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PREFACE 

Because of industrial demands and technological developments, the 

use of explosives as a source of power for the rapid forming of metal 

parts has greatly increased. A great many experimental studies have 

been made using explosives for the forming of metal parts, but only 

basic analytical studies have been completed. In this dissertation, a 

simple analyttcal technique is developed for describing the entire de

formation process caused by a nearby underwater explosione Several 

parametric studies are made using the technique developed, 
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CHAPTER I 

INTRODUCTION 

1.1 Statement and Need of the Problem 

A simple analytical methpd is developed for predicting the defor

mation of a clamped circular membrane subjected to large transient 

pressures resulting from a nearby explosion, The motion of the membrane 

depends on the pressure and the pressure depends on the motion of the 

membrane, and the theory of this coupling effect is examined in the 

present study. An important objective of·this study is to develop a 

method of studying the several parameters influencing the damage to the 

membrane caused by an adjacent underwater explosion,· 

In recent years the aircraft and missile industries have been 

using explosives for forming metals into various shapes. This method 

has been found to be quite effic.ient when the forming of very large 

shell structures is required, because conventional forming techniques 

would result in the use of massive and expensive equipmento 

The office of United States Naval Research has conducted many stud

ies on the damage ~to naval vessels from underwater explosions. The re

sults of these studies have been used for two purposes: first, as a 

source of information in designing ships; and second, as a source of 

information in the positioning of mineso The need for protection 

against nuclear bomb attacks has prompted the need for predicting the 

response of a structure to impulsive loading from sudden high energy 
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releases. 

Boyd (1) suggested that a method is needed for finding.the actual 

pressure felt by a membrane from an·adjac:ent underwater explosion. 

Cole (2) provided much insight into the problem although an accurate 

description of the actual loading of the membrane has not .been found, 

A great many experimental studies have been made using explosives 

for the forming of metal parts, but only basic.analytical studies have 

been completed. Johnson (5) conducted extensive experiments to deter

mine the influence of several parameters on the deformation of circular 

membranes, Since a general method of studying these parameters analyt

ically has not been found, Johnson's work suggests that an analytic.Et.1 

parame.tric study is needed in these areas. 

2 

Therefore, a simple technique is needed for describing the entire 

deformation process, The deformation process begins when the shock 

wave re.aches the membrane and ends when the membrane comes permanently 

to rest, With this technique, the history.of the membrane motion can 

be studied, quanti.tative results from the parametric studies can be ob

served, and the actual pressure loading history of the membrane can be 

described. These statements point out the need for this study. 

1,2 Historical Review 

Because of industrial demands and technological developments, the 

use of explosives as a source or power for rapid forming of metal parts 

has greatly increased, Research by American and English investigators 

has contributed greatly to the understanding of all phases of the ex

plosive process. This research has been published in three volumes as 

a reference (17, 18, 19), 



In the past two decades, the high-energy rate forming of metal 

parts and the impulsive loading of structures by bomb explosions has 

been of interest to the United States Defense Department and the aero

space industrya The use of explosives for high-energy rate.forming of 

metals continues today and is of increasing interest, The flexible 

elastic membrane was treated by Rayle.igh (7), who assumed that the ten

sion was great enough that it could be taken as constant, The dis

placements were sufficiently small. that they could be assumed normal to 

the original plane, The assumptions linearize the mathematical model 

a.nd the method yields !l set of linear ordinary differential equations 

for the unknown coeffid.ent functions o The resulting equations can. be 

solved by· o:rdinary methods, and the solution is applicable to a rigid 

perfectly plastic membrane.without spring-back and undergoing small 

deformati.ons a 

Timoshenko (15) applied the same techniques as Rayleigh to both 

circular and rectangular me.mbranes. He assumed the deflection to be 

time-depe.ndent and the deflection surface to be des.cribed by trigono

metric. series" These a.:ssumptions when applied yield the frequency of 

the. fundament.al mode. The :results of applying the above approach to 

membranes ,of several shapes are. tabulated in reference 15" 

3 

T:Lmoshenko (16) formulated. the equations .of equilibriu~ for shells 

of revolution (loaded symmetrically about their.axes) using a spherical 

co,ordin:ate system, Assuming no bending res.istance and considering the 

portion.of the shell.above a parallel circle, an equilibrium equation. 

results which gives directly the stresses in the shell along a parallel 

circlea This approach gives.the necessary equation .of motion for a. 

dynamic.ally loaded perfectly plastic infinitesimal element above a 



parallel circle (see Figure l), Newton's second law is applied to the 

element from the membrane rather than the equilibrium equation" 

Boyd (1) analyzed themotfon of membranes using the deformation 

theory of plastid.ty and impulsive loading,· The starting momentum 

supplied by the impulse was dissipated in plastic deformation with un

loading neglected, The equations of motion for the dynamically loaded 

membrane were formulated by imposing the conditions of a "stationary. 

acti.on integral" (oA=O) with the energy terms of "A" written as a func

tion of the stresses and strains, 

4 

These equations were solved numerically on a digital computer using 

fin:Lte di.fferences and a predicto:r.,-corrector techni.que, The results 

compared favorably with earlier, more complex analytical studies and 

with some experimental findings, Boyd suggested in the above study 

that a means of .describing a,nalytically the actual pressure felt by the 

membrane from the energy-transferring medium (water) should be provided, 

Lamb . (6) presented a gene.:ral discussion of the transmission of 

sound waves and showed that the effect .of a disturbance at a point can 

be. represented by analyd.ng a point- so·1.ucce, Then the pressure at a 

distant·point due·to a system of point sources can be found by inte

grating over the entire region-0 This point.source representation pro

vides the basis for the ''diffraction theory". of sound waves. Rayleigh 

(8) showed that this diffraction theory.is applicable to the case of 

disturbances originating froma plane surface 0 He·found the effects 

at a point due to the disturbances. (the movement of the surface) by 

integrating.over the entire surfa.ceo 

Cole (2) applied the diffraction theory cf sound to the problem of 

blast loading of membranes in order.to account for the coupling effect. 
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between the membrane motion and the pressure in the incident wave, The 

important boundary condition of the problem is that the particle veloc-

ity in- the medium (water) must. be the same as the normal velocity com.,.. 

ponent of the surface at the same point, A physic.al concept which des-

cribes the mathematical analysis of the problem is diffracted spherical 

waves originating at all points on the moving surface of the membrane, 

When these superimposed waves from the point sources are combined with 

the incident pressure wave, the boundary conditions and hydrodynamic 
'', 

equations are satisfied, This linear superposition of effects from the 

point sources on the membrane surface is possible only when the hydro-

dynamic equations are linear·and, therefore~ applies only to waves of 

acoustic intensity. 

Kirkwood and Richardson (19) assumed linear acoustical theory (an 

incompressible inviscid fluid) to develop an expression for the maximum 

membrane deflection from a nearby explosion. The coupling effect is 

included in the development, The theory also assumed that cavitation 

does not occur and the development gives the criterion for determining 

the occurrence of cavitation behind a free plate, Kirkwood and Richard-

son considered a ci.rcular diaphragm clamped at its edges and acted on 

by an exponential pressure-time explosion wave. They assumed a para-

bolic shape for the diaphragm at all times and applied a Laplace trans-

form technique to find the diaphragm deformation. The solution com-

pared closely with experimental data, Since the baffle was small 

(theory assumes a large baffle), the theoretical results were used with 

a factor of one-half multiplied into the expression for the maximum de-

flection. 

Fye and Eldridge (19) conducted extensive experimental studies and 



compared the.ir results with theoretical developments by Kirkwood and 

Richardson (19)o Since Fye and Eldridge used diaphragms the same size 

as Kirkwood and Richardsonj the factor of one-half was··used, The com

parison was quite goodo 

Kennard (19) extensively studied the phenomenon assoc.iated with 
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the underwater explosion and the diaphragm deformationo His quantita

tive discussion contributed greatly to the general knowledge of explo

sively loaded diaphragms. He started with the most common case and then 

treated a number of t.opics including: the various characteristic times 

that are involved; cavitation at the interface; the transition to non

compre.ssive action; the effect of the baffle; formulas for the swing 

time and the deflection of the diaphragm; the factors determining dam

age; and the departure from Hooke's law of the water, 

Rinehart (9) surveyed the entire field of explosive working includ

ing the diffraction theoryo The equations given by Rinehart for the 

pressure based on the diffraction theory can be applied only during 

certain phases of the damage process. 

Temperly (19) studied the damage process of a membrane when cavi

tation occm::s, He found that the damage process consists of three 

phases of motion, The first phase includes the membrane motion up to 

the occurrence of cavitationo This motion is essentially that of a 

free plate. acted upon by a pressure waveo The pressure wave is modi

fied by the motion of the plate, This phase has been described by many 

authors and can be found in Rinehart (9), The second phase includes 

the motion of the plate after cavitation and until the time when the 

cavitation cavity is filledo The kinetic energy of the plate at the 

end of the first phase of motion and the kinetic energy of "bubbly" 



water layers impinging on the plate is dissipated in plastic deforma-

. tion. The plate may be considerably decelerated or come to complete 

rest during the second phase of motion, Temperly describes the third 

phase as possibly a reloading due to the filling of the remaining void 

space in front of the plate. These void spaces are filled with water 

that has never cavitated; this water may have a high velocity which 

causes additional deformation. 
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Schauer (11) divided the damage process into four parts: the 

shock wave loading phase;_ the first phase of deformation; the reloading 

phase; and the second phase of deformation. 

The shock wave loading phase is the period of time up to the occur

rence of cavitation. During this very short time period, the plate is 

considered to be free and a very high velocity is attained. The actual 

pressure acting on the plate during this time interval is the shock 

wave pressure modified by the motion of the plate. The plate reaches a 

relative maximum velocity at the onset of cavitation, after which the 

plate is moving with zero pressure forces acting on it. 

During the first phase of deformation, the only forces acting on 

the plate are the stress forces in the plate. Since the deformations 

are large, they are plastic. The kinetic energy of the plate at the 

end of the first phase is continuously dissipated in plastic deforma

tion. The end of this phase is reached when the target (plate) comes 

to rest or when reloading occurs. 

The reloading phase is caused by the gas bubble remaining after 

complete deton,ation of the explosive •. The gas bubble expands, which 

causes the surrounding water to rush radially outward, gradually filling 

the void left by cavitation. When this large mass of water overtakes 
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the.plate,. the plate is almost·instantaneously accelerated.to the veloc

ity of the onrushing water. 

The second phase of deforµiation is the time required for the plas

tic forces in the target to bring it tq rest. Th~ deformation.is-found 

by equating the kinetic energy of the target .(and-the effective .mass.of_ 

water following it) to the plastic work done on the.target. The plas

tic work done. during this phase does. not include the plastic .work, done . 

during the first two phases· of the deformati,on process. Schauer' s .· (11) 

developments compare favorably wj,.th .experimental data.of the Navy. 

This method seems to work well for targets at greater·depths in the 

water and for greater· stand-off distances.· However, the method is only 

applicable to problems in which .cavitation occurs. 

1 ~- 3 Approach of This Study 

As stated· earlier, the development of.a.simple technique for ana

lytically describing the entir_e deformation -history· of a membrane sub.,. 

jected to an underwater explosion ·is the.objective of this study. 

The pr_essure-producing shock· wave which strikes the. membrane is 

caused. by an explosion in._the conducting medium- (water). When detcma

tion of the explosive charge-is complete, a shock wave from the explo

sio_n rad,iates outward through the conducting medium. The pressure in 

the, shock wave at some fixed distance- from,-the explosion center can be 

described by an exponentially decaying function (5). 

The coupling effect;.as.described earlier, is usually treated by 

the "fliffractiori theoryll •. The diffraction.theory as presented by Cole 

(2) and Kennard (19)'can be described by the physical concept of-dif

fracted spherical waves originating at points on_the membrane surface. 
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These spherical, waves combine with the incident.shock wave to s~tisfy 

the condition that·the normal velocity component.of the fluid particles 

must be the same as the normal velocity component of the membrane sur7" 

face.· 

The equ~tion whi~h describes the motion of the membrane is found 

by considering a small element at.the center and applying Newton's 

Second Law of Motion. By assuming a rigid, perfectly plastic material 

and neglecting bending, a single differentia+ equation is found for the 

motion of the membrane. The necessary kinematic equation is based on 

the assumption that there will be very small deformations during any 

very short time period. 

The actulil,l.pressure at the membrane center.is given by the "dif

fraction theory" and the ·pressure in the incident sh9ck wave is de

scribed by an exponentially _decaying function., The· actual pressui:e 

used wit_h the. equation of .motion of the cen,ter .membrane element, assum

ing a parabolic shape for the membrane at all·times, and applying the 

deformation theory,of plasticity, gives. the necessary tools to begin 

a numerical solution.. In the deformation. theory of plastic:i,.ty, . the 

total finite deformation is the:sum.of the-accumulated small.displace

ments. The use of a· time+incremental .. numerical . process and a predic

tor method with the aid o:f the IBM-360.computer,provides an efficient 

method of finding the final deformation~ · the load:f,.ng histo.ry, .and the 

complete · deformati·on history. 



CHAPTER II 

FORMULATION OF THE GOVERNING EQUATIONS 

2,1 General 

This chapter contains the mathematical formulation of the governing 

equations for the problem, Pressure from the shock wave is given by an 

exponentially decaying function. The coupling effect between the'shock 

wave pressure and the motion of the membrane is determined from the 

diffraction theory, The equation of. motion of .the center element is 

derived by applying Newton's Second Law of Motion.. Combining these 

equations.with the constitutive and kinematic equations.gives the equa-,

tions necessary to describe completely all phases of the deformation 

process. 

2. 2 Chain of Events After Detomi.tion 

Detonation is a process by which·the decomposition of an.explosive, 

with accompanying formation of gas and heat, takes place in a very. 

short time. The decomposition fr~mt moves through the explosive at 

several thousand feet per second, leaving gas at a high temperature and 

pressure in its wake (9), For example, plaster gelatine detonates at 

approximately 20,000 feet per second with a calorific value of about 

1400 calories per gram of explosive detonated (5). (This explosive is 

about 40% more powerful than TNT.) 

When the detonation front reaches the boundary 9f the explosive, 
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detonation is complete and the.shock wave is emitted into the surround-

ing medium. Figure 2a shows the location of the charge relati,ve to the. 

membrane. 

During the second stage, the shock wave propagates through the 

medium (us1,1ally ,water) until it reaches the circular membrane, Figure 

2b shows the shock wave just as it reaches the membrane. 

Next, the shock wave strikes the circular membranes and sets it 

into motion. At the same time, the shock wave is.reflected and this 

reflected wave propagates back into the medium, Figure 2c shows the 

partially deflected membrane and the reflected wave. 

Finally, the shock wave is completely reflected and the circular· 

membrane is at rest (Figure 2d). The kinetic energy of the membrane 

and that of the water following it is dissipated in the plastic defer-

mation of the membrane, 

A typical experimental setup is shown in Figure .3. 

2.3 Shock Wave Pressure 

The shock wave generated by the explosion propagates through the 

conducting medium with a velocity equal to the speed of sound. Since 

the front is an expanding spherical wave, the maximum pressure is 

approximately inversely proportional to the distance from the original 

position of the explosive charge, Cole. (2) gives the following expres-

sion for the peak pressure: 

= (vl/ 3 ) y 
K R ' (2-1) 

where 

R = distance from charge, 
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w = charge weight, 

p = peak pressure, m 

K = parameter depending on the explosive, and 

y = parameter depending on the explosive. 

When the. shock wave arrives at some given point on the membrane, 

there is an almost instantaneous rise in pressure at that point to the 

peak value. After the arrival of the shock wave, the pressure decays 

exponentially with time. This phenomenon is shown pictorially in Figure 

4. The following equations apply: 

where 

p.(R,t) = 0 when t < t 
1 a 

p. (R, t) 
1 

-(t-t )/6 P (R)exp a m 

t = time after detonation, 

when 

and 

t > t 
- a 

(2-2) 

(2-3) 

t = the time of arrival of the shock wave at a given distance R, a 

R = distance from the center of charge, 

pi = the local pressure, and 

e = the time constant which gives the time for the pressure to 

decay to 1/e of its peak value. 

If time is measured from the arrival time of the shock wave at the 

membrane, equations (2-2) and (2-3) become 

p.(R,t) = 0 when t < 0 and 
1 

p. (R, t) = 
1 . 

-t/6 P (R)exp 
m 

when t > 0 • 

(2-4) 

(2-5) 

These equations, the time of arrival, and the propagation rate through 

the medium are based on the assumption of an incompressible acoustic 

medium. The values of Kandy depend on the explosive. For TNT, typi-

cal values are (19) 
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K = 20,400 psi, 

y = 1.4, and 

e = 73.5 w0, 2 9R0• 14 microseconds. 

2.4 Boundary Interactions 

When a plane wave of acoustical inten~ity strikes a plane rigid 

boundary, continuity of pressure and particle velocity requires that 

the pressure in the reflected wave and the particle velocity in the 

reflected wave must be the same as their counterparts in the incident 

shock wave, From these considerations it can be shown (2) that the 

pressure acting on the rigid boundary must be twice that of the inci-

dent wave. 

If the boundary is not rigid, the pressure in the incident wave 

and the motion of the boundary are coupled so that the actual pressure 

on the boundary is reduced •. The following.equation accounts for the 

effect of the target velocity on the applied pressure (2). 1 

p (R, t) = 2p.(R,t) 
l. 

(2-6) 

where (see Figure 5) 

pi = the pressure in the .incident wave, 

po = the mass density of the conducting medium, 

dA' = a differential area at some point on the surface, 

u = a velocity component (at an earlier time ,) normal to the n· 

surface at dA' and directed away from the water, 

s = the distance from dA' to the point where the pressure 

1 See Appendix A for a complete development,. 
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pis to be found, 

T = (t-s/c ), 
0 

c = the speed of sound in the medium, 
0 

t = the time beginning with the impact of the incident shock 

wave on the membrane surface, and 

s/c = the time required for a wave of acoustical intensity to 
0 

travel a distances. 

Equation (2-6) is valid for all points on the membrane surface if 

the following conditions are met: 

a) cavitation does not occur; 

b) the conducting medium' is incompressible; 

c) the conducting medium is inviscid; 

d) the particle velocities are small; 

e) the membrane is mounted in a rigid infinite baffle; 

f) the membrane is backed by air or a vacuum. 

The assumption that the plate deflection is always paraboloidal 

(which is fairly typical) leads to a simpler form for equation (2-6), 

The ~araboloidal form is 

z(r,t) • •c(t) ( 1 - ::) when t > 0 and 

(2-7) 

z(r~t) = 0 when t < 0 , 

where 

z(r,t) = the time-dependent deflection of the membrane, 

z (t) = the time-dependent deflection of the membrane center, 
c 

dz 
c """'Jt = the velocity of the membrane center, 
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iz c the acceleration of the membrane center, 
dt2 

= 

r = the radial polar coordinate, and 

a = the radius of the membrane. 

Equation (2-6) becomes 

p (t) = _ P:L[ ! (d2zc) {1 _ r2 )dA' . 
2'1T s dt2 \ / 

A .r 

(2-8) 

The special case of small deflection, using the following simplifica-

tions 

s = r and. 

dA' = 2'1T rdr 
gives 

p (t) = 2p. (t) 
1 

(2-9) 

Under these conditions, changing the variable of integration and inte-

grating by parts gives the following equation: 2 

p(t) = 2p. (t) 
1 

- ..1._1 e 2 
d t 

where ed is equal to a/c0 • 

z (t) 
c 

- e 
d 

2 See Appendix A for complete treatment. 

(2-10) 
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In the earlier stages of motion (that is, t << ed) the pressure at the 

center of the membrane is 

p (t) = 2p,(t) 
J. 

(2-11) 

Fort>> ed' equation (2-9) reduces to 

p (t) = 2 
- - P a 3 o 

(2-12) 

The last term on the right side of equation (2-12) represents the pres-

sure on the membrane due to the.deceleration of the mass of water fol-

lowing the. membrane, 

In this study, the paraboloidal form for the membrane shape is 

used. Numerical integration of the following equation gives the pres-

sure at the membrane center at any time t. 

p (t) = ( 2 ) ( ) 
l dz. 2 

s dt; T .1 - :2 . rdr 
(2-13) 

2,5 Equation of Motion 

The equation of motion of a small element below a parallel circle 

of a body of revolution is found by applying Newton's Second Law of 

Motion.· The element to be considered and the body of revolution from 

which the element is taken are shown in Figure 6. 

Newton's Second Law of Motion applied to the element shown in 

Figure 6 is 

= m (2-14) 
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where 

IF = p(t) dA - 2cr Hrr(dr)(M) , z y 

dA = 2 rr(dr) , and (2.,-15) 

Thus equation (2-15) becomes 

(2-16) 

Finally substituting 

m = 

and combining equations (2-14) and (2-16) gives 

2 2 p(t)nR1 (d¢) 

(2-17) 

= 
d2z 2 2 c 

pTIRl (d¢) H - 2- , 
dt 

Equation (2-17) reduces to 

.l?.fil 
pH 

(2-18) 

This is the equation of motion of the center membrane element whe~e 

the acceleration of the center element, 

p = the mass density of the membrane material, 

O' = the yield y stress of the membrane material, 

H = the thickness of the membrane, 

p (t) = the pressure acting on the membrane center, and 

R1 = the radius ofcurvature. 
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Due to the restriction that the membrane deflection is given by 

equation (2-7), the motion of the center element determines the motion 

of the entire shell. 

2. 6 Kinemati.c Equation 

Although the total deformation of the membrane is finite, the de-

formation during any increment of . time is small. · Consider. the sketch 

shown in Figure 7 and the change in strain during one time interval can 

be easily seen. The change in strain is defined as the increase in 

length of a line element during a time increment, divided by the line 

element length at the beginning of the time intervalo The kinematic 

equation (see Figure 7) is 

where 

A'B' 

Then 

= 

or 

= 

= 

A'B' - AB 
AB 

and 

2(R1 + ozc)d~ - 2R1d~ 

2R1d~ 

= 
oz 

c 
T· 

l 

OE~ is the change in strain along a great circle of .the membrane. 

2.7 Constitutive Equations. 

(2-19) 

(2-20) 

(2-21) 

(2-22) 

(2-23) 

Since the initial impulse of the shock wave is large, a high mem-

brane velocity resultso Hence, the stresses move almost immediately 
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into the plastic range, and the strains will also be in the plastic 

range. Considering a biaxial state.of stress, the "energy-of-distortion 

condition" that was introduced by vori. ;t4ises (3) and modified by Hencky 

(3), gives the criterion for yielding. the following equation: 

fi ·r = 3 cr oct y 
(2..-24) 

where 

Ii la1 + 
2 

T = 0'2 - crl o2. oct 3 
(2-25) 

T = octahedral-shearing stress, oct 

crl = a principal stress, 

cr2 = a principal. stress, and 

cr = yield stress of material. y 

Saint-Venant's theory (3) is considered to be the most suitable descrip-

tion of the plastic-flow phenomenon. For a state of biaxial stress, 

Saint-Venant's theory may be stated as follows: 

201 
6>. o El and - cr2 = 
cSt 

(2-26) 

2cr2 
6>. 

cS €:2 - er = . 1 ct (2-27) 

It can also be shown (3) that the octahedral-shearing stress and the 

incremental octahedral-shearing strain are related as follows: 

where 

>.. oy 
oct 

T = oct ct (2-:-28) 

(2-29) 

o El, cS E2, and oE 3 = incremental linear principal strains, and 

the strain rate. 

= a scalar factor which is a function cr and 
y 
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For an incompressible material, the following relationship holds: 

= 0 ' (2-30) 

If equation (2-28) is substituted into.equations (2-26) and (2-27), the 

following results are obtained: 

= and (2-31) 

(2-32) 

Substituting equation (2-30) into equation (2-29) gives 

oyoct = (2-33) 

The incremental effective strain and effective stress are defined as 

follows: 

OE: = and (2-34) 

(2-35) 

It follows that the incremental octahedral strain and octahedral stress 

are related to the incremental effective strain as follows: 

T oct 

= 

= 12 
3 

a 

and 

Substitution of equation (2-36) and (2-37) into (2-31) and (2-32) 

yields 

02 a and a = ~oE:l 1 2 

crl a 
cr2 = - OE 2 - 2 oE: 

(2-36) 

(2-37) 

(2-38) 

(2-39) 
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The constitutive equations are 

= 
er2 6 E: and erl 2 

(2-40) 
er 

erl os 
er 2 2 = (2-41) 

(J 

For a perfectly plastic material, the principal stresses are equal, 

that is 

= (2-42) 

Substituting equation (2-42) into the constitutive equations (2-40 and 

2-41) shows that 

= (2-43) 

For an incompressible material, the following is true (3) 

= - or:: - or:: 1 2 
(2-44) 

or 

= (2-45) 

For the case of a membrane acted upon by an impulsive pressure 

= 0 ' 

and 

erl = er2 = er y (2-46) 

osl = os~ ' and (2-47) 

os3 = OE: r 
(2-48) 

so that 

6 E: = 
r 

(2-49) 

and from equation (2-23) 



Oe:. = 
r 

oz c -2-
Rl 

29 

(2-50) 

where oe: is the strain increment.normal.to the membrane, Using the 
r 

definition of the strain increment, the thickness of the membrane at 

any time tis found to be 

H(t) = · '~(t - at}) ~ + oe:r] , (2-51) 

2.8 Cavitation Occurring-Afterflow Theory 

When .the pressure on the·face of the moving membrane drops to the 

vapor pressure of water, cavitation occurs, Physically, the water be-

gins to vaporize and the membrane separates from the water, creating a. 

void space. 

The afterflow theory for the reloading of an airbacked membrane 

subjected to an underwater explosion .is best developed by analyzing the 

response of the plate (11), This response is divided into four stages. 

Stage one includes the period.of time up to the occurrence.of cavita
·r: 

tion. The equation of motion of the membrane, along with the modified 

pressure given by the diffraction theory, is sufficient to determine 

the actual pressure on the membrane center and the history of the mem-

brane mo ti.on, 

During the second stage the pressure acting on the membrane is 

zero and the membrane moves with only plastic forces acting on .it. 

This phase is characterized by a decreasing velocity of the membrane 

center. The equation of motion is applicable during this stage and the 

applied pressure is equal to zero, This stage terminates when reload-

ing starts, which happens when the membrane is brought to rest (or 

nearly so) by the plastic forces acting within the membrane, 



Many efforts have been made to explain the reloading phase with 

the diffraction theory; however, as pointed out in Section 2.4, the 

diffraction theory is not satisfactory when cavitation occurs (11). 

The diffrl;!.ction theoryassumes the continuous transmission of the dif-

fracted spherical waves. This transmission is not possible when .the 

void s~ace caused by cavitation .is present, The approach to be used 

when cavitation is present is to assume the water surrounding the gas 

bubble to be incompressible, and then to examine the outward flow of 

water as the gas bubble, remaining after detonation, expands (11), 

When detonation of the explosive is complete, a shock wave is 

30 

emitted into the surrounding medium. This shock wave causes the initial 

motion of the membrane, After the shock wave is emitted, the gas bubble 

begins to expand because of the high pressure inside the gas-filled 

cavity. For an incompressible medium, such as water, and neglecting 

the friction, Bernoulli's equation describes the motion of the water 

surrounding the gas bubble. 

Close to the bubble surface where the influence of the far bound-

aries can be neglected, a simple potential function adequately gives 

the velocity field (6), The potential function 

= (2-52) 

when substituted into Bernoulli's equation, gives 

(2-53) 

where 

= the pressure in the water at any position r, 

= the hydrostatic pressure at the bubble surface if the water· 
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is undisturbed. 

R = radius of .the gas bubble, 
. 
R = velocity of bubble surface, 

r = distance from memb.r'ane center, and 

p0 =·mass density of water. 

If the pressure on the gas bubble surface (at r=R) is p, the equation, 
8 

for the bubble expansion is 

Letting (6) 

p = g 

where R is the initial radius of the gas.bubble, equation (2-54) 
0 

becomes 

/Ro)4 p - p = tR o h 
The following are the necessary boundary conditions: 

R = R for t=O, and 
0 

. 
-R =· 0 for t=O 

(2-54) 

(2-55) 

(2-56) 

Then the solution to equation (2-56) with Ph=O can be written in 

the following form (11): 

where. 

2 
R = · R (1'+ u) , 

0. 

f3 = R Ip · / 2p 
0 0 0 

(2-57) 

(2-58) 
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= the:pressure in the bubble immediately after complete 

detonation, 
.. 
R = acceleration of .gas bubble surface, and 

u = a time-dependent parameter, 

The expanding gas bubble forces the.water surrounding it·tO rush radi-

ally outward. The· solution .of equation (2-56) gives the radially out-

ward motion of the water immediately surrounding the ·gas bubble. 

As the gas bubble expands, the outward moving water fills the cav-

ity caused by cavitat:ion, When. the. cavity is filled, the reloading of 

the membrane. takes place, During reloading, .. the membrane is accelerated 

rapidly; almost instantaneously, to the velocity of the outward-rushing 

water. This is based on the assumption that the mass of water is much 

larger than the mass .of the membrane. Therefore, initially the memb~ane 

is forced to move with a velocity equal to that of the water. This 

approximation.has proved satisfactory.in several cases (11). After re-

loading, the kinetic energy of water and membrane is absorbed in plastic 

deformation of the membrane. 

During reloading, the reloading velocity is described using the 

assumptions that the water is incompressible and the.circular membrane 

is mounted in an infinite rigid baffle. The gas globe.is represented 

by a. point source of strength. 4rrQ. A solution· for the plane above the 

membrane is then found.in the form of a.potential. function which satis-

fies the Laplace equation. This potential function (V) describes the 

motion of the water near the membrane and the baffle, while the poten-

tial function~ (equation 2-52) is used for the water motion immediately 

surrounding the gas bubble, 

The boundary conditions.are V=O on the cavitation boundary and 
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av/an on the baffle surface. Spheroidal coordinates (~, ,, ~) are 

suited to this problem3 and are shown in Figure 8. The transformation 

from cylindrical coordinates is given by (14) 

x = a/(1 + ~2)(1 - ~2) , 

lp = lp 

and (2-59) 

Laplace's equation in spheroidal coordinates with axial symmetry 

is (14) 

(2-60) 

with the boundary conditions becoming 

V=O for i;;=O and 

aV/a~=O for ~=O, 

and a source of strength 4nQ at 

~=1 and i;;=.; =Dia 0 , 

where 

a = membrane radius, 

Q and 

D = distance from charge to membrane, 

The potential function which satisfies Laplace's equation and the 

boundary condition is (12) 

3see Appendix B for a more complete development by Schauer (12), 
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(2-61) 

where i is equal to vCI o 

P2n and Q2n are Legendre func1;:.ions of the first and second kind, re

spectively. The velocity on the cavitation surface is 

v = i av I 
a~ a (i~) ,;=O O 

At the center (~=l, ,;=O), the velocity is 

v 
0 

i (2n+l) 4(4n+l) 
2 1Ta 

For large values of,; this converges to (12) 

v 
0 

= ~ 1TaD • 

(2-62) 

Q2 (i~ ) . n o 
(2-63) 

(2-64) 

Since the velocity (v) at the center of the cavitation surface is a 
0 

function of time, the displacement of the water at the same position is 

(11) 

or 

s c 

(2-65) 

= (2-66) 

Reloading occurs when the displacement (5) of the water is sufficient 

to close the cavitation void and the reloading velocity is v ' 
0 

The last stage of the deformation process is the dissipation of 

the reloading energy into plastic deformation, If an equivalent mass 
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of water is associated with the water velocity v, the final deformation 
0 

of the membrane is given by (11). 

a2 
f 

= (2-67) 

where 

0 = the deflection at the end of the second stage, 
0 

of = the final deformation of the membrane center, 

a = yield stress of the material, y 

H = thickness of the membrane, and 

a = the membrane radius. 

In this study, the diffraction theo,ry is applied to account for the 

effect of the water following the membrane. The equations are found 

in Section 21• 4, 

2.9 Influence of the Water Surface 

Schauer (13) determined the influence of the free water surface 

on reloading by calculating the difference in kinetic energies of the 

water before and after reloading. The ratio of the difference in 

energies (evaluated at the depth, of a particular membrane) to the dif-

ference in energies (at an infinite depth) is called the energy reduc

tion factor alpha (a). 

To determine the kinetic energy of the water after reloading, the 

free cavitation surface is replaced by a rigid surface and a.potential 

function (Vd) is found for this condition. It has been shown (13) that 

the difference in energies at a depth h below the water surface is 

E = -27T a Q (V ) 
' 

(2~68) 
y s t;;o 



where 

Therefore 

From this 

Finally, 

a = (1 

where 

1';1 = ~2a~j 2 - l ' 

1',;2 = ~ £: ~2:)2 

so = D/a, 

V = V - V and 
s d 

a = 

.,. = D/a 
"'o 

Eat depth,h 
E at depth oo 

_.".£);(Cl - So) 
for l,;l > l,;o 1; TI 

2 - 1; - 1 2 l 

a = O for 1',;1 < so ' 

and 

D = the distance from the charge to the membrane, 

a = the plate radius, and 

h = the depth of water above the charge, 
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(2-69) 

(2-70) 

(2-71) 

(2-72) 

Since a is the energy reduction factor, the square root of a will be 

used as the reloading velocity reduction factor. 
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2,10 Migration of the Ga$ Bubble 

Bryant (18) gave a simplified theory for the effect that the sur-

faces have on the motion of a gas bubble from an underwater explosion, 

Quantitative expressions for the motion of the gas bubble are obtained 

by representing the gas bubble as originating from a point source, The 

influence of the.surfaces is found from application of the method of 

images to satisfy the boundary conditions, The boundary conditions 

are: (1) the pressure must be zero at the free surface (which is ap-

proximated by letting the potential function be zero along the free 

surface), and (2) the velocity component of water must be parallel to 

the membrane and baffle (see Figure 9), · These boundary conditions take 

th.e following form: 

~ = 0 at the free surface, and 

~ = an Oat the membrane and baffle. 

The charge is represented by a point source eat O (see Figure 9) 

with a strength 

2' 
e = 41rR R , 

(2"'."73) 

where 

R = the radius of the gas bubble, and 

' R = the velocity of the gas.bubble surface, 

Since e is a positive source, the motion of the water surrounding the 

bubble is radially outward, If a positive source of strength e is 

placed at o1 (see Figure 9), a distance D below the membrane, the sec

ond boundary condition is satisfiedo The source. at o1 also causes an 

outward flow which, when combi.ned with the outward flow from the source 

at O, produces only tangential flow at the baffle, 
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The first ·boundary condition is satisfied by placing a negative 

source (-e) a distance (b) above the water surface. Since the poten~ 

tial functions representing the sources at O and o2 are opposite in 

sign, their sum is.zero at any point on.the free surface. This arrange-

ment of images only approximately satisfies the boundary conditions. 

Images in pairs would have to be added at greater distances to improve 

the.boundary conditions. These.images would have·the same strength as 

the images at o1 and o2 • 

Figure 9 shows the arrangement of the images, each with its own, 

coordinate system. The potential functions for the sources are 

~o = 

~l = 

~2 = 

where 

ro = the radial coordinate from the origin 0, 

rl. = the radial coordinate from the origin 01, and 

r2 = the radial coordinate from t'h,e origin 02. 

Since the effect .of the baffle and membrane on the gas bubble at 

O·is given by the point source at.o1 , the movement·of·the gas·bubble. 

can now be found. The image source at o1 will cause the water in the 

vicinity of Oto have a velocity as .follows: 

= (2-74) 
= 2D. 
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In addition, a pressure gradient is developed due to the image at o1 

around o1• The gradient is (18) 

(2-75) 

Since the pressure.gradient is positive at points between o1 and O, the 

pressure at O is greater than the pressure at o1 • Therefore the move

ment of the gas bubble at O is toward o1 and the baffle. G. I. Taylor 

(18) shows that; the velocity of a gas globe due to a pressure gradien~ 

is 

(2-76) 

or upon substitution of equation (2-75) 

ldt • 

2EJ 
(2-77) 

The total velocity for the gas bubble is 

(2-78) 

or 

u = ft~ ( ) d . · a 0~1 
at -0 - dt • 

= · . 2D O r 1 r l = 2D 
(2-79) 

This equation (2-79) upon substitution for~' and integrating by parts 

becomes 
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where 

u = the velocity of the gas bubble at O away from the baffle, 

R = the radius of the gas bubble, 

R = the velocity of the gas bubble surface, and 

D = the distance of the charge from the membrane, 

If the signs in the expression for U are reversed, the velocity of the 

gas bubble toward the baffle and membrane is 

u = dt ' (2-81) 

Similarly the effect of the free surface on the gas bubble is rep-

resented by the image source at o2• The motion of the gas bubble at O 

toward the baffle and membrane, due to the free water surface, is 

u = (2-82) 

The total velocity of the gas bubble at 0, resulting from the point 

sources at o1 and o2 , is 

u (2-83) 

where his the depth of the charge below the water surface. Finally, 

the displacement of the gas bubble at O is 

(2-84 



CHAPTER III 

NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS 

3.1 Introduction. 

If the equation of motion for the problem is examined, it is founq 

that· an analytical solution is not obtainable· by ordinary meth.ods. 

This paradox becomes apparent.when the expression for pressure is sub

stituted into the equation for the motion of the membrane. The govern

ing equation of motion depends on conditions at .earlier times of the 

deformation·process and on.the shape of the membrane at time t, Thu~, 

the equation of motion is nonlinear which suggests a numerical solution. 

The numeri.cal process used in this study is an incremental. predictor 

technique; that is, the conditions at time tare used to predict the. 

conditions at t::ime t + ot. The description of the: method is deta.iled 

in the following sections. 

3.2 Boundary and Initial Conditions. 

The boundary conditions for the membrane are quite simple because 

of the assumption of zero bending resistance in the membrane. The 

boundary conditions based on this assumption become one of·zero defor

mation at .the clamped edge of the m~mbrane. In equation form, the 

boundary condition is 

z(a,t) = 0 • 
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The initial conditions are: (1) the membrane 1 is at rest at the 

instant the shock wave strikes it, and (2) the deformation is zero, In 

equation form, these initial conditions are 

z(r,o) = 0 and 

z(r,o) = 0 

where z and z are the displacement and velocity of the membrane respec-

tively. 

The initial acceleration of the center membrane element is found 

from the equation of motion (2-18)0 The acceleration is 

z = ~ (3-1) 
c PH 

and 

p (t) = 2P fort= 0 0 m 

The coupling effect is initially zero because the membrane is at rest, 

The velocity and displacement at the end of the first time interval 

are found by solving the equation of motion, During the first time 

period of the membrane motion, the pressure, including the coupling, is 

very nearly 

p(t) = 2p -t/e 
e - p c m o o 

0 

z c 
(3-2) 

When this is substituted into the equation of motion (2-18), the equa-

tion of motion becomes 

where 

z = c 

= 
2 

a 
2z c 

(3-3) 



When rearranged, equation (3-3) becomes· 

P c z 
'' o o· c 
zc + pH + 

4cr z y c 
2 a 

= 
2P e-t/e 

m 
pH 

for which an analytical solution is easily obtained. 

3. 3 Numerical Solution .for Displacement 

45 

(3-4) 

If the acceleration of the center membrane element is assumed to 

be constant during a very small time interval, the velocity and dis~ 

placement at the end of the time interval are 

V (t + 6t) = V (t) + A (t) ' (6t) and c c c 

Z (t + 6t) c = Z (t) + V (t) , (6t) + A (t) ' (6t) 2/2 , c c c 

where 

6t = the length of the time interval, 

z = the displacement of the membrane center, c 

v = the velocity of the membrane center, and c 

A = c the accelerati.on of the membrane center, 

The equation of motion (2-18) .is used to calculate the 

each new position of the membrane and is 

A (t) 
c 

(t) 2cr = .P.lU. - _y_ 
pH pRl 

acceleration 

where R1 is the radius of curvature and is given as follows: 

2 a 
2Z (t) ' 

c 

(3-5) 

in 

(3-6) 

It is obvious that this incremental predictor process can be re-

peated continually until the deformation process is completed. The 
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calculated value at each time gives the history of the motion of a mem-

brane after being subjected to a nearby underwater explosion. For solu-

tion on a digital computer these equations are rewritten as follows: 

Z (k + 1) c 

vc(k + 1) = v (k) + A (k) • {at) , c c 

= z (k) + v (k) . (at)+ A (k) · (at) 2/2, 
c c c 

A (k) 
c = p{k) 

pH(k) 

2 a = 2Z (k) ' 
c 

H(k) = ~(k - 1] ~ + OEJ and 

213 /k) - z c (k - ~ 
R1 (k-1) OE = r 

This process can be continually repeated to the end of the deformation· 

process if the pressure can be calculated at the beginning of each time 

interval. 

3.4 Pressure at the Membrane Center 

In the preceding equations, the pressure at the membrane center is 

the one unknown term. The pressure from the incident shock wave is 

coupled to the motion of the membrane as long as cavitation does not 

occuro The coupling effect is described by the diffraction theory. The 

actual pressure felt by the membrane has been given in equation (2-13), 

which is rewritten as: 

p{t). = 2p, (t) - p Ja ! 
1 0 0 s 

2 2 (1 - r /a) rdr. (3-7) 
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For use on the digital computer, equation (3-7) is written as follows: 

n 

p(k) = 2p((k) - p 
1 · 0 ·~(A) c t 

= . 
(3-8) 

where the above summation includes the entire area. This equation 

gives the pressure for each deflection position of the membrane. The 

terms in the equation are (see Figure 10): 

p = i 
-t/6 

p e ' m 

the acceleration membrane center at an earlier time T, 

= 

r. 
J 

= 

t - s./c, 
J O 

th radial coordinate of j element, 

= the distance from jth element to the membrane center, 

Z(k) 

JU,, 
J 

= 

= 

= 

1/2 
E<zc(k) - Z(k)}2 + r~J 

Z (k) (1 - r7/a2 ) 
c J 

[ 
4z! (k) ~· 112 

tr l + 4 r. • 
a J 

3.5 Formulation for the Gas Bubble Expansion 

The equation (2-54) goverQing the expansion of the gas bubble 

(when there is cavitation) is written as follows: 

3R.2 
k 

2po~ 
(3-9) 
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The initial conditions for the bubble expansion are 

.. 

R = R at t = 0 and 
0 

. 
R = 0 at t = 0 • 
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If the acceleration .(R) is assumed constant.during a small time inter-

val, the velocity of the bubble surface is 
• (I yo 

~+l = ~ + ~ • ot (3-10) 

and the bubble radius is 

~+l = (3-11) 

While the gas bubble is expanding, it is also moving toward the 

membrane. This motion .has been given in equation (2-83) as 

u = [;..!.. + ..!.. -] [ l R 2 R I . k+ 1 + l R. i2 o~ + u 
k+l D2 h2 4 k 2 -1.t -1.t k 

k k . 

(3-12) 

where 

Uk+! = the bubble velocity at t + ot and 

Uk = the bubble velocity at t. 

The displacement is found by integrating the expression for U with re-

spect to time. The terms on the right of equation (3-12) are considered 

constant during the.time interval. The displacement of the gas bubble 

from its original position is 

k+l) ot 
k 

(3-13) 

+ l R R.2 ( o t) il + U o t 
2 k -K 2 =-' k • 
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Finally the stand-off distance (D) (see Figure 3) and the head (h) 

at any time (t) are 

where 

D(k + 1) 

h(k + 1) 

= D - S(k + 1) 
0 

and 

= h + S(k·+ 1) , 
0 

D = the original distance of the charge from the membrane, and 
0 

h = the original depth of the water over the charge. 
0 

3.6 Reloading Velocity 

The preceding section and this section apply only when cavitation 

occurs. Due to the coupling effect, the pressure acting on the membrane 

drops rapidly from the initial value of the pressure in the incident 

shock wave. When the pressure drops to the vapor pressure of the 

medium, cavitation occurs. After cavitation occurs the pressure on the 

membrane is zero and the membrane begins to deccelerate. · 

Reloading of the membrane occurs when the membrane comes to rest 

or when the water forced outward by the expanding gas bubble overtakes 

the membrane. 

Since the mass of water rushing toward the membrane is large, the 

membrane is accelerated almost instantaneously to the velocity of the 

water. The reloading velocity is (equation 2-64) 

where 

Q 

v = o. 
l.27Q 

aD 

• 2 
R R • 
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From the integration of the reloading velocity v0 with respect to time, 

the displacement of the water at the cavitation front is 

s (k) = {v (k - l)}{ot} + s (k • 1) • 
C O C 

(3-15) 

3.7 Numerical Solution of the Equation of Motion After Reloading 

After reloading of the membrane takes place, the kinetic energy of 

the membrane and the mass of water following it is dissipated in plastic. 

deformation of the membraneo The equation of motion is applicable as 

written in Section 3.3 and the velocity and displacement expressions 

are also given in Section 3.3, 

The equation for the pressure (equation 3-8) is applied as follows: 

n 

p(k) = 2p.(k) - p A (k) 
J. 0 C 

I 
j=l s. 

J 

(3-16) 

The acceleration term has been removed from within the summation be-

cause the acceleration is changing very slowly with time (2), This in 

effect is assuming that the acceleration of the center element of the 

shell at an earlier time tis nearly the same as at the time t. With 

this assumption, the equation of motion becomes 

n 
" (l-r7 /a2 ) (r.) (M.) 
~ --J~ __ J __ J_ Ac (k) 
j=l sj 

= 
2cr H(k) 

Zp i (k) - _R_.~._(.,...k_) _ 

(3-17) 

The incremental predictor process is applied until the membrane comes 

to rest. 

308 Numerical Solution with Cavitation 

The initial conditions are applied and starting values for the 
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membrane are calculated (see Section 3.2). Then the equation of motion 

is applied with the pressure as given by the diffraction theory until 

cavitation.occurs (see Sections 3.3 and 3,4), The equations for veloc

ity anddisplacement are foundin Section 3.3. After cavitation and 

until reloading occurs the motion is described by the equations in 

Section 3.3 except that the pressure·is zero. When the outward rushing 

water overtakes the membrane (the cavitation cavity is closed), reload

ing occurs. The reloading velocity is calculated and described in 

Section 3,6. Knowle<:;lge of the .bubble expansion is ne·cessary to calcu

late the reloading velocity. The bubble expansion is described in 

Section 3.5. After reloading, the membrane and mass of water has kinet

ic energy which is dissipated in.plastic deformation. This phase of 

motion is given in Section 3.7. 

3.9 Numerical Solution Without Cavitation 

The primary difference in the deformation process without cavita

tion is the absence of the reloading phase. When cavitation does not 

occur, the pressure drops rapidly to some minimum positive value and 

increases to an almost constant value. During the last part of the 

deformation process when the pressure is. almost constant, the accelera

tion of the membrane center is negative and nearly constant. When the 

membrane is brought to rest by the plastic forces in the shell, the 

pressure drops from a positive value to zero. This positive pressure 

results when the membrane deccelerates the mass of water following it. 

The sections of this paper used for calculations.of·the above 

described phenomena are given below. The initial conditions, boundary 

conditions and the velocity and displacement at the end of the first 
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time interval are found in Section 3,2, The acceleration at the begin

ning of each time interval is found by the methoud outlined in Section 

3.3. Since the diffraction theory is applicable, the method of ob

taining the actual pressure on the membrane center is g:l,.ven in Section 

3.4. During the latter part of the membrane deformation process, the 

acceleration is changing very slowly, Therefore, the pressure acting 

on the membrane center.is given by equation (3-16) and the acceleration 

of the membrane·center is calculated using equation (3-17), 

Instead of using the equations for the velocity and displacement 

given in.Section 3.3, the following relationships are used. The equa

tion for the displacement is found by passing a quadratic parabola 

through three points equidistant from each other (10), The parabola is 

y = Ax2 +Bx+ C . (3-18) 

Evaluating the dependent variable at three points, the center point 

taken as the origin, gives three equations to use in solving for the 

constants A, B, and c. In addition, the second derivative of y is equal 

to 2A, The solution for y at the forward point is found to be 

y(k + 1) = [y"(~ h2 + 2y(k) - y(k - 1)· (3-19) 

In terms of the variables of this problem, equation 3...;..19 becomes 

Zc (k + 1) = 2Zc (k) - Zc (k - 1) · + ~c (k)] [(ot) 2] .. (3-20) 

The equation for the velocity is based on the Runge-Fox (10) method 

for linear equationf:l. The velocity and displacement functions are ex

panded in Taylor's series. The higher order terms (third derivatives 

and higher) are neglected in the expansions and the resulting simulta

neous equations are solved for the velocity at the forward point, By 

this method, the velocity is 
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V (k + 1) = l._ rz (k + 1) - Z (k)1 - V (k) • c 5t ~ c c ~ c (3-21) 

Equations (3-20) and (3-21), along with the method of obtaining the 

acceleration outlined in the.first part of the section, give the enti.re 

history of the deformation process. These equations (3-20 and 3-21) 

have·a smoothing effect on the.numerical process and help to control its 

numerical stability, 



CHAPTER IV 

NUMERICAL RESULTS. 

4.1 General 

The numerical calculations were made on a Model 360 IBM computer, 

A block flow diagram is shown in Appendix c. The initial conditions, 

boundary conditions, and governing equations are all incorporated in 

the program. This program provides a simple method of studying the 

several parameters influencing the damage to the membrane caused by an 

adjacent underwater explosion. The program which is based on the pre

ceding theory is introduced to the computer by means of IBM cards. The 

varying.parameters are fed into the.computer from the data cards as 

needed. 

An extensive study of the parameters.influencing the damage to a 

membrane subjected to a transient pressure from an underwater explosion 

is presented in this chapter, The parametric areas investigated are: 

a) the influence of the ambient pressure on the damage, 

b) the influence of the hydrostatic head on the damage, 

c) the influence of the stand-off distance on the damage, 

d) the influence of charge weight on the damage, 

e) the influence of the center velocity on the center deflection, 

and 

f) the actual pressure on the membrane. 

In all cases, a circular membrane is the configuration used, 

55 
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4,2 Influence of the Ambient Pressure on the Damage 

After the shock wave from the explosion is transmitted to the sur"'7 

rounding medium, the gas bubble begins to expand, The rate at which it 

expands influences the reloading velocity.of the water after cavitation, 

The reloading velocity of the water is directly related to the damage 

of the membrane, 

If the ambient pressure (the pressure at the same depth as the 

charge in undisturbed surroundings) is neglected, the bubble expands 

faster; therefore, greater damage to the membrane results from the ex-

plosion, If the ambient pressure is neglected, the maximum increase 

in deformation is 1,7 percent (see Figure 11) for a one foot stand-off 

distance and a steel membrane. The maximum increase in deformation is 

only 0.9 percent (see Figure 12) for a stand-off distance of 0.5 feet 

and a steel membrane, 

4.3 Influence of the Hydrostatic Head on the Center Deformation 

Figures 13, 14, 15, 16, and 17 show the influence of the hydro~ 

static head on the center deformation of the membrane, Except at cer-

tain heads where Johnson found. the damage to be maximized, the results 

of this study and the calculations using Schauer's (11) equation (2-67) 

show the same trends as the experimental findings of Johnson (5), The 

author of this dissertation incorporates into this study and into 

Schauer's equation (2-67) the theory for the influenceof the hydro-

' 
static head on the damage as developed by Schauer (13), The author's 

study shows that at·greater hydrostatic heads their influence can be 

neglected, The experimental work of Johnson .. (5) and Fye and Eldridge 

(19) show the same effects at greater hydrostatic heads as found in.this 
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study. For a summary of the·above experimental worl,c see Figures 13 

through.17, 
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The experimental work of Johnson (S) shows that the damage is maxi

mized at certai11. hydrostatic .. heads. At these heads, with the same 

charge weight, the damage to a steel membrane at a one foot stand-off 

distance·is greater than the·damage to another steel membrane at a six· 

inch stand-off distance. 

When the author of this dissertation first encountered this maxi

mizing of deformation, it was thought that this phenomena. was due to 

a second shock wave emitted by-the gas bubble at .the end of its first 

perio4, This, however, proved to be wrong. The time to the end of the 

first period of the gas bubble·far exceeds the total time required for 

the entire deformation process to take place. 

Next, the migration of the gas bubble was investigated.and incor

porated into this study. It was found that this migration of the gas 

bubble did not cause the maximizing effect.· However, the migration of 

the bubble was found to contribute up to an eight percent increase in 

deformation for small·hydrostatic heads and stand-off .distances when 

compared to large values of this parameter (see Figure 12), To date a 

theory which adequately accounts for this maximizing of deformation has 

not been found. This maximizing effect is taken into account by intro

ducing an arbitrary factor for the reloading velocity. These factors 

were found by computing the ratio of the plastic work done on.a membrane 

with the maximizing effect to the plastic work .done.on membranes with

out the maximizing effect. The values for the plastic work done on the· 

membranes are found in Johnson!.s (S) paper and are determined from 

experimental findings. 
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The arbitrary factors gave reasonable results, as shown in Figures 

13 and 14, and indicate quantitatively the trends as shown in Figure 

16. The use of the arbitrary factors when applied to the situation 

shown in Figure-15 does not seem to apply, perhaps because of the dif

ference in the material properties of the membrane. 

Fye and Eldridge (19) experimentally studied the influence of the 

parameter of depth to the charge on the damage to metal diaphragms. 

Figure 17, which is reproduced from page 547 of their. paper, shows the 

same trends as are analytically found in this study. They did not find 

this maximizing of the damage, therefore, this phenomena found by 

Johnson· (5) must occur for only certain conditions: 

One additional observation can be made when the results from this 

study and the results from Schauer's equation (2-67) are compared. 

Since this study is based primarily on the theory presented by Schauer 

(11), it would seem that the results of the author's study and the re

sults of applying Schauer's equation should be'the same or at least the 

same relatively. However, upon examining Figures 13, 14, 15, and 16, 

this is not found to be true. There exists a different cross-over de

formation value for each of the situations shown in Figures 13 through 

16. At this cross-over value, this study and Schauer's equation give 

the same results. When the deformation damag~ is below the cross-over 

value for a particular membrane stand-off distance combination, this 

study gives deformation values smaller than the results from Schauer's 

equation. The damage calculated from Schauer's equation is smaller 

than the results of this study when the deformation values are larger 

than the cross-over value. 

If the assumptions made in this study and the assumptions made by 
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Schauer (11) are examined, an explanation can be offered for the obser

vation discussed above, After reloading of the membrane occurs, Schauer 

assumes a fixed mass of water following the membrane, The diffraction 

theory, which assumes an ideal fluid, is applied in this study to give 

the effect of the water following the membrane, For the smaller defor

mations, the effective mass assumed by Schauer is too large, Also, 

Schauer neglected certain terms in deriving his equation, These dif

ferences in assumptions could account for the larger calculated defor

mation from Schauer's equation. Viscous effects, which are neglected 

in the diffraction theory, become important for larger deformations, 

These viscous effects would tend to decelerate the water following the 

membrane, thus aiding in bringing the mass of water to rest sooner. 

Neglecting these viscous effects could account for this study giving 

larger deformations than Schauer's equation when the deformations are 

larger. 

Neglecting the dynamic pressure of the water on the membrane 

during the latter part of the cavitation phase gives calculated values 

for the deformation only slightly smaller than when the dynamic pres

sure is included. This can be seen in Figures 13 and 15, 

4.4 Influence of Stand-off Distance on the Center Deformation 

Figures 18, 19, 20, and 21 show the results of this parametric 

study along with the experimental findings of Johnson (5). The analyt

ical results of this study and the experimental findings of Johnson 

show the same trends and compare well as shown in Figures 18 and 19, 

Some scattering of experimental findings by Johnson is noted; however, 

this is due to the maximizing of the damage discussed earlier, Other 
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experimenters, such as·Hudson and Johnson (19), ha.vefoutid the same 

general trends.as this study~ 

4.5 Influence of Charge Weight on Center Deformation 

71 

For greater charge weights, greater deformation .is expected and 

this is found to be true in Figures 22 and 23, Figure 22 .shows that· 

the results·of this study do nqt agree very well with Johnson's (S) 

experimental·studies, however, the general trends·are the same. This 

may be partially due to inadequate information on the properties of the 

explosive and of the metal membranes. 

Figure 23 shows.that·the results of this study and the experimental 

data of Fye and Eldridge (19) agree quite well. Cavitation did not 

occur for the results presented in Figure 23. When the deformations 

calculated in thil;I study exceed. 0, 9 inches, they di verge from Kirkwood's 

(17) theoretical curve (see· Figure 23). The observation made about 

greater deformations· in Section 4.3 also seems to apply here; that·is, 

the neglecting of viscous effects; as assumed in the diffraction theory, 

may lead to excessive ca+culated deformations as in this study. Since 

experimental data is not available in this range, a definite conclusion 

cannot be reached. 

4.6 Influence of the Center Velocity on the Center Deformation 

The results of this study with cavitation occurring are shown in 

Figure 24 and 25. First, examination of the curves shows that the ini

tial part of the motion up to the time when reloading takes place.~s 

independent of the hydrostatic head.o Second, cavitation occurs very 

early in the motion of the membrane. Cavitation occurred at a time 
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when the velocity of the membrane reached its first maximum. The ex

perimental data shows the first portion of the motion to be the same 

for all hydrostatic heads, however, the experimental data does not com~ 

pare well with this study. The reason.for this may be in the method of 

obtaining the experimental data. The experimental data were obtained 

as follows: pins were set at intervals below the membrane, anq the 

time for the membrane.to travel from one pin to the next was.measured. 

Then the average velocity was calculated and plotted at the mean pin 

depth, This experimental setup would be.insensitive to the initial 

high accelerations and to the.sudden changes as in reloading. 

After reloading, the velocity deformation curves are different for 

each hydrostatic head. The results of this study and the experimental 

data are difficult to compare; however, several observations can be 

made. The assumption of no friction in the fluid is again apparent 

when it is observed that .the membrane does not, come to rest quickly 

enough for cases with a high reloading velocity. Also, from examination 

of the experimental data, the hydrostatic pressure must have some in

fluence on the mass of wate.r following the membrane. 

Figures 26 and 27 show results for which cavitation did not occur. 

The results for this situation fit a definite pattern, that is, for 

greater charge weights a higher maximum velocity at a greater defor

mation is found, and in.turn the final deflection is greater. 

4.7 Actual Pressure on the Membrane Center 

Figure 28 shows the actual pressure acting on a membrane for ex

plosive loading when cavitation occurs. First, the pressure drops very 

quickly from twice the peak shock wave pressure zero, · It drops in fact 
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much faster than the exponentially decaying pressure of the shock wave. 

The time when cavitation occurs was found for the case shown in Figure 

28 to be 10.4 microseconds. Cole (1) on page 407 gives an equation for 

predicting the time to cavitation. Using this equation, the time was 

calculated to be 9,2 microseconds. One of the assumptions made by Cole 

in deriving his equation is that the plate moves freely and since the 

author of this study did not make this assumption, the comparison is 

good. Also, for the assumptions made in this paper, the time to.cavi

tation from the author's study should be larger, 

The pressure remains at zero for a period of time and slowly builds 

up until reloading takes place. This build up of pressure is due to 

the dynamic pressure of.the.water which is beginning to overtake the 

membrane just before reloading, When the large mass of water, which 

overtakes the membrane, accelerates the target to the water velocity 

instantaneously, a large pressure spike results, 

After reloading, the pressure acting on the membrane results from 

the mass of water behind the me.mbrane being decelerated, Schauer (11) 

has experimentally found a pressure-time curve which is similar to the 

curves.shown in Figure 28, 

In Figure 29, the pressure did not drop to zero, therefore, cavi

tation did not occur for the explosive loading shown, The actual pres

sure drops rapidly from the peak shock wave pressure to a minimum. 

The pressure then increases to another maximum and finally becomes al

most constant. The final portion of the pressure curve is due to the 

mass of water following the membrane being decelerated, 
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4.8 Summary of Results 

The technique developed for finding the deformation of a membrane 

subjected to a nearby underwater explosion by the autho.r in this disser

tation is simple, yet a great many parametric studies are made, The 

author could not find a comparable method that would enable all of the 

parametric studie.s to be made and" at the same time give information on 

the pressure, velocity, displacement, and other quantities at all times 

during the entire deformation process. 

The results do not always compare favorably with the experimental 

work of Johnson (5), The most significant difference is the maximizing 

of the deformation at certa:i,n heads found by Johnson, Since investi

gators other than Johnson have not discovered this maximizing effect, 

this effect must occur only when a ce_rtain combination of conditions 

are met,· 

Another reason for some of the differences may be in the values of 

material properties used. The only information of the explosive given 

by Johnson (5) in his paper was the calorific value which was about L4 

times that of TNT, To compare results, therefore, the author used the 

equations for TNT and multiplied the explosive power of TNT by L4, 

The yield strength of the metal membranes is obtained in the followi~g 

manner. A power-law relation for th.e materials used was given by 

Johnson-(4) in another paper. A yield stress for a perfectly plastic 

material was _determined so. that the areas under the. stress-strain 

curves for the perfectly plastic condition and power-law representation. 

are the same. It should be pointed out that under.dynamic loadi~g, the 

yield stress strength of a material changes with the intensity of the 
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dynamic loading, and in this study the yield strength was assumed con

stant. Since it is unlikely that the correct values for material pro

perties were used in this study, the differences between this study and 

experimental findings are partially explained. 

From the many parametric studies made, a number of observations 

have been made., Without the method for analyzing an underwater explo

sion developed in this study, these parametric studies would not have 

been possible. Of equal importance, the auth.or was able to. study the 

entire deformation process and gain much valuable insight into the 

phenomena. As a result several recommendations are made for .future 

studies, 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 General. 

The results obtained from this study show some interesting varia

tions.from earlier data, and lead to a number -of significant conclusions. 

and recommendations. 

5.2 Conclusions From This Study 

1. The numerical process, with the simplifying assumptions incor

porated, provides a good_tool for future quantitative and qualitative 

parametric studies. Any improvement to the mathematical model of any 

portion of the deformation process would, of course, yield improved 

results. 

2. The "afterflow" theory of-reloading by Schauer (11) adequately 

describes the.phenomena when cavitation occurs; it -gave good descrip

tive results when applied in.this study. 

3. The diffraction theory as applied in this study gives good 

results when cavitation does not occur. Further, before cavitation and 

after reloading, the diffraction theory can be applied successfully for 

smaller deformations. 

4. The pressure-time information given by the study adequate;Ly 

describes the actual pressure felt by the membrane. 
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5. The velocity-displacement studies qualitatively describe the 

deformat,ion process. 
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6. The parametric studies by the author involving stand-off dis

tance and charge-weight·show the same trends that other investigators 

have.found.· Hence, this study demonstrates the influence of these para

meters on the deformation process. 

5.3 Recommendations for Future St~dies 

1. A better.mathematical model of the membrane and an improved 

numerical process should be incorporated into the computer program, 

An improved model will permit the exact shape of the membrane to be 

found. 

2. A method should be developed to predict the pressure at all 

points on the membrane so that the parabolic shape need not be assumed. 

3. The method used to predict the time when reloading occurs and 

the intensity of-the reloading should be improved. 

4. Studies should be made on the membrane deformation of the 

influence of the water trailing the membrane. 

5. Studies should be made on the influence of the free water sur

face on the damage to the membrane, 

6. The·mathematical stability of.the numerical process should be 

investigated. 
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APPENDIX A 

THE ACTUAL INCIDENT PRESSURE ON THE MEMBRANE 

FROM AN UNDERWATER EXPLOSION BASED ON 

DIFFRACTION THEORY 

In this appendix a relatiori.ship between the actual incident pres-

sure p(r,t) on the membrane and the undisturbed pressure p, (r,t) of the 
l. 

shock wave is developed when the following assumptions are made (2): 

a) fluid is inviscid, 

b) fluid is incompressible, 

c) shock waves are of small amplitude, and 

d) cavitation does not occur. 

The equation of motion of a fluid particle is 

av 
3t 

1 = - - grad p 
Po 

and the continuity equation is 

2.2. = - p div v ~ 
3t o 

where 

v = the fluid particle velocity, 

p = the density of the fluid, 

po = the density of the fluid at zero pressure, 

p = pressure in the fluid mediu!:!1, and 

t = time, 

(A-1) 

(A-2) 

Since the fluid is assumed to be inviscid and there is no heat exchange 
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between fluid elements; the changes in the physical state of the element 

must take place at constant entropy. This situation may be expressed 

as follows (2): 

ds 
dt = O' (A-3) 

wheres stands for entropy. From this, the conclusion is drawn that the 

pressure is a function of density only, that is, 

p = p (p) ' 

where 

p = pressure and 

P = density of fluid, 

It then follows that 

2.1?.. = 
at 

where the s indicates the process is assumed to be taking place at 
0 

constant entropy and in the undisturbed fluid, 

(A-4) 

(A-5) 

The assumptions made at the beginning of this section permits the 

use of linearized acoustical theoryo For this theqry, a velocity po-

tential cp is defined so that 

v = - vcp • 

Substituting this expression into the equation of motion gives 

or 

and finally 

a - (- vcp) at 

p 

1 
= - - Vp 

Po 

=. p ~ 
oat 

(A .... 6) 

(A..,.7) 

(A-8) 

(A-9) 



When the following equation 

1.2. = at 

is substituted into the continuity equation, it becomes 

...!..1.2. = - p div v , 
2 at o c 
0 

where c 0 , the speed of sound in.the.fluid, is defined as follows: 

c2 = ~ 
O dp • 

With. 

p = 

and 

-v = - 'v~' 

the continuity equation becomes 

or 

= 0 . 
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(A-10) 

(A-11) 

(A-12) 

(A-13) 

(A-14) 

This is the wave equation and any solution to it will give a velocity 

and pressure field, as defined earlier, which satisfies the equation of 

motion. 

For spherical symmetry the wave equation has the follo~ing form: 

(A-15) 

Lamb (10) has shown that the general solution to this equation can be 

expressed as the sum of retarded potentials due to distributions of 
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simple sources originating on the surface of the membrane and baffle 

surrounding the original plane membrane. The velocity potential~ van-

ishes at infinity and is valid at all points on .and above the plane con-

taining the baffle and membrane. The velocity potential has the fol-

lowing general form: 

= 1 f(t - r/c) r o 

or more specifically (5) 

(A-16) 

where (see Figure 30 for amplification of the definitions) 

F' = the distance from a convenient origin to the 

point on the membrane wher~ the disturbance originates, 

F = the distance from the above described origin to 

the membrane center, 

u(r' ,r) = the velocity of the fluid particle directed nor-

mal . to dA' and away .from the membrane, also at· an earlier time T, 

dA' = a vector e.lement of . area o~, and rtor~l tp the 

membrane or baffle at r, and 

- lr-r'I _ 
T = .t C the time of origination of the.disturqance which 

0 

arrives at the membrane center.at time t. 

From these definitions, it is obvious that the velocity u depends on 

time and on the position r' . 

Let~' p, and u be the actual quantities in the water corresponding 

to the free field quS:ntities ~0 , Pi.and u0 that would exist if .the dif

fracting surface were not~present. Then apply the following equation 

to the perturbations~-~ and u.,..u arising from the diffracting object. 
0 0 
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0 

TIME T 

r 

Figure 30, Membrane Geometry at Times. t and T 



p = 

Differentiation of rj>-rj> and substitut.ion yields 
0 
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p (r, t) = p,(r,t).,... porr 1 lau(r',T) _ cluo(r',,)j, dA' 
J. 2~)A 1r-r' I ltt cl t J 

(A-17) 

where.p,(r,t)··is·the pressure in.the shock wave. 
J. 

In Figure 30, let A0 be the area of the obstacle inside the radius 

a0 ; let A1 be the area of the baffle between the radii.a0 and a1 ; and 

let A2 be the area which lies outside the radius a1. Over the area 

A0+A1, use the equation of motion as follows: 

- ilp' = 
J; 

clu 
0 

po clt (A-18) 

The equation (A-17) for the pressure becomes 

p (r, t) = • dA' 

+ PI?. f ( r- 1 clu (r' ,r )1 , dA, 
"frrj)A +A ur-r'I at J 

0 1 

(A-19) 

+ Po~ 1 [clu(r' ,T) _ cluo (r' 'T fl , dA, , 
2 rr A I r-r ' I cl t · cl t j 

2 

If this development is restricted to the case of a plane wave im-

pinging on a circular plane membrane of radius a0 clamped in a rigid 

infinite baffle of radius a1 , the first integral on the right hand side 

of equation (A-19) represents the reflected pressure on a plane, Set-

ting 

clu(r' ,r) 
clt = ,o c-, ) -zr,r, (A-20) 



equation (A-19) becomes 

p(r,t) 

where 

s 

u(r' ,r) 

= 2p. (r,t) - p, (t - a1/c ) - p raQ z(r' ,T) E_ dr 
1. 1. . o 'Jo s 

= I r-F' I 
= 0 over the baffle, and 

= u (r',T) outside the baffle. 
0 
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(A-21) 

For use in this paper, two special forms of equation (A-21) are 

needed. The two cases are listed. First, for a1>>a (infinite baffle), 

the pressure at the membrane center is given as follows: 

p (t) = 2pi (t) J:ao 00 (,-' ) rdr 
- p Z r ,T -- • 

0 0 . s 
(A-22) 

Second, for a1 approaching a0 (a small baffle) and a0 small, the pres

sure at the membrane center is 

p (t) = p.(t) - pJaQ z(F',T) rdr 
l. 0 S 

0 

(A-23) 

The simple case of a circular plate of radius a0 clamped in a 

large rigid baffle will be considered here, and the simplifying assump-

tion used that the membrane deflection profile is always parabolic in 

shape. That is, 

z (r, t) = (A-24) 

where z (t) is the center deflection of the membrane. Substituting c 

equation (A-24) into equation (A-22) gives the pressure at the membrane 

center as 

p (t) = 2p. (t) - p fo (z ) (1 - r 2 ) !.. dr • 
l. J,.,0 CT 2 S ao 

(A-25) 
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With the assumption of a parabolic shape for the ~embrane at all 

times during the deformation process due to the nearby explosion and 

with r=s (which is true for small deflections), the integral in equation 

(A-25) can be evaluated. The variable of integration is change~ toT 

=t-r/c0 and integration by parts gives Kirkwood's (19.) equation for the 

pressure at the membrane center, 

Consider the integral 

(z ) ( l - r2 l dr C T · 2 ao 
which can be separated as follows: 

Jlao (z ) dr - 11ao . (z ) . ·r2 dr' • 
CT 2 :C,T ao 

0 0 

Examine the first integral as follows: 

(z ) is a function of r only' 
C T 

that is T depends on only rat a particular time t, Also, 

From 

di 
<z ) = c 

C T dt • 

T = t - r/c , ·o 

the following result is obtained 

dT = 

therefore 

dr 
c 

0 

(A-26) 

(A-27) 

(A-28) 

(A-29) 

(A-30) 
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and upon substitution 

1:0 (z ) dr = -1:0 co( dd2/), dr, c 1' 
(A-31) 

which gives 

J:o 
,=t 

ao 
c 

(z ) dr 
. 0 = -c z c 1' O C 

0 c==t - -= t c 

(A"".32) 

0 

or 

= (z ) dr 
C T 

(A-33) 

This equation (A-33) could be applied to the center portion of the 

target where it is essentially flat, which gives the integral of equa-

tion (A-25) as follows: 

- p0 c0 ; (t) t pc i (t - r 1/c) , 
C O O C O 

where r 1 is the radius of the center flat portion of the membrane, 

Examine now the second integral of equation (A-27), that is, 

Since 

T = t-r/c 
0 

. 
di 

(d::)T 
c and = dT ' 

dT = -dr/c 
' 0 

which when substituted into equation (A-35) gives 

(A-34) 

(A-35) 



This integrates to give 

which is 

c (daze) rdr + c ; (t-ao/c ). 
O r T O C O 

or 

2cif·· O . 0 • 
- 2 (dz ) r + c z (t-a0/c ) , 

C T O C O 
ao 

0 

This integral gives 

The integral in equation (A-35) is now 

or 

2c 
0 - z (t - e ) 

ed c a 

+ c z (t-,.ao/c ) 
O C . 0 

_ 2c20Jt zc(T) dT + c z (t..,a0/c ) , 
O c. 0 e a t- ed 
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(A-36) 

(A-37) 

(A-38) 

(A-39) 

(A-40) 

(A--41) 

(A-42) 

which when combined with equation (A-33) gives the integrated form of 

the integral in equation (A-25), that is, 



= 

2) r r - - - dr 2 s ao 

2c 
- p lc ~ - c z (t-a0/c) + ___£_ z (t - e ') 

O t.:::o C O C O ed C d 

2c Jt - ___£_ Z (T) 
2 c 

6d t-e 
d 

d, + c z (t-a0/c )1 , 
O C O 'J 

Equation (A-43) reduces to 

= 

- p Jao (z ) ( 1 
O C T 

' 0 

2p c 
0 0 

- p c z -
o o c e d 

where ed is equal to a 0/c0 • 

2 ) r r - - - dr 2 s 
ao 

+ - 0 -2. z (-r) d, 2p cJt 
2 c ' 

6d t-e 
d 
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(A-43) 

(A-44) 

When this result is substituted into equation (A-25), the expres-

sion for the pressure at the center of the plate in an infinite rigid 

baffle is (2,19), 

p (t) = [
dz 2 2 if t 2p. (t) - p c _c + - z (t - EJ ) - - z (,) 

i o o dt e d c d 6 2 c 
d t-ed 

Fort< ed, the pressure is 

p (t) = 
dz 

c 
2p.(t) - pc -dt 

l. · 0 0 

(A-45) 

(A-46) 

During the latter stages of the membrane deformation process, whe~ 

the acceleration is changing slowly, equation (A-25) becomes 



p (t) = 
2 2p1 (t) - - pa 
3 0 0 
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(A-47) 

which is the equation needed for the last phase of the membrane defer-

mat ion. 



APPENDIX B 

THE RELOADING VELOCITY FOR A MEMBRANE 

SUBJECTED TO AN UNDERWATER EXPLOSION 

The following development is paraphrased from reference 12, This 

development is the determination of the potential flow resulting from a 

source of strength 4~Q. The source is located a distance D from a cir-

cular hole of radius a in an infinite rigid baffle, In addition, the 

source is located on the normal through .the center of the hole so that 

axial symmetry results. For cylindrical coordinates (x, z, ~) with the 

z-axis through the center of the hole and normal to the infinite baffle 

(see Figure 8), the coordinates. of the source are z = D, x = 0 and the 

edge of the membrane is at x = a, z ~ O. The introduction of spheroidal 

coordinates (~, ~'~)of the oblate type. (see Figure 8) is necessary 

to find the potential function V, The coordinate transformation fol-

lows: 

lows: 

x = alci+z:2)(1-~2) 

l/; = 1jJ ' 

and 

(B-1) 

(B-2) 

(B-3) 

Laplace's equation can be written using these coordinate.s as fol-

a [ 2 av'l 
~ (1-~ ) a~] = 0 

(B-4) 

100 



101 

where Vis the velocity potential. The general solution of equation 

(B-4) for axial symmetry is 

v = l [a P (~) + b Q (~)] [a' P (it;) + b' Qn(ii;;)] . n n n n n n n n 
(B-5) 

The necessary .boundary conditions are 

v = O for 1; = 0 (in the hole1 ) and (B-6) 

av O for !'; = 0 (on the baffle) -= ' ,H; (B-7) 

For the spheroidal coordinates, the source is located at~= 1, 1; = t; 0 

= D/a , Reference 14 shows that the special form of·equation (B-5), 

which represents a source of strength 41fQ at ~ = 1, t; = t; is 
0 

v1 = r iQ (2n+l) Q (it;) p (i~) p (~) • (B-8) 
n=o a n o n n 

for z; < i; • 
0 

In order to satisfy the boundary conditions, a source is necessary 

at i; = z; 0 , ~ = -1. A potential function, which is a special -form of· 

equation (B-5) and represents the source just described, is 

= ! n=o 
(-l)n iQ (2n+l) Q (it; ) p (it;) p (0 

a n o n n (B-9) 

for t; < t; , 
0 

In addition, a third form of equation (B-5) is needed and is given 

as follows: 

V = f 4Qo(4n+l. )oQ (i'r ) Q (' ) p (1:) 
3 ~o Tia 2n ~o 2n J.I; 2n ~ 

for all values of i; except t; = t; = 0 , 0 . 

The sum v1 + v2 + v3 is the desired potential function, i.e., 

1The hole itself is considered a free.surface, 

(B-10) 



or 

00 

V = ~O ~iQ·( 4n:l} Q2n (i~o) P 2n <~B [r' 2n (i~) + 1! Q2n (i~)J 
(B-11) 

This potential function (V) is a solution of Laplace's equation because 

it is a form of equation (B-5). 

The boundary condition V = 0 at~= ~0 , ~ = 1 is met since 

P2n(i0) 

Q2n(i0) 
= 

2 

The other boundary condition av/a~= 0 fort;= 0 is met because 

for n .::._ 1, and also 

Thus, Vis the required velocity potential. 

The normal velocity v in the hole is found as follows: 

v = 

Differentiation and substitution gives 

v = 

For large values of ~o' equation (B-13) becomes 

v = 

(B-12) 

(B-13) 

(B-14) 



and since only the first term need be considered, the velocity at the 

hole is 

The velocity (v) at the center (~=l, ~=O) of the hole is 
0 

v 
0 

= j:_g_ = 
rraD 

which is the reloading velocity. 

l.27Q 
aD 
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APPENDIX C 

FLOW CHARTS 
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Flow Chart - No Cavitation 

c ENTER DATA) 

LAST CARD 

CALCULATE PEAK SHOCK WAVE PRESSURE - P:--1 

CALCULATE TIME CONSTANT FOR SHOCK WAVE-~ 

CALCULATE IMPACT PRESSURE 
CALCULATE INITIAL ACCELERATION 

CALCULATE VELOCITY AND DISPLACEMENT· 
AT THE END OF·FIRST TIME INTEl\VAL 

TIME = TIME-+ ot 
CALCULATE RADIUS OF 

CURVATURE FOR MEMBRANE 

CALCULATE PRESSURE AT TIME t 
CALCULATE ACCELERATION AT TIME t 

(Equations 3-8 and 3-6) 

CALCULATE VELOCITY, DISPLACEMENT, 
CHANGE IN STRAIN,AND MEMBRANE THICKNESS 

AT TIME t + ot (Use Equation 3-19 and 3-20) 

NOT AT REST 

WRITE OUT FOR 
TIME t 

ACCEl,ERATION 
VELOCITY 

DISPLACEMENT 
PRESSURE 

CHECK VELOCITY 

FM~ 
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GO TO BEGINNING 

AT REST 

WRITE OUT 
ORIGINAL DATA 

FINAL VELOCITY 
FINAL DISPLACEMENT 

FINAL MEMBRANE 
THICKNESS 
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Flow Chart - With Cavitation 

e 
t 

( ENTER DATA) 

LAST CARD ~K FOR LAST I 
CARD s 

.. 
CALCULATE PEAK SHOCK WAVE PRESSURE - P 

m 
CALCULATE TIME CONSTANT FOR SHOCK·WAVE - e 

' ~ 

CALCULATE·IMPACT PRESSURE 
CALCULAT.E INITIAL ACCELERATION (Eq. 3-1) 

CALCULATE VELOCITY AND DISPLACEMENT 
AT THE 'END OF FIRST TIME IN-TERVAL 

(Use Equation 3-4) 

CALCULATE BUBBLE EXPANSION AND DISPLACEMENT, 
RELO.Al)ING VELOCITY, AND DISPLACEMENT OF 

CAVITATION SURFACE DURING THE FIRST TIME 
INTERVAL (Use Equations 3-9, 10, 11, 12, 13, 14 and lS) 

I TIME = TIME+ ot I 
CALCULATE· BUBBLE _EXPANSION AND DISPLACEMENT, 

• • • I• RELO.Al)ING VELOCITY, AND DISPLACEMENT 
OF CAVITATION SURFACE AT TIME t + ot 

(Use Equations 3-9, 10, 11, 12, 13, 14 and 15) 

l I 
CALCULATE RADIUS OF CURVATURE FOR 

MEMBRANE 

CALCULATE PRESSURE AT TIME t 
(Use.Equa,tion.3-8) 

(§r~YJ. ! 
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NOT AT 
REST 
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CHECK TO SEE.IF 
PRESSURE IS GREATER PRESSURE LESS THAN 

THAN OR EQUAL TO THE 
1--~~~~~~~-. 

VAPOR PRESSURE OF 
WATER 

PRESSURE GREATER OR EQUAL 

CALCULATE ACCELERATION AT TIME t 
(Use Equation 3-6) 

CALCULATE VELOCITY, DISPLACEMENT, 
CHANGE IN STRAIN, AND MEMBRANE 

THICKNESS AT·TIME t + ot 
(Use Equation 3-5) 

WRITE OUT .· FOR 
TIME t 

ACCELERATION 
VELOCITY 

DISPLACEMENT 
PRESSURE 

AT 
REST· 

WRITE OUT 
ORIGINAL DATA 
FINAL VELOCITY 

FINAL DISPLACEMENT 
FINAL MEMBRANE 

THICKNESS 
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l 

I TIME . = TIME + ct ! 
__________ ..__ ___________ _ 

CALCULATE BUBBLE EXP-ANSION MID- DISPLACEMENT, 
RELOADING VELOCITY, . AND DISPLACEMENT 
OF CAVITATXON SURFACE AT ·TIME t·+ ct I 

(Use Equations 3-9, 10, 11, 12, 13, 14 and 15) 

CALCULATE RADIUS OF CURVATURE FOR 
THE MEMBRANE AND THE DYNAMIC 

PRESSURE ON THE MEMBRANE 

I CHEC!{ FOR I - RELOADING . ~OADING J-----0---....;_....;_ __ ..., 

NO RELOADING 

,...._---.-----__ ·] CALCULATE ACCELERATION AT 
TIME t (Use Equation 3-6) 

CALCULATE VELOCITY, DISPLACEMENT, 
CHANGE IN STRAIN, AND MEMBRANE 

THICKNESS AT TIME t + ct 

I 

(Use Equation 3-5) 

WRITE OUT FOR 
TIME t 

ACCELERATION 
VELOCITY 

DISPLACEMENT 
PRESSURE 

VELOCITY OF MEMBRANE = 
RELOADING VELOCITY 

) 
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NOT AT 
REST 

CALCULATE RELOADING PRESSURE 
CALCULATE RADIUS OF CURVATURE 

TIME = TIME+ ct 
CALCULATE ACCELERATION OF 

. MEMBRANE (Use Equation 3-17) 

CALCULATE RADIUS OF CURVATURE OF 
MEMBRANE 

CALCULATE VELOCITY, DISPLACEMENT, 
CHANGE IN STRAIN, AND MEMBRANE 

THICKNESS (Use Equation 3-5) 

WRITE OUT·FOR 
TIME t 

ACCELERATION 
VELOCITY 

DISPLACEMENT 
PRESSURE 

AT REST 

WRITE OUT 
ORIGINAL DATA 
FINAL VELOCITY 

FINAL DISPLACEMENT 
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