output of acceptable goods
or services that a machine or process is capable
of producing without the influence of external
or internal factors.

Effective Capacity—--~The total goods and services
that can be produced at a given time period with
specific operating conditions, work intensity,
product mix, product specifications, plant, and
equipment. R

Efficiency—-~The relationship between the output
actually achieved and the effective capacity.
This relationship is usually expressed as a
percentage.
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The restraints of the factors of Figure 3 give a measure

of effective capacity. For the purpose at hand, capacity

as required by a probabilistic demand is sought. That
considerable effect 1s necessarily required tc make effective
capacity as near to capacity as possible is not at all te be
de-~emphasized. To the contrary, once an economic capacity
level as a function of expécﬁed demand has been determined,
it may well be that the best way to obtain that level is by
re-evaluation and adjustment of the factors affecting
capacity such that effective capacity can be increased 1o
the desired economic capacity level. Modern industrial
engineering techniques in the areas of plant design and
layout, materials handling, environmental facter analysis,
standardization and s}impli*fi@ation,7 quality design and
control, and effective incentives; all are the tools

available for attacking the factors affecting capacity.
Capacity and Demand

Typically, the relationship of profit (or loss) as a
result of a given demand can be shown by break-even charts.
FPigure 4 indicates three possible profitable events:

To A demand (1) occurs that is less than 100 percent
capacity. If the demand is above the break-even
peint a profit will result, otherwise a loss is
incurred. For the case depicted a profit of
(2b) results.

2o A demand (2) occurs equal to 100 percent capacity
(probabilistically rare). Unit costs are minimum,
and the processg is operating at its highest level.
A profit of (ed) results.
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I Variable Co
|
]

. Fixed Costs

lDemand 1 A

Demand 2

.Demand 3

Breakeven
CAPACITYl(%)

100%

Pigure 4. Breakeven Chart Relating Demand and

Capacity Levels

16
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3. A demand (3) occurs that is greater than
100 percent capacity. Supplementary means must
be used if demand is to be met.

The last situation is more generally the case and affords
production management the more complex decision environment.

Break-even analysis requires classifying costs, such
that total costs can be separated into those that are fixed
and those that are variable. For purpeseg of this study,
fixed expenses are a function of time and variable expenses
are a function of operational volume (all fixed expenses
become variable if time is increased sufficiently). The
planning horizons that are to be meaningful will be limited
in length by the ability of the forecasting methods to
project intc the future accurately, and will be considered
as "short term® relativé to the term of fixed expenses.
Thus, the emphasis of the producticn manager for a given
planning horizon is upon conircl of the variable cosis.

Variable costs in the short ferm are largely consti-
tuted of direct labor and direct material charges. Of
these, his control of direct material is largely the contrel
of scrap and rework, a guality controel function., Given that
demand will be met (or scme specified level of it), material
will be expensed in some proportion to that level and the
better the scrap and rework job, the smaller the proportion.
Direct labor is however a different matter, in breakmevgn
analysis the labor rate i1s assumed %o be a constant per
unit of demand. In actuality, all the labor going into any

given demand may not occur at the same rate per unit of time,



as when overtime hours are scheduled. Also, the fixed
expenses for any given planning horizon will be expensed,
whether recovered or not. Recognizing the random variation
of demand over time, the decision of a desired capacity
level can be represented by Figure 5.

Interpreting the figure, total expected costs (TEC)
are a function of the capacity level (¢) and demand for
some planning horizon of interest is probabilistic. Once
ac valuevhas been selected, it will be expensed at a rate
of L ($/unit), but demand greater than ¢ must be met by
utilizing some supplemental means with an associated rate
of P ($/unit). Then if c, is selected as the capacity
level and a demand equivalent fo ¢y OCCUTS, Cy units of the
total will be expensed at $L/unit, and (m4 - 01) will be
expensed at $P/unit, if total demand is met. At the other
extreme, if capacity is selected at cy and a demand
egquivalent to ¢, occurs, an expense of<$L@4 will be expensed
but only $ch would ha&e been required. Clearly the problem
of selecting the "best" c; depends upon the relative ratio
of I and P and the shape of the probabilistic demand.

Models to handle this problem are presgented in Chagpter IIIl.
Flexibility

Flexibility as used here implies the amcunt of Time
availabie to the production manager to plan his capacity
level such that all demand (or a managerially specified per—=

cent of it) oceurring within the planning horizon is met.
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7EC |
TEC cq

TEC Co

TEC

TEC

o
c4' DEMAND

f(demand)

| i
Cy Cru Cj3 Cy

Figure 5. Total Expected Costs as a Function of
' c, L and P; Given That Demand is
Probabilistic
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The degree of flexibility could be determined by the market
or by internal management policy or by some combination of
both, TFlexibility, as used in this context, is not to be
confused with any ability to shift work or capaecity levels.
Such decisions fall into the category of operational
decisions.

Three general degrees of flexibility are to be
considered. No flexibility means that a2 unit demand must be
‘met within the same time'period of the minimum demand
distribution. In this case, a unit of demand in any one day
must be completed on that same day where the basic.probaf
bility diétribution function is in units of demand per day.
The more general case is that of intermediate flexibility,
in Which case, a unit of demand in any one period must be
met within some finite multiple of that time period, for
example, any uvnit of demand on any given day must be met
within say, five days. In this context the total distri-
bution of demand within the flexibility pericd is assumed to
all be due, which requires that in any given periocd of time
of duration equal to the flexibility period, the work
deferred from previous periods into the current planning
horizon is not significantly different in magnitude from
that which will be deferred from this planning period into
the next.

The extreme and highly theoretical limit of flexibility
is that of infinite or full flexibility. Thisg implies that

a unit of demand is only required to be processed, but due
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at any future time period. This non practical case has

only academic usefulness.
Service Level

t may be a management decision in certain circum-
‘gtances that not all work demanded will be processed. It is
logical to turn away work which must be processed at the
most expensive productive rate. Recalling that associated
with a probability distribution function, f(x), is its
cumuiative distribution function, F(x), then if only oF(x)
is considered, where g can be thought of as a service level

factor, then this decision can easily be handled.
Conclusion

In closing this chapter, the need to approach the
capacity problem from a planning stage will be defended.
Three things can happen, either the economlic capacity will
be above, on, or below the effective capacity level
considered available at that point in time. If the model
considered attainable effective capacity.level27 either
additional capacity is called for or a re-evaluation and
adjustment of the factors causing effective éépacity to ke
below full potential can be initiated. This problem most
likely involves an economic evalﬁation cf alternatives
available and would be related %o thefinvesﬁment limitations

that are imposed upon the firm. For the economie level to
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fall exactly on the current considered attainable effective
capacity level would be rare, but at least would give
indication of the need for planning now for the next planning
horizon depending upon an expected increase or decrease in
demand. When the economic level is below the current attain-
able effective capacity level, this points %o need for
consideration of stimulation of demand or the creation of
new products in order that unit costs may be decreased.

The magnitude of the difference between the economic
-level and the current effective level of course could
determine what. courses of action are reasonable, But by
having measured this magnitude, allowing the probabilistic
nature of future demand %o interactg such that future
courses of action may be implemented at an early poeint in
time, may well be the best defense of the method. In other
words, plamning in the manner suggested by this research for
some fixed planning horizon may yield as much useful infore
mation for such areas as long range expansion plans and the
timing of improvement projects in the industrial engiheering
area asg 1t does for just the immediate planning horizon

under consideration.



CHAPTER III
MODEL DEVELOPMENT

The purpose of this chapter is to défine the logic of
the models, which will explicitly be utilized in Chapters IV
and V.

A model, in most cases a mathematical expression
relating various dependent and independent variables, is
nothing more than a logical expression. As stated in
Chapter I, the objective is to meet demand, but to do so in
such a way that costs are minimized. 'It is not surprising
then that the model concept shall be in terms of cost per
time period, since the input to the model is a demand which
implicitly carries with it a time domain, (i.e., units/day,
units/year, etc.) and the production process requires time
which is chargable as cost per unit time.

vThe measure of effectiveness is to be total expected
cost. The decision needs to be made, for planning purposés,
at what level should capacity be set, when the demand
against -that capacity itself is a random variable. An
understanding of expected values imply that future demand
may occur over a rather wide range of values and for any
given planning horizon the decisiqn may not have been the

best, after the fact. But the problem is one under risk,

23
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not certainty. Indeed in subsequent planning horizons, the
decision will need to be repeated, and if the capacity level
is selected such that total expected costs are minimized
within each planning horizon, then over the sequence of
decisicns, the total costs would be minimized across all
planning horizons.

Statement equations will attempt to emphasize the logic
involved, and these equations will be followed by symbolic

ones expressing the relationships among the parameters.

No Flexibility

Total Expected Cost of Work Performed Cost of Work

Cest = lon Regularly Available |+ |Performed on
i Capacity Premivm Capacity
(-]
TEC = Lc + P S (x=c) f{x)dx X ~ continuous
c
«©
TEC = Lc + P Z:(ch) f(x) X ~ discrete
c

As discussed in Chapter II, a fixed effective capacity
level can be considered as a fixed investment within the
production planning horizon. The cost represented by the
first term in the above expression will be incurred, whether
or not it is utilized. Since no flexibility exists, even if
the random variable of input (x) is less than ¢, Lc dollars

will be committed and charged against the production process.
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Modern production management systems yield several examples.
Work forces are not flexible with respect to variations in
work load over short periods, sometimes clearly specified in
union contracts and sometimes by design of the controlling
management philosophy to maintain a skilled work force.
Fully or highly automated processes, once set at some
capacity level, represent costs in many cases, that depreci-
ate more with respect to time and productive obsolescence
than with utilization.

The second term appearing in the TEC equation implies-
its dimensions as cost/time period, the time period
compatible with f(x).

As P-is a “"premium" cost per unit of work, the integral
should yield a gquantity in units. Note that the lower limit
of the integral is at c, the threshold for premium work as
all levels of x < ¢ can be handled by the available capacity.
The term (x - c¢) is the amount of demand by which x has
exceeded c and therefore is a random variable in itself
since x is a random variable. The behavior of x is
determined by f(x), its distribution function. Thus the
integral gives the expectation of the number of units

applicable to the P cost parameter.

Intermediate Flexibility

Total Expected Cost of Work Perfcormed Cost of Work
Cost ={on Regularly Available|+|Performed on
Capacity {Premium Capacity
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TEC = Lc + P S (X-c) £(X) ax X ~ continuous
¢
-3 ¢
TEC = Lc + Z (X-c) £(X) X ~ discrete
c+1

In the intermediate case, the demand over some multiple
of the time periods for which the basic probability
distribution(s) of demand is(are) valid, requires use of the
convolutions of demend as discussed in Chapter II. In the
first term, c is expressed as units of capacity over the
entire planning horizon and the second term follows the same
logic as above, except that the digtribution function of
demand is now the convoluted distribution funection.

Production to inventory within any one basic time period
gould be feasible, up to ¢/t units, but in effect the totel
demand is constituted as a rendom sample of size + from
either a parent population or from up to t different
populations, each with theif gpecific parameters. Thus ft(x)
is utilized $0 determine the.behavior of total demand, £(X),
for the entire planning horizon (t units of time in length).
As mentioned in Chapter II, some carry forward from the
previous planning horizon would be expeéted and the likeli-
hood of unused capacity (X < ¢) will depend upon the level
of capacity that is established. In any case, as the measure
of effectiveness is cost, the same arguments concerning Lc

as a fixed cost, regardless of X, still hold.
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Full Flexibility

This highly impractical level of flexibility illustrates
the 1limiting case. In Chapter II full flexibility was
defined to imply an infinite amount of time at the discretion
of the production menager as to when all work must he
finished. If an attempt is made %o convolute the basic
distribution functions an infinite number of times, the
result is a rather flat normal curve, one with an infinite
mean and variance. So the approcach must be aliered.
Consider the effect of full flexibility upon the production
manager within any basic time period. He kmnows fthat he
would like to keep his capacity at full utilization, but .
any demand above that level wéuld be deferred until some
subsequent period in which he had "slack time" due to a
demand less than his capacity level; Intuitively, he may
suspect that if his capaoify level is at the mean of the
total demand, then in any given time period, he could
balance work carried forward with other periecds in which
demand levelé are less than the mean, and in. the long run
never be required to process work on a premium time basis.

To ”prove”‘this intuitive thought, consider the Law of
Large Numbers [3, 10]. In words, the law states that as 1t
gets large (approaches infinity), the probability that the
average of 1t independent experimental values of the random
variable (demand) differs from the expected value of demand

by more than any nonzerco ¢ goes 10 zerc. Symboliesllys
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Let
%
= 1
Xz':E Z X5
=1
then
E(X) = u

and from the Law of Large Numbers
lim Prob [ |X = pu]|> €]l =0
pramy

or alternatively,

lim Prob [ |X - u]| < el = 1.0 .

—— gy

Thus for the full flexibility case, ¢ would be set at
the mean of the convoluted distribution function. This
fact is used only in the limit to converge the optimal

capacity level as a function of an increaging t.
.. Service Level

If the decision is made te only process up tc some
percentage of the total demand, say a, then the upper limit
of the integral (summation) sign need only be changed to «
from the theoretical «=. In this manner, all work turned
down (1 = o) would be that applicable to the more expensive
processing rate. This modification is independent of the

flexibility rule imposed.



CHAPTER IV
CONTINUCOUS CASE

The random variable of demand is considered to be
represented by continuous probability distributions which
result from, or are forecasts of, demand over the planning
horizon. The approach will be to minimize the total
expected costs per planning horizon under the three general

cases of flexibility, in order.
No Flexibility

In this limited case, the forecast must be made to
project the demand over a minimum period of time. All work
received is due out within the same time period for which it
was forecasted, and no work may be carried forward into the.

next period. The model from Chapter III for this case iss

&

TEC = Le + P g (x=c) £(x) dx 0 (4.1)
Y.

To minimize TEC, with respect to the mathematical variable

¢, the first derivative is set to zero:s

(-]

_ 4(TEC) _ 3l (x-c) £(x)]
0=222) = 4+ P g = ax

c

+ [(w=-c) f(X)] “ig’%z‘ = [(CSC> f(X)] -d;?g.%l‘]
-

29
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o0

O=1L+ P S (=1) f(x) dx
(¢

since e "

FAC):S £(x) ax , and Sf@)de‘hOQQAM
¢

d "~

then
O0=1L+7P [Flc) =~ 1]
or
L .
1 -5 ="Flc) o (4.2)

Thus the decision criteria for minimizing expected costs as
a function of ¢ is given by equation (4.2) and is seen to be

a function of L, P and the cumulative of total demand.
Discussion

Before developing the models for the other flexibility
cases, a more detailed explanation than given in Chapter III

of the second term of equation (4.1) is in order.

P S (x=c) f(x) dx ;
c

Repeating briefly the discussion of Chapter III, P is the
applicable cost coefficient to the quantity of work expected
to exceed the capacity level ¢. Dimensionally the expression

yieldss

$ expected # of units
unit planning horizon

(=3

Thus the integpal should give a measure in quantity. A

small example should a2id in understanding.
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Let x be distributed uniformly on the interval [4,10].
Arbitrarily set ¢ = 6 (this could be cptimal for some value
of L and P but interest here is directed towards the expected

guantity (x~c)). Define a new random variable y by the

transformation:
y=20 for X <6
y=x=-06 for Xx>6 .

Thus y becomes the number of units within the planning

horizcen that must be "carried over® above the set capacity

‘of six and processed at the P rate/unit, as any level of

demand < 6 could be processed within ¢ at the lower rate L.
It will be shown that: |

=]

. P S (x=c) f(x) dx = S y £(y) dy .
c —w
The right hand term clearly sppears as the expected value
of y, B(Y), and P E(Y) represents the expected cost
applicable to that portion of work processed on "premium®
time. |

For the example:

f(x) £(y)

1/6 — 1/6 I




32

Notice that f(y) appears both discrete and continuous.
Recognizing the essence of the transformation, this is
understandable. For all values of x < ¢,y is defined to be
zero. For the set value of ¢ = 6, F (6) = 1/3, or in words
one=third of the time, there would be no work done on "P
time," if x is uniform on [4, 10] and ¢ = 6. Or stated

differently, 4 < x < 6 maps into y = 0. Note also that

o
S £(y) dy
o+
is not unity inasmuch as the event (y > 0) is not certain
(one=third of the time y is zero). But expressing y as the
sum of an impulse function1 (for the discrete portion) and
as a regular integral (for the continuous portion) the sum

over the y-domain is unity; i.e.,

o ® O+¢ 4
S,-f(y) dy = (0 S £(y) 6 (y-0) @y + { £(y) &y
== 00 O===e O-;e
O+¢ 4
= £(0), Q 5(y=0) dy + i\) (1/6) dy
€-=0 O-¢ O+¢
4

i

1/3 (1] + § (1/6) ay

4
=3 ']/3::4/6:3 "300 o

I

1/3 -&-% ’
\ 0

1See Appendix B for a brief discussion of the impulse
function,



Thus y as described 1s a distribution function, as it is
everywhere positive on its demain and sums to unity over
its ddmain°

Now to shows

[~} =]

P o) £(x) ax =2 ( vy £(y) ay o
c

-0

First the left hand term is evaluated;

w 10
S (x-c) £(x) ax = S (x=6)(1/6) dx = 1 1/3 .
C o 6

Now for the right hand side; let

y £(y) = &(y)
then

. S y £(y) dy = S g(y) dy

O+ ¢

=0y B3 8(y=0) ay +
O—¢ 0

g(y) ay -
€

+ 8

O+¢ 4
"

gly) Eﬁwog 6(y-0) ay + B y(1/6) dy
O-¢ O+ g

i

4
vy £(y) 1.0 + 1/6 edeS v dy
Ote

i

H

(0)(1/3) + 8/6 = 1 1/3

33
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Thus, the expected quantity is given by the second fterm of
expression (4.1). Since the event y = O has nonzero
probability, this probability has a weighting effect in
the E(Y), as expected.

Intermediate Flexibility

In the intermediate case, the ccenvolution of the basic
demand forecasts within the planning horizon must be dealt
with. The model from Chapter III is:

o
TEC = Lc + P S (X~c) £(X) dX . (4.3)
c
In {(4.3), f(X) is the resultant or convoluted distribution
function of total demand within the planning horizon, which

implies

Letting * represent the mathematical cperation of convo-
lutiong |

f(X) = f(xﬁ) * f(xg) o o o ¥ f(xt)
where xj represents the distribution functicn of demand for
the ith basic period and t represents the number of such

basic periods allowed by the flexibility level. In the

special case where

f(x"i) = fgx2> = o o o f(Xt)

then
£(X) = £9x;) =1, 2, eoo ot o (4.4)
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Otherwise, the model is the same as in the no flexi~
bility case, and the remarks concerning the expected gquantity
carried over into the higher processing rate, P, still apply.

Proceeding as before, the model is minimized with

respect to the mathematical variable c:

0 = d{gEC) =T 4+ P S of (X=c) £(X)] 4%
c ‘ : [-1¢;
c

+ [(emc) £(0)] L2 (c-c) £(x) L)

@

L+ P { (-1) £(x) ax
2

o
1l

0=1=P[1~Fy(c)]
orxr

1 - % = FX(c) (4.5)

which is general in nature and for the special case given

by equation (4.4) becomes
1 - % = Ft (C) l = 1_, 29 a 2 a 'tc (406)

Again, the decision criteria for minimizing expected
costs as a function of cbis given by either equation (4.5)
or (4.6) and is seen to be a function of L, P and the

cumulative of total demand.
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Full Flexibility
As shown in Chapter III, the Law of Large Numbers
implies that the economic capacity level ¢ would be set at

the mean of the convoluted distribution function. Thus,

for t time periods

i

TEC (t) L My o

i

and for one time period

TEC (1)

H

'LE“X"

Obviously, if full flexibility were allowed, no work
would be processed at the more expenseive rate P, it would
only be deferred into the future. Thus as t is allowed to
increase, the ¢ value, in the limit, becomes the mean of
the total distribution function, regardless of L and P.
The convergence of ¢ will be more evident in the examples

of Chapter VI.



CHAPTER V
DISCRETE CASE

In this chapter, the random variable of demand is
assumed to only take on discrete values. The basic approach

is the same as in Chapter IV except for this difference.
No Flexibility

Under the no flexibility assumption, all work forecasted
for some basic planning horizon is due within that same
period. The model from Chapter III is repeated for this
cases v -

TEC = Lo + P ) (x-c) £(x) . (5.1)
e+1
The mathematical variable ¢ must take on the possible
velues of x, and one or at most two, of these possible
values will be optiﬁal in the sense that it will yield a
lower TEC value than all others. (When two optimal.values
of ¢ occur, they have equal TEC values and are equally

optimala) Identifying the optimal value of c as ¢, i.e.:

Optimal {&Eé} = TECCo = LOO + P 2: (x=co) f(x) (5.2a)
co+1
and

TEC, w1 > TEC, (5.2b)

0 (@)

37



38

TEC, .4 > TEC, (5.2¢)

by definition of optimal.

terms of TECC o

since

The approach will be to find TEC,,

TEC

c +1

0]

it

1]

L(cy+1) + P

Ic

Lc

Le

Lc

in

.1 and TEC, _,

O o

[x = (c+1)] £(x)
x=(co+1)+1

+L+P ) [x - (cp+1)] £(x)

+ L+ P E: [x = (co+1)] f(x)
x=co+1

!

Pl(cg+1) = (e+1)] £(c+1)

L+ P 2: [x=c ] f(x) - P E: f(x)

Xaco+1 xmud+1

-+

+ P 51 (x=c ) £(x) + L = P[1=-F(c,)]
X;bo+1

[-<]

z £{x) = 1 - Fle,)

X=co+1

TEC, 1= TECc + L -P+ P F(co) o (5.3)

G (¢



Proce

since
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eding similarly for TEC, -1
0
-}
TBC, g = Lleg=1) +® ) [x~(cy=1)] £(x)
x=(co=1)+1
=Le, -~ L+ P 2: [x - (co=1)] £(x)
x:co
®
=Ley, - L+ P [x - (co=1)] f(x)
x=C +1
+ Pleg - (com1)] f(co)
- <} (-]
=Ley=L+P ) (xc) £(x) +P ) £(x)
X=C,+1 X=Cy+1
+ P f(c,)
&
= I8C, - L+ ? ) £(x) = Pfle,) + PE(c,)
X:CO
TECcou1 = TECCO =L+ P[1~-Flc,~1)] (5.4)

2: £(x) = 1 = Fle,~1)

X=Co

From the relationships (5.2) it follows.

TEC, A TECc > 0

o] 0

TEC = TEC > 0
cow1 c,
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substituting (5.3) and (5.4), this becomes

L-P+7P F(co) >0
~L + P =P F(coa1) > 0
which can be combined into:

F(e,~1) < 1 -=%- <Fle,) - (5.5)

In application, it may turn out that the term <j - %
is equal to either F(co=1) or F(co)» but obviously not both.

If o is such that

L
F(Co”'l) = 1 = F < F(Co)

then both c, and c -1 are equally optimal, and if c, is
such that

L
F(cy-1) < 1 - & = Plcy)

then o and co+1 are equally optimal.
The important observation is that the cumulative
distribution of the random demand through equation (5.5)

allows for the determination of Cgye
Intermediate Flexibility

Intermediate flexibility allows for either the same
basic distribution of demand to follow in subsequent
periods or a series of different distributions to occur
within the time domain encompassing the planning horizon.

From Chapter III, the model for this case is
@®

TEC = Lc + P z; (x=c) ft(x) o (5.6)
c+ 1
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The only difference in this case than in the previous
section is that the convoluted distribution of demand will
appear in the decision criteria. Eitﬁer the total possible
demand that is expected to occur overvthe time domain of
the planning horizon is the tth convolution of the basic
demand distribution or a derived convolution of total demand
due to different (up to t) basic demand distributions
existing within the planning horizon.

The development follows the same logic of the previous
section with respect to some value of demand being optimal,

and leads to the decision criterias

F'eg=1) <1 =% <F'(cy) . (5.7)

The same possibilities exist for itwe optimal values of
¢ to cccur in specific cases when the ineguality is not met
but occurs as an equality. In any case, given intermediate
flexibility, the convoluted cumulative distribution function,
through (5.7), allows for the determination of Cqye

Attention should be directed to the fact that as
certain discrete distributions are increasingly convoluted,
the resultant takes on a normal form, although the function
naturally remains discrete. In these cases, computational
ease may be gained by using the normal distribution to
approximate the resultant, the error being a functioh of
the original discrete distributions and the number of time

periods encompassing the planning horizon,



Full Flexibility

The same argument made in Chapter IV relative to the
behavior of a convoluted continucus distribution function
as the number of convolutions increase.indefinitely holds
in the discrete case. Only the method of performing the
convolutiong differ. Thus it can be stated that, in the
limit, as t increases indefinitely, the economic capacity
level c_. would be set.at the mean of the convoluted

o
distribution function.

42



CHAPTER VI
APPLICATIONS

In this chapter, the decision criteria éf Chapters IV
and V will be used with hypothetical examples;glln this way,
the interactions of basic demand distributions with each
other in determining the total demand over the planning
horizon and the effect of increased flexibility should be
clarified., Although the examples deal with rather common
distribution functions, the approach would be ﬁo different

for more complex cases.
Example 1. Normally Distributed Demand

Considers: X ~ N (100, 10)/wk ~ .
It is desired to find the optimal capacity level, ¢,
for various sets of I and P values, for various levels of
ellowed flexibility. Whatever the values of L and P, P
will be measured proportional to L, for ¢omputational easea
Table 1 gives the values for which calculaﬁions are presented°
Consider first, t = 1, or the no flexibility case. The
decision criteria for the continuocus case from Chapter IV
iss

1~ =F(c) . (4.2)

43
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TABLE I
L, P VALUES AND DEGREE OF FLEXIBILITY FOR EXAMPLE 1

Curve L P L/P Flexibility (in weeks)
1.0 1.5 2/3 1, 3, 6, 20, 30, 40
2 1.0 2.0 1/2 1, 3, 6, 20, 30, 40
3 1.0 3.0 1/3 1, 3, 6, 20, 30, 40

As Fx(c) represents the cumulative distribution of x,

the transformation to the standard unit normal will be used:

Zy = 2—%-5 (¢ is some value of x)

and in general

(2)(0) + w = c (6.1)
for the first case, t = 1 (L = 1.0 and P = 1.5);

c

Fple) = 1-2/3=1/3=0.333 = { £(x) ax

-0

which implies a Zy of -0.43. Thus

(=0.43)( JT0) + 100 = ¢ = 98,64 .
Increasing the flexibility, and holding L and P fixed,
causes no difficulty, if equation (6.1) is modified to be
compatible with the increased flexibility and the decision
eriteria is changed to the intermediate eaSé, as followss
gince |

f(x1) = f(xz) = o o o f(xt) ’ (4.4)



45

applies
£(X) = £7(x;) i

—

9 25 o o o T (4.4)

fi

which implies

£%(x;) ~ N(% 100, % 10)

and the decision criteria is equation (4.6):

L % . .
1 bt ‘?‘ = in(C) 1l = 3,7 23 Q o o t (406)

but so long as L and P remain fixed, (4.6) yields

for all cases of flexibility, and in general, équation (6.1)

can be expressed:

¢ = (ZN)(gt wks) T By owks

or 5

(%ﬂ %T£;f+t(Wm>

c/wk = T o (6.2)

Using equation (6.2), as many points on the 1t axis
(fleiibility) as desired may be computed, since ZN remains
constant for fixed L and P. The optimal ¢ is then measured
as a percentage of the weekly mean (the basic demand mean).

The results for L = 1.0 and P = 1.5 can be summarized
as in Table II.

Now consider the second curve, L = 1.0, P = 2.0,
BEquation (4.6) yieldss

| 1-%=7" (¢) = 0,50

which implies a Zy of zero, and equation (£.2) becomess
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This interesting result shows the optimal capacity level to
be invariant for this particular set of I and P values,
regardless of the flexibility. This is intuitively
appealing; as long as it costs twice as much to process
work that is carried over above an established capacity
level, why not set the capacity 1evel at such a point that
the probability of work bheing carried over into the higher

rate P, is one-half.

TABLE IT

OPTIMAL c/wk FOR FIXED L = 1.0 AND P = 1.5 (Curve # 1)

Comparing this result with thet obtained for the first
curve (L = 1.0, P = 1.5), the pattern of behavior for ¢ is
starting to appear. The lower the P value, the larger the

portion of work that will be carried forward into it, and
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as P increases, the smaller this portion, as will be seen
by analyzing curve three.

For the third curve, L = 1.0, P = 3.0, equation (4.6)
yields:

o) = % = 0.666

which implies a Zy of +0.43, and equation (6.2) becomes:

2
o/ = (+0.43) [t opy  + tlug)
4 4 = .t

and as before, as many poinits as desired on the t axis can
be generated, those calculated are given in Table III.
The three curves considered so far are depicted

graphically in Figure 6.

TABLE III
OPTIMAL c¢/wk FOR L = 1.0 AND P = 3.0 (Curve # 3)
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Example 2. Normally Distributed Demand

With A Service Level Imposed

The effect of impcsing a service level will be developed

in this example. The model from Chapter III is repeated:

®
TEC = Lc + P g (x—c) £(x) dx .
e
The service level implies that only a porticn of the
expected demand is desired to be processed, and thus_the
upper limit of the integral becomes:
a
TEC = Lc + P g (x-c) £(x) dx

C

proceeding as befores

o8
0 = Q(TEC) _ o o S (£{x) ax

de
e
"since o
S f(x) dx = F (o) = Fx(©>
¢

0=1L="P([F/(a) - F(c)]
or

Fola) ~ 3= Pyle) o (6.3)

Thus, Fx(a) replaces the constant 1.0 in the decision
criteria expression.

For convoluted cases, the decision criteria would bes

Pola) - § = Fole) o (6.4)



Thus equations (6.3) or (6.4) provide the determination of

the optimal c.

Applying this result to curve one of the previous
example, with o set at 0.90, the following results are
obtained:

F_(0.90) - % F (c) = 0,90 = 0,67 = O. 23

which implies a Zy of -0.74. Eguation (602) givess

,Z.;
G/wk _ (0074) \/t O\%ik: + b (HWK>

and‘the generated poinis are given in Table IV.
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TABLE IV
CPTIMAL c/wk FORL = 1.0, P = 1.5 AND a = 0.90
(Curve # 4)
L = 1.0 P 1o 5 o = 0,90
t N ) c/wk "
97.66
3 98.65
6 99.04
20 99.48
30 99.57
40 99,64

Comparison of Tables II and IV indicate the effect of
o as lowering the optimal ¢ value, which is logical, since

the percent of demand turned away, (1 = o), would be that
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applicable to the higher processing rate.
Example 3¢ Uniformly Distributed Demand

Consider Example 1 of Appendix A in which the uniform
distribution on [0,1] was convoluted three times (resulis
are graphically reproduced in Figure 7). As the resulting
curve is quickly approaching a nermal shape, if this
distribution were to be studied as a functiocn of increasing
flexibility, clearly the normal could be used to approximate
the actual distribution. Calculations for various degrees
of flexibility will be presented, using both the actual
distribution and the normzl as an approximation for the
cost values of L = 1.0 and P = 1.5 (Curve 1) and L = 1.0
and P = 3.0 (Curve 2). The inputs for the example are
summarized in Pigure 7. The aciual method would yield the
optimal value by integrating the cumulative function up to
¢ such that the probability of a demand be < (1 = L/P).
Using the approximate methed, the fixed ZN value (for any
set of I and P values) would imply the optimal value by use

of equation (6.2):
Yy 4t 2 + b )
N wk * Mgk
) T e

c/wk =

The results obtained by both methods are summarized in

Table Vo



t =1 (No Flexibility)

As
()
By = 1/2
012 = 1/12
-y
B. 5 t =2 (Flexibility of Two Basic Periods)
) .
Hz = 1
022 = 1/6
; .
-0 1 2 ¥y
C. 3 t =3 (Flexibility of Three Basic Periods)
&f (y)
U.3 = 1-5
03" = 1/4
0 1.0 1.5 2.0 3.0
D. Standard Unit Normal Actual Decision Criteria:
N(O,‘l) ‘ t L
406 F (6] = 1 - =
) ey | E @ 5
N o
Approximate Decision
Criteria:
2
(Z)Vto +t(p,)
N 1 1 c

Figure 7. Inputs for Actual Versus Normal Approximation

to Optimal Capacity Determination



TABLE V

ACTUAL VERSUS APPROXIMATE COMPARISONS FOR
INCREASING FLEXIBILITY

>3

Flexibility Actual Method Approximate Per Cent
Method Error

Curve # 1 gzlzg

1 0,333 0.376 12.90

2 0,408 0.412 0.98

3 0.427 0.428 Nil
Curve # 2 %:%:8

1 0. 667 0.624 £.45

2 0.592 0,588 0.68

3 0.573 0.572 Nil

Example 4. Uniform Discrete Demandg-—-

Fixed Flexibility

Suppose that a planning horizon is to encompass one

year and that three four-month forecasts are available,

each different and considered independent. The particular

demand interest is measured in discrete units. The

distrivbutions are as follows:

Forecast period 13 f(x1> = 11/3 ., = 10, 11,

U

§

12

0 el sewnere ]
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)
Forecast period 23 f(xp) = j1/4 Xo = 12, 13, 14, 15

h 0 elsewhere
Forecast period 3 f(x3) == H/6 Xy = 8999?091191291P
i@ elsewhere }o
1

Let u = Xy + Xoo The z transform of u is given ass

£(2) = £ (2) £ (2)

. 1 2
since
fX](Z) = 1/3 Z1OF+ 1/3 211 4 1/3 212
and
fXZ(Z) = 1/4 21?4 1/4 213 4 1/4 PRI 1/4 217
then

fu(z)z []/3 210 + 1/3 211 o ‘ﬂ/3 ZlT{?']

[1/4 272 & 1/4 23 & 1/a 2" 4 172 2777
£,(2) = 1/12[222 v 2220 4 3224 + 327 + 2277 ¢+ =z

which implies thats

1/12 wo=m 22, 27
| 2/12 u = 23, 26
flu) = S S
3/12 u o= 24, 25
0 elsewhere o

Now define
W o= W o4 XB

then
fw(z) = £ (z) £ (z)

|

u

ﬁ\ v °
'For cenvenience, Appendix B ceontaing z general
discugsion of Transform Theory.



since

8 + 1/6 22 + 1/6 z1o + ’E/ES-z‘H

fX (Z) = 1//6 2
3
+ 1/6 212 4 1/6 213

and fu(z) has been obtained above, then:

f,(z) = [1/12(222 + 22°3 4 3224 v 3277 4 2226 227)]
_,,;[,“%/6(z8 s 294 210, 1, 212, 513y
f,(z) = 1/72[230 + 3z31 + 6232 4 9233 « 1123% 4 12239
+ 11236 + 9Z“3’"7 + 6Z38 + 3239 + Z4O]

which is represented by Figure 8.
The decision criteria of Chapter V iss
t
(

L

Fie, = 1) <1 =3 <F'(c,) (5.7)

 and the cumulative of W can be used to specify the solution
of ¢, as is shown in Table V1. The behavior of ¢, to

various I and P values is shown in Figure 9.
Discussion

Certain characteristics of the economic capacity
determination problem are becoming clearer after the
results of the examples are considered. Table VII briefly

summarizes some of these c¢haracteristics.



12. f
‘ (W) W= X, + X5 + X
_ 1 2 7 73

LD

o)

Probability of (w) x 1/72
v

30 31 32 33 34 35 36 37 38 39 40

£(x.) £(x.) o f(x4)
ll 1 ) 2 A 3
3 1
| l l
10 11 121' 12 13 14 15 10 11 12 13

Figure 8. Probability Distribution of w, Where w is the
Sum of Three Uniform Discrete Random
Variables



by/p
2/3 L.
1/2 ‘r
1/3 -
/4 L
I} | ) ] P
33 34 35 36
Figure 9. Relationship of Cq for Pixed Flexibility
to Various L and P Values
TABLE VI
OPTIMAL co/yr FOR VARIOUS L AND P VALUES
- T
v fw) Fw) e, L P 1-3
30 1/72 1/72
31 3/72 4/72
32 6/72 10/72
33 9/72 19/72 33 1.0 105 0.33
34 11/72 30/72 34 1.0 2.0 0,50
35 12/72 42/72 35 1,0 3.0 0,66
36 11/72 53/72 36 1.0 4,0 0.75
37 9/72 62/72
38 6/72 68/72
39 3/72 T1/72
40 1/72 72/72
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TABLE VII
OBSERVATIONS ON EXAMPLES

Example Conditions | _ Main Observations

1 X ~ Normal 1) effect of I and P with
respect to level setting

2) rapid gpproach of optimal
towards u as flexibility

increased
2 Same as 1 except 1) effect of level on ,
service level below the unimposed
imposed case
3 X ~ Uniform 1) rapid convergence of
convoluted demand towards
normality

2) magnitude of error of
gpproximate method is small
as flexibility increases

4 X ~ Uniformly 1) rapid approach towards
' Discrete normal shape, even within
Fixed Flexibility short flexibility

2) usefulness of transform
theory in obteining total
demand within planning
horizon




CHAPTER VII
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

The capacity determination dgoision has been discussed
~within the context of production management, and described
as a planning decision, made prior to'operating decisions.
The input for such a decision is the forécast of demand on
the capacity system, projected from the futureo Recognizing
the variability involved, it was proposed that such fore-
casts be described probabilistically. It was further
proposed that the cost of processing demand be considered in
two general classes, regular and premium.

Given the probabilistic nature of future demand and
the applicable costs associated with processing ail or a
portioh of that demand, a deecision criteria of minimizing
expected costs was presented. In general, the decisiocn
criteria was seen to be a functionbof the relative costs
and the flexibility allowed in processing work with respect
to timea. Examples were presented, under various conditi0n59
Awhich exemplified application of *the models. |

Using the decision criteria, it was demonstrated thétg

IR The optimal capacity level, for given inputs, can

e obtained.

20 The optimal level rapidly approcaches the mean of

59
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total demand within the planning horizon as
flexibility is allowed to increaseo

3. The relafive location of the optimal level to the
mean of total demand within the planning horizon
is a function of the L and P cost ratio. When P
is low relative to L, the optimal capacity level
falls below the mean level and when P is high
relative to L, it falls above the mean level.

These basic observations from the application of the

models are intuitively logical, but go further than to just
reinforce intuition. The models could be used to generate
complete families of curves for various cost ratios and for
various degrees of flexibility,. and thus, numerically yield
the range of optimality for parameter changes. Such a
sensitivity analysis could also be made relative to forecast
errors on future demands. |

In addition to the obvious extensicn of the analysis

to test the optimality range via sensitivity, certain other
recommendations become apparent:

1o Relaxation of the reguirement that future fore-
casts conform to probability distributions and
the apﬁlication_of either non-parametric
enalysis or quantitative distribution free
ana;ysis based upon only parfial information.

2 Relate the model results to the appropriate
timing of major additions to capacity (merging

the model with engineering economic analysis in
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such a way that major outlays for expansion are
economically timed). Such an analysis could
impose both budget restrictions and upper limits
on allowable premium time available within any
planning horizon.

Relaxation of only %twoc classes of costs relative
to processing to include mixes of premium types.
Extension of the results of the hodels as inputs
to the operational decision area, where the
scheduling of total demand within the planning

horizon is accomplished.
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APPENDIX A
CONVOLUTION [3, 5, 10]
General Case

Givens X and Y are random variables
f(x,y) is the joint pdf of X and Y.
The pdf of W is desired where W= X + Yo The event

gpace 1iss

the event W < w

W= w= X+ Y

W=X

Pr(W < w) = F(w) = S - S f(xgy) dx 4y

Kz~ Ym=o

-] W=X
f(w) = g%évﬂ = S dxH%vf S £(x,y) dy
) Km0 N

performing the derivative

(-]
f(w) = Q f(x, w-x) dx o

Keze=o0

63
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In general, the integral can be analyzed no further without
specific knowledge of f(x,y), the joint distribution
function.

Cases X and Y Independents

Independence = f(x,y) = f(x) £(y)

(-

o o f(w) = S f(x) £f{w=-x) dx
This integral is known as the convolution of f(x) and f(y).
Integrating over x first rather than y, results in the

equivalent expression:

@

tw = { £ 2w-y) @y
y==—

The above integrals may alsc be obtained by the following

approachs

f(x,y) = £(x) £(y) -
Let

Z =X+ ¥ W o= X
then

y=2=X X=Ww o

The Jacobian is

X [=2.4
3z = 0 1
== = =
&y & 1 -~ 1
dZ oW
£(z,w) = £(w) o £(z=w) o |J| = £(w) £(z=-w) &



65

To obtain the density of 2z, integrate out ws

o

f(z) = S f(w) f(z-w) dw
— .
which, except for the symbols is the same integral.

To illustréte some of these concepts and to draw
attention fo the approximation of convolution to the result.
obtained via the Central Limit Theorem, the remainder of

this appendix will deal with examples.

Example 1. Convolution of Uniform

Distribution Function

Let
x; ~ Uniform on [041]
{1 0<% 51
f(xi) =
Ep elsewhere 0
Defines |

UmXAﬂ‘E"Xzo
The convolution integral yields the pdf of Us

(-]
f(u) = { flu-x) £x) ax; .
bl
In evaluéting the convolution integral, care must be taken
to consider the domain for whieh the density functions are
nON—=%Zero.

The range space of U, R, is [0,2].



+ U=2

u==0

. .With the aid of the sketch, the limits of integration

with respect to x, can be obtained.

Note also:
u = x1'+.x2
u-x, = X
1 0 <x, <1
f(u - x1) = f(xz) =
0 elsewhere
0 sx, g1  O0O=xu- x4 51

and

f(u)

H]
-
Hh
Ly
vl
)
o}
-y
N
Hy
P
o
m—t
N
o
"
f—"

becomes

f(u)

H
+h
o
3
_&N
-
Py
e
£
b

66



Consider the range space of u in two intervals:

1o

O <ucx<

1 <u<2 o

-

For 0 <u < 13

=Y

Then for 0 <u <

The lower limit (u-1) is bound -1 < u - 1 < O,
but f(x,) = O for all values of x, < O; this
implies that u - 1 = 0 is the only valid lower
limit for f(x,) to remain non-vanishing.

The upper limit (u) is bound O <u < 1, and
f(x1) is non-vanishing over this entire domain;

this implies the upper limit of u is valid.

»
L

oL —

f(u) = f(u - x1) f(x1) dx,
u u
£(w) = { (D) axy = x| =
0 o
or
f(u) =u O<uc<t .
For 1 <u < 23
u
f(u) = S f{u - x1) f§x1) dxy
u=1

o

b.

The lower limit (u-1) is bound 0 <u -~ 1 < 1,
and f(x1) is honavanishing for this domain.

The upper limit (u) is bound 1 < u < 2, but
f(x1) = 0 for all x > 1; this implies that only

u = 1 need be considered.

67
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Then for 1 < u < 2¢
1
f(u) = S f(u - x1)‘f(x1) dx,
Ve
1 1
fw) = { (D) ax; = x, =1-(u-1) =2 - u
u=-1 u=1
or
f(u) = 2=1u for 1 <u<?2 .

The result is

f(u)

A

Notice, beginning with f(xi) uniform on [0,9] the sum of

two x; yields a triangular density function.

Assume it is

desired to convolute the result above u, with yet & third

observation of X4 o

That is, define Y = U + X3 = (X, + X,) + X

3n ’ The pdf

of Y is desired, recognizing the range space of Y, Ry==[05,3]°

By the convelution integral:

[~

£(y) = S f(y - w) £(u) au

0



then
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f(XB) = f(y"’ u) =
0 elsewhere

O<sy~-usgt » y-1sg5sugy

Y
£(y) = g f(y - u) £(u) du .

y=1

Again consider the range space in intervalss

20

3o

1o

1

o

A
e
IA

ot

A
e
In

\

The lower limit (y-1) is bound -1 <y - 1 < 0,
f(u) is non-vanishing only for O in this domain;
thig implies the only wvalid lower limit is O,
The upper limit (y) is bound 0 <y < 1, and f(u)
is non-vanishing over this domain; this implies

y is a valid upper limit.

For 1 <y < 23

8o

bo

The lower limit (y-1) is bound 0 <y - 1 < 1,
f(u) is non-vanishing over this domain; this
implies y=1 is a valid lower limit.

The upper limit (y) is bound 1 < ¥ < 2, f(u) is
non-vanishing over this domain; this implies y is

a valid upper limit.

For 2 <y < 35

o

The lower limit (y~1) is bound 1 <y - 1 < 2,



Thus

Then
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f(u) is non-vanishing over this domain; this
implies that y=1 is a valid lower limit.

be  The uppér limit (y) is bound 2 <y < 3, f(u) is
non=vaﬁishing only for y = 2 of this domain; this

implies that y = 2 is the only valid upper limit.

-]

f(y) = S‘ f(y - u) £(u) du
y
= S f(y - u) £(u) du , for 0 <y <1,
o
y
(y) = S f(y = u) £f(u) du , for 1 <y < 2,
y=1 '
2
| f(y) = S f(y - u) £(u) du , for 2 <y < 3.
y=1

Previously, the folloWing have already been found:

f{u) = u O

<u < 1
f(u) = 2 = u 1 <u < 2.
y y 5
{1) S (1) £(u) du = S u du = %? 0 <y < 1
0 o
y 1 y
(2) S (1) f(u) du = S u du + & (2~u) du 1 <y < 2
y=1 y=1 1

= ~y° 43y -4 =5 (-2 +6u-3) .
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2 2
(3) S(1)f(u)du=g (2 = u) du 2 <y <3
y=1 - y=1
2
2
= -5 (y-3)° .
y=1

The result isg

£
1 2
¥ =35 (=2y°+6y-3)
2
y=% y=3 (y-3)°
y
0 i 5 3

Note the'similarity of ¥y = Xq + Xo + X3 to a nbrmal
curve when in fact x; are wniform [0,1]. This "evidence" of

the applicability of the Central Limit Theorem is rewarding.

Example 2. Convolution of a Normal

Distribution Function.

2
Lets X ~N (0,1) fx) = = & * /2
J2n
Y ~ N (0,1) f(ﬂ*@e”y/z,
% '
Defines

Z=X+Y .

The convoluticn integral yields the pdf of Z.



f(z) f(x) £f(z - x) dx

fl

Complete the square in the exponent to obtain

- 5 )
x° - 7% = P -
= 2 T

then ©
2 2, < 2 :
f(z) =‘é% e 2 /2 e? /4 S e“l/ztjé (x=-2/2)] dx .
Letting
\fé— (X - 2/2) = T
dx = du
y2
£(2) = =l 7374 L { ™ /2 4y
fon |2 2n 2,
now

2
1 S e 4 /2 du = 1.0 o

12
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Thus

£(2) = el o=1/2(2/42)°
[ov 12
but this is the pdf of a random variable with distribution
N(0,2). |
Thus, via convolution we obtain a result normally

obtained by the moment generating function techniques



APPENDIX B

TRANSFORM THEORY AND THE UNIT IMPULSE
FUNCTION [2, 3]

Laplace Transform

The Laplace transform (sometimes referred to as the s
transform or the exponential transform) is defined as:

«©

LT = £,00) = 5™ = [ ™ £0x) ax .

-0

Its usefulness in probability ‘theory will be illustrated by
example 1, but basically is an alternative Way'to determine

the distribution function of a sum of random variables.
The Impulse Function and Z Transforms

The impulse function 8(x) is defined by the relationss

(1) s(x=-12a) =0 x £ a

. are

(2) S 5(x = a) dx = 1.0 e >0 .
a-¢

It is generated by starting with a rectangular pulse of
unit area and considering the limit as the width of the

pulse goes 1O zero.

T4
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} P(x-a) A} 5(x~2a)
t i Lim 1.0
b ) —] b—bo
1/o
! , |
- X : o
2 a an+§ a *

The usefulness of the impulse function in probablllty

lies in the fact that a discrete distribution can be

expressed in a continuous form. This is possible by

utilizing condition (2).

Considers:

c
S f(x) 8(x - b) dx a<b<ec o

_ a
The impﬁlse occurs at bgiand ig within the limits of the

But the impulse function is zero except at

integral.
= b, which impliess
c b+e
S f(x) 8(x - b) dx = S‘ f{x) 8(x - b) dx e >0 .
a b=-g

As e—>=0, if f(x) is continuous at x = b, the change in f(x)

becomes small and approaches £(b), then:

b+ € bt

S f(x) §(x = b) dx —s=£(b) { s(x=Db) dx ¢ >0 .
b=¢ e—=0 b=¢

The last integral is equal to unity, thus



c
S f(x) 8{x - b) dx = f(b)

a
Using this relationship, considers
0.50
f(x) = 0.25
0

which can be expressed ass
f(x) = 0,50 g(x = 1) + 0.25 §(x = 2

and,dépicted graphically ass
b £(x)
% A

=

e

76

a<b«<cec .

X = 1 1
X=294
elsewhere

) + 0.25 8(x - 4)

4 £(x)

38
W
o
> g
o

discrete

2 g e I T

continuous

Having expressed f(x) in a continucus form, the Laplace

transform can now be obtained:

©

Jre(x)]

== 0

S

0.50 "~ 4 0,25 e

i

fﬂ@mg e”S* f£(x) ax

28 . 0.25 748
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The Laplace transform is defined for the distribution
function of any random variable. However, for random
variables which are discrete.and which take on only non=
negative integer value (as in the case of discrete demand
units), a special transform has been defined and called

either the discrete or z transform, given as:

*®

fx(z) = E(z%) = 2, z* £f(x) .
X=20

- Applying this . transform to the previous example,

©

£.(2).= Y 2% £(x) = 0,50 z + 0.25 2% + 0.25 2
X=0

end, as can be seen, z has simply replaced e .

Transforms of the Probability Density Function '

for the Sum of Independent Random Variables
Continucus Cases Let

W=X4+7Y, x and y independent random variables
X ~ £(x) X,Y Continuous
Y ~ £(y) -

The Laplace transform of W is

£(8) = B(e™%") = B(e73(7))
fls) = S S ™%X 75 f(x,y) dxdy

= G0 == 00
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() = {700 ax {7 £(3) ay
K=o L Y=—e
fw(s) = fx(s) fy(s) o | (B.1)
Discrete Cases Let
W=X+Y
X ~ £(x) X,Y Discrete
Y ~ f(y) .

The z transform of W is

«©

£,(z) zz 2" £(x,y) = Z z 2Y) £(x) £(y)

4

- W=0 X==Q Y=0
fa(z) =) 2% £(x) ) =¥ £(y)
=0 =0
£,(2) = £,(2) £,(2) . (.2)

Example 1: This example will find the distribution of the
sum of two normal distribution functions using Lapléée
tr&nsfor@sv a result previously obtained in Example 2 of
Appendix A, via convolution methods.

Let
%)

X~ N (py oy

Y o~ N (py oyz) .
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Define % = X + Y, and the pdf of Z is desired. The Laplace
transform of X is

2
szox’/Z - gE(x)
e

it

fx(s)

and for Y

s2oy2/2 - sE(y)
fy(S) = o

By the relationship (B.1),
fz(s) = fx(s) fy(s)

520X2/2 - sE(x) s2oy?/2 - sE(y)
f,(s) = e e

5%/20 (o, 7+0;)] = s(B(x) +E())

fz(s) = e

Notice that f,(s) is in the form of both f_(s) and
fy(s), except that the variance of z is the sum of CXZ and
2
y
Example 2 of Appendix A,

G and the mean of z is the sum of My and pyo If, as in

then
Z ~N (0,2) o
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