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CHAPTER I 

INTRO DU CTI ON 

The theory of clm~ter sets has grown up around complex valued 

functions pf a complex variable and is concerned primarily with the 

behav}or of a function near th~ boundary of the domain on which it is 

define~, :,:t is well known that a function which is analytic at a 

point can be expanded in a power series about 'that point, If the 

power series has. a finite radius of convergence 1 then the concern 

arises as to the behavior of the function near the singular points on 

the circle of convergence. The classification of this behavior provides 

one example of a type of problem which the student of cluster set 

theory might investigate. It is difficult to give an all inclusive 

definition of the area of mathematics which is referred to as "Cluster 

Set Theory". In particular, one concern is the set of limit points 

of the function at a boundary point of its domain. This set is called 

the cluster set of the function at the point in quest;ion, A value 

w belongs to the cluster set of the function at the boundary point if 

there e:dst:s a sequence of points in the domain which converge to the 

boundary point with the function values of the sequence converging 

tow. 

The study of the cluster set of a function at each point of the 

boundary gives some information about the boundary behavior of the 

functipn but only in a local sense, If one wants to investigate the 

l 



boundary behavior in a global sense 1 it is. of interest to consid¢r 

what is called the global cluster set of the function. A value w 

belongs to the global cluster set if there exists a sequence which 

converges to the boundary with the function values converging t·o w. 

It is not required here that the sequence converge to an individual 

point of the boundary. 

The two types of cluster sets described above do not describe 

completely the content of the theory of cluster sets but rather 

describe some notation which has been used in the development of the 

theqry. Although some of the topics now included under the heading 

2 

of cluster set theory were studied before 1900 1 it was not until the 

development of measure theory that significant advancement took place. 

During this century the study of cluster sets has gone through periods 

of great activHy as well as periods of inactivity. In recent years 

there has been renewed interest in the field. The extent of this 

interest is evidenced by the great number of research articles published 

under the heading "Cluster Set Theory". It was not until the nineteen 

sixties that an organized account of the theory appeared, Two such 

works are: Cluster Sets. by K. Noshiro and Theory _£f Cluster Sets by 

E. F, Collingwood and A. J. Loh water. The Noshiro book is written 

for the accomplished complex analyst, The work of Collingwood and 

Lohwater~ although requiring less background in complex analysis 1 is 

essentially a coliection of research papers and does :not provide a 

unified and detailed introductory work in the field. 

It is therefore intended that this paper provide such art introduc

tion to the theory of cluster sets. It is hoped that the reading 

of this paper will supply at lec1st a partial background for continued 



study in the field. It iJ also hoped,· however, that this paper w:t11 

provide a source with whith one can, in ii relatively short time, gai:rt 

in$ight into the field of cluster set theory, Because of the intro.;; 

3 

ductory nature of this paper, many results inclu<;led here were originally 

established during the early and middle years in the historical deve1:op-

ment of the theory. For example, there is one class of functions, 

to which Chapter V is devoted, that was originally studied by Siedel 

in the 1930's. This study, however, illustrates well the beauty of 

the theory, and also provides a stepping stone to the current study 

of less restrictive classes of function. 

It ha.s been mentioned. that the development of measure theory 

provided an important tool for the st;:udy of cluster sets. It is not 

intended that this paper be clirec;_ted solely to the reader who has- a 

thorough background in measu~e theory.. In £-act, much of the paper 

can be read with understanding by some-0ne with an elementary knowledge 

of complex. variables and a kJ.J,owledge of the usual topics of advanced 

calculus, When theorems relating to measure theory are needed. in this 

pape-r, they. are stated and a,; reference given. Foll.' the most part, 

however, they are Qf such a nature that they closely paral'l.el re·sul ts 

from advanced calculus and therefore are not difficult to accep.t 

without proof. 

A few general comments, follow- regard4ng notation and terminology. 

The domains considered are restricted to t}\ose which are bounded by 
-

a Jordan curve. By the Riemann mapping theorem, every simply connected 

domain Q is confor>mally equivalent to the· open unit disk, 1 The role 

1w. Rudin, Real~ Complex Analysis (New York, 1966), p, 274. 



which this fact plays in this study is discussed pelow. First notation 

relating to the unit disk is introduced. Here U denotes the open unit 

disk and C the unit circle. 

Definition Ll. 

u ,- { z: I z I < l} ·o = { z: I z I < r} . 
r 

c = {z: I z I = l} c = {z: I z I = r} 
r 

For each simply connected.domain Q, there exists a one-to-one analytic 

map h from U onto Q. Topologically speaking, h is a homeomorphism from 

U onto Q, If. in addition, Q is a bounded domain whose boundary is a 

Jordan curve, then h can be extended to a homeomorphism of U onto Q. 2 

Although his analytic in U this extension need not be analytic one 

the boundary of.U. To each function .f defined on Q, there corresponds 

the function f 1 = f 0 h. Then f and f 1 have the same range of values. · 

If {z} is a sequence in Q converging to a boundary point z of Q, . n 
-1 

then h (z) is a sequence of points converging to the boundary point 
n· 

h -l (z) of U. In addition. the function values of f on the sequence 

-1 
{ zn} are identical to the function values of f 1 on h (zn). So the 

pehavior of f at z can be analyzed by studying the behavior of f 1 
r -1 
at h (z). In this p~per. then, the study of cluster sets will be 

restricted to functions defined on the open unit disk with the 

realization that in effect the study includes functions defined on any 

Jordan domain. 

Much of the theory developed will be for functions wnich are 

bounded apd analytic on U. The symbol H00 will be used to denote this 

2Rudin, p. 281. 

4 
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class of functions. 

00 

Definition 1, 2. A function f belongs to H if and only if f is analytic 

in U and also bounded there. 

It will become necessary to state that a function has a partic;utar-·· 

behavior at all J?Oints of the unit cir~le except possibly at a subset 

of C which is in a SJ?ecial sense small. The sense of smallness referred 

to here is termed "linear measure zero". Intuitively, a subset E of C 

has linear measure zero if it can be covered with a sequence .of arcs 

the sum of whose lengths is less thane: where£ is an arbitrary pre-

assigned positive number. As an example, consider any countable subset 

i8 E = {e n} of C. 

Each ei 8n is contained in an open arc I of length S Clearly, 
n 2n 

the sequence of arcs {In} covers E and th,e sum of the lengths of the 

arcs is less than E:. Therefore, any countable subset of C has linear 

measure z.ero, It should be noted that E could have linear measure 

zero and yet b~ an 1,mcountable set. The following definition gives a 

precise statement of this concept. 

Definition 1. 3. A subset E of C is said to have linear measure zero 

if for e.ich £ there exists a sequence of arcs {Ik} of C such that E 

is contained in the union of the arcs and the sum of the lengths of 

the arcs is less than £. 

In this paper the term "measure" wUl be understood to mean 

linear measure. A particular property is said to hold altnost everywhere 

on C, if the exceptional set has measure zero. 



CHAPTER II 

BASIC LANGUAGE OF CLUSTER SET TH.BORY 

EverY area of mathematics has some language all its own and cluster 

set theory 'is no different. Since this investigation is 1imi ted to 

functions whose domain is the open .1,1nit disk U, the definitions given 

he:re will be so restricted al though it should be kept in mind that 

they could be given with respect .to a more general domain. 

Cluster set theory is concerned primarily with behavior of a 

function near its boundary points, so here the investigation will be 

made of the behavior of a function near points of the unit circle. 

The major concern will be the limit points (cluster points) of the 

values a function assumes on a sequence which converges to a point of 

the unit drcle. The set of all such limit points, r~.sHlting from 

all possible sequences which ccmverge to the point of the unit circle, 

will be called the cluster set of the function at that boundary point. 

Definition 2.1. Let f be defined in U~ then C(f,ei 8) is the cluster 

i8 set off ate where 

C(f,ei 8) = {wj there exists a sequence {z }CU such n , 

that lim z 
n p-+oo 

i8 = e and lim f(z) = w} 
n-+oo n 

If the function f can be extended to a function which is continu-

i8 f . . u h. h . i8 ous ate , then any sequence o points in w ic converges toe 

6 



ie will have its function values converging to the unique value f(e ) 

which makes f continuous there. This implies that 

Example 2.2. Let f (z) z+l 
~ z-l· for each ZEU. 

= {e~ 8+11 
1 e , e -.., 

By the preceding argument 

ie at each point e EC except at z = 1. At z = 1 f can be extended so it 

has a pole there which implies C(f,l) = {~}. 

i8 C(f; e ) can be expressed in terms of neighborhoods but involves 

only that portion of the neighborhood which lies inside U. These 

neighborhoods might be referred to as partial neighborhoods and are 

defined as follows. 

Definition 2.3. 

N* (ei 8) = { z I I z-e18 
J < E; }nu: (see Figure 1) 

E 

" 

Figure l · 

i8 
e 

7 



In terms of partial neighborhoods, a point w belongs to C(f,ei 6) 

if it is a limit point of the image of each partial neighborhood of i 6 

Theorem 2. 5 

n 
s>O 

Proof: Let wsC(f,ei 6) then there exists a sequence {z }CU such that 
n 

i8 z +e and f(z )+w. Then for each s>O there exists N such that 
n n 

ie ie z s N*(e ) for n>N which implies f(z )s f(N*(e )) for n>N. Therefore n s . n · s 
ie w s f(N*(e )) for each s>O. 

E 

Now if w s f(N*(ei 8)) for each s>O this implies for each n there 
E 

exists zns Ni;Aei 8) such that 

ie which implies wsC(f,e ) . 

jf(z )-wl<l/n. n 
i8 So z +e and f(z )+w 

n n 

Corollary 2.6. C(f,ei 8) is a non-empty closed set. 

Proof: C(f,ei 8) is closed since by Theorem 2.5 it is the intersection 

of closed sets. The cluster set is non-empty since {f(N*(ei 8)} 
E 

forms a nested set of non-empty closed sets of which it is the 

intersection. 

Some simple examples will be given which will serve as a basis 

for further discussion of the properties of cluster sets, 

Example 2.7. Define 

~1 if O<r~l; r, a rational 

~O elsewhere in U 

i6 It should be noted that on a radius to e , 8 irrational, f is constant 

of value O; however on a radius to ei 8, 8 rational, f assumes the 

8 



values O and. 1 accordi.ng as r is irrational and rational. Because of 

the denseness of the rationals in the. reals there are points within 

each N*(ei 8) where f assumes the values O and 1 which implies 
e: 

i8 
for each e e:C. 

Example 2.8. Define 

and consider C(g,l). Now 

i 

g (z) 

I gCz) I 0 = e = 1 

implies g(z) lies on the unit circle for each ze:W, and thus any cluster 

value, which is the limit point of a sequence of functicin values, ,must 

lie on the unit circle (i.e. C(g,l}C:C). Now consider approach to 

' z = 1 along its radius. In particular consider the interval 

(1 1 1 - 1 ] 
- 2nk' 2n(k+l) 

which maps .under 1 
z' = ll-zl onto the interval (2nk, 2n(k+l)] and 

iz' g(z) = e maps (2nk, 2n(k+l)] onto the unit circle. For each 

e:>0 there exists an iinte;rval (1 - 2;k, 1 - 2TI (~+l)] contained in 

N;(l). This implies CCg(N;(l)) and thus CC.C(g,l). Therefore 

C(g,l) = C. 

Ex81!1ple 2.9. Define i 
"f:.r e if r, 8 are rational; O<r<l 

1 elsewhere in U 

9 
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1 1 
HerE) h (U) CC and each N* (1) contains an interval (1 - ~ 1 - -=--- ] E 2nk' 2n(k+l) 

which h maps onto the points of the unit circle which have rational 

i8 
values of 8. Therefore e EC(h,1) if 8 is rational; but the cluster 

set is a closed set, so all of CCC(h,1). Now it has been shown 

C (h, 1) = C. 

Example 2. 7 po;i.nts out that a cluster set need not be connected. 

It will be shown ;in the next theorem that continuity of. the function 

is a sufficient condition for the cluster set to be connected. In 

Example 2.8 the function 
i 

g(z) = e 1 1-zJ 

is continuous in the unit disk and C(g,1) was seen to be connected. 

Continuity is not necessary, however, for in Example 2.9 the function 

is discontinuous at every point of the unit disk yet C(h,1) is connected. 

Definition 2.10. A continuum is a closed connected non-empty set. 

Theorem 2.11. Let f be a continuous function defined on U then 

C(f,ei 8 ) is a continuum. 

Proof:_ Corollary 2.6 established C(f,ei 8) as a non-empty closed set. 

Since N*(ei 8) is connected 
E 

i8 
f(N* (e ) ) are connected. 

E 

proof is complete. 

and f is continuous, f(N*(ei 8)) and thus 
_E -

Therefore n f (N* (ei 8)) is connected and the 
E 

In Examples .2. 8 and 2, 9 every cluster value at z = 1 was obtain-

able from approach along the radius to z = 1, but in general this is 

not the case as may be seen in Example 2. 7 if 8 is irrational. In that 

example f assumes only the value ,0 on the radius while C(f,ei 8) = {O,l}. 



11 

In this investigation it will be desirable to consider various 

approaches to the boundary as a help to an analysis of the boundary 

behavior of the function. There will be times when the approach will 

be along a continuous path such as a radius, but also times when a 

discontinuous approach will be considered. Following is the definition 

of what will be called a partial cluster set, but in reality it is 

iB 
just the cluster set of the function at the point e where a restriction 

is placed on the approach. 

Definition 2. 12. 
iB -Let f be defined on U and Gc;:U where e i;:G; then 

the partial cluster set off at eiB with respect to G is given by 

wl there exists {z }C:G such that n , 

i8 
lim z = e and lim f(z ) = w 

n n n-+oo n~ 

A case of special importance results when G is the radius. Such 

a partial cluster set will be called the radial cluster set at eie 

and have its own special notation. 

Definition 2.13. 
·a · ie 

C (f ,e 1 .) is the radial cluster set of f at e and 
p 

is defined by 

. 8 i8 
CP(f,e 1 ) ~ CG(f,e ) 

where G is the radius toe 
i8 

Theorem 2. 14. 

Proof: Essentially the same as Theorem 2.5. 



Cf ie) · 1 d d "f G . Corollary .2 ~ 15. CG ,e ·. is a c ose non-empty set an 1 is . 

(:onnected, it is a co.ntin.uum. 

Proof: See.Corollary 2,6. 

Consider again Example 2, 7 and expressed in terms of the new · 

notatiQJl. to give 

and 

12: C (f;e 1 ) = {O}. 
p ' '' 

~··" 

Th~ following example will further. illustrate the definitions which 

have been introduced atid in additio~, will be used frequently in 

subsequent chapters to illustrate. the theory 1 Therefore a thorough 

qnderstanding of this example should prove helpful. 

Exam12le 2, 16, Let 

f(z) = e 

z+L 
z-1 

and consider.£ as a composite function f(z) = eg(z)·where 

z+l 
g(z) = -z-1 

The following investigation is made in order to determine the clijster 

set of f at z = 1 as wen as. seiected partial cluster sets at that 

point. 

Since g is analytic in U, so is f = eg. Also 

J f(z) J = eRe;(g) 

. and 

lzi2 - 1 Re(g(z)) = _........_ __ _ 

J z J 2 - 2 Re (z) + 1 
< .o 

12 



for each zsU which implies 

lfCz) I< 
0 

1 e = 

for zsU. Thus f(U)C.U. 

Consider the circle 

G = {zj jz-rl = 1-r}, ·o.::_r<l, 
r 

which is internally tangent to C at z = 1 for O<r<l and note that for 

each zsU, z -,. 0, there exists O<r<l such that zsG . Now 
r 

z+l · 
g(z) = - z' z-1--

is a linear fraction and maps G onto the line Re (z ') = _..E.._1 and · r r-

g(l) = oo (see Figures 2 and 3). Now consider a circle of rc;1.dius s, 

O<s<2 with center at z = 1, 

which g maps onto the circle 

H = {zl jz-11 = d, 
E 

2 
{z' I lz'-lj = -} 

E 

(see Figures 2 and 3) . Since g (l) . = 00 , g maps the disk whose boundary 

is the circle H onto the exterior of the circle. 
E 

The image of N* (1) 
E 

under g is shown as the shaded region in Figu;re 3. Because of the 

nature of g(N* Cl}), for ea.ch O<r<l there exists a k such that the 
E 

segment on Re(z') ~ r~l between r~l + 2kni and r~l + 2(k+l)ni lies 

in g(N*(l)). But f(z) = ez' maps this interval onto the circle with 
i:: 

• r 
center at the origin and radius exp - 1 . This circle of radi~s r-

. ' 

exp .....E_1 is contained in f(N*(l)) for each s>O. So each circle with r- · . E 

r 
radius exp r-l' O<r<l, and center at the origin is contained in C(f;l). 

This shows that 

(2. 16, 1) U {w:lwl = exp r~l} = {w: O<lwl<UCC(f,l). 
O<r<l 

13 



z plane 

1 

I 
/ 

Fi~re 2: The First Illustration for Example 2 .16 
[The Shaded Area is N*(l)] 

I;: 

Figure 3. 

2k1Ti 

-2krri 

The Second Illustration for Example 2 .16 
[The Shaded Area is g (N* (1)] 

I;: 

14 



It has already been shown that f(U)CU thus C(f;l)CU, Corollary 

2.Q states that the cluster set C(f,l) is closed. Therefore Statement 

2 .16 .1 implies . 

Note that ztG implies 
r 

so. 

C(f ,1) = {w: lwl < l} = TI. 

If cz) I = eRe(g(z)) = e 

r 
r-1 

r 

I I r-T CG(f,l) = {w: w = exp } 
r 

Now consider approach to z :a 1 along the radius. For z - re:U, · 

r+l 

and 

therefore 

f(r) = e r-1 

-00 

li~ f(r) = e = O 
r-*l 

C (f ,1) = {O}. 
p 

Consider an angle at z = 1 of opening 'TT-a which is bisected by 

the radius and whose sides are chords as shown in: Figure 4. Let A'TT-o 

rep~esent all those points of the unit disk which lie interior to this 

z+1 angle. ·Now g(z) = --1 maps.the endpoints Band D of the chords z-

onto the points B' and D' of Re(z') = 0, and because, g(l) = - 00 , 

15 

it must map the chords onto straight line segments each of which meets 

RC;'l (z ') = O at an angle of o/2 (see Figure 5). Now .for each 1~;
0 

there 

exists an e: sufficiently small such that 1 - 2/e: <~which implies 
1-ro 

(see Figure 5) that 



Figur,e 4 .. The Third Illus.tration of Example 2 .16. 
[The Double Shaded Area is N*(l)n A 0] e; 'IT-

Figures. 

D' 

The FQurth Illustration for Example 2 .16 .. 
[The Shaded Area is g (N; (1) nA1T_ 0)] 

16 
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for each O <r < · ro., . Therefore 
~ .. 

{w: lw I = exi>bl }n f (N* (l)n A ~) = ~ r- E: 'Tf"TU 

To. 

for each O < r < ro, 
· ro-1 

Thus all the circles of radius greater than e 

are not contained in f(N;(1)n Arr_ 0), which results in f(N~(l)n \r-o) 

being contdned in the closed d:isk .of radius expr:: 1 ., Since this is 

true for each 1~; 0 

CA (f,l) = {O}. 
· n-6 · 

The foUowing cluster sets have now been calculated for f(z) = e 

(a). C(f,l) = U · 

(b) CG(f,l) {w: lwl 
r = = exp-} 

r-1 r_ 

(c} C·(f,l) :;: {O}. 
p . 

(d) c Cf 1) ;:: {0} 
A '. 

n"'o 

It has also been shown that f is analytic and bounded by one in U. 

In the previous examples:..it was seen that some cluster values 
i8 . 

at a point e are assumed by the function in each neighl,)orhood of 

z+l 
z-1 

the point, whUe other .clu~ter values were never assumed by the function. 

A case in point is Example 2 .16 where 

f(z) = 
z+l 
z=T e 

never assumes thl;l value O yet Oe::C(f,l). The values_ wh1~h are assumed 

in each neighborhood are of special interest and are said to belong 

·e 
to the ran$e 6£ f at el, . 



Definition.· Z ~ 17. 

. wl ther~ exi~ts {zn}C U such that 

ie Um Zn ·""' e and f(zn) = w for each n 
n~ 

ie · 
is the range of f at e . 

Theorem_2.18. 

Proof: SimUal'.' to Theorem 2, 5. 

18 

It is clear that the range·may be empty as is the case for f(z) =-z 

ie 
at each e Example 2 .16 where 

z+l 

R(ez-l,1) = {w.l O<lwl<l} 

_and Example -2. 9 where . 

R(h,l) = {e16 le is rational} 

demonstrate that the range need not be closed. 

Another type. of clus't;er value pf special importance is the type 

which can be obtained by continuous approach to· the boundary. For 

example, the function · 

f(z) 

. z+l 
.z-l = e . 

has the cluster value Oat z = 1 on continuous approach along the 

radius. Such a cluster. value will be called an asymptotic valtie of 

. the functi.on at the boundary point·. 



Definit;i,on 2.19. 

w I there exists a continuous path 

i6 . ~·. . . • i6 A(f, e · ) :::; which terminates at e and where. 

i6 f(z)-+w as z-+e along r 

ie 
is the asymptotic cl.uster set of f at e · · 

. 6 
If f is n.on-co~stant and.continuous at e1 , then 

· i6 C(f ,e. ) 

and 

·. · ie 
R(f,lil ) = cj>. 

' 
So far some language has been given with which to discuss the 

· · · i6 
boundary behavior at e , •· Such considerations have been dependent 

upon the values the £unction assumes arbitrarily close to ei6 in 

the open disk u. It is also of interest to consider the behavior by 
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taking an appro~ch not in:U ~ut on the unit circle C. This makes sense 

in Example .2 .16 where 

z+l 
z-l f(z) = e 

i8 and at each e · . f 1 f is continuous. In this example 

CG{f.;l) = {wl lwl 
r 

r 
r-1} "' e . 

In the case r::; O; Go is the unit circle C. Therefore the 

approach to z ::;: 1 along the unit circle would give the unit circle as 

the set of cluster valu~s, However, if f were not· continuous at each 

i6 e f l, it wquld not be obvious how to take art approach along the 

boundary. As a generalization, a point w is a boundary cluster value 

if there exists a sequence of boundary. points.· convergihg to ei 6 and a 



corresponding sequence selected £rom the cluster sets of .the sequence 

of boundary points such that this s$cbrid sequence converges tow. 

Defin:j.tion .2.20. 
ie 

w I there ex;i,.sts {e n}C:: C such that 
· 1s ie 

~im e n = eie and there exists w E:.C(f,e n) 
n~ 

such that lim w = w n n.),<)O 

n 

· . ie 
is the boundary cluster set off ate . 

Theorem.2.25. 

n u c(f ,efo) 
q.>O O<!e-o.l<n 

Proof;. See Theorem 2.5. 
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.. CHAPTER I II 

BLAS.CHkl;I PRODUCTS 

The majo:rpun,ose of this·chapter is.the introduction of a 
. ,, ., 
~ . . . 

subclass. of boundeq analytic :functions which w.ill ;provide a useful 

soq.rce of· examples tQ illustrat.e the theory. Members of this class 
. . : . . . 

are called Blaschke products Fl,nd a· f~w of their basic properties will 

be developed here. · ... Othef Jmportant properties of this class will .be 

. left for sub:Seque~t chapters ;in order th~t a logic.al, se,quential de~. 

velopment of the theo~y be maintained. 

Definition 3;L Let {an}C:U with !c1-lanl) <.,,; then the product 
. 1 

a 
n 

where a is real,>.. is a non .. negative integer and k is a positive integer 
. ·, 

or IX>, is a Blaschk~ product~ lf k is finite B(z) is a finite Blaschke 

prodllct. 

It Will l:)e shown next that. a Blaschke product belongs to H00 where 

H00 is the class of all functions analytic and. bounded in U. 

Th.eorem 3. 2. If wn (z) is analytic in U for each 

converges unifopnly on compact subsets of U then 

in u .. 

21 

n and if flw (z) I 
1 n 

00 • 

rr [l+w, (z)] is analytic 
I n . 



Proof:. See Hille, Vo:j,um~ I, P.age . 224. 

00 

a -z 
B( ) :;i rr .. _n,...... --.. z 

1 1-a z .n 
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belongs to H and B(z) 2 1 for each .. ZEU. It then follows that the more 

general form a Blas~hke proquct of Definition 3.1 represents a function 

. 00 

of H. and has one as a bound. 

E I 1 - an- z I an 11 

l 1...;'a z .an 
. n 

Proof:. It will be shown.that converges uniformly 

on compact subsets of U which impli¢s by Theo.rem 3. 2 that B (z) is 

analytic on U. Now • 

·I 
a ..,z hll 2 Cl~lanl)(l-lzl) n ' 

. a .. ·. 1 1 = . - ,;:: 

1-i z (1-a z) (1-a z) .. n n .n n 

which implies each factor of B (z) is less than one in modulus .and 

th~refore IB(z)I < 1 for each ZEU; 
. ~ . 

Consider the compact set 

0 = {zl lzl ,<;! r} · 
r 

where O<r<l. If 

then 

Now note tha1: fo~ each ZEDr 

a = r e n . n 

i6 
n 

-ie 
= e n 



Therefore 

and 

< 1 +rand 11-a zl > 1-r n 

la I 
1+ ..!!.. z 

a 1 . 
= -~-- (l-1 a I )<....:!.(1-I a I) 11-a z I . n -1- r n 

n . 

a -z I a I 
Ejl - n .l...1Ll.J < ..!!!. E(l-la j) < ~ 
1 1-a z an - l- r 1 n 

n 
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for each ZED. By the Weierstrass M-test the series converges uniformly r 

on Dr. Since every compact subset of U is a subset of some Dr' it 

follows that the .series conve.rges uniformly_ ·on any,.'.compact subset of U. 

Theorem 3.3 establish.es infinite Blaschke products as bounded 

analytic functions on U. The finite Blaschke product is also analytic 

on the unit circle so that its boundary behavior is of little interest. 

Therefore examples of interest will 'come from among the infinite 

products where the boundary behavio~ is less obvious. 

theorem 3.S, by Jensen, is needed to help develop some of 

the later theo:ry :lt\cl'"ding a. charac.terization for bounded analyti·c 

functions. 

Theorem 3. 4. (Lebesgue Dominated Convers,ence Theorem) . 
. I. " ... ; I . 

Let {fn} be a sequence of int~grable functions with fn(x)+f(x) 

almost everywhere. Also let g be an integrable function such that 

1£ I < g for each n. Then f is integrable and 
n -



Proof: See Royden\ page 200. 

Theorem 3. 5. (Jensen's Formula) 

Let f be bounded and analytic in U with f(O) ~ 0 and let 

a1 , a2 , ... , ~ be the zeros off in Dr; then 

(3.5.1) lf(O) I ~ -rf,- = exp (~TI JTI loglf(reie) Ide] 
1 1anl -TI 

Proof: Consider those values of r, O<r<l where no zeros off lie on 

the circle C . An analytic function g will be constructed such that 
r 

(3.5.2) 

and 

(3.5.3) 

N 
I g (O) 1 = 1 f (0) 1 rr rn 

1 n 

g(z) ~ 0 for z in some domain Q containing D 
r 

Then 3.5.3 implies there exists an analytic function u + iv with 

Now 

so 

g (z) 
u+iv = e 

I g cz) I u = e 

loglg(z) j = u 

is harmonic in Q. By Cauchy's integral formula 

logjg(O) I 1 
:: 27r JTI . . e 

-Tiloglg(re 1
) Ide. 

It will then be shown that 

(3.5.4) 

These results give 
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N 1 J,r '8 
(3.5.5) jf(O) I~ 1:nl = jg(O) I = exp{21r -1Tlogjg(re1 ) jds} 

1 f 'IT . '8 
= exp{z:; loglf(re1 ) jds} 

-'IT 

for each O<r<l such th~t no zeros off lie on C . For those values of 
r 

r where Cr contains zeros off, a sequence:{rk} can be selected such 

that rktr and all zeros off interior to Dr are also interior to Ork 

for each k. In addition, C contains no zeros off; therefore 
rk 

Since 

N rk 1 J,r ·9 
jf(O) jrr Ta:T = exp{z; logjf(rke1 ) jds} for each k. 

1 n -'IT 

. 8 . 8 
lim logjf(rke1 ) I = logjf(re1 ) I, 
k-+<x> 

Theorem 3. 4 shows that 

so 

N 
jf(O)jII 

1 

- J'IT r 1 is . 
,-;:-r= exp{z; logjf(re )jdS} 
1a.n1 -'IT 

and 3.5.1 holds for each r, O<r<l. 

In order to cqmplete the details and establish 3.5.2, 3.5.3, 

and 3.5.4, consider the function 

2 -

(3.5.6) g(z) 
N r -a z n 

= f(z) II r(a -z) 
1 n 

Now g is analytic in U and has no zeros in D and since f has no 
r 

zeros on Cr neither does g. Therefore there exists a domain Q such 

that 
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D = D uc c rl 
r r r 

and such that g is non-zero inn. Also 

N 
I g co) I = jf(O) Irr~ 

1 I anl 

and 

If z 
iEl 

= re then 

I g (z) I = I f(z) I 

because each of the N factors in g has modulus one" 

So 

f'IT • 8 
· fogjg(re 1 Jde 

-'IT 

f 'IT • El 
_/ogJg(re 1 )jde 

and the proof is complete. 

A sequence { a } C U with 
n 

!o-Ja J) < 00 

1 n 

de 

is called a Blaschke sequence, and it will be shown that the zeros 

00 

of any function which belongs to H form such a sequence. 

00 

Theorem 306. Let fE:H with f(z) 1 0 and {a } CU be the set of zeros 
n 

of f with multiplicities considered, then 

fc1-Ja i) < oo 
1 n 
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Proof: It can be assumed that f(O) # 0, for otherwise consider 

f(~) where\ is the order of the zero at z = 0. Let n(r) denote the 
z 

number of zeros off in D, O<r<l, and let O<k<n(r). By Jensen's 
r 

formula 
k n(r) 1 Jn · 8 

lf(O) Irr lf:-r.::. lf(O) I II lf:-r = exp{I; l.oglf(re 1 Ide} 
1 n 1 n -TI 

< M < oo 

where the last inequalities follows from f being bounded. Therefore 

n(r) rklf(O) I 
II la I > . M . for k<n(r) and for O<r<l 
1 n -

which implies 

So 

00 

rrla I > Jtco) I > o 
l n M 

rCl-Ja 1) <"" 
1 . n 

Corollary 3. 7. If fEH there exists a Blaschke product whose zeros 

are identical with those off. 

The following theorem gives a useful representation for functions 

00 

of H . 

00 

Theorem 3. 8. If f EH there exists a Blaschke product B(z) and a 
00 

non-zero function h(z)EH such that 

f (z) = B (z)h (z) 

Proof: By the previous corollary there exists a Blaschke product 

B(z) such that f and B have the same zeros. This implies 

f(z) . 
h(z) = B(z) 

is a non-zero analytic function. 
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Now consider Bn(z) the partial product of B(z) consisting of the 

first n factors. B (z) is a finite I.Haschke product and therefore is 
n 

analytic on the boundary C and of modulus one there. Therefore there 

exists a circle Cr, O<r<l, s·uch that I Bn (z) I >1-e:. for each ze:Cr and 

such that all the zeros of Bn (z) lie in Dr. Since :cg) is analytic 
n 

in D it atta~ns its maximum on C. Therefore 
r r 

for each ze:D ,. Now B (z) is analytic and non-zero in the closed r n 

annulus between C. and C. Therefore B (z) attains a minimum on C r n r 

This minimum must clearly be greater than 1-e: in modulus.. Therefore 

and so 

l~cg~,< l~e: everywhere in the open annulus. 
n 

~I < 1 ~ e: everywhere in U. 
n 

Since e: is arbitrary 

~I < M for ze:U and for every n ... 

Thus 

I h czJ I = I ~g~ I = li~ I~((~~ I < M for ze:U 
n-+00 n 

and he:H00
• 

Before leaving this chapter; a partial investigation will be made 

i8 of the boundary behavior of selected Blaschke products. Any point e 

which is a limit point of zeros will be of interest, sirice B(z) 

cannot be extended so it is analytic there. 
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Example 3.~. Consider a Blaschke product with 

1 
a = 1 - - 2 n 

n 

B(a) =O for each n implies Oe:C (B,l), It will be shown that 
n P 

C (B, 1) = { 0}. 
p 

Let O<r<l then ra <a <l.and ra <r for each n and r-a <l-ra. n n n n n 

Therefore 

Now 

IB(r)I 

r-a 
If ~-l<r<aN then n 

< 1-ra N 

So 
N-1 r-a 

IB(r)J< IT 
. n 
l"-a r l n 

for N.= 2. 3, ... 

The.re fore 

for 

which implies 

and gives the result that 

r-a. 
__ n_ < 1 for each n. 
1-ra 

n 

la -rl N-1 I a -rl 
00 n n = IT < IT 1-a r 1-a r 
l n 1 n 

~-a . n· for n < N. 

< 

1-a. n 

N.:.1 ~-an N-1 
IT 
l 

IT -1-a n l 

. ' l 
IB(lr) I < n 

lim IB{r) I = 0 
r+l 

C (B;l) = {O}. 
p 

N2-n2 

N2 
(2N:-l)~ l 

= <--· 
N 2N-1 N-1 
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Example 3.10. Consider the Blaschke product with 

1 
an = 1 - -rn n = 2, 3, ... 

e e 

again as in Example 3.9 Oe:C (B,1), but it will be shown that B 
p 

has other values in the radial cluster. This will then provide 

the first concrete example of a function which is analytic in U, 

yet fails to have a radial limit at z = 1. It will be shown that for 

N = 2, 3, . , . 

which implies C (B, 1) fails to be degenerate. 
p 

2k 
Let k be a positive integer and note e>2, 2k 2<ee 

2k 
2(k+1) 2 < ee 

(3.10.1) 

and 

(3. 10. 2) e 

for each k. Thus 

2k+l 2k 2k 
e e . = (e e / > (e e }2 > 

2k+2 e 2k+l 2k+l 2 = (ee )e > (ee ) 

Statement 3.10.1 implies 

(3.10.3) 

and 3 .10. 2 implies 

(3. 10. 4) e 
2n e = e 

2(n-1)+2 e 

Statement 3.10.3 implies 

2 e2N+l 
> 2n e 

and 
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e 
2n+1 e 

· 2n 
2 e 2n e · > 0 for n < N 

2 e 2n 2 e 2n 2 . . e 2n 
-n e · > ·n e - n - e + .1 

2 e2N+l 
n e 

2 e2n 
- n e 

2 e2N+l 
> n e 

2 e2n 
+ n e. 

2n 2 e - n · - e 
2N+l e 

- e + 1 

2 e2N+l e2n . 2 e2N+l 2n 
n (e - e ) > · (n . - l)(e . + e e - 1) 

so 

(3.lQ.5) 

2N+l 2n 
e e n2_·1 e ' -e 

----......-- > -· -·. = 2N+l 2n 2 -
ee +ee -1 n 

zN-an 
Now for n < N the left hand member of 3 .10. 5 is l-a z so 

n N 

(3.10.6) 

Statement 3.10.4 implies for n > N 

so 

2 e2n 
n e 

(3.10. 7) 

e2h 2 e2N+l 
e (2n -l)e > 0 

2 2N+l e . 
-n e > 

2 e2N+l 
- n e 

2 e2n 
> n e. 

2 e2N+l 
n e - e 

2 e2N+l 
+ n e 

2N+l 
e - e 

2N+1 e - e 

2n e 

- e 
2n 

e 

2 e2~ e2N+l 2 . e2n 
n (e - e ) > (n -1) (e. + e 

2N+l 
e 

- 1) 

2n 2N+l 
e e 2 

e -e n -1 
------ > --· = 2n 2N+l 2 . 

e e n e +e -l 

1 
1 - -. 2 

n 

2 + 1 - n 

a -z -. 
n N Now for n > N' the left hand member of 3.10,7 is . . so 1-a Z n n 
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(3 .10. 8) 
a -z 
n N > 1 1 for n > N 

1-anZN - n2 · 

Combining 3. IO. 6 and 3.10. 8 gives 

So 

00 1 1 
II (1- '""'."'""2'· = -) 2 
2 n 

Example 3.11~ Consider any sequence {a11} CU such that 

la I = 1 n 

It is clear that a Blaschke product can be constructed to have zeros 

at an since . 

Notice that nothing has been stated to indicate where an lies on_ 

1 
the circle of radius 1 - -z. Since th~re are only countably many 

n 
radii terminating ,at points of ,t which have ~ational arguments, it 

is possible to :,select {an} such that infinitely many an' s lie ,on each 

radius with a rati-onal .argument. Therefore the .Blaschke product 

B(z) with zeros at {an} has infinitely many zeros on each rational 
. e .· 

radius and so Oi;;CP (ff ,e1 ) for e rationaL Now B (z) has no zeros 

h d . . ~ i6 on t era 1us to a po1n~ e , e irrational; but each partial neighbor-

· a · ie 
hood of e1 contains infinitely many an's, Therefore Oi;;C(f,e ) 

for all e. 
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CHAPTER IV 

THE FATOU BOUNDARY FUNCTION 

In this chapter a foundation will be laid for the study of 

® . 
functions of the class H of bounde.d analytic function on U. This 

work .is of great importance even in the study of functions which do 

not fall in this class. From the elementary theory of complex variables 

it is seen that an analytic function is, in s.ome sense, described 

by its behavior on the boundary. For example, if a function f of H 
00 

can be extended so it is continuous on the closed unit disk, then the 

maximum modulus theorem and Cauchy integral formula hold with respect 

to the unit circle. It is obvio.us; however, that for.an arbitrary 
. 99 

'function of H such an extension may not be possible. 

The key theorem in this stU:dy is Patou's theorem which states 

co 
that a function which belongs to H has a radial liini t at almost every 

point of the unit circle. Using this theQrem, a function c~n be 

defined on the unit .circle which may not have the "nice" properties, 

such as providi11g a continuous or analytic extension for f, yet.it 

does in sol)le sense describe the behavior of :f: in U. This function 

will be called the Fatou boundary function of f. 

In the development of the theory surrounding the .Fatou boundary 

function, it .will be necessary to introduce an abundance of material 

which is of importance as a background in many areas of investigation 

in analysis. Because of its basic nature it is included irt detail 
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here although its role in the present development is auxiliary. 

The first theorem gives an integral representation.for a function 

which is bounded and ana~ytic .on a cl.osed disk in terms of the values 

the function assumes on the boundary. It really is. a special form of 

the Cauchy integral represe;ntation and is referred to as the Poisson 

integral. 

Theorem 4 .1. Let f be bounded and analytic in a domain which contains 

D UC , p > · o then p p 

iB 1 JTI i~ p2-r2 
. f (re ) = 21T -1Tf (pe )~.--21--------~2- dt where .0 <. r < p. 

p-l-2rpcos(B-t)+r 

Proof: By Cauchy's, integral formula 

if 

Therefore 

(4.1.1) 

. t . t 
= ~ J f (~~ · d~ · 1 J1T f(pe 1 ) ipe:J. dt 

41r1 C ·~-reie = 21Ti it iB .._ -1r pe -re p 

it 
~ = pe 

iB 1 J1r it 1 
f(re ) = 2'rr f(pe ) r (B-t) dt, 

-n 1 - - e 
p 

Th.e familiar equality 

1 00 n - = r x gives 1-x 
0 

-~l _ __,,-,-.,......,,... = 'f(!.Jn ein(B-t). 
l _ !_ ei(B~t) O .p 

p 

Substitution in 4.1.1 gives 

(4.1. 2) i e .1 J1r it [ ) n · ( e t) 
f(re ) = 21T -1Tf(pe ) [l + r ~ e1n - ]dt, 
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Since f is analytic in D Uc so is 
p p 

for n = l , 2 , 'S , Therefore 

Note that 

Jc gn(z)dz 
p 

and thus for fixed e 

(4.1.3) 

for n = 1, 2, 3, 

= JTI ipf(peit)eintdt = 0 

-TI 

Statements 4. 1. 2 and 4 .1. 3 yield 

f(reie) = .!.__ JTI f(peit) [1 + t.(E.ln [ein(8-t)+e-in(8-t)]]dt 
. 2TI . l pJ -TI 

and 

It will be shown now that the integrand of 4 .1.1 is equal to the 

desired one in the statement of the theorem. Consider the following 

quotient whose denominator will be made real. 

it i8 it i8 -it -ie pe +re pe +re pe -re 
it i8 it i6 -it -i8 

pe -re pe -re pe -re 

2 .2 ( i(8-t) -i(8-t)) p -r +rp e -e 
2 ( i(8~t). -i(8-t)) 2 p -pre · +e · · +r 
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(4.1.5) 

Also 

(4.1.6) 

it ie pe +re 
it ie pe -re 

p2-r2+2i Re sin(e-t) 
= -=2...,..·----.--2,-. -

P ,-2prcos(e-t)+r 

it. ie 1 r i(e-t) (Jn pe +re = _+"'"'P-.......,..e..,..,.=--.....,.... = [l+ E. ei (e-t)] E E.. ein (8-t) 
it • i8 1_ E. ei{8-t) P . o. P pe -re P 

= 1 + 2 r (~Jn ein(6-t) 

= 1 + 2 I(f]n[cos(n(8-t)+isin(n(8-t)]. 

Statements 4.1.4, 4.1.5 .and 4.1.6 imply 

ie l Jn . it p2-r2 
f ( re ) = 2TI f (p e ) . 2 . . 2 . d t 

-rr p -2rpcos(8-t)+r 

which is the desired conclusion. 

Theorem4.2. (Schwarz's Lemma). Let fE::H00 with jf(z)J.::.1 for ZE:U and. 

f(O) = O; then jf(z) J<)zl for ZE:U. 

Proof: See Hille, Volume II. 

Theorem 4.3. Let f be a real valued monotonic increasing function on 

[a,b]; then f is differentiable almost everywhere in [a,b). 

Proof: See Roydert, Theorem 2, Page 82. 

Theorem 4 .4. Let. f be a real valued function defined on [a,b] such 

that 

lf(x+6x)-f(x)., · . Ax . < M for x, x+6xE:[a,b]; 
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then f is differentiable al.most everywhere in [a,b]. 

Proof: .. Let 

a= Xo~X1<.,,<X = b . n 

be a partitiqn of [a,b] then by hypothesis 

So 

I f_(xk)-f(xk-1) I < 
M for k = 1, 2, ... , .n. 

xk - xk-1 

n rt 
~ lf(xk)-f(xk~l) I<~ lxk-xk_1 JM = (b-a)M 

37 

therefore f is of bounded variation on [a,b]. Any function of bounded 

variation can be expressed as _f = f 1 - f 2 where f 1 and f 2 are monotonic 

increasing real valued functions. By Theorem 4.3 f 1 and f 2 are differen

tiable almost everywhere on [a:,b] and therefore the same is true of f. 

The following th_eorem by Fatou is the one mentioned previously 

as being the key theorem of this study .. It shows that a function of H 

has a radial limit at almost every point of the uhit circle .. 

Theo~em.4.5. (Fatou). 

almost all e, -1r < e 

Let fsH00 then C (f,e16) is degenerate for 
p 

< 1T. 

Proof:· A complex valued function F(S) will be construc~ed such that 

its difference .quotients are bounded, This _implies the real and 

imaginary part~ of F(S) have their difference quotients bounded .. 

00 

By_ Theorem 4.4 this implies the real and imaginary parts are differen-

Hable aimost everywhere in [-1r ,1r]. Therefore F(6) is differentiable 

almost everywh'.ere there. It will then be shown that 

lim f{rei 8) = F'(S) 
r+l 



for those values of e where the derivative exists. This implies 

that C (f ,e16 ) is degenerate for almost all e. 
p 

The assumption will be made that f(O) = 0. If this is not the 

case, the function f(z) - f(O) can be considered. Define 

( 4. 5 . 1) F (p, 6) = J
e . 
O 

f (pelt) dt 

ie 

Jpe f (z) 
= ~dz 

;I.Z 
p 

where O < p < 1. 

38 

and the path of integration is taken along an arc of C. Now f(O) = 0 
p 

implies f ~z? is analytic in U (i. e, has only a removable singularity). 
lZ 

Therefore the last integral of 4. 5 .1 may be taken along any contour 

i6 from z = p to z = pe which lies entirely in U. In particular 

(4.5.2) F(p,n) = F(p,-n) 

Let M be the .bound on f, Then 

( 4. 5. 3) .· 

. Je+M .t 
=I 

6 
f(pe 1 )dtl<Ml6ej 

· e · e 
where jf(pe1 ) j<M by Schwarz's lemma and the fact Jpe1 J<l. Consider 

the annular sector (see Figure 6) connecting the four points p, 

i6 i6 p+6p, (p+6p)e , pe Integration around the boundary' of this 

sector gives 

(4.5.4) 

Therefore 

J.p+6p 

p 

f~z) dz 
lZ 

ie 

J(p+6p)e . f(z) 
+ · .......,..--- dz+ 

lZ p+6p 

ie 

Jpe f (z) d 

( 
A ) i e ""'I'z"" Z p+Llp e 

JP f_(z) dz= 0 
+ i8 lZ 

pe 



so 

(4.5,5) 

~·-ie 

(p+tip) e 

i8 pe 

ie 
e 

p p+tip 1 

Figure 6. 

· i8 i8 

IF(p+tip,8)-F(p,8) = ,rp:tip)e fi~) dz ~ re fI;) dzl 
p+up p 

i8 
·j.J(p+.tip)e f(z) 

= ie ~z -
pe . 

Jp+tipf(z) · I 
-,---,-- dz 

1Z 
p 
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i8 
< J(p+tip)elf~z)I dz+ rp+tip!f~z)ldz<2Mjtipl 

p 1Z Jp 1Z 

IF(p+tip,8) - F(p,8) l<2Mltipl 

Now 4.5.5 is essentially a Cauchy condition as p-+l so F(p,8) converges 

uniformly to a continuous function F(e), -TI< e < 11, Result 4.5.3 

implies 

lim IF(p,8+ti:~-F(p,8) I = IF(8+~:)-F(8) I < M 
p-+l 



so F(S) ha~ its difference quotients bounded. By Theorem 4.4 F'(6) 

exists almost everywhere on (-1r,1r). 

It remains to be shown that 

If O~r<p<l then 

lim f(rei 6) = F'(6). 
r+l 

·e 1 J1r · ·t 2 2 
f(re 1 ) = 2-ir" · f(pe;i. ) 2 P -r. 2 dt. 

-1r p -2rpcos(t-e)+r 

For convenience let 

2 2 
p ( p -:r 

P t-6) = --=---------= r 2 · 2 
p ~2rpcos (t-e) +r 

Then integration by parts gives 

But F(p,1r) = F(p,-TI") and 

implies 

(4.5.6) f1T d 
-1rF(p,t)dt(P~(t-8))dt for p > r. 

Thus tak,i~g a limit as p+l in 4.5.6 yields 

ie 1 f1r d . f(re ·J = - 2-rr F(t)dt(Pr(t-8))dt 
-1T 

where 

= p~ (t-6) r 
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Let 80 be such that F' (80) exists. Nb generality is lost if 80 is 

a:s~umed to be O because all of the preceding arguments apply to the 

function P(8-8o) considering Fas a period,ic function. 
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Therefore the following work will deal with F' (0). If z is real 

(i.e. z = rL · then 

(4.5;7) 
. 1 J1T d . 

f Cr) = - 21r° P(t) dt (P 1 (t)) dt 
-1T . . 

Consider .the special case f'.(z) = k, a constant. Here 
·) 

k = ~1T . f 1T k Pl (t) dt 
-1T 

·.and integration by parts gives 

k(l-r2) 1 J1r d 
k = . . . . 2 ~ 2TI -1T·kt dt pl (t-8)dt. 

1+2rcose+r 

Now let; k 1 and e = O; then 

(4.S.8) 1 = l-~2 
2 - k ·J1T t k Pl(t)dt 

1-2r+r -1T 

and 

(4.$.9) 

Combining 4.5.7 and 4,5.9 gives. 

(4.5,lO)f(r) - F'(O) = -F'(O)i:~ - ;1T J:1T [F(t)-tF'(O)J(!t P1 (t))dt. 

The object now isto show 

limjf(r)-F'(O)j = 0 
r-+1 . 

and once this ~s ~hown the proof is complete. Let 

(4.5.11) 111. (dP (t)) 
HJr,11.) = - ~1T , -A [F(t)-tF' (O)] !t. . dt 



1 
(4.5.12) J(r,A) = - 2'rr J-A (dP (t)J 

-1f [F (t;) -tF' (0)] !t .. dt 

i 
i 
'· 

1 f 1r [ dP 1 (t) 1 
- 2,r A [F(t)-tF' (O)] -h--j dt. 

In this notation 4.5.10 becomes 

(4.5.l3) .I f ( r) - F ' ( O) I .: I F ' ( O) I i; ~ + I H Cr , A } I + I J ( r , 11) I 

Note F(p,O) = O and 

Th:us 

FI (O) 

where 

Therefore 

(4.5.14). 

F(O) = lim F(p,O) = 0 
p-+l 

= F(t)-F(O) + n(t) = F(t) + n(t} 
t t 

lim n(t) = O. 
t-+O 

F(t)-tF'(O) = tn(t) 

Substitution of 4.5.14 into 4.5.11 gives 

thus 
A . 

1 
· IH(r,A) I.: 21r sup{ In (t) I} f t (!t P1 (t}) dt I 

-A<t<A -A 

and 4. ~. 8 gives . 

]H(r,A) 1.:. sup{ ln(t) I} 
-A<t<A 

. 2 
l· - 2r + r 
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(4.5.15) 

so 

independent of r. 

Note 

and for A< It I <11 

and 

)H(r,A)I .:.,2r sup{)n(t)I} 
l+- -A<t<A 

r 

lim )H(r,A) I = 0 
A+O 

cost< cos A 

-2r(l-r2)sint 
2 2 (l-2rcost+r ) 

l-2rcost+r2 > l-rcosA+r2 > sin2A 

where the last inequality follows because l-2rcost+r2 attains its 

minimum as a function of r when r = cosA. Therefore 

(4.5.lo) 

Now 

j FCe)-F8(o) I <Mand F(O) = 0 implies 

JF(8) I < M Je) and therefore 

( 4. 5 .17) jF(8) I..::_ Mn for lei < 11 

A combination of 4.5.17, 4.5.16 and 4.5.12 gives 

2 
I I 1 . 2 (1-r ) 
J (r, A) <211 • 211 [Mn+nF' (0)] . 2 ·· 2 

(srn A) 
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(4.5.18) !J(r,;\) I < 2n[t4+F' (O)] 

(sin2>-) 2 

Therefore by 4.5.18, 4.5.15, and 4.5.13 

where 

1 r 2n[M+F'(O)](l-r2) 
!f(r)-P'(O)!<IF'(O)l 1:r + !H(r,>-)1 + ---''----'--'-"---------'-

lim IH(r,>-) I = O. 
)--+0 

(sin\) 2 
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So for suffic~ently small >- such that /H(r,>-) I <s/3, choose ro such that 

I 11-r 2n [M+F' (O)] (1-r~) 
·F'(O) r < s/3 and < s/3 

+r 0 (sin2>-)2 

Therefore for ro <r<l 

lfCr)-F'(O)I < s 

and the proof is completed. 
(JO 

With each function f belonging to H , an auxiliary function will 

be associated. This function is defined on C and agrees with the 

radial ~imi ts of f at each point where the limit exists. This function 

will be referred to as the boundary function of f. It is easy to see 

that there may be many different functions which would qualify. For 

the purposes here any representative will do. 

Definition 4. 6. 
(JO 

Let fsH and define a function f* on C such that 

f*(ei 8) = lim f(rei 8) 
r-+l 

wherever the limit exists. f* is the Fatou boundary furtctioh. 

Of course from Fatouts theorem, f* agrees with the radial limit 

for almost all 8. However, since it must only agree with radial limits, 



there is no guarantee that f* is in any way a continuous extension 

off to the unit circle. In fact, it will be shown later that it is 

possible to have a function fEH00 such that C(f,ei 8) is non-degenerate 

for each e. In spite of its possible lack of "nicer" properties 

it can be shown in general that f* is integrable and describes f. 

The next two theorems could be called the integral formula and 

maximum modulus theorems off with respect to f*. 

Theorem 4.7. 
00 i8 

Let fEH and z = re EU. Then 

f(z) = 1 r f* c I;) di; = 1 
hl JC l;-z 2n 

J
TI , l 2 

f*(elt) 2 -r dt. 
-n l+r -2rcos(8-t) 

Proof; frH00 implies .there exists an M>O such that I f(z) I <M for ZEU. 
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f analytic in U gives the usual Cauchy integral representation for 

closed Jordan curves lying in U. So fix z = reie and select r<r1<r2< ... 

with lim r = 1. Then 
n n-+oo 

f (z) = 

Now 
f(r eit) 

lim n 
it n""*oo r e -z n 

and 

1 
2ni f f(I;) di; 

l;-z 
c 

r 
n 

where I; = r e 
n 

it 

f*(eit) 
= it for almost all tE[-n,n] 

e -z 

it r e -z 
n 

M 

f*(eit) 
By the Lebesque dominated convergence theorem it is integrable 

and 

f (z) = 
1 

lim 2ni 
n-+oo J 

c 
r 
n 

f(I;) di; 
1;-Z 

e -z 
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The Poisson representation then follows the same way as in Theorem 4 .1. 

It is worth noting that if f(z) ie - 1, then ft(e •) = 1 and 
,,, '"~ 

(4.7.1) 1 (TI 1-r 
2 

1 = f(z) = Irr" dt, 
l+r 2 -2rcos (8-t) 

Theorem 4.8. 00 
1. ie I If fEH and f*(e ) < M for almost all 8E [-rr ,rr]; then 

I f(z) I <M or is constant of absolute value M everywhere in U. 

Proof: j3y the previous theorem, the Poisson integral representation 

off with respect to f* is 

1 
f (z) = Irr" 

f*(eit) (l-r2) 
2 l+r -2rcos(8-t) 

This statement and 4.7.l yield 

I f ( z) I < M for z EU. 

dt O<r<l 

Now consider any smaller disk D , O<r<;l; then f is analytic on the r 

closure of this disk and must therefore assume its maximJ.l)Il on the 

boundary C or be a constant of absolute value Min D. Since this r r 

is true for each O<r<l, I f(z) I < M or is constant in U. 

It was proven in Chapter III that a Blasc;;hke product is a bounded 

analytic function and therefore has a Fatou boundary.function. Theorem 

i6 4.11 shows that its boundary function B*(e ) has modulus 1 almost 

everywhere on C. It will be noted, however, that an example has already 

been given such that oE:c (B,ei8) for e rational (see Example 3.11). 
p . . 

Therefore this Blaschke product fails to have a radial limit of modl,llus 

1 at a countable number of points of C. The following two theorems 

are preliminary to Theorem 4.11 mentioned previously. The first of 

these is a theorem from measure theory called Fatou 's Lemma. Al though 
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credited to the same person, it not intended that there be any direct 

connection between it and Fatou's theorem on radial limits. The·second 

of these two theorems establishes -a relationship between the integral 

of the logarithm of the absolut~ value of a function artd the integral· 

of the_logarithm of the absolute value of its Fatou boundary function. 

It will be of later use -in Chapter V also. 

Theorem 4 .. 9 .. (Fatou' s · Lemma) . If <f > is a sequence of non~negative 
n 

measurable functions and f (x)-+f (x) almost everywhere on a set E then 
n 

r fdµ .::.. lim J 
E · . E 

f dµ. 
n 

Proof:._ See Roy den, page 72. 

00 

Theorem 4. 10. Let fE:H ·; then 

1 J'TT . t 1 J7f . . t 
loglf(O) J .::_ 2TI logJf{re1 ) Jdt .::_ 271' _. loglf*(e1 )jdt; 

-1f -1f 

and if f is such that .O<m< J f (z) I < M < 00 for each ze:U then. 

loglf(O)I ::: ~7f r loglf*(eit) jdt 
' -1f 

Proof: By Jensen's theorem 

1 J1r . '. t N 
2-ir. logJf(re1 ) jdt ::: I: log -rf-r + logjf(O) J for O<r<l 

-TI 1 1anl 

r r KT > 1 and log Ta::T > 0 therefore 
n n 

But Jan I <r implies 

(4.10.1) logjf(O) I.::., ~1r J1r logjf(reit) Jdt. 
-1f 

r Again by Jensen's theorem 1;1nd '"fa:T > 1 the integral in the right member 
n 

of 4.10.l is a non-decreasing function of r. Without loss of 

1 . l 
generality, . assume j f j _::., 1 so Jff .:_ 1 anc;i log Tif .:_ 0. By Fatou' s Lemma 



JTI log 1 dt < lim ·JTI_Tilog 1 't dt 
- TI I f * ( e it) I r+ l I f ( re 1 ) I 

This implies 

JTI 't JTI . 
lim loglf(re 1 )jdt ~ loglf*(e 1 t) ldt 
r+l -7T -TI 

and because the integral in the left member is a non-:-decreasing 

f-t,mction of r 

JTI logjf(reit) ldt ~ JTI logif*(eit)jdt for O<r<l. 
-TI ~TI 

Now consider the second part of the conclusion of this theorem. 

If O<m< I ;f(z) I <M, then f is non-zero in U and as was ~hown in Jensen's 

theorem; log If J is harmoni.c; Therefore 

Now 

and 

1 JTI . 
I I . . lt 

log f (0) = ZTI log I f(re JI dt for O<r<l . 
.., TI 

jlogjf(re1t)IJ .:_max{jlog ml,llog Mj} 

lim (logjf(reit) I) = logjf*(eit}I 
r+l 
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for almost all te: [-TI, TI] . . By the Lebesque dominated convergence theorem 

J1T . JTI 't 
lim · logjf(re1 t) jdt = logjf*(e1 ') ldt 
r+l ~TI -1T 

apd the conclusion follows. 

Theorem 4 .Jl. If B(z) 
·e 

is a Blaschke product then IJ3*(e1 ) I = l for 

almost all ee:[-TI,TI]. 



Proof: If .B is a finite ,Blasc;hke product, then it is analytic.at all 

points of U and· each factor _has me>dulus 1 on C •.. Therefore in this· 

case B has modulus 1 everywhere on c. 

If Bis an infinite Blaschke product, arrange {a} such that 
n 

O<a <a for n = 1, 2, ... n...- n+l 'It has been shown in Theorem 3. 7 

that TI I an I >O which. 
1 . 

implies liml a11 I 
n-+oo 

00 

BN(z) = II 
N 

:::: l, Consider 

a :-Z la I n n 

1-"S: a z n n 

B~z) .. 
Then BN(z) is a ;finite .Blas~hke product .. Therefore acco.rdi_ng to 

statements about fil}ite ,Blaschke products in the. first paragraph 

this proof 

lim [J'fT logjB(rit) jdt-J7T logjBN(eit) jdtJ = lim .J'fT log B(rei:~ · 
r+l -'IT -7T r+l . -'IT BN(re ) 

. = log lim . .·· it dt = log 1 dt = 0. J'fT : -
1

. [B(reit) ] 1· J'fT. · 

· -11' :r+l _BN(re ) -'IT 

Using this result and Theorem 4, io gi veg 

= limf'fT logjB(reit)ldt ! .J'fT logjB*(eit)jdt 
r+l -:TT . -,7T 

the 

of 

dt 

Since I B (zJ:I .:_ 1 the s~e is irue of B* and the last int_egral is less 

than or equal to zero. _The condition that limlanl = 1 implies 

Therefore 

n-+oo . 

lia. logjBN(O)j = O. 
N-1«> 
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so 

"t 
and this coupled with the fact log IB-1; (e 1 ) I .:_ O (at least almost 

everywhere) implies 

almost everywhere and 

almost everywhere. 

The following th.eorem and its corollary establish a uniqueness 

theqrem of F. and M. Reisz. The important result is that two distinct 

functions from the class of bounded analytic functions on U can have 

their Fatou boundary functions agreeing on at most a set of linear 

measure zero. 

Theorem4. 12. 
00 . . i8 

Let fe::l-I and f* (e ) = 0 on a set of positive measure 

then f is identically zero on U. 

Proof: If f is not identically zero, then without loss of generality 

it can be assumed f (0) 'l O, for if this is not the case, consider 

f(z). where k is the order of the zero at z = Di By Theorem 4.10 
zk . 

and this assumption 

(4.12.1) - 00 < logif(O)i .:_ ;1r r logif*(eit)idt 
. -7T 

Under.the hypothesis there is a set E of positive measure such that 

f*(ei 8} = 0 for 8e::E C [-1r ,1r] so 

Also f bounded implies f* is bounded at least almost everywhere so 
I 

f . log!f*(eit) !dt < oo 

[ -1r ,nJ,E 
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Therefore 

(1T • t J . t J . t J loglf*(e1 )jdt = loglf*(e1 ) ldt + Eloglf*(e1 ) ldt = - 00 

-1r [ -1r '1T ]'\E 

which contradicts Statement 4.12.1. So f - 0 on U. 

00 

Corollary 4.13. Let f, gEH with f* = g* on a set of positive measure; 

then f(z) = g(z) for all ZEU. 

00 

Proof: f-g belongs to H and f*-g*=O on a set of positive measure. 

By the previous theorem f(z)~g(z)=O for ZEU. 

The remaining portion of this chapter makes use of the Fatou 

Boundary Function to establish some interesting results regarding 

the cluster set of a function alo.ng an arc. 

Consider again the function 

f(z} 

z+l 
z-1 = e 

and recall that f approached zero within any approach between two 

chords at z = 1 even though C(f,1) = IT. This can be expressed another 

way, as follows: f approaches zero along any Jordan curve in U which 

terminates at z = 1 and is not tangent to C. It may be wondered if 

this is a special case, and the answer is no. It will be shown that 
00 

a similar result holds for any function belonging to H . That is, 
00 

if fEH and has a radial limit at some point, then it has this limit 

along any non-tangential approach. · This res4l t requires a number 

of preliminary results which will be developed now. 

Lemma 4.14. Consider the circle in Figure 7. There exists a function 

<P (z) such that 



j 

Figure 7. First Illustration for Lemma 4.14. 

i) ct> is a non-zero analytic function in the open disk which has . 

the circle as its boundary. 

ii) I ct> I is continuous at all points of. the closed disk exc.ept 

iii) lct>CzJ I 

iv) I ct>( z) I = k>. 0 on the open arc y 2 . 

Proof: A function g will be constructed.which is a11alytic in the 

open disk and such that Re (g) = u is continuous at all points of the 

closed disk except at z1 and z2 . In additiQn u(z) 

u(z) = log k 

on y 2 and u(z) <log k on Z'i z;z 2. Let ct>(z) .... eg(z) then 

I ct>(z) I = eu(z) 
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and the four desired results follow at once. 

Without any loss in generality, the circle will be assumed to be 

the unit circle C, Define 

't g(e1 ) ,. 

O on arc.~2 

and 

dt tor ie:U 
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Now consider a 'fixed zoeO. Then thete exists a n>O and· a ne.ighborhoocl 

N(Zo) such that I z-e1tl>n for z E N(zo) and e1tec. Let (Zo+h) E N(zo) 

then 

Now 

implies 

g(zo+hJ-g(zo) • leg k [J02 

h 2w , a1 
h(eit+Zo) d] 
it 2 't t ' 

(e -zo) (e1 - (zo+h) 

Note th.at· the absolute value of this last integral is le$s than 



which approaches zero ash approaches zero. 'I11erefore 

Cl.2 it 
g' (Zo) = log k f .· ~ +Zo . dt 

21T Cl.l ( 1.t )2 e -Zo 

so g is analytic for ZoEU. 

It has been shown in Theorem 4.1 that 

it ie e +re 
it ie e -re 

therefore 

u(r,e) i8 = Re (g (re ) ) 

_ l-r2+2irsin(9-t) 
2 

l+r -2rcos(8-t) 

Cl.2 2 
= log k J ;-r . dt. 

2 1T a.l l+r -2rcos (8-t) 

Since u is harmonic .in U, all that remains to be, shown is that q(r,e) 
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it is continuous as a function of two variables at each point e · · # z1 , z2 

an,d· h it . ~ . .,..--.. equals eit er O or log k as e hes on z1z3z2 or z1 z2 respective!>':. 

For case one consider a point eieo on the open arc ~ 2 . 

No generality will be lost if it is assumed that 80 = O. Since it 

ie ~ 11 is an open arc, there exists a n> 0 such that e £z1z3z2 for e < n, 

Now consider reie EN*'(l) C. N* (1) (see Figure 7), then 
e: n 

Cl.2 2 
(4.14.1) u(r,e) - o = 1~;k_ Jo. · 2 l-.r 

1 l+r -2rcos(8-t) 

Now a.1<t<a.2 and lel<n implies le -tJ>n and 

l+r2-2rcos(e-t) > 1+r2-2rcosn > sin2n 

therefore 

I 

dt. 

Ju(r,e)-OI < 
logk (a.2-a.) (1-.r) (a.2-a.1) logk 

< _____ ,,..._ -z-· -- < £ 

21Tsin n 2Tisin2n 

~ 
This implies u(r,e) is continuous at each point of the arc·z1z3z2 

and equals ·· 0 there. 



For the second case consider a point i 60 on the open a.re y 2 

and again, for convenience sake but without losl of generality\ let 
\ 

eieo = 1 (i.e. 60 = 0). Now there exists a n>O suca that Jel < n 

55 

I. 

Note this assumption implies a1<0<a2 and recall t~~t 

1 J,r 1-r2 - dt = 1 
Zir -,r l+r2-2rcos(e-t) 

i6 So for re e: N*(l)CN*(l) . e: n 

2 a2 2 
logk - u(r,e) = 1~:k J7T 1-r dt - logk f 1-r. dt 

-,r l+r2-2rcos(6-t) Z1r 0 1 l+r2-2rcos(6-t) 

rral 
(4.14.2) logk-u(r,6) = 1~~kU-1r 2 

1-:r dt+ 
l+r2-2rcos(e .. t) 

JTI 2 ~ 1-r 
2 . . dt . 

a 2 l+r -2rcos(6-t) 

By the same type reasoning as in case 1 

llogk-u(r,e) I < 

2 logk(a1+ir)(l-r) 
. 2 

logk(1r-a2) (1-r ) 
+ . .. .. 

2 . 2 
·rr sin n 2,r sir?J!l 

logk(2ir+a1-a2) 
llogk-u(r,6) I < e: 

2 . 2 ir sin n 

which approaches zero as e: approaches zero. 

,,--.... 
Lemma 4.15. Consider the function~ of Lemma 4.14 and the arc z1z4z2 

lying in the disk; then I <P(z) I = ko/ir for ze:02 where o is the 
. _........_ 

angle between the arc z1z4z2 and the circle as shown in Figure 7. 

Also k<j~(z)j<l at each point z in the disk if O<k<l. 

i6 Proof: Without loss of generality, let a1=0 so that z1=1. Let z=re 

......-- it i(t+~t) ,-.... . lie on arc z1z4z2 and e , e both lie on arc z1z2(i.e. a1=0<t<a2 



and O<t+6t<a.2). Take note that on the unit circle the length of an 
~ lt 

~ the same as the central angle at the arc .. Therefore z1e and 

z1ei(t+~t) are arcs of length t and t+6t respectively. Let wand 

A b h 1 h of z';"eit' and z,,,....'ei(t+b.t)' h , it' w+uw e t e engt s 1 1 ·w ere z1 , e and 

i(t+6t)' e are endpoints of chords as shown in Figu:r;e 8. Now consider -- - ......---.... it i(t+6t) d it' i(t+6t)' h" h triangles e ze an e · ze w 1c are similar and let 
"t • t I 

le1 -zl = p and le1 -z/= q. Then 

(4 15 1) 6w _ .9.. . dw = .9.. . ' ' 6t - p so dt p 

Now 

2 it 2 it ie 2 2 
p =le -zl =le -re I =l-2rcos(6-t)+r 

and similar triangles as shown in Figure 8 imply 

So 

2 
pq = (1-.r} (l+r) = 1-:r . 

2 .9.. = .E.9.. = __ l_-_r __ . __ _ 

P p2 l+r2-2rcos(6-t) 

Combine this result with 4.15.1 to find 

dw l-r2 
dt = 2 

l+r -2rcos(6-t) 

Therefore 

2 
2 1-r dt w(t) 

l+r -2rcos(6-t) = ~ 

........ 
Note here that w(a.2) is the length of arc·z 1z2. 
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z ' 2 

Figure 8 

Figure .9 
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-(~ 

Figure 10 

Now recall from plane geometry that an inscribed angle subtends 

an arc twice its size in angular measure, From Figure 9 it is seen 

that 

and a. = y+S. In Figure 10 it is seen that arcs ~ 2, bz 2 an<l qz2 

have lengths 2o, a. 2 and 2a. respectively. Therefore 

These results yield 

(4.15.3) w(a.2) = 2s = 2(a.-o) = 2a.-2y = 2a.-a.2 = 2a.-(2a.-2o) = 20 

Now Statements 4.15.2 and 4.15.3 give 
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Cl2 2 

(4.15.4) 1 I 1-r 
2TI O l+r2-2rcos(8-t) t = 

26 cS - - - for 2rr - rr 

Therefore u(r,8) = 610! k 

constant on this arc, Thus 
cSlog k cS 

J cp (z) J = eu = e Tr 

It needs to be noted that 

i8 ---.. re sz 1z4z2. 

l-r2 l-r2 
~~~~~~~ > ~~ > 0 for O<r<l 

2 - 2 l+r -2rcos(8-t) l+r 

Let Q<k<l and refer to 4.14,1 and 4.14.2 which give 

u(r,8)<0 

and 

log k - u(r,8)<0 

Therefore 

logk < u(r,8) < 0 so 

and the proof of this lemma is complete. 

Lemma 4. 16, Let f be bounded and analytic in a Jordan domain S"l and 

at all points of the boundary r except possibly a set of linear 

59 

measure zero. Let g be a non-zero analytic function rl with O<m<g(z,)<M 

for zsS"l. Also let I g j be continuous at all points of ~ = S"l U r except 

possibly a set of linear measure zero on r. If lg(z) /.:.,Jf(z) almost 

everywhere on r then .I g ( z) I::_! f ( z) I everywhere in S"l. 



Proof: Since n is a Jordan domain, it is conformally equivalent to 

the unit circle U and the conformal mapping can be extended to a 

homeomorphism of U onto TI", which maps a set of linear measure zero of 

C onto a set of linear measure zero on r, In addition, if z1sn, 

then the mapping may be chosen so it maps O onto z1 , Let~: U+n be 

this function and define 

f 1 (z) = f(w(z)) 

Then all the conditions of the hypothesis apply to f 1 and g1 with 

respect to the Jordan domain U. By Theorem 4.10 

1 f'IT · e 
logJg(z 1) J = logjg1 (O) I ..::_ 2-rr, logJg*(e1 ) jde 

I -'IT 

and 

Now 'f 1 is_ analytic almost everywhere on C and I g1 J is continuous at 

all points of UVC except possibly a set of linear measure zero on C. 

Therefore 

almost everywhere on C and 

almost everywhere on C which implies from the hypothesis that 

almost everywhere on C, Thus 
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1 f 'TT • e · e (4.16.1) logjg(z 1) J-logjf(z1) I.::_ 2rr [logJg*(e1 ) j-log/f*(e1 ) J]de 
-'TT 

Since /f*I.:. lg*J almost everywhere on C logJg*J -logJf*J.::_O almost 

everywhere on C. Therefore the integral in 4.16.1 is non-negative 

and so Jg(z 1) l.:..if(z 1) I. Since z1e:n is arbitrary, the conclusion of 

the theorem follows at once. 

The next theorem, mentioned previously, shows that a function f 
00 

belonging to H can have at most one non-tangential asymptotic value. 

00 

Theorem 4.17. Let fe:H, Zoe:C, and Azo, Bzo be distinct chords at Zo, 

'TT-e: each of which makes an angle of ~2- with the radius at Zo, Also let 

!::::. be the set of all points interior to the angle AzoB which lie in U. 
e: 

If y is a Jordan arc such that y C !::::. and C (f ,z o) is degenerate, 
e: y 

then cl::,. (f,Zo) = Cy(f,Zo) 
e: 

Zo within !::::. ) , 
E: 

(Le. f has a unique limit as f approaches 

Proof: It will be sufficient to complete the proof for Zo = 1 

because ei 8f(z) will always give a rotation to this situation if 

8 f 0. Also without any loss of generality, it will be assumed 

C (f ,1) = {O} because f(z) - a can be considered if C (f ,1) = {a}. 
y y 

In addition assume 

I f ( z) / .:::_ 1 on U , 

Let A1 and B1 be midpoints of the chords Azo and Bz 0 respectively 
..-... ,,.,,-..... 

and construct circular arcs zoA1B and zoB1A as shown in Figure 11. 

Le.t o be the angle each of these arcs makes with the unit circle. 

For each n>O there exists a k>O such that 

(4.17.1) ko/TI < n 
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Also for each n>O there exists a circle D internally tangent to C 

at z = 1 such that 

( 4. 17. 2) J f (z) J < k for zq and ze:Q U D 

where Q is the open disk bounded by D. Let A' and B' be the points 

of intersection of Q with the two chords and A", B" be the midpoints 

of A' z0 and B 'Zo (see Figure 11). Now construct .circ4lar arcs 

z0 A"B' and zoB"A' . These. arcs meet Q in an angle of size a (see 

Figure 12). 

By Lemma 4 .14 and 4 .15 there exists a function cp1 (z) analytic. 

in Q with 

(4.17.3) 

(4.17.4) 

(4.17.5) 

(4.17.6) 

Similarly there 

(4.17.7) 

(4.17.8) 

(4.17.9) 

(4.17.10) 

exists 

k < I <1>1 Cz) I 
I <1>1 Cz) I 
Jcp1Cz)I 

J<1> 1 (z)I 

a function cp 2 

k < l<1> 2(zJI 

l<1> 2 (z)J. 

Jcp 2(z)J 

1~ 2Cz)I 

< 1 for ze:Q 
.,............ 

k on zoB' 

= 1 on i:'A il I 
ko/1r ,,--.... 

= on Zo,A"B I 

analytic in n such that 

< 1 for zd1 

~ 

= k on zoA' 

.---... 
= 1 on z0 A11B1 

ko/1r ...--... 
= on ZoB"A I ' 

y divides n int.a two domains G1 and G2 (see Figure 13) each of which 

is bounded by a Jordan curve r 1 and r 2 .. Statements 4.17.1, 4.17,3 

and 4.17.5 together with jf(z) J < 1 in U imply 
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.,,..,.~,,.---=----... -~......._,,~ ~ 

-~ 

Z o=l 

Figure 13 

The hypothesis for Lemma 4.16 is met and so 

(4.17.11) lf(z) I < 1~1(z) I for ZEG1 and similarly 

(4.17.12) 

Consider the lens shaped region which passes through points zo, A" 

and B'. Statements 4.17.4 and 4.17.6 imply 

for z in this region and similarly k < 1~2(z) I < ko/n. 

Now 4.17.11 and 4.17.12 together with this result gives 
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for z in this lens shaped region. This lens shaped region's intersec-

tion with~ forms a neighborhood of z = 1 relative to~ ; therefore 
E E 

since Eis arbitrary, f approaches zero as z approaches z = 1 within~ . 
E 

It should be pointed out that the proof of Theorem 4.17 was 

dependent on y being a non-tangential Jordan curve. If y had been 

tangent to Cat z = 1, then either G1 or G2 would not be a Jordan domain. 

It should be pointed out that although the angular domain~ was 
E 

taken to be symmetric, the theorem implies the existence of a unique 

limit within any angular approach to Zo. This is clear since any 

non-symmetric angular domain at Zo would always be contained in some ~ . 
E 

When a function does approach a unique value at Zo within any angular 

approach, it is said to have that value as an angular limit. 
00 

Since a function of H has a radial limit at almost every point 

of C, it must also necessarily have an angular limit at almost every 

point. 

The following theorem extends these ideas to show that if a 
00 

function belonging to H has an asymptotic value along a circular arc 

tangent to Cat Zo, then the function must have the same value as an 

angular limit. 

00 

Theorem 4.18. Let fEH and r be a circle internally tangent to Cat 
,,,...._ 

Zo, If f approaches the limit w along an arc B'zo of r then f has the 

angular limit w at Zo, 

Prbof: If f is identically zero there is nothing to show. So assume 

f is not identically zero. Without loss of generality assume 
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Figure 14 

W = 0, Zo = 1 

and f is bounded by one. Let Azo and Bzo be the chords on the boundary 

of 6 (see the statement of Theorem 4.17 for the definition of 6 ). 
E E 

Let A' and B' be the points of intersection of the chords Az 0 and 

Bzo with r. Let D be any point on G 1 different from Zo. Now 

construct a circular arc in U which is tangent to the chord A' Zo 

at Zo such that it also passes through the point D (see Figure 14). 

Let E be a point on this arc as shown in the figure. Now define 

(4.18.1) k = suwcz) I 
ZEZ 0 0 

k is non-zero since Zo f D and f is not identically zero. By Lemmas 



4. 14 and 4. 15 there exists a function ¢ analytic in the interior of r 

with 

(4.18.2) l<PCz) I 
-~~··-......, 

= 1 on ZoA'D, i<P(z) I = k on Dzo and J¢(z) I 

Notice that the arc z·~ED makes an angle of t/2 with r since it is 

tangent to the chord Azo, Now 4.18.2 implies !Hz) I < kc/ 211· in 
..... ~.~··,m·...... ,,..--,,,. 

the lens shaped region bounded by the two arcs ZoED and Dzo. Recall 

that f is bounded by one, This fact together with 4.18.1 implies 

If (z) I .::.. I ¢(z) I 

everywhere on r except Zo and D. Lemma 4.16 then implies 

If (z) I < I Hz) I 

in the interior of r. In the lens shaped region mentioned above, 

(4.18,3) JfCz) I < k"":! 2·11 

By hypothesis f approaches zero as z approaches Zo on the arc 

~-...... 
z0 B'. Therefore as D approaches Zo, k approaches zero and so does 

I t/2Tr < , This together with 4,18.3 gives ell (f,zo) = {OL Since c was 
c 

arbitrary f has the angular limit zero at Zo. 

It should be noted that an even stronger result was obtained. 

It was shown that f approaches zero from within the region bounded 

by the chord A'zoand the circular arc A'B'z~. 

Theorems 4.17 and 4.18 imply the existence of the following 

theorem which will not be proven in detail here. This theorem is 

the more general form of what has become known as Lindelof' s Theorem. 
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Theorem 4.19 ( lindelof IS Theorem). Let f belong to H 
00 

and approach 

limit w along some arc y lying in U and terminating at a point Z0 of 

c. Then f has the angular limit w at Zo, 

00 

In the notation of Chapter II, if f belongs to H then A(f,zo) 

is at most degenerate. In other words, f can have at most one asym-

ptotic value at a given point of C. z+l 
z-1 It was seen in detail that f(z) = e had an angular limit 

zero at z = 1 while C(f,l) = U. Also an example of a Blaschke product 

was given which posses.sed a radial limit of zero at z = 1. It will 

be shown in a later chapter that its total cluster set at z = 1 

is far from being degenerate, just as was the case with f. 

The following existence theorem is in some ways surprising, 

and coupled with the remarks in the last paragraph, it is even more 

so. It establishes that for any function defined on .U and any 

point e18 E:C, there always exists a simple arc along which the cluster 

set off is equal to the complete cluster set of the function at eie 
z+l 

For f(z) = r}z-1 there exists an arc y such that Cy(f,l) = C(f,1) 

but y must be a tangential arc, for by Lindelof' s Theorem, f must 

approach zero on any non-tangential arc. 

Theorem 4.20. Let f be any function defined on U and e18ec; then 

h . t ' 1 1 . . U d ' t' t ie h t ere ex1s s a s1mp e arc y y1ng in an term1na 1ng a e sue 

that 

Proof: 

needs to 

ie C(f,e ), 

Since it is always the case that C (f,ei 8)CC(f,ei 8), it only 
y 

i8 i8 
be shown that C(f,e )C\Cf,e ) , This will be done by 

choosing a sequence of points fznl such that 
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lim z 
n 

n+oo 

ie - e 
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and for WEC(f,ei 6), w is an accumulation pojnt of {f(z )}o In addition 
n 

{ z } is so constructed that I z I < I z 1 1 for all n; so join the 
n n n+ 

points of (z} by line segments in a sequential manner and let thjs 
n 

be Yo 

Consider fas a mapuing of U onto the Riemann sphere" Let T 
n 

denote a triangulation of the sphere with each of its triangles 

having spherical diameter less than l/3n, Let T l . , , , , T 
n nm 

·e n 
the triangles of T each of which meet C(f,e1 ) either in its 

n 

denote 

interior 

or on its boundary, Now consider what is the parallel set of each 

T . defined bv 
Ill 

Now T CS . and for each z1 z2ES . there exists z', z"sT . such that 
n1 n1 l n1 n1 

(4,20,1) iz 1-z 1 I < l/3n and !z2-z 11 J < l/3n 

Now z'. z"e:~T . implies 
, Ill 

therefore 

iz' - z"I < l/3n 

Now order the parallel sets as follows 

and denote this infinite sequence by re-subscripting as {Sj}" 
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- - ie ie r 11cs1 and T11 (1C(f,e ) f:. cp so there exists z1ENi(e ) such that 

f(z 1)ES1 . Now let r 2 < min (1/2, lei 8-z 1 J); then there exists z2EN;(e18 ) 

·e 2 
such that f(z 2)ES 2. Similarly for rn < min(l/n, Je 1 -zn_1 J) there 

exists z EN*(ei 8) such that f(z )ES o Because of the construction of 
n r n n 

the S 
n 

n 
and the increasing fine-ness of the triangulation for each 

i8 WEC(f,e ), each n and for each E>O there exists ZkEN;cei8) such 
n 

that If (zk) - w J < E. This completes the details. 

I 
---- __ ..... 

Figure 15 



OfAPTER V 

FUNCTIONS OF CLASS ,Jf 

00 

This chapter concerns those functions of H which have radial 

limits of modulus one almost everywhere, The class of functions with 

this property will be called class ,A,, The Fatou boundary function of 

a function of class,# must have modulus one almost everywhere on C. 

Theorems 3.3 and 4.11 imply that each Blaschke product belongs to 

class~, The function of Example 2 ,16 also belongs to~. From the 

maximum modulus theorem it follows that any non-constant function of 

this class is of modulus less than one everywhere in U, Intuitively 

a non-constant function of class ,.if is an analytic function which 

maps U into U in such a way that the following is true: The image 

of almost every radius is a Jordan curve lying in U and terminating 

at a p9int of C. The class it4 is clearly a very restrictive subclass 
00 

of H • but the exciting results which can be obtained for it make 

it worth studying. 

Definition 5. 1. A function f belongs to class ~ if it belongs to H00 

and Jf*(ei 6)i = l almost everywhere, 

The following theorem shows how one function of this class can 

generate a non-denumetable number of other functions of the class, 

Theorem 5 . 2. If fE: A, then 

exp (:~:~:~J c. iJ for each a, Jal = l 
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and 

Proof: Consider 

f(z)-a 

1-af (z) 
E ifJ, for each a, I al < 

z+a I I g(z) = ~. a = 1 

1 

Then g is a linear fractional transformation which maps the open unit 

disk onto the open left half plane. Of course f maps U into U. 

Therefore 

(f (z)) = f (z) +a 
g f(z)-a 

maps U into the open left half plane and 

Let 

Re [ g ( f ( z) ) ] < 0 • 

F(z) = exp (f(z)+a) 
f(z)-a 

jF(z)j = eRe[g(f(z))] < 1 for ZEU, 

Since g maps C onto the imaginary axis and 

almost everywhere• it follows that 

[ . i8 ] Re g(f*(e )) = 0 almost everywhere. 

Thus 

)F*(eie) I = llim exp[f(r<:)+aJ·1 = lim eRe[g(f(reie))] = eo 
r+l f(re )-a r+l 

almost everywhere. So F belongs to H00 and /F*(ei 8) I = 1 almost 

everywhere, which implies F belongs to 8/. 
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Let 

and 

h (z) = z-a 

1- az 

G(z) = h(f(z)). 

laJ< 1, 

Now his a linear fractional transformation which maps U onto U and 

C onto C. Therefore G maps U into U and 

ie ·e 
f*(e ) EC almost everywhere, so h(f*(e 1 )) € C and 

00 

almost everywhere. Thus G belongs to H and has radial limits of 

modulus one almost everywhere, 

The first theorem of interest states that at a singularity of a 

function of class ii}·, the cluster set is the closed unit disk. In 

Chapter III an example was given of a Blaschke product which had every 

point of C as a limit point of its zeros. This implies zero belongs 

to the cluster set at each point of C. Since the Blaschke product 

has radial limits of modulus one almost everywhere, it.follows from 

Theorem 5.3 that each point of C is a singularity and the cluster 

set at each point is U. 

The following theorem only requires the function to have radial 

limits of modulus one on an arc which contains the singularity. 

Theorem 5.3. Let frH00 with lf(z) l<l in U and let 
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almost everywhere on 

Then at every singular point eieo off on A 

P f W"th 1 f 1· 1 ieo 1 roo : 1 out oss o genera 1ty et e = . Since C(f,l) is 

. closed, it is sufficient to show we:C(f,l) for each w, lwl < 1. 

Suppose otc(f,l); then there exists a o > O such that 

So there exists N*(l) such that f(N*(l))nN0 (0) = cp. In other words 
Po Po 

lfCz)I > a for each ze:N* (ei 80 ). 
Po 

Since f has radial limits of modulus one almost everywhere on A, there 

exists p, O<p<p, such that f has radial limits of modulus one at eip 
0 

and e-ip. (See Figure 16). Now define 

qi(Z) = 

f(z) if ZE:F () U 
p 

1 if ze:F, u 
p 

ip -ip f* ( z) if z = e , e · . 

where F is the open disk with center at z = 1 which has its boundary 
p 

ip -ip pass through e and e . Then <P (z) is cont~npous on the boundary B 

of F so 
p 

F(z) - __.!__ f ~ dz;; 
~ 21fi B z:;-z 
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ip 
e 

Figure 16, The First Illustration to the Proof 
of Theorem 5.3 

Figure 17. The Second Illustration to the Proof of Theorem 5.3 
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is analytic in F . 
p 

Consider 

Jz/ = 1 + E and /z/ = 1 - E 

which separates F into three regions as shown in Figure 17 if Eis 
p 

sufficiently small. Then 

F(z) = ~1~ J ¢(E.2_ dz;:+ l 
2rri z;:-z 2rri 

R 

where R is the boundary of region 1 and R' is the boundary of the 

union of regions 2 and 3. If zERegion l then 

So 

F (z) 

1 
2rri 

¢(z;:) dz;:= 0. 
z;:-z 

= 2: 1. J ¢ (z;:} dz;: = -21 . f ~' = f (z) for ZERegion 1. 
" R z;:-z rr1 R z;:-z 

Since Eis arbitrary, F(z) = f(z) for each ZEF flu. Similarly 
p 

for each zEF"'-..U. 
p 

F(z) 1 
=--

Hence F'(z) is an analytic function in F which agrees with f in 
p 

F nu, and this contradicts the fact z = 1 is a singularity. Let 
p 

/woj<l;_then Wo~C(f,1) if and only if 

0 ~ C [f~)-Wo , ll, 
1-w.af(z) 

Therefore the proof is complete. 
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Fatou' s theoreni established the existen.ce of radial limits almost 

"" everywhere for a function of M. Th,e investigation here, for functions 

of class c/1,, will include a study of the actual values of the radial 

limits. It was shown in Chapter III that any function f belonging to 

"" H has a representation of the form 

f(z) = B(z)e-g(z). 

It will be shown that if f belongs to~. then so does e-g(z). Now 

and 

f*(eie) = B*(ei6 ) exp[lim(-g(rei6))] almost everywhere. 
r+l 

if*(ei 6) I = IB*(ei 6) iexp[lim Re(-g(rei·6))] almost everywhere. 
r+l . 

So it will be of interest to study the possible behavio'r of 

linl. Re(g(rei 6)). It should be noted that e-g(z) belonging to H00 requires 
r+l . 
only that e-Re(g(z)) be bounded above and therefore Re(g(z)) bounded 

below. Therefore g need not be a bounded analytic functio11; and.it 

ld t b · t t t 1 1 · ( ie) b * ( 16 ) Once 1' t wou no e cons1s en o rep ace 1m g re y g. e . 

has been shown that e-g(z) belongs 1:!o4, lim g(rei 6) exists and is 
r+l 

zero almost everywhere. Of course if f is a Blaschke product, then 

g is identically zero and of no interest, It is important, then, to 

distinguish between those functions which are Blaschke products and 

those which.are not: 

It will now be shown that e -g (z) belongs to Bf whenever 

f(z) = B(z)e-g(z) 

does and 
i6 lim Re(g(re )) = 0 

r+l 



almost everywhere, 

Theorem 5,4, If 

f(z) = B(z)e~g(z) 

belongs to JI.where B(z) is a Blaschke product, then e-g(z) belongs to 

JI; Re(g(z)) > 0 and lim Re(g(rei 8)) = 0 almost everywhere, 
r+l 

Proof: Since f£sfJ.,, _ 

almost everywhere, In Chapter III it was shown 

almost everywhere, Therefore the equation 

implies 

(5.4,1) 

l,f* (ei 8 ) j = I B* (ei 8) J exp [-lim Re (g (rei 8))] 
r+l 

exp[-lim Re(g(re18))] = l almost everywhere, 
r+l 

In Theorem 3, 8 it was shown that e -g (z) belo_ngs to H00
, Therefore 

Statement 5.4,l implies e-g(z) belo_ngs to,S#, By the maximum modulus 

theorem e-g is of modulus less- than one in U 6r is a constant of 

modulus one. In either case 

le-g(z)l = e-Re(g(z)) < l 

which implies Re(g(z)) > 0, Statement 5,6,1 implies 

lim Re(g(rei 8)) = o 
r+l 
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almost everywhere. 

Notice that Theorem 5.2 implies exp[::iJ belongs to/J since 

f(z) = z belongs. It is obviou~ that exp[::~) is not a.Blaschke 

product since it is non-constant and has no zeros. If it were not 

80 

for the absence of zeros, it would not be immediately obvious that the 

function fails to be a Blaschke product, The following theorem gives 
00 

a necessary and sufficient condition for a function of H to be a 

Blaschke product. 

00 

Theorem S.S. Let fsH; then 

lim fTI j1ogjf(re1t) ljdt = o 
r+l -TI · 

is a necessary and sufficient condition that f be a Blaschke product. 

Proof: Necessity follows from Theorem 4,11. Now suppose 

(5.5.1) 

Define 

lim,logjf(reit) I jdt = 0. 
r-+O 

{
log! f(z) J 

log+jf(z) J = 

\ 0 ... 
otherwise. 

Then 5.5.l implies 

J1T 't 
lim log+jf(re1 ) jdt = O. 
r+l -TI 

+ I it I Let r 1 < r 2 and note log f(re ) is continuous on C 
r2 

Define 



2 2 
r 2 - r 

--=-2------=2- dt. 
r 2-rr2cos(8-t)+r 

Then His harmonic in D with 
r2 

H(z) = h(z) = log+if(z) I 

for ZEC By Lemma 4.16, log+if(z) l<H(z) for ZED 
r2 r2 

Therefore 

Therefore for each r, O<r<l 

(TI . "t JTI "t 
0 ~ J log+if(re1 ) Jdt ~ lim log+lf(re1 ) ldt = 0. 

-TI . r+l -TI 

Since log+if(rit) I is non-negative, it must be identically zero in U. 

Therefore 

(5.5.2) log/f(z) I.::_ log+Jf(z) J = 0 and so 

(5.5.3) /f(z) I < 1 for ZEU, 

Now f = Bg where g has no zeros, gEH"'l\and B is a Blaschke 

product. Therefore 

logJlJ = logJBJ - logJfJ g 

Statements 5.5.1 and Theorem 4.11 imply 
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lim fTI log' 1 it ,d~ = lim fTI logJB(re1t) ldt+lim fn logjf(re1t) Jdt = 0 
r+ 1 . - TI g ( re ) r+ 1 - TI r+ 1 - TI 



The same reasoning as was used with the function f to show 5,5.2 and 

5.5.3 can now be used to show log/ g~z)I ..:_ 0 and thus lg~z)I..:. L 

Since it has already been noted that lg(z) I..:_ 1, it must be the case 

that lg(z) I = 1 for all z2U, So 

and therefore is a Blaschke product, 
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The following theorems and lemmas will provide the theory necessary 

to establish a desired integr~~ representation for Re(g). This re

presentation will then be used as an aid in investigating functions 

of the class(#. Lemma 5, 6 is really just a special case of Theorem 5, 7. 

Lemma 5.6. Let 

then 

Proof: Let 

and recall that 

Therefore 

and 

v(r,8) = .!.._ JTI t 
2n 

-TI 

2 
1-r dt 

2 
l-2rcos (t-e)+r 

lim ~ve = 1. 
r+l O 

P (t-8) = 
r 

2 
1-r 

2 l-2rcos(t-8)+r 

P (t-8) 
r 

e +re r it ie] 
= Re it i8 

le -re 

oo n 
= 1 + 2 Er cos n(t-8). 

/'IT 

v(r,e) = .!.... J t dt + ];_ f 
211 J -TI TI l 

.,;{.<C 1 

"Tf 

rn I t cos n(t-e)dt 
I ·-rr 
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v(r,8) = i E rn[(cos(n8)) JTI t cos(nt) dt + (sinne)JTI t sin(nt) dt]. 
1 -TI -TI 

"IT 

Nowt cosnt is an odd function so J t cos(nt) dt = O. Thus 
-TI 

where 

So 

and 

v(r,8) 

1 
a = -n TI 

oo n = I: a r sin(ne) 
1 n 

2 
v(r,8) = 2(rsin8 - ; sin28 + ... ) 

av 2 
38 = 2(r case - r cos 28 + ... ) 

av 2 
38 = 2Re(r(cos8+i sine) - r (cos28+i sin28) + ,, .) 

and 

lim 2 cz!1) ::: 1. 
z+l 

-= 2Rel' re~:i· ~ 
. "l+re1 

Theorem 5.7. Let f be an integrable function and 

If f'(So) exists, then 

l JTI u(r,8) = 2TI -Tif(t) Pr(t-e)dt. 

. {au J 
11.m [FeJ 
r+l 8=80 

= f' (80). 

z 2Rc(-1) 
z+ 



Proof: Note first of all that 

aP (t-8) aP (t-8) 
r (5.7;1) r ....,...,,_at--= - (l-r2)sin(t-8) = - ----2 2 (l-2rcos(t-8)+r) · a8 

Without loss of generality, assume 80 = 0 and f(O) = O and consider 

the case f'(O) = 0 .. Now there exists a function n(t) such that 

f'(O) + n(t) = f(t);f(O) 

with n(t)+O as t+O. Then tn(t) = f(t). 

(!~) = ;; J~ f(t) :t Pr(t)dt 
8=0 -1T 

: 2 
= ~1T J1r f(t) (l~r ) 2rsin~ 2 dt 

-1r (l-2rcost+r) 

= ;1T f tn (t) (l-r2) 2rsin~ 2 dt 
ltl<o (l-2rcost+r) 

+ ;1T f f (t) 

o<]tl<1r - -

(l-r2) 2rsint 
. 2 2 dt 

(l-2rcost+-r) 

For every e:>O there exists a o such that O<o<1r and in(t) i<e: whenever 

ltl.::_o. Therefore 

1r 

I I oe: J O (l-r2)2rjsintJdt 21re: 1· (l-r2)2rsint 
I 1 .::_ 21r 2 2 .::_ 2rr 2 2 dt' 

-o (l-2rcost+r) - 0 (l-2rcost+r) 

If ltl..:. o, then l-2rcost+r2 > l-2rcoso+r2 > sin2o where the last 

inequality holds because, as a function of r, l-2rcoso+r2 achieves its 

minimum at r=coso. So 

I I < 2M(l-r) 
12· - 2 sin o 
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Therefore 

( :~ J < E 

8=0 

and 

(5.7.2) 

(TT 2 fo (1-r )2rsin~ 2 dt + 2M(l-r) 
(l-2rcost+r) sin2o 

lim 
r-+l 

I( ~~J I - 0 
8=0 

If f' (O) ~ 0, consider 

F(t) = f(t) - f' (O)t; 

then F'(O) = 0 and 

. 8 . 8 1 r1T 
u ( re 1 ) -f' ( O) v ( re 1 ) = 2 F ( t) P ( t - 8) d t . 

TI J -'TT r 

Now F possesses all the conditions which were assumed on f to show 

5.7.2. Therefore if the same proof is applied to F, 

[~ - f' (0') clv lim 3 6 86] 
r+l 8=0 

Therefore 

au 3v 
lim [38] ·- f' (0) lim [38] 
r-+l 8=0 r+l 8=0 

= f' (0) 

where the last equality follows from Lemma 5.6. 

The following two theorems from measure theory are also needed 

to help establish the desired representation for Re(g(z)). 

Theorem 5.8. Let f be a non-negative measurable function and 

n (E) 
( 

= I fdt where Eis a Borel set. 
)E 

Then n is a measure on Borel sets and 

f xgdn = f xgfdt 
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for every measurable function g on X with range in [O ,oo). 

Proof: See Rudin, page 23. 

Theorem 5.9. Let{µ} be a sequence of countably additive set functions 
n 

defined for Borel sets such that O < µ (E) < M for each n, each Borel 
- n 

set E, and Ma fixed positive number. Then there exists a subsequence 

{ µ } such that 
nk 

lim µ = µ 
k-+oo nk 

is a non-negative, countably additive set function. 

Proof: See Tsuji, page 34. 

Theorem 5.10. Let u(r,8) be a positive harmonic function in U, then 

there exists a nondecreasing function x(8) such that 

1 (TI 

u(r,8) = 2rr J _
11
P r(t-8)dx(t) 

and lim u(r, 8) = x' (8) for each value 8c:{-TI, 11) such that x' (8) exists. 
r+l 

Proof: Let /z/<p<l; then by Theorem 4.1 

u(r,8) = r1T 2 2 
P - r u(p,t) 2 · 2 dt. 

J_TI p -2rpcos(t-8)+r 

Define an additive set function n by 
p 

np(E) = JEu(p,t)dt .:_ 0 where Eis a Borel set. 

Then 
2 2 

u(r,8) = P - r dn by Theorem 5.8. 
2 2 p p -2rpcos(t-8)+r 



Now consider the sequence {n } and note 
p 

n (E) < 
p 

(TI 

I u(p,t)dt = 2Tiu(O,O). 
) -TI 

By Theorem 5.9 there exists a subsequence {n } with pk-+1 such that 
pk 

lim n = n 
k+l pk 

where n is a non-negative, additive set function. Therefore 

u(r,8) = lim 
k-+l 

Now define 

2 2 

fc 2Pk - r 2 
pk-2rpkcos(t-8)+r 

dn = ·J P (t-8)dn. 
Pk C r 

x(8) = J8 dn = n([-TI,8]); then 
-TI 

x is non-decreasing and 

u(r,e) = JTI Pr(t-8)dx(t). 
-TI 

Note x (8) non-decreasing implies x.' (8) exists almost everywhere. 

Integration by parts gives 

u(r,8) .!__ JTI 
21T -TI 

t=TI 1 rTI a 
u ( r , 8 ) = ~ TI [Pr ( t - 8 ) X ( t ) JI + 2 Tf X ( t ) a8 P / t - 8 ) d t . 

t=-TI ' -TI 

From Theorem 5. 7, the last integral approaches x' (t) and the first 

term approaches zero as r+l, Therefore 

lim u(r,8) = x'(e) 
r+l 

at all points where x' (8) exists, 
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This theorem completes the ground work for the desired represe.nta-

tion of Rc(g). The following theorem is the desired representation. 

Theorem 5, il. If e-g(z) belongs to v'o/', there exists a non-decreasing -----···--·-
function x (8) with x' (8) = a almost everywhere such that 

i 8 1 rTT 
Re(g(re )) = 2n J_./r(t-8)dx(t) 

Proof: Since e-g(z) belongs to&f, it follows that Re(g(rei 8)) is a 

non-negative harmonic function. Theorem 5.10 implies there exists 

a non-decreasing function x(8) such that 

and 

(5.lLl) ie lim Re(g(re )) = x'(8) 
r+l 

for values of 8 where x'(S) exists. From Theorem 5.4 it is seen 

that 

(5,11.2) i8 lim Re(g(re )) = 0 
r·->-1 

almost everywhere. Statements 5.11.1 and 5.11.2 imply 

x:' (e) i8 = lim Re(g(re )) = 0 almost everywhere. 
r-+1 

The next theorem is not directly related to the theory of cluster 

sets~ however, it is needed to establish an auxiliary theorem, Consider 

a rectifiable curve with parametric equations X(t), Y(t), S(t) where 

S (t) represents the length, The following theorem is really a gener-

alization of the Pythagorean theorem. It is shown that at almost all 

points 



ex' Ct)/ + CY, Ct) l == (s, Ct/: 

In other words the sum of the squares of the instantaneous rate of 

change in the x and y coordinates is equal to the square of the in-

stantaneous rate of change of the length of the curve. It should be 

noted that the derivatives or instantaneous rate of change is taken 

with respect to the parameter t. 

Theorem 5 .12. Let I' be a rectifiable curve given by equations x=X(t), 

y=Y(t), ts[a,b] and let S(t) represent its length. Then 

(5.12.1) 2 2 2 (X'(t)) + (Y'(t)) = (S'(t)) for almost all t, ts(a,b) 

Proof: Since r is rectifiable X(t), Y(t) and S(t) are of bounded 

variation. Therefore X(t), Y(t), and S(t) are differentiable almost 

everywhere on (a,b). 

Now 

S(t+h)-S(t) ~ [(X(t+h)-X(t)) 2+(Y(t+h)-Y(t)) 2J1/ 2 

for each t, t+hs(a,b) because the arc distance is never less than the 

distance between two points on r. Therefore 

lim 
h+O 

S (t+h) -S (t) 
h 

> [Clim x(t+h~-X(t))2 + (lim Y(t+h)-Y(t))2]1/2 
h-+O h+O h 

wherever all three limits exist. So 

(5.12.2) S'(t) > [(X'(t)) 2+(Y'(t)) 2] 1/ 2 for almost all ts(a,b), 

It will be shown next that 

(S' (t)) 2 < (X' (t)) 2+(Y' (t)) 2 for almost all ts(a,b) 
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I y (I) I 

a b 

Figure 18 

Let A be the set of all points of (a,b) such that 

(S'(t)) 2 > (X'(t)/ + (Y'(t)/, 

For convenience, JI I will be used to denote the length of any finite 

interval I, and S(I) will denote the arc length of the segment corres-

ponding to an interval I, IC[a,b]. Also p will denote the distance 

between the endpoints 

Now define 

(5.12.3) 
An" f1w 

Then A = LJAn. 
n 

of the segment. (See Figure 18), 

[ c If i]l Ii 2 , 

0 1/2 

> ( ', iP I ) 2 J + ~· if td an~ 
jrj<! 

n 

Let n be fixed and E>O be arbitrary, Since r is rectifiable 

there exists a partition 

"' <t =b m 
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such that jIK J < ~ and 

(5.12.4) S C[a,b]) = 

where 

m 
Let L1S(IK) represent a deleted sum where the sum is taken only over 

K=l 
Those IK such that IJ/1An f ~. From 5.12.3 

(5.12.5) ;, S(IK) > ~. [jX(IK) 12 + IY(IK) 12]1/2 + ~. IIKI 
K=l K=l K=l n 

It should be noted that 

m 
and \{ 1)1 "fK. Let µ (An) denote the Lebesque measure of An. 

K=l 
5.12.4 and 5.12.5 imply 

m 
(5.12.6) µ(A) .::_ E' JIKI 

n K=l 

m 
< n E' (S(IK)-pK) 

K=l 

m 
< n E (S(IK)-pK) 

1 

Then 

< ne: 

for n fixed, .:>O arbitrary. Therefore µ (A ) = 0 for each n and 
n 

µ(A) = O. So for almost all ts(a,b) 

Consider a non-decreasing, non-constant continuous function F 

defined on a closed interval [a,b]. Suppose F' (x) = 0 for almost all 

x in (a,b). The Cantor ternary function is an example of such a 

function. Since F is non-constant F(b) - F(a) is a positive number. 

It is intuitively clear that the vertical change from F(a) to F(b) 

does not occur on the set of points of (a,b) where the derivative is 
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zero, . The remaining points of (a,b) constitute a set of measure zero 

which may be. further divided into three subsets of measure zero, The 

first subset is the set of points where the derivative exists and is 

a non-zero finite number, the second is the set of points where the 

derivative fails to exist and the third is the set on which the 

derivative is infinite, It will be shown that all of the vertical 
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change, F (b) - F (a) , occurs on the set of measure zero where the deri va-

tive is infinite, Therefore there must exist points where the deriva-· 

tive is infinite. 

The following theorem proves in detail the facts mentioned in the 

preceding paragraph. However, it should be mentioned that a more 

general form qf the derivative is considered which is self-explanatory 

in the proof of the theorem, 

Theorem 5,13, . Let F(x) be a non-decreasing, non-constant continuous 

function oni, [a,b] with f' (x) ,;,, 0 almost everywhere, Then there 
,;'; 

exists an X©€: (a,b) such that F' (xo) = oo 

' 
Proof: Define the following subsets of [a,b], 

A :::, {x I xe: (a,b) · and F' (x) = O} 

B "" {xJxe:(a,b) and O<F I (x) <co} 

c = {x I xE(a,b) and F' (x) does not exist} 

D = {xJxe::(a,b) and F' (x) "" 00} 

Letµ represent Lebesque measure, By hypothesis F'(x) = 0 almost 

everywhere on [a,b] so 

µ(B) = µ(C) - µ(D) = 0 

and 
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µ (A) = b - a. 

It will be shown that 

µ(F(A)) = µ(F(B)) = µ(F(C)) = 0 

and therefore 

µ(F(D)) = F(b) - F(a) > 0. 

Thus F(D) is a non-empty set and so is D. In fact D must be a non-

denumerable set of measure zero because the image of a denumerable set 

is denumerable and therefore of measure zero. 

As in the proof of the last theorem jI) and jF(I) J will be used 
I 

to represent the lengths of the intervals IC[a,b] and F(I)C[F(a) ,F(b)]. 

Let E be any subset of [a,b] on which F is differentiable and F' (x) < m 

where mis a positive real number. 

Let .: > 0 be arbitrary and define 

(5 .13 .1) En = {x J XE'.E and I HP I .:. m+i:: whenever JI J < * and xe:I} 

00 

Then E = (l E and E f=.E 
1' n n+ n 

such that E r~'G r"'( b) 
n'""' n''~ a' ~ 

(5.13.2) 

so lim E 
11"-,.oo 

n 
= E. There exists an open set G 

n 

µ(G) - µ(E) < E 
n n 

Since G 
n 

is open there exists a sequence {InK} of disjoint open 

1 00 

intervals such that I InK I < - for each K and G',UI K is at most 
n n K=ln , 

countable. G may not be equal to the countable union because of the 
n 

requirement 

J.l (G ) 
n 

00 

Therefore F (G Y,L) F(I K) is at most countable, 
n K=l n 

E IF (I k) I . 
K=l n 



It may also be assumed without loss of generality that I k{lE ~ ~ 
n n 

for each K. Then 5.13.1 implies 

and 

(5.13.4) E I F ( I K) I < (m+ e:) 'f I I KI . 
K=l n - K=l n 

Statements 5.13.2, 5.13.3, and 5.13.4 give 

µ(F(G )) = 'f jF(I K) I < (m+e:) 'f Ir Kl = 
n K=l n - K=l n 

and 

(5.13.5) 

Since e: is arbitrary 

µ(F(E )) < m µ(E) n n 

Therefore 

(5.13.6) 

(m+e:)µ(G ) 
n 

where Eis any subset of [a,b] such that F' (x) < m for each xe:E. 

Now define 

A = {xjxt.(a,b) and F'(x) < .!.} 
n -n 

Then A = {\ A . Statement 5. 13. 6 implies n n 

and since AC.A for each n 
n 

µ(F(A) <.!_µ(A) 
n - n n 

µ(F(A)) < µ(F(A )) <.!_µ(A) < .!_(b-a) - n -n n -n 
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Therefore 

(5 .13. 7) µ (F (A)) = 0 

Define 

B = {xlxE(a,b) and O<F'(x)<n} 
n -

and note that B = UBn, Bn+ FBnCB. Now µ (B) = 0 implies µ (Bn) = 0 for 

each n. By Statement 5.13.6 

µ(F(Bn)) < n µ(Bn) = O for each n 

Therefore 

(5.13.8) µ(F(B)) = lim µ(F(B )) = 0 
n-+co n 

It will be shown next that µ(F(C)) = O. Consider the curve 

r t x = x, y = F(x), xE[a,b] 

and let s(x) represent its arc length, Consider another parametric 

representation where the parameter t is the · arc le_ngth. Define 

X(t) = x if and only if s(x) = t, Then 

r : x = X(t), y = Y(t) = F(X(t)) 

where tE[O,s(b)] and S(t) =tis the arc length. By Theorem 5.12 

(5.13.9) (X'(t)) 2 + (Y'(t)) 2 = (S'(t)) 2 = 1 

for almost all tE[O,s(b)]. Now 

d F(X(t)) = F' (X(t))X'(t) so since X(t) = x 
dt 

F'(x) = F'(x(t)) = F' (X(t))X' (t) _ Y' (t) 
X' (t) - X' (t) 

95 



Recall that C is the set of x-values where F'(x) fails to exist. The 

corresponding t-values are those where Y'(t) or X'(t) does not exist 

and those where X'(t) = Y'(t) = 0, Statement 5,13,9 shows the set of 

t values is of measure zero, Therefore the set of points on. r corres-

ponding to the set Chas measure zero and 

(5.13.10) µ(F(C)) = 0 

96 

It should be mentioned that F'(x) = 00 where Y' (t) f O and X'(t) = 0, 

It is clearly possible that 

(Y'(t)) 2 + (X'(t)) 2 = 1 

could hold for such a value oft, Therefore Statement 5.13.~ cannot 

be used with reference to the set D as it was for the set C. 

Now F is non-constant and non-decreasing so 

O<F1b)-F(a) = µ(F(A))+µ(F(B))+µ(F(C))+µ(F(D)) 

and 5.13.7, 5,13,8 and 5.13.10 give 

µ(F(A)) = µ(F(B)) ~ µ(F(C)) ; 0, 

Therefore µ(F(D))>O and Dis non-empty, 

In the preceding theorem a general form, frequently used in 

measure theory, was used for the difference quotient, The form of 

the derivative was 

F'(x) = lim lffl.ll = lim 
IIl+o I µ(I)+O 

where I is an open interval containing x. 

symmetric derivative 

µ (F(I)) 
µ (I) 

This is equivalent to a 



F' (x) = lim F(x+6)-F(x-6) 
o-+O 28 . 

Therefore under the hypothesis of the previous theorem there exists 

a point where the symmetric derivative is infinite. 

The following theorem is the first of many exciting ones; It 

reveals the startling fact that any function of class I) which is not 

a Blaschke product must admit zero as a radial limit. Since such 

a function has radial limits of modulus one almost everywhere, it 
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follows that the point where the radial limit is zero, is a singulad ty. 

Theorem 5.14. Let feW, then if f is not a Blaschke product there 

exists an e180 eC such that C (f ,e1 80 ) = {O}. p 

11 ie Proof: felJ't so f = Be-g, Re(g(re )) > 0 and 

i8 lim Re(g(re )) = O 
r-rl 

almost everywhere. Now 

lim lf(rei6)j < lim IB(rei 6) Jexp {-lim Re(g(rei 8))} 
r+l r+l r-+l · 

ie ·e 
at points where lim Re(g(re )) exists. Since jB(re1 ) I < 1 it 

r+l 
fol lows that 

(5.14.1) lim If (re1 6) I .::_ exp {-lim Re (g (rei 8))} 
r+l r-+l 

The major part of the proof is to demonstrate that there exists a So 

such that 

. e 
lim Re(g(re 1 0 )) = oo 

r-+l 

11:, 



Then Statement 5.14,l implies 

and thus 

lim I f ( re i 8 0 ) ) I 
r+l 

-co 
< e = 0 

By Theorem 5, 11 there exists a non-decreasing function x (e) 

with x' (8) = 0 almost everywhere such that 

(5,14.2) i8 1 fTr 
Re(g(re )) = 2n -nPr(t-e)dx(t) 

Let 

It -el = 1-r = o<L 
2 

Since cosx>l x - 2 
2 1 2 

cos(t-8)>1 (1-r) r - 2 = - + r - 2 2 

Therefore 

2 3 2 3 2 2r cos(t-8)>2r +r-r and 1-r -r+r >1-2rcos(t-8)+r. 

This implies 

1-r2 
P (t-8) = -------=-

r 1-2rcos(t-8)+r2 

Thus 

1 1 >-=->O 1-r o 

i e > _1 J 8 + 0 1 !' 8 + 0 1 - ,.. 
Re(g(re )) P (t-e)dx(t)>"f1"" J dx(t) = 2n0 [x(e+o)-x(e-o)] 

- 2n e-o r Tr e-o 

Therefore 

(5.14.3) 
ie 1 - + 

Re(g(re )) > 2no [x(e+o) -x(e-o) J 

for r such that 1-r = o <1. 
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If x(e) fails to be continuous on (-n,n) there exists a 80, a real 

- + number m>O and oo>O such that x(eo+o) -x(eo-o) >m for each o, O<o<oo, 



Therefore 

·e 1 
Re(g(re 1 0 

)) > 2no m for O<o<oo 

and 

(5.14.4) ie lim Re (g (re O )) > lim 2!_ = oo 

r+l o+O 2no 

Now consider the case where x(e) is continuous and recall that 

x' (8) = O almost everywhere. x(6) is non-cons.tant because if it were 

constant Statement 5.14.2 would imply 

and 

Then 

i6 Re(g(re )) = 0 

i6 g(re ) = ia. 

f(z) = B(z}eia 

which contradicts the hypothesis that f is not a Blaschke product. 

Now x(6) satisfies the hypothesis of Theorem 5,13 so there exists a 

60 such that 

(5.14.5) lim x(60+8)-x(60-o) = 00 

8-+-0 28 

Statements 5.14.3 and 5.14.4 imply 

(5,14.6) lim Re(g(rei 80 )) > ~71 lim XC 60 +8)-X( 60 - 8) = oo 

r-+l 8+0 28 

Then 5,14,4 and 5,14.6 imply there exists a 60 such that 

lim Re(g(re160 )) 
r+l 

which was what was to be shown. 

= 00 
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Examples were given in Chapter III which illustrate that a Blaschke 

product may or may not admit zero as a radial limit. However, any 

infinite Blaschke product must necessarily have at least one point 

on C which is a limit point of zeros and therefore zero belongs to 

the cluster set at that point. Since a Blaschke product has radial 

limits of modulus one almost everywhere, any point of C which has 

zero in its cluster set is a singular point. Therefore, with Theorem 

5 .14 it is clear that any function of class I) which is not a finite 

Blaschke product, has a least one singularity on C. 

The following theorem is no less surprising than the previous 

one and it deals with functions of class ,p.). which are not finite Blaschke 

products. If such a function assumes the value w, Jwl < 1, at most 

a finite number of times, then w is a radial limit of the function. 

Theorem 5.15. Let fs,il and let f not be a finite Blaschke product. 

Then if f assumes the value w, lwl < 1 at most a finite number of 

times in U, there exists eieo such that 

Proof: Consider fsJ4, satisfying the hypothesis. By Theorem 5.2 the 

function 

F (z) = 
f(z)-w 

1-wf(z) 

belongs to#, Since f assumes the value w, at most a finite number 

of times, it follows that F can have at most a finite number of zero's 

(counting multiplicities). Therefore F is not an infinite Blaschke 

product. Since f is not a finite Blaschke product, it follows from 

previous remarks that there exists eieo which is a singularity off. 
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Theorem 5.3 implies 0EC(f,ei 80 ). This implies there exists a sequence 

{z }C: U such that 
n 

and 

Therefore 

lim z 
n-+oo n 

i8o = e 

lim f(z ) = 0. 
n n-+oo 

lim F(z) = -w 
n-+oo n 

. 8 
and so -wEC(F,e1 0 ). This indicates that Fis not a finite Blaschke 

product since any such product is analytic on C and of modulus one 

there. 

Since F is not a Blaschke product, it follows from Theorem 5 .14 

that there exists eiSo such that 

and thus 

Therefore 

lim F(rei 80 ) = 0 
r-+l 

lim f(rei 80 ) = w 
r-*l 

C (f,ei 80 ) = {w}. 
p 

:1 
There are examples of functions of class (W'which omit one value 

of the open unit disk. Such a function is 

f (z) = 

z+l 
z-1 e 

which omits the value zero. This possibility is not restricted to 

functions which fail to be Blaschke products, as an example will 
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illustrate. Another example will be given to show that a function of 

class t.H may admit two values of modulus less than one as radial limits. 

Example 5.16. Let 

and 

f(z) = e 

z+l 
z-1 

-1 
F(z) = f(z~;e , 

l+e f (z) 

then both functions belong to (if. Also 

F*(z) 
-1 

= f*(z)+e 
-1 l+e f*(z) 

Now f has radial limits of modulus one everywhere except at z = l and 

·e is 
where f*(l) = 0. This implies F*(e1 ) ~ 0 for each e sC. By the 

contrapositive of Theorem 5.14, F(z) is a Blaschke product. Now f 

omits the value zero so F omits the value e-l 

has a radial limit of e-l at z = 1. 

Example 5.17. Now consider the function 

F(z)+l G(z) - exp( · ) 
· - F(z)-1 

Also note that F 

where Fis the Blaschke product of the previous example. Note that 

e- 1+1 

e- 1-1 
G* (1) = exp 

and G omits the value zero. 
i8 . 8 

Now G*(e ) = 0 if and only if f*(e 1 ) = 1 

and this occurs at infinitely many points of C (see Example 2.16). Note 

also that z = 1 is a limit point of the set of points where G*(ei 8) = 0. 

The next theorems deal with functions such as those of the 

previous examples which actually omit values, If a function of,:/; omits 

one value, every singularity on C must either have that value 



as a radial limit or be a limit point of singularities, each of which 

has the value as its radial limit. Notice how strong this statement 

is, If the function has any isolated singularities, the radial limit 

at each must exist and be precisely the value omitted. This leads 

to the fact that a function of II,. which omits two values cannot have 

any isolated singularities. 

Theorem 5.18. Let f be a non-constant function of class,/;. Let eieo 

be a singularity off and 

Also let wsU and 

ie ie 
E = { e J f* ( e ) = w}. 

If f(z) r w for each z in U, then eieo belongs to the closure of E. 

Proof: Without loss of generality assume eie = 1. The proof will be 

given for w = 0. If w f 0, the proof can be applied to 

F (z) 
f(z)-w = --"---'---
1-wf(z) 

So assume f is non-zero in U and that z = 1 is a singularity 

off. Then 

f(z) 
D -g (z) 

= e • e 

since f has no zeros in U. Now 

Re(g(rei 8)) = ;TT r Pr(t-8)dx(t) = ~TT r Re [e~:+re~:1 dx(t) 
-TT -TI e -re J 

(See Statements 4. L 2 and 4. L 3 ,. ) 
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Also 
it ie e +re 
it ie e -re 

dx(t) is analytic in U. 

(See Rudin' s Real and Complex Ana,lysis, page 225.) 

Now 

Re(g(z)) = Re(h(z)) 
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so g and h differ by only an imaginary constant. Since h(O) is real, 

g(z) = h(z) + iv(O) where v(z) = Im(g(z)) 

It will be shown later that x(e) is non-constant on the interval 

{e:jej<E}. Then by the same technique as that used in Theorem S.14, 

there exists a So, jeoj < E, such that 

lim f(rei 90 ) = 0. 
r+l 

Since Eis arbitrary either f has the radial limit zero at z = 1 or 

z = 1 is the limit point of a sequence {ei9n} with 

ie lim f(re n) = O. 
r+l 

Therefore z = 1 belongs to the closure of E. 

It will now be shown that x(e) is non-constant on {e:lel<d. 

Suppose x(e) is constant on this interval. Then 

and 

ie 1 r€ e g(re ) =-
21T 

-1T e 

Consider e, lei<~ and t, 

it 

it 

it ie e +re 
it ie dx (t) = o 

e -re 

i8 
1 r +re dx(t) +-ie 21T -re € 

€ <ltl Then le 
it < 1T. -

it i8 e +re dx(t)+iv(O) i8 it e -re 

i91 € -re >4 for O<r<l. Let 



F = {t: E _2.ltl..:_ 7T} 

Then 

1 

f F 

it i6 

- ~1r JF 
it i6 

dx (t) I (5. 18. 1) e +re 
dx(t) e +e 

21r it ie it ie = 
e -re e -e 

1 J 2(r-l)ei(S-t) / 1 2(1-r) 
- dx(t) < - • = 21r F ( it ie)( it ie) - 21r E/4·E/4 e -re e -e 

16 (1-r) 
2 

E 
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for lel<f. Let Ebe fixed. Since Statement 5.18.1 is true for all e, 

jej<f, g(rei 6) approaches a unique limit along any approach to z = 1. 

This implies C (f, 1) .is degenerate which contradicts Theorem 5. 3 since 

z = 1 is a singularity. Therefore x(e) is non-constant. 

Theorem 5 .19. If fE .~ and omits two values of modulus less than one, 

f has no isolated singularities . 

Proof: 
. e 

Suppose e1 0 is an isolated singularity and f omits w1 and w2 

in U. Since eieo is an isolated singularity there exists a o such 

that 

for all e, O<leo-61'<0. This fact together with Theorem 5.18 implies 

f*(ei 6) must equal both values w1 and w2 which is a contradiction. 

The following theorem is a localization of Theorem 5.19 to those 

isolated singularities which are limit points of zeros. Not only does 

a function of cf+ with an isolated singularity omit at most one value 

in U, but it omits at most one value in the neighborhood of the 

singularity providing the singularity is a limit point of zeros. 



Theorem 5.20. If i 80 is an isolated singularity off, fr,.# such 

that eieo is the limit point of zeros off, then f omits at most one 
. e . 

value w, JwJ<l in each N*(e1 0 ). (i.e. lf'..R(f,e160 ) is at most e: 

degenerate.) 

Proof: W · th t 1 f 1 · 1 i 6 0 1 ou oss o genera 1ty, et e = l and 

. e 
A= {e1 I leJ<d 

be an arc on which the only singularity is z = 1. Now define 

F(z) = 

f(z) if ze:N*(l) 

if ze:N (17',U l . 

f(~l 
ZJ 

f* (z) if u:cn N (1) 
e: 

By Schwarz' s reflection principle, F is analytic everywhere in N (1) 
e: 

except at z = l, which is an essential singularity, artd at points Zo 

for which f(tJ = O where poles occur, Let {,} C N; ( 1) 

f(zk) = 0 and lim zk = 1. 
k-+oo 

Cl ' 
Then l zkJC: Ne: (1) and f. has 

.of these points, 

(5. 20 .1) Let f omit Wo, Jwol<l in N*(l), e: 

such that 

poles at each 

· e 1 
Note If* (e1 ) I = l for O< J e I <e:. So if F is to assume the value 

I Wo 
.!.... > 1, it must do so outside the closed unit disk. Suppose 
;;;- l 

there exists z 'e:N (1)'-..tf such that F (z') = This implies e: 
Wo 

(5.20.2) l 1 f (-1-) -= - and = Wa ·-
f(~) 

Wo z' 
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If z'e:N (l)\.U, l_ e:N*(l) which implies Statements 5.20.l and 5 .. 20.2 
£ -z I 

are contradictory. Therefore if f were to omit two values in N *(1), 
£ 

F would omit four values in N (1). This contradicts Picard's theorem 
£ 

which states that F can omit at most two values in N (1). 
£ 

Much has been said about the existence of points where the radial 

limit is of modulus less than one. The amazing fact is that any 

function of class,1/ must admit every value eia. as a radial limit and 

do so in each neighborhood of a singularity. 

Theorem 5.21. L f ..II d iSo b ' 1 ' f f et Efff an e ea s1ngu ar point o , Also let 

Then CC f* (A ) 
£ 

Proof: Let Woe:C; then 

i8 A = {e : l8-8ol<d. 
£ 

F CZ) = ex' p{ f (z) +wo} ./l 
f (z)-Wo £ {Pf ' 

Since ei8o is a singular point off, it is also a singular point of F, 

So F cannot be a finite Blaschke product and it omits the value zero. 

By Theorem 5.18, either F* (ei8o) = 0 or e i8o is the limit point of 

a sequence where F* is zero. Therefore there exists ei 81 e:A such that 

· e · e 
F*(e1 1) = O; and thus f*(e1 1) = Wo. 

Several of the previous theorems deal with values which are 

assumed by the function a finite number of times. A first guess 

might be that little 'can be said of a value which a function assumes 

infinitely often. However, the following theorem characterizes those 

functions of class ,IJ. which assume a value infinitely often and fail 

to have the value as a radial limit. 



Theorem 5.22. Let fE and suppose f assumes the value Wo, jwoJ<l 

infinitely often in U. If f fails to have Wo as a radial limit, 

then f is of form 

(5. 22. 1) f(z) 

Proof: Let 

g (z) 

= B(z)+Wo 

l+woB (z) 

f(z)-Wo 
= --=~--

1-wof(z) 
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Since Wo is not a radial limit off, zero is not a radial limit of g. 

By the contrapositive of Theorem 5.14, g is a Blaschke product. So 

let B(z) = g(z) and 

B(z)-woB(z)f(z) = f(z)-Wo 

f(z)(l+woB(z)) = B(z)+Wo 

f (z) = 
B(z)+wo 

l+woB (z) 

The following theorem establishes an amazing possibility. If 

a function belonging to Jf is not of form 5, 22, 1 then it must admit 

every value of the unit disk as a radial limit. This is not an 

empty subclass for Ohtsuka1 has constructed such a function, 

Theorem 5. 23. Let fr ,t+ If f is not of form 5, 22, 1 then f admits every 

value w, wEU as a radial limit. 

1M. Ohtsuka, "Note on Functions Bounded and Analytic in the 
Unit Circle". Procedures American Mathematical Society, Vol. 5 (1954), 
pp. 533-535. 
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Proof: If lwol<l and f assumes Wo a finite number of times, then f 

must admit Wo as a radial limit by Theorem 5,15. If f assumes the 

value Wo an infinite number of times, Wo is a radial limit by Theorem 

5.22. If JwoJ = 1 it follows from Theorem 5.21. 



CHAPTER VI 

SELECTED RESULTS IN A MORE GENERAL SETTING 

The theory presented in this chapter, although somewhat varied 

in its context, includes two very important theorems from the theory 

of cluster sets. It is because of their importance that they are 

included here. A problem will be given at the close of this chapter 

to illustrate the application of several of the major theorems 

presented in this paper. This problem, it is hoped, will illustrate 

the application of a theorem, in a local sense, to a function which 

does not satisfy the hypothesis over the entire region. 

The first theorem is auxiliary in nature and is needed to establish 

Theorem 6,2. This theorem deals with an arbitrary subset S of U. It 

states that there are at most a countable number of points on C 

where it is possible to find two arcs, one lying in Sand the other 

lying in u, S. 

Theorem 6.1. Let S be a subset of U and 

K :::: 

f i6 { : 

res and r 'CU'>,s 

·e ~ r• at e1 such that) there exist arcs r, 

Then K is countable. 

Proof: For each pair of rational numbers a and p, O<a<TI/2, O<p<l 

define the following set. 
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.,... 
!'eie I i8 there exist arcs f, f' ate with fC:S and 

f 'CU'S such that if s is the. endpoint of r and s' 

(6.1.1) is the endpoint off', then Isl = Is' I = P 

E = ap e - TI/ 4 < e 1T and < arg z + 4 

p < Jz I < I for z E fUf', z ~ s, s' 

e - Tr 
< arg ~' < e Tr 

4 + 4 - a < arg 

Figure 19 illustrates the definition of Eap' 
i8 It shows that e 

belongs to Eap for the given set Sin the figure and for the fixed 
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values of a and P. 
i 8 I 

The point e does not belong to Eap because it is 

impossible to construct an arc fr satisfying the definition of Eap· 

Define a set E~P in the same way as 

off and r 1 • Figure 20 illustrates 

Eap except interchange the roles 
• 8 I 

that e1 EE~p· It is possible, 

of course, that Ea6)E~P t ~. Since a and Pare rational, there are 

a countable number of sets of the types Eap and E~p· It will be 

shown that each of these sets contains a countable number of elements . 

.Then define 

i e i e 
K = {e J e EE ap, E ~P for each rational a and P; 0 <a<TI /2, O<p <I} 

and note that K is countable. 
i8 

It will also be shown that for each e 

h h b d h . f iS b h ' w ic elongs to C\K an eac pair o arcs at e , ot arcs intersect 

Sor both intersect U'_S. 

Consider a set ECC such that each point of Eis isolated. Then 

for each point of E there exists an arc on C containing that point 

of E and no others. Each of these arcs has a positive arc length 

and the sum of the lengths of all such arcs is less than 2rr. Hence 

there can be at most a countable number of such arcs, and therefore 
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\ 
.,_~~~---.__~~~~~~~--~~~~~~---~~!-1~~~~--

Figure 19. The First I l11,.1s tration for the Proof of Theorem 6 .1. 
The Shaded ~re.a Represents the Set S. 

i8 1 

e i8 
-·· e i(e 1 +2!.. -a.) 

~ 4 

~, ei (8 ' - ::;-1 

\ 

Figure 20. The Second Illustration for the Proof of Theorem 6.1. 
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countably many points in E. It will be shown now that each set E, is 
ap 

a set of isolated points and therefore countable. Let eiee:E and 
ap 

· ie r, r 1 be two arcs ate which satisfy the conditions in 6.1.1. Let 
. BI 

r;' = pe1 and note that· 6.1.1 implies arg 1; 1 = B'<e + ; - a. Now 
. e 

suppose there exists an e1 1 belonging to E such that 
ap 

(6. 1. 2) o < e - e1 < e 

This implies 

(6.1.3) 

Tr 
+ - - a 

4 
- BI. 

Since eiei belongs to Eap' there exists arcs r 1 and r1 at eiei which 

satisfy 6.1.1. Let r; 1 be the endpoint of r 1 with li;11 = p and 

Tr e1 + 4 - a < arg r; 1 as given in 6 .1.1. This result together with 

6. 1. 3 yields 

Tr argr;' = B' < e - a + 4 < arg1;1 

ie Now note that e1 < e and r' is an arc connecting r;' to e while r 1 
. e 

is an arc connecting 1;1 to e1 1 (See Figure 21,) These conditions 

and the fact the two arcs must lie in an annular section imply the 

arcs intersect. This contradicts the condition that r 1C:U'S and I'f=.S, 

Since e1 could be any value such that 6.1.2 holds, it follows that 

eie is isolated from the right. A similar argument can be used to 

h ie . . 1 d . E sow e 1s 1so ate in ap from the left. Therefore E ap is a set 

of isolated points and therefore countable. The same type argument 

can be used to show E' is countable. ap 
ie ie Let e belong to C\K and r 1 , r 2 be arcs ate Now suppose 

r fU\S and r fS. Now consider the sector 

{ I d Tr -7T} R = z ze:u an e - 4 < argz < e + 4 



and note that each of the arcs r 1 , r 2 must have subarcs which lie 

entirely in R. Therefore there exists a circle C , O<p <l, which 
p 

intersects each of these sub arcs. (See Figure 22,) Let r' and r 

be subarcs of r 1 and r 2 respectively such that each connects a point 

of C to eie and 
p 

p < Jzl < 1 for ZEf'Ur, z not an endpoint of r•, or r. 
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(See Figure 22.) Lets ands' be the points on C which are endpoints 
p 

of rand r• respectively. Without loss of generality, assume 

args' < args. Choose y such that yECP, args' < argy < args and 

e + % - argy= a is rational. Now yER which implies 

and 

e - * < argy < e + ; 

TI 
O < e + -- - argy= a< 

4 
TI 

2' 
ie Therefore all conditions of 6 .1.1 are satisfied for r and r' at e 

h . h . 1· ie E w ic imp ies e E ap 
Th . d. ie c K is contra icts e E \ . The ref ore for 

each point eie which belongs i6 to C\~ and every pair of arcs ate 

either both arcs intersect Sor both intersect U\S. 

It has been seen in the example 

(z+lJ f(z) = exp z-l 

that it is possible to find two arcs terminating at z = l such that 

the cluster sets along these arcs are disjoint. It will be recalled 

in this Example 2. 16 that CG (f, l)ncG (f, 1) = ¢ whenever r 'f r'. The 
r r' 

next theorem by Bagemihl is quite surprising. 



us 

Figure 21. The Third Illustration for the Proof of Theorem 6.1 

Figure 22. The Fourth Illustration for the Proof of Theorem 6.1 
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Theorem 6.2. Let f be an arbitrary function defined on U. Then there 

ie exists a subset K of C such that K is countable and for each e 

belonging to C\K with r 1 and r 2 any two arcs ate ie 

Proof: A spherical neighborhood on the Riemann sphere will be called 

rational if it has a rational radius and if the stereographic projection 

of its center is either infinity or a complex number whose real and 

imaginary parts are rational. There are only countably many rational 

neighborhoods on the sphere and therefore only countably many 

open subsets of the sphere each of which is the union of rational 

neighborhoods. Let the sequence {G} denote this collection of open 
n 

sets. Define 

S = {zjzsU and f(z)~G} n n 

By Theorem 6.1 there exists a subset K of C such that K is countable 
n n 

ie ie and fqr each e which belongs to C\K and each pair of arcs ate 
n 

00 

either both arcs intersect S or both intersect U\S . n · n Define K = U K 
1 n 

and note that K is at most countable. It will be shown that 

ie ie 
Cr (f,e )ncr (f,e ) f ¢ 

1 2 

·e ie 
for each e1 in C~K and each pair of arcs r 1 and r 2 ate 

ie ie Let e sC'\K and r 1 , r 2 be arcs ate . Suppose 

ie ie 
Cr (f,e ){)Cr (f,e ) = ¢. 

1 2 

Then for each wsCr (f,ei 8) there exists a rational 
1 . ·e 

on the sphere such that N(w)!Jcr (f,e1 ) = ¢. 
2 

neighborhood 

N(w) Since this is true 



for each such w, there exists a G such that 
m 

(6.2.1) ie 
Cr (f ,e )CG 

1 m 

and 

(6.2.2) i8 
Cr (f,e )C: Riemann sphere-.......G 

2 m 

k Let {r1} be a nested sequence of subarcs of r 1 whose endpoints 

i8 k converge to e , and let {r 2} be a similar sequence of subarcs of r 2 .. 

ie · e 
Now e EC,K implies e1 ~K for each n. Therefore for a fixed k, the 

n 
k rk pair of arcs, r1 , 2 either both intersect Sk or both intersect 

U\Sk. Therefore there exists an infinite sequence 

k. 
{er/ , 

k. 
r J)} 

2 

such that exactly one of the following holds: 

k. k, 
(6.2.3) r J 

1 
and r J 

2 intersect s for each j and for each n. n 

k. r rkj 
(6.2.4) J and intersect lf'\S for each j and for each n. 

1 2 n 

k. k. 
If 6.2.3 holds, then in particular r 1J and r 2J each intersect 

S . Consider the sequence {z.} such that 
m J 

these arcs were constructed, the sequence 

z. Ef 1()s . By the way 
J m 

ie {z.} converges toe and 
J 

by the definition of S , f(z.)~G for each j. Therefore · m J m 

and this contradicts 6.2.1. 

If 6.2.4 holds, then there exists a sequence {zj}cr2 such that 
· ie 

the sequence approaches e and f(z.)EG for each j. This implies 
J n 

llT 



Cr (f,ei 6)nG ~~which contradicts 6.2.2. 
2 m 

Therefore the supposition is false and 

It should be recalled that a value w is an asymptotic value of 

ie . ie f at e if there exists an arc r at e along which f approaches w. 

In other words, the cluster set along r is precisely {w}. It was 
0, 

shown in Lindeltlf' s Theorem that a function belonging to H has at 

most one asymptotic value at any given point of C. It is, of course, 

possible to find a function f outside the class H= such that f has 

two asymptotic values at some point of C. If a function has two 
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or more asymptotic values at a point, the point is called an ambiguous 

point. 

Definition 6.3. Let f be defined on.U. A point eie is an ambiguous 

i6 point off if f has two distinct asymptotic values ate . 

If eie is an ambiguous point of a function f, there exist arcs r 

and r' such that 

where w1 and w2 are distinct asymptotic values off at eie This 

ie implies that at any ambiguous point e 

However, by Theorem 6.2, this can occur at only a countable number of 

points. Therefore any function defined on U can have at most a 



countable number of ambiguous points. The following theorem states 

this fact and is known as Bagemihl's Ambiguous Point Theorem. 

Theorem 6.4. Let f be defined on U. Then f has at most a countable 

number of ambiguous points. 

Proof: Immediate from Theorem 6.2. 

00 

It has been pointed out that a function belonging to H has 

no ambiguous points. Theorem 6.6 shows that any meromorphic function 

which omits three values of the extended plane also has no ambiguous 

points. 

Lemma 6,5. There exists an analytic map 9f 

1 onto the open half plane. 

{zjz f O, I, oo} 

Theorem 6.6. Let f be meromorphic and nonconstant in U. Let f omit 

three values in U. Then if w is an asymptotic value off at ei6 , 

f has the angular limit of w at ei 6. 

Proof: It can be assumed without loss of generality that the three 

values omitted are 0, l, 00 • Let v(z) be the function of Lemma 6.5 

which maps {zjz f 0, l, 00 } onto the open upper half plane. Now 

consider 

1Rudin, pp. 322-323. 

F(z) = v(f(z))-v(i) 

v(f(z))-v(i) 
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Since v(i) lies in the upper half plane, v(i) lies in the lower half 

plane. This implies jv(f(z))-v(i) ]<Jv(f(z))-v(i)J and 

jF(z) J < 1 for ZEU, 

Therefore Fis a bounded analytic function, Furthermore, since f 

approaches the 

v(w)-v(i) 1 

ie limit w along some arc rate , F approaches the limit 

00 

-------------- a on g the same arc, Since F (z) belongs to H , Lindel"of' s 
v(w)-v(i) 
Theorem implies F has the angular limit v(w)-v(i) at ei 8 . As a 

v (w) .,.v (i) 

result, f must have the angular limit w at eie 

Corollary 6,7, If f is meromorphic in U and omits three values, 

f has no ambiguous points. 

Proof: Immediate from Theorem 6,6, 

The next theorem, called the Gross-Iverson Theorem, relates the 

ie ie 
function values to the values in the set C(f,e )'\CB(f,e ), It shows 

that a meromorphic function must assume all values of the set 

ie ie ie . C(f,e )\CB(f,e ) in each partial neighborhood of e with at most 

two exceptions, It can also be shown that each exceptional value is 

i8 an asymptotic value of f at e , In the familiar example 

z+l 
f(z) = exp z-l 

zero is such an exceptional value, It should be pointed out that 

ie ie . C(f,e )\CB(f,e ) may be empty, and in such cases the Gross-Iverson 

Theorem is of no interest, If f is a Blaschke product, or any 
'I 

function of class #J with a non-isolated singularity then 

·e ie 
C(f,e1 ) = CB(f,e ) = IT. 

The Gross-Iverson Theorem now follows, 



Theorem 6.8. (Gross-Iverson). If f is a non-constant meromorphic 

in U, then every value of 

i8 i8 C(f,e )'\.C8 (f,e ) 

is assumed infinitely often in each partial neighborhood N*(ei 8) with 
. E 

at most two exceptions. Each exception is an asymptotic value off 

i8 at e 
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Proof: Suppose there are three exceptions. Without loss. of generality 

let 

(6.8.1) 
i8 i8 O, 1, 00 s[C(f,e )'\C8 (f,e )] and 

N* (eie) be a partial neighborhoqd where f omits these three values. 
Po 

That is 

(6.8.2) 

It will be shown.that this supposition leads to the conclusion that 

f has zero and infinity i8 as asymptotic values ate , This contradicts 

Corollary 6.7. Therefore the supposition is false and f can omit at 

i8 i8 most two values of C(f,e )'.C8 (f,e ) in any partial neighborhood of 

i8 e 

It will now be shown with much effort that f has O and 00 as 

. l i8 asymptotic va ues ate . Recall 

i8 · ia C8 (f,e ) =n l}C(f,e ). 
n 'er< I e-al <n 

Since oic8 (f,ei 8) there exists positive numbers s 1 and o1 such that 

(6.8.3) lim 
ia z+e 
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for each ct, O<j8-aj<o 1 . Also 00 iCB(f,ei 8) implies there exists posi"" 

tive numbers s 2 and o2 such that 

(6.8.4) lim 1 
ia [jf(z) I ] > s 2 for each a, O<le-al<o 2 

z-+e 

(6.8.5) lim I f c z) I > s 
z-+e i ct 

by Statements 6.8.3 and 6.8.4. 

and lim 
i ct 

Z-+e 
> E: 

is is Now let p = min {p • o/2}, Then N*(e )C: N*(e ) and 6.8.5 holds 
o p Po 

ia i8 is fore sN (e ). ct F 8. By Statement 6.8.2 oo i f(N*(e )). This 
p p 

implies f is analytic in N*(ei 8). 
p 

Now consider the open sets 

(6.8,6) Hn = {zJzsU and Jf(z)J < 1/n} 

and let N be the smallest positive integer such that 

(6.8.7) 1/N < s 

wheres is the positive number in Statement 6.8.5. Note that 

H CH and 1/n < s for n>N, Now H can be decomposed into pairwise n+I n n 

disjoint open sets each of which is connected. Intuitively an open 

connected set is simply connected if it contains no "holes". If a 

component of H had such a hole, it would be possible to construct n . 

a simply connected domain which contains the hole and has its boundary 

in H. The maximum modulus theorem applies to this simply connected 
n 

domain and requires Jf(z)J < l everywhere. This contradicts the -n 

existence of such a hole, (6,8.8) 

simply connected set, 

So every component of H is an open 
n 
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It will now be shown that there exists an n>N such that component 

of H is co.ntained entirely in N*(eis). Suppose that the contrary 
n P 

is true. 
is is · 

Since OsC(f,e ), there exists a point z'sN* (e ) such that 
p p 

Thus z 'sHN . p +p 

supposition O p 

2p 

Let O be the component of HN which contains z'. By p +p p 

must also contain a point of U outside N*(eis). Since 
p 

O is connected (see 6.8.8), the frontier of O is a closed connected p p 

set. Therefore there exists a continuum K 
p 

iS O which connects a point of Jz-e I = p to 
p 

Now define 

lying in the frontier of 

a point of jz-eiSJ = e__ 
2P 

(6.8.9) K = n O K where K is a continuum lying in FrO , 
m p=m P P P 

. s 
O a component of HN , K connects a point of lz-e1 I = p to a point p +p p 

of 

and 

If Cz) I 

if ze:FRO . It will be shown in Lemma 6.9 that K is a continuum connect
p 

ing a point of 

·e iS 
lz - e1 I = p toe 

Let zsK; this implies ze: ('J K for each m. Thus there exists a p=m p 

sequence of points from a subsequence of {K} which converge to z. p . 

From 6.8.9 the function values of this sequence converge to zero and 
. s 

by Statement 6.8.2 0 ~ N*(e1 ). Therefore ze:C. In other words, although 
p 

K is the limit of a sequence of continua each of which lies in U, K 



lies on C. Thus K is an arc on C connecting a point of 

· e · ie 
Jz - e1 

J = p toe 

ia ia The statements above imply OEC(f,e ) for each e EK, a f e which 

gives OE c8 (f,ei 8). This contradicts 6.8.1. 

Therefore there exists a n>N such that 

(6.8.10) A component of H lies entirely in N*(ei8). n P 

Let G be such a component of H • Statement 6.8.3 and the fact 
n 

f(z) < 1/n < 1/N < E 

iS imply FrG does not contain any points of C except possibly e 

ie If e does not belong to the frontier of G, f is analytic at .each 

point of FrG as well as each point of G. Note that 

jf(z) I = 1/n 

·e 
for each ztFrG and that f(z) f O for zeGCN*(e1 ). These facts imply p 

by the maximum modulus theorem that f(z) is constant of modulus one 
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in G. This is a .contradiction to the hypothesis that f is non-constant. 

Thus 

(6.8.11) ei 9ePrG and FrG contains no other points of C. 

It is claintec:i that G contains a component of Hn+l' If GMln+l = ¢, 

(6.8.12) ..l._l < jf(z) I ( 1 for z~G. 
n+ - · n 

Now G is simply connected and therefore conformally equivalent to the 

open unit disk U. Let g: Ua+G represent this equivalence. Then 
00 

h = fog belongs to H and is a~so analytic at all points of C except 

g- 1(e18). In addition 



n:1 _::_ lh(z) I < ~ 

in U with 

-1 ie except at g (e ). By the Maximum Modulus Theorem 4,8 jh(z) I 1 
< -n 

or his constant of modulus..!. in U. 
n 

1 00 

Now h(z) also belongs to H 1 

h . h . l' I 1 I w 1c imp 1es jh(z) 
1 constant Qf modulus -
n 

<nor constant of modulus n. This gives h 

in U and thus f constant of modulus.!. in G. 
n 

This is a contradiction, so Hn+l has a component G1 contained in G. 

Consequently, there exists a.nested sequence 

(6.8.13) 

of simply connected open sets with 

jf(z) I < ..!. < ..!. < E 
p N 

for zr;:G , 
p 

i8 Under the same technique as that applied to G, e EFrGP 

for each p. 
00 

Consider a point z belonging to f\1 G , Then if z lies in 
P"" p 

If Cz) I 1 
< -p 

for each p == l , 2 , •• , 

ie which also lies in N* (e ) , However, Statement 6.8.2 implies this 
Po 

set of points is void. 

set on the boundary C. 

Therefore the sequence {G} converges to a 
p 

The fact that this sequence is nested in G 

and G only contains one point of C (see 6.8.11) implies 

125 



Therefore the diameters of the sequence {G} tend to zero as p-+co, 
p 

Now select a sequence {z } such that z EG and lz J < Jz 1 1 p p p p p+ 

for each p. Then because G 1CG , both z and z 1 belong to G . p+ p p p+ p 

Since G is an open connected set it is also arcwise connected. So 
p 

there exists an arc lying entirely in G which connects z and z 1. 
p p p+ 

Note that J f (z) J < ];_ for each z on this arc. The sequence of such 
p 

ie arcs forms an arc y 1 ate and f approaches zero as z approaches 

i6 e along y 1 . 

The same argument may be applied to f~z) to construct an arc 

· · ie 1 h. h l h Th f( ) y 2 terminating ate a ong w ic f(z) approac es zero. us z 

approaches 00 along y 2 . 

Lemma 6.9. In the context of Theorem 6.8 

(See Statement 6.8.9) 

00 

K = n I ) K is a continuum 
m m p 

Proof: K is obviously closed. Assume K is not connected. 

with 

I ie I p z -e = - • p 2p 

Let z EK 
p p 

Now Knot connected implies there exists closed disjoint sets F1 and 

ie F2 such that K = F1UF2 withe E F2 . There must exist disjoint open 

sets o1 and o2 with Ff01 and Ff~0 2 . Let w E FfK, Then 

00 

w E: lJ K for each m, 
m p 

which implies there exists a subsequence {K } such that 
Pj 

(6.9.1) Kp0 o1 ~ ~ for each j. 
j 
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ie 
Now e E F;zC0 2 and zp E KP with 1 . ie . 1· h 1m z = e imp 1es t ere 

p-+oo p 
exists a positive integer P such that zp E Kr/)0 2 for p>P. 

Therefore K for p.>P contains a point of o1 an~ a point of o2 Pj J 

and must also contain a point of the frontier of o2 . Let v . E K (} FrO 2 
J Pj 

and let v be a limit point of {v.}. 
J 

Then v must also belong to Kand 

to Fro 2. This contradicts F = F1UF2. Therefore K is connected and 

thus a continuum. 

The following result will conclude this chapter and this paper. 

Although the result is not in itself of basic interest, the method 

of proof gives a good illustration of the application of the theory 

presented in this paper to a particular problem. The following dis-

cussion will set the scene for the problem. 

It has been shown in Fatou's Theorem that a bounded analytic 

function defined on U will have a finite radial limit at almost every 

point of C. The problem mentioned above will deal with analytic 

functions defined on U which need not be bounded. Consider the 

example 

[ z+lj g(z) = exp - z-l . 

This function is just the multiplicative inverse of the familiar example 

f(z) = exp (z+lJ . 
z-1 

Therefore it is easy to see that g has radial limits of modulus one 

everywhere except at z = 1 where the radial limit is infinite. So 

g is an example of an analytic function on U which has a finite radial 
00 

limit everywhere except at one point, yet g does not belong to H 

ie An arc which lies in U, terminates ate , and lies entirely to the 

right of the diameter to ei 8, is called a right arc. A left arc is 
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defined similarly, If f has an asymptotic value w along a right arc, 

w is called a right asymptotic value. A left asymptotic value is 

defined similarly. 

The following problem utilizes the idea of left and right asymptotic 

values to establish a necessary and sufficient condition for a function, 

analytic in U, to have finite radial limits at all except a countable 

number of points of C. 

Problem 6.10. Let f be analytic in U. A necessary and sufficient 

condition that f have a finite radial limit except on a countable set, 

is that f have a right and left asymptotic value, at least one of which 

is finite everywhere on C except on a countable set. 

Proof: Necessity of the condition results from f being continuous in 

U. The proof of sufficiency will provide the illustration desired. 

Let E1 be the points of C where f has a left and right asymptotic 

values, at least one of which is finite. Then by hypothesis C\E1 

is at most countable, 

ie i ie If e eE1, there exists a right arc r~ and left arc r 0 ate 

such that at least one of the following is finite. 

lim f(z) r lim f (z) 
R, 

= we· = we. 

z-+e 
ie z-+e i6 

r ze:r 0 
R, 

zer6 

Let 

Then by Bagemihl's ambiguous point theorem, E1'E2 is at most countable. 
ie · . r i If e e E2, w8 = w8 and this is a finite value. Join the initial 
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points of r~ and r! by a Jordan arc Jin U to form a closed Jordan 

curve 

Let G8 be the domain enclosed by r, Note that Ge is conformally 

equivalent to the open disk U. If g: U+Ge represents this equivalence, 

fog is analytic in U. In addition, since f is analytic at all points 

of r except e1e, fog is analytic at all points of U except g-1(eie). 

Now let 

ex, 

If zeE3, fog is bounded and thus belongs to H. Also note that fog 

has the asymptotic value w~ along an arc on C. By Lindeltlf's Theorem, 

r 4.19, fog approaches we along any path in U which terminates at 

g-l (eHJ). Therefore f has w~ = w! as a finite radial limit at eie .· 

If e1eeE~,E3, w~ = w! and f is unbounded in Ge. Then fog is unbounded. 

Therefore 

-1 ie r 1 c8 (g,g (e )) ={we}= {we} 

-1 ie -1 ie Since ex,£ [C(g,g (e )),c8 (g,g (e ))] and 

g does not assume the value ex, in U, by Theorem 6.8 g has ex, as an 

-1 ie asymptotic value at g (e ). This implies f has ex, as an asymptotic 

1 ie 11 r t Th f ie · b · · · t va·ue ate as we as we= we. ere ore e 1s an am 1guous po1n, 

so by the ambiguous point theorem E2\.E3 is at most countable. 

So it has been shown that f has a finite radial limits on E3 

and C\E3 is countable. This completes the proof. 
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Symbol 

u 

c 

D r 
c 

r 
00 

H 

C(f,ei6) 

N*(i 6) 
E 

i6 
CG(f,e ) 

c (f ,ei 6) 
p 

R(;f,eie) 

A(f,ei 6) 

i e C8 (f,e ) 

pP (t-6) 
r 

P (t-6) 
r 

f*(eie) 
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