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PREFACE

The study of cohomologies of algebras (associative or non-.
associative) has been a central probiem in homological algebra due to
its important direct application to algebraic topology. On the other
haﬁd, it has been recognized during the last five years that the ap-
proach -of categorical algebra has a penetrating influence -on homolog-
ical algebra (for example, see Eilenperg and Moore [5]).

It is known that the notien of é (co)triple, or equivalently,‘a
pair of adjoint functors, provides atmoét convenient .and practicali
tool .for defining cohomologies (see Eilenberg and Moore.[6], Barr [1],.
Barr -and Beck [2], Beck [3], Shimada, Uehara and Brenneman [10]).

Many known chomologies have been found to appear as cotriple cohomolo-
‘gies. In fact, it has been.shown in [10] that cotriple cohomology can
be interpreted as a relative cohomology ‘theory, thus unifying the
various cohomology theories-for—a specified category.

Glassman t7] has discussed, among other thipgs, the Hochschild
and Shukla cohomologies for associative algebras; Barr and Beck [1-2]
have shown .that these can be interpreted as cotriple cohomologies.

The main purpose of this paper is fo present two cotriple cohomologies
for Lie algebras (non-associative); one is compared with the Hochschild
cohomology for Lie algebras and the other is compared with Shukla's
cohomology for Lie .algebras. 1In order to‘facilitate'the latter com-

parison; Shukla's work is presented in a categorical setting.



Chapter I contains a description of the Hochschild cohomology of
Lie algebras in terms of their associative .enveloping algebras, as
defined by Cartan and Eilenberg {4]. In Chapter II Shukla's cohomol-
ogy of Lie algebras [11] is generalized from the viewpoint of categor-.
ical algebra and some new results are obtained for the low-dimensional .
modules,

The two cotriples are constructed in Chapter III, one giving a
cohomology for modules over an algebra and the other, presented by
H. Uehara [12], giving a cohomology for Lie algebras. In Chapter IV
it is shown that the former cotriple may be used to obtain the
Hochschild cohomology of Lie algebras (with a dimension shift) and
the cotriple cohomology for Lie algebras is shown to agree with
Shukla's cohlomology in the low-dimensional module.

A summary of results and a presentation of some problems for
further researchvére-given in Chapter V.

The notation and the terminology of Maclane -8} are used exten-
sively in'this paper. Numbers in brackets refer to an.entry in the
Bibliography.

I am indebted to my friend and adviser Professor Hiroshi Uehara.
He has conveyed to me a spirit of mathematics and he has patiently
encouraged and guided me in the Writihg 6f this paper. I am grateful
to my wife Shirley; her love and her interest in mathematics have
been a constant source of help to me. The National Science Foundation
has partially supported me during my graduate studies and I wish to

thank those who helped me obtain these funds. -

iv



Chapter

TABLE OF CONTENTS

I. HOCHSCHILD COHOMOLOGY OF LIE ALGEBRAS. . . . .

1.

Lie Algebras, Enveloping Algebras

Modules over Lie Algebras « . . . o «

2,

The Hochschild Cohomology of an

Associative Algebra . . v « « o 4 . .

3.

Lie Algebra « ¢« « v 6 o6 o o o s o o o

The Hochschild Cohemology of a

II. SHUKLA COHOMOLOGY OF LIE ALGEBRAS. . . . . . .

s @

B LY

oot~ W=

°

IITI. COTRIPLE

°
e
°

o

Ut &~ W N

°

The:Category‘(i,q)o e ea e s e e e

The Functor & . . v & ¢« ¢ « o ¢ o o a
The Functor P . o v ¢ o s ¢ o 4 o o
The Functor D . . v ¢« o ¢« o s o4 o o
The Functor C'v ¢ &« o 5 o o o o ¢ o o°
Shukla's Cohomology Modules . . . . .

COHOMOLOGY o « o « o o o o o o o o o 4

Cotriples and Adjoint Functoers. . . .
The Standard Semi-Simplicial Complex.
Cotriple Cohomology . ¢ o o o o o o+ &
A Cotriple Cohomology for 3“-Modules.

A Cotriple Cohomology. . for Lie Algebras.

IV. COMPARISON OF COHOMOLOGY THEORIES. v « % & . &

1. The Hochschild €ohomology of Lie Algebras-

as a Cotriple Cohomology. « o « -« o « o o o o o
2. Barr-Beck's Acyclic Model Theorem . ... . . . .
3. Shukla and Cotriple Cohomologies of Lie Algebras

V. SUMMARY AND CONCLUSIONSe_. 6 e o 6 o e e o o e

BIBLIOGRAPHY. .

e s ‘e e o © o © 6 o © © e o°o e 2 © e e

Page.

11

. 15

.26
26

30
30
31
32
33
34
39
39
41
43
50

52



CHAPTER I
HOCHSCHILD COHOMOLOGY OF LIE ALGEBRAS

In this chapter, R is a commutative ring with unity‘l. Tensor
products and Hom functors will be over R unless indicated otherwisee
H. Cartan and S. Eilenberg [4] have defined the cohomology groups of
a Lie algebra L as the Hochschild cohomology groups of its enveloping
-algebra L. Since an explicit formulation will be needed in Chapter

IV, this theory is included here; see Hochschild [8] and MacLane [9].
1. Lie Algebras, Enveloping Algebras, Modules over Lie Algebras

Definition 1.1: A graded R-module L is a Lie algebra if and only

if there exists an R-homomorphism [,]:L ® L —>L of degree zero satis-

fying (1) [x,x] = 0 if the degree of x (denoted by ix}) is even, (2)
Gyl = GO 0 ana 3y (D Y ly,el] + I
[v,lz,x]] + (~l)lZ”y'[zg[x,y]] = 0 (Jacobi identity). A non=-graded
Lie -algebra is a Lie algebra L such that Ln = 0 for all n>0.

Remark: For 'a non-graded Lie -algebra the three conditions above
are (1) [x,x] =0, (2) [x,y] = -~ [y,x], 3 Ix,[y,z]]
+ [ys[z,x]] +[z,[x,y]] = 0 for all x,y,z ¢ L. Unless specified, all
modules, algebras, and Lie algebras are graded.

Definition 1.2: If L and L' are Lie algebras, then a morphism of

Lie algebras f:L—>L' is ‘an R-homomorphism of degree zero satisfying

f(x,y]) = [£(x),f(y)] for-all x,y ¢ L.



The tensor algebra T(L) of an R-module L is the R-module given by

[+ =]
i n n
- + = s ¢ ¢
T(L)O R :E: LO ’(Lo LO ® ® LO, n factors), and for each
n=1

n>o’T(L)n = :E: L,® ""° ® Li , where ‘the multiplication x.y

{44 = L &
1 n

in T(L) is defined by x @ vy.

e
Definition 1.3: The enveloping algebra L~ of a Lie algebra L is

the quotient algebra T(L)/I, where I is the two-sided ideal in T (L)

-1) Wy @ % - [x,y] for

generated by elements of the form x ® y -
X,y € L.

Definition 1.4: If L is a Lie algebra, then an R-module M is

called a left L-module if and only if there exists an Rmhomomorphism

L ® M —>M of degree zero satisfying [x,y]'m = x° (y°m)
(wl)lxny|y°(x°m) for all x,y ¢ L and for all m ¢ M. Similarly,
Tight L-modules may be defined.

Lemma 1.1: There exists an R~homomorphism i:L,—>L% such that
1([x,y]) = ix) 1i(y) -=(m1)lX”yli(y)°i(x) for all x,y € L.

Proof: Consider T(L) as an R~module, that is, R+ L+ LKL + -
and define j:L—T(L) by j&®) = x for any x é L, Define i = pj,
where p is the natural projection T(L)——%»IFB Then i([x,v])
= (i) ([x,31) = p(lx,y]) =p @y -¢-D "y @) =pe @)

- DM R e = GG @ (1)K
GO eH e @ GHE = i@ i) - DM iEr .

Proposition 1.1l: M is a left L-module if and only if it is a

left Le -~ module.

Proof: Assume that M is a left L-module. Then M has a left



T(L)-module structure given by 1'm = m, (xl @ ° " ® Xn)“m

=% (°°°(xn_l°(xn°m))°°°)o Any element € in the ideal I of T(L) is

of the form (a(x ® y -(-1) "Wy @ x -[x,y1)8), where o, B ¢ T(L) and

x, y e L. Then &'m = a((x @ y)' B'm) -~ (-1) "W (y @ x)-(8'm)

- [5y) @) = a6 et ) - (D ety - )

+ (-l)‘XHYLy'(xfmf)) = 0, where m' = B°m, Therefore there is the in-

duced left I%-module structure for M. Conversely, assume that M.

is a left LS-module. Then there exists'@:Le @ M-—M. Define

A= pe(d @le)s.where i is as in lemma 1.1. Therefore A([x;y] & m)

= i([x,y])°m = [x,ylem by identifying [x,y] and i([x,y]). Since

oy @m = (1) i) m - 1) (@) 1)) m bylemma 1.1

and since Ax o A(y @ m) - 1) Wy @atx @m) = pix) @ A(y @ m)
D i g em) =i @m - (DM i) ax @m)

- 160 Gew - D) e = @@ e

(-1) 1=

()P (G 5y 1 @)y m, we have [x,y]m = x*(y'm) - y* (x*m).

Hence M is a left L - module.
2, The Hochschild Cohomology of an Associative Algebra

In this section, let A be an augmented R-algebra with augmen-
tation ¢ A—»R, unit 7N: R—=s A , and multiplication p:A ® A —A.
Denote the augmentation ideal of A by Q, that is, Q = ker e.

Definition 1.5: The bimodule bar resclution B(A,A) of A is the

chain complex

3 3

§ . ]..
0*— AS——= B, (L, V<=3 B (AN =3 “f:;Bnml(AsA)*—“‘"__‘F__, Sty
S 's 8
=1 fo) n-1

where By (A,4) = A ® A, B_(A0) = A®Q @A

Q" = Q®"° @Q, n factors), Z(A[ IA') = A\’ and an(K[Kli °“fiknlk')



n-1
- e 1 i oo ce 1
—'Kll[Kzl ‘Kn]k + :g: (1) K[Kli lkiki+l‘ (Kn]K
i=1
_1y\2 oo ! ! oo .
+ (-1) k[hl( lkn_l]Knk for A,A'e A and Xl, ’kn e Q for n>o.

Following MacLane [9], the notations :A[A °|Kn]k' and A[ ]A' are

L
used to denote A ® K1<® e R kn ® A" and A ® \' respectively.
Remarks: Each Bn(AgA) is a A~ bimodule with scalar multipli-

cation given by the multiplication in A;

namely CE AR Bn(ASA)-—%>Bn(A@A) is given by u ®@ 1 n and

Q KA

0y B (AsA) @ A—»B_(A,A) is given by 1 @ u. Since B(A,A)
n n A Qt

has a contracting homotopy s defined by Sul(K) =1[ 1A, and
sn(k[kll°°°lxnlk”) = 1[X|X1|°°°\Xn]k’ for n>o, where A = - Ne\) e:Q,
it is an R-split exact resolution of A.

Definition 1.6: Let M be a A-bimodule. The Hochschild

cohomology of A with coefficients in M is defined by H (A.M)

n
= 7 (Hom, _, (B(A,0),10).
If A is augmented, R can be considered as a left A-module by
‘using the augmentation. Then we have

Definitiéﬁrlo7: The left bar resolution B(A) of the left

A-module R is the chain complex

d d
1 n .
Oe—ReZ=5 B (M) &=B (Nems * T8 (N2 B_ (&=
t t
-1 o) n-1

—_ _ o ° o o = . o5 o
where BO(A) = A, B (A) =ARQ, and dnC?\[Klﬂ Hn]) AX [le \)\n]

-1
+ -1)" ALA

o]

I

5 i+l|°°°!xn] for all n>o.

b

[ N
il
—



The contracting homotopy t is given by t_l(l) =1[ ] and
tn(K[Kl|°°°lKn]) =1[K1K1P°°|An] for nzo, where X =-A - Ne(\).
Therefore B(A) is an R-split exact resolution of R:

It is well known that B(A) is chain isomorphic to B(A,A) XALR
with differentials & ®, 1_.

n AR

If M isa left A-module and if A is augmented then we may form
the A-bimodule M€ by pull-back along the -augmentation. Specifically,
define M @ A —»M by m*A = e(AM)m for any m ¢ M and for any A & A.
Since (A*m)°X' = e(A')(v'm) = A (e(X")m) = A (m\"), M is a
A~bimodule.

Proposition 1.2: If M is a left A-module and if A is .augmented,

then the Hochschild cohomology of A with coefficients in M€ is
isomorphic to Hn(HomA(B(A)gM)), where B(A) is the left bar resolution
of R,

Proof: See MacLane [9] on page 287.

3. The Hochschild Cohomology of a Lie Algebra

If L is a Lie algebra over R then L° 1is augmented. Since
T(L) =R + L +°°°, there is an augmentation e¢': T(L)—>R defined by
the projection on the direct summand R of T(L). Then T(L) = Im 7'
+ker e¢', where 7': R—>T(L) is the natural injection.
If pzT(L)——a-Le is the natural projection, then ker p < ker ¢' so that
there is the induced augmentation e L°—sR with the property €p = ¢'.
Then L° = Im T + ker e, where T = p7'.

Definition 1.8: Let L be a Lie algebra over R and let M be a left

L-module. The Hochschild cohomology of L with coefficients in M is

given by H(L,M) = H (Le,Me),



It follows from propositions 1.1 and 1.2 that

H™(L,M) & 1" (Hom L w®),M)).
L
Proposition 1.3: Let L be a non-graded Lie algebra over R and

let M be -a left L-module. Then HO(L,M) is isomorphic to the R-module
of invariant elements of M, denoted by ML3 and Hl(LgM) is isomorphic
to the R-module of all crossed homomorphisms £:Q—>M reduced modulo
the principal crossed homomorphisms.
Proof: From the left bar resolution B(Le) of R we obtain the
cochain complex:
% d % d *

0 —= Hom e(R,M)——e--> Hom'e(Le,M)m—-l-'-s;» Hom e(Le R QM) 2 a

L L L

where Q is the augmentation ideal of L. HO(L,M) = ker dlW =im ¢

= Hom e(R,M),‘and Ml = {meM/ M = O for all A ¢ Q}. Define
L -

p(f) = £(1) for all f ¢ Hom.e(RgM). Then A £(1) = £(e(A\)°1) = 0 for
L

all A ¢ Q so that p(f) € ML, Defining o(m)(r) = rm for all m ¢ M
and r ¢ R, we have o(m)(A°r) = og(m) (e(\)r) = e(A)rm = A rm

= A°o(m)(r) so that o(m) e Hom e(RSM)° Since p(o(m)) = o(m) (1)
L

=m and o(p(£))(x) =1 p(f) = rf(1) = £(r), po and Op are identities
~ L

and therefore HO(LgM)=== M~. A lI-cocycle g:Le & Q —>M satisfies

o

dz"(g) = gd, = 0 so that gd, (1L & A ® },) = g(hy ® 1, -1® A;},)

=’Klg(l ® KZ) -g(l ® Klkz) = (0., Define adjoint isomorphisms



Hom (Q,M)<—(L—¢;—>HomLe(Le ® Q,M) by ©(£)(a & q) = af(q) and y(g)(q)
= g(1 & q), where £:Q —>M, g:Le QQ-—=M, ace L%, and q ¢ Q. Theré-
fore‘for-a l-cocycle g we have Xl w(g)(lz) ~'¢(g)(llkz) = 0, that is,
Klf(kz) = f()xl)\z)5 where f:Q—>M and Kl’ XZ ¢ Q. TFor a l-coboundary
g:Ler® Q—>»M, there exists c:L—sM such that dlk(c) = cd1 =g,

Hence cdl(l QA) =c(h) = ')\°C(1)_= gL ®A) = ¥ (gy(\), tHat is,

f(\) = 'Kmo for ‘any ‘A ¢ Q, where £:Q - M and m = c(l).



CHAPTER II

SHUKLA COHOMOLOGY OF LIE ALGEBRAS

In this chapter R is a commutative ring with unity 1 in which the
element 2 is invertible, that is, there exists reR such that 2r = 1.
Unless specified, all tensor products are over R and all modules,
algebras and Lie algebras are graded.

U. Shukla in [11] has introduced a cohomology theory for Lie
algebras over R. This theory is generalized here in a categorical

setting and some new results are discussed at the end of the chapter.
1. The Category (i,%)o

Definition 2.1: A Lie algebra L is a graded differential Lie

algebra if and only if L is a graded differential R-module and

d({x,y]) = [dx),y] + (-l)‘x‘[x,d(y)]g A morphism of graded differ-

‘ential Lie algebras f:L-—L' is a morphism of Lie algebras satisfying

f .d =d'f for all n>1, where d and d' are the differentials in L
n-1n nn

and L' respectively.

Definition 2.2: TFor a fixed graded differential Lie algebra L,

the category of graded differential Lie algebras over L, denoted by

({,L), has as its objects, morphisms vy:L'—>L of graded differential

Lie algebras, and as its morphisms, morphisms féﬁl—aL of graded dif-

2

f
ferential Lie algebras such that the triangle Ll———————yla commutes.

YIN /\/2

L



In particular, denote by (I;})o the category of non-graded Lie

algebras over %}, that is, L in & and %} are non-graded Lie algebras.
2., The Functor A

Let (0,%) denote the category of graded differential nonassocia-
tive algebras over a fixed non-graded Lie algebra %, defined analogous
to definitions 2.1 and 2.2. This section pfesents the construction of
a covariant functor Az(&,ﬂ)o-—>(ﬂ,ﬁ)o

Suppose y:L—3%1is in (1,%)0 and form the free R-module R(<L>)
generated by the underlying set <I> of L. Define Go:R(<L>)->L by
Go(<x>) = x and extend by linearity. Let ¢ = YO, 3 it is an R-homo=-
morphism. Form the free R-module R(<Nl>), where N1 = ker Go, and the
R-homomorphism GlzR(<NI>>—~>Nl given by Gl(<X>)= %, Let d1 = klcl,

where k,:N, —R(<L>) is the inclusion map. Form R(<N2>), where N2

1771
= ker-dl, and deflnevGZ:R(<N2>)-—e>N2 by 02(<x>) = x and d2 = kzoz,
Where k2 N2<——:>R(<Nl>)° Repeating this process we obtain the complex
d d G

——>R(<N > —-——> R(<N1>) -———e» R(<L>) —-——> L

AVARVAV,

d d
1
Then A(L):e: - ~> R(N>) P R(N_1>)—> "+ = RN > —> R(<L>)

is a graded differential R-module. Let us define inductively a
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product in A(L). First [ ]:A(L)o ® A(L)o—€>A(L)O is given by
[<x>,<y>] = <[x,y]> using the Lie product in L and extending linearly.

Then ¢ is a morphism of nonassociative algebras because ¢ ([<x>,<y>])

vo, (<lx,y1>) = v([x,y]) = [y(x),v(y)] = [yo (<x>), YO _(<y>)]

[e(<x>),e(<y>)]. Secondlyf assume that for all p, q such that
p+q<n,‘R(<Np>) R R(<Nq>)——£—la-R(<Np+q>) has beeﬁ defined sapisfying
dp+q([<x>,<y>]) = [dp(<x>)<y>] + (-1)P [<x>,dq(<y>)]o Let r+s = n and
define R(<Nr>) R R(<NS>)---—£—]—9=R(<Nn>)° It suffices to aefine
[<x>,<y>] for xeNr, yeNS, Consider [dr(<x>),<y>] + (~1)r [<x>,ds(<y>)]
in R(AN _;>). Since d__ ([d (<x>),<y>]) + (-1)7 d__; ([<x>,d_(<y>)])

= (4,14, (0),<p] + (DT 4 (@), ()]

rts-1 [<*>’d5u1ds<<y>>] =0, it is in

+ (-1)7 [d_(<x),d_(<y>)] + (-1)
Nn° Thus we may well define [<x>,<y>] = <Idr(<x>);<y>]
+ (-1)r [<x>,d (<y>)£> and extend linearly. Then d ([<x>,<y>])
s r+s

= [dr(<x>),<y>] + (~1)r [<X>,ds(<y>)], and so A(L) is a graded differ-
ential nonassociative algebra.

Define A(y):A(L)—>% by A(y)o = ¢. Then A(y) is a chain map
because ed1 = ycodl = 0. Since ¢ is product-preserving, A(y) is a
morphism of graded differential nonassociative algebras.

f
Let f be a morphism in (I,q)o, that is, the triangle L —> L'

N

commutes. In order to define a morphism A(f) in (6,%) such that-

A(E)
A(L) —————> A(L") commutes,

A<;?\\\ ‘//2(y')
O»&

it suffices to define a chain map g:A(L)->A(L') inductively. TFirst

define go:R(<L>)——;R(<L'>) by go(<x>) = <f(x)>. Then g, preserves the
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product in A(L) because go([<x>,<y>]) = go(<[x,y]>) = <f([x,y])>

<[fx),f(y)]> = [<f(x)>,<f(y)>] = [go(<x>),go(<y>)].. Since foo(<x>)

= ' 1 F3 J ' - = -
f(x) = Oo(<f(x)>) oogo(<x>), Oogo(n) foo(n) 0 for neNln There

fore go(N1>{C.Ni; Secondly, assume that for all p,q such that p+4q<n,

:R(N |, > R <N' has been defined such that d'
(Npy ) —> RO ) p+aEptg

and gp+q preserves the product in A(L). It follows im-

) <

Eptq

- d
8ptq-1p+q

. 1 : =
mediately that gp+q(Np+q+l Np+q+1° Define gp+q+1(<X>) <gp+q(x)>,

= f ' =
Then gp+qdp+q+1(<X>) = gp+q(x) and dp+q+1gp+q+1(<x>)

(<g (x)>) = gp+q(x) so that gd = d'g. Hence g is a chain map.

dp+q+1

Suppose r+s = n. Then gr+s([<x>,<y>]) g +S(<[dr(<3>)<y>x]

+ D<o, d (2)]3) = <g o (ld (<ed, <] + (D [<s,d_(sy5) D>

<lg,_qd (<)hg (<)) + (-1 [g (<o),g_;d_(<y>)]>

]

<lajg, (sohe, (y>)] + (Dle, (90),dle, (<r)]1>

I

<ld) (<g,_; ()>),<g_; (1>] + (-7 [<g_ ) (0)>,d] (<g_; (7)>)]>

[<gr_1(x)>,<gs_1(y)>] = [gr(<X5%géky>)]a It follows that {gn} pre-
serves the product in A(L). Define A(f)n =8 It is clear that

A(f) is a morphism in (,%), that is, A(y')a(f) = A(y), because if

n>0, ACy') = Aly) =0 and if.n =0, Aly") g, (<x>) = e' (<£(x)>)

= y'o;(<f(X)>) = vy (£(x)) = y(x) = yo_ (<x>) = e(<x>) = A(Y) (<x>).

This completes the definition of the functor A.
3. The Functor P

Definition 2.3: Let A be a graded nonassociative algebra with

product denoted by [ 1. An R-submodule I of A is a two-sided ideal

in A if and omly if [I,A] —I and [A,I] < I, that is, for all erp

and for all aeAq, [x,al, [a,x] e Ip+q° If S © A is a graded set,

then the two-sided ideal generated by S, denoted by I(S), is the
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R-submodule of A generated by elements of the forms X, =8 for all

seS, %, = [a,xo] and X, = [xo,a] for all aecA, and x = [a,x and

1 nml]

X = [xn_l,a] for all aecA and for all n>l. Note that if A is a Lie

algebra, [a,xn] = (_1)|auxni+l

[xn,a] for‘all n>1 and so there will be
half as many generators of the type X for n=>1.

Lemma 2.1l: If A is a graded differential nonassociative algebra,
and if I(S) is a two-sided ideal generated by S in A which is closed
under d, that is, d(I(S)) — I(8), then A/I(S) is a graded differential
nonassociative algebra.

Proof: The R-module structure of A/I(S) is given by (A/(I(S))n
= An/I(S)n and the product for A/I(S) is defined by [x,y] = [x%,vy].

Define d:A/I(S)—>A/I(S) by d(x) = d(x). Since I(S) is closed under

d, d is well-defined. Iflx| = p and \y| = q, then ap+q([§,§])

34Ty = 3yl = [d GOyl + CDF [x,d ()]

T N - P S _1\P (3T
[dp(X),y] + (-1) [x,dq(y)] [dp(x},y] + (-1) [x,dq(y)]

[ap(i),§] + (wl)p [i,&q(§)] and hence A/I(S) is a graded differential
nonassociative algebra.

The construction of a functor P:(0f,%)—>(L,%) can now be describe
ed. Note that L in & is graded but °} is non-graded. Let v:A—>% be
in (0,%). Consider the graded set S — A consisting of elements of the
types (1) [x,x] for |x| even, (2) [x,y] + (~l)lxnylﬁy,x], and
O E PR RS Ll PA RN I G VLA PHIRY
and form I(8) as in definition 2.3. Let P(A) = A/I(S). 1If
d (I(8)) € I(S) then by lemma 2.1 P(A) is a graded differential non-
associative algebra. In order to show d(I(S)) — I(S) it suffices to
show it for the generators of I(S). Consider elements of the form

x, =s. For type (1), d([x,x]) = [d@),x] + (-1 [x,dG0]
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[d(x),x] + (-1)\X"d<x)‘[x,d(x)] because |x| is even. Therefore,

d([x,x]) € S. For type (2), d(lx,y] + (-1>'X”Y‘[y,x])

+

+

alx,y]) + DAy, 1) = [d@),y] + 1% [x,a()]
U pagy) ) (-0 PRIy a0
L),y + (-1 14EMI o a1y + 1 (ix, a1

(-l)ld(Y)“xl[d(y),XJ) because |y| (|xi+1) = |y}|d(x)] mod 2 and

|xlly] = Ix| (1+1d(y)| ) mod 2. Therefore d([x,y] + (-1)‘X"y‘[y,x])eI(S)a

For type (3), d((-l)\x“zl[x,Ly,z]] + (~1)'y“x‘[y,ﬂz,x]]

+

+

+

+

+

+

D VN o ey D) = GO P G Ly, 211+ D T ay, (2,501
0 W a2, 1,511 = 1P 4o, [y, 211 |
LA 2] + 0 ™ Lag), 12,5

(1) I o gz, 1] + 1) W Lacz), Ix,y1]

GO sy = DR a0, Ty, 20

lx“z|+\xl[x,[d(y)’z] + (~1)IY|[y,d(z)]] + (_1)‘y“X‘[d(y),[z,x]]

(-1)
0 T TaGy,xl + (D P zae001 + (0P L), I,y
DPTFE L e, y] 4 (-1 x,d (1]

UM e, y, 2101 + GO g ra, 21T

AR a1+ oM La), Lz,x0]

OEIFITL G raca) %] +'(_1)\ynxl+\y|+|»zl[y,[z,d(x)” :

O Az, [x,y11 + AT [ L),y
DA R G a1 = GO GO g L) s 20
DO gy s+ OERO a1

GO EOEREN [ty a1) + ORI Ly Taz),x)
@ a6y, 1511y + U RN (460, 1,211

(-19y“d(x)l[y,[z,d(x)]] + (~1§z”y([z,[d(x),y]], which is in I(S).

Consider elements of the form x,. Since d([a,xo]) = [d(a),xo]

+

1

(-19a.[a,d(xo)] and since, from the previous arguments, d(xo) = T8y
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where sieS, we have d([a,xo]) = [d(a),xo] + (-lja\z [a,si], which is
in I(S). Similarly, d([xo,a]) ¢ I(S). Assume that d(xk) e I(8) for

all ken, Then d(x ) = d([a,x__ 1) = [d(a),x__] + (-l)‘al[a,d(xn_l)]

n-1
= [d(a),xn_l] + (_1§a|§£:[a,yi], where y; € I(S). Therefore d(xn)

¢ I(8). Similarly for X = [x ]. Hence by lemma 2.1, P(A) is a

n-1"%
graded differential nonassociative algebra. It is obviously a Lie
algebra.because of the construction of I(S).

In order to define P(y):P(A)—s"}it suffices to define
P(y)o:AO/I(S)O—éf}because %n = 0 for all n>0 and so P(y)n is trivial
for all n>0. Let P(y)o(§) = y(x). Since y([x,x]) = [y(x),y(x)] =
because \&(x)\ = |x| is even, v([x,y] + [y,x]) = [y(x),y(y)]

+ vy ,y(x)] =0, and y([x,[y,z]] + [y,[z,x]] + [z,[x%,vy]])

= [y, [y ,y(2I] + [v&),[v(2),y)] + [y(2),[y&x),y(y)]] =0,
P(y)O is well-defined sad the object transformation for P has been
given.

Let f be a morphism in (0,%)), that is, the triangle A ~————J>Af

N

commutes. In order to define a morphism P(f) in (¥,%) it suffices to
take P(f)(x) = f(x) for all x ¢ A, P(f) is well defined if -
P(£)(I(S)) <« I(S'). We will omit the bars for the sake of typograph-

ical simplicity. P(f)(Ix,x]) = £([x,x])

il

[£x),£G)], PE)([x,y] + -1y 51y = £lx,y] + 1P [y,x])

L£G), £)1 + ((DECME ey ¢091 and ex) (112 [, 1y,2]]
G PRI IYE LN P SIS )
= DEOWED ey reey, 8011 + (UEOME £y 120y, £(x01]

+

('lﬂf(z)“f(y)][f(z),[f(x),f(y)]] so P(f) is well-defined.

+

Considering the differential d induced by the differential-d in
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A, we have P(f) . d (x) =P(f) (@ G)) =f d x) =df

- At = At = . .
dn(fn(x)) an(f)n(x) and so P(f) is a chain map.

Also P(f) is product-preserving -since P(£)([x,y]) = P(£)([x,y])

f(x,yD) = [f@),E(y)] = [£&x),£F)] = [P(E) (%), P(E)(P].

Since P(y')P(£)(x) = P(y")(F®)) =y £(x) =y = P(y)(x), P(f)
is the morphism in (¥,"}) associated with f in (#,%) and the morphism
transformation for P is given., This completes the definition of the

functor P.

4. The Functor D

Definition 2.4: Let A be a non-graded algebra. An A-bicomplex

X is a bigraded A-module Xp y P»q20, together with A~homomerphisms
b

q
3', 3" of bidegrees (0,-1) and (-1,0) respectively, satisfying
a!al =0, anan =0, and anaj + avan =0,

Definitjon 2.5: The category X of A-bicomplexes has . as its objects

A-bicomplexes and as its morphisms A-module homomorphisms f:X—»Y of
bidégree (0,0) satisfying 8'f = f3' and §"f = f3', where §' and §' are
morphisms of Y.

In summary, these two definitions may be illustrated by the dia-
gram in which the following holds: 3' 3! =0, 3" ;3" 0,

p,q°p, g+l p,q°ptl,q

" 0 (similarly for 8' and 8"), &' f
P59 P>9 Ps>4

it 1 + 1
ap,q~lap,q apmlsqa

f ! s f = f " similarly for the other two
qu-lap,q’ P>q9 P»q P”l’qapsq ( y

squares in the diagram).
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b+, e
"
Bpﬂ,q_
>< B/lo,%\
ha Pyg+
gP; 3-
U n p
y o s 3.
He! /
N/ gp-\ a. Y
-4 S AR

P“ﬂ;‘

We are going to define a functor D:({}) —s%, where ¥ is the
category of ﬂlwbicomplexeso Note that %} and its enveloping algebra
’}L are non-graded algebras.

For yv:I’'—% in (L,%) define D(Y)O as the trivial complex, that
o . = ] N . o
is, for all m>o D(Y)o,m 0 and ao,m°D(Y)o,m—'—>D(Y)ogm-l is the
trivial homomorphism. For n>o consider the ”}enmodule

o}e@ 'R ... & and define
Mmoo e mersimsrert

n factors

e .
D(Y)n,m = Z )y R Fal R ... R FO/n , where Rn,m
011+ooo+un=m Rl’l m

.20
Q,l

is the °}e~submodule generated by elements of the forms

(1) l®x1®“o®xi®xi+1®“°@xn
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n

Al
+ (-1) 1®x1® ®'Xi+1.®xj’_’®”n=®xnwuh Z xi=-m
i=1
and xieI‘a , and (2) 1 R X @ -oo RERIXR --- @xn with |x| even.

i
, 1 .

Remark: Since 5 € R and, since for {x| even,
1®x1® iee MEXBWXR o0 @xn+l®xl® coe X P XR oo @xn
= 2(1 & Xy oo RXREXK cc0 & xn), the generators of the second
type are redundant.

By way of example and in preparation for the computations carried
out in Section 6, we have the following low-dimensional modules.

. _ = o€ _
Since Rl,m = 0, D(Y)l,m % ® 1"m for all m=20. The generators of
R2,o are of the form 1 @ x ® x, where xel' | so that D(Y)z’0
= °}e @ (FO/\I‘O)O Since R2 1 is generated by elements of the form
9

lax@y+ 1@y ®Rx, where XeI‘O and ysI‘l, D(Y)2 1 =a}e @I‘O®Flo

For n>o, define

e
Z o}®ral®“°®roz 7

n
I oo o =m

? °
n,m

e
Z % RTg 8. BTy

n
B;1+, . °+Bn—m~l

by 31 R%x @ ... @%)

2 BN EREEI
=(_11)n+1 z (-1) 1®x1®”°®dxi®°“®x,

n
i=1
. el
where d.I‘CL/i—-gI‘o[i”l° Then 3' (1 @ X] R oo R X, R X5 ® .- Q X
125 1% 41

+ (=1) l®x1®°°a®xi+l®xi®oaogxn)
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x4+ Fix, )
+ 5=
=™y et Taex @ @i @ @
j=1
j#i,itl
IxAx. 41
+ (- itTitl oo coe
(-1) lex @ ®dxj® g =)
\ |x.1 x|
n+l 7L i
+ (-1) (-1) (1Q Xy R °® Xy R dxi+l R ® x_
1241142, 4]
+(~1) 1 Xy R R dxi+l ® X R R Xn)
- [x, )z, .|
nt+l 1 i-1
+ D7 D (1Qx R Rdx, @x, ., R & x
+ (~1)‘Xi41ndxi‘ 1 e@x,, @dx, ® h
®x1® ®xi+l® xicg) ®xn) so that
a'(Rn’m) c Rn,m-l and 3' induces a!ngm : D(«y)an , D(Wﬁ,mwl“
. Since dd = 0 and ]dxil =|‘xi'\‘-l, 3a3a'(l ® X & ﬁxn)
n
. ey 1+ ey |
=(_,1)an (_,l)l lla?(l®xl®oou @dx'®ooo®x)
i n
i=1
n D T
) ool 7 i-1 lx1]+ +‘xj~=l‘..
= (-1) (-1) (-1) 1R X ®
i=1 5=1
.®dxj®.o.=®dxi®ooo®xn
1 Rl R
+ Z(-l) , l®xl®°°®dxi®”°®dxj® ®xn)

j=i+l

e |+ g )
_ Z (-1) 1@x 8 Bdx, @ @dx, 8 R
lgi<j=<n -
) Z (‘l)lxj\+0“+lXiml‘l®X®°°°®dx R " Qdx, & "2 K X
1 J i o n

l<j<i<n

0 because terms corresponding to lsjo<iosn in the second summation
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and i = jo’ j= io in the first summation are equal. Therefore

For n>o, define

M i e
.1 FR—

e
2. Blg @Bl by 3URx®... 8x)

1 n

n
. +1 i -
= 1) (Z (-l)lly(xi)@)xl@ooq@;{\,@goan

i=1

P, .
- z (-1) lJ@[xi,xj]®x1®000®§i'®000@ngn,@xn),

lei<jgn

where ¥, denotes deletion of X,y Po: = Z x_|1%,
i i’ Fij p't 71
p<i

. ) P e .
+ Z lpoxj\ +1i+ 3 -3, y(xi) =0 if |x|> 0 and y(xi)e o} if
P<]

n

P#i
|xi|' = 0. Then J'"(1 Rx & ... Rx, @X 1 R0 RXY
(e %4l
+ (-1) 1®x1®,”®xi+l®xi®“°®xn)
n .
+1 -1 o A
= (_l)n (Z (_l)j (Y(Xj) ® Xl @ °°"‘® Xj®“a°° ®xi ®Xi+l® °°°®X
j=1
34, i+l

lxijlx._'_l\ N
+ (1) '1 Y(Xj)®xl®°°°®xj®°°°®Xi+lQ_xi®°°°®xn)



-1
lxi‘ \ X1+l\ i N

1

0. . .
(*-l)n-i-l ( Z (-1) Ik (1 ®“[Xj’xk] RX Q.- QXD

l<j<ken
j,k;g:i,i+l
N
oo ®Xi®xi+l® ®Xk® oo @ X

ERTEY

e

i-1
z l)pji [ | A A

(- R Xj’xi @xl@o.o@x,@a“®xi®xi+l®”°®x
j=1

i-1
g %40 Py i+l ~
(-1) ~ - (-1) -2 RIx,x] @%x, ® ... X. ®
N 1 3
j=1

N

oo ®Xi+l®/xi,®unogxn)

n+l Py i+l A
(-1) ( -1 .

% 125 (wl)pi+1,i

A A
® [Xi+l’xi] ® X ® oo ® X 11® X,

i A
(-1) Y(Xi+l)"® X R oo BX G RE @ oos

1

Fa
K [Xi’xi+l] RX Q-c0 RE, ® X, ® ...

@

R X

20

n



n

i1 A
_ (_l>n+l (z (-1) (y(xJ,),@x]_@“o@xj@o,a®Xi®xi+l®

5=1
j*i,i+l
‘X]{\Xiﬂ.l A
”'®Xn+(-1> y(xj)®xl®“°®Xj®”°®xi+l“®xi®

)

P.
k A
Z (-1) J (1®[Xj’xk]®xl®“°®xj

® -0 ® X R X5 ®
l<j<k<n
j,k*i,i+l
A
@xk® @xn

SRS A
+ (1) l®[xj’xk]®Xl‘®”°°®x'j®”°®xi+l®x'®

1

A
,®xk®“.,®xn)

i-1
A
- Z((_I)Ol@[xj’xi]®Xl®°”'®xj®°°°®§i®xi+l®°°°®Xn
j=1
2ix 11 %, |
+
+ (- Lo (~l)a+l®[xj,xi]®xl®“a®§j®

. A
.o ®Xi+l ®Xi® @Xn)

1

A A
X, @K, 1 Q.0 RX

((“I)B R [Xi’xi+l] % @ ... @

n

21x 0 x. 41
+1 .
+ (-1 b Bl g [x,%, 4] @5 ® ....® ;21'.+1 ®§i® @xn))

The last equality comes from the facts that y(xi) =0 if \xi\ > o,
y(xi+l) =0 if !Xi+1‘ >0, g = pji’ and B = Py g41° Since the sums

of all except the first two summations is zero, and these two
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. . 1] 1
summations are in Rn-l,m’ we have 3 (Rn,m>'c Rn~1,m so that 3
. "o,
induces an,m.D(y)n’m—a>D(y)n_l,mg
We wish to show that 3"3" = 0. By applying 3"3" to
i ®‘Xl'® ) x we will obtain four types of summations, each of

which is zero. First, we have

O (D™ ey + DM vegyv e

l<i<j<n
- e o x) X R 1f
y Xi"xj ®x1.®ooo®xi®°°°®xj®ooa®xno
lxi| > 0or lle > 0, then this sum is zero. If lxi\ = \xj\ = 0,

then p.lj = 1 + j - 3. Hence the first factors of the tensor products

are (-l)i+ﬁ-l (Y(Xi)y(xj) - y(xj)y(xi) - y([xi,xj])), so that the sum

is zero. Secondly, we obtain terms of the type

il 1P A A
(~1) (-1) Y(Xi)®[xj’xk]®xl®°”‘®xi®“"®xj®

~

FRK R e RE

. P.
i ik , N A ~
FEDTED Ty e [end @ xge @R @@ me® R,

where P = (\X]_' + .. +|Xj"’1\)lle = lxl“XjI + ( lxl\ + ...
+lx,_ DIk ) - Ixdlx] + 3 +k - 5 and lsi<j<ksn. If |x,| >0
then this sum is zero. If lxil =0, theni ~-1+p=1i+ pjk +1

(mod 2) and the sum is zero. Similarly we may consider the cases
l<i<k<j<n, lgj<i<k<n, l<j<k<izn, l<k<i<j<n, and l<k<j<i<n and obtain
zero. Thirdly, we obtain terms of the type -

P..
A
(-1) lJ(-1)p R [xk,xe] e [Xi’xj] % R .- @ Qi R ... Q xj ®

°®§k@°“®§2 @ ... Q% ~

e n
A
X,

]
R -0 R X where p = (|x1| + ... + [xk_l\)lxkl

P 1
+ (D DY gl l @l ) Dx R ... 2R 8. ek @

S R

e
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+ 0=+ e+ x D) - i) - IxdE ] - ESIEN
-l ] + e+ D Ux ) +1x D) +k+e - 7 and

PUos Qxp) Heetlxg D x|+ (gl +,.,‘.+;xjnl|)3xj| e
+ (x| + lxel)(lxi[ +lxj}) +1i+ j - 1. This sum is

(-1)p+pij - Ax 4 lle)(\xk\ + lXe\) ~6.‘

. A A
(L@[xk,xe] R [Xi’x‘j] R X R ... BK, Do @xj & -0 ®xk®

A
. ® X

' o 00 X
e® & n

I[xi,xj]ll [Xk,xe]l

+ (-1) 1R [x.,xj] ? [xk,xe] X @ ... R g R

i i
A N 7S . .
x R - QX Q.. BX, B .o @xn), which is zero because

. ®

it is in Rn o’ Similarly for the other cases with 1l<i, j,k,&<n.
b

Fourthly, we have terms of the type

Pis - A A N
-1) P g [[Xi’xj]’ Xk] RX R oo BX, R o0 @ X, R .. RE R

P. 1
_ Jk, _.\P ‘ ‘ A
cee @ x_+ (-1) “7(-1) ®[[Xj’xk]’xi]®X1®°”®X'®”°®X°®
& | e DR g flx,x] x) 2
- ® Xk ® ... ® Xn R 1 xk,xi Xj ® xl R oo B X, R
@Q R @g«:\ R R x_, where = ({x,] + + {x )%\
. 5 e -, P 1 -1 K
- lxinkl »s.\xjnxkl +k -2, p' = (\xl| + “o+\xi_l\)[xi\ + i,

"o - s : e
) (\xll +...+ lxju1|)\xj | bxi“ xj| + j - 2, and l<i<j<ksn.
Combining terms, we obtain as second factors of the tensor products

lxillxkl \X°!‘Xil

(-1) [lxpox ], x ) + D 1, x,]

[[xj,xk

LR

+ (-1) [[xk,xi] s Xj]’ which are zero from the Jacobi identity.

Similarly for the other cases with l<i,j,k,<n. Therefore
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A3MMak X, R ... R xn) = 0.

We have (3'3" +3"3")U® X ® ... ® xn)

n
A n+1 Z i-1 ~
' {(-1) (-1) Y(xi)®xl®,“®x.@“,,&xn

i
i=1

‘n+1 Pi' A ~
- (-1) Z (-1) J b [Xi’xj] RX Q-0 ®RE, @ -0 @xj R .- @xn)'

1

l<i<i<n

n
‘ [ 3 N N S b S
+ av“ ((_1)n+1 Z (-1) 1 J 1 1 ® Xl ® ) & de @ 000 Q Xn))o

j=1

By.applying 3' and 3" we obtain three types of sums, each of which is

zera. :First, we have

Z (_1)1_1(_1)|x1| +...+ | x,

J“’1|
l<i<j<n

x|

1%,
1 - 1D Iy&x) xR

A
,,®x.®°“®dxj®“o®x

1 n

n ‘
: (3 \xj_l\ 3-1 A
+ Z(-l) (-1)- Y(dxj)®X1®”°®dxj®°"°®xn°
j=1

1x.1
o — 1 —_ .
If [xil > 0 then y(xi) =0 and if ‘Xil =0 then 1 - (~1) = 0;

in either case the first sum is zere. If \dle > 0 then y(dxj) =0
and if |dx,| > O then |x.| > 1 so that v, .(d,(x,)) = v.(x,) = 03

ldx, | EN PRICHCIMIERVACY
in either case the second sum is zero. Secondly, we obtain sums of
the type

P..
- en™ent S o HeP e gl ey e e d &

l<igj<ksn
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A
X

. R i R .. R dxk R -.. X

n

|x \ +...4+ | x 4l P..
S entepm™t s Y et ey M gilxg,x ] &% @

lgi<j<ksn
.";.@Awg,ww@/\f gdx, & .. @ X wherep=\x[ +lx]+|x\
+,,°+|xi_1\+|xi+1|_{r-_=~+|xj_l\ﬂxj‘{_ll+ S Y B T B SRR L
The sum is zero and similarly for the other cases with 1<i, j,k<n.
Thirdly, we obtain sums of the type
L.l .n Pij A A
S CED R CY) -1 T edlx,x])@x R ... X, @ -:- RX, @
1’77 1 i =]
l<i<j<n
. ® xn
B b |
+1 +1 1 -1 w A
- (DTTED? Z (-1) DR @ Ixg,dx Jee @ @@
lgi<j<n o
~
R dxj & - ® x

(S R S b '
- o™ Y ey ! FUCDP glax ) 8% R

l<i<jgn
VS ~
oo @ dx3;® ouo & Xj R -0 R X s where

e}

= (|x1| +...t |Xi~f)lxil + (lxll +.. .t lxj_ﬂ)ldxj| - \xi|\dxj‘

+i+ 3 -3 andp'= (|xl| +. ..+ lxi_ﬂ)ldxi| + (lxl|+a°,+ lxj_ﬂ)lxj|

1

|xi||xj[ + i+ j - 3. Hence this sum becomes
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Pij bx,)
Z (-1) ® (d([xi,xj]) - '[dxi,xj] - (-1) [xi,dxj])cz X ®

l<i<j<n

L®%, @ ... ® Qj & ... @ x_, which is zero from definition 2.1.

5. The Functor C

e . . v
Let ¥ be the category of % -bicomplexes and let %;h% be the |
category of ﬂf~comp1exesa By %Eﬁ;we mean that the objects are graded

e . ] . . - .
&y -modules {Mh} with ¢} -~homomorphisms M —>M such that 33 =0,

1

and the morphisms are chain maps f:M-—»N of Q¢~modules, Then
C:% —d»wjﬁsis the standard condensation functor, described here for
completeness.

For each object X = {X_ , 3', 3"} in ¥ define

Psq
- . e_ X
C(X)n = :5: Xp,qa Hence, C(X) is a graded 0} module. Define
p+q=n

. . - = !
an.C(X)n——)-C(X)n_l as fgllows. for xe_Xp,q, let an(x) 3 ﬂfx)

+ 3" q(x) and extend over the direct sum. Then an_lan(x)

() + 3 (x)

By (3 GO + 30 () = !

] 1] " 1
Psq p,q~lap,q p,q-1%p,q

+ 3 d ) +3 q(x) = 0 from definition 2.4. Thus

1 " " 3"
p-1,97p,q p-1,4%p,

{cX), 3} is in ﬂ;qu

Let £:X-»Y be in ¥, that is, f — Y commutes with the

: X
P9 'P>q P>q
differentials in X and Y. Define C(f)é:C(X)nf->C(X)n by extending

fp q over the direct sum, that is, C(f)n = ¥f

b

P,q°

6. Shuklia's Cohomology Modules

Consider the functor E:(x,q)o-———> q:ﬁg defined by E = CDPA»
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C; D, P, 4,.as inthe previous four sections. Let vy:L=>%be in
({,"])ﬂo and let M be a fixed ?-module, Note that by proposition 1.1,

Mis a °’a‘°’-modulea Then E (y) is a qe-complex:

3 3
1
E(y)o<——E(y)1 D A E(y)n_l < E(y)n -

Construct the complex Hom , ., (E(y),M):

D'k

L.

1 oo ,
Hom o‘g(E (Y )0 2 M) —_— Home,\_q_(E ('Y) 1 :M) - éHom (E ('Y)n_ls M)

q-?.

ale
w<

n
> Hom (B (y), M) =

Definition 2.6: The Shukla cohomology of v with coefficients
in M is defined by Hn(Hom,ij(y),M)) = keT 341 /im 3% and will be
denoted by SHn(y,M)o

In particular, if v = the notation.SHn(Q,M) will be used.
Y

l’k ,
This is the case which is considered by Shukla in [11].

In view of our construction of E, SHn(ﬂg,M) differs from Shukla's
cohomology in dimensions zero and one. In fact, sy° (“}, M’) = 0 although

in [11] Shukla obtains M for his zero-dimensional cohomology. -This

can be seen from the complex:

av’: 37':

e

o A(Lis//
+ Homq{_(q ® Vo,\Vo,M) —> °°°, where Vo = I(S)o and

A(L)l
vl = ///4f(s)l,

Definition 2.7: TFor a ®- module M and for veL —»"}in '({,‘})0,

Der(y,) = {f ¢ Hom(L,M}:E([x,y]) = y()£(y) - y(y)£(x)} forms an

R-module and is called the module of derivations from 'L to'M.

In order to show that SHl(ng) is isomorphic to Der(y,M) several
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lemmas will be established.

.Lemma. 2.2: .SH.l(.y,M) =~ {f' ¢ Hom (Vb,ﬁ)/f' <ix,y]l>)

= y(x) £' (&>) - y(y) £' (Z>) for all x, yel and £' (@) = 0 for all
neN\l}.

Proof: Suppose f ¢ ker 3%, that is, f ¢ Hom (%e R VO,M) such

o2
and <>—<>/\Z}753V0/\V0

that faz = 0. Since <a5> ¢ V, for any neN

1 1

. for. .any x, .yeL, faz(]_@ <n>) = 0 for all neN; and faz(l ®R > A IF>)

0 for all x, yeL.. Then.faz.(l R <n>) = f(ai Lt a'l' 1) (1 @ <n>)
b b

il

3,1 0F>) = f(1 @ d(>) = f(lgd (<>) = (1M =0,

Also f3,(L@ TS AT>) = £(3, [+ 35 01 @ > 8 F>)

f=a'2',o(1 RIS RID) =y T> - v(y) T - 1 R [T, IF5])

fy&x) T> - v(y) @ T - 1 @ <[x,y]3)=y)I1 @ F>)

vy) £(1 @ <&&>) - £(1 @ <[x,y]>) = 0. Hence £(1 & <[x,y]>)

it

vIE(l & <>) -~ vy E(L ® =5). It is well known that there is
. . . . . ) e
an .adjoint isomorphism »p.Homﬂg(ox RV, M) —»Hom (Vo’M> such that

p(E)(g) = £'(¢) = f'(l ® () for geVOo It follows that SHl(y,M)

[feHom,r(O% R VO,M)/f(l ® @) =0 for neNl, (1l g <tx,y]>)

v()E(I R <y>) - y(WMEA & <_x"§)for X, yeL} is isomorphic to D, v
where D = {£'eHom(V_,M)/£' (7) = 0 for nel, , £ (<[x,y]>)
= v E (FD) = y(NE' (TD) for x, yel}. |
Lemma 2.3: Der(y,M) = D, where D is the set described above.
Proof: We construct maps A and W, DeJL"(y,M)(_—iJ'_—.'> D such that
gA and AW are identities. Define X by A(f')(x) = f'(ZXS) for all
xeL. In order to see that A(f') is R-linear, consider
0, (<xty> - <x> - <y>) = o, (< + y>) - o, (<) ~»do(<y>)

=x+y -x -y =20. Hence <x-f-y>‘--’<‘x>~=-’<y>=ne:Nl = ker Oye
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__Therefore @l = X ¥ 3> - &> - &> so that £' (T F 7o)

= f' (&S + > + 1) = £'1(XS) + £'(S) because £' is R-linear and

f'(@@) = 0.  Similarly f'(r &) = rf' () .and )\ (f') is R-linear.

Since A(f") ([x,y]) = £'(<[x,y]>) = v(X)E' (F>) - v(¥) ' (T>)

= yENUED () - vOAE) (), A(£f') ¢ Der (y,M). Define y by
#(g)(ZF>) = g(x),for ge Der (y,M). In order to see" that u(g) is
well-defined, it suffices to show that g kills the generators of
I(8) . First, glx,x]) = v(x)glx) - v(x)glx) = 0. Secéndly,
g(lx,y] + [y,x]) = gllx,y]) + g(ly,x]) = v(x)g(y) - v(y)gx)

+ v(y)g(x) - y(x)gly) = 0. Thirdly, g(lx, [y,zl] + [y, [z,x]]

+ [z, [x,y]]) = y(x)g(ly,z]l) - yv(ly,2z])gx) + v(y)g(lz,x])

-y (LzxD)e(y) + y(@gxy]) - v(lxye() = vy (elz)

vy (x)y(2)g(y) = [v(y),y(2)]lgx) + v(y)y(z)g(x) - v(y)y(x)g(z)

3

»[y(Z),y(X)lg(y) + vy (x)gly) - yv(2)y(¥ex) - [y&x),y(y)lg(z)

(v (2) = y(@y(3)- [y(),y (@ DeE) + (y(2)y(x) - yx)y(z)
= [y(2) v Degly) + vy () - vy - [vx),y(y)1le(z),
which is zero from the definition of Vfa Since g is R-linear,

g)(<s> +<y>) = (@)X Fy>) = glx +y) = g(x) + g(y)

= u(8) (>) + u(g)(F>). Similarly, Ww(g)(rF) = rk(g) (T¥>) so that

1t

w(g) is R-linear. For neN;, w(g) (@) = g(o (n)) =0, and for x, yel,
w(g) (<Ix,y1>) = glx,y]) = y()gly) - v(Mex) = y&u(@) &>

- v(y)u(g) (<x>), so that w(g) ¢ D. Then WA (£'))(T>) = A (£") ()

= ' (&>)and A (u(g)) (x) = k(g)(E>) = g(x) and the desired identities
are established.

Theorem 2:.1: SHl(y,M) =] Dex (v,M).

Proof: Immediate from lemmas 2.2 and 2.3.



CHAPTER III
COTRIPLE COHOMOLOGY

S. Eilenberg and J. C. Moore [6] have shown that the concept of a
cotriple on'a category is a convenient tool for defining cohomology.
This technique has been employed by Barr [1], Barr-Beck [2], and

Shimada~Uehara-Brenneman [10].

1. Cotriples and Adjoint Functors

Definition 3.1: A cotriple (G,e,A) on a category il consists of
2

a functor G:fl—0 and natural transformations €: G-—»l%, A: G—=>G

satisfying: (1) the compositions G——éaaéz——gga-G and G-—AE»GZ-—EE»-G

are the identity and (2) the diagram

commutes.

30
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The way to obtain a cotriple is from a pair of adjoint functors.
Let Ml and ¥ be pointed categories. If functors T: U—>%, S: & —= 10
and natural transformations a:.ST-dylﬂ, B: %b—e»TS satisfy
(ozS)(SB)=‘1S and (Tw) (BT)= 1., then T and 8 are called adjoint
functors and we symbolize this by (&,B): S—T : (fi,§) or simply by

S—T.

Proposition73.l; If (w,B): S—IT : (i,%), then (ST,y,SBT) is a
cotriple on (. |

Proof: Since S,T are functors and «,B are natural transforr
‘mations, ST: L —-» 6L is ‘a functor, o: ST->1u and SBT: ST—»STST = (ST)2
are natural transformations. From the definition of adjoint functors,

and oSToSBT = (a8°SB)eT = 1_oT = 1

S ST®

siaosBT = Se(TqeBT) = Sel, = lg,

Since B is a natural transformation, TSBeB = BTSeB and so

(ST=SPRT) o (SBT) =’S°(ISB°B)=T'= S e(BTS>B)=T (SBTeST) e (SBT).
2. The Standard Semi-Simplicial Complex

Let 0 be a pointed category and let (G,e,A) be a cotriple on fL .

Define the -standard semi-simplicial complex by

(e}
! (e}
—_ 3 Zl 2 ¢ €
, 2 —>
(G: e S =2 G o G——>1,
—> g? et

n+l n=-i

where the face morphisms ¢t:G —> " are defined by et =¢'e G
(Gn = GeGe** oG, n factors) and the degeneracy morphisms

n+l

AlzG ——€>Gn+2 are -defined by‘Al = ¢" A ¢t

for O<i<n. The verifi-
cation that {Gn/n>0} is ‘a simplicial functor follows from the .. .

following :
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Lemma 3.1: For el,Al as defined above,

(1) eiej{ = e;f?ei for i«j,
Giy afad = AaE for i
(1i1) eta hE for i<j,
(iv) eiAi =1,

@) et =1,
wi) el = eSS for i>j+l.

Proof: (i) For i,j with i<j, e el = - (eci T tegI"te) g™ and

. ] . s
€ € = Gl(GJ P ErYeN l)Gn J, since ¢ is a natural transformation,

1

80 isveGJ"lnl. Hence GJuln E:-e:GJ_l = eGJnlul'GJ‘le and eleJ = eJnlel,

(11) 1f isj, atad = ¢tacd @Iy 0372 ang p3TIAL =

n-j=2

R ss
Gl(GJ * leAGJ l)G . Since A is a natural transformation, we have

i

'-"+ --l o * 0‘
gi-itl pedG3 ™t so thar atad = A3l it) 1s

A ogi™iy = gImitl
.. il i . — . .
i<i, etad = ghead eIy < gl@d "L peegdygnmd = pI-ied

j-i-1 . . . i i
because eGJ is a natural transformation. (iv) ¢ Al

= ¢l egon)e® it = 1n.  (vi) For i>j+l, etad = ¢l @t eanc
.._v._; “,—.:’:,._’_._” . _,‘+ 7 P . L .
1= 2°Gl j 1€)Gn i+l = pdelt 1

i~j-l)Gn~i+1

= GJ(AG beécause Adlmjnz is a natural

transformation. (v) Follows from Geesp = 1G°

3. Cotriple Cohomology
‘Let (G,e,A) be a cotriple on a pointed category Ol and let

T:0l —> Ab be a contravariant functor from 0l to an abelian category

Ab. Define the cochain complex

8 8 6 6
1—¢}Z oo n+l TGn+l n B, 2 TG2’< 1 TG < 0
, n
Where.én = Zg: (-l)lTel° This can be 'seen to be a complex from

i=0
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the following:

Lemma 3.2: For n>0, 5n+l{i6n =0,
Proof: From the definition of & and lemma 3.1(i), 6n+1°6n
n+l n n n
L . .. .,
j=0 i=0 i=0 i=0
Fit] it 4 .
+ Z CORIEN JCRE M W Z -1 Tete?)
0<i<js<n O<j<isn
n
= Z (T(e'e™) - T(eteh)) + Z (-1 g ety
i=o ; O<i<j<n

TR
+ Z -1 1) = o,
O<gi<j<n

Definition 3.2: For -a cotriple (G,e,A) on a pointed category 0],

a contravariant functor T: 0L —>Ab, and any A in 0L, the nth cotriple

cohomology of A is defined by H' (TG (A)).
4. A Cotriple Cohomology for ff;Modules,

In this section, 0= ﬂ;nk the category of left ¢ -modules,
T = Hom.ql( ,M) for M a fixed ﬂlwmodule, and Ab = M%, the -category of
left R-modules.

.Define F: qjhs——>7% to be the forgetful functor, that is, F(M) is
the underlying,meodhle for -any ‘*~module M and F(f) is the under-
lying R-homomorphism for any ®~module homomorphism f: M—>M'. Define

or_

‘any R-homomorphism g: N—=N'. The ‘% -module structure of 4’® N is

S:T\-——>13xby S(N) = °f’® N for any R-module N and S(g) =1, g for

given by m ® 1g,’where m is the multiplication in 9.
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Proposition 3.2: S—iF.

Proof: We make use of proposition 1.1, page 13 in [5]. Define
the map A: HomOAL(S (N) ,M) —> Hom (N,F(M)), for any N in 'Yh\ and for
any M in T}'rk, by A(f)(n) = £(1 @ n), where f: S(N)—=M, n ¢ N, and 1
is the unit in %*. Since f is a %*-homomorphism, it is R-linear and
hence A(f) is an Rmhomomo‘rphism°
Define .u: Hom (N,F(M))——)Homq,_(s (N),M) by pu(g)(a @ n) = a‘g(n), where
‘g: N—>FM), n ¢ N, and a ¢ }°. Since g is an R-homomorphism and M is
a “J~module, p(g)(a @ (') = a‘g(') = a* (g(n) + gn'))
=agm) +agln') = pu@) (@ @n) +u@ @ @n'); ulg)la rn)
= a'g(rn) = a’ (rg(m) = r(a'g(m) = ru(g)(a @ n), and
Peymel)(a@a' @n) = u(@)(aa’' @n) =aa'"gn) =a'(a" g))
= 'cp(l(,r@) L(g))(a ® a' @ n), where.qa @ x) = a°x. Hence .p(g) is a
°}Q‘ ~homomorphism. Since Ap(g)(m) = p(g)(l @ n) = 1°g(n) = g(n), and
CHAB) (@ ®n) = a A @ =@ fl @n) = £(a (1 &n)) = £(a /),
A is an isomorphism and S—F.

From propositions 3.1 and 3.2 we h».ave -a cotriple on ca;h\y

Specifically, the natural transformation @: SF—>1

o

is given by
ogM)(a @ m) = a'm for any a € "}Land m e M.
For any A in OXZY&, Hn(HomﬂQ(G(A) ,M)) is the nth cotriple

+
cohomology of A, where G(A)n = Gn+l (A) = (SF)n 1(A) for n=0.

5. A Cotriple Cohomology for Lie Algebras

In this section Ol= ()'\,"]-)0, Ab = 'hs and T will be defined as

‘the composition of a covariant functor J: (d ,”})0—7"};"-3 and the

contravariant functor ..Hom%,_( M) ,‘L'Yh} —> Ab. The cotriple on (% ,% )O

that will be presented, was defined by Uehara [12].
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Let (S°,% ) denote the category of groupoids over ‘a fixed non-
‘graded Lie algebra ﬂ', that is, M in S° is a set with a binary
operation, the objects in the category are functions p:'M‘—*j} such
that p(x'y) = [p&),p(y)] for all x,y € M, and the morphisms in the
category -are functions f: M. —M_ preserving the binary operation and

1 2

satisfying the commutative diagram

Let w: L—*‘}be an object in (1J°})O, Define U(L) to be the
underlying set L with only its multiplicative structure -and define
U(y): U(L)—>% to be the product-preserving function from U(L) to 0.
For ‘a morphism f: Ll-—->L2 in (1$°})O, define U(f) to be the product-
preserving function from U(Ll) to U(Lz)a

Let p: M—>% be an object in (S°,% ). In R(Q>), the free
R-module generated by the underlying set of M, define [<x>,<y>]
= <x°y> for x,y € M. Let I be the two-sided ideal in R(<>) generated
by elements of the ‘forms <x°x>, <x'y> + <y° x>, <x° (y°2)> + <y° (2°x)>
+ <z* (x°y)> for all x,y,z € M. Define P(M) = R(>)/I and define
P(p)(&>) = p(x) for -all x ¢ M and extend by linearity. P(M) is a

non-graded Lie algebra. Since % is--a-Lie-algebra-and P(p) is

R-linear, P(p)(X'x>) = p(x'x) = [p(x),;p&x)] =0, P(ﬁj(<x°y> + FTR>)

= P(p) (TXy>) + P(p) (5" x>) = p(x"y) + p(y'x) = [p(x),p(¥)]

+ {p(y),px)] =0, and P(p)(X° (7 2)> + <y (2°x)> + <z° (x°y)>)



36

]

P(p) (KX (772)>) + P(p)(Sy* (2'x)>) + P(p)(<z" (X y)>) = p(x* (y'z))
T o (zx)) +p( x'y)) = [p&),[p),p@)]] + [p(),[p(2),px)]]
+ [p(z),[p(x),p(y)]1] = 0. Therefore P(p) is well defined. P(p) is
product-preserving because P(p) ([&>,F>]) = P(p) (T<x>,<y>])

= P(p)(X"y>) = p(x'y) = [p(x),p(M] = [P(p)(X>), P(p)(IF>)].

For f: M—>M' in (58°,°% ) define P(f)(&>) = <f(x)> for all x ¢ M.
Then P(p') P(£)(&>) = P(p") (E®)>) = p'£(x) = p(x) = P(p) (T>).

Proposition 3.3: P—4U.

Proof: Define \: Hom »0 (P(p) ;)y) —> Hom )(p,U(fy)) by

-9 (8 »%
A(p) (m) = @(I>) for any : P(M)—>L and for any m € M. Since o is
product-preserving, A(p) (m'm') = {p(m) = :@(m)
= o([T>,T>]) = [o(E), o(@&@™)] = (p) () ,A(p) (@')] so that A(p)
is product-preserving. Since U(yep) = U(y)eU(p) = U(y)ep and since
vee = P(p), we have U(y)°A(p) (m) = U(y)@e(ZT@>) = U(yep) (T>)
= U(P(p))(S>) = U(p(m)) = p(m) and hence U(y)oA(p) = p, that is,
A (o) is a morphism in (S ,%).
Define u: Hom(sus?)(psU(Y))——*>H0m(1’q)o(P(p)sY) by w(§)(T>) = §(m)
and .extend by linearity, where {: M—> U(L) and m € M. In a manner
similar ‘to the demonstration thét P(p) is well~defined and product-
preserving, it can be shown that u(y) is well-defined and preserves
products. Since U(y)ey = p, Y'H(q’) (&>) = yy(m) = U(Cy)ey(m) = p(m)
= P(p)(I>) so that u(Y) is.a morphism in (3, °‘&)O. ‘We have
A () (@) = A(p) M) = (F) and Ap(P) m) = p(§) (F) = y(m). There-
fore ‘A is -an isomorphism and P —U.

From propositions 3.1 and 3.3 we have a cotriple on (3§, *})O;
however we wish to formulate this cotriple explicitly for use in the

I

next chapter. Let y: L—>% be in (is"})o and consider the diagram
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o
3

\J
a3

eq{y) G(y)

G(L)

where G = P U, that is, G(L) = R(<L>)/I. From the theorem on adjoint
functors in [5], page 13, we have u({y) = e(y)°P(¢). Therefore

W) (0>)

e(y)°P(y) (Z>), that is, {(m) = e(y) (KY(m)>) so that

e(y)(X>) = x for any x ¢ L. Define G(y)(X>) = y(x) and extend

linearly. G(y) is well=defined and preserves products. The above

diagram commutes because y(e(y)(Z>)) = y(x) = G(y) (X>). We then

have e G_>1‘(1,q)°f
Let y: L—¢ be in (1,”})0 and define a %"-homomorphism

d: F'® LAL)—> TR L by d(1 @ xAy) = vx) 8 ¥ = y(¥) ® x - 1 Q[x,y]

for all x,y € L, where LAL denotes the exterior product. Then d is

well-defined because d(L ® xax) = vy(x) @x - yv(x) @ x - 1 ® [x,x] = 0.

We now define a covariant functor J: (X, "})0—-9%0_??\ by J(y)

=°f® L/imd. For a morphism f; L—>L' in (13‘})03 define

J(£): R L/imd—4*gL'/imd' to be the ®}“-homomorphism induced by

l.qa_® f, where d': °)"®(L'I\L')—>°an® L'.  Since (1,‘,_®f) &) @y

-y ®@x - 1® [x,y]) = y&x) & £(7) - v(y) ®f(x) - 1& £(Ix.yD)

=y (&) @ £(¥) - v (EF) @ £(x) - 1 @ [£&x),£(y)], J(E)(imd)c imd'

so that J(f) is well-defined.

For -any vy in (1,‘})0, Hn(Hom%{(JQ(y),M)) is the nth cotriple
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cohomology of vy, where G(y)_ = ¢l (y) = @)™ (y) for n20.
Lemma 3.3: For any y:L-»%in (L ,% )°, HomoaL(J(y) ,M) is
isomorphic to Der (y,M).

Proof: Define p: Homql(J(y),M)—>Der (vsM) by p(f) x)

+ £(1 @ x), where f: J(y)—>M and x € L. Since p(f)([x,y])

FQ® [x,7]) = £(yx) By ~ v(y) %) = v&x) £1 Qy) - v(E( R x)

YE)p(E)(¥) - yv(y)p(f) x),p(f) is well-defined. Define
0: Der (y,M)——>Homq4_(J(y),M) by o(g)(a ® x) = a"g(x) for

g: L—M, a ’€Ts and x:¢ L. Since o(g)(vx) ® v - v({¥) & x

1R [x,y]) =v®ely) - v(y)gkx) - gllx,y]) = 0 and since
o(g)(a'"(a®x)) =o(g)(a'a ®@x) =a'a"g(x) =a'" (a°g(x))
=a'*o(g)(a @ x) for all x,y ¢ L and for -all a,a’ eT',G(g) is well-

o(g) (1 ® x) = g(x) and

fi

defined, Therefore p(o(g))(x)
o(p(E))(@a ®@x) =a‘p(f)(x) =a~f(l ® x) = £(a ® x) so that p is an
isomorphism.

Hence for any v in (‘{,0})09 the nth cotriple cohomology of vy
with coefficients in a °} -module M is given by T (y,M)
= Hn(Der((El(y),M))3 where (E,(y)n = _(PU)IH_1 (y) for -all n=0.

In particular, if y = 1% , the notation 'ﬁn("},M) will be used.



CHAPTER 1V
COMPARISON OF COHOMOLOGY THEORIES

Let (X,ﬁ)o be the category of non-graded Lie algebras over . Q
is the augmentation ideal of ﬂe and J is the functor defined in section
n

five of Chapter III (denoted by III, 5). H , SHn, and ﬁn denote the

Hochschild; Shukla, and cotriple cohomologies, respectively.
1. The Hochschild Cohomology of Lie Algebras as a Cotriple Cohomology*

Let G = SF as in III, 4 and let M be a ﬂ?nmodulee

Definition 4.l: The nth cotriple cohomology gi‘j with coeffic-

ients in M is given by 7" (9.M) = " (Hom‘}e (G%(Q)QM)).
Note that this definition agrees with the cotriple cohomology in
definition 3.2 because Q is a Q?wmoduleu
. 3 o ~
Lemma 4.1:. For 1% in & J(1%)=Qu

Proof: Consider the diagram

1] @Y - T(%)

PR 1 lp e

ESIN L e g 5 7~ ——==
I
!
J(lﬂ)

where p, e, ¢' are defined as in I, 3, Il is the natural projection,
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and §(a @ z) =-az for a €oa"- and z ¢% . Since 8d(l ® XAY)

= §(x @}Q -yvy@&x ~-1®x,y]) =xy =~ yx = [x,yj =0, i d C ker 8.
For any w =Z a, @x € T(%) &%, define m(w) = Zaixi e T(%}).
Then m is a monomorphism because the multiplication in T(°% ) is

defined by the tensor product., Sincep m =§(p @ 1), ‘5‘1(0)_

=& 1)m-1p‘1‘(0); But .p~‘1(0) is the two-sided ideal I generated by
elements of the form xy - yx - [x,y], where x,y ¢ °3, so that for any

weker §, w= (p®1)(Ww), where w ¢ mml(I)° Write m(w) = ‘Zwi with W,

ai(xiyi b ZE T [xi,yi])Bi ¢ I. Since T(% ) is augmented,

T(%) =R +Q' so that we may write Bi =T, + B]!_, where r, ¢ R and

B € Q'. Since (p ® 1)m“'1(5£) =0, d(r;p(e,) @ x,Ay,)

p ® l)m-l(wi) so that W ¢ im d and ker § < im d. TFor a e"’)L and

z €%, e8(@®z) =¢ed(p(a)@z) =edpR1L)(a®z)= epm(a®2)

¢'m(a @ z) = €'(az) = 0 because az ¢ T("})n, n>0, so that im § = Q.

Hence J(l.,)) = %ﬁa@%/im d = ”}"@%/ker § = im & = Q.

Lemma 4.2: H° (% M)__Der (l,}, ).
Proof: From the chain complex ,
3 9
G@: =6 (@ —2» 6" @ —> Q) LU q, where 3_

= Z (-1)* o (Q) and o = Glo:Gnml, we obtain the cochain complex

i=o0 e

2 (@Q* . % 2
0 -—-—>Hom,]4_(Q,M) —_— Hom,a,;(% 2 Q,M) ——> Homaa,;(G Q) ,M) — -

II:I)O("},M) = ker al'c -’—"_—‘Hom,JA_(Q,M) so that by lemmas 3.3 and 4.1,
F° (e, M= Der(l7 LM).
Lemma 4.,3: G(Q) is an R-split exact resolution of Q.

Proof: @ (Q) is just the un-normalized bar resolution B(%*,Q) of

Q, that is, B_(9%5Q) = %"® (99" ® Q and 3_: B_(4%,Q0—>B__; (4Q) is
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n
defined by an = Z (-l)l‘di with d’i()xO@" ‘/\"i"® & >\n ® q)
i=0

='>\°® e R Kixi+l ®°°° R q. By corollary 2.2 and theorem 2.1 on
pages ‘281 and 282 in [9], Q'_TI(Q) is an R-split exact resolution of Q.
An alternate proof of this lemma may be found in [10], corollary 3.2.

Theorem 4.1: ﬁn(ﬂ},M) is isomorphic to Der(l,,M) for n =0 and to

G‘l’
+ .
H 1(°’3,,M) for n>0.

Proof: The first part is shown in lemma 4.2. For the second part

consider the two chain complexes

» 3 3 3 3
c=>c"2 () e 1 1 Gn+1.(Q)—n> Q) —> 1 CQ)—S gt SR—>0
d d d d
+ + 1
g T g™ T T g e — B gy — > SR 0

where the lower complex is B(%*) and the upper complex is obtained from
G Q) by cutting off «(Q) and splicing on the exact sequence G(Q)
=°‘}Q'® Q—a—-?—» 1-'——€-> R—> 0 with ao (1 %9) =q. Both complexes are R-
split exact resolutions of R so that by the comparison theorem they are
chain equivalent. Therefore for n>0,

~ ntl

o f o2 % Pt o /3 o ~T1 ~
ker an_i_l“/lm o, = ker dn+2 /im dn—i—'l so that H (4} M)=H (%} M) .

2. Barr-Beck's Acyclic Model Theorem

Let (G, ¢, A) be a cotriple on a category 0l and let - be a pre-
oo . . n .n .
-additive category with kernels. Assume that K = {K',3 }nz-»l is a co=
chain complex of functors, that is, JK is the cochain complex:

‘]-. o 1 n
- +
0 K l a . KO a Kl a e o o ) Kn a Kn l PO

n . .
where for each n=-1, K : 0l —> & is a contravariant functor and

+ +1
an: K'—> k" 1 is a natural transformation satisfying an an =0,
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Definition 4.2: ‘K\is G-representable if and only if for each n=0

n n n._ . , ,
K'e: K —>K'G is a coretraction, that is, there exists a natural trans-

formation (retraction) Qn: KnG —> K" such that 9n°Kne =1 0 \K‘is G~
K
acyclic if and only if there exists a contracting homotopy‘{sn}n>_l in

the complex {KnGj anG}, that is, for each n=-1 there exists a natural

n-+1

transformation sn: K (3——>KPG satisfying sn L anG + anhlG e snm1

= lin for all n>0.
K'G
Remark: For a chain complex of functors, the dual statements
constitute the definitions of G-representability and G-acyclicity.
Theorem 4.2: If a complex JKis G-representable and a complex L is

1 -1, s
—> L is a natural transformation, then f can

G-acyclic and if f: K
be extended to a natural chain transformation F:IK—=\ and any two
extensions are chain homotopic.

Proof: See Barr-Beck [2] or Shimada-Uehara-Brenneman [10]. The
latter proof shows that theorem 4.2 is the usual comparison theorem in
relative homological algebra.

In particular, if IK and bb are both G-representable ‘and G-acyclic
and if Km1 = Lm1 then the extension is a chain equivalence.

Lemma 4.4: Let (G,e,A) be a cotriple on a pointed category (0l and

let T:Ul*‘>Irbe a contravariant functor, where f is a preadditive

category with kernels., Then the cochain complex

8 8 8
+

TG: 0—>T —S5TC — > TG 5> —» T —Lp T¢" " —» +**, where

n
6n = :g: (_1)1 Tel, is G-representable and G-acyclic.

i=0

Proof: TFor nz0, define o™ TGn+2———'>TGn+l by 6" = TG"A. Then

+ + +

0% 1™ ey = (ze™a)e (16¥ ey = T eoca) = TCM (Geon) = 6" (1)
=1 o+l S° that TG 1is G-representable. For nz-1, define

TG
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+ + + n-
si: TG" 3——->-TGn 2 by s'= (-l)n 1TGn+lAu Then s °6 G + 8 G°s 1
n+1
_ n+l
= (-1) A (= l) roet g+ (- l) T ¢& Ge( l) el A
i=0 i=0
+ +i+ i+
- T(E:n 1 A)‘+ ;Z (- l)n i l(T(G G-t 2°Gn+l A)
i=0
- 1Ea0ct ™). as in lemma 3.1, ™ leed™Ta =1, and
. G
% n l+2 n+lA = G AeG eGn l+l, Therefore snvé G +.8 Gnsn“l
n+1 n
=1 oty SO that T§ is G-acyclic.

TG

3. Shukla and Cotriple Cchomologies of Lie Algebras

Let G = PU as in III, 5 and let M be a %} -module.

Definition 4.3: For any v in (¥ ,ﬂ)o, the nth cotriple.

cohomology of v with coefficients in M is given by’%p(ysM)

= Hn(Homﬁ,_(JG'(y) M)

Note that this definition agrees with the cotriple cohomology in
definition 3.2 because Homﬂﬁ(J ,M) &Der ( ,M) is ‘a contravariant
functor from (‘:\,"}) to WB

Theorem 4,3 ﬁo(y,M);;Der (ysM) for y: L—>*% in (:I,°})O

Proof: Consider the diagram

o @G (LIAGE (L) 5 > @ G2 (L) ——P s 36% (y) ——> 0
: 1
E .
;
&G (LYAG (L) d > %‘é G(L) ——L o JG(y) ————> 0

where dl = JeG(y) — JGe(y) is the boundary operator in J§ , p,q are

natural projections, d is defined as in III, 5 and & is defined
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analogous to d. By definition of the cokernel, the rows in the diagram
are -exact. We are going to define B such that q B = dlp. Recall that
'we have a morphism eG(y): GZ(L)-—a-G(L) given by eG(y)(ZES) = E for

£ ¢ G(L), where GZ(L) = R(<G(L)>)/I(S8). 1In the diagram

Y
L : >

%
e (y) Cy) .T&w>
G2

G(L) &€ (L)

eG (vy)

both triangles commute. Applying G to the upper triangle we obtain

G (L) SISO
Ge(y) 2 (y)
% (L)

For any € ¢ G(L), E ==§Z'ri <X;>, where r, e R and x, € L. Define
Ge(y) (<E>) = <e(y) (E)>. Therefore we have eG(y)(< Z r, X¥;>>)

= . e ——— e e . =-——_——-— ) '; <—.
r r, <xi> and Ge(y) (<Z ri<xi>>) <z rixi>° Define B(l ® <E>)

188 - 1@<e(y)(®)> since d; p(1 @ F>) =d,;(1 & F>) = (JeG(y)

eI RIES) =1@eC(y) (B> -1 @GW)(E>) =18¢E

1@<k E>=q(1 E - 1@<k (E)>=q8(l ® <E>), then d;p = qB.

Let M be a % -module and form the diagram
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0 0
' 2 dl* Y
© <—Hom  (JG (y),M) <= ‘Hom%L(JG(y),M)
pv: q:'r
\ * Y
M%g¢®fﬁnm' B Hm%ﬁa®mmﬂ)
67‘: a5
Y
Hom o ({8 6% (LA™ (L)1) Hom,, (48 G (1)AG (L) ,10)

*

| » the proof will be completed after we estab-

~Oo
Since H (y,M) = ker d

lish the following three lemmas.

e

% % 3
Lemma 4.5: Ker dl == ker d N ker 875

3 * X X
Proof: Define A: ker d "—sker d Aker B“'by'K(f) = q“(f),

1

S

Since the columns in the diagram are exact, qh(f) € ker'dx, and since
* ok % % *
8°q () =-B°dl (£) = 0, q (£) ¢ ker B so that A is well-defined.

&

Define p: ker d" N ker B~ —> ker dlr by ‘u(g) = £, where qﬁ(f) =g,

* %
Note that such an f exists because g ¢ ker d = imq . Since

g ¢ ker B*, B*(g) = B*q*(f) = p*dl*(f) = 0, and since p*'is injective
dl*(f) = 0 so that W is well-defined. Therefore BA(E) = g(q*(f))
= £, M) = q*(u(g)) = q*(f) = g and A is an isomorphism.

Lemma 4.6: Ker d*(\'ker B*Qélh where U is the class of all
R-homomorphisms £': G(L) —> M satisfying f'([&>,F>]) = y&x)E'(F>)
- v E'(Z>) and £'(T . 2§;5) = f'(Ef—FZ§z5) for all x,v, x, e L

and for all ri.e R.
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% * 3
Proof: For any f ¢ ker d7f\ker'B s B?(f) =-fg =0, that is,
B R<E) =£f1RKRE-1A<e(y)(E)> =£(1 RIr, X3>)
-l &< rixi>) = 0, where r, € R and X, € L. Using the adjoint

isomorphisms Hom(G(L),M):FZi% . Homﬂ&(qESIG(L),M) and writing {(£f)

= f' we have f' (T T, 2§;5) = f'(Zf_?;§E5), Since d*(f) = fd = O,
A1 R ISAT>) = fEME) RT> - 6V (H>) &>

-1 @[5, 3] =ty RT3 - £y Z>) - £(1 & [&>,T5>])
=yx) £1 RT3 -y £Q1 R FE>) - £(1 & [&>,F>]) = 0. From the
adjoint isomorphism ¢ we have f'([<&>,F>]) = v&)E' (TF>)

- v(y)f' (X>5), where x,y ¢ L.

Lemma 4.7: UZZ2V, where V is the class of all R-homomorphisms
f”:.G(L)——%>M satisfying f'"'([&>,F>]) = v&)E"(FS) - v(¥)E(ZT>)
for -all x,y ¢ L and f'(@) = 0 for -all n ¢ ker 0, » Where
g, : R(<L>) —> L is given by o°(<x>) =-x,

Proof: The first condition of each class is the same. Let

It

f' ¢ U and take n =3 ri <xi> such that n ¢ ker Oy » that isyZ rixi

il

= . . £t = FL T TN = ! = gl (RT3
0. Since f'(@) £ (Z r, <xi>) £f'(Z r, <X ,>) £ (<X rixi>)

1

f'(0>) = 0, £' e V. Let f" ¢ V and take n =:% T, <xi> -. <z rixi>°

Since 0 (n) =T r.x, - Zr.x, =0, n ¢ ker 0, and since f' ()
o i~i i~ 0

—1 . — £ S =) . NS = "
" (E ri<xi> <3, rixi>) £ r, <xi>) " (<% rixi>) 0, f'" ¢ U.
The -proof of theorem 4.3 is now complete because by lemma 2.3,
V& Der (vsM).
Let [Ebe the complex defined in II, 6 and let G = PU as in III,5.
Let In CDPA= En’ that 1S’In CDPA(y)= E(y)nn

Proposition 4.1l: The cochain complex Hom__(E ,M) is G-represent-

Qal

able.
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Proof: Since P — U we have B: 1 —> UP so that BU: U —> UG,
Denoting U(L) by <>, define.p<l> :<L>-—> <G(L)> by B<L>(<x>)

= <&X>>., Consider the diagram

d S
R R( ) —>R(<Nl>)——i———> R(<L>) ————> L
< i
\\\‘ //4§: \\\S;N Y
N

! co (1) %)

N ¥
/ 1 \\ki‘ ' v)
d 1
I v o,

=-—~>R(<Np'>)-a°°° ——>R(<Nl'>)-f—————> R(<G(L)>) ——= G (L)

where f(x) = &>, N, = ker 0y, N,' ='ker'00', a(<x>) = vy (%)

1 1
= o' (<&>>), Then YO, = G(y)oo‘ =o', and G(y)f = y. Defiue

co (L) (T ri<xi>) =Z T, <Z§i5> so that o'c (L) ='o and therefore

£ Oy = O; Co(l). Ifune Nl’ 0,ce (L) = fo,(n) = 0 so that
co(L)(Nl) c:N'l° As in II, 2 we define inductively a product-
preserving chain map c(L): A(L) —>AG(L). To see that c: A—>AG is a

natural transformation let g: L —»1L' be a morphism of Lie algebras

and consider the diagram

A(g)

A(L) >A(L")
c (L) c(LY)
AG (L) A6G8) et

For n = 0, cy(L') A(g), (x>) = cy(L') (<g(x)>) = <FE>>

= <G(g) (&>)> = AG(g), (<T>>) = AG(g), co(L)(x>). Assume that the
diagram commutes for all i<n. Then c_(L') A(g),(<x>)

=c (L)(<g 1 &®)>) = <c @), ;&®))>and 86(g) ¢ (L) (x>)

= AG(g)n (<cn-»l(L) (x)>) = <AG(g)n_=1 (cn_l(L) (x))> so that by the in-

duction hypothesis the diagram commutes for n and hence c¢ is a
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natural transformation. Define © : E —»E G by & = I CDPc. As in
: n° n n n n

II, 2 we define inductively a product-preserving chain map.

r(L): AG(L) —>A(L) induced by e(y): G(L)—=>L, that is,

ro (L) (<&3>) = <e(y) (T)> = <> and for n>0, r_(L) (<y>)

= <rn_l(L)(y)>° As above, r: AG—>A is a natural transformation so

that E € = I CDPr is a natural transformation. Then ro (L) co(L)(<x>)

= 1,(L) (&3>>) = <x>. Assuming that ri(L)ci(L) = 1A(L) for all i<n,
i
rn(L)cn(L)(<x>) = rn(L)(<bnm1(L)(x)>) = <rnm1(L)cnh1(L)(x)> = <X> 80
that rc¢ = 1,. Since I CDP(rc) = I CDPreI CDPc = I CDPl,, E e€°0 =1
A n n n n A’ "n n En

and the dual definition of G-representability is satisfied.

Proposition 4.2: The cochain complex Hom,r(JG ,M) is G-
representable and G-acyclic.

Proof: Immediate from lemmas 3.3 and 4.4.

Proposition 4.3: SH' (y,M) 22 H°(y,M).
. Proof: TImmediate from theoréms 2.1 and 4.3.

Let Der denote Der ( ,M) and let T denote Hom_,( ,M), where M is

o\e
a °]f'--module° For [E , the Shukla complex defined in II,6, and for J@,

the cotriple complex defined in III,5, we have the following diagram:

0 ——> Der ———-»TEl——a}TEz——» 'TEn

Y

0 ~——3> Der > TJG >TJG2—-—>

° 00

—_— TIG" —

Both rows are cochain complexes of contravariant functors. The upper .
complex is Gwrepresentablé from proposition 4.1, the lower complex is
G-representable and G-acyclic from proposition 4.2, and the equality
holds by proposition 4.3. In order to apply theorem 4.2, and hence to

obtain isomorphisms between the Shukla and cotriple cohomology modules,



it remains to show that the upper complex is G-acyclic.

49



CHAPTER V
SUMMARY AND CONCLUSIONS

This paper is concerned with a discussion of two cotriple cqhomol;
ogies for Lie aigebras and their relationship with the cohomology
theories of Hochschild and ' Shukla, ‘Categorical .algebra is theiprinf
cipal tool used throughout‘tﬁis research.

An exposition of the Hochbghild cohomélogyvof-Lie algebras is-
given iﬁ Chapter I and the low-dimensional modules are calculated.

In Chapter II, a modification of Shukla's cohomology of Lie algebra
is constructed in a categorical setting and the mo&ules of dimension
zero and one -are obtained explicitly.

By the construection of adjoint functors, two cotriples are defined
in Chapter III. From these cotriples, one on the category of modules
over an algebra and the other on the_categoryfof‘non—graded Lie
algebras oﬁer a fixed Lie algebra, cohomology theories are defined.

Finally, in Qhapter IV, the complete .comparison df the Hochschild:
cohomology of Lie algebras and the first cotriple cohomology is ob-
tained by ﬁeans,of-the comparison theorem. The one-dimensional
Shukla cohomology module is shown to agree with the zero~dimensional.
cohomology module defined by the second cotriple. Using the terminol-
ogy by Barr and Beck, the cochain-complex employed for the calculation
of the cotriple cohomology is shbwn to .be G—fepresentable and G-acyclic

and . that ‘used .for the .calculation of the Shukla cohomologies is shown

50



51

to be G-representable,

The complete comparison of the Shukla and cotriple cohomologies,
using the Acyclic Model Theorem, requires the Shukla complex to be
G-acyclic., This G-acyclicity has not been demonstrated and is.pro-
posed to further research.

Although Glassman [7] has disc@ssedvDixmier's cohomology of Lie
rings (Lie algebras over the integers), this theory has not been
interpreted as a.cotriple cohomology. It is proposed that such an
interpretation can be accomplished by means of the cotriple obtained
%rom the adjoint pair (x,%);::§:f3(ﬁmyﬂ), where (éﬁyqd is the category.
of R~-modules over %, F is the forgetful functor, L(M) is the free
Lie algebra .over M (éee>[4] , page 285), and'L(f);L(M)—e>% is the Lie
algebra morphism satisfying f = L(f)ei for the inclusion monoemorphism
i:M—L(M). This interpretation would~provide.a partial answer to
MacLane's hope (see [9]; page 317) that Dixmier's formulation might
be simplifie&, and would provide further evidence that cotriple co-
homology gives a unification to the various known cohomologies of Lie

algebras, as has been conjectured in [10]?
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