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CHAPTER I 

INTRODUCTION 

The Problem 

Recent research on the processing of pork' products 

concentrated attention on the problem of predicting heat 

transfer p.roperties of irregular shaped objects. Past 

performances in the design of cooling equipment for bio

logical materials have been based primarily on the designers 

experiences. Both over and under designed units are quite 

common. Most of these errors can be traced to a lack of 

available knowledge about the non-homogeneous, non-isotropic, 

irregular shaped objects encountered in biological materials. 

Smith (40) at Oklahoma State University developed a 

procedure for predicting the temperature distribution within 

an irregular shape. He showed the temperature to be of the 

following form: 

e = fl (Fo, Bi, La, G) ( 1) 

where: e = Dimensionless Te!llperature 

Fo = Fourier Number 

Bi = Biot Number 

La = Dimensionless distance 

G = Geometry of the shape. 

1 
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In order to predict the temperature at any point within the 

shape requires a know~edge of the Biot Number(~). The 

characteristic dimension, c, and thermal conductfvity of 

the shape can normally be determined by one of several 

methods. The heat transfer coefficient, h, is dependent 

upon the geometry of the shape as well as a number of other 

factors. Our knowledge of the heat transfer coefficient 

is limited to certain special surfaces such as spheres, 

flat plates, and cylinders. Should one wish to define the 

heat transfer coefficient for an irregular shape, such as 

a ham, he would have to define the shape in terms of a 

plate, cylinder, or sphere and then by one of several 

alternative approximations estimate the heat transfer 

coefficient. In many cases·this approximation of the 

anomalous shape is a poor one. The final result is also 

a poor estimate--errors up to 100 percent have been observed

of the heat transfer coefficiento 

An ellipsoidal model would provide a more accurate 

means of defining the geometry of anomalous shapes since 

we have control of the size of the model in three principle 

directions. It is reasonable to expect that a model that 

more adequately defines the geometry of the shape will also 

give a better estimate of the heat transfer coefficient. 

Therefore, there is a need for an equation that will 

predict the heat transfer coefficient of a wide variety of 

ellipsoidal modelso With these two tools, a redefinition 

of anomalous shapes in terms of ellipsoids and a general 



prediction equation for the heat transfer coefficient of 

these ellipsoids, it is thought that less "guess work" and 

more accuracy could be derived in estimating the heat 

transfer coefficient of anomalous shapeso 

Objectives 

The objectives of this study are: 

3 

1. To design ellipsoidal models which will be represent

ative of a typical agricultural producto 

2. To develop a general prediction equation for the 

heat transfer coefficient from the ellipsoidal 

models in a gas stream with a specified orienta

tion relative to the fluid flOWo 

3. To correlate the results of the general prediction 

equation with those obtained by direct measurement 

of the heat transfer coefficient from an anomalous 

shape. 

4. To determine an adequate criterion for replacing 

an anomalous shape with an ellipsoidal model for 

convective heat transfero 

Limitations of the Study 

Several factors that are known to have an effect on 

the convective heat transfer rates from blunt bodies have 

not been considered in this work. This was generally done 

either to hold the scope of the work to a manageable level 



or because it was considered unnecessary to accomplish 

the objectives of this work. 
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The surfaces of all models were buffed using a jewelers 

rouge to give a smooth shiny surface. As long as the 

boundary layer flow is laminar the surface roughness will 

have little; if any, effect on the convective heat transfer 

rate. However in the transition, turbulent and separated 

regions of the boundary layer large variations- in heat 

transfer rates can occur with small fluctuations in surface 

roughness. One of the noticeable effe_cts of increased 

roughness would be an earlier transition from laminar to 

turbulent boundary layer flow. Results for surfaces with 

large irregularities would be expected to yield results 

different than those presented here. 

In all cases the model was orientated so that the 

dimensions a and c were perpendicular to fluid flow and 

dimension b was parallel to fluid flow. Variation in the 

orientation of the model with respect to fluid flow was 

not considered important in fulfilling the objectives of 

this study. 

Air was used as the only fluid medium throughout the 

study so that Prandtl Number dependence could not be 

determined. However since the Prandtl Number for other 

gases closely approximates that for air these results 

should introduce small errors when using gases other than 

air. Kays (19) and·others have shown the Nusselt Number 

to vary approximately as the .·Prandtl Number to the one-third 



power. Using this approximation these results can be 

extended to cover fluids whose Prandtl Number varies 

significantly from the value for air. 
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The maximum and minimum levels of the independent pi 

terms are tabulated in Chapter III. Extrapolation of these 

results beyond the range of these values is not recommended. 

Extrapolation to values of the length ratios below the 

minimum is particularily discouraged for reasons detailed 

in Chapter V. 

Definition of Symbols 

The symbols used in this report are generally the 

same as those finding common usage in the literature of 

heat transfer. Those symbols finding general usage through

out the report are tabulated below. Subscripts on the 

variable symbol generally refer to a particular location 

in space and is not necessarily included in the list 

given below. The subscript, 00 , always refers to the free 

stream condition while a subscript of o or w usually 

refers to the condition at a stationary surface. Where 

special symbols that are not tabulated below are used a 

special effort is made to define those quantities. 

Symbol Quantity 

a Length of the major axis of the ellipsoid 
perpendicular to fluid flow 

A a/2 

Ai Surface area represented by node i 

Units 

ft. 

ft. 

ft 2 



Symbol 

AP 

B 

Quantity Units 

Area projected on a pla~e p~rpendicular ft 2 
to fluid flow 

Total surface area ft2 

Length of the horizontal axis of ellipsoid ft. 
pe.rpendicular to major axis and parallel to 
fluid flow 

b/ 2 ft. 

Bi Biot Number 

c 

c 

Length of vertical axis of ellipsoid 
perpendicular to major axis and fluid 
flow 

c/2 

Constants 

Drag Coefficient 

ft. 

ft. 

6 

Specific heat at constant pressure Btu/(lbm°F) 

d,e,g,j Dimensionless exponents 

D Diameter of sphere 

E emf 

Ek Eckert Number 

f A function of 

fx Friction factor 

F Drag force 

Fo Fourier Number 

g Acceleration due to gravity strength 

G Geometry index 

Mass fluid velocity 

Gr Grashof Number 

h Average convective heat transfer 
coefficient 

ft. 

volts 

ft/sec2 

lbm/(secft2) 

Btu/(hrft2°F) 



Symbol 

hl 

I 

k 

k p 

Quantity 

Distance from centerline to wall in 
couette flow problem 

Current flow 

Fluid thermal conductivity 

Product thermal conductivity 

K Constant 

L Scale of turbulence 

La Dimensionless length ratio 

m Dimensionless exponent 

M Screen mesh size 

n Exponent on Reynolds Number of general 
prediction equation 

Ne Newton's Second Law Coefficient 

Nu Nusselt Number 

P· 

p 

Pressure 

Power 

Pr Prandtl Number 

Q Correlation Coefficient 

q Heat Energy Flow 

. " q Heat Energy Flow per unit area 

r R~gression Correlation Coefficient 

Dimensionless exponent 

Universal Gas Constant 

Re Reynolds Number 

Recrit Reynolds Number when CD= 0.3 

s Total length of ellipsoidal surface 
measured· from the stagnation point 
along the meridian profile 
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Units 

ft. 

Amperes 

Btu/(hrft°F) 

Btu/ (hrft°F) 

ft. 

watts 

Btu/hr 

Btu/(hrft2 ) 



Symbol Quantity . 

St Stanton Number 

T . Temperatu~e 

Tu Intensity of Turbulence 

u 

u' 

v 

v• 

w 

w' 

x,y,z 

x 
y 

z 

Local velocity in x-direction 

Instantaneous velo.ci ty fluctuation in 
x-direction 

Velocity of plate iri couette flow 

Free s'tream Velocity 

Local velocity in y-direction 

Instantaneous velocity fluctuation in 
y-direction · . · 

Local velocity in·z-direction 
\ ', . 

Instantaneous velocity fluctuation in 
z-direction 

Unheated starting le~gth 

Coordinate directions 

Body Forces in.x-direction 

Body Forces in y-direction 

Body Forces in z-direction 

Characteristic Length 

ln Naperian logarithm 

log Logarithm to Base 10 
a Thermal diffusivity 

B Coefficient of volumetric expansion 

y Coeffic;i.ent for general·· prediction 
eq\lation 

Hydrodynamic boundary layer thickness 

Thermal• bo':iridary layer .. thickness 

Units 

ft/sec 

ft/sec 

ft/sec 

ft/sec 

ft/sec 

ft/sec 

ft/sec 

ft/sec 

ft. 

ft. 

lbf/ft 3 

lbf/ft 3 

lb f/ft 3 

ft. 

2 ' ft /hr 

l/°F 

ft. 

ft. 
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Symbol 

£ 

£H 

n 

e 

e 

µ 

v 

E; 

p 

TO 

<I> 

<I> 1 <I> 2 

'¥ 

w 

p;': 

Ti: 

u~·, 

u+ 

v1: 

w··· .. 
+ y 

'¥ ;'¢ 

v2 

Quantity 

Roughness index 

Eddy diffusivity for heat 

Similarity Variable 

Dimensionless temperature 

Angle 

Dynamic viscosity 

Kinematic viscosity, µ/(pNe) 

(vxUco) 

Density of fluid 

Shear stress at the wall 

Viscous. dissipation function 

A function of 

Stream function 

Number of nodes 

Dimensionless pressure - P/(pU 2) 
00 

Dimensionless temperature - T/(T -T) ' w IX) 

Dimensionless velocity - u/Uco 

Dimensionless velocity - u/(T /pNe)l/ 2 
. 0 

Dimensionless velocity - v/U. 
IX) 

Dimensionless velocity,- w/U00 

Dimensionless Distance - ypNe(T 0 /pNe) 1 / 2 /µ 

Dimensionless stream function - '¥/E; 

a2 a2 a2 Differential operator,-·--+---+---
ax2 ay2 a z2 

9 

Units 

ft 2/hr 

degrees 

lbfsec/ft2 

ft 2 /sec 
2 

ft /sec 

lb /ft 3 
m 

lbf/ft2 

1/sec 

2 
ft /sec 



CHAPTER II 

REVIEW OF THE LITERATURE 

A complete r>epoFl: of the literature in the heat trans-

fer area relating both directly and indirectly to this problem 

is impossible because of the large number of volumes coming 

off the press each year. Because of this the author has 

selected those areas considered to be·most applicable to 

this particular problem for review. 

The derivation of those basic·governing laws generally 

covered in most advanced heat transfer courses are not 

reproduced here. Instead the reader is referred to at 

least one reference for derivation and proof of these 

equations. These derivations are generally reproduced in 

numerous heat transfer texts that are not referenced in 

this report. 

The Navier-Stokes Equations 

Schlichting (36) shows the Navier-Stokes equations for 

steady compressible flow with constant viscosity to be: 

continuity: 

a(pu) + a(pv) + a(pw) = 0 
ax ay az 

10 



11 

momentum: 

au au+ au aP lei + 
p(uax + Vay Waz) = -a +pSeg +µ[V 2u+ 3axdivw]+X x . x (3) 

(uav + v~ + w~) aP a div;J+Y = -- +pseg +µ[v2v+-P ax ay az ay Y ay 
(4) 

PC uaw + vaw + waw) = aP +pSeg + cv2 +la ,, -1>1 . 7 -- µ w 3a°z QJ_ vw. ,,, .. ~ 
ax ay az az z 

(5) 

where: 

v2 
a2 

+ 
a2 

+ 
a2 

= ax2 ay2 az 2 

+ + + + aw + aw aw 
div w = ax ay + E 

These equations with the energy equation are used to solve 

for the temperature distribution in a viscous fluid. The 

energy equation with constant fluid properties becomes 

aT aT aT 
pC Cu-+ v- + w--···> · p ax ay a z 

aP aP aP + U- + V··-·- + W-- + l1 4> ( 6 ) ax ay a z 

where: 

~=viscous dissipation function 

:::: 2f(~u)2 + (~)2 + (~wz)2] + c!Y + au)2 +(aw~+ av)2 
. oX cly o ax ciy cly oz 

au aw + (-·- +-) 2 az ax 
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The equation of state for a perfect gas may be written as: 

P = pRT (7) 

These six equations, eqns. 2 to 7, form a system of six· 

simultaneous equations for the six variables: u, v, w, P, 

p, and T for the general case of a compressible medium. 

By introducing nonl-!-dd.Ihen:s.:iri:>nal::. va:r.iables.: in::tb(, this:: 

set of governing differential equations, we will determine 

the dimensionless groups on which the solutions must depend. 

Denoting these non-dimensional variables with*, they are 

u1c u 
= u(X) 

v·l: v 
= UCO 

w": w 
(8) ::: u: 

p··· 
p 

" -- pUoog 

T~': ::: T = T 
ti To T -T w 00 

Introducing these variables into eqns. 3 and 1+ we obtain 

for the two-dimensional equation of motion in the x-direction 

and the two-dimensional energy equation as follows: 

(9) 
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The dimensionless dissipation function is given by: 

. au* 2 av* 2 av* au* 2 2 au* av* 2 ~"=2[( ) +( ) ]+( + ) --( + ) 
'l' axi: ay)~ ax)~ ayi: 3 ax)': ayi: 

It is seen from these equations that the solution depends 

only on the following five dimensionless groups: 

k Ne 
c u ,Q,; 

p 00 

µ U Ne 
00 

The first group will be recognized as the reciprocal of the 

Reynolds Number. 

Re = 
UootpNe 

]l 

The second dimensionless group will be recognized as the 

ratio of the Grashof Number to the Reynolds Number squared, 

or: 

3 2 
= i36t p Ne2g 2 , 

].J. 

The third group Cq.n be written as: 

k Ne k.pNe 
=-

]l 

CpUooQ. Cppµ 

where: 

Pr= Prandtl Number =~ 
k Ne 
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The fourth and fifth dimensionless groups are not independent 

because multiplying the fifth group by the Reynolds Number 

will yield the fourth dimensionless group. The fourth 

dimensionless group then gives the Eckert Number. 

2 
U00 Ne 

Ek = Cp(t;T0 ) 

The Eckert Number is a measure of the temperature increase 

caused by adiabatic compression. Schlichting (36) uses 

the equation of state for a perfect gas to show that the 

work of compression, i.e., the Eckert Number, becomes 

important only when.the free-stream velocity approaches the 

speed of sound. 

This dimensional analysis leads to the conclusion that 

the dimensionless velocity and dimensionless temperature 

fields for the governing system of equations depend upon 

the following four dimensionless groups: 

Reynolds Number: Re= U00 tpNe 
]..I 

Prandtl Number: Pr, = ~ kNe 

Grashof Number: Gr = ~~~_e2Ne2 
µ2 

u°" 
2 Ne 

Eckert Number: Ek = 
CPU,T 0 ) 

In practical engineering heat transfer problems, however, 

we are gener,ally interested in determining the heat energy 

transfer from a body to the fluid field. The velocity and· 

temperature fields generally are of interest only in so much 
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as they aid in finding the heat transferred, This problem 

is generally solved by introducing the heat transfer 

coefficient, h, which may be defined either as a local or 

as an average heat transfer value. This heat transfer 

coefficient is defined by Newton's Law of Cooling as: 

where: 

q = rate of heat energy transferred in Btu/hr, 

As = surface area ln ft. 2 

Tw = wall temperature, of. 

Too = fluid temperature, of. 

This defines has the heat transferred per unit time per 

unit area per unit temperature change or Btu/(hrft 2°F). 

Energy is transferred entirely by conduction at the 

(11) 

boundary between the body and fluid. Therefore, by Fourier's 

heat conduction law: 

q =-k A s 

Equating these two expressions we obtain a dimensionless 

(12) 

heat transfer coefficient known. as the Nusselt Number. This 

becomes 

Nusselt Number= Nu ::: hi_ <aT*) i aT = ( ) 
~ -- an* n*=O (~To) an n=O 

(13) 
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The heat transfer problem then becomes one of determining 

the heat transfer coefficient since: 

(14) 

The preceding discussion leads to the conclusion that 

Nu= f 2 (Re, Pr, Gr, Ek) (15) 

for geometrically similar surfaces. 

For flows where the temperature differences are not 

large the buoyancy forces are generally very small compared 

to the viscous forces and may be neglected. Parker (30) 

states that as a rule if 

Gr 
(Re)2 <<l 

the buoyancy forces may be neglected. This gives what is 

normally called forced convection . 

. For flow conditions where the fluid velocities are 

much less than the speed of sound, the Eckert Number becomes 

very small and can be neglected. 

Under these limiting conditions then 

Nu= f 3 (Re, Pr) (16) 

Boundary Layer Simplifications 

For all except the most simple geometries, a complete 

viscous fluid solution for flow about a body poses consider-

able mathematical difficulty. Prandtl (34) made an 
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important contribution when, in 1904, he discovered that 

the influence of viscosity is confined to an extremely 

thin region very close to the body. The remainder of the 

flow field can be closely approximated by considering it 

an inviscid fluid. The region over which the viscosity has 

considerable influence is called the velocity boundary 

layer, as. 

Since the boundary layer is very thin in comparison to 

the dimensions of the body, the Navier-Stakes equations 

become simplified so that the analysis for a number of 

shapes are relatively simple. One fundamental assumption 

(19) of the boundary layer approximation is that the 

fluid immediately adjacent to the body surface is at rest 

relative to the body. This assumption appears valid 

except for very low pressures where the mean free path of 

molecules become large relative to the body dimensions. 

Therefore, the velocity boundary layer may be defined as 

the region where the velocity changes from zero at the 

surface to its free-stream value, U00 • Since the velocity 

in the boundary layer approaches the free-stream velocity 

asymptotically, the outer edge of the velocity boundary 

layer is usually considered to be where u = 0.99 U00 (30). 

Considering a two-dimensional boundary layer for 

simplicity, Kays (19) shows that the assumption of the 

boundary layer approximation requires the following 

conditions to exist in the boundary layer. 



U ;>>V 

au >> ~' av, l,Y 
ay ax ax ay 

aP - O 
ay 

aP - dP 
a1c - dx 
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(17) 

Introducing these approximations into the continuity 

equation, eqn. 2, and the Navier-Stokes equations 3 and 

4, for two-dimensional, steady, compressible fluid flow 

with constant fluid properties, we obtain the following 

simplified equations of motion. 

a(pu) + a ( pv) = 0 ax ay 

2 
dP + (uau + vau) ::: a u pB(T-Too) ax ay ay2 - dx 

(18) 

(19) 

Schlichting (36) estimates that the thickness of the 

laminar veloc~ty boundary layer is: 

os - 1 
L (Re)l/2 

= c 
(Re)l/2 

where the constant, C, depends on the geometry of the body. 

When a body is placed in a fluid f~eld so that the 

temperature of the body is different from that for the 

fluid field, the temperature field around the body will 

generally be of the boundary layer type (36)(19). This 



essentially means that the fluid temperature will change 

from the free-stream temperature some distance from the 

body to the body temperature at the body boundary. The 

distance over which this occurs being called the thermal 
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boundary layer, oT. Eckert ( 7) shows that the relationship 

between the velocity boundary layer and thermal boundary 

layer is 

1 
(Pr) 17 3 

This indicates for gases where the Prandtl Number is 

approximately unity that the thermal boundary layer is of 

the same magnitude as the velocity boundary layer. 

The thermal boundary layer approximation infers that 

aT aT 
- >> -ay ax 

Applying this approximation into equation 6 and limiting 

to the two-dimension case yields the energy equation for 

the boundary layer. 

pC 
p 

(uaT + vaT) 
ax ay 

dP 
udx 

(21) 

(22) 

( 2 3) 

The equation of state for the boundary layer is unchanged. 

P = pRT (7) 

In boundary layer theory the pressure is considered to be 

known from an inviscid flow solution. We then have a 

system of four simultaneous equations to solve for the 



four unknowns p, u, v, and T.. For the incompressible 

case where p=C the equation of state· is no longer need~d 

to effect a solution. 
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These boundary layer approximations have reduced the 

set of governing differential equations to a form that can 

be simply solved to give the flow patterns and temperature 

distributions around a number of bodies. As·· shown by 

equation 14 this will allow a means for predicting the 

heat transfer from the surface of these bodies. Although 

no attempt will be made to develop these solutions here, 

several of the results will be presented in the following 

section. 

Solutions for the Temperature Distributions 

in Viscous Flow 

Equations 2 to 7 may be solved for several geometries 

to yield the temperature distribution in the fluid field 

in the neighborhood of a body of different temperature. 

A few restricted examples exist whereby an exact solution 

is available, Still other problems can be solved by 

invoking the boundary layer approximations discussed in 

the previous section. A review, without detailed solutions, 

of several of these problems are presented here. 

The Fourier law, equation 12, and Newton's law of 

cooling, equation 11, enables us to use the temperature 

distribution in the fluid to predict the heat transferred 

from the body to the fluid. 
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The following two examples of Couette and Poiseville, 

flow are examples of exact solutions to equations 2 to 

1.· These systems are restricted to the case of incompressible, 

two-dimensional steady flow along a horizontal x, y-plane 

with constant fluid properties. Boundary layer approxima- ' 

tions ar~ not needed in these solutions. 

Witll these restrictions equations 2.to 7 reduce to 

2 2 

p(uau+vav) =-~<~4> 
ax ay ay ax ay 

2 2 

P < u!~:+ v av.) = -~ < a v + a v) 
ax ay ay ax 2 a? 

p C ( u!E.+ v!!) 
p ax ay 

where: 

Couette Flow (36) 

2 2 

= k(u..._a T)+ ~ ax2 . 'a"?" µ 

Flow between two parallel flat plates of which one 

is at rest, the other moving with a constant velocity u1 . 

in its own plane is called couette flow and is shown in 

Figure 1. The solution of the continuity and momentum 

equations in the absence of a pressure gradient in the 

x-direction is 

u(y) = ul <f> v = O ; P = const 

( 24) · 

(25) 

(26) 

(27) 

(28) 



Figure 1. Velocity Distribution in Couette 
Flow 

If the temperature of the wall is held constant, a 
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simple solution is available for the temperature distribution. 

The boundary conditions become 

y ;:: 0 

y ;:: L 

with these restrictions the viscous dissipation function 

reduces to 

and the energy equation then becomes 

2 2 2 
;:: k(~+~)+ (~) 

ay ay µ ay (29) 

The solution to this equation which satisfied the boundary 

conditions is 

µU12 Y_ y 
(1--) 

2k(T1-T 0 ) L L 
( 30) 



but 

(Pr)Ek = 

therefore 

In the case when the two walls in couette flow have 

equal temperatures (T1 =T 0 ) equation 30 leads to a simple 

parabolic temperature distribution which is symmetrical 

with respect to the centerline between the walls. The 

solution gives the temperature rise due to frictional 

energy. and is 

2 
T(y) -T = ~ X (1-~) 

o 2k L L 
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(31) 

( 32) 

If one of the walls is made adiabatic so that all of 

the heat energy due to friction is transferred to the other 

wall, the boundary conditions become 

y = 0 

T = T 
0 

dT 
dy = 0 

The solution of equation 2 9 to satisfy, these bo.undary: 

conditions is 

T(y) - T0 (33) 
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DeGroff (5) modified the solution for the Couette 

flow problem so that the viscosity of the fluid is a function 

of temperature. 

Poiseuille Flow Through a Channel With·Flat Walls 

Another exact solution to the above equations for 

temperature distributions is the two-dimensional flow 

through a channel with parallel flat walls. Kays (19), 

Schlichting (36) and others show the velocity distribution 

for Poiseuille flow to be parabolic: 

2 
u(y) =. u (1-~) max L · ( 34) 

Assuming constant and equal wall temperatures, the boundary 

conditions are 

T = T 
0 

where. y = 0 is the centerline between the plates. 

For these conditions equation 29 reduces to 

2 
d T k-· 
dy2 

2 
= 4µu max 

14 y2 

whose solution is 

T(y) 
2 

To= 1 µu max [l-(~1)4] 
3 k 

Hausenblas (17) modified the solution for. the 

( 35) 

( 36) 

Poiseuille flow problem to include the case of temperature 



dependent viscosity .. A similar solution to the problem 

for a circular pipe has been given by Grigull (16). 

Parallel Flow Past Flat Plate-Blasius Solution (28)(36) 

- -----

1~ L 

Figure 2~ Hydrodynamic Boundary 
Layer Formation 

The boundary layer equations for this case assuming 

incompressible flow with constant fluid properties and 

assuming that buoyancy forces and dP/dx are equal to 

zero are 

The 

~~= 0 ax ay 

2 
( au+ ~) a u. 

P uax vay = µ V 
2 

p c ( u!!+ v!'.!..) = k!2..t µ( au) 2 
p ax ay ay2 ay 

boundary conditions are 

u = v = 0 at y = 0 

u = u at y = co 
co 

T = T at y = 0 w 
;n 

0 ay = at y = 0 

T = Teo at y = co 

25 

( 37) 

(38) 
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Since the velocity field is independent of the temperature 

field, the two flow equations above can be solved first 

and the results used to determine·the temperature field. 

Blasius (3) introduced similarity variables for the 

solution of the flow equations as follows: 

1/2 
n = y (U,./vx) 

1 I 2 
'I'= (vxU00 ) f (n) 

where'!' is the stream function defined by 

Let 

where 

U -. - cl'!' - cl'¥ 
ay and v --ax 

u 1 cl'!' 
u"; = u + u ay 

00. 00 

therefore 

Let 

then 

1/2 
F; = (vxU ) 

00 

(39) 

(40) 

(41) 

(42) 

( 4 3) 

(44) 

(45) 



1/2 
1¥* = (vxU ) 1¥ = f(n) 

00 

and 

u = u f' (n) 
00 

Transforming the momentum equation, equation 37, yields 

f I II + iff 11 : · Q 
2 

The boundary conditions transform to yield 

f = f' =oat n = o 

f' = l at n = 00 

The general solution of this third order non-linear 

differential equation is not available·in closed·form. 

The solution is _available in tabular form on. page 121, 

Table 7.~ in Schlichting (36). 
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(46) 

(47) 

(48) 

2 
If.the heat of friction (µ~y~) is neglected the energy 

equation becomes 

pC (u 0T+v!'!'..) 
P ax ay 

2 
= NekU 

ay2 

The energy and momentum equations are identical if we 

replace u by T and restrict 

-µ kNe .· 
P = Cpp 

or v = a 

therefore. 

Pr= \I = 1 
(l 

(49) 



It follows that for the flat plate described above 

for the Prandtl Number equal to unity that 

T - T = u 
co w co 

is the solution to the energy equation by analogy. 
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The preceding solution suggests a similarity solution 

for the ~eneral case as outlined for the flow field. If 

we assume T = T(n) as defined previously, the.partial 

differential energy equation reduces to the following 

total differential equation. 

2 
d T ·+ PrfdT 
~ 2 dn 

2 
U. co Nef" 2 = -P---. c p 

The solution to this equation can be represented by. 

the superposition of two solutions of· the form ( 36): 

T(n) - T 
co 

where 

e = T(n) - Teo 
T - Teo. w 

(50) 

(51) 

e1 Cn). denotes the general solution of the homogeneous 

equation while e2 Cn) denotes a particular solution of the 

non,-hom~geneous equation. It is convenient to choose the 

boundary conditions for e:i.}n) and e2 Cn) such that e1 is 

the solution of a cooling problem with a. given temperature 
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difference between the wall and the external stream and 

a2 is the solution for the adiabatic wall. The following 

equations must then be satisfied. 

and 

a" + 1Pr f a' = o 2 

a1 = 1 at n = o 

a1 = o at n = "" 

2 
= -2Prf" 

a 2 ' = o at n = o 

a 2 = · o at n = "" 

(52) 

( 5 3) 

Polhausen (31) first solved the cooling problem. The 

following analysis is given in Kays (19). 

Integrating this equation twice and evaluating at the 

boundary conditions yields 

n Prf n = Jo [exp(-2 0 fdn)Jdn 
9L JO ""[exp (-~r / 0 nfdn) Jdn 

The Nusselt Number is defined as 

Nu hx = k = x ( a ' ) = ( Re ) 
( \lX/ UCO) 1 7 2 1 o 

1 I 2 
( 9 I ) 

1 0 

(54) 

(55) 

(56) 



From the first integration it can be shown that· 

therefore 

1/2 
Nu - c1 (Re) 

30 

(57) 

(58) 

Values for c1 can be calculated for moderate Prandtl Number 

ranges. Several values are tabulated in Table I. 

Pr 

TABLE I 

VALUES OF c1 FOR VARIOUS PRANDTL NUMBERS FOR 
HEAT TRANSFER TO THE LAMINAR CONSTANT 

PROPERTY BOUNDARY LAYER 

0.5 0.7 1.0 7.0 10.0 15.0 

0.259 0.292 0. 3 32 0.645 0. 7 30 0.835 

These results are closely approximated by (19): 

1/3 1/2 
Nu= 0.332 (Pr) (Re) (59) 

Temperature distributions are tabulated in graphical 

form for the cooling problem in Schlichting (36). 

Eckert and Drake (7) provides the solution for the 

flat plate with an unheated starting length, x1 . A laminar 

incompressible boundary layer is assumed to develop with 
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no pressure gradient. Using the ene!gy integral equation 

Kays assumed the velocity profile to be 

The terms are defined in Figure 3. The choice of the 

cubic parabola to approximate the velocity profile makes 

the second derivative zero at the wall. This condition 

is demanded by the differential equation of the boundary 

layer. 

u 
00 

~ t 
00 

t_ 
6T 

to 
~ 

1 .. Xl .. 1 

Figure 3. Velocity and Thermal Boundary 
Layer Formation 

The differential energy equation also su~gests that 

a cubic parabola will provide a satisfactory approximation . 

for the temperature profile. Eckert approximated the 

temperature profile as 

a = lcL> 
eo 2 cST 

(61) 

where 
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a = T - T 
0 00 0 

Eckert showed the ratio of the thermal boundary layer 

thickness to the hydrodynamic boundary layer thickness 

to be 

The local Nusselt Number is derived to be 

Nu x = 
. 1/3 1/2 

0. 3 3 2 (Pr) (Re) 
[ 1 _ ( x1) 3 7 4 J 1 I 3 

x 

Thermal Boundary Layers Over Other Shapes-Theoretical 
Results 

Froessling (12) carried out calculations on the 

temperature distribution in the laminar boundary layer 

about a body of arbitrary shape for two-dimensional 

axial syrrunetrical cases. He neglected frictional and 

compression work in his analysis. 

Froessling assumed a power series for the potential 

velocity distribution around the body expanded in terms 

of the arc length, x, of the form. 

+ •• ·• 

(62) 

( 6 3) 

(64) 

The velocity distribution in the boundary layer is assumed 

to have the form 
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(65) 

The corresponding assumption for the temperature distribution 

is of the form 

2 4 
T(x,y) = T0 + x T2 (y) + x T4 (y) (66) 

Froessling's results for the local rate of heat transfer 

around a circular cylinder is shown in Figure 4 for the 

region covered with a laminar boundary layer. 

Squire (41) used the energy integral equation 

(67) 

To outline a solution based on numerical techniques for 

the heat flux from a body of arbitrary shape with a laminar 

boundary layer. 

Kays (19) used the Mangler transformation with the 

wedge flow solution to show that the Nuss.elt Ntlmber based 

on the radius for the two-dimensional stagnation poirit:is: 

1/2 0 4 = 0.8l(ReR) (Pr) . 

and for the axisymmetric stagnation point is 

1 I 2 0 4 = 0.93(ReR) (Pr) ' 

Turbulent Heat Transfer-External Boundary Layer 

Turbulent flow theory is still in an unsatisfactory 

state because of the complexity of the fluid motion. The 

(68) 

(69) 



1.0 

0.8 

0.6 

Nu 0 -(Re 
0.4 

v .. 
0.2 

Figure 4. 

20 40 60 80 
0 

Variation of the local Nusselt 
Number around a right circular 
cylinder. From Froessling (12) 

34 



35 

fluid motion is normally viewed statistically with no 

attempt to follow the motion of the individual fluid 

particles. This normally requires a dependence upon 

experimental observations and correlations for predicting 

heat and mass transfer under these conditions. 

Kays ( 19) described the turbulent flow phenomena 

qualitatively as follows. In a turbulent flow process 

there appears to be a region very close to the wall where 

the fluid motion is predominately laminar. The. velocity 

gradient in this region is very large. This region is 

generally referred to as the laminar sub-layer. Farther 

away from the wall the flow becomes unsteady until a 

region is reached where the entire flow is involved.in 

turbulent motion. This region is called the turbulent 

region. The transition region between,the laminar sub

layer and the turbulent region is known as the buffer 

zone and exhibits momentum,transport characteristics of 

both the laminar sub-layer and the turbulent region. 

Experimental studies have shown that even the laminar 

region is not stable. Periodically and unpredictably 

large elements of .. relatively low velocity fluid lifts 

off the surface and enters the turbulent region of flow. 

Obviously a fluid with a velocity higher than that 

existing in the laminar sub-:layer must move into the 

laminar.region to replace this fluid element. The 
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mechanism for this phenomenon is not fully understood but 

it is tho1..1ght to be the result of an instability in the 

laminar region (19). 

A dimensional analysis of the velocity profile near 

the wall leads to 

u = f 4 (y , -r O , p , µ , Ne ) 

This relationship can. be reduced to two independent and 

dimensionless groups·thro1..1gh Buckingham's Pi theorem. 

+ u 
'IT = u = 1 (, /pNe)l/2 

0 

11'2 

1 I 2 
= y+ = Neyp(, 0 /pNe) 

µ 

Therefore 

+ + 
u = f 5<Y ) 

Martinelli ( 24) described the turbulent velocity 

(70) 

(71) 

behavior near the wall in three separate algebraic equations .. 

These equations commonly referred to as the "law of the wall" 

are 

+ + + 
5 u = y y < 

+· 
-3.05+5.0 lny + 

5 
+ 

30 (72) u = < y < 

+ 
5. 5+ 2. 5. lny + 

30 
+ u = < y 
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A number.of investigators have solved the problem 

for h'eat transfer from a flat plate with a turbulent 

boundary layer. Consider the case of the infinite flat 

plate with constant property fluids, low velooity flow 

and negligible flow. The energy equation of the boundary 

layer reduces to 

a r,L)~] = u!! + aT 
ay'-~ p ay ax vry 

p 
( 7 3) 

In turbulent energy exchange the energy transport is due 

to turbulent diffusivity as well as molecular diffusivity. 

Replacing the thermal diffusivity k/C p with a total 
p 

turbulent diffusivity (a+ EH) we have 

= u~ + ax 
clT 

Vay 

The appropriate boundary conditions are 

T = T0 at y = O 

T = T at y = oo 
00 

T = T at x = 0 
00 

+ 
Employing the Reynolds analogy for the region y < 30 and 

recognizing that this region corresponds to only a small 

part of the boundary layer thickness we can solve this 

(74) 

problem. The shear stress will be essentially constant 

throughout these layers and approximately equal to the.shear 

stress at the wall, ,: . 
0 

The energy equation reduces to 



a aT -[(ct + EH)ay] = 0 ay 

Since 0 and oT 0 v = ay = 

Kays (19) solves this problem to give 

• II Pr T g, - T = 5(-~) Cr /pNeP7 2 0 c p p 0 

• II ( 5 Pr + 1) 
Tb - T 5(-~) = 

(T /pNe) 172 R, 
p 0 

where 

T 

T0 , Tg, and Tb are defined in Figure 5. 

5 30 
y* 

Figure 5. Expe·ctecl Temperature Distribution for a 
Fully·Developed Turbulent Flow 

For moderate Prandtl Numbers the eddy diffusivities are 

much larger than the molecular diffusivities and the 

molecular diffusivities can be neglected in the momentum 
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( 7 5) 

(76) 

(77) 



and energy differential equations. If the Reynold's 

analogy is again invoked the equations can be solved to 

give 

T - -T 
~ b 

summing equations 76, 77, and 78 gives 

T• T : (-~) ( Nep) 1 I 2 [ 5Pr+ 5 ln( 5 Pr+ 1) + 
O C p T 

p O 

Defining the local friction factor, the local convective 

heat transfer coefficient and the Stanton Number as 

·~ 

p 

Clo 
II 

St x 

= f U00Ne 
x~ 

= h (T -
x 0 

h 
= ~ 

c p UCO p . 

T ) 
00 

and combining with equation 86 gives 

(f /2) 1/2 
St = x [5Pr+5ln(5Pr+l) + 1 . -14] Cf 125112 

x 

The local friction factor has been derived as (19): 

= 0.059 (Re )-0. 2 
x 

39 

( 7 8) 

(79) 

(80) 

(81) 

( 8 2) 

(83) 
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Substituting into equation 83 gives 

= hx _ 0.0295 (Re )- 0 · 2 

CppVoo- l+0.172(Rex)-0,1[5pr+5ln(5Pr+l) -14] 
( 8 4) 

As Kays points out this result is not valid for extremely 

low or extremely high Prandtl Numbers. Based on experimental. 

observations he suggested limiti~g the results to the 

Prandtl Number range 0.5 to 10. 

For the same problem Reynolds_(35) noted the similarity 

between heat and momentum transfer and derived an expression 

for the heat transfer from a flat plate with Pr= 1 as 

Nu = 0 • 0 2 9 6 ( Re ) ( 8 5 ) x x 

Prandtl (33), Taylor (42), Von Karman (46) and others 

have also extended the Reynolds anal~gy to cases where the 

Prandtl Number is not equal to unity. Their results yield 

for the flat plate with a turbulent boundary layer 

(86) 

A number of other approximate solutions are available 

for varying boundary conditions. Some examples are 

provided in detail in Schlichting (36), Kays (19), Pappas 

(29), Seiff (39), and Van Driest (44). Generally these 

solutions require experimental observations for validation. 
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Flow Over Bodies of Arbitrary Shape 

The hydrodynamic and thermal boundary layers on blunt 

bodies of arbitrary shape are not as easily described: 

analytically as those discussed previously for well 

defined_ geometries. Under a number of conditions the 

velocity gradient at the body surface can decrease to 

zero so that the entire boundary layer separates from the 

surface leaving ·a region of reversed flow near the wall. 

Separation generally occurs anywhere there is an abrupt 

step in the surface and often occurs on smooth continuous 

surfaces. There is no general theory for calculating 

heat transfer to the fluid in the region of separation, 

primarily because this flow regime has not been extensively 

studied (19). 

Because of the lack of a general theory researchers 

have resorted to experimental correlations when design 

data was needed for some specific shape. 

Giedt (13) (14), Zapp (47) and others (37), (43), (45), 

have measured the local heat transfer coefficient on the· 

surface of blunt bodies. Figure. 6 is typical results 

from the work of Giedt on the flow around a cylinder placed 

normal to an air-stream. 

The curve for the Reynolds Number equal to 99,300 is 

typical of the body where a laminar boundary layer develops 

without a transition to turbulence. The local Nusselt 

Number decreases from the value at the stagnation point 
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until it reaches the minimum value at the point of laminar 

boundary layer separation (about 80 degrees F). As the 

turbulent wake begins, the Nusselt Number begins to increase 

and may reach a value higher than those existing at the 

stagnation point on the front part of the cylinder. 

The curves for Reynolds Numbers equal to 167 ,500 and 

213, 000 are rather typical of the case where the laminar 

boundary layer changes to a turbulent boundary layer before 

separation occurs. The local Nusselt Number decreases from 

the value at the stagnation point until transition to the 

turbulent boundary layer occurs at approximately 90 degrees. 

Due to the turbulence the local Nusselt Number rapidly 

increases to another maximum and then·decreases again as 

the turbulent boundary layer thickness increases. Separation 

of the turbulent boundary layer occurs about 140 degrees 

from the stagnation point and the local Nussel t Number 

again increases in the wake. 

The average Nusselt Number may be obtained by integrat

ing the local Nusselt Numb.er over the surface. A more 

typical approach is·. to develop an experimental correlation 

based on dimensional analysis. This analysis will yield 

Nu : f 3( R~ , Pr ) 

for each specified. geometric shape, Experimental evidence 

indicates that the component equations combine·as straight 

lines in log-l~g space. Therefore the. general prediction 

equation will take the form 
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Figure 6. Local heat transfer around a 
cylinder for different Reynolds 
Numbers. From Giedt (13). 
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( 87) 

where c1 , d, and e are all constants for a specified shape. 

Correlations are normally developed for gases and the 

Prandtl Number is ·considered to be constant for all gases. 

This is not a bad assumption since the Prandtl Number for 

most. gases fall within 10% of the value for air. The above 

correlation then reduces to 

( 8 8) 

where 

A number of investigators (13), (14), (43), (45), used 

this procedure to estimate the average Nusselt Numbers 

from infinite right circular cylinders. One of the most 

commonly used is due to Hilpert (18) 

Nu= 0.174(Re) 0 · 618 4000 <Re< 40,000 (89) 

Nu= 0.0239(Re) 0 · 805 40,000 <Re~ 250,000 (90) 

For the sphere McAdams (25) recommended that the average 

convective heat transfer coefficient µiay be predicted.over 

the Reynolds Number range from about 25 to 100,000 by 

Nu = O • 3 7 ( Re ) O • 6 (91) 

Hilpert (18) measured the heat transfer coefficient 

from several cylinders with different cross-sections to an 
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air flow normal to their axes. He correlated the results 

with the equation 

Nu = C(Re )m 

where the values of C and mare given in Table II. 

It is difficult to predict the exact nature of the 

flow around bodies of this type. However, it is expected 

that boundary layer separation will occur at the points 

where sharp corners exist. Beyond this point, a wake 

area is generally considered to exist although it is not 

impossible for reattachment to occur in some instances. 

TABLE II 

VALUES FOR C AND m FOR CALCULATING THE HEAT TRANSFER 
COEFFICIENTS ,FROM CYLINDERS WITH THE 

INDICATED CROSS-SECTIONAL SHAPE 

Cross Section Re c m 

... D 5,000-100,000 0.0921 0.675 

~o 5,000-100,000 0.222 0.588 

~ 0 5,000-100,000 0.138 0. 6 38 

0 
5,000-19,500 0.144 0.638 .. 
19,500-100,000 0.0347 0.782 

(92) 
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Ellipsoidal Shapes 

Several investigators have studied the heat transfer 

properties in the boundary layer of ellipsoids of revolution. 

Most of this work has been concerned only with the local 

heat .transfer coefficients over that portion of the surface 

ahead of boundary layer separation. One such result is 

reported in graphical form by Lewis and Ruggeri (22). 

Needs of the aircraft industry have also caused the 

flow around elliptical cylinders to be investigated. Again 

the investigators have limited themselves to the flow 

region preceding boundary layer separation. The works of. 

Seban (38), Drake (6), Eckert and Livingood (10), Drick (11), 

and Allen (1) are all typical examples of these results. 

Figure 7 is the results fJ?omEckert (10),'All:en:(1), 

and Frick (11) for the local Nusselt Number as a function 

of the dimensionless distance from the stagnation point. 

X+ is the distance along the surface from the stagnation 

point divided by the major axis of the elliptical cylinder. 

This elliptic cylinder has a 2:1 axis ratio and is valid 

for fluids whose Prandtl Number is approximately 0.7. 

Figure 8 is similar results from Eckert along with the 

wedge flow and flat plate solutions for an elliptic 

cylinder with an axis ratio of 4:l~ 

Ko and Sogin (20) experimentally determined the average 

heat transfer coefficient from an ellipsoid of revolution 

in axisymmetrical flow in air with·an axis ratio of 4:las 
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(9 3) 

These results were verified·for the Reynolds Number range, 

based on diameter, from 15,000 to 130,000. Ko also 

transformed the work of Lewis and Ruggeri (22) for flow 

about an ellipsoidal model with an axis ratio of 3:1 to 

give 

h 2/3 1/2 
[(~)(Pr) ](ReD) ; 0.60 

1 p . 
(94) 

The work of Ko was entirely in the laminar boundary layer 

flow regime while transition cc.curred in most of Lewis 

and Ruggeri tests. 

More complete results for the convective heat transfer 

coefficient for ellipsoidal and other shapes would be 

desirable but they are not generally available in the 

literatureo 

Wind Tunnel Turbulence 

The intensity of turbulence of an air stream is 

defined (36) as 

Tu::: Intensity (95) 

where u, v, and ware the instantaneous velocity fluctuations 

in the x, y, and z directions. The bar indicates that 

the values are time averagedo At a short distance down-

stream from the screen, grid, or honeycomb of the tunnel 

the turbulence becom.es isotropic which means that the 
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instantaneous v~l9city fluctuations become equal in all 

three co-ordinate directions. That is 

= vT2" = 

In this case the intensity of turbulence becomes 

Tu :: Intensity· = (uTZ) l / 2 /U 
co 

(96) 

The determination of turbulent intensity is accomplished 

by determining the value of Reynolds Number of a sphere in 

the wind tunnel for which the drag coefficient is Oo3o The 

value of this Reynolds Numl::>er is called the critical 

Reynolds.Number. The work described in reference 7 shows 

a good correlation·between the intensity of turbulence and 

the critical Reynolds Number. · The work of Millikan and 

Klein in reference 26 indicated-that the critical Reynolds 

Number also depends upon the diameter of the sphere in a 

wind tunnel where the entrance conditions were modified 

with various honeycomb. type entrance sections. Ge.nerally 

the critical Reynolds Number decreased as the diameter of 

the sphere increased. 

Dryden, et. aL ( 8) showed by measuring the turbulent 

intensity with a-hot~wire anemometer that this variation 

in the critical Reynolds- Number with sphere diameter could 

not be due to a variation in the intensity of turbulence 

with a variation of air velocity in the wind tunnel. They 

)further showed that the critical Reynolds Number was depend-

ent upon another turbulence property as well as turbulent 
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intensity. They called this value the scale of turbulence 

and defined it as 

00 

L = fo Q(y)~y (97) 

where 

L = Scale of Turbulence 

Q = Corre1ation·Coefficient 

Q defines·· the· correlation ·between the velocity fluctuatiop.s 

at two poin.ts in the stream separated by· known distances o 

It is.defined 

· where 

u' 1 = instantaneous velocity at point 1 

u 1 2 = instantaneous velocity at point 2 

Using a series of. geometrically similar screens 

Dryden correlated the scale of turbulence as a function of 

distance from the s·creen for several screen sizes. The 

results showed the scale of turbulence to increase linearly 

as distance from the screen increased~ Some of·his results 

are shown in Figure 9. 

In measuring the intensity of turbulence with the 

hot-wire anemometer over a large number of wind, speeds, 

Dryden, et.aL · found it to be independent of air velocity. 
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After about 80 mesh diameters downstream from the screen 

inducing the turbulence, the intensity was found to be 

independent of distance also. These results are shown in 

Figure 10. 

The Critical Reynolds Number of Spheres 

Prandtl (32) originally proposed the use of the sphere 

as a means of indicating the turbulence in an· air stream. 

By measuring the drag force on a sphere in an air stream, 

the drag coefficient can be calculated. The drag coefficient 

being defined as 

where 

F 
CD= l/2pU 2 A Ne 

co p 

CD= Drag coefficient 

F = Drag force 

p = Fluid Density 

U = Free stream velocity 
00 

A = Projected area of sphere 
p 

Ne= Newton's Second Law Coefficient 

(99) 

A plot of the drag coefficient against the Reynolds Number 

will show that for low Reynolds Numbers CD is approximately 

constant and equal to 0.4. At some range of Reynolds 

Numbers, the drag coefficient decreases rather rapidly to 

a value of about 0.1. This drop in the drag coefficient. 

is caused by the transition of the laminar boundary layer 
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to a turbulent boundary layer over a part of the sphere 

surface. ~The range of Reynolds Numbers q~er which this 

drop in the drag coefficient occurs is dep,endent upon the 

turbulence:. of the air stream. The deo~efse in C,, oceups at 

higher Reynolds Numbers in air streams of lower turbulence 

levels. 

Several experimenters have attempted with some success 

to calibrate the sphere as a means of measuring the 

turbulence levels of an air stream. Dryden and Kuethe (7) 

proposed that the critical Reynolds Number of a sphere be 

defined as the value of the Reynolds Number at which the 

drag coefficient is 0.3. This criteria for determining the 

critical Reynolds Number for a wind tunnel has been 

generally accepted. 

Dryden (8) in his work was able to prove that the 

critical Reynolds Number of a wind·tunnel is dependent 

upon the intensity of turbulence, scale of turbulence and 

the diameter of the ·sphere. He showed that a. good 

correlation exists between the critical Reynolds Number 
- 0 5 

and the dimensionless quantity. ( u2 ) • (~) 1/ 5 where D O L 
00 

is the diameter of the sphere and the other quantities are 

as previously defined. These results are shown in Figure 11. 

As noted by Dryden these results indicate that a small 

change in intensity of turbulence will produce about the 

same effect as a change of 5 times as much in the scale of 

turbulence or diameter of the sphere. 
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An elaborate hot-wire anemometer system is necessary 

to measure either the intensity of:turbulence or scale of 

turb~lence. Because of this the turbulence properties of 

a wind tunnel is. gene_rally reported by specifying the 

critidal Reynolds Number and wind tunnel entrance conditions. 

Generally, no attempt is made. to separate. the effects. of 

intensity and scale of turbulence. From Figures 9 and 

10 it .can be observed that as the distance from the screen 

or entrance section of the tunnel increases, the intensity 

rapidly approaches a constant value whereas the scale of 

turbulence continues to increase linearly. This net 

effect is to increase the.critical. Reynolds Number as· 

distance· from the entrance section increases. 

Turbulence Effect on Heat Transfer 

The turbulence level of an air stream has a large 

effect upon the local and mean Nusselt Number from a body. 

This is easily accepted if we realize that specification 

of the Reynolds Number and Prandtl Number do not necessarily 

guarantee similarity between air streams. The Reynolds 

Number is generally defined using the average free- stream 

velocity. This does not in any way specify the turbulence 

level of the stream in steady flow since the velocity 

fluctuations time-average to zero over sufficiently long 

time intervals. 

Schlichting (36) observed that ~ilpert (18) and Griffith 

(15) et. al. obtained large differences in measuring the 



68 

Nusselt Number from infinite circular cylinders in cross

flow. The experimental procedure for the.two works was 

the same leaving the.turbulence level of the tunnel as the 

only variable. The thirty percent difference between these 

two investigators was attributed to differences in the 

turbulence properties of the air streams by Schlichting (36). 

This leads to the conclusion that the Nusselt Number is·a 

function of the Reynolds Number, Prandtl Number, object 

geometry and turbulence of the air stream. 

Nu= f 6 (Re, Pr, Gr, Tu) (100) 

To look at the effect of an increase in turbulence 

on the.heat transfer from a body,. lets look at the case 

of a blunt body such ~s a cylinder. The major effect 

will be in the effect the turbulence has on the boundary 

layer. At low Reynolds Numbers the flow patt~rn consists 

of a laminar boundary layer.in front and a wake behind the 

body caused by laminar separation. This wili be recognized 

as a subcritical flow pattern. An increase in turbulence 

will cause earlier separation ~nd thereby cause a larger 

segment of the surface to be. covered by the separated 

region. This will cause a change in the aver~ge Nusselt 

Number because the local Nusselt Number is different for 

these two flow regions. At higher Reynolds Numbers the 

flow pattern consists of a laminar layer, followed by a 

turbulent .layer behind the point of transition. Finally 

a wake exists·behind the point of turbulent separation. 
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This flow pattern will be recognized as the supercr~tical 

flow pattern. The increase, in turbulence has little effect 

on the point of separation but does effect the point of 

transition. This causes a larger portion of the surface 

to be covered with a turbulent layer and thereby increases 

the average Nusselt Number. An increase in turbulence 

may also cause a sudden change from subcritieal to super• 

critical flow·causing a sudden change in·the Nusselt 

Number. An increase in turbulence must also cause an 

increase in the local Nusselt Number~ of the laminar 

boundary layer, the turbulent bou~dary layer and the wake. 



CEAPTER III 

EXPERIMENTAL DESIGN AND PROCEDURE· 

A general ellipsoidal model' is visualized as an 

adequate model for predicting the convective heat transfer 

coefficient from irregular shapes. The control of.the 

three orthogonal axes of the ellipsoid will provide for 

a close approximation of the irregular shape. 

Because of a lack of available information on the 

convective heat transfer from general ellipsoidal shapes, 

it is necessary to experimentally determine the convective 

heat transfer properties. 

Theory of Similitude 

Much of the theory of model systems is based on a 

theorem due to Buckingham (4). Th~ pi theorem sta_tes that. 

a relationship existing among physical quantities that is 

completely described by an equation can be reduced to an 

expression of the form 

(101) 

where the n's are all independent and dimensionless products 

that are formed by a suitable combination of the pertinent 

varial:>les. 
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

TABLE III 

PERTINENT VARIABLES FOR THE CONVECTIVE HEAT TRANSFER 
COEFFICIENT FROM AN ELLIPSOIDAL MODEL 

Symbol 

h 

µ 

p 

k 

c 
p 

e: 

a 

b 

c 

Ne 

Quantity Unit 

Heat transfer coefficient Btu/(hrft2°F) 

Viscosity of the gas 

Mass density of gas 

Thermal conductivity of. 
gas 

Specific heat of gas 

Roughness index of the 
surface 

Length of major axis of 
the ellipsoid perpen
dicular to fluid flow 

Length of horizontal 
axis of ellipsoid to 
major axis and parallel 
to fluid flow 

Length of vertical axis 
of ellipsoid perpen
dicular to major axis 
and fluid flow 

Mean velocity of gas 
flowing by ellipsoid 

Newton's Second Law 
Coefficient 

Angle of attack 

(lbf-sec)/ft2 

lbm/ ft 3 

Btu/:'(hrft°F) 

Btu/(lbm°F) 

ft 

ft 

ft 

ft/sec 

Radians 

. 61 



The physical system for predicting the convective 

heat transfer coefficient fr.om an ellipsoidal. model to 
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a fluid stream may be adequately described by the pertinent 

variables listed in Table III. The units utilized in 

this study are also shown in Table III for each variable. 

The heat transfer coefficient, h, is the dependent 

quantity and is the quantity to be determined. Since h. 

cannot be measured directly, techniques must be employed 

which provide a means of computing h, One such technique 

will be discussed later. 

Since: the, ability· to· transfer heat:' fit?om: the' ·bd~y 
. . 

surface to the fluid is partially dependent upon the ease 

with which heat is conducted through the fluid and upon 

the heat capacity of the fluid, both the thermal conductivity 

and the specific heat of the fluid are pertinent. 

Researchers have shown that the nature of the flow 

about the body is an important consideration when predict-

ing the heat transfer coefficient; i,e,, laminar flow, 

turbulent flow, and boundary layer separation. Previous 

research has also shown that the nature of the flow about 

a body is dependent upon p, µ, U=' Ne, and E, Also, the 

dimensions and. geometry of the body ~ffect the nature of 

flow around the ellipsoid, In the special case of an 

ellipsoid, three length dimensions are required to adequately 

describe the shape. 

The angle of. attack, A, is th~ angle between the 

direction of fluid flow and the major axis, a, measured in 



the horizontal plane. The orientation of the body is 

important since the boundary layer characteristics.are 
i 

altered as the angle of attack cha~ges .· For example, as 
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A changes, the location at which boundary ·1ayer separation 

occurs also changes. 

The other possible rotations of the body will be 

equally as important as the angle )... However, the effect 

of the orientation is not to be considered in this work, 

as will be described later, and therefore the other angles 

are not listed in the set of pertinent quantities. 

Pi-Terms 

There appear to be six independent dimensions in the 

list of pertinent quantities. However, where Hand 9 

appear, they appear in the combination He- 1 . Thus, they 

are not independent.and the combination must be treated 

as one independent dimension. 

A dimensional matrix for the variables will show that 

the.rank of the matrix is five indicating that five 

independent dimensions ·exiJ,t. LLanghaar~ (2i)::showedithat 

the number of pi terms necessary to adequately describe 

the system is always equal to the number of independent 

physical variables minus the rank of the di_mensional 

matrix. Therefore we have 12-5=7 independent and dimension-

less groups orpi terms to adequately describe this system. 

On~ set of pi terms is: 



1T l = .hc/k (Nusselt Nun;tber) 

1T 2 = µCp/(Ne k) (Prandtl Number) 

'If 3 = NeU111cg 
1J 

(Reyno~ds Number) 

'11'4 = a/c (length ratio.> 

'If 5 = b/c· ( length rat:i.o) 

'If 6 = e: (ro~ghness index) 

'11'7 = A (orientation) 

The effect of the ro~ghness index, '11' 6 , will not be 

included _in this study since we are primarily interested. 

in the variation of the heat transfer coefficient as-a 

function of the geometry of the • body.. This parameter will 

be held constant throughout the study by.working with 

"smooth" surfaces only. 

The angle of orientation,>.., is held constant at 

zero degrees thro~ghout the experiment. Altho~gh 1 the heat 

transfer coefficient will vary as '11'7 _.changes;· a constant 

value of>.. is selected,so that the experimental. pla:i:i, may 

be reduced to meet the·time limitations of the study. 

The investigation of the eff1?ot of >.. is not ·necessary for 

the completion of the· objectives of this '.study. 

The Reynolds Number, ,r 3, ·is_ an index of the ratio of 

inertial to viscous. forces of :the fluid .as it comes in 

contact· with the body.· The :val1.,1e of. this index wilJ, affect 



the nature of the boundary layer at any point· on the 

ellipsoid. 
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The Prandtl Number, 1r 2 , is an index of the similarity 

in the temperature and momentum transport boundary layers 

when the temperature transport occurs by convective and 

diffusive effects and momentum transport by inertial 

(convective) and viscous (diffusive) effects. For a gas 

in the temperature range of 0°F to 400°F the Prandtl Number 

remains nearly constant. Even between gases the variation 

in the Prandtl Number is not large being within 10% of the 

value for air for most gases. This study, due to physical 

limitations, uses air as the only fluid media so that the 

Prandtl Number is held constant at 0.72; Kays (19) and 

other investigators have shown that the Nusselt Number 

varies as the Prandtl Number raised to the one-third power. 

This will allow the results from this work to be extended 

to fluids whose Prandtl Number differs significantly from 

the value for air. 

The Nusselt Number, 1r 1 , is the dependent 7T term since 

it contains the heat transfer, coefficiento Physically, it 

is an index of the ratio of the heat transfer rate through 

the boundary layer when the fluid is moving to the heat 

transfer rate through a thickness of fluid equal to the 

boundary layer thickness when the fluid is stationary, 
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Prediction Equations 

The general prediction equation for determinins the. 

heat transfer coefficient can be written a.s: 
" 

(102) 

or 

hc/k = ~l(~.)d(NeUcopc)e(!.)S(£.)j 
Nek µ · c c ' 

or 

( 10 3) 

where 

Nu = Nuss el t Number, 

Pr - Prandtl Number, 

Re =.Reynolds Number, 

and 

¢,=Dimensionless coefficient. 

Previous research has shown that Nusselt Number, and 

therefore the heat transfer coefficient, is a function of 

the.Reynolds Number and the.Prandtl Number for flat, 

spherical and cylindrical shaped·bodies. It is reasonable. 

to assume· that the heat transfer coefficient 0£ an 

ellipsoidal body would be similarly related; that is, it 

also would be a function of the Prandtl and Reynolds Numbers. 
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The prediction equation will not be continuous for all 

conditions. For example,. if abrupt changes· in• boundary 

layer characteristics occur due to variations of·the angle 

of attack, high Reynolds Number, or.geometry, we c~n expect 

a discontinuous function. The general prediction·equation 

presented here will be for the case of turbulent flow-and 
i 

' 
no abrupt changes ·in. the shape. The experimental.design 

conditions which satisfy this briterion will be discussed 

in the following section. 

Range of Pi Terms 

j • ' The values throµgh which the pi terms are varied·is 

tabulated in Table IV. The Prandtl Number, 'II' 2 , is held 

constant at 0. 72 by using air as- the only fluid; medium. 

The Reynolds Number based on the charaqteristic dime'i-ision 

6 is varied from. 30,000 to 150,000 in.9 steps. This range 

o:f Reynolds Number. was contro_lled by the limitations of 

the wind tunnel used for these tests.. However this range 

is satisfactory since most c9nvective cooling of·~gricultural 

products ·is done.within this range. 

Before the levels of the two geometric pi· terms-were 

determined the following criteria were established for the 

ellipsoidal· model. One of the.objectives of· this work was 

· to design models that would adequately represent a typical 

~gricul tural product. The basic dimension of· .the ellipsoidal 

models were therefore selected to span the range of dimensions 
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TABLE IV 

EXPERI~ENTAL DESIGN 

7f l 7f 2 7f 3 7f 4 7f 5 

he ~~~ U""cpNe a/c b/c k µ 

30,000 
41,000 

(l) 52,000 
H 0 0 7 2 70,000 2,50 1. 7 5 ;j 
CJ) 88,000 
!U 106,000 (I) 

::E: 123,000 
141,000 
146,000 

1. 33 
(]) 

1.67 
H 2,00 
::::! 0.72 123,000 2 0 3 3 1. 75 CJ) 

!U 2. 5 0 
(l) 

2. 80 ::E: 
3o00 

1. 00 
(l) 

L25 
.H 1. 50 

::::! 0. 7 2 123,000 2 0 5 0 1.75 CJ) 

!U 2.00 
(]) 

2.25 ::E: 
2. 5 0 
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normally expected in commercial cuts of pork. The limits 

on a, b, and care then 

a: 8 to 14 inches 

b: ·4 to 11 inches 

c: 4 to 6 inches 

The maximum and minimum levels of w4 and ir 5 were 

determined using these values of a, b, c and the remaining 

levels were uniformly distributed between these limiting 

conditions. These limits are 

1.33 < 'lf4 < 3.00 

1.00.:,. 11'5 < 2.50 

A large number of other agricultural products will fall 

within this range of values for TI 4 and w5 . 

This experimental design will require a total of 

thirteen ellipsoidal·· models within the ranges indicated 

above. 

Measurement of Nusselt Number 

In order to determine Nusselt Number, it is necessary 

to measure the heat transfer coefficient. Since it is not 

possible to directly measure the heat transfer coefficient, 

the following procedure will be .used. The surface temp

erature of the fluid moving past the body will be measured. 

Using nUJI1eriqal integration the average surface temperature 
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can be determined; and by placing a known heat source 

inside the model and allowing the system.to reach the 

steady state condition, the amount of heat flow out of the 

ellipsoidal model· is established. The he.at transfer 

coefficient can then be computed directly by the:equation: 

(104) 

whe:re 

q = total heat flow out .of the body, Btu/hr 

A = surface s area. of the body, ft 2 

T = average s body su:rface temperature, OF 

Tf = temperature of gas moving by the body, OF 

An electric resistance heater element made of nichrome 

wire is used as the heat sourc~. The power input to the 

system is measured by monitoring the voltage and current 

input to the system. The electrical energy is converted. 

into heat energy according·to the relationship 

where 

q = KEI 

K = 3.413 Btu/hr-watt 

I= current flow in heating element, amperes 

E = emf across heating element, volts. 

(105) 
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The fluid temperature, tf, is measured directly with 

a thermocouple. A weighted average; of the local surface 

temperatures measured on the model is obtained by 

rT·A· 
T = J J 

avg rA, 
l 

i = l,w (106) 

where 

T = weighted 
avg 

average of measured surface temperatures, 

T. 
l 

A. 
i· 

= 

= 

o F. 

temperature of the surface at node i, °F. 

2 surface area represented by node i, ft 

w = number of nodes at which surface temperature is 

measured. 

Location of the temperature sensors will be described in 

detail later in this report. 



CHAPTER IV 

EQUIPMENT AND INSTRUMENTATION 

The experimental design discussed in the previous 

chapter required the construction of thirteen different 

. general ellipsoids. A hollow ellipsoid was required for 

the placi~g of a heat source in. the center. Since the 

necessary milling machinery was not available, the models 

were cast from aluminum. The patterns were constructed 

in the Agricultural Engineering Research Shop at Oklahoma 

State University. 

Model Construction 

For each ellipsoid a pattern was required for the 

inside (or core). and for the outside dimensions of the 

model. The patterns were constructed of rapid curing 

plaster of Paris. In order to accurately construct the 

plaster of Paris patterns, paraffin molds were constructed 

for pouri~g the plaster of Paris. 

Template Construction 

In the construction of the mold for each ellipsoid, 

a template was constructed at one inch intervals along the 

major axis of the ellipsoid. In regions of high curvature 
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this interval was reduced to one-half inch. The major 

and minor axis of the ellipse obtained at each point along 

the major axis of the ellipsoid was calculated from the 

equation for the surface of a general ellipsoid 

x2 + ~ + z2 = l 
A2 B2 c2 

(107) 

Since z is specified then the major axis of the ellipse 

at the given z is determined by letting y = O and solving 

for x. The minor axis is likewise obtained by letting 

x = 0 and solving for 6. The equation for the ellipse is 

then 

x2 ~ 
A2 + B2 = l 

This can be expressed parametrically by: 

x = A cos e 

y = B sine 

x 

Figure 12. Parametric Representation 
of the Ellipse 

(108) 
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An analog computer circuit to solve for x and y is shown 

in Figure 13. 
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The x-y plotter printed the cross-section on a thin 

sheet of cardboard that was used to construct sheet metal 

templates for the ellipsoidal modelo 

After fastening the templates in position hot paraffin 

was poured over the templates and allowed to solidify, 

Using the templates as a guide a mold of the approximate 

ellipsoid dimensions was formed so that the plaster of 

Paris pattern could be constructed. The finishing work on 

the rough patterns was completed using hand tools to give 

an accurate ellipsoidal surface. Step-by-step pictures 

of the construction process are shown in Figures 14 

through 19, 

Using the plaster of Paris patterns, a commercial 

foundry formed sand molds and cast the ellipsoidal models 

from aluminum alloy 355-TSL It was desired to construct 

the models with as thin walls as possible to minimize the 

temperature gradient that exist in the wall. The foundry 

could control the wall thickness to a minimum of 1/8 inch, 

therefore this was the thickness selected. The thermal 

conductivity of this aluminum is listed in reference 

48 as 97 Btu/(hrft°F), The resistance to heat flow through 

the wall is very small compared to the resistance to heat 

flow at the inside and outside boundaries of the wall. 

The temperature of the wall is, therefore, essentially 

constant throughout the thickness of the wall. This allows 



Fig ure 14 . Shee t Metal Templates in Position 
for Pouring the Paraffin Mold. 
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Figure 15. Paraffin Mold Formed for 
Pouring the Plaster of 
Paris Pattern 
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Figure 16. Unfinished Plaster of Paris Pattern 
Removed from Paraffin Mold 
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Figure 17. Finished and Unfinished Plaster of 
Paris Pattern 
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Figure 18. The Forming of the Pattern for the 
Outside Dimensions of the 1 3.5 x 
10.0 x 5.75 Ellipsoid 
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Fig ure 19. Patterns for the Inside and Outside 
Dimensions of the Ellipsoid Ready 
for Casting 
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the placement of the thermocouples for measuring surface 

temperature to be in error without inducing appreciable 

error in the temperature measurement. 
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The outer surface of all the models were buffed using 

jeweler's rouge to provide a smooth shiny surface. This 

insured that the surface roughness was the same for all 

models and therefore did not confound the results of the 

experiments. 

Model Instrumentation 

Each ellipsoid was instrumented with forty nine 

36-gage copper-constantan thermocouples. These thermo-

couples were distributed over one half of the model surface 

as indicated in Figure 20. At each cross-section the 

thermocouples were spaced so that the arc-length between 

thermocouples was constant. 

At each thermocouple location a hole was drilled in 

the model just large enough to allow the thermocouple to 

be inserted from the inside of the model. The thermocouple 

was mounted so that it was located at the external surface 

of the model but not extending into the boundary layer. 

To insure good thermal contact with the walls of the model, 

the thermocouple was embedded in a mi. xture of epoxy cement 

and a Honeywell thermometer-well compound. The thermo-

couple leads were fastened to the inside surface of the 
J 

model with contact cement to a point on the leeward side 

of the model where the leads entered the air stream and 
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traveled parallel to air flow for several inches before 

leaving the tunnel and connecti~g to the recordi~g 

potentiometer. 

A resistance type electric heater.was suspended in 
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the center of the.model by four 30-gage steel wires. The 

unit was shielded so that the mode of· heat transfer from 

the heater to the.model walls was primarily dut;! to free 

convection. The radiant energy transfer was small because 

of the relatively small temperature difference.between 

the heater surface and wall of the model. 

The energy input was monitored by a voltmeter and 

ammeter. The power input was then: 

P = EI 

P = Power, watts 

E Voltage, volts 

I= Current, amperes 

therefore: 

q = (3.413) Btu (P) 
hr-watt 

= (3.413) EI 

q = energy, Btu/hr. 

(109) 

After mounting the thermocouples and heater, the two 

halves of the model were sealed together with a.mixture of 

epoxy cement and the Honeywell thermometer well compound. 
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This mixture provided good thermal contact as well as 

adequate strength to support the models while in the wind 

tunnel. 

These models were mo~nted in the wind tunnel by efght 

30-gage steel wires extending from the.surface of the model 

to stationary supports in the tunnel. Tension on these 

wires was· controlled to eliminate vibration of the model 

during the test and to hold the model in.the correct 

position throughout the test. 

Data Collection: 

The models were mounted in the tunnel and_the air 

velocity adjusted by varying the-speed of the fan and 

monitoring the velocity head with a pitot-static tube. 

Variations iri the velopity head wer>e.,measured wi;t:h·an 

accuracy of +. O. 001 of an inch. of water,· 

Energy input to the system was controlled by a 

variable voltage transformer. The ene~gy level was .con

trolled·at a value so that the.maximum temperature· 

difference existing between the model surface and ambient 

0 air temperature did not. exceed- 30 F. Higher temperature 

differences would require higher temperatures inside the 

model and could possibly cause damage to the nylon 

insulation on the copper-constantan thermocouple wires. 

Depending upon the air velo~ity, the transient period 

was from 30 to 45 minutes. The model was considered to 

have reached the steady state condition when the surface -
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temperature was observed to vary no more 'than one-half 

degree in a 10 1¢.nute period. At this time all surface 

temperatures, air temperature, energy input and air 

velocity were meas:ured. Surface tem:peratures were 

recorded by a 10 point recording potentiometer. Recording 

of all points required a twenty-five minute time period. 

To insure that the surface temperatures had not changed 

during this period, a check was run at the end of the 

test to insure that the first points recorded had not 

changed in value. 

The test on each model was repeated three times. 

Sometimes the tests were run on the same day while at 

other times a day or more intervened between tests. 

Generally once a model was in the tunnel, tests were 

performed as quickly as schedules permitted. In all cases 

the model was brought into equilibrium with ambient 

conditions before a new test was begun. 

Surface Areas of the Models 

The surface of a_ general ellipsoid is described by: 

x2 2 z2 
A2 + ~2 + c2 = 1 (110) 

where 

A= one-half the semi-major axis-parallel to the 

x-axis. 



Then 

B = one-half the major axis-parallel to the y-axis. 

C = one-half the semi-major axis..;;..parallel to the 

z-axisG 

2 2 
z = .~ c c1 _ F _ w->112 

In most·advanced calculus textbooks it is shown that: 

B A 
A = 8 f f (1 + (~)2 s O O ax 

The surface area of a general ellipsoid after 

differentiating and·simplifying is then: 
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(111) 

B2c2. A2c2 
· B A A B + · (~ -B2)x2+(-W-

As = 8 / 0 f 0 ( 

-A2)y2 
)dxdy(ll2) 

Since this function is not readily integrable, a 

solution for the surface area is obtained by a numerical 

approximation. The surface of each model is broken into 

a series of small finite size surface elements. The sides 

of these·elements are approximated as straight lines and 

the areas of each element·calculated and· summed to give 

the total area of the modelo As the size of the surface 

elements approach zero in the·limit, the approximated 

surface area will equal the true valueo However, the use 

of very small element sizes causes large roundoff errors 

in the computer as well as increasing the' computer time 

to an excessively high valueo To solve this·problem the 
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surface area of a sphere was calculated using several 

surface element sizes. The percent error as 'a function 

of element size is shown in Figure 21. The element size 

selected was such that the projection of any side on its 

corresponding axis would be 0.025 times that maximum 

axis dimension. The surface areas of spheres of varying 

sizes were calculated using this surface element size. 

The error in all cases was independent of sphere size. 

This surface element size was used to calculate the 

surface area of the general ellipsoid. 
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With this surface element size, the surface area of 

several ellipsoids of revolution was calculated. A new 

error function was calculated and is plotted in Figure 

22. It is hypothesized that the error in calculating the 

surface area by this method is: 

% error= f(A/B, A/C) (113) 

For the range of ellipsoids used the component 

equations of the error function was approximated by 

several straight line segments in arithmetic coordinates. 

Since these component equations are straight lines in 

cartesian coordinates they can be added to predict the 

error for any given ellipsoid. This error function is of 

the form: 

(114) 
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where: 

K1 , K2 and K3 are dimensionless coefficients 

r 1 and r 2 are exponents. 

Using these results surface areas for the general ellipsoids 

were calculated as shown in Table. V. 

Characteristics of the Wind Tunnel 

The experiments were conducted in the wind tunnel in 

the Agricultural Engineering Laboratory at Oklahoma State 

University. The tunnel has a test section that is 4 ft. 

by 4 ft. in cross-section. The maximum velocity is 

limited to approximately 70 ft/sec. A schematic di~gram 

of the tunnel is shown in Figure 23. 

Maher (23) measured both horizontal and ver~ical 

velocity profiles along the centerline of the tunnel and 

perpendicular to the air flow. His results indicated the 

velocity to be constant across the tunnel except for the 

six inches inunediately adjacent to the wall. A typical 

velocity profile is shown in Figure 24. Maher measured 

the average velocity to be 0.9 times the velocity at the 

center of the tunnel. In this study, th~ models were all 

located in the center of the tunnel in the region where 

the velocity does not vary with location. The center 

velocity does not vary with location. The center velocity 

as measured with the pitot-static tube was considered to 

be the approach velocity throughout this study. 
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TABLE V 

SURFACE AREAS FOR GENERAL ELLIPSOIDS 

Ellipsoid Ellipsoid Ellipsoid Surface 
Axis Axis Axis Area 

a ·b c in 2 

in .. in •. in. 

10.0 .7 4 158.71 

8.0 10.5 6 212.94 

10.0 10.5 6 249.01 

10.0 8.75 5 202.34 

14.0 10.5 6 336.00 

14.0 8.75 5 275.09 

12.0 7.0 4 187.5.1 

14.0 7.0 4 215.23 

10.0 4.0 4 110.41 

10.0 5 .. 0 4 127.09 

10.0 6.0 4 143.49· 

12. 5 10.0 5 272.70 

10.0 9.0 4 188.45 

10.0 10.0 4 202.85 
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A 22-mesh stainless steel screen was installed over 

the entrance to the intake section of the wind tunnel. 

This screen was made of number 304 stainless steel wire 

0.0132 inches in diameter and had an opening area of 

50.5 percent of the. gross area. The screen 1 s primary 

purpose was to smooth out any large fluctuations in 

velocity that occur during a test. 
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The turbulence conditions of the air stream can be 

adequately described by the intensity and scale of 

turbulence as outlined in Chapter II. It will be recalled 

that the intensity of turbulence is a measure of the 

magnitude of the velocity fluctuations while the scale of 

turbulence may be considered a measure of the size of 

the turbulent eddies in the flow. As pointed out in 

Chapter II, one method for defining the turbulent conditions 

in the tunnel is to measure and report the critical Reynolds 

Number of a sphere in the specified tunnel. The critical 

Reynolds Number is defined as the value when the drag 

coefficient is equal to 0.3. This method was used in 

this study to define the turbulent conditions existing in 

the wind tunnel at Oklahoma State University. 

A hard rubber bowling ball whose diameter is 8.55 

inches was used as the sphere in the turbulence tests. The 

smooth surfaced ball was mounted on a vertical steel shaft 

so that the dr~g force placed the shaft in bendi~g 

similar to that encountered in a fixed end cantilever beam. 

The beam was instrumented with a strain g~ge and calibrated 
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in test position in the tunnel using a set of dead weights. 

Thus the drag force exerted on the bowli~g ball and beam'.could 

be measured at any value of Reynolds Number. Because of 

the weight of the ball, the correction for the drag force 

on the shaft had to be measured with the ball in test 

position. To accomplish this the ball was placed in the 

test position and completely enclosed in a solid and 

separately supported sheet metal box. The deflection was 

measured and subtracted from the value for the unshielded 

ball to give the true deflection due to the drag force on 

the ball only. Using these values for the dr~g force, 

the drag coefficient was computed from 

F = 1/ 2p U ApNe 
00 

The results for a number of tests are shown in Figure 25 

where the drag coefficient is plotted a's a function of 

(99) 

the Reynolds Number. The critical Reynolds Number is read 

from this chart at the point where the drag coefficient 

is 0.3. The value is 

Re . = 270,000 cr1t. 

This procedure is in agreement with the method suggested 

by Dryden and Kuethe (7) for standardizing the reporting 

of level of wind tunnel turbulence. According to 

Schlichting (36) page 471 this value for the critical 

Reynolds Number corresponds to an intensity of turbulence 

of 0.006. 
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Sununary of Turbulence Properties of the Tunnel 

The following observations were made with regard to 
' the turbulence properties of the.wind tunnel in. the 

Agricultural E~gineering Laboratory :at Oklahoma State 

University. The first point is from this work while the 

other observations are due to the work of M~her (23). 

1, The turbulence properties 1 of the wind tunnel 

are characterized by a critical Reynolds Number 

of 270,000. 

2. The air in the wind tunnel was turbulent at all 

fan speeds. 

3. For velocities less than 15 feet per second o~ 

approximately 10 mph, the fluctuations in velocity 

were extremely small at any distance· greater than 

about 15 mesh diameters downstream from the 

screen. 

4. When no screen was used in the entrance to the 

test section, the oscillascope trace indicated 

small fluctuations were present, but extremely 

large peaks in the trace that occurred less 

frequently than about every five seconds were 

damped out when a screen was used. 
' 

5. The amplitude of velocity fluctuations were noted 

to increase when Reynolds Number was increased 

by increasing velocity. Some increase was also 

noted in freq1,1ency.of occurence-0£ fluctuations 

havi~gthe same ~gnitude'as'velocity·was:inereased. 



CHAPTER V 

DEVELOPMENT OF THE THEORY.· 

Recall from the experimental design that 4 independent 

and dimensionless groups (or pi terms) are necessary to 

adequately describe the convective heat transfer coefficient 

from a general ellipsoidal model in gas flow with a 

specified orientation and surface roughness and in an 

air stream of specified turbulence. i These pi terms are 

he Nu 'IT 1 = k = 

'IT 3 = UggcpNe = Re 
µ 

7T 4 = a/c 

The experimental plan shown in Table IV was conducted 

and component equations developed. Three "replications" 

of each test was conducted in order to minimize any error 

due to equipment malfunction, operato~ errors, etc. It 

will be observed that these repetitions are not true 

replications because the same model was used in each of 

the repeated tests. A semi-randomizatio_n procedure was 

used in determining the order· iri which tes~s wer1e conducted. 

A period of three to four days was required for the 

99 
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instrumenting and checking of each model prior to testing. 

Therefore to minimize the time and expense in the experi

mental phase of the work, all tests scheduled for a particular 

model were completed· before the -model ·was removed from 

the wind tunnel. However the order in which the models 

.were tested was randomly selected by drawing numbers from 

a hat. 

Component Equations for the Ellipsoidal Mod~l 

The analysis requires the development of three component 

equations. They are: 

and 

Nu= •1 = F1<•3,•4,w5) 

. Nu = •1 = F2<•3,1r4,i'5> 

CllSl 

(116) 

(117) 

Here the· bar ov,r the pi term indicates the group is held 

constant throughout the serie~ of tests. The surface 

temperatures have been integr~ted over the surface to yield, · 

the average surface temperature. The reduced data for 

developing the Nusselt Number dependence on Reynolds Number 

is shown in Table VI. 

The data in Table VI is plotted to yield a straight 

line in log-log space in Figure 26. The method of least 



Test 
No. 

1:-1 
1-2 
1-3 
2-1 
2-2 
2-3 
3-1 
3-2 
3-3 
4-1 
4-2 

· 4-3 
5-1 
5-2 
5-3 
6-1 
6-2 
6-3 
7-1 
7-2 
7 .... 3 
8-1 
8-2 
8-3 

. 9-1 
9-2 
9-3 
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TABLE·VI 

NUSSELT NUMBER AS A FUNCTION OF REYNOLDS NUMBER 
WITH TI 4 AND Tis .HELD CONSTANT 

Reynolds Heat Transfer Nusselt 
Number Coefficient 

Btu/ (hrft 2 °F) 
Number 

30,522 4o83 108.7 
30,522 4.99 112.4 
30,228 5.81 121.6 
40,819 5.96 134.3 
40,819 5.67 127.7 
41,038 5.91 133.2 
52,697 6.71 151.2 
52,697 6.90 155.5 
52,527 7.08 · 159.4 
70,447 8069 195.8 
70, 319 8013 183.2 
70,192 9.13 205.6 
88,078 9.57 215.4 
88,100 8.90 200.S 
87,976 6.40 215.9 

105,734 10.32 232.6 
105,734 10.20 229.7 
105,649 10006 226.7 
123,187 9.78 244.5 
123,041 11. 30. 254.5 
123,114 11.08 249.5 
140,894 11.99 270.0 
140,894 11.63 262.0 
140,639 11.83 266.4 
144,410 10.06 256.2 
145,769 12.51 281. 8 
14q,321 .11. 9 9 270.3 
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squares was used to fit the straight line to the experimental 

data. The results are 

Nu= 0.367(Re> 0 • 557 · (118) 

; 

with a regression correlation coefficient, r = 0.;991 and 

a standard deviation, s = 0.018 .where the standard deviation 

is expressed in logarithmic units.· Note· that the results 

are valid over the Reynolds Number range from ao,ooo to 

150,000. The Prandtl Number is held·constant at 0.72 by 

using air as the fluid medium. The othe~ two pi terms, 

'li'1.1, and 1r 5 , are held constant at·the·following values. 

11'1.1, = 2.50 

'11'5 = 1.75 

The dependence of·the·Nusselt·Num.ber·on the length 

ratio, a/ c, is tabulated in·· reduced ·form in Table VII. 

A logari thm·ic , transformation is used to tra.nsf orm the data 

to a straight line in Figure 27~ From a least squares 

analysis·the function is 

Nu= 230.2l(a/c)·O~O?O (119) 

The regression correlation coefficient is r = 0.559 with 

a standard : deviati~n ·in. loga~i thmic uni ts of O.011.f... The 

Reynolds Number was·held constant at approximately 123,000 

and the length ratio, -:pie, at l~ 75. The small exponent on 



TABLE VII 

NUSSELT NUMBER AS A FUNCTION OF THE LENGTH RATIO, a/c 
WITH TI 3 AND TI 5 HELD CONSTANT 

Run Reynolds Heat Transfer Nusselt 
No. Number Coefficient 

Btu/(hrft 2 °F) 
Number 

10-1 122,950 6.66 225.2 
10-2 122,950 7cl 7 242.3 
10-3 122,950 6.68 225.6 
11-1 124,255 6.69 226.1 
11-2 122,786 6.56 221. 8 
11-3 122,950 6.35 214.6 
12-1 122,379 7.52 21L 7 
12-2 124,421 7.61 214.4 
12-3 123,178 7.11 200.2 
13-1 123,114 6.42 216.9 
13-2 123,604 6.43 217.2 
13-3 123,441 6.48 219.0 
14-1 123,187 9.78 244.5 
14-2 123,041 1L30. 254.5 
14-3 123,114 11.08 249.5 
15-1 123,178 7.65 215.2 
15-2 123,178 7.55 212.6 
15-3 123,178 7.67 215.9 
16-1 122,823 9.47 213.2 
16-2 122,677 9.56 215.3 
16-3 123,984 9.70· 218.4 
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TI 4 

ale 

1. 33 
1. 33 
1. 33 
1. 67 
1. 67 
l.'67 
2.00 
2.00 
2.00 
2.33 
2.33 
2.33 
2.50 
2.50 
2.50 
2.80 
2.80 
2.80 
3.00 
3.00 
3.00 
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the a/c ratio indicates very little change ~n the heat . ' . . 

transfer coefficient with a change in the length of the 
; \ ' 

ellipsoid, i.e., the horizontal·dimension·perpendicular to 

air flow. This, of course, is expected· since the c.ross .. , 

sectional shape does not change as the length "a" ~ha.nges 

within the range of values of a/c used in·these tests. It 

seems plausible that the Nusselt Number dependence should 

take the form shown in Figure 28. This requires that as 

a/c ~ O that the heat transfer coefficient would approach 

the value for the finite flat plate·that is elliptical in 

shape. As a/c ~~the shape would become an infinite 

elliptical cylinder. The range of values of a/c considered 

in this study is indicated by the portion of the curve 

between Ca/c) 1 and Ca/c) 2 • Sufficient·data is not available 

to define completely the exponential curve in Figure 28. 

It would, therefore, be dangerous to extend the results 

to values of a/c less than l.33. Values of a/c greater 

than the limits of these tests should not introduce large 

errors since the slope of the curve is close to zero. 

The values for the Nussel t · Number as a f1.mction of ·· · 

n 5 is tabulated in Table VIII. Using the logarithmic 

transformation and a least squares analysis the correlation 

is described by 

Nu= 256.38 (b/c)-0 • 440 (120) 
i 

and is plotted in Figure 29. The correlation coefficient 

is r = 0.898 with a standard deviation in logarithmic units 
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Run 
No. 

18-1 
18-2 
18-3 
19-1 
19-2 
19-3 
20-1 
20-2 
20-3 
21-1 
21-2 
21-3 
22-1 
22-2 
22-3 
23-1 
2 3-2 
2 3-3 
24-1 
24-2 
24-3 
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TABLE VIII 

NUSSELT NUMBER AS A FUNCTION OF THE LENGTH RATIO, b/c, 
WITH n 3 AND n 4 HELD CONSTANT 

Reynolds Heat Transfer Nusselt TI 5 
Number Coefficient 

Btu/(hrft 2 °F) 
Number b/c 

122,968 10.46 235.6 LOO 
123,186 10.68 240.5 1. 00. 
123,187 10.79 243.1 1. 00. 
123,114 10.93 246.2 1.25 
123,295 11.29 254.3 1:. 2 5 
123,114 11.83 266.5 1. 25 
121,944 9.30 209.4 1. 50 
123,114 9.32 209.9 1. 50 
123,114 9.07 204.3 1.50 
123,187 9.78 244.5 1.75 
123,041 11. 30 254.5 1.75 
123,114 11.08 2.49 .. 5 1. 75 
123,405 7.37 207.5 2.00 
123,744 7.27- 204.6 2.00 
123,177 7.32, 206.2 2.00 
123,114 7.48 168.4 2.25 
12 3 ,.114 7.37 166.0 2.25 
123,114 7. 42 . 167.1 2.25 
123,114 7.78 174.6 2.50 
123,259 7.63 171. 9 . 2:50 
123~041 161. 5 2.50 
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of 0.032. Thro~ghout the development of these results the 

values of '11' 3 and '11' 4 were held constant at 

'11'3 = 123,000 

'11'4 = 2.50 

Prediction Equation for the General Ellipsoid 

Murphy (27) described methods for combini~g component 

. equations to give the general prediction equation as 

provided on page 41. For component equations·. that form 

straight lines on log-log coordinates, combination is of 

the form 

'Ir 
1 

(121) 

Again the bar over the pi terms indicate those quantities 

that are held constant during the indicated series of 

experimental tests. 

The component equations from this study are 

F ( - - ) = 0.367(Re)O.SS 7 1 '11'3,'11'4,'ll'5 

The constant values for. the pi terms are 

'11' 3 =Re= 123,000 

(122) 

(123) 

(124) 
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'IT 4 = a/ c = 2. 5 0 

,r 5 = b/c = l.75 

F4 ('11' 3 ,ir4 ,'11' 5 ) may be calculated from either equation 

122, 123, or 124. The results are 

therefore 

F ('IT:· -,r. :;::- )_[F4('i"3,'i"4,'i"5)]1+[F4('i"3,'i"4,'i"5)]2+[F4(if.3,;,!±.~,!5)]3 
4 3 ' 4 ' ,II 5 :- · . . ,, . . 3 

= 222 ~ 4'8 

substituti~g these values into equation 121 yields 

Nu=ff =0.367(Re) 0 · 557 (256.38)(b/c)-0° 44 (230.2l)(a/c)-0.07. 
1 (222.48)2 

after simplifying 

Nu= 0.438(Re) 0 ' 557 (a/c)-0.0 7(b/c)-o. 44 (125) 

Equation. 125 was·· developed from experimental data with 

the following limits placed on each dimensionless group. 

30,000 <Re~ 150,000 

1.33 <ale< 3.00 
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1,00 < b/c < 2.50 

Extrapolation beyond this range of values for the independent 

variables is not. generally recommended, Equation 125 was 

developed using air as the fluid medium, The Prandtl 

Number for air at moderate temperatures and pressures 1s 

very closely estimated by consid~ring it constant at 0.72. 

The Prandtl Number for most other gases is within 10% of 

the value for air so that applying this equation to systems 

where gases other than air is used would not induce large 

errors. However, when the Prandtl Number differs signifi-

cantly from 0.72 as 1s the case for most liquids equation 

125 1s no longer valid, 

Kays (19) noted the Nusselt Number varies approximately 

as the (Pr) 113for bodies with boundary layer separation, 

except for very low Prandtl Numbers, i,e. Prandtl Numbers 

on the order of those encountered in liquid metals, Based 

on this approximation equation 125 can be extended to 

cover fluids in the moderate Prandtl Number range, The 

result is 

(126) 

As reported earlier in this paper Ko and Sogin (20) 

determined the heat transfer coefficient from an ellipsoidal 

surface of axis ratio 4:1, By transliteration Ko showed 

the expression for the average heat transfer coefficient as 

(93) 
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h = Average heat transfer coefficient, Btu/(Hr ft2°F) 

G1 = Mass air velocity, lbm/(sec ft2) 

Cp = Fluid specific heat, Btu/(lbm°F) 

S = Total length of ellipsoidal surface measured 

from the stagnation point along the meridian 

profile, ft. 

µ=Fluid viscosity, lbf sec/ft 2 . 

Ko measured S to be 0.76 for an axis ratio of 4:1 and he 

reported that Lewis measured S to be 0.60 for the ellipsoid 

of revolution with an axis ra:tio'of 3:1~ 

The results from Ko and Lewis are compared with the 

predicted results from equation 125 in Figure 30. 

Variations in predicted values from both works are no more 

than five percent in the Reynolds Number range from 30,000 

to 150,00D. This variation p~obably needs no explanation 

since variation in experimental techniques could result in 

differences this large. However, it should be pointed 

out that no knowledge of the turbulence characteristics of 

the wind tunnels used by Ko and Lewis is available. As 

suggested in Chapter II a variation in wind tunnel turbulence 

could have large influences on the heat transfer coefficients 

from the ellipsoidal shapes and could account for the 

variation between these reports. Nu calculated from equation 

126 is plotted against Nu observed in Figure 31. 
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Figure 30" The Nusselt Number vs. Reynolds 
Number calculated from equation 
125 and compared with the results 
of Ko and Lewis 
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Test 
Number 

1-1 
1-2 
2-1 
2-2 
3-1 
3-2 
4-1 
4-2 
5-1 
5-2 
6-1 
6-2 
7-1 
7-2 
8-1 
8-2 
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TABLE IX 

NUSSELT NUMBER VS. REYNOLDS NUMBER FOR SHAPE I 
a=lO.O in; b=3.50 in; c=5.0 in 

Heat Transfer Reynolds Nusselt 
Coefficient Number Number 

Btu/ (hrft 2 °F) 

5.19 32,616 146.2 
4.94 35,493 139.1 
5. 36 43,308 15L O 
5 0 39 43,630 15L 6 
6.84 65,659 192.6 
6.67 65,659 187.6 
7,90 8 7, 740 2 2 2 0 3 
7.43 88,218 209.2 
9.25 109,843 260.5 
9.37 110,097 263.8 

11.13 131,956 313.5 
10.78 132,062 303.5 
11. 52 153,802 324.4 
11. 81 153,984 332.4 
14.69 171,201 410.9 
12.79 172,098 360.0 
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Irregular Shapes 

Three shapes were constructed of 3/16 11 thick aluminum 

and instrumented as described earlier for the ellipsoidal 

model. One of the shapes was a finite cylinder, whose 

length was 10 inches and diameter was 3.5 inches. The other 

two shapes were designed to approximate the shape found in 

boneless processed hams. In all cases the length was 10 

inches, however dimensions band c varied. The cross

sections including dimensions band care shown in Figure 

32. For convenience the irregular shapes will be referred 

to hereafter as 

Shape I: a=lO in.; b=3.5 in.; c=S.O in. 

Shape II: a=lO in.; b-3.5 in.; c=3.5 in. 

Shape III: a=lO in.; b=S.O in.; c=3.5 in. 

1he dimension c is vertical and perpendicular to fluid 

flow. It is the length dimension used in the Reynolds 

Number. 

After the shapes were instrumented, a series of tests 

were conducted varying the air velocity through the range 

available in the wind tunnel. The Nusselt Number as a 

function of Reynolds Number is tabulated in Table IX 

for Shape I. A linear regression was performed on the data 

after converting to logarithmic coordinates to yield 

Nu= 0.231(Re) 0 · 608 (127) 
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TABLE X 

NUSSELT NUMBER VS. REYNOLDS NUMBER FOR SHAPE II 
a=lO.O in; b=3.50 in; c=3.50 in 

120 

Heat Transfer Reynolds Nusselt 
Number Coefficient Number Number 

Btu/(hrft 2 °F) 

2-1 5. 7 8 30,765 113.8 
2-2 4.25 30,089 83.7 
2-3 6.12 31,644 120.6 
3-1 6.98 46,259 137.6 
3-2 7.21 46,110 142.2 
3-3 13.33 45,961 145,8 
4-1 8.96 61,082 176,5 
4-2 10.74 61,194 211.7 
4-3 7.48 61,082 148.6 
5-1 9.99 76,890 196.9 
5-2 10.23 76,979 201. 6 
5-3 10.42 76,979 205.3 
6-1 11. 6 3 92,517 229.1 
6-2 11. 62 92,369 228,9 
6-3 11. 39 92,369 224.4 
7-1 12.55 107,916 247.2 
7-2 11.92 107,852 234.9 
7-3 13.03 107,789 256.8 
8-1 13.57 117,412 267.5 
8-2 13. 44 120,241 264.9 
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The data is plotted in Figure 33 and shows a regression 

correlation coefficient of 0.98 and a standard deviation 

of 0.0295 in the logarithmic coordinate system. 

The results for Shape II, the finite cylinder are 

tabulated in Table X and plotted in Figure 34. The 1e·ast 

squares analysis yields 

Nu= 0.180(Re) 0 · 624 (128) 

with a regression correlation coefficient of 0.97 and a 

standard deviation 0.0289 in logarithmic coordinates. It 

is interesting to note that this result for the finite 

cylinder is almost identical to the values reported by 

Hilpert (18) for the Nusselt Number for infinite cylinders 

in the Reynolds Number range from 4,000 to 40,000. He 

reported that 

Nu= 0.174(Re) 0 · 618 (89) 

This serves to help verify the earlier conclusion that the 

model length, a, has little effect on the average heat 

transfer coefficient as long as the· ,:c:ross.....,se,crti.bnal _i:;hape is 

geometrically similar throughout. 

Shape III is similar to Shape I except for the direction 

of air flow. In fact the orthogonal directions band care 

reversed in this shape compared to Shape I. The Nusselt 

Number for Shape III is tabulated in Table XI and plotted 

in log-log space in Figure 35, The least squares analysis 

yields 
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Number 

1-1 
1-2 
2-1 
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3-1 
3-2 
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4-2 
5-1 
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TABLE XI 

NUSSELT NUMBER VS. REYNOLDS NUMBER FOR SHAPE III 
a=lO in; b=5.0 in; c=3.5 in 

Heat Transfer Reynolds Nusselt 
Coefficient 

Btu/(hrft 2 °F) 
Number Number 

5.26 24,567 103.7 
5.76 26,189 113.5 
6.69 30,765 131. 8 
6.65 30,765 131.0 
7.67 45,961 151. 2 
7.97 46,110 157.2 

10.22 61,863 201. 4 
10.75 61,641 211. 8 
11. 89 .77,246 234.4 
11. 78 76,890 232.2 
13.49 9 2 ·, 3 6 9 265.8 
13.08 92,517 257.8 
14.74 107,661 290.4 
14.82 107,852 292.0 
16.43 119,612 323.9 
15.42 118,227 303.9 
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Nu= 0.118(Re) 0 · 675 

with a linear regression correlation coefficient of 0.995 

and a logarithmic standard deviation of 0.0165. 

(129) 

The exponent on the Reynolds Number and the constant 

coefficient varies as the geometry of the shape varies. Any 

criteria for replacing an irregular shape with ah ellipsoidal 

model will have to operate on both these, quantities·::to be 

successful. 

It is interesting to look at the point at which the 

curves converge when the irregular shape is assumed to be 

replaced by an ellipsoidal model whose three orthogonal 

dimensions are the same as for the irregular shape. Call 

the point where the Nusselt Number for the irregular shape 

equals the Nusselt Number for the equivalent ellipsoid 

Reconv.· If we plot Reconv as a function of b/c with both 

transformed logarithmically it yields a straight line as 

shown in Figure :36. The simple dots in Figure 36 are for 

the three irregular shapes used in this study. This result 

indicates no dependence on the length ratio, a/c. This is 

as should be expected because of the small dependence of 

the Nusselt Number on a/co 

To compare this result with other irregular shapes ~s 

reported by other investigators, correlations for four 

different irregular shapes were used. These correlations 

were for infinitely long shapes but since the Nusselt Number 

is not strongly dependent upon shape length, an a/c ratio 
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of 10 was arbitrarily selected and a value of Re 
conv 

calculated for each shape. These values are the circled 

points in Figure 36. Note that the values for Reconv 

lie very close to the line predicted from the models used 

in this study with some points falling above and some 

below the line. This variation may be due to the sharp 

corners that were present on these shapes and not on the 

models used in the tests. These differences could probably 

be accounted for by a "corner" effect as will be discussed 

in the following section. 

·Transforming the Irregular Shape 

As discussed earlier the Nusselt Number for any 

specified shape has been shown to be a function of the 

Reynolds Number, Prandtl Number and geometry of the body. 

If we look at the component equation for Nusselt Number vs. 

Reynolds Number we find the type of expression shown in 

Figure 37 existing for the various geometries. 

This form of the experimental data yields a component 

equation of the form 

Nu, 
l 

n· 
= ci (Re) l 

Analytical solution of the energy equation where possible 

(130) 

and experimental observations indicate that the value of n 

varies between 0.5 for laminar boundary layer flow on a 

flat plate and 0.8 for a turbulent boundary layer on a 
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flat plate. Values of n for othE~r sha.pes and flow conditions 

fall within this range of values. 

As observed previously the Nusselt Numbe:r plott,ed as 

<'1 function of the Reynolds Number, will the o.f the natut>e 

shown in Figure 38 for the irregular shap,e and for the 

equiv.alent ellipsoid when transform.ed by using equivalent 

orthogonal dimensions. We assel'."t that since the Nusselt 

Number is not heavily dependent 1:.ipon a/ c aind if we lim,i t 

the analysis to irregular shaped 'bodies with smooth 

continuous surfaces, i.e. no sharp corners, that 

n = f 9 (b/c) 

and y = f 10 (b/c) 

(131) 

( 132) 

The proof of this assertion will depend upon whether we 

are successful in obtaining a transformation that will 

indeed provide acceptable results for the irregular shaped 

objects. 

In transforming the irregular shape to an ellipsoidal 

model the irregular shape is visualized as an ellipsoid 

inscribed inside the shape with orthogonal ellipsoid 

dimensions the same as the orthop;ona1 dimensions of the 

ir1°cgula:r. shape. This rirovides the simplest transformation 

possible with all length ratios and the length dimension 

in the Reynolds Number being based on the dimensions of the 

equivalent ellipsoid. 
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Both equations 131 and 132 fit as straight lines in 

semi-log space and the data is shown plotted in Figure 39. 

A least squares analysis of the data yields 

n = 0.540 + 0.087(b/c) 

y = 0.253 0.078(b/c) 

The experimentally derived equation for the general 

ellipsoid is from equation 125. 

Nue = 0.438(Re)0.557(a/c)-0.07(b/c)-0.44 

(133) 

( 134) 

(125) 

For the irregular shape transformed on the basis of 

equivalent orthogonal dimensions for the irregular shape and 

equivalent·ellipsoidal shape the equation becomes 

(135) 

After substituting the derived expressions for n and y the 

prediction equation for the transformed irregular shape 

becomes 

Nu =C0.253-0.078(b/c))(Re)0.540+0.087(b/c)(a/c)-0,07(b/c)-0.44 
s . 

( 136) 

The Nusselt Number for the shape calculated from 

equation 136 is plotted against Nusselt Number observed in 

,>:Figure 40. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary 

The primary objective of this study was to develop a 

method whereby the average convective heat transfer 

coefficients could be predicted with a reasonable degree 

of accuracy. The general ellipsoid serves as an adequate 

model for replacing the irregular s·hape for predicting the 
., 

average heat transfer coefficient. 

A series of thirteen ellipsoidal models were cast from 

aluminum for use in this study. Their dimensions were 

selected to span the range of sizes normally encountered 

in the processing of the pork carcass. The range of these 

dimensions are 

8 in. <a< 14 in. 

4 in. < b < 11 in. 

4 in. < c < 6 in. 

The prediction equation for the Nusselt Number from the 

general ellipsoid is of the form 

Nu= f 11 (Re,Pr,a/c,b/c,A,e). (137) 

134 
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For this study the Prandtl Number, Pr, the orientation of 

the shape, 11, and the surface roughness, E, were all held 

constant so that they do not enter into the prediction 

equation. Equation:137 then reduces to 

Nu= f 12 (Re,a/c,b/c) (138) 

Employing the methods of similitude, component equations 

were developed that fitted to a straight line when trans~ 

formed to logarithmic coordinates. Combining these component 

equations by multiplication yielded the following equation 

for predicting the dverage· Nusselt Number for the_ general 
•' 

ellipsoid as 

Nu= 0.438(Re)0.557(a/c)-0.07(b/c)-0.44 (125) 

~his experimental correl~tion was developed over the follow-

ing range of the independent pi· -terms, 

30,000 ~Re~ 150,000 

1.33 < a/c < 3.00 

1.00 < b/c < 2.50 

Using the non-ellipsoidal shapes described in the 

previous chapter a c'ri teria was developed for replacing a 

smooth irregular shape with an ellipsoidal model for 

predicting the aver~ge convective heat transfer coefficient. 

All shapes used in this analysis were sueh·that no shapp 

corners were present. The criteria established requires 

that the irregular shaped object be conceptually replaced 
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with an ellipsoid that has the same orthogonal dimensions 

as the irregular shape. The prediction equation then takes 

the form 

where 

n = f 9 (b/c) 

y = f 10 (b/c) 

(135) 

(131) 

(132) 

The functions for predicting n and y were evaluqted to 

yield 
(136) 

Nu=(0.253-0~078(b/c))(Re)0.540+0.087(b/c)ca/c)-0.07(b/ci)~0.44' 

Conclusion 

The following conclusions are based on the interpreta

tion of the experimental results. 

1. The influence of the length ratio, a/c, has little 

if any effect on the average Nusselt Number as 

long as the cross-sectional geometry of the shape 

remains constant throughout the length a. This 

could be expected to change as a/c approaches 

zero and becomes a flat plate whose shape is that 

of an ellipse. It is for this reason that the 

results of this study should not be extrapolated 

below the range of values used for a/c. 
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2. As would be expected the major geometry dependence 

is characterized by the length ratio b/co As the 

length ratio, b/c, changes the percentage of the 

surface covered with laminar, transition, turbulent 

and separated flow regimes changeso This c~uses 

a change in the average Nusselt Number for the 

ellipsoidal shapes as predicted in equation 1250 

3. The component equation for the Nusselt Number vs. 

Reynolds Number forms a straight line in log-log 

space for the ellipsoidal shape as well as all 

other shapes used in this study. This is in agree

ment with experimental results reported by other 

investigatorso 

4. For the non-ellipsoidal shapes with no sharp 

corners or edges the general ellipsoid can be used 

as an adequate model for predicting the average 

heat transfer coefficiento Where sharp corners 

exist the results probably are not valid because 

of the large change in the nature of the boundary 

layer in the vicinity of the sharp edgeo 

5" The coefficient, y, in the expression for predict

ing the Nusselt Number can be adequately expressed 

as a function of the length ratio b/c. This 

expression is 

y = 0.253 - Oa078(b/c) (134) 
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6. The exponent, n, on the Reynolds Number in the 

expression for predicting the Nusselt Number can 

be adequately expressed as a function of the length 

ratio b/c. This expression is 

n = 0.540 + 0.087(b/c) 

7. For the irregular shapes used in this study the 

criteria for using the general ellipsoid as an 

,adequate model is that the orthogonal dimensions 

of the ellipsoid be the same as those for the 

irregular shape. With this criteria the Nusselt 

Number for the irregular shape is predicted by 

where y and n are defined in 5 and 6 above. 

(133) 

(135) 
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