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CHAPTER I 

INTRODUCTION 

1.1 Statement of the Problem. Engineering decisions must con

stantly be made, Is a signal present? Which of n alternative systems 

should be produced? Which pattern is present? These are but three of 

the many decisions which occur in engineering work. 

In recent years there has been an increased effort to quantify the 

factors entering into such decisions. As these factors may be known only 

approximately and indeed may depend on chance outcomes, the factors are 

treated as random.variables and the decisions are made according to some 

rule such as minimizing the expected cost. Unfortunately the probability 

distributions which govern these random variables are often unknown and 

must be estimated from experience, sample data or both. For these rea

sons, this field of investigation has become known as llstatistical 

decision theory". A most significant problem in statistical decision 

theory is the estimation of the probability distribution functions in

volved. This estimation problem is investigated in this dissertation. 

1.2 Existing Solutions. If no prior knowledge is included, the 

distribution may be estimated from the empirical distribution function 

(11) or a method suggested by Rosenblatt (13) and investigated by Parzen 

(10) may be used. Although the empirical approach to statistical deci

sion problems has been investigated (12), the selection of a sample size 

remains a problem. The advantage.s of the empirical distribution function 

1 



are its simplicity and the fact that it converges with probability one 

to the true distribution function. 

2 

Economics or time limitations frequently dictate the use of a sample 

size smaller than one might desire. This makes the use of any prior in

formation about the parent distribution very desirable. Although the 

wisdom of using such prior information is debated (14), its use often 

appears to be an engineering necessity. For example when determining 

the number of systems to be tested, should·any be tested? This question 

can only be answered from prior experience. This interesting problem has 

been investigated by Howard (3,4) with impressive results. 

The form of the density function is often assumed and the parameters 

estimated from sample data. The usual method of including prior know

ledge about the density parameters. is to select prior estimates of the 

parameters, treat the parameters as random variables with an assumed 

prior distribution and modify the distribution of the parameters using 

Bayes' theorem as sample data becomes available (15). This approach does 

have two shortcomings. First, if the likelihood function is of the wrong 

.form, the learned distribution may be in error by a considerable amount 

and will never converge to the true distribution, regardless of the 

sample size. Second, if more than one parameter is to be learned, the 

mathematics may become so formidable in appearance that the less mathe

matically inclined engineer may be discouraged. A significant advantage 

of a Bayesian testing procedure is that it provides a logical method for 

selecting sample sizes. 

1.3 Present Contribution. In this paper a method is developed, 

using Bayes 1 theorem, whereby prior knowledge may be included in the 

empirical distribution function. A number of theorems are developed 
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concerning estimates of this form, and the results of this technique are 

compared to the more conventional Bayesian parametric approach. 

Extension of this technique to the nonparametric method of Parzen 

is suggested, and Specht I s approximation (16) is proposed as a possible 

means of reducing data storage. 

The proposed method has the advantages of simplicity and convergence 

associated with the empirical distribution function and yet retains the 

advantage of including prior information provided by Bayesian parameter 

estimation. Thus the selection of a sample size is facilitated. 



CHAPTER II 

BAYES I EMPIRICAL DISTRIBUTION FUNCTION 

2.1 Introduction. Given a sequence of independent identically 

distributed random variables {x1,x2 , ••• ,Xn} with a common cumulative 

distribution function 

F(x.) = P{X. < x.} (2.1.1) 
1 1 - 1 

the empirical distribution function (E.D.F.) is def:i,ned by (11) 

Fn(x) =*(no. of observations< x among x1 , ••• ,Xn) • (2.1.2) 

For a given value of x, nF (x) is a binomial random variable. Thus 
n 

E[F (x)} = F(x) 
n 

(2.1.3) 

and 

Var(F (x)} = ! F(x)[l - F(x)] 
n n 

(2. l.4) 

2.2 Including Prior Information. The question of interest is "ls 

it possible to include prior knowledge in an E.D.F .1 11 The answer is ob-

viously yes. Assume the prior information has a weight equivalent to a 

sample of si:ze w0 • The prior distribution function would then be of the 

form 

cL) (no. of observations assumed < x among 
WQ 

an assumed w0 observations). 

4 

(2. 2. 1) 
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That is, a prior E.O.F. could simply be assumed. After an actual sample· 

of size n the posterior distribution function would have the form 

(-1-) (no. of observations assumed < x among w0 wo+n -

assumed observations+ the number of observations 

::, x among n observations x1 ,x2 , ••• ,Xn). (2.2.2) 

On rewriting the above equation becomes 

(2.2.3) 

which is simply a weighted sum of the prior E.O.F. and the sample E.OoF. 

2.3 Bayes 1 Empirical Distribution Function. The restriction that 

the prior distribution f\mction must be an E .D ,F. may be removed in a 

manner consistent with Bayes' theorem. Assume that the probability dis-

tributi.on function F(x) of the population is a sample function from a 

stochastic process with a beta first order density function. The process 

of learning F(x) is presented in Appendix A and is approached as outlined 

be.low. 

Given a random variable Q having a prior beta density function 

0 < q < 1 

(2 • 3 .1) 

0 otherwise 

If Q is the probability that a random variable Xis less than or equal 

to x, i.e., 

Q = F(x) (2 .3 .2) 
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where ot, S and q are functions of x, .then given q, the probability that 

"a" out of n samples would be less than or equal to x will be binomial 

with probability q. Thus 

PAI (a) = P(a out of n samples :5: x} q,n 

(2.3.3) 

On applying Bayes' rule after sampling, the first order density 

function becomes 

(2.3.4) 

where E, is the total experience. It is well known (15) that this paste-

rior density is beta. As shown in Appendix A 

(2 .3 .5) 

0 otherwise. 

A reasonable choice for the estimate of F(x) would be the expected 

value of Q. Therefore the following definitions are chosen: 

F (x) ~ E (Q} x Q 
(2.3.6) 

and 

whe-re EQ( •} is the expected value with respect to Q. In order to be the 

prior density function EQ(Q} must be a density function and hence a 
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" nondecreasing function of x. In order to assure that FXl&(x) is also a 

nondecreasing function of x, it is sufficient to assume that the sum of 

O! and~ is a constant, 

It can easily be shown that 

- O! (x) 
FX(x) - O!(x) + ~(x) 

O! (x) 
=-- (2.3.8) 

F (x) 
x = a(x) + Cl'(x) 

.WO " = -- F (x) + __!!___ F (x) 
wo+n x wo+n n 

(2.3.9) 

where F (x) is the empirical distribution function as defined by Equation 
n 

2.1.2. Equation 2.3.9 is ,of exactly the same form as 2.2.3. Hence w0 

as defined in this section may be considered as the equivalent sample 

size for the prior information. It is important to note, however, that 

the only restriction on w0 is 

(2.3.10) 

,. 
and the only restriction on FX(x) is that it is a distribution function. 

In order to make the notation of Equations 2.2.3 and 2.3.9 the same, the 

following notation will be used: 

Li " F (x) = Fx(x) 
WQ 

(2.3.11) 



and 

The equation for learning F(x) is thus 

where 

Fw (x) is the prior distribution function 9 

0 
w0 is the equivalent sample size weight of Fw (x) 9 

0 
n is the sample size, and 

Fn(x) is the empirical distribution function. 

8 

(2.3.12) 

(2.3.13) 

' For convenience Fw(x) will be termed the Bayes 1 empirical distribution 

function (B.E.F.). 

A reasonable estimate of the error to be expected in the estimate 

F (x) of F(x) is the variance of Q. As shown in Appendix A9 w 

In view of Equation 2.1.4 this result is reasonable. 

(2.3.14) 

The restriction that an integer number of units must be tested may 

be easily removed as described in Appendix A. Defining the sample dis= 

tribution function as 

F (x) ~ .!. (observed quantity of sample _< x out of s s . 

a sample sizes), (2.3.15) 

Equation 2.3.13 becomes 

(2.3.16) 
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where 

0 < s (2.3.17) 

Thus the general form of the B.E.F. is represented by Equation 2.3.16. 

This is simply a weighted average of the prior distribution function and 

the sample distribution function. 



CHAPTER III 

COMPARISON OF BAYES' EMPIRICAL DISTRIBUTION AND 

PARAMETRIC BAYESIAN ESTIMATION 

3.1 Introduction. The relative merits of using B.E.F. instead of 

conventional parametric estimation can only be determined when a specific 

problem is defined. However it is possible to consider certain aspects 

of the two approaches for a few familiar cases. 

3.2 Estimation of a Parameter. A common problem arising in both 

communications and reliability engineering is the estimation of one or 

more parameters of a dhtribution fµnction with an assumed fo;rm. The 

form of_ the distribution function is assumed from prior experience and 

often some prior estimate of the unknown parameter is also available. 

Bayes' rule is used to alter this estimate as data becomes available. 

Several examples of this type are included in Appendix C. 

An alternate method of arrivin,g at an estimate of a parameter is to 

calculate the paratp.eter from the B.E.F. e~timate F (x) of F(x). 
w 

For example if a random variaole x h assumed to have a normal dis

tribution with known variance N2 and unknown meanµ, the mean may be 

treated as a random variable and the mean estimated from prior knowledge 

and data. The conventional Bayesian estimate forµ may be found in 

Equation C.3.3. The estimate given by B.E.F. may be calculated from 

Theorem B.5.1. The two are listed in Table I for comparison. 

Similarly the mean of a normal random variable may be known and the 

10 



TABLE I 

PARAMETER ESTIMATES 

Normal Distribution With Unknown Mean 

Conventional Bayesian Estimate 

2 N l n 
02 µ.O + n(n ~ X.) 

~ O i=l i 
µ.n = ----;;2;----

N -+ n 
02 

0 

µn = the estimate of the mean 

N2 . d . = the assume variance . 

µ.b = the prior estimate of the mean 

2 
o0 = the prior variance of the mean 

{xL,x2 , ••• ,xn} = the data set 

n = the number of <la.ta samples 

B.E.F. Estimate 

n 

(3.2.1) 

w µ. + n cl E x.) 
~ 0 0 n i=l i 
µ.w = WO + n (3.2.2) 

~ = the estimate of the mean 

.µ0 = the mean given by the prior distribution 

w0 = the weight of the prior distribution 

[x1 ~x2 , ••• ~xn} = the data set 

n = the number of data samples 

~ 
~ 



TABLE I (Continued) 

Normal Distribution With Unknown Variance 

Conventional Bayesian Estimate 

1 n 
"2 VO~O + n[~ ~ (Xi-µ)2] 
(J = 1.-l I 

n ;o + n 

.... 2 
.cr. = the estimate of the variance 

n 

{3.2.3) 

~O = the prior estimate of the variance 

v0 = the weight of the prior variance 

µ=the assumed true mean 

[x1 ,x2 , ••• ,Xn}.= the data set 

n = the number of data samples 

B.E.F. Estimate 

2 1 n 2 
wocro + nfai ~ (Xi-µ) J 

,.2 i=l ,. 
a = -----,---------
w WO+ n 

"2 cr = the estimate of the variance 
w 

(3. 2 .4) 

cr~ = the variance given by the prior distribution 

w0 = the weight of the prior distributiop. 

µ=the assumed true mean 

[x1~x2 , ••• ,xn} = the data set 

n = the number of data samples 
,_. 
N 



TABLE I (Continued) 

Normal Distribution With Unknown Mean and Variance 

Conventional Bayesian Estimate 

1 n 
w0µ.0 + n(n ~ X.) 

" . 1 ]. µ. = i-
n w0 + n 

n 1 ~ 2 ,..2 2 ,..2 
vO~O + n(n ~ Xi-µ.n) + w0(µ.0-µ.n) 

,..2 i=l 
(J = 

n v 0 + n 

µ,n = the estimate of the mean 

µ.0 = the prior estimate of the mean 

w0 = the prior weight of the mean 

[x1,x2 , ••• ,xn} = the data set 

n = the number of data samples 

~O = the prior estimate of the variance 

v0 = the prior weight of the variance 

(3.2.5) 

(3 .2 .6) 

B.E.F. Estimate 

1 n 
" wOµ.O + n(n ~ X.) 
~ = i 1 1 

w0 + n 
(3 .2. 7) 

n 
2 1 ~ 2 A2 2 "-2 

w cr + n (- L__ X -µ. ) + w (µ.· -µ.. ) 
,..2 
(J = 

w 

0 0 n . 1 i w O O w 
l.= (3. 2. 8) 

w0 + n 

·~ = the estimate of the mean 

µ. 0 = the mean given by the prior distribution 

w0 = the weight of the prior distribution 

[X1,X2,•••,Xn} = the data set 

n = the number of data samples 

cr~ = the variance given by the prior distribution 

I-' 
(.;) 



Conventional Bayesian Estimate 

b . 
a O 1 n 

A2 1 0 a:-+ n(- ~ X2) 
ot - - O n L . n - 2 i=l l. 

ao + n 
(3.2.9) 

A2 • 2 1 2 
otn = the estimate of ot = 2 E[X} 

-- = 
bo 

the prior estimate of 2ot2 
ao 

b 
a0 = the prior weight of __Q 

ao 

[x1 ,x2 , ••• ,Xn} = the data set 

n = the number of data samples 

TABLE I (Continued) 

Rayleigh Distribution 

B.E.F. Estimate 

2 1 ~ 2 
w0 (2~o) + n(; .L..... Xi) 

A2 1 i=l 
ot = -w 2 w0 + n 

(3_,,2.10) 

A2 • 2 1 2 
otw = the estrmate of ot = 2 E[X } 

ot~ = the value of ot2 given by the prior distribution 

w0 = the weight of the prior distribution 

[x1 ,x2 , ••• ,xn} = the data set 

n = the number of data samples I-" 
+' 
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.variance must be estimated, or both the mean and variance are to be esti-

mated. Another familiar exa;inple from communications is the estimation 

of the parameter of a Rayleigh distribution. Estimates of these parame-

ters derived by the conventional Bayesian approach are found in Appendix 

C. Similar estimates of these parameters given by B.E.F. may be devel-

oped using Theorems B.5.1, B.5.2, and B.5.3. These results are included 

in Table I for comparison. 

It is readily apparent that the estimates given by the two approach-

es are very s.imilar. In fact it appears that in many cases B.E.F. offers 

a more rational method for Bayesian parameter estimation than does the 

more conventional ·method given in Appendix C of choosing a prior distri-

bution for the unknown. parameter. The most difficult problem may be the 

selection of the prior weight w0 • A weakness in using B.E.F. for param

eter estimation can be seen by comparing Equations 3.2.6 and 3.2.8. The 

B.E.F. estimate does not permit independent weighting of the mean and 

variance. 

3.3 Estimation of a Distribution Function. For the examples of 

the previous section parameter estimates obtained from B.E.F. are essen-

tially the same as those obtained by the conventional Bayesian p~rametric 

method. This does not imply that ·the B.E.F. estimate of the distribution 

function is the same as that given by the parametric method. The conven-

tional method -yields a distribution fun~tion which is a member of a pre-

determined family with the estimated parameters. The B.E.F. estimate is 

a weighted average of the prior estimate of the distribution function 

and the empirical distribution function 

(3 .3 .1) 
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as given by Equation A.4.38. 

If the unknown distribution function is truly from the assumed 

family, it is to be expected that the parametric method would, on the 

average, yield a better estimate of the distribution function than B.E.F. 

3.4 Integral Expected Square Error. A mea,sure of the error of an 
A 

estimate F(x) of the distribution function F(x) is 

I=J (3 .4 .1) 

A 

The integral expected square error I for the B.E.F. estimate F(x) of 

F(x) can be calculated from the equation 

co 

[Fw (x)-F(x)] 2dx + (-n~) 2 J l F(x)[l-F(x)]dx 
O wo+n _ex, n 

(3 .4 .2) 

developed in Theorem B.3.2. For F(x) a no:rmal random variable with 

variance o2 the integral 

co 

J F(x)[l-F(x)]dx ~ 0.564~ ± 0.004~ (3 .4.3) 
-"" 

was evaluated using numerical integration. Given Fw0 (x) is a normal 

distribution with mean one and variance two and F(x) is normal with zero 

mean and variance one, the integral 

J [Fw (x)~F(x)] 2dx ~ 0.244 + 0.004 
0 -

(3 .4.4) 

was evaluated. numerically. Thus Equations 3.4.2, 3.4.3 and 3.4.4 yield 

the integral ~xpected square error for the B.E.F. estimates of the 
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distribution function F(x) shown in the upper curves of Figures 1, 2 and 

3. 

The integral expected square error I for parametric estimates with 

" unknown mean and variance are plotted on the same graphs. F(x) is normal 

with mean and variance given by the appropriate equation in Table I. 

For the parametric cases, the prior weight given on the graph is the 

value of the term in the conventional Bayesian estimate of Table I that 

corresponds to w0 in the B.E.f. estimate of the parameter. In the 

interest of keeping computer time short, values were calculated only for 

ten, thirty and one hundred samples. Using 

00 
2 °"' 

E([F(x)-F(x)] }dx = E(J " 2 [F(x)-F(x)] dx} (3 .4.5) J 
_ex, _oo 

the expected value was estimated by taking the average of one hundred 

integrals. The numerical methods used limit the accuracy of these esti-

mates to approximately ten per cent. The lower bound for the unknown 

" mean case in Figure 3 was calculated for F(x) normal with zero mean and 

variance two. This is the lower bound for this example because the var-

iance of the estimate is always two and the minimum error occurs when 

the estimate of the mean is the tru~ value. Thus 

I= J [ " 2 . ,v 

F(x)~F(x)] dx = 0.0199 ± 0.004 (3 .4 ~6) 
_CQ 

If the correct form of the distribution is chosen and the prior 

-density of the parameter does not ex.elude the true value, the figures 

indicate the anticipated result, i.e., the conventional parametric method 

provides a better result than given by B.E.F. Figure 3 indicates, 
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however, that for only a relatively small error in the form (in this 

example .the wrong variance) of the distribution function, the B.E.F. 

estimate of the distribution function may be superior after a small num-

ber of samples. 

For a Rayleigh distribution 

Thus 

F (x) = 
x 

00 

2 
1 - exp(- 2-) 

2c/ 

0 

x > 0 

otherwise. 

J F(x)[l-F(x)]dx = I ("'2 - l)cx 
.,,co 

~ 0.367C:ll 

(3. 4. 7) 

(3 .4.8) 

If the prior estimate Fw0 (x) h Rayleigh with parameter l:l:'o and F(x) is 

Rayleigh with parameter ex, then 

oo 2 ex -ta 
J [Fw0 (x)-F(x)] dx = V'rr [--r--
-"" 

ex ex >/2 
- 0 J 
~~ 
VC:llo-ta 

' 0 

Using Equations 3.4.8 and 3.4.9, Equation 3.4.2 becomes 

2 + (-n-) 
wo+n 

1 
n 

¥ ("(2 = l)cx 

(3.4.9) 

• (3 .4 .10) 

Interchanging the order of expectation and integration as in Equa-

tion 3.4.5, Equation 3.4.9 indicates that for the parametric estimate of 

the Rayleigh distribution 
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(3 .4 .11) 

where O! is the true value of the parameter and O!n is the estimate of the 

parameter given in Table I. 

An approximate value for Equation 3.4.11 was obtained in the follow-

ing manner. Ten independent samples from a Rayleigh distribution with 

parameter O! = 1 were generated by the computer. A value for O!n was cal-

culated from Equation 3.2.9 with the prior weight set equal to zero. 

This calculation was repeated 100 times and the average of the values 

was taken as the estimate of I in Equation 3.4.11. The value of 0.016 

obtained was less than the value 0.0367 obtained from Equation 3.4.10 

with w0 = O, n = 10 and O! = 1. Thus, as would be expected, the expected 

value of the integral square error of the parametric estimate is less 

than the error for the nonparametric B.E.F. estimate. 

An interesting observation can be made. For X Rayleigh distributed 

Thus 

2 = (J 
x 

J F(x)[l-F(x)]dx = ¥ ('{2 - 1) 
~00 y2~¥ 

(3.4.12) 

= 0.565ox (3.4.13) 

which is essentially the same as Equation 5 .3 .3 for F (x) normal. The 

significance, if any, of this observation is not known. 
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3.5 Discussion. The examples presented indicate three points. 

The estimation of a parameter by B.E.F. can be expected to yield a result 

very similar to that obtained by the conventional Bayesian parametric 

method. Second, as would be expected, if the form of the true distribu

tion function is known, the parametric approach is to be preferred to 

the nonparametric B.E.F. Third, a relatively small error in the form of 

the assumed distribution function can make the nonparametric method 

superior in accuracy (as measured by the expected integral square error) 

after a relatively small number of samples. 

As discussed by Spraggins (15), in many cases conventional Bayesian 

estimation of para:me.ters leads to a recursive estimation scheme which 

requires only the storage of the prior estimate and the present datum 

point. These results are believed to hold for B.E.F. parameter estima

tion also, but this remains to be proved. Estimation of the distribution 

function by B.E.F. of course requires the storage of all data, In many 

cases this objection may be overcome by limiting the resolution of the 

data, e.g., use a histogram instead of the empirical distribution func

tion. A further possibility is suggested by the work of Specht (16) as 

discussed ih Chapter VI. 



CHAPTER IV 

APPLICATION TO ADAPTIVE BINARY SIGNAL DETECTION 

4.1 Introduction. This chapter considers the detection of a binary 

signal in the presence of additive noise where the probabilities of the 

signal having the value zero or one are known, but the distribution of 

the noise is unknown. 

Such a detection problem can exist in radar. The decision is made 

by.comparing the received signal and a threshold to decide whether a 

target is present or not. The threshold is set to minimize the effect 

of an incorrect decision. Samples of the noise may be obtained when it 

is known that no target is present. In addition some idea about the 

noise distribution usually exists, e.g., the noise was measured at a 

previous time. If the noise distribution changes rather slowly, the old 

estimate of the distribution serves as a prior estimate of the noise at 

the present. Given the form of the noise distribution, the Bayesian 

parametric method is ,applicable. With the form of the noise distribution 

unknown, B.E.F. offers a method for combining prior knowledge and current 

data. Some aspects of the errors involved in applying B.E.F. are dis

cussed. 

4.2 Bayes' Decision Rules. Let the signal S be a binary random 

variable taking on the values zero or one with probabilities 

P[l} = p (4.2 .1) 

24 
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and 

P[O} = 1 = p (4.2.2) 

In the presence of independent additive noise X, the received signal Z 

is defined by 

z = s + x (4.2.3) 

It follows that 

(4.2.4) 

and 

F (z) = F (z-1) 
ZIS=l X 

(4.2.5) 

Define D1=1 as the decision that S=l and D0=0 as the decision that 

S=O. The following deterministic decision rules are used. 

and 

(4.2.6) 

(4.2.7) 

The cost CT\__'IS-" of making a decision D depends on the value of S. 
u=l. -J 

The reasonable assumption that Cili < Cilj for i=,fj is usually made. 

Given the distribution function of X, the average risk R associated y 

with the threshold y is 

R (F ) C J00 
dF +· C Jy dF 

y x'P = P 111 Y ZIS=l P 011 _.., ZIS=l 

00 y 

+. (1-p)CllO f dFZ,IS=O + (l~p)COIO J dFZIS=O ·<4 •2 ·B) 
y -oo 
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Using Equations 4.2.4 and 4.2.5, Equation 4.2.8 becomes 

R (Fx,p)=pC111+p(COll-Clll)Fx(y-l)+(l-p)C11o+(l-p)(Co10-C11o)Fx(y) y . 

(4.2.9) 

Given p and Fx, the value ·of Yo of y that minimizes our expected 

risk Ry may be found by the familiar methods of calculus. The case to 

be considered is for p known and FX unknown. 

4.3 Detection With Unknown Noise. n·the distribution function Fx 

of the noise is known, the. risk Ry may be minimized as ~.tated. In prac-

" 
,··,,,· 

tice FX is usually unknown and some estimate FX of FX mus.t be used. 

Define 

R =R (F ,p)=pC +p(C -C )F (y-1)+(1-p)C +(1-p) (C -c )F (y) • 
y y x 111 011 111 x 110 oro 110 x 

(4.3.1) 

" The value Yp of y which minimizes Ry is used as the estimate of·the 

value y0 which minimizes R • . y 
" " Some interesting properties of Ry may be ,derived for FX the B.E .• F. 

estimate of Fx• 

Theorem 4.3.1. If p and Cijj' i,j=O,l are finite constants and 

" Fx.=Fw, Ry converges uniformly in y to Ry with probabil,.ity one for 

_oo < y < oo as n oo, i.e., 

P[ lim[supl' Ry-R I] = O} = 1 
no}oo x. I y 

(4.3.2) 

" Proof. From the definitions of Ry and Ry 

" 
RY-Ry= p(COl l-Cll l)[Fw(y-l)-Fx(y-l)J+(l-p)(COl'O-CllO)[Fw(y)-Fx(y)] 

(4.3.3) 
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The desired result follows immediately from Theorem B.2.2 which states 

that 

P[lim[suplF (x)-F (x)I] = O} = 1 
noi00 x w x 

A 

Theorem 4.3 .2. If Fx:=Fw' then 

(4.3.4) 

where Fw is the prior estimate of Fx· If Fw is an unbiased estimate 
O O 

of Fx, then 

(4.3 .5) 

A 

Proof. From the definitions of Ry E;tnd Ry 

" wO n 
E[Ry}=E[pClll+p(COll-Clll)[-- F (y-l)+ -.- F (y-1)] w0+n WO w0+n n 

(4.3.6) 

The second desired result follows directly from the definition of an 

unbiased estimate and the above step. 

In a decision theory problem such as this the most significant 

measure of the error of the estimate FX of FX is 
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E[R - Ry } 
Yo O 

(4.3.7) 

" where Y0 is the random variable that minimizes Ry and Yo is the value of 

y which minimizes Ry. Equation 4.3.7 must be evaluated numerically for 

most applications. A less meaningful though more convenient measure of 

the error of the estimate is 

E[(R - R )2} (4.3.8) 
Yo Yo 

" If Fx is known, y0 can be calculated. Thus for Fx_=Fw' given any 

prior distribution Fw and prior weight w0 ~quation 4.3.8 can be evalu= 
0 

ated from the following the.orem. 

" Theorem 4.3.3. If Fx_=Fw, then 

" 2 2 WO 2 2 2 1 
E((R =R) }=A((--) [Fw (y-1)-F (y-1)] +(-n-) - F (y-1)[1-F (y-1)]} 

y y wo+n o X wo+n n X X 

WO 2 
- 2AB((--) [Fw (y-1)-Fx(y-l)][Fw (y)-Fx(y)] 

w~n o O 

(4.3.9) 

where 

(4.3.10) 

and 

(4.3011) 

A A 

Proof. From the definitions of Ry, Ry and Fw=Fx 
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(4.3.12) 

~ 2 2 2 2 2 
E((R =R) }=A E([Fx(y=l)-F (y=l)] }+B E([Fx(y)-F (y)]} 

y y w w 

(4.3.13) 

On applying Theorems B.3.1 and B.3.4 the previous equation becomes 
A 2 

E( (R -R ) } = 
y y 

2 wO 2 2 n 2 1 
A l(-) [Fw (y-l)=F (y=l)] +(-) - F (y=l)[l-F (y-1)]} 

w o+n o X w o+n n X X 

+ (-n~) 2 l F (y-1)[1-F (y)]} 
w0+n n x x (4.3.14) 

If FX is normal with zero mean and variance ~2 , y0 may easily be 

found (1) 

l 2 B 
Y = - + cr in(-) 

0 2 A 
(4.3.15) 

Thus for this particular case Equation 4.3.8 can be easily evaluated 

with the aid of Theorem 4.3.3. 

Although in a real problem FX would be unknown, a general idea of 

Fx would exist. Therefore the theorems presented here are of value in 

obtaining a feel for the errors involved in a practical binary detection 

problem and are especially valuable in that the influence of the prior 

distribution is explicitly shown. 



CHAPTER V 

BAYES 1 EMPIRICAL DISTRIBUTION FUNCTION FOR A RANDOM VECTOR 

5.1 Introduction. An estimate of the distribution function of a 

random vector must often be obtained from prior information and sample 

data. Keehn (5) for example has developed a Bayesian method for esti-

mating the mean and covariance matrice.s for an n-variate normal distri-

bution. Some thoughts are presented in the following section about the 

extension of B.E.F. to k-dimensional random vectors. 

5.2 B.E.F. for a Random Vector. Consider the k=dimensional random 

vector 

(5.2.1) 

and a sa1+1ple vector 

X . = (X . l , X . 2 , ••• , X . k) 
-1. 1, 1, 1, 

(5.2.2) 

of X. Guided by the one dimensi.onal development of Appendix A, let 

(5.2.3) 

and assume that Q has a first order beta density 

0 ~ q < l 

(5 .2 .4) 

0 otherwise, 
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where q, Q! and~ are real valued functions of the random vector X such 

that 

0 :'.:: q (~) < 1 (5.2.5) 

QI(~)> 0 (5. 2. 6) 

and 

(5.2.7) 

As in Appendix A, let 

where w0 is not a function of~' i.e.; a constant. Thus from the proper-

ties of a beta density, 

QI (x) 
= ----=-- (5. 2 0 9) 

and 

2 
aQ = Var[Q} 

Q! (~)~ (~) 

= 2 
(w0+0w0 

(5.2.10) 

2 where the dependence of µQ and crQ on xis understood. 

Given n independent samples of x 

(5.2.11) 

applying Bayes 1 theorem as in Section A.3 yields posterior values 



and 

where 

2' 
(Jr = 
Q 

wo+n 

[a(.!.) = ~(.!.)][n ~a(.!.)+~(.!.)] 

[w0 + n + l]w6 

a(_!)= (the number of trials out of n samples such 
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(5.2.12) 

(5.2.13) 

that x. 1 ~ x 1, x. 2 ~ x2 , ••• , .x. k ~ xk) • (5.2.14) 
i, i, . i, 

With the exception of the argument being.!. instead of x, Equations 

5.2.9, 5.2.10, 5.2.12 and 5.2.13 correspond to Equations A.3.4, A.3.5, 

A.3.6 and A.3.7 respectively. 

Using I.Lr, as the prior estimate F (x) of F(x) and~ as the poster= . "< WO - - . "< 

ior estimate Fw(.!.) of F(.!.), Equations 5.2.9 and 5.2.12 yield 

wo ~(x) n a(x) 
F =--·---=-+--•-=-w w0+n WO w0+n n 

(5.2.15) 

From Equation 5.2.14 it can be seen th~t a(.!.)/n is the empirical distri-

but ion function for the k=dimensional random vector !, i.e., 

Thus Equation 5.2.15 becomes 

F (x) 
n-

a(x) 
=--=--n (5.2.16) 

(5.2.17) 

Hence B.E.F. for a random vector is of the same form as B.E.F. for a 

random variable. 

As Equation 5.2.17 is the weighted average of two distribution 
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functions, Fw(~) can readily be shown to be a distribution function also, 

Convergence and error theorems similar to those of Appendix B remain to 

be proved for! a random vector. 



CHAPTER VI 

SMOOTHING BAYES' EMPIRICAL DISTRIBUTION FUNCTION 

6.1 Introduction. As was shown in Theorem B.4.1, the B.E.F. esti-

mate Fw(x) of F(x) is an unbiased estimate of F(x) if the prior distri

bution function Fw (x) is an unbiased estimate of F(x). Regardless of 
0 

the prior, Fw(x) is an asymptotically unbiased estimate of F(x) for 

finite w0 as shown in Theorem B.4.2. In spite of this B.E.F. may not be 

a desirable estimate in some applications. If the distribution function 

F(x) is known to be continuous, the discontinuous nature of Fw(x) may be 

disconcerting if not an actual problem. Therefore some form of smoothing 

may be desirable. 

6.2 Smoothing B.E.F. Parzen (10) has developed a method for esti,

mating the density function f(x) from n independent samples (x1 ,x2 , ••• , 

Xn}. This estimate gn(x) of f(x), where 

is of the form 

x 
F(x) = J f(u)du 

-00 

00 

gn(x) = J i K(x~y)dFn(y) 
_oo 

l h x-X. 
= - ~ K(--1) nh . 1 h 

J= 

Fn(x) is the familiar empirical distribution function and K(y) is a 

weighting function satisfying certain conditions. From an engineering 

34 
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point of view this. is equivalent. to time domain filtering where K(x) is 

t.he filter and xis analagous to time. From another point of view it is 

1 1 x-X. 
a weighted average of n density functions h K(~), where Xj determines 

the shift of K with respect to the origin and h determines the spread 

about Xj of K. Thus a smoothed estimate of F(x) is 

x 
Gn(x) = J gn(y)dy 

_o:, 

A natural application of this to B.E.F. would be to use 

WQ n 
G (x) = -- F (x) + - G (x) 
w wo+n wo wo+n n 

for the estimate of F(x). Properties of this estimate need to be inves-

tigated. Because of the nature of Gw(x), it is to be expected that Gw(x) 

would have properties similar to Gn(x). The properties 0:I; Gn(x) have 

been investigated by several authors (7,8,10,13,17,18). 

6.3 Specht's Approximation. A major difficulty in applying the 

E.D.F. to engineering problems is that all data must be kept in storage. 

This difficulty carries over to B.E.F. Specht (16) has developed a 

series approximation f0r Parzen•s method that requires a fixed storage 

capacity. It would appear that this approach might be used to simultan-

eously reduce data storage requirements and provide smoothing of B.E.F. 

Specht•s approximation chooses a weighting function K(x) of the 

form 

1 x2 
K(x) = V'frr exp(-~) (6.3.1) 

1K(x) is n0t necessarily a density function. 
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Thus 

(6.3.2) 

or 

2 
1 1 n (x-X.) 

gn(x) = - ~ exp(- 1 ) 

cr 'fin n i=l 2,/ 
(6.3.3) 

Writing 

2 2 
-x ) xx. ( xi ) exp(~ 2 exp(~) exp - 2 
2cr cr 2cr 

(6.3.4) 

2 and expanding exp(xXi/0') in a Taylor's series, Equation 6.3.3 becomes 

where 

Noting that 

1 2 
gn(x) = -- exp(=~) 

cr V2n 2,i 

r c x r,n 

1 1 ._f!- x~ 
cr,n = L__;. x: exp(= ~ 1-) 

2r n. 1 2~2 
r !cr i=l "" 

C =~C + l 

2 
1 r xntl 

ntl Xntl exp(- -2-) 
2cr r,ntl ntl r,n r!cr2r 

(6.3.5) 

(6.3.6) 

(6.3.7) 

it can be seen that a recursive relation exists for C • Hence for a . r,n 

fixed number of terms Min the Taylor's series approximation 

1 2 
g (x) ~~~-exp(=!..._) 

n CiJ Vfir 2cr2 

M 

~ 
r.=O 

(6.3.8) 

Thus the. approximation requires the storage of a fixed number of terms 

regardless of the sample size. A number of properties of this 



approximation are investigated by Specht and should be of value in 

applying it to B.E.F. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7.1 Summary. Taking a specific weighted average of the prior 

estimate of a distribution function and the empirical distribution func

tion as the posterior estimate of a distribution function was shown to 

be consistent with Bayes' theorem. This result, referred to as Bayes' 

empirical distribution function (B.E.F.), was compared to conventional 

parametric estimation using theorems developed in Appendix B. An appli

cation of B.E.F. to the detection of a binary signal in unknown noise 

was given. A method for extending B.E.F. to the estimation of a distri

bution function for finite dimensional random vectors was outlined. The 

adaptation of B.E.F. to Parzen 1 s method was suggested for obtaining con

tinuous estimates of a distribution function. 

7.2 Conclusions. B.E.F. offers a simple, logical method for com

bining prior knowledge and independent sample data to estimate a.distri

bution function. B.E.F. was shown to converge to the true distribution 

function with probability one regardless of the prior distribution. 

Given the .true form of the distribution and a prior density for a param

eter which does not exclude the true value, conventional Bayesian para

metric estimation is superior to B.E.F. If, however, the assumed form of 

the distribution function is incorrect or the assumed prior excludes the 

true value of a parameter, B.E.F. may yield a superior estimate after ·a 

relatively small number of samples. Thus B.E.F. allows the use of prior 
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information as does conventional Bayesian parametric estimation, but 

B.E.F. will converge (with probability one) to the true distribution 

whereas conventional Bayesian estimation may not. B.E.F. may also be 

used for parametric Bayesian estimation with results very similar to the 

conventional Bayesian technique. For most applications it appears that 

B.E.F. can replace the canventional Bayesian technique either for non

parametric or parametric (;!stimation. 

7.3 Recommendations for Further Study. While additional investi

gation of the application of B.E.F. to specific engineering problems is 

of interest, more general investigations should prove more valuable. 

Convergence and error theorems need to be proved for the extension to 

random vectors outlined in Chapter V. The smoothing suggested in Chapter 

VI needs further study to determine if the improvement in the estimate, 

if any, justifies the added complexity. Extension of B.E.F. to dependent 

samples should be a fruitful field for further investigation. 
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APPENDIX A 

DERIVATION OF BAYES' EMPIRICAL DISTRIBUTION FUNCTION 

A.l Introduction. Assume that the distribution function of a pop-

ulation is to be learned from a set of independent :;;amples. Further 

assume that some prior knowledge of the distribution function is avail-

able. This knowledge is in the form of a prior distribution function 

and the degree of confidence in the prior distribution function. Bayes' 

theorem is used to develop a method of combining the prior distribution 

with the sample data to obtain a posterior distribution. 

A.2 The Prior Distribution, Assume that the.probability distribu-

tion function F(x) of the population is a sample function from a sto-

chastic process with a beta first order density function. Also assume 

that the prior knowledge about F(x) is in the form of the parameters of 

the beta function. If Q .is the probability that a sample X from the 

population is less than or equal to x, i.e., 

Q = P(X:: x) 

= F(x) 

then Q has the prior beta density function 

0 
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0 < q < 1 
O! '~ > 0 

otherwise, 

(A.2 .1) 

(A.2 .2) 
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where 

~,~and q are functions of x. 

Then given q, the probability that a out of n samples would be less than 

or equal to x will be binomial with probability q. Thus 

P (a) = P[a out of n samples :: x} 
Alq,n 

n a n-a = ( ) q (1 - q) , a=J, 2, ••• , n a (A. 2 .3) 

A.3 The Posterior Distribution. After sampling the population, 

Bayes' theorem may be used to obtain the posterior density function for 

Q. Bayes 1 theorem gives 

PAlq,n(a)fQ(q) 
fQl&(q);:::: _00 _____ _ (A .3 .1) 

J PAlq,n(a)fQ(u)du 
-00 

after substitution of Equations.A.2.2 and A.2.3, Equation A.3.1 becomes 

(A.3. 2) 

0 otherwise, 

and on integration 

r(n+a+~) a+a-1. n=a+~-1 
r(a+a)r(n-a+~) q (l-q) 

(A.3 .3) 

0 otherwise. 
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The posterior density function is again beta and the well known (15) 

fact that a beta prior distribution and a binomial sampling law will 

yield a beta distribution on the iterative application of Bayes' rule 

may be readily established by induction. 

It can easily be shown that for the beta function 

a =---,-
a+~ 

(A.3 .4) 

2 crQ = Var[Q} 

al3 
= --------

(a+l3+ 1 ) (a+~) 2 
(A.3 .5) 

and similarly 

µ~ = E[Q I~} 

(A,3 .6) 

21 
crQ = Var[QI&} 

(a+a) (n=a+~) = -----------~-'-"-'--,-
(a+ 13 + n+ 1) (a+l3+n) 2 

(A.3. 7) 

A.4 Restrictions on the Prior Distribution. The model assumes 

that the prior knowledge of the distribution function F(x) is in the 

form of the parameters a and~ of the beta density •. It is reasonable to 

assume that the prior distribution function is best estimated by the ex-

pected value of Q. Thus 

a(x) = --,-,-'""--'-,-,--,-
a (x) + ~(x) 

(A.4 .1) 
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and similarly 

= a(x) + S(x) + n 
a(x) + a(x) (A.4 .2) 

This implies that µ,Q must be a distribution function and hence that 

µ,Q is continuous from the right, (A.4 .3) 

(A.4.4) 

µ,Q (+oo) = 1, and (A.4. 5) 

(A.4 .6) 

µQ is a distri_bution function if_ and only if it satisfies the same 

four cdnditions. If µ,Q satisfies the first condition, Equation A.4.2 

implies 1,.1,~ also satisfies the same condition. The second and third con~ 

ditions 
. I 

are satisfied by µ,Q if they .are satisfied by µ,Q. It .remains to 

be shown what restrictions on the prior assumptions are sufficient to 

I 
assure that µ,Q is an increasing function of x. 

As~ and~ are uniquely determined when µ,Q and cr~ are selected, the 

necessary restriction is developed in terms of restrictions on cr~ given 

µ,Q. From Equations A.3 .4 and ,A.3 .5 

and 

(A.4. 7) 
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As the beta distribution is only defined for O < ~ < 00 and O < ~ < 00 , 

2 
0 < cr < µ (1-µ) 

Q Q Q 
(A .4. 8) 

Let 

then 

and 

(A.4. 9) 

must also be true. For simplicity the notation will be simplified as 

follows: 

2 
and similarly for crQ(x). 

Let C be a function of x such that 

0 < C < 1 

and 

(A.4.10) 

(A.4.11) 

(A.4.12) 

(A.4.13) 

(A.4.14) 

(A.4.15) 



2 er = Cµ.(1-µ.) 

Similarly 

From Equations A.3.4, A.3.5, A.3.6, A.3.7 and A.4.14 

and 

I 
flµ. 

(a-µ.)C + µ. 
=-~---(n-l)C + 1 

(a-µ.O)CO + µ.O 

(n-l)c0 + 1 

On rewriting Equation~ A.4.18 and A.4.19 become 
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(A. 4 .16) 

(A.4.17) 

(A.4 .18) 

(A.4 .19) 

From the definitions: n > O, 0 < C < 1, and O < c 0 < 1. Therefore the 

denor\iinator of Equation A.4.20 is greater than zero. ,Thus 

On expanding and rearranging Equation A.4.21 becomes 

(A.4.22) 

Now a andµ. are nondecreasing functions of x~ n ~ 0 and O < C < 1. 

Therefore the first two terms in the above expression are nonnegative. 

If 
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C = c0 = K (A.4. 23) 

that is, C is a constant, the third and fourth terms become 

[nK(l-K)(µ.-µ. 0)] + [K(l-K)(a=ad] (A.4.24) 

which is also nonnegative. 

I 
From the above it can.be concluded that in order to assure thatµ. 

is a nondecreasing function of x, it is sufficient to choose the prior 

such thatµ. is nondecreasing and 
q 

(A. 4 .25) 

where K is a constant. That this will rema~n true for repeated sampling 

may be easily proved by induction. 

The posterior ·mean and variance.of Q become 

where 

If 

i 
µ. = 

l=K 
a+µ. T 
1-K 
T+n 

2' 
S' 

1 =--~--1-K T+ n+ 1 

I I I 
= K µ. (l=µ. ) 

i i 
µ. (1-µ. ) 

(A.4.26) 

(A.4.27) 

(A.4.28) 

(A.4.29) 

(A.4.30) 
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then 

0 < Wg (A.4 .31) 

and Equation A.4.2 becomes 

(A.4 .32) 

(A.4.33) 

WQ ,., n 
= -- Fx(x) + -- F (x) 

wo+n wo+n n 
(A.4.34) 

where 

/J. 1 F (x) = - (no. of observations< x among x1 , ••• , X) (A.4.35) n n ~ n 

is the empirical distribution function. w0 may be con$idered an equiva

lent sample size weight on the prior distribution. For convenience 

8 " Fw0(x) = FX(x) (A.4.36) 

/J. ,. 
Fw(x) = FX(&(x) (A.4.37) 

Thus from Equations A.4.34, A.4.35, A.4.36 and A.4.37 

WQ n 
Fw(x) = -- Fw (x) + -- F (x) 
· wo+n o wo+n n 

(A.4.38) 

Similarly Equation A.4.27 becomes 

~2 ' = 1 1 F (x)[l-F (x)] 
wo+-nt w w 

(A.4.39) 

The above equation is of course a measure of the expected value of the 

squared error in the estimate Fw(x) of F(x). 
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A.5 Binomial Sampling Not Required. In the previous sections it 

was assumed that the sampling was binomial, i.e., an integer number of 

units, a, out of an integer number of units tested satisfied the less 

than or equal criteria,. It may be desirable to remove this restriction. 

Consider the case of estimating the distribution of the diameter X of 

wire manufactured by a ma,chine. Assume that a sample of lengths= 100 

feet is chosen. For some diameter X= x0 , conceivably a length of l\fi. 

feet of the sample could be less than. or equal to x. Thus the sample 

distribution.for X = x0 would be Fs(x0 ) = 4/2/100. If instead of the 

assumption A.2.;3 

a.=1,2, ••• ,n 

it is assumed that 

a s-a Bq (1-q) o < a < s 

f . (a I q, s) = 
a1q,s 

where 

B= 

0 

Jn q - )n(l-q) 

qs _ (1-q)s 

otherwise, 

q -:/- \, 0 < q < 1 

(A.5.1) 

(A. 5 .2) 

(A. 5 .3) 

Then the restriction of binomial sampling is removed. It is an easy 

matter to ,how that all of the derived formulas remain unchanged in form 

and Equation A.4.38 becomes 



where 

and 

0 < s 

Fw(w0 ) ~~(observed quantity of sample~ x out of 

a sample sizes). 
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(A. 5 .4) 

(A. 5. 5) 

(A. 5 .6) 

(A. 5. 7) 



APPENDIX B 

THEOREMS CONCERNING BAYES' EMPIRICAL DISTRIBUTION FUNCTION 

B.l Introduction. Bayes' empirical distribution function (B.E.F.) 

is closely related to the conventional empirical distribution function 

(E.D.F.). Therefore it is to be expected that the properties of the two 

will be similar. Several theorems are developed that are useful not 

only in applying B.E.F. to engineering problems, but are also useful in 

comparing the relative merits of choosing the B.E.F. approach rather 

than the E.D.F. or a conventional Bayesian parametric method. 

B.2 Convergence, of B.E.F. The proof of Theorems B.2.1 and B.2.2 

are a direct consequence of the relation between B.E.F. and the E.D.F. 

Theorem B.2.1. Fw(x) converges uniformly in x to Fn(x) for 

_co < x, < +oo~ i.e., Um[supl Fw(x)=Fn(x) j] = O. 
n~co x 

Proof. Given e > O, 0 < w0 < co, select N such that N > w0/eu V n 

> N, -co < x < oo, 
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< 

e: =---
1 + e 

< e 

from the definitions of Fn(x), Fw (x), ~nd Fw(x) and the first statement. 
0 

Thus Fw(x) converges uniformly in x to Fn(x), by the previous step and 

the definitions of uniform convergence •. 

Theorem B.2.2. Fw(x) converges uniformly in:>!! to F(x) with prob-

ability one for·- 00 < x < 00 , i.e. 

P[lim[suplFw(x) - F(x)I] = O} = 1 
n~00 x 

Proof. It was shown by Glivenko (6) that 

P(lim[supjFn(x) - F(x)I] = O} .::;:: 1 
n-1"" x 

Given t > p, let e: 1 = e/2. There exists an N1 such that n > N1 ~ 

P[[supiFn(x) - F(x)I] < e: 1 } = 1 
x 

by the first step and the definition of a limit. There exists an N" 

such that n > N" ~ 

by Theorem B.2.1 and the definition of uniform convergence. Then 

n > N = ·µiax(N' , N 11 ) and suplFn(x) - F(x)I < e: 1 =) 
x 

suplFn(x) - F(x)I + suplFw(x) - Fn(x)I < e:1 + e: 1 = e x x 



from the previous two steps. But 

because from the triangle inequality, 

and the above step. 

sup[a + b] ~ sup[a] + sup[b] 
aeA aeA beB 
beB 

Hence n > N and supjFn(x) - F(x)j < e 1 ==} 
x 

by the two previous statements. Thus 

P[supjFw(x) - F(x)j < e} = 1 
x 

for n > N, by the second and the above statement. Hence 

P[ lim[supj Fw(x) - F (x)I ] = O} = 1 
n..Je::i x 

by the second and the above statements and the definition of a limit. 
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B.3 Errors of B.E.F. Estimate of F(x). The theorems i.n this sec-

tion give an indication of the errors to be expected in estimating the 

distribution function. These theorems are of use in some decision prob-

lems. 

Theorem B.3.1. The expected value of squared error of the B.E.F. 

estimate of F(x) in terms of the prior distri.bution Fwo (x) and the true 

distribution F(x) is 



55 

2 ( WO ) 2 2 ( ) 2 E[[Fw(x)=F(x)] } = --. [Fw (x)=F(x)] + _n_ .!. F(x)[l=F(x)] , 
wo+n, o wo+n n . 

that is, the expected squared error is a weighted average of the squared 

error of the prior estimate and the expected value of the squared error 

of the E.D.F. estimate. 

Proof. 

2 Won WO 
+ F (x) + 2 2 F (x)F(x) - 2 -- F (x)F(x) 

(wo+n) WO wo+n WO 

n 2 
= 2 ·-- F (x) 

wo+n 

from the definitions of Fw(X) 9 Fw (x) and Fn(x). The desired result is 
0 

obtained by rearranging the result of the above step. 

Letpma B.3.1. Given a random variable x·with probability distribu-

i f i F( ) d f o O d o 2 h ton unct on x an inite meanµ an variance cr, ten 

and 

lim [xF (x) [ l=F (x)]} = 0 
x-+=oo 

lim [xF(x)[l=F(x)]} = 0 
x*oo 



Proof. 

co 

cr2 + µ.2 = J 
-CO 

2 x dF(x) = Um ~ x2dF(x) for y > 0 
y-too J 

-y 
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2 from the definitions ofµ., o and the integral over an infinite interval. 

-y 2 2 2 J x dF(x) < er + µ. 
_co 

because x2 > 0 and F(x) is monotone nondecreasing. 

The total variation of F(x) over the interval [-00 ,-.y] is less than 

or equal to (</+/)// because F(x) is monotone nondecreasing, and x2 > 

y2 for x$[ ... co, .. y]. Thus F(.-y)::: (cr2+µ. 2)/y2, from above step and F(-co)=O. 

because O ~ F(x) < 1 and the previous step. The proof that 

is similar. 

lim{xF(x)[l-F(x)]} = 0 
x,,-co 

Theorem B.3.2. The integral of the expected value of the squared 

error of the B.E.F. estimate Fw(x) of F(x) in.terms of the prior distri

butiort function Fw0(x) and the true distribution function F(x) is 

co 2 
I= J E{[Fw(x)-F(x)] }dx 

-"° 

~ WQ )2 co. 2 ~ )2 co · = -. J [Fw (x)-F(x)] dx + _n_ - J .!. F(x)[l-F(x)]dx 
wo+n ,.co O wo+n ,.ex, n 
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Further 

I < ( wo \
2 j [Fw (x)-.F(x)/ dx + (--E-.,.... ·)

21 j Ix - µ. I dF(x) 
- wo+.;_) -= 0 wo+n n -= 

where µ. = E(x}. 

A less stringent though occasionally more convenient upper bound is 

( w )2oo 2 ( )2 ( 00 2 ) l :: _o_ J [Fw (x)-F (x) J dx + _n_ l 1 + J (x-µ.) dF (x) 
Wo+n _00 0 w0+n n _00 

Proof. The first statement follows directly from Theorem' 1B .3 .1. 

Letµ.= E(x} and Z = X - µ., then G(z) = F(z +µ.)and 

00 

J F(x)[l-F(x)]dx = J G(z)[l-G(z)]dz 
_oo 

From the above statement and the definition of an integral over an in-

finite interval it is sufficient to consider 

y y 
lim J G(z)[l-G(z)]dz = lim(zG(z)[l-G(z).] 

y y 2 
J zdG(z) + J zdG (z)} 

Y-¥° -y Y'100 -y -y -y 

= lim[zG(z)[l-G(z)] 
Yi°" 

y 2 
= lim(J zdG (z)} 

Y..jC!l -y 

y y 2 
+ J zdG (z)} 

-y -y 

The reduction is accomplished using integration by parts, E(Z} =· 0 and 

Lemma B.3.1. Now 



y y 2 
lim J G(z)[l-G(z)]dz = lim(J zdG (z)} 
y~co y~co 

-y =Y 

y 2 
< lim[J .zdG (z)} 
- y..y:r, 0 

y 
~ i~figq 2zdG(z)} 

co 

= J jzldG(z) 
_co 

co 

= J lx-µ.ldF(x) 
-co 

where these steps are justified by the previous statement, G(z) nonde-

creasing, 

.d 2 2 
G (z+6)-G (z) = [G(z+6)-G(Z).][G(z+ti)+G(Z)] ~ 2[G(z+6)-G(Z)] 

and the definition of z. The final inequality follows easily from 

00 µ;-1 µ,-fl co 

I lx-µjdF(x) = I lx-µ.jdF(x) + J lx-µ.ldF(x) + I I x-µ.I dF (x) 
~00 _co µ. .. l µ+l 

µ,tl f:Jrt::l co 

~ J (x-µ./ dF (x) + J lx-µ.ldF(x) + I 2 (x-µ.) dF (x) 
,..co µ.-1 µ.+l 

co 2 µ.tl 
~ J (x-µ.) dF(x) + J Jx-µ.ldF(x) 

_co µ.-1 

2 
(x-µ) dF (x) + 1 

58 
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Although Theorems B.3.1 and B.3.2 are of value, the true distribu-

tion function F(x) would not be available in practice. Hence the follow-

ing theorem is of interest. 

Theorem B.3.3 .. The estimate of the expected squared error of the 

B.E.F. estimate Fw(x) of F(x) in terms of Fw (x) and F (x) is 0 . n 

- 1-- Fw(x)[l-Fw(x)] 
wo+n+l 

Proof. The first expression results from the assumed first order 

beta density and is the variance given by this density as noted in 

Appendix A, Equation A.4.39. The second expression follows from the 

definition of Fw(x). 

The following lemma is of use in predicting errors in decision 

problems. 

Lenima B.3.2. Given a> O, 

E[Fn(x-a)Fn(x)} = i F(x-a)[l-F(x)] + F(x-a)F(x) 

and 

E[[Fn(x-a)-F(x-a)][Fn(x)-F(x)]} ~ i F(x-a)[l-F(x)] 

Proof. Let 

U = nFn(x-a) 



pl= P{X ~ x - a} 

= F(x) 

and 

P2 = P{x - a< X ~ x} 

= F(x) - F(x-a) 

then U and Var~ jointly trinomial, i.e. 

0 otherwise 
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u and v nonnegative 
integers and 

u+v~n 

and the properties of this density function are well known (2). 

Thus 

E{UV} = Eu{Ey{UV lu}} 

= ~{UEy{VIU}} 

P2 . 2 2 2 
= -- [n p -np (1-p )-n p ] 

1-pl 1 1 1 1 

Hence 
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2 
= E(U +UV} 

= nF (x-a) [ 1-F (x-a),J+n2F2 (x-a)+n (n .. 1 )F (x-a)[F(x) ... F (x-a)] 

2 = nF(x-a)-.nF(x-a)F(x)+n F(x-a)F(x) 

. 2 = nF(x-a)[l-F(x)]+n F(x-a)F(x) 

On dividinij the above equation by n2 the first half of the lemma is 

proved. The proof of the second half follows from this and the defini-

tions. 

B.4 Properties of B.E.F. for Estimation. The following .theorems 

are especially useful when the B.E.F. is used for parameter estimation 

and for cQmparing the B.E.F. estimate with a parametric Bayesian esti-

mate. 

Theorem B.4.1. If the prior estimate Fw0 (:l() is an unbiased estimate 

of F(x), then Fw(x) is an unbiased estimate of F(x). 

Proof. 

wo n 
= - F(x) + -- F(x) 

Wo+n wa+n 

= F(x) 

Thus by the definition of an unbiased estima,te, Fw(x). is an unbiased 



estimate. 

Theorem B.4.2. Regardless of the- prior estimate Fw0(x), Fw(x) is 

an asym.totically unbiased estimate of Fw(x) as n approaches infinity. 

Proof. 

lim E(Fw(x)} = lim E(~ Fw (x) + ~ F (x)} 
n-+m n.,.eo wo+n O wo+n n 

= lim (~ Fw (x)} + lim (-n-_ F(x)} 
n-je<> wo+n O n~CIO wo+n 

= F(x) · .. 

Hence by the definition Fw(x) is an asym.totically unbiased estimate of 

F (x). 

Th§!9rem B.4,3. Let e be any parameter.of F(x) such that 

b 
e = J u(x)dF(x) 

a 
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where -eo ~a< b ~+eo and u(x) is a ·measureable function of x such that 

u(x) d.oes not depend on an unknown parameter, i.e., u(x) is a statistic, 

then if F'W(x) is an unbiased estimate of F(x) such that 

" 

" b 
ew = J u(x)dFw(x) 

a 

exists, then ew is an unbiased estimate.of e. 

Proof. By Fubini's theorem 



" 

b 
= E[J u(x)dFw(x)} 

a 

b 
= J u(x)dE(Fw(x)} 

a 

b 
= J t,t(x)dF (x) 

a 

= e 

Thus by definition .9w is an unbiased estimate of e. 
A 

It is important to note that Theorem B.4.3 does not state that ew 
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converges to 9 as n approaches infinity. However the following theorem 

can be proved. 

A 

Theorem B.4.4. Given 9 and ew as defined in Theorem B.4.3 where 

u(x) is Reimann integrable with respect to F(x), then 

P(limlew - el = O} = 1 not= · 

A 

i.e., ew converges to 9 with probability 1 as n .. approaches infinity. 

Proof. Let G be the set of outcomes such that Fw(x) converges 

uniformly to F(x) in x. Then 

b b 
SW= J u(x)dFW(x) = u(b)Fw(b) - Fw(a)u(a) - J Fw(x)du(x) 

~ . a 

Fw(x) converges uniformly 
b 

uniformly to J F(x)du(x). 
b a 

.9 = J u(x)dF(x). For set 
a 

in x to F (x) implies 
b 

b 
J Fw(x)du(x) converges 
a 

Thus J u(x)dFw(x) converges to 
a 

G, P(G} = 1, thus 

P(limlew ~el= 0} = 1 n-+eo . 
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If the restriction that u(x) is Reimann integrable with respect to F(x) 

is replaced with the restriction u(x) is bounded and continuous, the 

proof follows from the Helly=Bray theorem (11). 

Lemma B.4.1. Let e be defined by 

b 
e = J u(x)dF (x) 

a 

as described in Theorem B.4.4. Then 

b 2 1 b 2 b 2 
E([J u(x)dFn(x)]} = (1 - -)[J u(x)dF(x)] + l Ju (x)dF(x) 

a n a n a 

and 

00 2 1 2 1 2 
E[f u(x)dFn(x)] } = (1 = n)E(u(x)} + ~ E(u (x)} 

=o:, 

Proof. Let F(x1))<F(x2) be the product distribution over the 

product space x1)( Xzo 

b 2 b b 
E([J u(x)dFn(x)] } = E([J u(x 1)dFn(x1)J[J u(x2)dFn(x2)]} 

a a a 

b b 
= E[f J u(x1)u(x2)dFn(x1))<Fn(x2)} 

a a 

'b b 
= J J u(x )u(x2)dE(F (x )F (x2)} 

8 8 1 n 1 n 

b b i X· 'X = J J u(x )u(x )d[(l= -)F(x) F(x2)+ .!. F(x J U(x -x) 
a a 1 2 n 1 n l 2 1 
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where U(•) is the unit step function. This follows from Lemma B.3o2. 

Evaluation of the integrals yields the desired resultso 

Lemma B.4.2. 

b b 2 1 b 2 b 2 
E([J u(x)dFn(x)- J u(x)dF(x)] } =;(Ju (x)dF(x)-[J u(x)dF(x)]} 

a a a a 

Proof. 

b b 2 
E([J u(x)dFn(x) - J u(x)dF(x)] } 

a a 

b .2 b b h 2 
= E([J u(x)dFn(x)] = 2J u(x)dF0 (x) J u(x)dF(x) + [J u(x)dF(x)] } 

a a a a 

b 2 b . 2 b 2 
= E([J u(x)dFn(x)] } = 2[J u(x)dF(x)] + [J u(x)dF(x)] 

a a a 

The result then follows directly from Lemma B.4.1. 

Theorem B.4.5. The expected value of the squared error of the 

estimate 

b 
e = J u(x)dF (x) w w 

a 

of the parameter 
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b 
e = J u(x)dF(x) 

a 

is given by 

b 2 2 
n 2 [Ju (x)dF(x) - e J 

(w0+n) a 

where 

b 
eo = I u(x)dFw (x) 

a O 

In particular when 

e = E;[ u (x)} 

2 w 2 2 2 
E[e -· e) } .= [(_Q_ e0 + ....!!;..__ e) ~ e] + n [E[u (x)} - e J 

w wo+n wo+n (wo+n>2 

Proof. 

2 2 2 
E[ (e .. e) }=E[ e -2ee +e } w w w 

2 2 
=E[e }-2eE[e }+e w w 
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The above follows from the defin,itions and Lemma B.4.1. Tris may be 

-rewritten as 

2 n Jb 2 2 + 9 + 2 [ u (x)dF (x) - 9 ] 
(wo+n) a 

w 2 
= [C___Q__ e0 + ~ e) ... eJ + 

wo+n wo+n 

b 2 2 
n 2 [Ju (x)dF(x) - 9 J • 

Cw0+n) a . 

B.5 Moments of B.E.F. 

Theorem B.5.1. The estimate of the kth momer).t of the random 

variable x as given, by B.E.F. is 

co co co 
. k WO k k J x dFW(x) = --. J x dFW (x) + _n_ J x dF (x) 

_co wo+n .,co O wo+n, ~co n 

The expected value of the squared errar of this estimate-is given by 

Theorem. ~.4.5. 

Proof. The proof follows immediately from the definitions and 

Theorem B.4.5~ 

Theorem B.5.2. If the true meanµ. is known, the estimate of the 

variance given by B.E.F. is 

2 co 

(I = J .w 
-ClO 

2 wO 2 n 1 ~ 2 
(x-µ.) dF (x) = -- cr + -- [- L_ (X -µ.) J 

w wo+n O wo+n n i=l . i , 

2 
where cr is the estimate of the variance given by Fw (x). The expected 

0 0 

value of the squared error of this estimate is given by Theorem B.4.5. 



68 

Proof. The proof of the above follows directly from the definitions 

l;lnd the fact that µ. is a known cons.tant. 

Theorem B.5.3. If the meanµ. is unknown, and 

then the estimate of the variance given by B.E.F. is 

Proof. 

2 w co 2 00 . 2 
(x-µ ) dF (ll'.) = _._O_ J (x-µ.w) dFw (x) + _n_ J (x-~) dFn(x) 

w w wo+n -00 0 . wo+n ;..co 

wO [ 2 2 2] n 1 n 2 l n 2 = - · <:10+µ.o .. 2µ.oµw+µw + w +n [- ~ X.-2µ - ~ x.+µ J 'Wo+n . . 0 n. 1. i wn. 1 i w 
l.= l.= 

Rearranging the above equation yields th,e desired result. 



APPENDIX C 

CONVENTIONAL BAYESIAN PARAMETER ESTIMATION 

C.l Introduction. The inclusion of prior information in the esti-

mate of a distribution functi.on is very desirable in many applications. 

This is especially true in the decision theory approach to problem solu-

tion. For example in selecting the number of units to be tested from a 

lot of resistors, should the number to be tested be greater than zero? 

In the conventional method for including prior information in the 

estimate of a distribution function, the distribution function is assumed 

to come from a family of distribution functions characterized by certain 

parameters. ,One or more parameters of this distribution are tr.eated as 

random variables with a11 assumed prior density function. As sample data 

becomes available the prior density is modified by Bayes' rule to obtain 

a posterior density for the parameters. The conditional mean or mode of 

a parameter is usually used as a point estimate of the unknown parameter. 

In the examples presented the prior probability densities for the 

parameters to be estimated were selected so that application of Bayes 1 

rule yielded a posterior density of the same family. In such a case the 

prior is ,said to be 11 reproducing11, Spragins (15) has shown that given 

n independent observations (x1 ,x2 , ••• ,Xn} characterized by the joint 

density fx X X 18 (x1 ,x2 , ••• ,xn19), then a reproducing prior densi-
1, 2,•••, n · 

ty f9(8) exists if and only if the observations admit a sufficient sta-

tistic expressible as a vector of: fixed dimension (regardless of n). If 
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a reproducing.prior does not exist, the computations will grow without 

bound as the data set increases in number. 

C.2 Binomial Distribution With Unknown Probability. Consider a 

random variable Y which takes on the value 1 with probability q and O 

with probability 1-q. Ass,ume n independent values. of Y are availal:>le 

and let 

(C.2.1) 

then X wi 11 be binomially distributed with probability mass function. 

:,c=O ., 1 , ••• , n 

(C.2.2) 

0 otherwise 

Further assume that Q is a random v~riable with a beta distribution, 

i.e. 

0 < q < 1 

(C.2.3) 

0 otherwise 

Given n independent samples of Y, Bayes' theorem 

PXIQ(xlq,n)fQ(q) 
(C.2.4) 

.. oo 
PXIQ(xlu,n)fQ(u)du 

yields 
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(C.2.5) 

0 otherwise 

If the :mean of Q is used as the point estimate of Q, then the prior 

estimate is 

and the posterior estimate is 

Q = E(Q} 

Ot 

= Cl+S 

Ai 
Q = E(QIX}\ 

_ 0ttx 
- a'+S+n 

( Q' ) n (.!) 
0t+S + c;;v+l3+n n 

(C .2 .6) 

(C. 2. 7) 

The latter equation shows that the posterior estimate of q is simply a 

weighted average of the prior estimate and the sample value of q. Thus 

a'+S is the equivalent .prior sample size. 

c.3 Normal Distribution With Unknown Mean. Consider a normally 

2 distributed random variable X with known variance N and unknown mean Y, 

i.e. 

. 1 . [ (x-y) 2] 
= II~ exp - 2 

·v 2TIN- . 2N 

(C.3.1) 

The mean Y is to be estimated from prior knowledge and sample data. 



Assume Y is normally distributed with prior mean µ0 and variance 

GY~. Given a data set (x1 ,x2 ,.~·,xn}, it can easily be shown that on 

iterative application of Bayes' rule 
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fYIX (y Ix) = QO (C.3.2) 

fQO fX IY(xl u)fy(ur)du 

f will be normal with conditional mean YIX1, ••• ,xn 

and variance 

N2 2 
2©'0 

2 G)"o 
©' n ,= -N.,..2 .... ·----

·- + n 2 
©'g 

(C.3.3) 

(C.3 .4). 

Taking the conditional mean of Y as a point estimate of Y, X would 

be estimated to be normally distributed with mean given by Equation 

c.3.3 and variance N2, 2 · f h · f h . O'n is a measure o t e variance o t e estimate 

of the mean of X. 

C.4 Normal Distribution With Unknown Variance. Consider a normally 

distributed J;"andom variable X with known mean µ and unknown variance ci. 
Let 

1 
Z=·-

cr2 
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then the probability density function for Xis 

Afi: 1 2 
fx1z<xlz) = v2n exp[· 2 z(x-µ,) J (C.4.1) 

Assume Z is a random variable with a Wishart distribution, i.e. 

v-3 
T 

(z) exp(- f v cp z) Z. > 0 

(C .4.2) 

0 otherwise, 

where r< •) is the gamma function and the parameters v > 3 and cp > 0. 

Given v == v0 , cp = cp0 and a sample value of X, Bayes' rule 

fx1z<x1z)fz(z) 
f z Ix (z Ix) = _o:> _ ___. _____ _ (C.4.3) 

J fx1z<xlu)fz(u>du 
-o:> 

yields the result that fZIX is Wishart with parameters 

. (C.4.4) 

and 

(C.4.5) 

Using induction it can easily be shown that given a sample set 

[X1 ,x2 , ... ,X }, fZIX X is Wishart with parameters 
n 1' 0 ••, n 

(G.4.6) 
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and 

VO n 2 
- cp + n [ .!. ~ (X .. µ,) ] cpn = v _L O _L L_ 

o·n vo,n n i=l 
(C.4.7) 

Although 

1 v 
E[zT = v-1 cp (C.4.8) 

it is more convenient to consider cpn as the point estimate of the vari-

ance. In this case v0 becomes an equivalent prior sample size while cp0 

is the prior estimate of the variance. Thus cpn is an estimate of the 

variance and is a weighted average of the prior variance and the variance 

obtained from the sample data using the known mean. 

C.5 Normal Distribution With Unknown Mean and Variance. Consider 

a normal random variable with unknown mean Y and unknown variance cr2 • 

As in the previous section define 

z = 1 
cr2 

(C.5.1) 

Then 

f ( I ) = A{f""__ exp[- z(x-y)2] 
XIY,Z x y,z 'V2rr 2 (C.5.2) 

The mean and variance are to be estimated from prior knowledge and 

sample data. 

Treating Y and Z as random variables, Keehn (5) has shown that 

fy,z(y,z) reproduces itself with respect to fXIY,z(x1y,z), if fy,z(y,z) 

is a composite Gaussian-Wishart density function. Thus the mean Y and 

the reciprocal variance are assumed to have a density of the form 
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V=l V=3 

<;~)\exp[= f wz(y=µ) 2J[r<v;l)J=1 (~) 2 (z) 2 ( 1 ) exp = - "Vq)Z 
2 
z > 0 

(Ca5,3) 

0 otherwise, 

where r(•) is the gamma function and cp > O, w > 0 and v > 3, The param= 

eters W9 µ 9 v and cp are given the following interpretation by Keehn. 

µ is the estimate of the mean of X while w reflects the confidence in 

this estimate. cp is the estimate of cr2 and vis the confidence that the 

estimate cp is the true value of cr2 • 

It can be shown that given prior values w0 , µ0 , v0 and cp0 , a sample 

set [x 1 ,X29 ••• ,Xn} on application of Bayes 1 rule yields posterior values: 

(G.5.4) 

wO l n 
µ µ + n (- ~ X,) 

n = w .~n O + L:._ i o· WO n n i=l 
(C.5.5) 

(C.5,6) 

and 

(C.5.7) 

The estimate of the density fx(x) is then normal with mean µn given 

by Equation C.5.5 and variance cp given by Equation C.5.7. Examination 
n 

of these equations indicates that w0 is an equivalent sample size of the 

prior estimate of the mean µ0 , while v0 can be considered an equivalent 

sample size of the prior variance estimate cp0 o 
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C.6 Rayleigh Distribution With Unknown Parameter. Let X be a 

random variable with a Rayleigh distribution, i.e. 

Let 

1 -x 
2 

OI 

0 

2 
exp(-!...__) 

20/-

1 
C.=-2 

20I 

x > 0 

(C.6.1) 

otherwise 

(C.6.2) 

and ·assume that the parameter C is a random variable with a gamma dis-

tribution. Then 

1 a a-1 
r<a) b c exp(-bc) 0 < c 

(C.6.3) 

0 otherwise 

where O < a and O < b. Bayes' rule 

(C.6.4) 

yields 

0 < c,: (C.6.5) 

where a0 and b0 are the prior values of the parameters a and b. Given a 
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sample set [x1 ,x2 , ••• ,Xn}, it can be shown that repeated application of 

Bayes' rule yields a gamma distribution with posterior values of the 

parameters 

(C.6.6) 

and 

(C.6.7) 

Using the conditional mean of C as the point estimate of C gives 

For a Rayleigh distribution it is. well known (9) that 

and 

1 E[X} = 2 Afn_ = Q' Am_ 
fc. T2 

1 2 
E[X} - - - 2 

2QI - -c 

Thus the point estimate of .the mean square value of X is 

(C.6.8) 

(C.6.9) 

(C.6.10) 

(C.6.11) 

2 
Therefore b0/a0 can be considered as the prior estimate 2Q'0 of the mean 

square value of X while a0 is an equivalent sample size for the prior 

estimate. 
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