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CHAPTER I
INTRODUCTION
The Problem

Recent research on the processing of pork;products
concentrated attention on the problem of predicting heat
transfer prbperties of irregular shaped objects. Past
performances in the design of cooling equipment for bio=
logical materials have been based primarily on the designers
experiences. Both over and under designed units are quite
common. Most of these errors can be traced to a lack of
available knowledge about the non-homogeneous, non-isotropic,
irregular shaped objects encountered in biological materials.

Smith (40) at Oklahoma State University developed a
procedure for predicting the temperature distribution within
an irregular shape. He showed the temperature to be of the

following form:

e : fl (Fo, Bi’ Ld’ G) (l)
where: 6 = Dimensionless Temperature
Fo = Fourier Number
Bi = Biot Number
Ld = Dimensionless distance

G = Geometry of the shape.



In order to predict the temperature at any point within the
shape requires a knowledge of the Biot Number (%S)o The
characteristic dimension, ¢, and thermal conductivity of
the shape can normally be determined by one of several
methods. The heat transfer coefficient, h; is dependent
upon the geometry of the shape as well as a number of other
factors. Our knowledge of the heat transfer coefficient
is limited to certain special surfaces such as spheres,
flat plates, and cylinders. Should one wish to define the
heat transfer coefficient for an irregular shape, such as
a ham, he would have to define the shape in terms of a
plate, cylinder, or sphere and then by one cf several
alternative approximations estimate the heat transfer
coefficient. In many cases this approximation of the
_anomalous shape is a poor one. The final result is also
a poor estimate--errors up to 100 percent have been observed-
of the heat transfer coefficient. |
An ellipsoidal model would provide a more accurate
means of defining the geometry of anomalous shapes since
we have control of the size of the model in three principle
directions. It is reasonable to expect that a model that
more adequately defines the geometry of the shape will also
give a better estimate of the heat transfer coefficient.
Therefore, there is a need for an equation that will
predict the heat transfer coefficient of a wide variety of
ellipsoidal models. With these two tools, a redefinition

of anomalous shapes in terms of ellipsoids and a general



prediction equation for the heat transfer coefficient of
these ellipsoids, it is thought that less "guess work" and
more accuracy could be derived in estimating the heat

transfer coefficient of anomalous shapes.
Objectives

The objectives of this study are:

1. To design ellipsoidal models which will be represent-
ative of a typical agricultural product.

2, To develop a general prediction equation for the
heat transfer coefficient from the ellipsoidal
models in a gas Stream with a specified orienta-
tion relative to the fluid flow.

3. To correlate the results of the general prediction
equation with those obtained by direct measurement
of the heat transfer coefficient from an anomalous
shape.

4., To determine an adequate criterion for replacing
an anomalous shape with an ellipsoidal model for

convective heat transfer.

Limitations of the Study

Several factors that are known to have an effect on
the convective heat transfer rates from blunt bodies have
not been considered in this work. This was generally done

either to hold the scope of the work to a manageable level



or because it was considered unnecessary toc accomplish
the objectives of this work.

The surfaces of all models were buffed using a jewelers
rouge to give a smooth shiny surface. As long as the
boundary layer flow is laminar the surface roughness will
have little, if any, effect on the convective heat transfer
rate. However in the transition, turbulent and separated
regions of the boundary layer large variations in heat
transfer rates can occur with small fluctuations in surface
roughness. One of the noticeable effects of increased
roughness would be an earlier transition from laminar to
turbulent boundary layer flow. Results for surfaces with
large ‘irregularities would be expected to yield results
different than those presented here.

In all cases the model was orientated so that the
dimensions a and c were perpendicular to fluid flow and
dimension b was parallel to fluid flow. Variation in the
orientation of the model with respect to fluid flow was
not considered important in fulfilling the objectives of
"~ this study.

Air was used as the only fluid‘medium throughout the
study so that Prandtl Number dependence could not be
determined. However since the Prandtl Number for other
gases closeiy approximates that for air these results
should introduce small errors when using gases other than
air. Kays (19) and others have shown the Nusselt Number

to vary approximately as the Prandtl Number to the one-third



power. Usiﬁg this approximation these results can be
extended to cover fluids whose Prandtl Number varies
significantly from the value for air.

The maximum and minimum levels ¢f the independent pi
terms are tabulated in Chapter III. Extrapolation of these
results beyond the range of these values is not recommended.
Extrapolation to values of the length ratios below the
minimum is particularily discouraged for reasons detailed

in Chapter V.
Definition of Symbols

The symbols used in this report are generally the
same as those finding common usage in the literature of
heat transfer. Those symbols finding general usage through-
out the report are tabulated below. Subscripts on the
variable symbol generally refer to a particular location
in space and is not necessarily included in the list
~given below. The subscript, =, always refers to the free
stream condition while a subscript of o or w usually
refers to the condition at a stationary surface. Where
special symbols that are not tabulated’below are used a

special effort is made to define those quantities.

Symbol Quantity Units
a Length of the major axis of the ellipsoid ft.
~ perpendicular to fluid flow
A a’/? ft.
A; Surface area represented by node i ft2



Szmbol

Bi

Quantity

Area projected on a plane perpendicular

to fluid flow

Total surface area

Units

ft2

Ft2

Length of the horizontal axis of ellipsoid ft.
perpendicular to major axis and parallel to

fluid flow
b/2
Biot Number

Length of vertical axis of ellipsoid

perpendicular to major axis and fluid

flow

c/2

Constants

Drag Coefficient

Specific heat at constant pressure
Dimensionless exponents

Diameter of sphere

emf

Eckert Number

A funcfion of

Friction factor

Drag force

Fourier Number

Acceleration due to gravity strength
Geometry index

Mass fluid velocity

Grashof Number

Average convective heat transfer
coefficient

ft.

ft.

ft'

Btu/(1b,°F)

ft.

volts

lbf

ft/sec2

1by/ (secft?)

Btu/(hrft2°F)



Szmbol

A & H

S

Ne
Nu

P,

1°7°2

Re

Regpit

Quantity

Distance from centerline to wall in
couette flow problem

Current flow
Fluid thermal conductivity
Product thermal conductivity

Constant

" Scale of turbulence

Dimensionless length ratio
Dimensionless exponent

Screen mesh size

Exponent on Reynolds Number of general

prediction equation

Newton's Second Law Coefficient

Nusselt Number

Pressure

Power

Prandtl Number

Correlation Coefficient

Heat Energy Flow

Heat Energy Flow per unit area
Regression Correlation Coefficient
Dimensionless exponent
Universal Gas Constant
Reynolds Number

Reynolds Number when CD = 0.3

Total length of ellipsoidal surface-

measured from the stagnation point
along the meridian profile

Units

ft.

Amperes
Btu/(hrft°F)
Btu/(hrft°F)

f‘t’

(1b_sec?)/(1b ft)
f m

-—

1bg/ £t2
watts

-_

Btu/hr

Btu/(hrftz)

(ftlbf)/(lbm°R)

ft.



Symbol
St

in

log

‘Quantity

Stanton Number

- Temperature

Intensity of Turbulence
Local velocity in x-direction

Instantaneous velocity fluctuatlon in
x-direction

Velocity of plate in couette flow
Free Stream Velocity |
Local velocity in y-direction

Instantaneous veloc1ty fluctuation in
y- dlrectlon‘

Local velocity in z-dlrectlon

Instantaneous velocity fluctuation in
z-direction

Unheated starting length
Coordinéte directioné

Body Forces in x~-direction
Body Forces in y-direction
Body Forces in z-direction
Characteristic Lepgthb
Napérian logarithm
Logarithm to‘Base 10
Thermal diffusivity

Coefficient'of volumetric expansion -

Coeff1c1ent for general prediction

equation
Hydrodynamic-boundary layer thickness

Thermal boundary layer. thickness

Units

oF
ft/sec

ft/sec

ft/sec
ft/sec
ft/sec

ft/sec

ft/sec

ft/sec

ft.
ft.
3
1b/ft
3
1bg/ft
3

b /f
1 c t

fto

ft2/hr\
1/°F

ft.

ft.



Sxmbol

€H

Quantity

Roughness index

Eddy diffusivity for heat
Similarity Variable

Dimensionless temperature

Angle

Dynamic viscosity

Kinemafic viscosity, u/(pNe)
(vxU_)

Density of fluid

Shear stress at the wall
Viééousldissipation funcfion

A function of o
Stream function

Number of nodes

Dimensionless pressure - P/(prz)
Dimensionless temperature 5?T/(Tw—Tm)

u/u,

Dimensionless velocity - oo
Dimensionless velocity - g)(ié/pNe)l/z
Dimensionless velocity f:V/U; |
Dimensionless velocityi-xﬁ/Uw.
Dimensionless Distance - ;pNe(To/pNe)l/Z/u

Dimensionless stream function - Y¥/&

. . _ 2 42 2
Differential operator,-a +-9 4 3
: ‘ ax2 3y? 322

Units
ftz/hr :

degrees
lbfsec/ft2
£t?/sec

ft2/sec

b /ft°
m

2

lbf/ft

1/sec

2

ft /sec



CHAPTER II
REVIEW OF THE LITERATURE

A complete report of the literature in the heat trans-
fer area relating both directly and indirectly to this problem
is impossible because of the  large number of volumes coming
off the press each year. Because of this the author has
selected those areas considered to be most applicable to
this particular problem for review.

The derivation of those basic governing laws generally
covered in most advanced heat transfer courses are‘not
reproduced here. Instead the reader is referred to at
least one reference for derivation and proof of these
equations. These derivations are generally reproduced in
numerous heat transfer texts that are not referenced in

this report.
The Navier-Stokes Equations

Schlichting (36) shows the Navier-Stokes equations for
steady compressible flow with constant viscosity to be:
continuity:

3lpu) , 3lpv) , 3lpw) _ g
axX 3y 9z

10
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momentum:
U U 9u ?2.P 1l .. =
p(u§§ + Vay + wyy) = -3 teBog, +u[V2u+§3§d1vw]+X (3)
3V v vy . 9P . .
—e T+ e e -, J + 2y+C +
p(uax vay waz) 55 pBOE plvav 5y divw]+Y (4)
W oW oW 2P 2,19 L. 7o,
IV ¢ W o Yy = L8 4 + +=d +7
p(us— iy W) s toBog  +ulViw w5 dive [ +7 (5)
where:
92 32 22
2 = + +
v 32 dy%  az?
> -> ->
M oW oW

These equations with the energy equation are used to solve

for the temperature distribution in a viscous fluid. The

energy ecquation with constant fluid properties becomes

T 3T 3T 32T 32T 82T
> Jo + vii o+ i) = + +
pC (uax Vay waz) dw < dy+  9z* )
+ ui?. + v.z.?}i + w.?_}i + ud (6)
X Iy 97
where:

=
T

it

au

A

W 2
(50 +337)2 - 3¢

viscous dissipation function

ou IV W Y su . sw 3V
(L) 2 + (X2 + (EX2] + (XX )2 & (20 + 22)2
,L(a ) (ay) (BZ) ] (3 + 5 ) ( 3z>

35 Y4 8w
X 3y

Q>
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The equation of state for a perfect gas may be written as:

P = pRT (7)

These six equations, eqns. 2 to 7, form a system of six
simultaneous equations for the six variables: u, v, w, P,
p, and T for the general case of a compressible medium.

By introducing nonwdimensidnall variables: intoothiso
set of governing differential equations, we will determine
the dimensionless groups on which the solutions must depend.

Denoting these non-dimensional variables with *, they are

% = 2
u - U°°

o= _l
\Y = Um

% o=
wh = g (8)
Pt = P

T oUx?

s - T _ T

T AT T -T

Introducing these variables into egns. 3 and 4 we obtain
for the two-dimensional equation of motion in the x-direction

and the two-dimensional energy equation as follows:

‘ 2 . 2 .
B 3 W¥ 3 u

3u* Ju® _3P==+g692 . .
U_?spNe ax** ay#?

u® '+V* = -
IR® ay* X U

(9)

2

x

: 2. 2 2 - .
% T ® & 5 %
BT +V*3T*_ kNe (3 Té+8 T2)+ Um (u*BP“+V*BP ) (10)
Ix* dy* pCPUmE dx%*T 3y* CP(ATO) ax* dy*
MU Ne
-pCpl(AT05

)
w
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The dimensionless dissipation function is given by

auu BV' aut Buu BV* 2
+
=202 (P I (S i S B

It is seen from these equations that the solution depends

only on the fbllowing five dimensionless groups
2

U - gBor k Ne U, Ne pU_Ne
U paNe’ U ¢ > C U %> C_(AT_ )> oC_a(AT )
=P 2TE T Ve p-=" “ptTol PEptifio

The first group will be recognized as the reciprocal of the

Reynolds Number.

UooQ,pNe

Re =
i

The second dimensionless group will be recognized as the

ratio of the Grashof Number to the Reynolds Number squared

(G5 404

B B2 Gr

whepre:

3 2
ap = BOL p NeZ

Y

The third group can be written as:

1

k Ne _ kpNe u B
N ’ 2 " PrRe
CPle Cppu UoiNe

where:
uC

Pr = Prandtl Number = ——B—
k Ne



ik

The fourth and fifth dimensionless groups are not independent
because multiplying the fifth group by the Reynolds Number
will yield the fourth dimensionless group. The fourth

dimensionless group then gives the Eckert Number.

The Eckert Number is a measure of the temperature increase
caused by adiabatic compression. Schlichting (36) uses
the equation of state for a perfect gas to show that the
work of compression, i.e., the Eckert Number, becomes
important only when the free-stream velocity approaches the
speed of sound.

This dimensional analysis leads to the conclusion that
the dimensionless velocity and dimensionless temperature
fields for the governing system of equations depend upon

the following four dimensionless groups:

Reynolds Number: Re = UptplNe
M
uC
Prand e [ ]
randtl Number: Pr *Ne

_gBo83p2Ne?
: "
U,? Ne

Cp(aT)

Grashof Number: Gr .

Fckert Number: Ek =

In practical engineering heat transfer problems, however,
we are generally interested in determining the heat energy
transfer from a body to the fluid field. The velocity and’

temperature fields generally are of interest only in so much
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as they aid in finding the heat transferred. This problem
is generally solved by introducing the heat transfer
coefficient, h, which may be defined either as a local or
as an average heat transfer value. This heat tfansfer

coefficient is defined by Newton's Law of Cooling as:

Q= h Ay (T-T,) (11)
where:
= rate of heat energy transferred in Btu/hr.
Ag = surface area in £t .2
TW = wall temperature, °F.
T = fluid temperature, °F.

This defines h as the heat transferred per unit time per

unit area per unit temperature change ovr Btu/(hrftzoF)n
Energy is transferred entirely by conduction at the

boundary between the body and fluid. Therefore, by Foufier's

heat conduction law:
- 9T
q =~k Ag (330129 (12)
Equating these two expressions we obtain a dimensionless
heat transfer coefficient known as the Nusselt Number. This

becomes

- wy - DR __OT® ___ & 3T
Nusselt Number = Nu = = - (§H¥ - TKTST(Bn) (13)

n#= n=0



16

The heat transfer problem then becomes one of determining

the heat transfer coefficient since:

q = %Nu (T -T,) (14)

The preceding discussion leads to the conclusion that

Nu = fz(Re, Pr, Gr, Ek) ‘ (15)

for geometrically similar surfaces.

For flows where the temperature differences are not
large the buoyancy forces are generally very small compared
to the viscous forces and may be neglected. Parker (30)

states that as a rule if

r .
(Re)? <<l

the buoyancy forces may be neglected. This gives what‘is
normally called forced convection.

For flow conditions where the fluid velocities are
much less than the speed of sound, the Eckert Number becomes
very small and can be neglected. |

Under these limiting conditions then

Nu = £, (Re, Pr) (16)

Boundary Layer Simplifications
For all except the most simple geometries, a complete

viscous fluid solution for flow about a body poses consider-

able mathematical difficulty. Prandtl (34) made an
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important contribution when, in 1904, he discovered that
the influence of viscosity is confined to an extremely
thin région very close to the body. The remainder of the
flow field can be closely approximated by considering it
an inviscid fluid. The region over which the viscosity has
considerable influence is called the velocity boundary
layer, 6&4.
Since the boundary layer is very thin in comparison to
the dimensions of the body, the Navier-Stakes equations
become simplified so that the analysis for a number of
shapes are relatively simple. One fundamental assumption
(19) of the boundary layer approximation is that the
fluid immediately adjacent to the body surface is at rest
relative to the body. This assumption appears valid
except for very low pressures where the mean free path of
molecules become large relative to the body dimensions.
Therefore, the velocity boundary layer may be defined as
the region where the velocity changes from zero at the
surface to its free-stream value, U,. Since the velocity
in the boundary layer approaches the free-stream velocity
asymptotically, the outer edge of the velocity boundary
layer is usually considered to be where u = 0.99 U_ (30).
Considering a two-dimensional boundary layer for
simplicity, Kays (19) shows that the assumption of the.
boundary layer approximation requires the following

conditions to exist in the boundary layer. -
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u >»v
ﬂl_>> Bu,ﬂ,a_!
3 aX X 3y
(17)
3P -
3y ~ 0
3P - db
IxX ~ dx

Introducing fhese approximations into the continuity
equation, eqn. 2, and the Navier-Stokes equations 3 and
4, for two—diménsional, steady, compressible fluid flow
with constant fluid properties, we obtain the following

simplified equations of motion.

alpu) 4 3Cpv) . g (18)
X 3y
du Ju Bzu dp .

(ua—i + Va—y-) = "—'"ayz - E{- + pB(T‘-T‘”) (19)

Schlichting (36) estimates that the thickness of the
laminar velocity boundary layer is:

§s - 1

I~ (Re)17Z
= C__
(Re)1/2

where the constant, C, depends on the geometry of the body.
When a body is placed in a»fluid’field so thaf fhe

temperature»of'the'body is different from that for the

fluid field, the temﬁerature field around the body will

'generally be of the boundary layér type (36)(18). This
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essentially means that the fluid temperature will changej
from the free-stream temperature some distance from the
body to the body temperature at the body boundary. The
distance over which this occurs being called the thermal
boundary layer, §p. Eckert (7) shows thét the relationship
between the velocity boundary layer and thermal boundary

layer is

§p - 1 (21
S5 Pr)1/3

This indicates for gases where the Prandtl Number is
approximately unity that the thermal boundary layer is of
the same magnitude as the velocity boundary layer.

The thermal boundary layer approximation infers that

= >> == (22)

Applying this approximation into equation 6 and limiting
to the two-dimension case yields the energy equation for

the boundary layer.

2
BTy _ 4 3 T ,

oLl 2u 2 dpP
Vay 3yZ e

u(—'— 'Lla? (23)

3T
pC ('Llé—}-{' + By

P
The equation of state for the boundary layer is unchanged.
P = pRT (7)

In boundary layer theory the pressure is considered to be
known from an inviscid. flow solution. We then have a

system of four simultanecus equations to solve for the
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four unknowns p, u, v, and T. For thé'incompressible
case where p=C the equation of state is no longer needed
to effect a solution. '? | |

These boundary layer approximafions have redﬁced the
set of governing differential eqﬁations to a form that can
be simply solved to give thebflow patterns and temperature
distributions around a number of bodies. As shown by
equation 1lh this will allow a means for predicting the
heat-transfer from the surface of these bodies.  Although
no atfempt will be made to develop these solutions here,
several of the results will be presented in the following

section.

Solutions. for the Temperature Distributions

in Viscous Flow:

Equations 2 to 7 may bevsolvedxfor several geometries
to yield the temperature distribution in the fluid field
in the neighborhood of a body of different temperature.

A few restricted examples exist whereby an exact solution

is available. Still other problems can be solved by
invoking the boundary layer approximations discussed in

the previous section. A review, without detailed solutions,
of several of these problems are presented here.

The Fourier law, equation 12, and Newton's law of
cooling, equation 11, enables us to use the temperature
distributioh in the fluid to predict the heat transferred .

from the body to the fluid.



21

The following two examples of Couette and Poiseville
flow are examples of exact solutions to equations 2 to
7. These systems are restricted to the case of incompressible.
two-dimensional steady flow along a horizontal x, y-plane
with constant fluid properties. Boundary layer approxima-
tions are not needed in these solutions.

With these restrictions equations 2 to 7 reduce to

3u sV _ ,
_X.+ —y- =0 (2'4-)
2 2
o ( aulvav) =_12 (3 u+a Uy (25)
IR JY 3y 93X 3y
3 P 32 32
au 047 9 v v
—t v—¥) = ———t (et —r 6)
(qu VB ) dy  9XT 9?9y ) (2
T | T 3T 3T
9 )
—tv=—=) = k( + + 27
pCp(uax Vay) Ez 3_3-[-2-) ud

where:

= o[ (3Yy 24 (QYy274(3V, 3450
2 = 2[(z5) +(ay) ]+(ax+ay)

Couette Flow (36)

Flow between two parallel flat plates of which one
is at rest, the other moving with a constant velocity Uy
in its own plane is called couette flow and is shown in
Figure 1. The solution of the continuity and momentum
equations in the absence of a pressure gradient in the

x-direction is

u(y) = Ul(%) ; v=.013 P = const (28)
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-1y _ u(y)b ,
' | —r—r—r—r——r—r—T-7 ,TJT”LL',‘" 77
. . - 0

Figure 1. Velocity Distribution in Couette
Flow

If the temperature of the wall is held constant, a
simple solution is available for the temperature distribution.

The boundary conditions become

<
u
o
-3
"
e

y=L : T=T

with these restrictions the viscous dissipation function.

A reduces to

and the energy equation then becomes

2 2

3T, 3T 9 T .3 T du,?
—_—ty—) = k + +, (—
pCP(u3X VBy) (3;{7 3;7) ”(By) (29)

The solution to this equation which satisfied the boundary

conditions is

2
ITo .y, _HU1° ¥ ¥, (30)
L 2k(T;-Ty) L L
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but
(Pr)Ek = —igii——
k(T1-Tg)
therefore
gi:gz = L+ promclaa-d -G

In the case when the two walls in couette flow have
equal temperatures (Tl:To) equation 30 leads to a simple
parabolic temperature distribution which is symmetrical
with respect to the centerline between the walls. The
solution gives the temperature rise due to frictional

energy. and is

"12 |
_— = L——X _Z ;

If one of the walls is made adiabatic so that all of
the heat energy due to friction is transferred to the other

wall, the boundary conditions become

y = hl : T = To
y:O gE:O

The solution of equation 29 to satisfy:.these boundary

conditions is

wui” oy
T(y) - T, = M - (33)
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DeGroff (5) modified the solution for the Couette
flow problem so that the viscosity of the fluid is a function

of temperature.

Poigeuille Flow Through a Channel With Flat Walls

Another exact solution to the above equations for
temperature diétributions is the two-dimensional flow
through a channel with parallel flat walls. Kays (19),
Schlichting (36) and others show the veloéity distribution

for Poiseuille flow to be parabolic:

2
u(y) = u (l—%z) (34)

max

Assuming constant and equal wall temperatures, the boundary

conditions are

where y = 0 is the centerline between the plates.

For these conditions equation 29 reduces to

2 2
kd"g - Ll‘uul‘*max 2 (35)
dy L y

whose solution is.

R 1 pu? o
T(y) - T, = ¥ ——kmax [1-%’-)-] <3e}

Hausenblas (17) modified the solution for the

Poiseuille flow problem to include the case of temperature
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dependent viscosity. A similar solution to the problem

for a circular pipe has been given by Grigull (16).

Parallel Flow Past Flat Plate-Blasius Solution (28)(38)

U . c—

Figure 2. Hydrodynamic Boundary
Layer Formation

The boundary layer equations for this case assuming
incompressible flow with constant fluid properties and
assuming that buoyancy forces and dP/dx are equal to

zero are

ou,ov _
X 3y o °

gu, Jou 32u
o (U Vy) Tu T (37)

2
2
oc (udLe Ly - 2T, (3, (38)
P 3x 23y dy?2 dy

The boundary conditions are

u="U_ aty

T = Tw aty =0
AT _ _
W—Oaty-o
T = Tew at y = =



26

Since the velocity field is independeht of the temperature

field, the two flow equations above can be solved first

and the results used to determine the temperature field.
Blasius (3) introduced. similarity wvariables for the

solution of the flow equations as follows:

1/2
y (U_/vx) (39)

=
i

1/2 -
(vxU_) £f (n) (40)

L3
H

where ¥ is the stream function defined by

u.= ¥ and v A
T3y TTax (41)
Let
s o M, L1 3¥, £ oan d¥d
e VR I TR Tl 2
where
Yy
R
therefore
« - & (Yny1/24Y¥*
R 2 T (41)
Let
1/2 ‘ o
g = (vxU ) S (45)

then
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1/2
¥* = (vxU_) ¥ = f(n) (48)

and
u = Uwf'(n) (47)

Transforming the momentum equation, equation 37, yields

1V o4 %ff" =0 | (48)

The boundary conditions transform to yield
f=f'"=0atn-=0
f' = 1 at n= =

The general solution of this third order non-linear
differential equation is not available in closed: form.
The solution is available in tabular form on page 121,

Table 7.1 in Schlichting (36).

o _
If the heat of friction (ugy;) is neglected the energy
equation becomes:
3T, 3T 32T
pC_(u—tv—=) = Nek—s- (49)
P ax 3y 3y

The energy and momentum equations are identical if we

replace u by T and restrict

therefore

Pr = - = 1
» [0 4
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It follows that for the flat plate described above

for the Prandtl Number equal to unity that

Io Ty o
T-T "~ U
@ W ®©

is the solution to the energy equation by analogy.

The preceding solution suggests a similarity solution
for the general case as outlined for the flow field. If
we assume T = T(n) as defined previously, the partial
differential energy equation reduces to the following

total differential equation.

2 2
d"r7 ., Pr.dT Us"Ne 5
. S F e = P e
&7 2 fdn P CP £ (50)

The solution to this equation can be represented by

the superposition of two solutions of the form (36):

Uw’Ne
T(n) - T, = (TW-Tm)el(n) + 7T 8 (n) (51)

) 2

where

_ T(n) - T

= T
W

el(n)‘denotes the general solution of the homogeneous
equation while ez(n) denotes a particular solution of the
non-homogeneous equation. It is convenient to choose the
boundary conditions for.el(n) and ez(n) such that 6, is

the solution of a cooling problem with a given temperature
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difference between the wall and the external stream and

8, is the 'solution for the adiabatic wall. The following
equations must then be satisfied.
-ant l |
8" + ZPrf ' = 0 (52)
el =1latn=20
el = 0atn=«
and
o, " + Yprre ' = —2pren (53)
2 2 2
t = -
92 = 0 atn=20
92 =0 at n =~
Polhausen (31) first solved the cooling problem. The
following analysis is given in Kays (19).
6." + xPrfo.' = 0 (54)
1 2 1
Integrating this equation twice and evaluating at the
boundary conditions yields
_ [o"Lexp (-5 "£an) Ian
fo [exp(—f_fo fdn) ldn
The Nusselt Number is defined as
Nu = DX - X (6.1) = (Re) ' (o, 1) (56)
Tk 7 1 70~ 1l 70 '

(\)x/Um)qJ2
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From the first integration it can be shown that.

' - ‘ : o :
(el.) =0 ° Cl ;... g (57)
therefore
1/2 _
Nu = Cl(Re) . (58)

Values for Cl can be calculated for moderaté Prandtl Number

ranges. Several values are tabulated in Table I.

TABLE I

VALUES OF Cl FOR VARIOUS PRANDTL NUMBERS FOR
HEAT TRANSFER TO THE LAMINAR CONSTANT
PROPERTY BOUNDARY LAYER

Pr 0.5 0.7 1.0 7.0 106.0 15.0

C 0.259 0.292 0.332 0.645 0.730 0.835

These results are closely approximated by (19):

1/3 1/2
Nu = 0.332 (Pr) (Re) (59)

Temperature distributions are tabulated in graphical
form for the cooling problem in Schlichting (36).

Eckert and Drake (7) provides the solution for the
flat plate with an unheated starting length, X A laminar

incompressible boundary layer is assumed to develop with
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no pressure gradient. Using the energy integral equation

Kays assumed the velocity profile to be

u 3 :
o ¢ 7(X—) -—<L) : (60)

The terms are defined in Figure 3. The choice of the

cubic parabola to approximate the velocity profile makes
the second derivative zero at the wall. This condition
is demanded by the differential equation of the boundary

layer.

Figure 3. Velocity and Thermal Boundary
Layer Formation

The differential energy equation also suggests that
a cubic parabola will provide a satisfactory approximation
for the temperature profile. Eckert approximated the
temperature profile as

L. _(X_) _ _(Z_) (61)
8 57 8 ' .

where
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Eckert showed the ratio of the thermal boundary layer
thickness to the hydrodynamic boundary layer thickness

to be

b . )30 - <:-J->3/”]”3' (62)
s .

The local Nusselt Number is derived fo be

' 1/3 1/2
Nu = 0.332 (Pr) (Re) : (63)

X [1 - (XL)°/ 711/
= |

Thermal Boundary Layers Over -Other Shapes-Theoretical
Results

Froessling (12) carried out calculations on the
temperature distribution in the laminar boundary layer
about a body of arbitrary shape.for two-dimensional
axial symmetrical cases. He neglected frictional and
compression work in his analysis.

Froessling assumed a poWer series for the potential
velocity distribution around the body expanded in terms

of the arc length, x, of the form.

5

3 .
Up = UpX + ugx + ugx + ... (64)

The/velocity distribution in the boundary layer is assumed

to have the form
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uG,y) = ugxe (y) + ugx e, (y) + ... ‘ (65)

The corresponding assumption for the temperature distribution

is of the form
_ 2 4
T(x,y) = T, + % T2(y) + x Tu(y) (66)

Froessling's results for the local rate of heat transfer
around a circular cylinder is shown in Figure 4 for the
region covered with a laminar boundary layer.

Squire (41) used the energy integral equation

™

[ CTu(T-T_) ldy =—6S(§§)y = 0 (67)

To outline a solution based on numerical techniques for
the heat flux from a body of arbitrary shape with a laminar
boundary layer.

Kays (19) used the Mangler transformation with the
wedge flow solution to show that the Nusselt Number based

on the radius for the two-dimensional stagnation point .is:

1/2
= 0.81(Rep) (pp) 0"

NuR (68)
and for the axisymmetric stagnation point is
1/2 0.4
Nup = 0.93(Reg) (Pr) (69)

Turbulent Heat Transfer-External Boundary Layer

Turbulent flow theory. is still in an unsatisfactory

state because of the complexity of the fluid motion. The
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Figure 4. Variation of the local Nusselt
Number around a right circular
cylinder. From Froessling (12)
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fluid motion is normally viewed statistically with no
attempt to follow the motion of the individual fluid
particles. This nofmally requires a dependence upon
experimental observations and correlations for predicting
heat and mass transfer under these conditions.

Kays (19) described the turbulent flow phenomena
gualitatively as follows. In a turbulent flow process
there appears to be a region very close to the wall where
the fluid motion is predominately laminar. The velocity
gradient in this region is very large. This region is
‘generally referred to as the laminar sub-layer. Farther
away from the wall the flow becomes unsteady until a
region is reached where the entire flow is involved in
turbulent motion. This region is called the turbulent
region. The transition region between the laminar sub-
layer and the turbulent region is known as the buffer
zone and exhibits momentum transport characteristics of
both the laminar sub-layer and the turbulent region.
Experimental studies have shown that even the laminar
region is not stable. Periodically and unpredictably
large elements of relatively low velocity fluid lifts
off the surface and enters the turbulent region ;f flow.
Obvibﬁsly a fluid with a velocity higher than that
existing in the laminar sub-layer must move into the

laminar region to replace this fluid element. The
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mechanism for this phenomenon is not fully understood‘but_
it is thought to be the result of an instability in the
laminar region (19).

A dimensional analysis of the velocity profile near

the wall leads to

u = fu(y, T p, s Ne) (70)

O’

This relationship can be reduced to two independent and

dimensionless groups through Buckingham's Pi theorem.

n.o= ou o= 4
1 (1 _/oNe)!/?
o
1/2

n, y+ _ Neyp(ts/pNe)

H

Therefore

ut o= f,s(y*) (71)

Martinelli (24) described the turbulent velocity
behavior near the wall in three separate algebralc equations.

These equations commonly referred to as the "law of the wall"

are
+ +
u+ =y y < 5
ut = -3.05+5.0 1ny' 5 <y o< 30 (72)
wt = 5.5+2.5 1ny’ 30 <y
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A number.of investigators have solved the problem
for héat transfer from a flat plate with a turbulent
boundary layer. Consider the case of the infinite flat
plate with constant property fluids, low velocity flow
and negligible flow. The energy equation of the boundary

~layer reduces. to

3 pok 13Tq _ 8T . T
5 sy T e T ey e

In turbulent energy exchange the energy transport is due
to turbulent diffusivity as well as molecular diffusivity.
Replacing the thermal diffusivity-k/Cpp with a total

turbulent diffusivity (o + €.) we have

H

8T . BT , AT

d :
W[( at EH)W Us— VW (74)

The appropriate boundary conditions are

T =T atvy 0

it
o

T =T at x.

Employing the Reynolds analogy for the region y+ < 30 and
recognizing that this region corresponds to only a small
part of the boundary layer thickness we can solve this
problem. The shear stress will be essentially constant
throughout these layers and approximately equal to the shear

stress at the wall, T The energy equation reduces to
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0 9T o _
-a—y[((.‘l. + EH)W] =0 : (75)
Since v = 0 and aT | 0

oy

Kays (19) solves this problem to give

- ! = _9..0."_ Pr 3
To - Ty = 5(-5 p) (t_/pNe)1/? (78)
P o
1o" (5 Pr + 1)
T - T, = 5(-30-) | (77)
— Cp  (x /eNed /?
where

To’ Tl and T, are defined in Figure 5.

- -

J
|
|
|
[
|
3

0

| y*

Figure 5. Exgected Température Distribution for a
ully Developed Turbulent Flow

For moderate Prandtl Numbers the eddy diffusivities are
much larger than the molecular diffusivities and the

molecular diffusivities can be neglected in the momentum
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and energy differential equations. If the Reynold's

analogy is again invoked the equations can be solved to

give
5 1"
T, - T, = (8o L Ue o (78)
TP e (rg/oned 177 (r Jplie)172 T W)
summing equations 76, 77, and 78 gives
LI ] Nep ]_/2
T, T, = (-Sa-) (=) [5Pr+51n(5 Pr+l)+
o.. Cp’ 1
P o
e ] (79)
(14/pNe)
Defining the local friction factor, the local convective
heat transfer coefficient and the Stanton Number as
2o . g5 Ugle (80)
P X 2 ,
4" = h (T - T) (81)
St _}}X_ ' ‘
x " C Ul (82)
and combining with equation 86 gives
1/2
st = (£y/2) (83)
[SPr+51n(5Pr+l) + o norpy ~14]

X

The local friction factor has been derived as (19):

£ = 0.059 (Re )~ 0-2
X X
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Substituting into equation 83 gives

h -0.2
St = X . 0.0295 (Re,,)

x o CoeV, l+O.172(Rex)‘0'l[5Pr+51n(5Pr+l) ~14]

(84)

As Kays points out this result is not valid for extremely
low or extremely high Prahdtl Numbers. Based on experimental.
observations he suggested limiting the results to the
Prandtl Number range 0.5 to 10.

For the same problem Reynolds (35) noted the similarity
between heat and momentum transfer and derived an expression

for the heat transfer from a flat plate with Pr = 1 as
Nu_ = 0.0296 (Re_) (85)
X X

Prandtl (33), Taylor (42), Von Karman (46) and others
have also extended the Reynolds analogy to cases where the
Prandtl Number is not equal to unity. Their results yield

for the flat plate with a turbulent boundary layer

1/3

Nu_ = 0.0296 (Pr) (Re)V-8 (86)

A number of other approximate solutions are available
for varying boundary conditions. Some examples are
provided in detail in Schlichting (36), Kays (19), Pappas
(29), Seiff (39), and Van Driest (44). Generally these

solutions require experimental observations for validation.
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Flow Over Bodies of Arbitrary Shape

The hydrodynamic and thermal boundary layers on blunt
bodies of arbitrary shape are not aéuéasily described:
analytically as those discussed previously for well
defined geometries. Under a number of conditions the
velocity gradient at the body surface can decrease to
zero so that the entire boundary layer separates from the
surface leaving a region of reversed flow near the wall.
Separation generally occurs anywhere there is an abrupt
step in the surfa¢e and often occurs on smooth continuous
surfaces. There is no general theory for calculating
heat transfer to the fluid in the regioﬁ of separation,
primarily because this flow regime has not been extensively
studied (19). |

Because of the lack of a general theory researchers
have resorted to experimental correlations when design
data was needed for some specific shape.

Giedt (13) (14), Zapp (47) and others (37), (43), (45),
have measured the local heat transfer coefficient on the:
surface of blunt bodies. Figure 6 is typical results
from the work of Giedt on the flow around a cylinder placed.
normal to an air-stream.

The curve for the Reynolds Number equal to 99,300 is
typical of the body wheré a laminar‘boundary layer develops
without a transition to turbulence. The local Nusselt

Number decreases from the value at the stagnation point.
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until it reaches the minimum value at the point of laminar
boundary layer separation (about 80 degrees F). As the
turbulent wake begins, the Nusselt Number begins to inérease
and may reach a value higher than those existing at fhe
stagnation point on the front part of the cylinder.

The curves for Reynolds Numbers equal to 167,500 and
213, 000 are rather typical of the case where the laminar
boundary.layer changes to a tufbulent boundary layer before
separation occurs. The local Nusselt Number decreases from
the value at the stagnation point until transition to the
turbulent boundary layer occurs at approximately 90 degrees.
Due to the turbulence the local Nusselt Number rapidly
increases to another maximum and thenvdecreases again as
the turbulent boundary layer thickness increases. Separation
of the turbulent boundary layer occurs about 140 degrees
from the stagnatibn point and the local Nusselt Number
again increases in the wake.

The average Nusselt Number may be obtained by integrat-
ing the local Nusselt Number over the surface. A more
typical approach is:to develop an experimental correlation

based on dimensional analysis. This analysis will yield
Nu = f (Re, Pr)

for each specified geometric shape. Experimental evidence
indicates that the component equations combine as straight
lines in log-log space. Therefore the general prediction

equation will take the form



43

8001
700
600
o 213,000
S 500 ;"I6L500
€
Z 400 99,300
2 300
2
S 200
-
100
O 1 | l |
0 40 80 120 160
0 - Deg. From Stagnation Point
Figure 6. Local heat transfer around a

cylinder for different Reynolds
Numbers. From Giedt (13).
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Nu = C, (Re)d(Pr)® . (87)

where Cl’ d, and e are all constants for a specified‘shape.
Correlations are normally developed for gases and the
Prandtl Number is considered to be constant for all gases.
This is not a bad assumption since the Prandtl Number for
most gases fall within 10% of the value for air. The above

correlation then reduces to

Nu

c, (Re)" | (88)

where

e
C2 Cl(Pr)

A number of investigators (13), (14), (43), (45), used
this procedure to estimate the average Nusselt Numbers
from infinite right circular cylinders. One of the most

commonly used is due to Hilpert (18)

0.618

Nu 0.174(Re) 4000 < Re < 40,000 (89)

0.0233(Re) " 80° 40,000 < Re < 250,000 (90)

Nu

For the sphere McAdams (25) recommended that the average
convective heat transfer coefficient may be predicted over

the Reynolds Number range from about 25 to 100,000 by
Nu = 0.37(Re)?"® (91)

Hilpert (18) measured the heat transfer coefficient

from several cylinders with different cross-sections to an
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air flow normal to their axes. He correlated the results

with the eguation
Nu = C(Re)™ (92)

where the values of C and m are.given in Table II.

It is difficult fo predict the exact nature of the
flow around bodies of this type. However, it is expected
that boundary layer separation will occur at the points
where sharp corners exist. Beyond this point,‘é wake
area is generally considered to exist although it is not

impossible for reattachment to occur in some instances.

TABLE II

VALUES FOR C AND m FOR CALCULATING THE HEAT TRANSFER
COEFFICIENTS ‘FROM CYLINDERS WITH THE
INDICATED CROSS-SECTIONAL SHAPE

Cross Section Re j cC m

— 5,000-100,000 0.0921 0.675

———»—(i:::> 5,000-100,000 - 0.222 0.588
——4>-<i::::> 5,000-100,000 0.138 0.638

5,000-19,500 0.1u4L 0.638
——- . »
- 19,500-100,000 0.0347 0.782
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Ellipsoidal Shapes

Several investigators have studied the heat transfer
properties in the boundary layer of ellipsoids of revolution.
Most of this work has been concerned only.with the local
heat transfer coefficients over that portion of the surface
ahead of boundary layer separation. One such result is
reported in graphical form by Lewis and Ruggeri (22).

Needs of the aircraft industry have also caused the
flow around elliptical cylinders to be investigated. Again
the investigators have limited themselves to the flow
region preceding boundary layer separation. The works of
Seban (38), Drake (6), Eckert and Livingood (10), Drick (11),
and Allen (1) are all typical examples of these results.

Figure 7 is the results from Eckert (10), Allen ({1},
and Frick (11) for the local Nusselt Number as a function
of the dimensionless distance from the‘stagnation point.

X' is the distance along the surface‘from_the stagnation
point divided by the major axis of the elliptical cylinder.
This elliptic cylinder has a 2:1 axis ratio and is valid
for fluids whose. Prandtl Numbef is approximately 0.7.
Figure 8 is similar results from.ﬁckert along with the
wedge flow and flat plate‘solutions for an elliptic
cylinder with an axis ratio of 4:1.

Ko and Sogin (20) experimentally determined the-avefage
heat transfer coefficient from an ellipsoid of revolution

in axisymmetrical flow in air with 'an axis ratio of 4:1 as
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Figure 7. Comparison of methods for
‘ calculation of local heat
transfer coefficients around
an elliptic cylinder with
axis ratio of 1:2
From Eckert (10)



3.2

2.8

48

Eckert & Livingood

Flat Plate

Figure 8.

Comparison of methods used for
calculation of local heat transfer
coefficients around an elliptic
cylinder with axis ratio of 1:4
From Eckert (10)
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1/2

[oie(Pr) 2/ 3] (Re )*'? = 0.52 (93)

17P
These results were verified for the Reynolds Number range,
based on diameter, from 15,000 to 130,000. Ko also
transformed the work of Lewis and Ruggeri (22) for flow
about an ellipsoidal model with an axis ratio of 3:1 to
give

1/2

1]

[(—-—é—~)(Pr) 3](ReD)
1 p-

0.60 (9u)

The work of Ko was entirely in the laminar boundary layer
flow regime while transition occurred in most of Lewié
and Ruggeri tests.

More complefe results for the convective heat transfer
coefficient for ellipsoidal and other shapes would be
desirable but they are not generally available in the

literature.
Wind Tunnel Turbulence

The intensity of turbulence of an air stream is

defined (36) as

Tu = Intensity = [(% )(u ? 2 w‘z)ll/Z/Ug (95)

where u, v, and w are the instantaneous velocity fluctuations,
in the x, y, and z directions. The bar indicates that
the values are time averaged. At a short distance down-

stream from the screen, grid, or honeycomb of the tunnel

the turbulence becomes isotropic which means that the
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instantaneous velocity fluctuations become equal in all

three co-ordinate directions. That is

ug’z = VIZ = wlz

In this case the intensity of turbulence becomes
Tu = Intensity = (GTT)I/szw (96)

The determination of turbulent intensity is accomplished
by determining the value of Reynolds Number of a sphere in
the wind tunnel for which the drag coefficient is 0.3. The
value of this Reﬁnolds Number is called the critical
Reynolds Number. ' The work described in reference 7 shows
a good correlation between the intensity of turbulence and
the critical Reynolds Number. ' The work of Millikan and
Klein in reference 26 indicated that the critical Reynolds
Number also depends upon the diameter of th? sphere in a
wind tunnel where the entrance conditions were modified
with various honeycomb type entrance sections. Generally
the critical Reynolds Number decreased as the diameter of
the sphere increased;

Dryden, et.al. (8) showed by measuring the turbulent
intensity with a hot-wire anemometer that tﬁis variation
in the critical Reynolds Number with sphere diameter could
not be due to a variation in the intensity of turbulence
with a variation of air velocity in the wind tunnel. They
‘further showed that the critical Reynolds Number was depend-

ent upon another turbulence property as well as turbulent
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intensity. They called this value the scale of turbulence

and defined it as

L= [, Qly)dy (97)
where

L = Scale of Turbulence

Q = Correlation Coefficient

Q defines the correlation between the velocity fluctuations
at two points in the stream separated by known distances.
It is defined

u'iu'y
Q = (EET?)I/Z(EETZ)I/Z

where

'. = instantaneous velocity at point 1

[
bt
[

u', = instantaneous velocity at point 2

¢

Using a series‘of'geometrically similar screens
Dryden correlated the scale of turbulence as a function of
digstance from the screen for several screen sizes. The
resulté showed the scale of turbulence to increase linearly
as distance from the screen increased. Some of his results
are shown in Figure 9. |

In measuring the intensity of turbulence with the
hot-wire anemometer over a large number of wind speeds,

Dryden, et.al. found it to be independent of air velocity.
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After about 80 mesh diameters downstream from the screen
inducing the turbulence, the intensity was found to be
independent of distance also. These results are shown in

Figure 10.
The Critical Reynolds Number of Spheres

Prandtl (32)-originally proposed the use of the sphere
as a means of indicating the turbulence in an air stream.
By measuring the drag force on a sphere in an air stream,

the drag coefficient can be calculated. he drag coefficient

being defined as

- F ,
‘> * I720,7A Ne (89

where

O
1

Drag coefficient

F = Drag force

p = Fluid Density

U_ = Free stream velocity

AP = Projected area of sphere

Ne = Newton's Second Law Coefficient

A plot of the drag coefficient against the Reynolds Number
will show that for low Reynolds Numbers CD.is»approximately
constant and equal to 0.4. At some range of Reynolds
Numbers, the drag coefficient decreases rather rapidly to

a value of about 0.1. This drop in the drag coefficient

is caused by the transition of the laminar boundary layer
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to a turbulent boundary layer over a pérf-bfithe sphere
surface. .The range of Reynolds Numbers éyer which this
drop in the drag coefficient occurs is depehdent upon the
turbulence: of the air stream. The dedpégse in-CD‘occu?s at
higher Reynolds Numbers in air streams of lbwer turbulence
levels.

Several experimenters have attempted with some success
to calibrate thé sphere as a means of measuring the
turbulence levels of an air stream. Dryden and Kuethe (7)
proposed that the critical Reynolds Number of a sphere be
defined as the value of the.Reynolds Number at which the
drag coefficient is 0.3. This criteria for determining the
critical Reynolds Number for a wind tunnel has been
generally accepted.

Dryden (8) in his work was able to prove that the
critical Reynolds Number of a wind tunnel is dependent
upon the intensity of turbulence, scale of‘turbulence and
the diameter of the sphere. He showed that a good
correlation exists between the critical Reynolds Number

and the dimensionless guantity.

—0.5
£E—%———(f)l/5 where D

o

is the diameter of the sphere and the other guantities are
as previously defined. These results are shown in Figure 11.
As noted by Dryden these results indicate that a small
change in intensity of turbulence will produce about the
same effect as a change of 5 times as much in the scale of

turbulence or diameter of the sphere.
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An elaborate hot-wire anemometer system is necessary
to measure either the intensity of turbulence or scale of
turbulence. Because of this the turbulence properties of
é wind tunnel is_gengrally reported by specifying the
critiéai Reynolds Number and wind tunnel entrance conditions.
Generally, no attempt is made to separate the effects of
intensity and scale of turbulence. From Figures 9 and
10 it can be observed that as the distance from the screen
or entrance section of the tunnel increases, the intensity
rapidly approaches a constant value whereas the scale of
turbulence continues to increase linearly. This net
effect is to increase the,critidal_Reynolds Number- as-

distance  from the entrance section increases.
Turbulence Effect on Heat Transfer

The turbulence level of an air stream has‘a large
effgct‘upon-the locélvand mean Nusselt Number from a body.
This is>easily accepted if we realize that specification
of the Reynolds Number and Prandtl Number do not necessarily
guarantee similarity between air streams. The Reynolds
Number is generally defined using the averagé free stream
velocity. This does not in any way specify the turbulence
level of the stream in steady flow since the velocity
fluctuations time-average to zero over sufficiently long
time intervals.

Schlichting (36) observed that Hilpert (18) and Griffith

(15) et.al. obtained large differences in measuring the
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Nusselt Number from infinite circular cylinders in cross-
flow. The experimental procedure for the two works was

the same leaving the turbulence level of the tunnel as the
only variable. The thirty percent difference between these
two investigators was attributed to differences in the
turbulence properties of the air streams by Schlichting (36).
This leads to the conclusion that the Nusselt Number is a
function of the Reynolds Number, Prandtl Number, object

geometry and turbulence of the air stream.
Nu =_f6(Re, Pr, Gr, Tu) (100)

To look at the effect of an increase. in turbulence
on the heat transfer from a body, lets lock at the case
of a blunt body such as a cylinder. The major effect
will be in the effect the turbulence has on the boundary
layer. At low Reynolds Numbers the flow pattern consists
of a laminar boundary layer.in front and a wake behind the
body caused by laminar separation. This will be recognized
as a subcritical flow pattern. An increase in turbulence
will cause earlier separation and thereby cause a larger.
segment of the surface to be. covered by the separated
region. This will cause a change in the average Nusselt
Number because the local Nusselt Number is different for
these two flow regions. At higher Reynolds Numbers the
flow pattern consists of a laminar layer, followed by a
turbulent layer behind the point of transition. Finally

a wake exists behind the point of turbulent separation.
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This flow pattern will be recognized as the supercritical
flow pattern. The increase in turbulence has little effect
on the point of separation but does effect the point of
transition. This causes a larger porfion of the surface

to be covered with a turbulent layer andﬁthereby increases
the avérage Nusselt Number; Anvincrease in turbulence

may also éause a sudden change from subcritical to super-
critical flow causing a sudden change in the Nusselt
Number. An‘increase in turbulence must also cause an
increase in the local Nusselt Numbers of the laminar

boundary layer, the turbulent boundary layer and the wake.



CHAPTER III
EXPERIMENTAL DESIGN AND PROCEDURE

A general ellipsoidal modelfié visualized as an
adequate model for predicting the cénvective heat transfer
coefficient from irregular shapes. The contrdl of the
three orthogonal axes of the ellipsoid will provide for
a close approximation of the irregular shape.

Because of a lack of available information on the
convective heat transfer from general ellipsoidal shapes,
it is necessary to experimentally determine the convective

heat transfer properties.
Theory of Similitude

Much of the theory of model systems is .based on a
theorem due to Buckingham (4). The pi theorem states that
a relationéhip existing among physical quantities that is
completely described by an equation can be reduced to an

expression of the form
£, (T3 Myseee) = 0 (101)

where the n's are all independent and dimensionless products
that are formed by a suitable combination.of the pertinent

variables.
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PERTINENT VARIABLES FOR THE CONVECTIVE HEAT TRANSFER
COETFICIENT FROM AN ELLIPSOIDAL MODEL

No. Symbol Quantity Unit.
1 h Heat transfer coefficient Btu/(hrft2°F)
2 u Viscosity of the gas (lbf—sec)/ft2
3 o Mass density of gas lbm/f,t3
4 k Thermal conductivity of  Btu/X(hrft°F)
gas
5 Cp Specific heat of gas Btu/(lbmoF)
6 € Roughness index of the - =
surface
7 a Length of major axis of  ft
the ellipsoid perpen-
dicular to fluid flow
8 b Length of horizontal ft
axis of ellipsoid to
major axis and parallel
to fluid flow
S c Length of vertical axis ft
‘ of ellipsoid perpen-
dicular to major axis
and' fluid flow
10 U, Mean velocity of gas ft/sec
flowing by ellipsoid
11 Ne Newton's Second Law (lbf—secz)/(lbmft)
Coefficient
12 A Angle of attack Radians
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The physical system for predicting the convective
heat transfer coefficient from an ellipsoidal model to
a fluid stream may be adequately described by the pertinent
variables listed in Table III. The units utilized in
this study are also shown in Table III for each variable.

The heat transfer coefficient, h, is the dependent
quantity and is the quantity to be determined. Since h
cannot be measured directly, techniques must be employed
which provide a means of computing h. One such technique
will bé discussed later.

Since ' the ability to transfer heatffroﬁ#the”bogy
surface fo the fluid is partially dependent upon the ease
with which heat is conducted through the fluid and updn,
the heat capacity of the fluid, both the thermal conductivity
and the specific heat of the fluid are pertinent.

Researchers have shown that the nature of the flow
about the body is an important consideration when predict-
ing the heat transfer coefficient; i.e., laminar flow,
turbulent flow, and boundary layer separation. Previous
research has also shown that the nature of the flow about
a body is dependent upon p, u, U, Ne, and €. Also, the
dimensions and geometry of the body affect the nature of
flow around the ellipsoid. In the special case of an
ellipsoid, three 1ength dimensions are required to adequately
describe the shape. l

The angle of attack, X, is the angle between the

direction of fluid flow and the major axis, a, measured in
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the horizontal plane. The orientation of the body ié
important since the boundary iayer characteristics. are
altered as the angle of attack changes. For exampie, as

A changes, the location at which boundary layer separation
occurs also changes.

The other possiblé rotations of the body will be
equally as impoftant as the angle A. However, the effect
of the orientation is not to be considered in this work,
as will be described later, and therefore the other angles

are not listed in the set of perfinent quantities.
Pi. Terms

There appear to be six independent dimensions in the
list of pertinent quantitieé. However, where H and 6
appear, they appear in the combination He_l. - Thus, they
are not independent and the combination must be treated
as one independent dimension.

A dimensional matrix for the variables will show that
the rank of the matrix is five indicating that five
independent dimensions exist. i.Langhaar-.(21):'showed: that
the number of pi terms necessary to adequately describe
the system is always equal to the number of independent
physical variables minus the rank of the dimensional
matrix. Therefore we have 12-5=7 independent and dimension-

less groups or pi terms to adequately describe this system.

One set of pi terms is:
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‘ Ty = he/k (Nusselt Number)
T, = uCP/(Ne k) (Prandtl Number)
Ta 5,53%232 . : (Reynolds Number)
m = al/c (length ratio)

Mg = b/c: | (length ratio)
Mg = € (roughness index)
Ty = A (orientation)

The effect of the roughness index, mg, will not be
included in this study since we are primarily interested.
in the variation of the heat transfer coefficient as a
function of the geometry of the body. This parameter will
be held constant throughout the study by working with
"smooth" surfaces only.

The angle of orientation, A, is held constant at
zero degrees throughout the experiment. Although the heat
transfer coefficient will vary as n7,changes; a constant
value of X is selected so that the experimental plan may
be reduced to meet the time limitations of the study.

Thé investigation of the effect of A is not-pecessary for
the completion of the objectives of. this study.

The Reynolds Number, w3,'is_an index of the ratio of
inertial to viscous. forces of the fluid as it comes in

contact with the body. The value of this index will affect
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the nature of the boundary léyer at any point on the
ellipsoid.

The Prandtl Number, n2,visuan index of the similarity
in the temperature and momentum transport boundary layers
when the temperature transport occurs by convective and
diffusive effects and momentum transport by inertial
(convective) and viscous (diffusive) effects. For a gas
in the temperature range of 0°F to 400°F the Prandtl Number
remains nearly constant. Even between gases the variation
in the Prandtl Number is not large being within 10% of the
value for air for most gases. This study, due to physical-
limitations, uses air as the only fluid media so that the
Prandtl Number is held constant at 0.72:. KXays (19) and
other investigators have shown that the Nusselt Number
varies as the Prandtl Number raised to the one-third power.
This will allow the results from this work to be extended
to fluids whose Prandtl Number differs significantly from
the value for air.

The Nusselt Number, T is the dependent = term since
it contains the heat transfer. coefficient. Physically, it
is an index of the ratio of the heat transfer rate through
the boundary layer when the fluid is moving to the heat
transfer rate through a thickness of fluid equal to the

boundary layer thickness when the fluid is stationary.
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Prediction Equations

The general prediction equation for determining the.

heat transfer coefficient can be written as:

Ty =,f8(n2,n3,nu,n5), | (102)
or

he/k = ¢1<ﬂ-§§-)d(-hl9£u’a&‘i>e<§)5<§>j .
or

Nu = ¢, (Pr)(Re)® (D)8 (R)] (103)
where

Nu = Nusselt Number,

Pr-= Prandtl Number,

- Re = Reynolds Number,

and

¢ = Dimensionless coeffigient.

Previous research has shown that Nusselt Number, and
therefore the heat transfer coefficient, is.a function of
the Reynolds Number and the .Prandtl Number for flat,
spherical and cylindrical shaped bodies:. It is reasonable.
to assume that the heat transfer coefficient of an -
~ellipsoidal body would be similarly relafed; that is, it

also would be a function of the Prandtl and Reynolds Numbers.
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The prediétion-equation,will not be continuous for all
conditions. For example, if abrupt changes»ih:boundary
layer characteristics occur due to variations of the angle
of attack, high Reynolds Number, or‘geometry, weé can expect
a discontinuous function. The general prediction'équation
presented here will be for the case of turbulent flow and
no abrupt changes in the shape. The experimehtal_desiéﬁ
conditions which satisfy this criterion will. be discuésed

in the following section.
Range of Pi Terms .

The values through which the pi térms are varied is
tabulatéd in Table IV. The Prandtl Nﬁmber, Tho is held
constant at 0.72 by using air as- the only fluid:.medium.

The Reynolds Number based on the characteristic dimension

c is varied from 30,000 to 150,000 in 9 steps. This range

of Reyndlds Number was controlled by the limitations of

the wind tunnel used for these tests. However this range

is satisfactory since most convective cooling of agricultural
products is done.within this range.

Before the levels of the two geometric pil terms- were
determined the following criteria were established for the
ellipsoidal model. One of the objectives of this work was
" %0 design models that would adequately represent a typical
agricultural product. The basic dimension of the ellipsoidal

models were therefore selected to span the range of dimensions
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EXPERIMENTAL DESIGN
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1 2 3 b 5
he uC Us,cpNe
o T('N% = al’/e b/c
30,000
41,000
o 52,000
2 0.72 70,000 2.50 1.75
0 88,000
9 106,000
= 123,000
141,000
146,000
1.33
1.67
4 2.00
2 0.72 123,000 2.33 1.75
o 2.50
s 2.80
3.00
1.00
1.25
4 1.50
> 0.72 123,000 2.50 1.75
g 2.00
s 2.25
2.50
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normally expected in commercial cuts of pork. The limits

on a, b, and ¢ are then

a: 8 to lu4 inches
b: -4 to 11 inches

c: 4 to 6 inches

The maximum and minimum levels of Ty and Ty were
determined using these values of a, b, ¢ and the remaining
levels were uniformly distributed between these limiting

conditions. These limits are
1.33 < m, < 3.00

1.00 < M < 2.50

A large number of other agricultural products will fall
within this range of values for m, and Mg
This experimental design will require a total of

thirteen ellipsoidal models within the ranges indicated

above,
Measurement of Nusselt Number

In order to determine Nusselt Number, it is necessary
to measure the heat transfer coefficient. Since it 1is not
possible to directly measure the heat transfer coefficient,
the following procedure will be used. The surface temp-
erature of the fluid moving past the body will be measured.

Using numerical integration the average surface temperature
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can be determined; and by placing a known heat source
inside the model and allowing the system to reach the-
steadyastate condition, the amount of heat flow out of the
ellipsoidal model is established. The heat transfer

coefficient can then be computed directly by the equation:

h = q/(As‘(Ts - Tf)) (10u)
where

g = total heat flow out of the body, Btu/hr

As = surface area of the bedy, ft2

TS = average body surface temperature, °F

Tf = temperature of gas moving by the body, °F

An electric resistance heater element made of nichrome
wire is used as the heat source. The power input to the
system is measured by monitoring the voltage andvcurrent
input to the system. The electrical energy is converted

into heat energy according to the relationship

q = KEI - ’ (105)
where

K = 3.413 Btu/hr-watt

I = current flow in heating element, amperes

E = emf across heating element, volts.
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The fluid temperature, tes is measured directly with
a thermocouple. A weighted average of the local surface

temperatures measured on the model is obtained by

= ITiAg R (106)
avg LA;
where
Tavg = weighted average of measured surface temperatures,
°F.
Ti = temperature of the surface at node i, °F.
A, = surface area represented by node i, £t2,

w = number of nodes at which surface temperature is

measured.

Location of the temperature sensors will be described in

detail later in this report.



CHAPTER IV
EQUIPMENT AND INSTRUMENTATION

The experimental design discussed in the previous
chapter required the constructién of thirteen different
~general ellipsoids. A hollow ellipsoid was required for
the plécing of a heat source in the center. Since the
- necessary milling machinery was not available, the models
were cast from aluminum. The patterns were constructed
in the Agricultural Engineering Research Shop at Oklahoma

State University.
Model Construction

For each ellipsoid a pattern was required for the
inside (or core) and for the outside dimensions of the
model. The patterns were constructed of rapid curing
plaster of Paris. In order to accurately construct the
plaster of Paris patterns, paraffin molds were constructed

for pouring the plaster of Paris.

Template Construction

In the construction of the mold for each ellipsoid,
a template was constructed at one inch intervals along the

major axis of the ellipsoid. 1In regions of high curvature

72
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this interval was reduced to one-half inchs The major
and minor axis of the ellipse obtained at each point along
the major axis of the ellipsoid was calculated from the

equation for the surface of a general ellipsoid
2 2 2

X ye o, 2% _

Lo + 2= =

e ) 2 1 (107)
Since z is specified then the major axis of the ellipse
at the given z is determined by letting y = 0 and solving
for x. The minor axis is likewise obtained by letting
x = 0 and sclving for 6. The equation for the ellipse is
then

2 2
X _
_2+BL2'1

>

This can be expressed parametrically by:

A cos ©

<
n

(108)
y = B sin ©

y A

x Y

Figure 12. Parametric Representation
of the Ellipse
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Analog computer diagram for plotting the ellipsoid
cross sections
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An analog computer circuit to solve for x and y is shown
in Figure 13.

The x-y plotter printed the cross-section on a thin
sheet of cardboard that was used to construct sheet metal
templates for the ellipsoidal model.

After fastening the templates in position hot paraffin
was poured over the templates and allowed to solidify.
Using the templates as a guide a moid.of the approximate
ellipsoid dimensions was formed so that the plaster of
Paris pattern could be constructed. The finishing work on
the rough patterns was completed using hand tools to give
an accurate ellipsoidal surface. Step-by-step pictures
of the construction process are shown in Figures 1
through 19.

Using the plaster of Paris patterns, a commercial
foundry formed sand molds and cast the ellipsoidal models
from aluminum alloy 355-T51. It was desired to construct
the models with as thin walls as possible to minimize the
temperature gradient that exist in the wall. The foundry
could control the wall thiékness to a minimum of 1/8 inch,
therefore this was the thickness selected. The thermal
conductivity of this aluminum is listed in reference
48 as 97 Btu/(hrft°F). The resistance to heat flow through
the wall is very small compared to the resistance to heat
flow at the inside and outside-boundaries of the wall.

The temperature of the wall is, therefore, essentially

constant throughout the thickness of the wall. This allows



Figure 14.

Sheet Metal Templates in Position
for Pouring the Paraffin Mold.
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Figure 15.

Paraffin Mold Formed for
Pouring the Plaster of
Paris Pattern
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Figure 16.

Unfinished Plaster of Paris Pattern
Removed from Paraffin Mold
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Figure 17.

Finished and Unfinished Plaster of
Paris Pattern
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Figure 18.

The Forming of the Pattern for the
Qutside Dimensions of the 13.5 x%
10.0: % §.75 Ellipsosd
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Figure 19.

Patterns for the Inside and Outside
Dimensions of the Ellipsoid Ready
for Casting

81
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the placement of the thermocouples for measuring surface
temperature to be in error without inducing appreciable
error in the temperature measurement.

The outer surface of all the models were buffed using
jeweler's rouge to provide a smooth shiny surface. This
insured that the surface roughness was the same for all
models and therefore did not confound the results of the

experiments.
Model Instrumentation

Each ellipsoid was instrumented with forty’nine
36-gage copper-constantan thermocouples. These thermo-
couples were distributed over one half of the model surface
. as indicated in Figure 20. At each cross-section the
thermocouples were spaced so that the arc-length between
thermocouples was constant.

At each thermocouple location a hole was drilled in
the model justblarge enough to allow the thermocouple to
be insefted from the inside of the model. The thermocouple
was mounted so that it was located at the external surféce
of the model but not extending into the boundary layer.

To insure good thermal contact with the walls of the model,
the thermocouple was embedded in a mixture of epoxy cement
and a Honeywell thermometer-well compound. The thermo-
couple leads were fastened to the inside surface of the
model with contact éement to a point on the leeward side

of the model where the leads entered the air stream and
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Figure 20. Location of thermocouples on the surface of the ellipsoids
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traveled parallel to air flow for several inches before
leaving the tunnel and connecting to the recording
poteﬁtiometer.

A resistance type electric heater was suspended in
the center of the model by four 30-gage steel wires. The
unit was shielded so that the mode of heat transfer from
the heater to the model walls was primarily dug to free
convection. The radiant energy transfer was small because
of the relatively small temperature difference between
the heater surface and wall of the model.

The energy input was monitored by a voltmeter and

ammeter. The power input was then:

P = EI
P = Power, watts
E = Voltage, volts
I = Current, amperes
therefore:
_ Btu
q = (3‘.413)m(P)
= (3.413) EI (109)
q = energy, Btu/hr.

After mounting the thermocouples and heater, the two
halves of the model were sealed together with a mixture of

epoxy cement and the Honeywell thermometer well compound.
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This mixture provided good thermal contact as well as
adequate strength to support the models while in the wind
tunnel.

These models were mounted in the wind tunnel by eight
30-gage steel wires extending from the,éurface of thé model
to stationary supports in the tunnel. Teﬁsion oﬁ these
wires was controlled to eliminate.vibrétion of the model
during the test and to hold the model in the correct

position throughout the test.
Data Collection

The ﬁodels were mounted in the tunnel and the air
velocity adjﬁsted by varying the speed of the fan and
monitoring the velocity head with a pitot—stétic_tube.
Variations in the velocity head were measured with an
accuracy of * 0.001 of an inch of water.i |

‘Eneréy input to the system was controlled by a
variable voltage transformer. The energy level was con-
trolled at-a value so that the maximum temperature-
difference existing between the model surface and ambient
air temperature did not.exceedT3O°F, Higher temperature
differences would require higher temperatures inside the
model and could possibly cause damage to the nylon
insulation on the copper-constantan thermocouple wires.

Depending upon the air velocity, the transient period
was from 30 to 45 minutes. The model was considered to

have reached the steady state condition when the surface
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temperature was observed to vary no more than one-half
degree in a 10 minute period. At this time all surface
temperatures, air temperature, energy input and air
velocity were measured. Surface temperatures were
recorded by e 10 point recording poteutiometer. Recording
of all points required a twenty-five minute time period.
To insure that the surface temperatures had not changed
during this period, a check was run at the end of the

test to insure that the first pocints recorded had not
chenged in value.

The test on each model was repeated three times.
Sometimes the tests were run on the same day while at
other times a day or ﬁo;e intervened between tests.
Generally once a model was in the tunnel, tests were
performed as quickly as schedules permitted. In all cases
the model was brought into equilibrium with ambient

conditions before a new test was begun.

Surface Areas of the Models

The surface of a general ellipsoid is described by:

2 2 > 2
s Y24 220 (110)

BZ C

N

%
N

where

A = one-half the semi-major axis-parallel to the

x-axis.



B = one-half the major axis-parallel to the y-axis.
C = one-half the semi-major axis-parallel to the

zZ—-axis.
Then

2
%T)l/?_

N
i

+

O

In most advanced calculus textbooks it i1s shown <that:

B 1/2
A, = 8 jo j (1 + ( )2 o+ ( )2) dxdy (111)

The surface area of a general ellipsoid after

differentiating and simplifying is then:

B2C : 202
A A B+ (——2— -B2)x2+(—_z~ -A2)y2

A2B2_B2 2,A2y2

A =8 fOBfO )dxdy (112)
Since this function is not readily integrable, a
solution for the surface area is obtained by a numerical
approximation. The surface of each model is broken into
a series of small finite size surface elemer;tsa The sides
of these elements are approximated as straight lines and
the areas of each element calculated and summed to give
the total area of the model. As the size of the surface
elements approach zero in the limit, the approximated
surface area will equal the true value. However, the use
of very small element sizes causes large roundoff errors
in the computer as well as increasing the computer time

to an excessively high value. Tc solve this problem the
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surface area of a sphere was calculated using several
surface eleﬁent sizes. The percent error as\% function
of element size is shown in Figure 21. The element size
selected was such that the projection of any side on its
corresponding axis would be 0.025 times that maximum
axis dimension. The surface areas of spheres of varying
sizes were calculated using this surface element size.
The error in all cases was independent of sphere size.
This surface element size was used to calculate the
surface area of the general ellipsoid.

With this surface element size, the surface area of
several ellipsoids of revolution was calculated, A new
error function was calculated and is plotted in Figure
22. It is hypothesized that the error in calculating the

surface area by this method is:
% error = f(A/B, A/C) (113)

For the range of ellipsoids used the componeht
equations of the error function was approximated by
several straight line segments in arithmetic coordinates.
Since these component eduations are straight lines in
cartesian coordinates they can be added to predict the
error for any given ellipsoid. This error function is of

the form:

% error = K. + KZ(A/B)rl + K3(A/C)r2 (114)

1



g1

where:
Kl, K2 and K3 are dimensionless coeffigients

r. and r

1 , are exponents.

Using these results surface areas for the general ellipsoids

were calculated as shown in Table V.
Characteristics of the Wind Tunnel

The experiments were conducted in the wind tunnel in
the Agricultural Engineering Laboratory at Oklahoma State
University. The tunnel has a test section that is 4 ft.
by 4 ft. in cross-section. The maximum velocity is
limited to approximately 70 ft/sec. A schematic diagram
of the tunnel is shown in Figure 23.

Maher (23) measured both horizontal and vertical
yelocity profiles along the centerline of the tunnel and
perpendicular to the air flow. His results indicated the
velocity to be constant across the tunnel except for the
six inches immediately adjacent to the wall. A typical
velocity profile is shown in Figure 24. Maher measured
the average velocity to be 0.9 times the velocity at the
center of the tunnel. In this study, the models were all
located in the center of the tunnel in the region where
the velocity does not vary with location. The center
velocity does not vary with location. ' The center velocity

as measured with the pitot-static tube was considered to

be the approach velocity throughout this study.



TABLE V
SURFACE AREAS FOR GENERAL ELLIPSOIDS

Ellipsoid Ellipsoid Ellipsoid - Surface
Axis Axis Axis Area
2 R C in?
in. . in. . . in.

10.0 7 | 4 158.71

8.0  10.5 6 212.94
10.0 | 10.5 | 6 249.01
10.0 ~ 8.75 5 202. 34
14.0 . 10.5 6 ' 336.00
14.0 | 8.75 5 275.09
12.0 7.0 4 187.51
14.0 7.0 4 215.23
10.0 | 4.0 4 110.41
10.0 | | 5.0 it | 127.09
10.0 6.0 4 143.49
12.5 10.0 5 272.70
10.0 9.0 oy 188.45

10.0 10.0 4 202.85
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A 22-mesh stainless steel screen was installed over
the entfance to the intake section of the wind tunnel.

This screen was made of number 304 stainless steel wire
0.0132 inches in diameter and had an opening area of
50.5 percent of the gross area. The screen's primary
purpose was to smooth out any large fluctuations in
velocity that occur during a test.

The turbulence conditions of the air stream can be
adequately described by the intensity and scale of
turbulence as outlined in Chapter II. It will be recalled
that the intensity of turbulence is a measure of the
magnitude of the velocity fluctuations while the scale of
turbulence may be considered a measure of the size of
the turbulent eddies in the flow. As pointed ou£ in
Chapfer II, one method for defining the turbulent conditions
in the tunnel is to measure and report the critical Reynolds
Number of a sphere in the specified tunnel. The critical
Reynolds Number is defined as the wvalue when the drag
coefficient is equal to 0.3. This method was used in
this study to define the turbulent conditions existing in
the wind tunnel at Oklahoma State University.

A hard rubber bowling ball whose diameter is 8.55
inches was used as the sphere in the turbulence tests. The
smooth surfaced ball was mounted on a vertical steel shaft
so that the drag force placed the shaft in bending
similar to that encountered in a fixed end cantilever beam.

The beam was instrumented with a strain gage and calibrated
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in test position in the tunnel using a set of dead weights.
Thus the drag force exerted on the bowling ball and beam could
be measured at any value of Reynolds Number. Because of
the weight of the ball, the correction for the drag force
on the shaft had to be measured with the ball in test
position. To accomplish this the ball was placed in the
test position and completely enclosed in a solid and
separately supported sheet metal box. The deflection was
measured and subtracted from the value for the unshielded
ball to give the true deflection due to the drag force on
the ball only. Using these values for the drag force,

the drag coefficient was computed from

_ F
Cp = 1/2pU_ApNe (397

The results for a number of tests are shown in Figure 25
where the drag coefficient is plotted as a function of

the Reynolds Number. The critical Reynolds Number is read
from this chart at the point where the drag coefficient

is 0.3. The wvalue is

Re = 270,000

crit.

This procedure is in agreement with the method suggested
by Dryden and Kuethe (7) for standardizing the reporting
of level of wind tunnel turbulence. According to
Schlichting (36) page 471 this value for the critical
Reynolds Number corresponds to an intensity of turbulence

of 0.006.
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Summary of Turbulence Properties of the Tunnel

The following observations were made with regard to

the turbulence properties of the wind tunnel in the

Agricultural Engineering Laboratory ‘at Oklahoma State

University. The first point is from this work while the

other observations are due to the work of Maher (23).

1.

The turbulence properties of the wind tunnel

are characterized by a critical Reynolds Number
of 270,000.

The air in the wind tunnel was turﬁulent at all
fan speeds.

Fbr velocities less than 15 feet ber second'ob.
approximately 10 mph, the fluctuations in velocity
were extremely small at any distancé greater than
about 15 mesh diameters downstream from the
screen.,

When no screen was used in the entrance to the
test section, the oscillascope trace indicated
small fluctuations were present, but extremely
large peaks in the trace that occurred less
frequently than about every five seconds were
damped out when a screen was used.

The amplitude of velocity fluctuations were noted
to increase when Reynolds Number was increased

by increasing velocity. Some inérease was also

noted in frequency . of occurence-of fluctuations

having the same magnitude-as velecity was-inereased.



CHAPTER V
DEVELOPMENT OF THE THEORY

Recall from the experimental design that 4 independent
and dimensionless groups (or pi terms) are necessary to
adequately describe the convecfive heat transfer coefficient
from a general ellipsoidal model in gas flow with a
specified orientation and surface roughness and in an

air stream of specified turbulence. ! These pi terms are

he

ot = Nu
My = !m%ﬂﬂi = Re
ﬂu‘= al/c

L b/c

The experimental plankshown in Table IV was conducted
and component equations developed. Three "replications"
of each test was conducted in order td minimize any error
due to equipment malfunction, operator errors, etc. It
will be observed that these repetitibﬁs are not true
replications because the same model was used in each of
the repeated tssts. A semi-randomization procedure was
used in determining the order in which fés;s were conducted.

A'period of three to four days was requirea'for the

99
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instrumenting and checking of each modelAprior to testing.
Therefore to minimize the time and expense in the experi-
mental phase of the work, all tests scheduled for a particular
model were completed before the“model'was removed from

the wind tunnel. However the order in which the models

were tested was randomly selected by drawing numbers from

" a hat.

Component Equations for the Ellipsoidal Model

The analysis requires the development of three component

equations. They are:

Nu = my = Fylmg,T,,7g) (115)

Nu = n, = Pz(;3,ﬂu,;5) (118)
and

Nu = ny = Fa(¥g,7,,m¢) (117)

Here the:bar over the pi term indicates the group is held
constant thrbughout the seriesMﬁfsfeéfsn The surface
temperatures have been integr;ted over the surface to yield:
the average surface temperaturéogffﬂeureduced data for”
 developing the Nusselt Number depéndence on Reynolds Number
is shown in Table VI.

The data in Table VI is plotted to yield a straight

line in 1og—log space in Figure 26. The method of least
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TABLE VI

NUSSELT NUMBER AS A FUNCTION OF REYNOLDS NUMBER
WITH n, AND wg HELD CONSTANT

Test Reynolds Heat Transfer Nusselt.
No. Number Coefficient Number
Btu/ (hrft2°F)
1-1 30,522 4,83 108.7
1-2 30,522 4.99 112.4
1-3 30,228 5.81 ©121.6
2-1 40,819 5.96 134.3
2-2 40,819 5.67 127.7
2-3 41,038 5.91 133.2
3-1 52,697 ' 6.71 151.2
3-2 52,697 6.90 155.5
3-3 52,527 7.08 -159.4
4-1 70,447 8.69 195.8
4-2 70,319 o ' 8.13 183.2
4-3 70,192 9,13 205.86
5-1 88,078 9.57 215.4
5-2 88,100 8.90 200.5
5-3 87,976 .40 215.9
6-1 105,734 10.32 232.6
6-2 105,734 10.20 229.7
6-3 105,649 10.06 226.7
7-1 123,187 9,78 2445
7-2 - 123,041 11.30- 254.5
7-3 123,114 11.08 249.5
8-1 140,894 11.99 270.0
8-2 140,894 11.63 262.0
8-3 140,639 ' 11.83 266.4
9-1 144,410 10.06 256.2
9-2 145,769 ' 12,51 281.8
9-3 146,321 11.99 270, 3
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équéres was used to fit the straight line to the experimental

data. The results are
Nu = 0.367(Re)?"557 o (118)

with a regression correlation-coefficienf, r = 0.991 and

a standard deviation, s = 0.018 where the standaﬁd deviation
is expressed in logarithmic unifs.-‘Note~that the results
are valid over the ﬁeynolds Number range from 30,000 to
150,000. The Prandtl Number is held constant at 0.72 by
using air as the fluid medium. The other two pi terms.

7, and mg, are held constant at the following values.

2.50

1]

Ty

——

"5

1.75

The dependence of the Nusselt Number on the length
ratio, a/c, is tabulated in reduced form in Table VII.
A logarithmic transformation is used to transférm the data
to a straight line in Figure 27. From a least squares

analysis the function is
Nu = 230.21(a/c) 0070 (119)

The regression correlation coefficient is r = 0.559 with
a standard deviation in logafithmic units of 0.014, The
Reynolds Number was held constant at approximately 123,000

and the length ratio, b/c, at 1.75. The small exporient on



NUSSELT NUMBER AS A FUNCTION OF THE LENGTH RATIO, a/c

TABLE VII

104

WITH T AND T HELD CONSTANT
Run Reynolds Heat Transfer Nusselt Ty
No. Number Coefficient Number al/c
Btu/ (hrft2°F)

10-1 122,950 6.66 225.2 1.33
10-2 122,950 7.17 242.3 1.33
10-3 122,850 6.68 225.6 1.33
11-1 124,255 6.69 226.1 1.67
11-2 122,786 6.56 221.8 1.67
11-3 122,950 6.35 214.6 1.67
12-1 122,379 7.52 211.7 2.00
12-2 124,421 7.61 214 .4 2,00
12-3 123,178 7,11 200.2 2,00
13-1 123,114 6.42 216.9 2.33"
13-2 123,604 .43 217.72 2,33
13-3 123,441 6.48 219.0 2,33
14-1 123,187 9.78 24,5 2.50
1lu4-2 123,041 11.30. 254.5 2.50
14-3 123,114 11.08 249.5 2.50
15-1 123,178 7.65 215.2 2,80
15-2 123,178 7.55 212.6 2.80
15-3 123,178 7.67 215.9 2.80
16-1 122,823 9.47 213.2 3.00
16-2 122,677 9.56 215.3 3.00
1l6-3 123,984 8.70 218. 4 3.00
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the a/c ratio indicates very little change in the heat
transfer coefficient with a chaﬁgé in the length of the
eliipsoid, i.e., the horizontal'dimension'péfﬁeﬁdiculaf to
air flow. Tﬂis, of course, 1is ekpected'since the cr@sé»;
sectional shape does not change as the lengthA"a“ changes
within the rangé of values of a/c used in these tests. It
seems plausible that the Nusselt Number depéndénce‘should
take the form shown in Figure 28. This réquires that as
a/c » 0 that the heat transfer coefficient would approach
the value for the finite flat plate‘fhat is elliptical in
shape. As a/c -+ w'the shape would become an infinite
elliptical cylinder. The range of values of a/c considered
in this study is indicated by the Porfion of the curve
between (a/c)1 and (a/c)zc Sqfficient‘data is not available
to define completely the'expoﬁential curve in Figure 28.
It would, therefore, be dangefqus»to extend the results
to values of a/c less than 1.33. Values of a/c greater
than the limits of these tests should not introduce large
errors since the slope of the curve is close to zero.

The values for the Nusselt Number as a function of
mg is tabulated in Table VIII. Using the logarithmic
transformation and a least squares analysis the correlation

is described by

~0. 440

Nu = 256.38 (b/c) ngO)

and is plotted in Figure 29. The correlation coefficient

is r = 0.898 with a standard deviation in logarithmic units
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TABLE VIII

NUSSELT NUMBER AS A FUNCTION OF THE LENGTH RATIO, b/c,
WITH n, AND 7, HELD CONSTANT

Run Reynolds Heat Transfer Nusselt TS
No. Number Coefficient Number b/e
Btu/ (hrft2°F)

18-1 122,968 10.46 235.6 1.00.
18-2 123,186 10.68 240.5 1.00.
18-3 123,187 10.79 243.1 1.00
19-1 123,114 10.93. 246.2 1.25
19-2 123,295 11.29 254,3 . 1.25
19-3 123,114 11.83 266.5 1.25
20-1 121,944 9.30 209.4 1.50
20-2 123,114 9.32 209.9 1.50
20-3 123,114 .07 204.3 1.50
21-1 123,187 9.78 244, 5 1.75
21-2 123,041 11.30 254.5 1.75
21-3 123,114 11.08. 249.5 1.75
22-1 123,405 7.37 207.5 2.00
22-2 123,744 7.27- 204.6 2.00
22-3 123,177 7.32. 206.2 2.00
23-1 123,114 7.48 168.4 2.25
23-2 123,114 7.37 ' 166.0 2.25
23-3 123,114 7.42 . ‘ 167.1 2.25
24-1 123,114 7.78 174.6 2.50
24-~2 123,259 7.63 171.9. 2.50

24-3 123,041 161.5 2.50
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of 0.032. Throughout the development of these results the

values of Ty and m, were held constant at

L

T, = 123,000

LT 2.50

Prediction Equation for the General Ellipsoid

Murphy (27) described methods for combining component
equations to give the general prediction equation as
provided on page 41. For component equations that form
straight lines on log-log coordinates, combination is of

the form

L G T By (Fyymy,Fo) Fo (7, 5me)
L " _

; — == 2 (121)
[Fu(“s’“u’“s)]

Again the bar over the pi terms indicate those quantities
that are held constant during the indicated series of

experimental tests.

The component equations from this study are

0.557

Fl(ﬂ3,?4,F5) = 0.367(Re) (122)
Fz(?3,ﬂq,FS) = 230.2(a/c)” 0070 (123)
Fy (7457, mg) = 256.38(b/e) 0t M0 (124)

The constant values for the pi~terms are.

Fg = Re = 123,000
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1t
N
.
[éa)
(]

a/c

3|
1"

i

b/c

™

5 1.758

Fu(n3,n4,n5) may be calculated from either equation

122, 123, or 124, The results are

[F, (7,7, 710,367 (Re) " °°7=0.367(123,000)%-°7=251. 03

~0. LY 0.44

[Fu(?3,Fﬁ,F5)]=256.38(b/c) =256.38(1.75)" =200.45

[F, (74,7, »7)1=230.21Ca/0) ™% 972230, 21(2.5)70 72215, 95

therefore

[y Cng,omy,ms) I+ lFy Crgomy ,ms)Jp+lFy (g, my,ms)ls

Fy(mg,my,mg5)= :

= 222.u48

substituting these values into equation 121 yields

Nuen 20:367(Re)O"°97(256.38) (b/e) ™0 **(230.21)(a/e)™°- %7

1 (222.48)2

after simplifying
Nu = 0,uss(Re)O'557(a/c)_0°07(b/c)‘0°Lm (125)

Equation 125 was-developed from experimental data with

the following limits placed on each dimensionless group.
30,000 < Re < 150,000

1.33 < al/c < 3.00
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1.00 < b/c < 2.50

Extrapolation beyond this range of values for the independent
variables is not generally recommended. Equation 125 was
developed using air as the fluid medium. The Prandtl
Number for air at moderate temperatures and pressures is
very closely estimated by considering it constant at 0.72.
The Prandtl Number for most other gases is within 10% of
the value for air so that applying this equation to systems
where gases other than air is used would not induce large
errors. However, when the Prandtl Number differs signifi-
cantly from 0.72 as is the case for most liquids equation
125 is no longer valid.

Kays (19) noted the Nusselt Number varies approximately
as the (Pr)l/sfor.bodies with boundary layer separation,
except for very low Prandtl Numbers, i.e. Prandtl Numbers
on the order of those encountered in liquid metals. Based
on this approximation equation 125 can be extended to
cover fluids in the moderate Prandtl Number range. The

result is
Nu = 0.483(Pr) Y/ 3(Re) P 357 (a/c) 70 07 (p/y =0 MY (126)

As reported earlier in this paper Ko and Sogin (20)
determined the heat transfer coefficient from an ellipsoidal
surface of axis ratio 4:1. By transliteration Ko showed
the expression for the average heat transfer coefficient as

G4 S
(§EE-<Pr)2/3><—l-)1/2 = B (93)
'lp H .
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where

= Average heat transfer coefficient, Btu/(Hr ftZ2°F)

p = Fluid specific heat, Btu/(lbmoF)

h
G, = Mass air velocity, lbm/(secvftz)
C
S

Total length of ellipsoidal surface measured
from the stagnation point along the meridian

profile, ft.

=
1"

Fluid viscosity, lbg sec/ft2,

Ko measured B to be 0.76 for an axis ratio of 4:1 and he
reported that Lewis measured B to be 0.60 for the ellipsoid
of revolution with an :axis ratio of 3:1.

The results from Ko and Lewis are compared with the
predicted results from equation 125 in Figure 30.
Variations in predicted values from both works are no more
than five percent in the Reynolds Number range from 30,000
to 150,000. This variation probably needs no explanation
since variation in experimental techniques could result in
differences this large. However, it should be pointed
oﬁt that no knowledge of the turbulence characteristics of
the wind tunnels used by Ko and Lewis is available., As:
suggested in Chaptef IT a variation in wind tunnel turbulence
could have large influenées on the heat transfer coefficients
from the ellipsoidal shapes and could account for the
variation betwéen.these reports. -Nu calculated from equation

126 is plotted against Nu cbserved in Figure 31.
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TABLE IX

NUSSELT NUMBER VS. REYNOLDS NUMBER FOR SHAPE I
a=z10.0 inj; b=3.50 inj ¢=5.0 in

Test Heat Transfer Reynolds Nusselt
Number Coefficient Number Number
Btu/ (hrft2°F)
1-1 5.19 32,616 146.2
1-2 4,94 35,493 139.1
2-1 5.36 43,308 151.0
2-2 5.39 43,630 151.6
3-1 6.84 65,659 192.6
3-2 6.67 65,659 187.6
41 7.90 87,740 222.3
4.2 7.43 88,218 209.2
5-1 9.25 109,843 260.5
5-2 9.37 110,097 263.8
6-1 11.13 131,956 313.5
6-2 10.78 132,062 303.5
7-1 11.52 153,802 324. 4
7=2 11.81 153,984 332.4
8-1 14.69 171,201 410.9
8-2 12.79 172,098 360.0
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Irregular Shapes

Three shapes were constructed of 3/16"™ thick aluminum
and instrumented as described earlier for the ellipsoidal
model. One of the shapes was a finite cylinder whose
length was 10 inches and diameter was 3.5 inches. The other
two shapes were designed to approximate the shape found in
boneless processed hams. In all cases the length was 10
inches, however dimensions b and ¢ varied. The cross-
sections including dimensions b and ¢ are shown in Figure
32. TYor convenience the irregular shapes will be referred

to hereafter as

Shape I: a=10 in.j; b=3.5 in.; ¢=5.0 in.
Shape II: a=10 in.j; b-3.5 in.; ¢=3.5 in.

Shape III: a=10 in.3; b=5.0 in.; ¢=3.5 in.

The dimension ¢ is vertical and perpendicular to fluid
flow. It is the length dimension used in the Reynolds
Number.

After the shapes were instrumented, a series of tests
were conducted varying the air velocity through the range
available in the wind tunnel. The Nusselt Number as‘a
function of Reynolds Number is tabulated in Table IX
for Shape I. A linear regression was performed on the data

after converting to logarithmic coordinates to yield

0.608

Nu = 0.231(Re) (127)
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TABLE X

NUSSELT NUMBER VS. REYNOLDS NUMBER FOR SHAPE II
a=10.0 iny; b=3.50 inj; c=3.50 in

Test Heat Transfer Reynolds Nusselt
Number Coefficient Number Number
Btu/ (hrft2°F)
2-1 5.78 30,765 113.8
2-2 4,25 30,089 83.7
2-3 6.12 31,644 120.6
3-1 6.98 46,259 137.6
3-2 7.21 46,110 142.2
3-3 13.33 45,961 145.8
41 8.96 61,082 176.5
b2 10. 74 61,194 211.7
4-3 7.48 61,082 148.6
5-1 9.99 76,890 196.9
5-2 10.23 76,979 201.6
5-3 10.42 76,979 205.3
6-1 11.63 92,517 229.1
6-2 11.62 92,369 228.9
6-3 11.39 92,369 224 .4
7-1 12.55. 107,916 247.2
7-2 11.92 107,852 234.9
7-3 13.03 107,789 256.8
8-1 13.57 117,412 267.5
8-2 13.44 120,241 264.9
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The data is plotted in Figure 33 and shows a regressibn
correlation coefficient of 0.98 and a standard deviation
of 0.0295 in the logarithmic coordiﬁate system.

The results for Shape II, the finite cylinder are
tabulated in Table X and plotted in Figure éﬂ. The least

squares analysis yilelds
Nu = 0.180(Re)" 82" (128)

with a regression correlation coefficient of 0.97 and a

. standard deviation 0.0289 in logaritﬁmib coordinates. It
is interesting to note that this result for the finite
cylinder is almost identical to the values reported by
Hilpert (18) for the Nusselt Number for infinite cylinders
in the Reynolds Number range from 4,000 to 40,000. He

reported that

Nu = 0.174(Re)?-818 (89)

This serves to help verify the earlier conclusion that the
model length; a, has liftle effect on the average heat
transfer coefficient as long as the cross-sectional shape is
geometrically similar throughout.

Shape III is similar to Shape I except for the direction
of air flow. 1In fact the orthogonal directions b and c are
reversed in this shape compared to Shape I. The Nusselt
Number for Shape III is tabulated in Table XI and plotted
| in log-log space in Figure 35. The least squares analysis

yields
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TABLE XI

NUSSELT NUMBER VS. REYNOLDS NUMBER FOR SHAPE III
a=10 inj b=5.0 inj; c¢=3.5 in

Test Heat Transfer - Reynolds Nusselt
Number Coefficient Number Number
Btu/ (hrft2°F)
1-1 5.26 24,567 103.7
1-2 5.76 26,189 113.5
2-1 6.69 30,765 131.8
2-2 6.65 "~ 30,765 131.0
3-1 7.67 45,961 151.2
3-2 7.97. . 46,110 157.2
4-1 10.22 61,863 201.4.
-2 10.75 61,641 211.8
5-1 11.89 77,246 234.4
5-2 11.78 76,890 232.2
6-1 13.49 92,369 265.8
6-2 13.08 92,517 257.8
7-1 14.74 107,661 290.4
7-2 14.82 107,852 292.0
8~-1 16.43 119,612 323.9
8-2 15.42 118,227 303.9
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)0.675

Nu = 0.118(Re (129)

with a linear regression correlation coefficient of 0.995
and a logarithmic standard deviation of 0.0165.

The exponent on the Reynolds Number and the constant
coefficient varies as the geometry of the shape varies. Any
criteria for replacing an irregular shape with an ellipsoidal
model will have to operate on both these: quantities te be
successful.

It is interesting to look at the point at which the
cufves converge when the irregular shape is assumed to be
replaced by an ellipsoidal model whose three orthogonal
dimensions are the same as for the irregular shape. Call
the point where the Nusselt Number for the irregular shape
equals the Nusselt Number for the equivalent ellipsoid

R If we plot Reygpy @ a function of b/c with both

€conv. "

transformed logarithmically it yields a straight line as
shown in Figure 36. The simple dots in Figure 36 are for
the three irregular shapes used in this study. This result
indicates no dependence on the length ratio, a/c¢. This is
as should be expected because of the small dependence of
the Nusselt Number on a/c.

To compare this result with other irregular shapes as
reported by other investigators, correlations for four
different irregular shapés were used. These correlations
were for infinitely long shapes but since the Nusselt Number

is not strongly dependent upon shape length, an a/c ratio
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of 10 was arbitrarily selected and a value of ReConv
calculated for each shape. These values are the circled
points in Figure 36. Note that the values for Re o nv
lie very close to the line predicted from the models used
in this study with some points falling above and some

below the line. This variation may be due to the sharp
corners that were present on these shapes and not on the
models used in the tests. These differences could probably

be accounted for by a "corner" effect as will be discussed

in the following section.

Transforming the Irregular Shape

As discussed earlier the Nusselt Number for any
specified shape has been shown to be a function of the
Reynolds Number, Prandtl Number and geometry of the body.
If we look at the component equation for Nusselt Number vs.
Reynolds Number we find the type of expression shown in
Figure 37 existing for the various geometries.

This form of the experimental data yields a component

equation of the form
Nu, = c;(Re) T (130)
i i

Analytical solution of the energy equation where possible
and experimental observations indicate that the value of n
varies between 0.5 for laminar boundary layer flow on a

flat plate and 0.8 for a turbulent boundary layer on a
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. different geometries.
Ny, Ny ... refers to slope
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log (Re) —

Figure 37. Effect of geometry of the object on
the Nu vs. Re relationship
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flat plate. Values of ﬁ for other shapes and flow conditions
fall within this range of values.

As observed previously the Nusselt Number plotted as
a function of the Reynolds Number will the of the nature
shown in Figure 38 for the irregular shape and for the
equivalent ellipsoid when transformed by using equivalent
orthogonal dimensions. We assert that since the Nusselt
Number is not heavily dependent upon a/¢ and if we limit
the analysis to irregular shaped bodies with smooth

continuous surfaces, i.e. no sharp corners, that

=
{

fg(b/c) (131)

and vy flO(b/C) (132)

'he proof of this assertion will depend upon whether we
are successful in obtaining a transformation that will
indeed provide acceptable results for the irregular shaped
obiects.

In transforming the irregular shape to an ellipsoidal
model the irregular shape is visualized as an ellipsoid
inscribed inside the shape with orthogonal ellipsoid
dimensions the same as the orthogonal dimensions of the
irregular shape. This provides the simplest transformation
possible with all length ratios and the length dimension
in the Reynolds Number beihg based on the dimensions of the

equivalent ellipsoid.
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Both equations 131 and 132 fit as straight lines in
semi~log space and the data is shown plotted in Figure 39.

A least squares analysis of the data yields

0.540 + 0.087(b/c) (133)

3
i

0.253 - 0.078(b/c) (134)

<
1]

The experimentally derived equation for the general

ellipsoid is from equation 125.

Nu, = 0.438(Re)0:557(a/c)=0-07(p/c)~0. 14 (125)

For the irregular shape transformed on the basis of
‘equivalent orthogonal dimensions for the irregular shape and

equivalent ellipsoidal shape the equation becomes

Nug = y(Re)Y a/e) 007 (pyey-0-44 (135)

After substituting the derived expressions for n and y the
prediction equation for the transformed irregular shape

becomes

Nug=(0.253-0.078(b/c)) (Re) 0+ 240¥0-087CB/C) (o) 0y=0.07p,/cy=0. ¥
(1367

The Nusselt Number for the shape calculated from
equation 136 is plotted against Nusselt Number observed in

‘Figure 40.
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CHAPTER VI
SUMMARY AND CONCLUSIONS
Summary

The primary objective of this study was to develop a
method whereby the average convective heat transfer
coefficients could be predicted with a reasonable degree
of accuracy. The general ellipsoid serves as an adequate
model for replacing the irregular shape for predicting the
aQerage heat transfer céaefficient°

A series of thirteen ellipsoidal models were cast from
aluminum for use in this study. Their dimensions were
selected to span the range of sizes normally encountered
in the processing of the pork carcass. The range of these

dimensions are

8 in. < a < 1lu in.
4 in. <b <11 in.

4 in. < ¢ < 6 1in.

The prediction equation for the Nusselt Number from the

general ellipsoid is of the form

Nu = fll(Re,Pr‘,a/c,b/c,X,e)° (137)

134
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For this study the Prandtl Number, Pr, the orientation of
the shape, A, and the surface roughness, ¢, were all held
constant so that they do not enter into the prediction

equation. Equation 137 then reduces to ‘
Nu = le(Re,a/c,b/c) | (138)

Employing the methods of similitude, component equations
were developed that fitted to a straight line when trans- -
formed to logarithﬁic coordinates. Combining these éomponent
equations by multiplication yielded the following eguation
for predicting the éverag%;Nusselt Number for the general

ellipsoid as

Nu = 0,438(Re)0:557(a/c)-0:07(p/c)-0.kH4 (125)

This experimental correlation was developed over the follow-

ing range of the independent pi terms.

30,000 < Re < 150,000
1.33 < a/c < 3.00

1.00 < b/c < 2,50

Using the non-ellipsoidal shapes described in the
previous chapter a criteria was developed for replacing a
smooth irregular shape with an ellipsoidal model for
predicting the average convective heat transfer coefficient.
All shapes used in this analysis were such that no sharp
corners were present. The criteria established requires

that the irregular shaped object be conceptually replaced
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with an ellipsoid that has the same orthogonal dimensions

as the irregular shape. The prediction equafion then takes

the form
Nu = y(Re)(a/e) 907 (p/c)-0-Ht (135)
where
n = fg(b/c) (131)
y = £ (b/c) (132)

The functions for predicting n and y were evaluated to

yield
(136)

Nu=(0.253-0.078(b/c))(Re)0:540%0.087(b/c) (5/¢)=0.07 p/c)=0-44"
Conclusion

The following conclusions are based on the interpreta-

tion of the experimental results.

1. The influence of the length ratio, a/c, has little
if any effect on the average Nusselt Number as
long as the cross-sectional geometry of the shape
remains constant throughout the length a. This
could be expected to change as a/c approaches
zero and becomes a flat plate whose shape is that
of an ellipse. It is for this reason that the
results of this study should not be extrapolated

below the range of values used for a/c.
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As would be expected the major geometry dependence
is characterized by the length ratio b/c. As the
length ratio, b/c, changes the percentage of tﬁe
surface covered with laminar, transition, turbulent
and separated flow regimes changes. This causes

a change in the average Nusselt Number for the
ellipsoidal shapes as ﬁredicted in eguation 125.
The component equation for the Nusselt Number vs.
Reynolds Number forms a straight line in log-log
space for the ellipsoidal shape as well as all
other shapes used in this study. This is in agree-
ment with experimental results reported by other
investigators.

For the non-ellipsoidal shapes with no sharp
corners or edges the general ellipsoid can be used
as an adequate model for predicting the average
heat transfer coéfficient° Where sharp corners
exist the results probably are not valid because
of the large change in the nature of the boundary
layer in the vicinity of the sharp edge.

The coefficient, y, in the expression for predict-
ing the Nusselt Number can be adequately expressed
as a function of the length ratio b/c. This

expression is

y = 0.253 - 0.078(b/c) (134)
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The exponent, n, on the Reynolds Number in the
expression for predicting the Nusselt Number can
be adequately expressed as a function of the length

ratio b/c. This expression is
n = 0.540 + 0.087(b/c) (133)

For the irregular shapes used in this study the
criteria for using the general ellipsoid as an
~adequate model is that the orthogonal dimensions
of the ellipsoid be the same as those for the
irregular shape. With this criteria the Nusselt

Number for the irregular shape is predicted by
Nu_ = v(Re)™(a/e) ™0 07 (p/cy= 04 (135)

where y and n are defined in 5 and 6 above.
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