### CHARACTERIZATIONS AND PROPERTIES

OF SETS OF CONSTANT WIDTH

By

MARION M. BONTRAGER

Bachelor of Arts Goshen College Goshen, Indiana 1949

Master of Arts Indiana University Bloomington, Indiana 1965

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF EDUCATION May, 1969

OKLAHOMA STATE UNIVERSITY LIBRARY

SEP 29 1969

## CHARACTERIZATIONS AND PROPERTIES

OF SETS OF CONSTANT WIDTH

Thesis Approved:

E. K. M : Jackl Thesis Adviser

Dean of the Graduate College

### PREFACE

This dissertation is an exposition of characterizations and properties of sets of constant width. In the plane, a disc is a set of constant width. However, among its properties this one is usually not emphasized. The first paper published on sets of constant width including sets other than discs was by the great Swiss mathematician and astronomer, Leonhard Euler (1707-1783), in the year 1778, a period in which Euler was totally blind. Since then other mathematicians have studied these sets and have written papers concerning them. However, much of their work has been in  $E_2$  and  $E_3$ , two and three dimensional Euclidean space, respectively.

There are a number of significant theorems concerning plane sets of constant width but it is not known whether all of the n-dimensional analogues are true or not. As a matter of fact, as late as 1958, Eggleston in his book on convex sets remarks, "Considering the number of papers published on sets of constant width it is surprising how little is known about them."

I want to acknowledge the excellent work of G. D. Chakerian, whose articles on sets of constant width awakened in me an interest in the subject. One of the basic characterizations was first pointed out to me in one of his articles (cf. [8]).

The topic of sets of constant width appeals to a wide range of audiences. Many of the concepts of this paper when restricted to the plane are within easy grasp of the student of high school geometry.

iii

Almost anyone will be fascinated by the constructions of the sets of constant width in  $E_2$  which appear in Chapter I. Some of the simple facts of Chapter I have led to important research and applications in engineering. However, the pure mathematician is interested in the theoretical developments in  $E_n$ , n > 3, where the intuitive guide of a figure has limitations.

There are at least four engineering applications for sets of constant width. First, a rotor in the shape of a Reuleaux triangle is the basis of a device which transforms constant circular motion to an intermittent linear motion. This is precisely what happens in the gripper of a movie projector. In 1954, Felix Wankel, a German engineer, designed an internal combustion engine where rotors of constant width are employed instead of the conventional pistons. This engine, called the Wankel engine, is very compact, very light in weight in contrast to the power developed, and it is noted for easy starting in cold weather. Two manufacturers are now producing cars equipped with this type of engine. Harry James Watts in 1914 designed a drill which drills square holes. An adaptation of a set of constant width makes this possible. The fourth application is, perhaps, more in the nature of an unsolved problem. The problem is in determining the "roundness" of a roller bearing or ball bearing. It is possible, for instance, for a ball bearing to be of constant width but not round.

I have also investigated a number of properties of sets of constant width in  $E_2$ . The first result which is due to Pál asserts the existence of a regular circumscribed hexagon for every plane set of constant width. Very closely related is the fact that every set of constant width in the plane admits a circumscribed rhombus. This

iv

follows trivially from the statement of Pál. These two results enable one to prove the following two theorems:

> <u>Blaschke-Lebesque</u> <u>Theorem</u>: For all plane sets of constant width, the circle has the greatest area and the Reuleaux triangle has the least area.

<u>Barbier Theorem</u>: For any plane sets of constant width  $\lambda$ , the perimeter has length  $\pi\lambda$ .

At the present time, there are available three excellent books on convexity which have sections or chapters devoted to sets of constant width.

The first and best book from the standpoint of sets of constant width is <u>Konvexen Körper</u> by Bonnesen and Fenchel [4]. This book is well written and includes an excellent section on sets of constant width. The book covers practically all of the results on sets of constant width known at the time of publication in 1934. Obviously, this book is not complete in the sense that results discovered since 1934 are not in this book. A major disadvantage to the English speaking student is that it is written in German.

The second book is <u>Convexity</u> by H. G. Eggleston [14]. This entire book by the admission of the author is only a brief introduction to convexity. This is especially true concerning the chapter on sets of constant width. There appears to be an ambiguity in the way Eggleston introduces the idea of a complete set. Also Eggleston's book was published in 1958, and so it, too, is not completely up-todate.

The third book, an English translation of a Russian book, is <u>Convex Figures</u> by Yaglom and Boltyanskii [37]. In this book there is

v

one chapter on sets of constant width. All of their work is in two and three dimensions. Most of the concepts and proofs are presented from a purely intuitive viewpoint. It was written as a sequal to Euclidean geometry for the gifted Russian high school student, the undergraduate, or the high school teacher. It was hoped that it would awaken geometric intuition, one of the sources of mathematical inspiration. With these objectives in mind, the authors have done an excellent job. The book is ideal as a source of concrete examples and basic intuitive notions concerning sets of constant width. However, this book contains none of the more sophisticated results, and having been printed in 1951, it contains none of the discoveries since that time.

As has been noted before, there have been many papers published in mathematical periodicals on sets of constant width. These articles use a variety of notations and have different objectives. It seems desirable to collect, organize and discuss the subject sets of constant width, using consistent notation throughout.

In the literature on sets of constant width, it was discovered that detailed analytic proofs were noticeably lacking. In fact, almost all the proofs were at best sketchily outlined or omitted entirely. Upon a closer look it was found that the proofs could not always be easily constructed in a straight-forward manner. Proofs of some of the theorems were found to be lengthy and difficult. For these reasons it seems useful to supply proofs in more detail.

Thus the existing literature on sets of constant width, which is excellent in most respects, contained the following situations which are disadvantages to the beginning student in the subject.

1. The best writings of the basic facts are in German.

vi

2. The existing books are not up to date.

3. There are ambiguities in the existing literature, as well as places where there is vagueness.

4. There are no examples of detailed analytic proofs available for the beginner to follow and pattern.

5. Recent discoveries are hidden in scattered periodicals. In view of these five facts, this dissertation is offered as a remedy for these deficiencies. Chapter I, which is an introduction, consists largely of examples of sets of constant width in  $E_2$  and  $E_3$  and can be read by anyone with a little elementary geometry background. The remaining part of the thesis is on characterizations and properties of sets of constant width which are valid in any Euclidean space  $E_n$ , n > 1. In Chapters II, III, and IV, a proof is given of the characterization of sets of constant width in terms of the completeness of a set. The first half of the characterization is proved in Chapter II. Chapter III concerns itself with properties of complete sets. These properties are interesting and useful in themselves, but their primary purpose is to enable us to prove the second part of this characterization which is in Chapter IV. Chapters V through VIII include three other characterizations and various properties. Throughout the thesis beyond Chapter I, the emphasis is on detailed analytic proofs. With these objectives in mind, the applications referred to earlier and the results applying only in  $E_2$  are omitted.

Although the discussion is limited to Euclidean space,  $E_n$ , it is possible to generalize the theorems and proofs to Hilbert space. The main difficulty would be due to the fact that compactness is not equivalent to closed and boundedness in infinite dimensional Hilbert spaces.

vii

Near the end of Chapter I is a brief review of the most basic fundamental mathematical facts concerning linear spaces, inner products and norms as functions, Euclidean n-space  $E_n$ , and hyperplanes. For this part of Chapter I and the remainder of the paper, it is assumed that the reader has a background of functional analysis or of convexity as treated in Parts I and II of Valentine's book [36]. Much of the terminology and notation is from his book and is standard. However, in particular, attention should be called to the usage of  $H^+$  and  $H^$ where H is a hyperplane. Precisely these are defined as follows:

$$H^{+} = \{x : f(x) > 0\}$$

and

$$H^{-} = \{x : f(x) < 0\}.$$

The figures in the text are drawn as two or three dimensional and are supplied to guide the intuition and to provide insight in the nature of the corresponding problem in the plane or in space. However, these figures are not parts of the proofs and can be omitted as far as the logic of proof is concerned.

I wish to thank Loretta Beckham for typing the manuscript. My wife, Eloise, and daughters, Sharon and Pamela, deserve a note of appreciation for the sacrifices they have made that I might attend graduate school. I am especially indebted to Professor E. K. McLachlan, without whose inspiration, encouragement and help this thesis would never have been accomplished. I also want to express appreciation to Professors John Jobe, W. Ware Marsden, and Robert T. Alciatore for serving as members of my advisory committee.

viii

# TABLE OF CONTENTS

| Chapter      |                                             | F | age |
|--------------|---------------------------------------------|---|-----|
| I.           | INTRODUCTION                                | • | 1   |
| II.          | COMPLETE SETS                               |   | 17  |
| III.         | PROPERTIES OF COMPLETE SETS                 |   | 38  |
| IV.          | A COMPLETE SET IS A SET OF CONSTANT WIDTH . |   | 61  |
| v.           | ENCLOSING SETS IN COMPLETE SETS             | • | 69  |
| VI.          | OTHER PROPERTIES OF SETS OF CONSTANT WIDTH  |   | 81  |
| VII.         | ORTHOGONAL PROJECTIONS                      | • | 92  |
| VIII.        | INSPHERES AND CIRCUMSPHERES                 | • | 101 |
| BIBLIOGRAPHY |                                             |   | 132 |

### CHAPTER I

### INTRODUCTION

For the simplest example of a set of constant width in the plane, consider a disc of diameter D where the distance between any pair of parallel tangent lines is D (cf. Figure 1-1). Any compact convex set in the plane with this property is a set of constant width. The term "constant width" denotes the property of a set, that the distance between any pair of parallel tangent lines is constant.

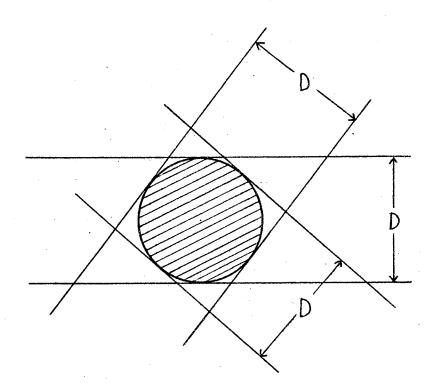


Figure 1-1.

Another possible viewpoint is to consider a pair of fixed parallel lines both of which are tangent to a disc. The disc can be rolled or rotated arbitrarily between these fixed parallel lines. It might seem plausible that the disc is the only such set with this property. However, this is not the case. Actually there are infinitely many plane sets whose width is constant and which therefore can be rolled or rotated between two fixed parallel lines to which they remain tangent throughout.

To illustrate this, consider the following set bounded by three arcs: Let the vertices  $x_0$ ,  $x_1$ , and  $x_2$  of an equilateral triangle be centers of arcs of circles passing through the opposite two vertices and whose radii are s, the length of a side of the equilateral triangle (cf. Figure 1-2). Such a set is called a Reuleaux triangle, after Franz Reuleaux, the nineteenth century German engineer who first noted the constant width property of such a set. The distance between  $H_0$  and  $H_1$ is s for every pair of parallel tangent lines.

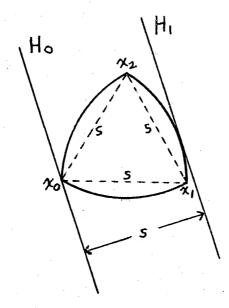


Figure 1-2.

In a similar manner, it is possible to start with any regular plane polygon with an odd number of sides and get a set of constant width. This set is called a Reuleaux polygon. Figure 1-3 illustrates such a set where a regular pentagon is the basis for the construction,

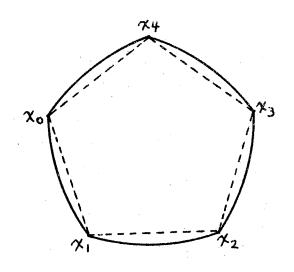


Figure 1-3.

Michael Goldberg prefers the term Reuleaux rotor instead of Reuleaux polygon. He prefers this first of all because a Reuleaux polygon is not a polygon; and secondly, he notes that the other name fails to emphasize the property of freely rolling or rotating between two fixed parallel tangent lines.

An interesting variation of the Reuleaux triangle is the following: Again start with an equilateral triangle with vertices  $x_0$ ,  $x_1$ , and  $x_2$ . Denote the length of each side by s. With each vertex as center, draw an arc of radius p where p is greater than s and where the arc is inside

the corresponding angle (cf. Figure 1-4). Then with each vertex of the triangle as center draw an arc of radius  $p_1 = p - s$  within the angle formed by extending the sides of the triangle. The set bounded by these arcs is of constant width  $p + p_1$ .

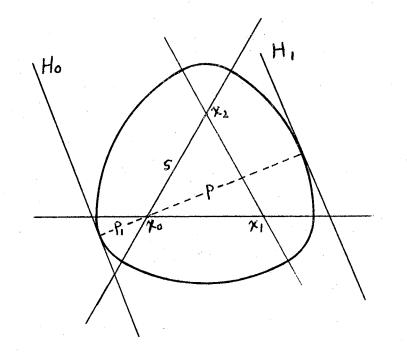
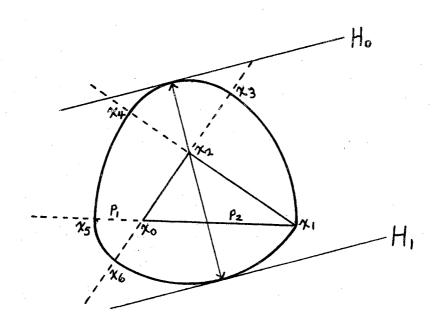


Figure 1-4.

In Figure 1-2 many tangent lines exist for the Reuleaux triangle at each of the boundary points  $x_0$ ,  $x_1$ , and  $x_2$ . Any such boundary point with this property is called a <u>corner point</u>. The aforementioned variation of the Reuleaux triangle that is illustrated in Figure 1-4 has no corner point.

Any plane polygon of an odd number of sides can be used as the starting point for the construction of a plane set of constant width. For example in Figure 1-5, let  $x_0$ ,  $x_1$ , and  $x_2$  be the vertices of any

triangle where the longest side has endpoints  $x_0$  and  $x_1$ . With  $x_0$  as center and  $||x_0-x_1||$ , the length of the line segment  $x_0x_1$  as radius, construct an arc from  $x_1$  to  $x_3$ . Next use  $x_2$  as center and  $||x_2-x_3||$  as radius and draw an arc from  $x_3$  to  $x_4$ . Next with  $x_1$  as center and  $||x_4-x_1||$  as radius, draw an arc from  $x_4$  to  $x_5$ . Similarly, using  $x_0$  and  $x_2$  as centers,  $||x_5-x_0||$  and  $||x_6-x_2||$  as radii respectively,





finish the construction as shown. The set bounded by these arcs is a set of constant width and has a corner point at  $x_1$ . The distance between  $H_0$  and  $H_1$  is  $||x_2-x_3|| + ||x_2-x_6||$ . This sum is equivalent to  $||x_6-x_0|| + ||x_0-x_3||$  which is equal to  $p_1 + p_2$ . Notice that the distance between any two parallel tangent lines is  $p_1 + p_2$ .

It is possible to begin with the same triangle as in Figure 1-5 and construct a set of constant width without a corner point. To eliminate the corner point, the first radius must be bigger than  $||x_0-x_1||$ . This is illustrated in Figure 1-6. Note these sets in Figure 1-5 and 1-6 are not symmetric if the original triangle does not have a pair of sides of equal length.

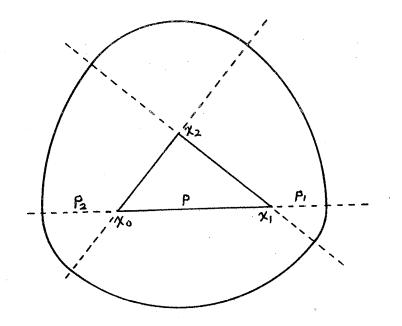


Figure 1-6.

A general method for constructing an unsymmetrical curve of constant width is called the star-polygon method. A convex polygon of an odd number of sides is taken for the basis of this construction. From each vertex construct two adjacent diagonals omitting equally

many vertices on the opposite sides of the two diagonals. These diagonals form a star-polygon. Then arcs are drawn using each of the vertices as a center and an appropriate radius. The method is illustrated in Figure 1-7 for the polygon with vertices  $x_i$ ,  $0 \le i \le 6$ .

From  $x_0$  draw diagonals to  $x_3$  and  $x_4$  and extend them outside the polygon. Similarly draw two diagonals from each vertex. All these diagonals form the star-polygon. With  $x_0$  as center, draw an arc from  $y_0$  to  $y_1$  where the radius of the arc is greater than any of the diagonals of the star-polygon. Use  $x_4$  as center and  $||x_4-y_1||$  as radius draw an arc from  $y_1$  to  $y_2$ . Next use  $x_1$  as center and  $||x_1-y_2||$ as radius, draw an arc from  $y_2$  to  $y_3$ . Continue this same process all around the polygon.

To show that the set bounded by the arcs is a set of constant width, let  $||y_7 - y_0|| = \lambda$ . Let  $H_0$  and  $H_1$  be a pair of parallel tangent lines as shown in Figure 1-7. The distance between  $H_0$  and  $H_1$  is  $||z_0 - x_2|| + ||x_2 - z_1||$ . By the equality of the radii of a circle,

$$||\mathbf{x}_{0} - \mathbf{x}_{2}|| + ||\mathbf{x}_{2} - \mathbf{z}_{1}|| = ||\mathbf{y}_{5} - \mathbf{x}_{2}|| + ||\mathbf{x}_{2} - \mathbf{y}_{12}||$$
$$= ||\mathbf{y}_{6} - \mathbf{x}_{6}|| + ||\mathbf{x}_{6} - \mathbf{y}_{13}||$$
$$= ||\mathbf{y}_{7} - \mathbf{x}_{3}|| + ||\mathbf{x}_{3} - \mathbf{y}_{0}||$$
$$= ||\mathbf{y}_{7} - \mathbf{y}_{0}||$$
$$= \lambda.$$

In a similar manner, it can be shown that the distance between any two parallel tangent lines is  $\lambda$ .

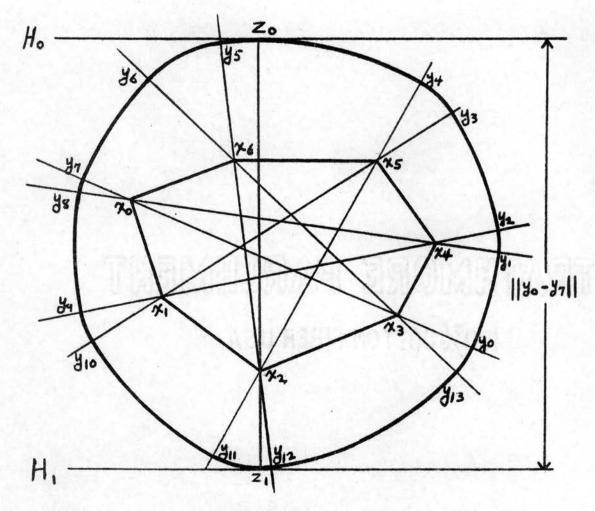


Figure 1-7.

If all the diagonals of the star-polygon have equal length, it is possible to construct a set of constant width which passes through the vertices of the polygon. In this situation each vertex is a corner point. This is shown in Figure 1-8.

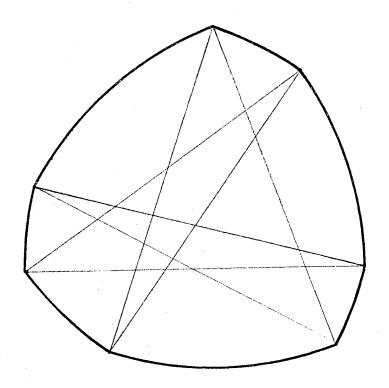
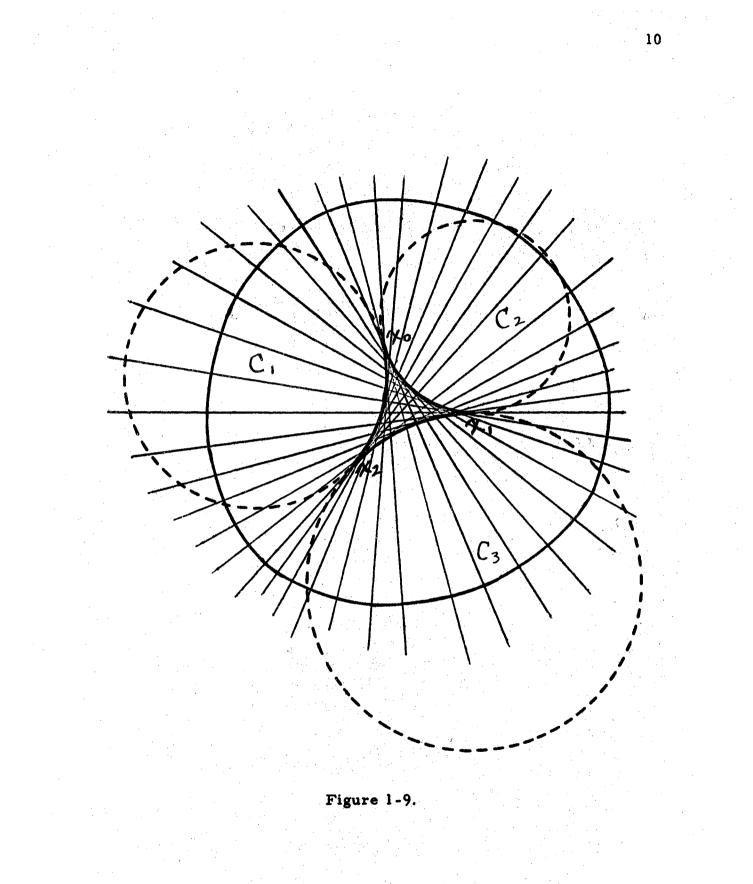


Figure 1-8.

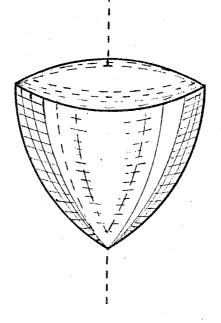
It is known that plane sets of constant width exist such that no parts of their boundaries are arcs of circles. To indicate such a set (cf. Figure 1-9), let  $C_1$ ,  $C_2$ ,  $C_3$  be three circles mutually tangent at  $x_0$ ,  $x_1$ , and  $x_2$ . Any involute of the figure determined by the three arcs  $x_0x_1$ ,  $x_1x_2$ , and  $x_2x_0$  is a curve of constant width. For proof and further discussion, see [6] and [34].



As might be expected, there are three-dimensional objects of constant width. The sphere is one example. Any two parallel planes tangent to the sphere are a constant distance apart. If a pair of parallel tangent planes is fixed, the sphere can be rolled or rotated arbitrarily and always remains tangent to these planes.

The simplest example of a nonspherical solid of constant width is obtained by rotating a Reuleaux triangle about one of its axes of symmetry (cf. Figure 1-10). This object when viewed from an axis of symmetry appears like a circle, and when observed perpendicular to an axis, has the characteristic shape of a Reuleaux triangle.

A regular tetrahedron can be used to form a set of constant width. A spherical cap is placed on each face of the tetrahedron. Each spherical cap has the opposite vertex as center and a radius



equal to an edge of length s of the tetrahedron. Consider the trihedral angle determined by  $x_0$  (cf. Figure 1-11) and the three edges emanating from  $x_0$ . Remove from the spherical cap on  $x_1x_2x_3$  any part not contained in this trihedral angle. This is repeated using each vertex  $x_i$  and the corresponding trihedral angle determined by  $x_i$ ,  $1 \le i \le 3$  and three edges emanating from  $x_i$ .

Figure 1-11 shows a cross section T of the spherical cap on  $x_1x_2x_3$  formed by arc c and edge  $x_1x_2$ . This cross section was formed when a part of the spherical cap was removed by the trihedral angle with vertex  $x_0$ . Another cross section T' on edge  $x_1x_2$  and congruent to T is formed when the spherical cap on  $x_2x_1x_0$  is cut by the trihedral angle with vertex  $x_3$ . Rotate c about edge  $x_1x_2$  through an appropriate angle so that at the end of the rotation c matches the corresponding curve on T'.

When this is done at each edge, the set bounded by the parts of the spherical caps remaining and these rotations of an arc at each edge

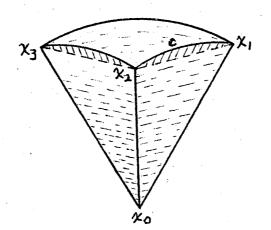


Figure 1-11.

is a set of constant width. This process is the three-dimensional analogue of the process used in the plane as illustrated in Figure 1-4.

All the examples of sets of constant width so far are in  $E_2$  or  $E_3$ . But the discussion of sets of constant width fits naturally in  $E_n$ .

Euclidean space,  $E_n$ , is a real linear space where the vectors  $x = (x_1, \ldots, x_n)$  are the real n-tuples. Addition and scalar multiplication are componentwise. There is an inner product

$$(x, y) = \sum_{i=1}^{n} x_{i} y_{i}$$

defined for each pair of vectors x and y of  $E_n$ , and there is a norm

$$||\mathbf{x}|| = \sqrt{(\mathbf{x}, \mathbf{x})} = \sqrt{\sum_{i=1}^{n} \mathbf{x}_{i}^{2}}$$

defined for each vector x in  $E_n$ .

It is easy to note that the inner product has the following properties:

1. Linearity:

(x+y, z) = (x, z) + (y, z), for x, y, z  $\epsilon E_n$ ,

 $(ax, y) = a(x, y), \text{ for } x, y \in E_n, a \in \mathbb{R}.$ 

2. Symmetry:

 $(x, y) = (y, x), \text{ for } x, y \in E_n.$ 

3. Positivity:

(x, x) > 0, if  $x \neq \emptyset$  where  $\emptyset$  represents the origin.

Using the linearity property of inner product and the property of the additive zero in a linear space, one can show  $(\emptyset, \mathbf{x}) = 0$  for any  $\mathbf{x} \in \mathbf{E}_n$ .

Furthermore, it is also easy to observe that the norm has the following properties:

1. Triangle inequality:

 $||x+y|| \le ||x|| + ||y||,$ 

2. Absolute homogeneity:

 $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||,$ 

- 3.  $||\mathbf{x}|| \ge 0$ ,
- 4.  $||\mathbf{x}|| \neq 0$  if  $\mathbf{x} \neq \emptyset$ .

The distance between x and y is

$$||x-y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

Thus ||x|| represents the distance between the origin,  $\emptyset$ , and x.

A topology is defined for  $E_n$  in terms of the norm. An open set in  $E_n$  is a set S such that if a  $\epsilon$  S, then there exists

$$N(a, r) = {x : ||x-a|| < r}$$

contained in S. With this topology,  $E_n$  is complete in the sense that each Cauchy sequence in  $E_n$  has a limit in  $E_n$ . Thus, in summary,  $E_n$ is a complete, normed, finite dimensional linear topological inner product space.

In the plane  $E_2$ , the tangent lines played a role in observing that a set had constant width. Similarly, in  $E_3$ , tangent planes were used. The appropriate generalization of these ideas to  $E_n$  is the supporting hyperplane. That is, in any linear space, a hyperplane H is a translate of a maximal proper subspace. Thus in  $E_2$  and  $E_3$  hyperplanes are lines and planes, respectively.

For any hyperplane H, there exists a non-trivial real linear functional f and a real scalar  $\alpha$  such that  $H = \{x : f(x) = \alpha\}$ . Conversely, any such linear functional f defines a hyperplane. The inner product (x, u) for some fixed u which is not the origin is a linear function of x, and (u, u) > 0 implies that the function is not identically zero. In fact, if f is linear in  $E_n$ , then there is a fixed u such that f(x) = (x, u) for all  $x \in E_n$  (cf. [35], Thm 4.81c, page 245).

Therefore in  $E_n$ , hyperplanes can always be represented using the inner product. The set  $\{x: f(x) = \alpha\}$  is sometimes abbreviated to  $[f:\alpha]$ .

Two hyperplanes  $H_0$  and  $H_1$  are parallel if one is a non-trivial translate of the other. This means either  $H_0 = x_0 + H_1$  or  $H_1 = y_0 + H_0$ where neither  $x_0$  nor  $y_0$  is the origin. The distance between parallel hyperplanes  $H_0$  and  $H_1$  is

$$\rho(H_0, H_1) = \inf \{ ||x-y|| : x \in H_0, y \in H_1 \}.$$

A hyperplane  $H = [f : \alpha]$  bounds a set A if  $f(A) \ge \alpha$  or  $f(A) \le \alpha$ , where  $f(A) = \{f(x) : x \in A\}$ . The hyperplane H is said to support the set A if A contains at least one point of A and H bounds A.

In the preceding examples, the "tangent lines" each contained only one point of the set, and the entire set was situated on one side of each "tangent line." Strictly speaking these "tangent lines" should be called lines of support. As a matter of fact, most of the lines of support at a corner point of a set of constant width are not tangent lines. In  $E_2$ ,  $\rho(H_1, H_2)$  is simply the perpendicular distance between parallel lines of support.

In the examples the sets that were of constant width were all convex and compact. Thus, it is natural to make the following definition:

<u>Definition 1-1</u>. A compact convex set S in  $E_n$  is of constant width if every pair of parallel support hyperplanes are the same distance apart.

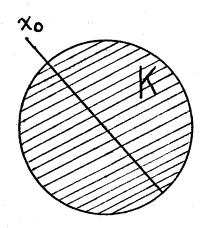
The first published account of sets of constant width that were not discs was in 1778 by Euler. Since then many mathematicians have studied and contributed to the theory of sets of constant width. Among these mathematicians in the earlier developments we find Reuleaux, Minkowski, Meissner, Blaschke, Lebesque, and Schilling. In more recent times Chakerian, Besicovitch, Eggleston, Cooke, Bonnesen, Fenchel, Hammer and Melzak have written and published articles on sets of constant width.

### CHAPTER II

#### COMPLETE SETS

A bounded set is <u>complete</u> if the diameter of the set is increased whenever any point is adjoined to the set.

Consider the disc K in  $E_2$  (cf. Figure 2-1). The diameter of  $K \cup \{x_0\}$  is greater than the diameter of K for any point  $x_0 \notin K$ . Therefore K is complete as well as a set of constant width.



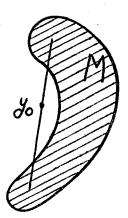


Figure 2-1.

For the set M,  $y_0$  can be adjoined to M, and it is true that there are two points in M whose distance apart is greater than any distance from  $y_0$  to any point in M. So the set M is not complete, and neither is it a set of constant width. Ernst Meissner, a Swiss mathematician, first introduced the idea of a set being complete. A close relationship exists between complete sets and sets of constant width. A part of this relationship is stated in the following theorem:

<u>Theorem 2-1</u>: A set X in  $E_n$  is of constant width  $\lambda$  only if X is complete and of diameter  $\lambda$ .

Since the proof is long it is divided into lemmas. One of these is Lemma 2-3 which is very useful in itself and is used repeatedly elsewhere.

Lemma 2-1: If the set X is compact, there are two points  $\overline{x}, \overline{y}$ in X so that  $||\overline{x} - \overline{y}|| = D(X)$ , the diameter of X.

**Proof**: The diameter of X is defined as follows:

$$D(X) = \sup \{ ||x - y|| : x, y \in X \}$$

Since X is a bounded set, D(X) is finite. Using the properties of the supremum, there are two sequences  $\{x_n\}$  and  $\{y_n\}$  of points in X so that

$$\lim_{n \to \infty} ||x_n - y_n|| = D(X).$$

If the sequence  $\{x_n\}$  is an infinite set, the boundedness of X implies  $\{x_n\}$  has an accumulation point  $\overline{x}$  which belongs to X since X is closed. If, however,  $\{x_n\}$  is a finite set, then some element must be repeated infinitely often. For simplicity, this element can also be denoted by  $\overline{x}$ . Notice again in this case that  $\overline{x}$  is an element of X. In both cases, a subsequence,  $\{x_n'\}$ , of  $\{x_n\}$  can be selected for which

$$\lim_{n \to \infty} x_n^i = \overline{x}.$$

Similarly, there exists a subsequence,  $\{y_n'\}$  , of  $\{\,y_n^{}\}$  so that

$$\lim_{n \to \infty} y'_n = \overline{y} \in X.$$

It follows that

$$\lim_{n \to \infty} \left| \left| \mathbf{x}_n^{\dagger} - \mathbf{y}_n^{\dagger} \right| \right| = \mathbf{D}(\mathbf{X}).$$

It remains to show that  $||\overline{x} - \overline{y}|| = D(X)$ . For  $\epsilon > 0$  there exist  $N_1$  and  $N_2$  such that  $||x_n^{\dagger} - \overline{x}|| \le \epsilon/3$  for  $n > N_1$  and  $||y_n^{\dagger} - \overline{y}|| < \epsilon/3$  for  $n > N_2$ . The statement

$$\lim_{n \to \infty} \left| \left| \mathbf{x}_{n}^{\dagger} - \mathbf{y}_{n}^{\dagger} \right| \right| = \mathbf{D}(\mathbf{X})$$

assures the existence of  $N_3$  such that for  $n > N_3$ ,

$$D(X) - \epsilon/3 < ||x_n^t - y_n^t|| < D(X) + \epsilon/3.$$

Select N = max {N<sub>1</sub>, N<sub>2</sub>, N<sub>3</sub>}, then for n > N, one gets

$$D(X) - \epsilon/3 < ||x_n' - y_n'||$$

$$\leq ||x_n' - \overline{x}|| + ||\overline{x} - \overline{y}|| + ||\overline{y} - y_n'||$$

$$< \epsilon/3 + ||\overline{x} - \overline{y}|| + \epsilon/3.$$

Thus,

$$D(X) - \epsilon < ||\overline{x} - \overline{y}|| \le D(X)$$

for any  $\epsilon > 0$ , and hence  $D(X) = ||\overline{x} - \overline{y}||$ .

Lemma 2-2: There are two parallel support hyperplanes  $H_{\overline{x}}$ ,  $H_{\overline{y}}$  of X at  $\overline{x}$  and  $\overline{y}$ , respectively, so that the distance between  $H_{\overline{x}}$  and  $H_{\overline{y}}$  is

$$\left|\left|\overline{\mathbf{x}}-\overline{\mathbf{y}}\right|\right| = \mathbf{D}(\mathbf{X}) = \lambda$$

<u>Proof</u>: Let  $H_{\overline{x}}$  and  $H_{\overline{y}}$  be hyperplanes defined as follows:

$$H_{\overline{x}} = \{ x : (x - \overline{x}, \overline{y} - \overline{x}) = 0 \},$$
$$H_{\overline{y}} = \{ x : (x - \overline{y}, \overline{x} - \overline{y}) = 0 \}.$$

Clearly,

$$\overline{x} \in H_{\overline{x}}$$
 and  $\overline{y} \in H_{\overline{y}}$ 

The positivity property of the inner product,

$$(\overline{y} - \overline{x}, \overline{y} - \overline{x}) > 0$$

shows that

$$\overline{y} \in (H_{\overline{x}})^+ = \{ x : (x - \overline{x}, \overline{y} - \overline{x}) > 0 \}.$$

If we let  $x_0 \in H_{\overline{x}}$ , then

 $(x_0 - \overline{x}, \overline{y} - \overline{x}) = 0.$ 

Thus

$$(\mathbf{x}_0, \overline{\mathbf{y}}) - (\mathbf{x}_0, \overline{\mathbf{x}}) - (\overline{\mathbf{x}}, \overline{\mathbf{y}}) + (\overline{\mathbf{x}}, \overline{\mathbf{x}}) = 0.$$

Multiplying by two and adding two terms leads to

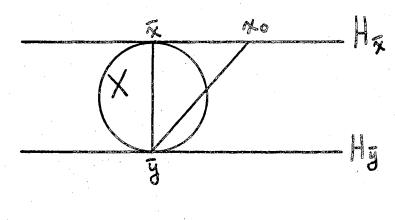
 $(x_0, x_0) - 2(x_0, \overline{x}) + 2(\overline{x}, \overline{x}) - 2(\overline{x}, \overline{y}) + (\overline{y}, \overline{y}) = (x_0, x_0) - 2(x_0, \overline{y}) + (\overline{y}, \overline{y}).$ 

Therefore,

$$||\mathbf{x}_{0} - \overline{\mathbf{x}}||^{2} + ||\overline{\mathbf{x}} - \overline{\mathbf{y}}||^{2} = ||\mathbf{x}_{0} - \overline{\mathbf{y}}||^{2}$$

This can be interpreted as the Pythagorean relationship for the triangle whose vertices are  $\overline{x}$ ,  $\overline{y}$  and  $x_0$ , where  $\overline{x}$  is the vertex of the right angle and  $x_0$  is an arbitrary point in  $H_{\overline{x}}$  (cf. Figure 2-2).

It has already been shown that  $\overline{y} \in (H_{\overline{x}})^+$  and  $\overline{x} \in H_{\overline{x}}$ . In order to show that  $H_{\overline{x}}$  is a support hyperplane, it must now be shown that  $(y-\overline{x}, \overline{y}-\overline{x}) \ge 0$  for every  $y \in X$ . An indirect method of proof will be





used here, that is, suppose

$$(y-\overline{x}, \overline{y}-\overline{x}) < 0, \qquad (2-1)$$

From the properties of the inner product we know

 $(\overline{x}-\overline{y}, \overline{y}-\overline{x}) < 0.$ 

Therefore,

$$(y, \overline{y}-\overline{x}) < (\overline{x}, \overline{y}-\overline{x}) < (\overline{y}, \overline{y}-\overline{x}).$$
 (2-2)

Let

$$\delta = \frac{(\overline{\mathbf{x}}, \overline{\mathbf{y}} - \overline{\mathbf{x}}) - (\mathbf{y}, \overline{\mathbf{y}} - \overline{\mathbf{x}})}{(\overline{\mathbf{y}}, \overline{\mathbf{y}} - \overline{\mathbf{x}}) - (\mathbf{y}, \overline{\mathbf{y}} - \overline{\mathbf{x}})}$$
$$= \frac{(\overline{\mathbf{x}} - \mathbf{y}, \overline{\mathbf{y}} - \overline{\mathbf{x}})}{(\overline{\mathbf{y}} - \mathbf{y}, \overline{\mathbf{y}} - \overline{\mathbf{x}})}.$$

From (2-2),  $0 < \delta < 1$ . Since  $\overline{y}$  and y are points in X, it follows from the convexity of X that

$$z = \delta \overline{y} + (1 - \delta) y$$

is a point of X. Then

$$(z, \overline{y} - x) = (\delta \overline{y} + (1 - \delta)y, \overline{y} - \overline{x})$$

$$= \delta (\overline{y} - y, \overline{y} - \overline{x}) + (y, \overline{y} - \overline{x})$$

$$= \frac{(\overline{x} - y, \overline{y} - \overline{x})}{(\overline{y} - y, \overline{y} - \overline{x})} \quad (\overline{y} - y, \overline{y} - \overline{x}) + (y, \overline{y} - \overline{x})$$

$$= (\overline{x} - y, \overline{y} - \overline{x}) + (y, \overline{y} - \overline{x})$$

$$= (\overline{x}, \overline{y} - \overline{x})$$

or

 $(z - \overline{x}, \overline{y} - \overline{x}) = 0.$ 

Hence,  $z \in H_{\overline{x}}$  (cf. Figure 2-3).

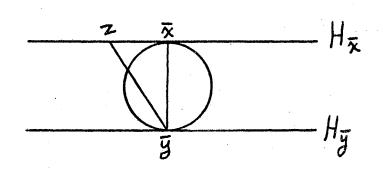


Figure 2-3.

By the Pythagorean relationship

$$||\overline{y} - \overline{x}||^{2} + ||\overline{x} - z||^{2} = ||\overline{y} - z||^{2}$$

Since  $\left|\left|\overline{x} - z\right|\right|^2 \ge 0$ , then

$$||\overline{y} - \overline{x}|| \leq ||\overline{y} - z||.$$

An evaluation of  $||\overline{y} - z||$  leads to the following:

$$||\overline{\mathbf{y}} - \mathbf{z}|| = ||\overline{\mathbf{y}} - (\delta \overline{\mathbf{y}} + (1 - \delta) \mathbf{y})||$$
$$= ||(1 - \delta)\overline{\mathbf{y}} - (1 - \delta) \mathbf{y})||$$
$$= ||(1 - \delta)(\overline{\mathbf{y}} - \mathbf{y})||$$
$$= (1 - \delta) ||\overline{\mathbf{y}} - \mathbf{y}||$$
$$< ||\overline{\mathbf{y}} - \mathbf{y}||$$

Therefore,

$$||\bar{y} - x|| < ||\bar{y} - y||.$$
 (2-3)

However, since  $y, \overline{y} \in X$ , it must be true that

$$D(X) = ||\overline{y} - \overline{x}|| \ge ||\overline{y} - y||$$

which contradicts (2-3). So (2-1) is false. Therefore,  $H_{\overline{x}}$  is a support hyperplane of X at  $\overline{x}$ , and by a similar argument  $H_{\overline{y}}$  is a support hyperplane of X at  $\overline{y}$ .

It will now be shown that

$$H_{\overline{x}} = H_{\overline{y}} + (\overline{x} - \overline{y}),$$

that is,  $H_{\overline{x}}$  and  $H_{\overline{y}}$  are parallel hyperplanes. For any  $y \in H_{\overline{y}}$ ,

$$(y - \overline{y}, \overline{x} - \overline{y}) = 0$$

Then

$$(\mathbf{y} + \overline{\mathbf{x}} - \overline{\mathbf{y}}, \overline{\mathbf{y}} - \overline{\mathbf{x}}) = (\mathbf{y} - \overline{\mathbf{y}}, \overline{\mathbf{y}} - \overline{\mathbf{x}}) + (\overline{\mathbf{x}}, \overline{\mathbf{y}} - \overline{\mathbf{x}})$$
$$= (\overline{\mathbf{x}}, \overline{\mathbf{y}} - \overline{\mathbf{x}}),$$

or

$$((y - \overline{x} - \overline{y}) - \overline{x}, \overline{y} - \overline{x}) = 0.$$

Hence

$$y - \overline{x} - \overline{y} \in H_{\overline{y}}$$
,

and thus,

$$H_{\overline{x}} \supset H_{\overline{y}} + (\overline{x} - \overline{y}).$$

Similarly, for any  $x \in H_{\overline{x}}$ ,

$$(\mathbf{x} - \overline{\mathbf{x}}, \overline{\mathbf{y}} - \overline{\mathbf{x}}) = 0,$$

Then

$$(\mathbf{x} - \overline{\mathbf{x}} + \overline{\mathbf{y}}, \overline{\mathbf{x}} - \overline{\mathbf{y}}) = (\mathbf{x} - \overline{\mathbf{x}}, \overline{\mathbf{y}} - \overline{\mathbf{x}}) + (\overline{\mathbf{y}}, \overline{\mathbf{x}} - \overline{\mathbf{y}})$$
$$= (\overline{\mathbf{y}}, \overline{\mathbf{x}} - \overline{\mathbf{y}}),$$

or

$$((\mathbf{x} - \overline{\mathbf{x}} + \overline{\mathbf{y}}) - \overline{\mathbf{y}}, \overline{\mathbf{x}} - \overline{\mathbf{y}}) = 0.$$

This means  $x - \overline{x} + \overline{y} \in H_{\overline{y}}$  or  $x \in H_{\overline{y}} + (\overline{x} - \overline{y})$  and hence

$$H_{\overline{x}} \subset H_{\overline{y}} + (\overline{x} - \overline{y}),$$

So  $H_{\overline{x}}$  is a translate of  $H_{\overline{y}}$  and these two hyperplanes are parallel.

The distance between the hyperplanes  $H_{\overline{x}}$  and  $H_{\overline{y}}$ ,

$$\rho(H_{\overline{x}}, H_{\overline{y}}) = \inf \{ ||x - y|| : x \in H_{\overline{x}}, y \in H_{\overline{y}} \},$$

is less than or equal to  $||\overline{x} - \overline{y}||$ . Suppose there exist  $x_0$ ,  $y_0 \in H_{\overline{x}}$ ,  $H_{\overline{y}}$ , respectively, such that

$$||x_0 - y_0|| < ||\overline{x} - \overline{y}||.$$
 (2-4)

First, since  $x_0 \in H_{\overline{x}}$  and  $y_0 \in H_{\overline{y}}$ , it follows that

$$(x_0, \overline{y} - \overline{x}) = (\overline{x}, \overline{y} - \overline{x})$$

and

$$(y_0, \overline{x} - \overline{y}) = (\overline{y}, \overline{x} - \overline{y}).$$

Therefore,

$$(\mathbf{x}_0 - \mathbf{y}_0, \ \overline{\mathbf{y}} - \overline{\mathbf{x}}) = (\overline{\mathbf{x}} - \overline{\mathbf{y}}, \ \overline{\mathbf{y}} - \overline{\mathbf{x}})$$
(2-5)

which is equivalent to

$$(\mathbf{x}_0 - \mathbf{y}_0 - \overline{\mathbf{x}} + \overline{\mathbf{y}}, \ \overline{\mathbf{y}} - \overline{\mathbf{x}}) = 0.$$
 (2-6)

From (2-4) we have

$$||x_0 - y_0||^2 < ||\overline{x} - \overline{y}||^2$$

which implies

$$(x_0 - y_0, x_0 - y_0) < (\overline{x} - \overline{y}, \overline{x} - \overline{y}).$$
 (2-7)

By (2-5) the right half of (2-7) is equal to  $(x_0 - y_0, \overline{x} - \overline{y})$ . Therefore,

$$(x_0 - y_0 - \overline{x} + \overline{y}, x_0 - y_0) < 0.$$
 (2-8)

Combining (2-6) with (2-8) leads to

$$(x_0 - y_0 - \overline{x} + \overline{y}, x_0 - y_0 - \overline{x} + \overline{y}) < 0,$$

which is a contradiction of the positivity property of the inner product.

So it must be true that

$$\rho(H_{\overline{x}}, H_{\overline{y}}) = ||\overline{x} - \overline{y}||.$$

But,  $||\overline{x} - \overline{y}|| = D(X)$ . Since X is a set of constant width  $\lambda$ ,  $\rho(H_{\overline{x}}, H_{\overline{y}}) = \lambda$ . Finally,  $D(X) = \lambda$ .

<u>Lemma 2-3</u>: For any closed convex set K in  $E_n$  and  $y_0 \notin K$ there is a unique orthogonal projection  $x_0 \in K$  of  $y_0$  onto K and

$$H_{x_0} = \{x : (x - x_0, y_0 - x_0) = 0\}$$

as a support hyperplane of K.

<u>Proof</u>: The existence of  $x_0$  is described in the lemma comes from the following important theorem in functional analysis (cf. [11], Thm. 1.12.3, p. 94):

<u>Theorem 2-2</u>: If L is a Hilbert space,  $K \subset L$ , K is closed and convex and  $y_0 \in L$ , then there exists a unique point  $x_0 \in K$  such that  $||y_0 - x_0|| \le ||y_0 - x||$  for every  $x \in K$ .

The point  $x_0$ , with the property stated in the theorem, is called the orthogonal projection of  $y_0$  onto K. Since Euclidean space is one example of a Hilbert space, in  $E_n$  the theorem asserts the existence of the orthogonal projection  $x_0$  of  $y_0$  onto K.

It remains to show

$$H_{x_0} = \{x : (x - x_0, y_0 - x_0) = 0\}$$

is a support hyperplane of K. Since  $(y_0 - x_0, y_0 - x_0) > 0$ , then  $y_0 \in (H_{x_0})^+$ . Furthermore,  $(x_0 - x_0, y_0 - x_0) = 0$  shows that  $x_0 \in H_{x_0}$ (cf. Figure 2-4). We wish to show  $H_{x_0}$  bounds K, that is  $(y - x_0, y_0 - x_0) \leq 0$  for every  $y \in K$ .

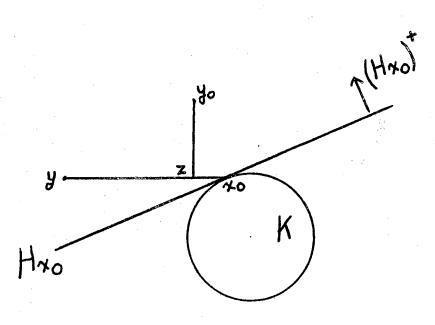
Suppose

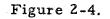
$$(y - x_0, y_0 - x_0) > 0$$
 (2-9)

for some  $y \in K$ . This means  $y \in (H_x_0)^+$  as shown in Figure 2-4.

Let

$$z = \delta(x_0 - y) + y = \delta x_0 + (1 - \delta) y$$





where

$$\delta = \frac{(x_0 - y, y_0 - y)}{(x_0 - y, x_0 - y)}$$

It shall be shown that  $0 < \delta < 1$ , and thus z is between y and  $x_0$ .

Inequality (2-9) leads to the following:

$$(y, y_0) - (x_0, y) > (x_0, y_0) - (x_0, x_0)$$
  
$$(x_0, x_0) - (x_0, y) > (x_0, y_0) - (y, y_0).$$
(2-10)

By adding  $-(x_0, y) + (y, y)$  to (2-10),

$$(x_0, x_0) - (x_0, y) - (x_0, y) + (y, y) > (x_0, y_0) - (y, y_0) - (x_0, y) + (y, y)$$

or

$$(x_0 - y, x_0 - y) > (x_0 - y, y_0 - y).$$

This means that  $\delta < 1$ . Since  $y \in K$  and  $x_0$  is the orthogonal projection

$$(y_0 - y, y_0 - y) \ge (y_0 - x_0, y_0 - x_0).$$
 (2-11)

Adding

$$(y, y_0 - x_0) > (x_0, y_0 - x_0)$$

to (2-11) gives:

$$(y, y_0 - x_0) + (y_0 - y, y_0 - y) > (y_0, y_0 - x_0),$$

or

$$(y - y_0, y_0 - x_0) + (y_0 - y, y_0 - y) > 0.$$
 (2-12)

Since the real inner product is symmetric and since an interchange in signs in each argument leaves the outside sign positive, (2-12) can be rewritten as

$$(x_0 - y_0, y_0 - y) + (y_0 - y, y_0 - y) > 0$$

or

 $(x_0 - y, y_0 - y) > 0.$ 

Therefore, the numerator of  $\delta$ , as well as the denominator, is also positive and  $0 < \delta < 1$ . So by the convexity of K,  $z = \delta x_0 + (1 - \delta) y$ is a point of K. By routine manipulation and substitution

$$\begin{aligned} ||y_{0} - z||^{2} + ||x_{0} - z||^{2} &= (y_{0} - y - \delta(x_{0} - y), y_{0} - y - \delta(x_{0} - y)) \\ &+ (x_{0} - y - \delta(x_{0} - y), x_{0} - y - \delta(x_{0} - y)) \\ &= (y_{0} - y, y_{0} - y) - 2\delta(x_{0} - y, y_{0} - y) \\ &+ \delta^{2}(x_{0} - y, x_{0} - y) + (1 - \delta)^{2}(x_{0} - y, x_{0} - y). \end{aligned}$$

$$(2-13)$$

Let

$$\alpha = (x_0 - y, y_0 - y)$$

$$\beta = (x_0 - y, x_0 - y),$$

then  $\delta = \alpha \beta^{-1}$ . Then (2-13) becomes

$$(y_0 - y, y_0 - y) - 2 \delta \alpha + \delta^2 \beta + (1 - \delta)^2 \beta$$

or

and

$$(y_0 - y, y_0 - y) - 2\alpha^2 \beta^{-1} + \beta(1 - 2\alpha\beta^{-1}) + 2\alpha^2 \beta^{-1}$$

which is equivalent to

$$(y_0 - y, y_0 - y) + \beta - 2\alpha$$
.

Using the values for  $\alpha$  and  $\beta$ , yields

$$(y_0 - y, y_0 - y) + (x_0 - y, x_0 - y) - 2(x_0 - y, y_0 - y).$$

Rewriting this in the form

$$(y_0 - y, y_0 - y) - (x_0 - y, y_0 - y) + (x_0 - y, x_0 - y) - (x_0 - y, y_0 - y)$$

results in

$$(y_0 - y, y_0 - x_0) + (x_0 - y, x_0 - y_0)$$

which is equal to

$$(y_0 - x_0, y_0 - x_0)$$
 or  $||y_0 - x_0||^2$ .

Therefore

$$||y_0 - z||^2 + ||x_0 - z||^2 = ||y_0 - x_0||^2.$$
 (2-14)

Since  $0 < \delta < 1$ , then  $z \neq x_0$  and  $||x_0 - z||^2 > 0$ . Hence, from (2-14),

$$||y_0 - z|| < ||y_0 - x_0||.$$
 (2-15)

However, since  $z \in K$ , we see that

$$||y_0 - z|| \ge ||y_0 - z_0||$$

which contradicts (2-15). Hence (2-9) is false and  $H_{x_0}$  bounds K.

Proof of Theorem 2-1: Lemmas 2-1 and 2-2 have shown that  $D(X) = \lambda$ . It remains only to show that X is complete. Suppose the contrary. Let y<sub>0</sub> be any point not in X and show

$$D(\{y_0\} \cup X) > D(X).$$

By Lemma 2-3, there is  $x_0 \in X$  such that

$$||y_0 - x_0|| \le ||y_0 - x||$$

for every x  $\epsilon$  X. Furthermore,

$$H_{x_0} = \{x : (x - x_0, y_0 - x_0) = 0\}$$

is a support hyperplane of X.

Let

$$H = H_{x_0} + \lambda \mu (x_0 - y_0),$$

where

$$\mu = ||\mathbf{x}_0 - \mathbf{y}_0||^{-1}$$
 (2-16)

$$x' = x_0 + \lambda \mu (x_0 - y_0).$$
 (2-17)

Then

$$||\mathbf{x}_{0} - \mathbf{x}'||^{2} = ||\mathbf{x}_{0} - \mathbf{x}_{0} - \lambda \mu (\mathbf{x}_{0} - \mathbf{y}_{0})|^{2}$$
$$= \lambda^{2} \mu^{2} (\mathbf{x}_{0} - \mathbf{y}_{0}, \mathbf{x}_{0} - \mathbf{y}_{0})$$
$$= \lambda^{2},$$

and hence  $||\mathbf{x}_0 - \mathbf{x}'|| = \lambda$  (cf. Figure 2-5).

and let

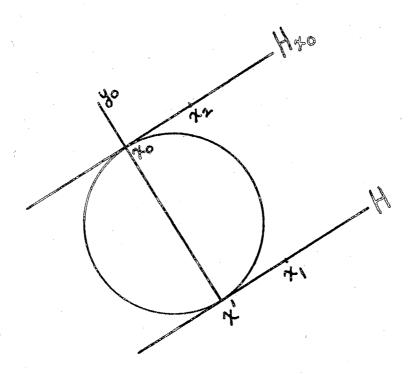


Figure 2-5.

It will now be shown that

 $H = \{x : (x, x_0 - y_0) = (x', x_0 - y_0)\}.$ 

Let  $x_1 \in H$  which means

$$x_1 = x_2 + \lambda \mu (x_0 - y_0)$$

for some  $x_2 \in H_x$ . Then

$$(\mathbf{x}_{1}, \mathbf{x}_{0} - \mathbf{y}_{0}) = (\mathbf{x}_{2} + \lambda \mu (\mathbf{x}_{0} - \mathbf{y}_{0}), \mathbf{x}_{0} - \mathbf{y}_{0})$$
$$= (\mathbf{x}_{2}, \mathbf{x}_{0} - \mathbf{y}_{0}) + \lambda \mu (\mathbf{x}_{0} - \mathbf{y}_{0}, \mathbf{x}_{0} - \mathbf{y}_{0})$$
$$= (\mathbf{x}_{0}, \mathbf{x}_{0} - \mathbf{y}_{0}) + \lambda \mu (\mathbf{x}_{0} - \mathbf{y}_{0}, \mathbf{x}_{0} - \mathbf{y}_{0})$$
$$= (\mathbf{x}_{0} + \lambda \mu (\mathbf{x}_{0} - \mathbf{y}_{0}), \mathbf{x}_{0} - \mathbf{y}_{0})$$

or using (2-17)

$$= (x^{1}, x_{0} - y_{0}).$$

Therefore,

$$(x_1, x_0 - y_0) = (x', x_0 - y_0),$$

which implies that

$$H \subset \{x : (x, x_0 - y_0) = (x', x_0 - y_0)\}.$$

To show inclusion the other way select  $x_3$  so that

$$(x_3, x_0 - y_0) = (x', x_0 - y_0).$$

Then

$$(\mathbf{x}_{3} - \lambda \mu (\mathbf{x}_{0} - \mathbf{y}_{0}), \mathbf{y}_{0} - \mathbf{x}_{0}) = (\mathbf{x}_{3}, \mathbf{y}_{0} - \mathbf{x}_{0}) - \lambda \mu (\mathbf{x}_{0} - \mathbf{y}_{0}, \mathbf{y}_{0} - \mathbf{x}_{0})$$
$$= -(\mathbf{x}', \mathbf{x}_{0} - \mathbf{y}_{0}) + \lambda \mu (\mathbf{x}_{0} - \mathbf{y}_{0}, \mathbf{x}_{0} - \mathbf{y}_{0})$$

or using (2-17)

$$= (x_0, y_0 - x_0),$$

which means that

$$x_3 - \lambda \mu (x_0 - y_0) \in H_{x_0}$$
.

Since

$$x_3 = x_3 - \lambda \mu (x_0 - y_0) + \lambda \mu (x_0 - y_0),$$

it follows that

$$x_3 \in H_{x_0} + \lambda \mu (x_0 - y_0) = H.$$

Therefore,

$$H \supset \{x : (x, x_0 - y_0 = (x', x_0 - y_0)\}.$$

The distance between  $\underset{x_0}{H}$  and H is  $\lambda$ . Since  $\underset{x_0}{x_0} \in \underset{x_0}{H}$ ,  $x' \in H$ ,

it follows that

 $\rho (\mathbf{H}_{\mathbf{x}_0}, \mathbf{H}) \leq ||\mathbf{x}_0 - \mathbf{x}^{\mathsf{T}}|| = \lambda.$ 

To show that  $\rho(H_{x_0}, H) = \lambda$  suppose there exist  $y_1, y_2$  where  $y_1 \in H_{x_0}$ ,  $y_2 \in H$  and

$$|y_1 - y_2|| < ||x_0 - x'|| = \lambda.$$
 (2-18)

If  $y_2 \in H$ , then

$$y_2 = x_3 + \lambda \mu (x_0 - y_0)$$

where  $x_3 \in H_{x_0}$ . Then

$$||y_{1} - y_{2}||^{2} = ||y_{1} - x_{3} - \lambda \mu (x_{0} - y_{0})||^{2}$$
  
=  $(y_{1} - x_{3}, y_{1} - x_{3}) - 2 \lambda \mu (x_{0} - y_{0}, y_{1} - x_{3}) + \lambda^{2} \mu^{2} (x_{0} - y_{0}, x_{0} - y_{0}).$ 

Since  $y_1$  and  $x_3$  are in  $H_{x_0}$ ,

$$(y_1 - x_0, y_0 - x_0) = 0,$$
  
 $(x_3 - x_0, y_0 - x_0) = 0,$ 

and therefore, the term  $2\lambda\mu$  (x<sub>0</sub> - y<sub>0</sub>, y<sub>1</sub> - x<sub>3</sub>) is zero. Therefore,

$$||y_1 - y_2||^2 = (y_1 - x_3, y_1 - x_3) + \lambda^2$$

Since

$$(y_1 - x_3, y_1 - x_3) \ge 0,$$

thus

$$||\mathbf{y}_1 - \mathbf{y}_2|| \geq \lambda$$

which is contrary to (2-18). So the distance between H and H is  $\lambda.$   $x_0$ 

The hyperplane H bounds the set X. Since, by definition of x',

$$(x' - x_0, x_0 - y_0) = (\lambda \mu (x_0 - y_0), x_0 - y_0) > 0,$$

and hence it follows that

$$(x', x_0 - y_0) > (x_0, x_0 - y_0)$$

which implies that  $x_0 \in H^-$ . So it is necessary to show ( ),

$$(y, x_0 - y_0) \leq (x^1, x_0 - y_0)$$

for all  $y \in X$ .

Suppose, however, that

$$(y, x_0 - y_0) > (x^i, x_0 - y_0)$$
 (2-19)

for some  $y \in X$  where  $y \neq x'$ . Using the inequalities

$$(y, x_0 - y_0) > (x^{\dagger}, x_0 - y_0) > (x_0, x_0 - y_0),$$

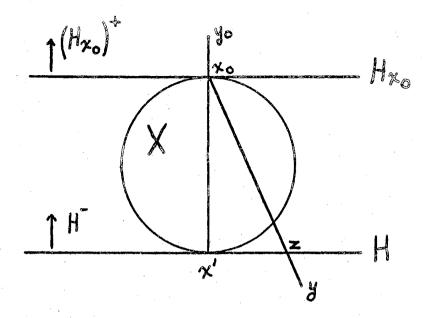
it is possible to see that if

$$\alpha = \frac{(y - x', x_0 - y_0)}{(y - x_0, x_0 - y_0)},$$

 $0 < \alpha < 1$ . Let

$$z = \alpha x_0 + (1 - \alpha) y$$
$$= \alpha (x_0 - y) + y$$

which is in X by the convexity of X (cf. Figure 2-6). Using the definition of  $\alpha$ , the following calculation:





$$(z, x_0 - y_0) = \alpha (x_0 - y, x_0 - y_0) + (y, x_0 - y_0)$$
$$= (x' - y, x_0 - y_0) + (y, x_0 - y_0)$$
$$= (x', x_0 - y_0),$$

shows that  $z \in H$ .

By using the properties of the inner product and substituting for x' and  $\alpha$ ,

$$\begin{aligned} (\mathbf{x}^{*}, \mathbf{x}^{*} - \mathbf{x}_{0}) &= (\mathbf{x}_{0}^{*} + \lambda \mu (\mathbf{x}_{0}^{*} - \mathbf{y}_{0}), \ \lambda \mu (\mathbf{x}_{0}^{*} - \mathbf{y}_{0})) - (\alpha (\mathbf{x}_{0}^{*} - \mathbf{y}) + \mathbf{y}, \ \lambda \mu (\mathbf{x}_{0}^{*} - \mathbf{y}_{0})) \\ &= \lambda \mu (\mathbf{x}_{0}, \ \mathbf{x}_{0}^{*} - \mathbf{y}_{0}) + \lambda^{2} - \alpha \lambda \mu (\mathbf{x}_{0}^{*} - \mathbf{y}, \mathbf{x}_{0}^{*} - \mathbf{y}_{0}) - \lambda \mu (\mathbf{y}, \mathbf{x}_{0}^{*} - \mathbf{y}_{0}) \\ &= \lambda \mu (\mathbf{x}_{0}, \ \mathbf{x}_{0}^{*} - \mathbf{y}_{0} + \lambda^{2} - \lambda \mu (\mathbf{x}^{*} - \mathbf{y}, \mathbf{x}_{0}^{*} - \mathbf{y}_{0}) - \lambda \mu (\mathbf{y}, \mathbf{x}_{0}^{*} - \mathbf{y}_{0}) \end{aligned}$$

$$= \lambda \mu (\mathbf{x}_{0}, \mathbf{x}_{0} - \mathbf{y}_{0}) + \lambda^{2} - \lambda \mu (\mathbf{x}', \mathbf{x}_{0} - \mathbf{y}_{0})$$

$$= \lambda \mu (\mathbf{x}_{0}, \mathbf{x}_{0} - \mathbf{y}_{0}) + \lambda^{2} - \lambda \mu (\mathbf{x}_{0} + \lambda \mu (\mathbf{x}_{0} - \mathbf{y}_{0}), \mathbf{x}_{0} - \mathbf{y}_{0})$$

$$= \lambda \mu (\mathbf{x}_{0}, \mathbf{x}_{0} - \mathbf{y}_{0}) + \lambda^{2} - \lambda \mu (\mathbf{x}_{0}, \mathbf{x}_{0} - \mathbf{y}_{0}) - \lambda^{2}$$

$$= 0.$$

Therefore,

$$(x', x' - x_0) = (z, x' - x_0).$$
 (2-20)

Expanding (2-20) and multiplying by 2 leads to

$$-2(\mathbf{x}_0, \mathbf{x}^1) + 2(\mathbf{x}^1, \mathbf{x}^1) - 2(\mathbf{x}^1, \mathbf{z}) = -2(\mathbf{x}_0, \mathbf{z}). \quad (2-21)$$

Adding  $(x_0, x_0) + (z, z)$  to both sides of (2-21) results in

$$(x_0, x_0) - 2(x_0, x^i) + 2(x^i, x^i) - 2(x^i, z) + (z, z) = (x_0, x_0) - 2(x_0, z) + (z, z)$$

which is equivalent to

$$||\mathbf{x}_0 - \mathbf{x}'||^2 + ||\mathbf{x}' - \mathbf{z}||^2 = ||\mathbf{x}_0 - \mathbf{z}||^2.$$

Since  $x' \neq z$ ,

$$||x_0 - x'|| < ||x_0 - z||$$

which implies

$$\lambda < ||\mathbf{x}_0 - \mathbf{z}||.$$

But  $x_0$  and z are both in X and  $D(X) = \lambda$  means  $||x_0 - z|| \le \lambda$ . This contradiction implies (2-19) is false. Therefore,

$$(y_{s} x_{0} - y_{0}) \leq (x_{s}^{*} x_{0} - y_{0})$$

36

for every  $y \in X$ , and H is a hyperplane that bounds X.

If  $x^{i} \in X$ , then H would be a supporting hyperplane for X. Suppose  $x^{i} \notin X$ . It is impossible for any z, not  $x^{i}$ , to be in  $H \cap X$ since  $||x_{0} - z|| > \lambda$ . Therefore,  $H \cap X = 0$ , and X is not a set of constant width  $\lambda$ . So x' must be in X, and H is a supporting hyperplane of X at x'.

Since  $y_0$ ,  $x_0$ , and x' are on the same line with  $x_0$  in between  $y_0$  and x',

$$||\mathbf{y}_0 - \mathbf{x}'|| = ||\mathbf{y}_0 - \mathbf{x}_0|| + ||\mathbf{x}_0 - \mathbf{x}'||.$$

Since  $y_0 \neq x_0$ ,  $||y_0 - x_0|| > 0$ , and consequently,

 $||y_0 - x^i|| > ||x_0 - x^i|| = \lambda.$ 

The preceding paragraphs show

$$D(X) < D(\{y_0\} \cup X)$$

for any  $y_0 \notin X$ . Hence X is complete.

## CHAPTER III

### PROPERTIES OF COMPLETE SETS

Completeness of a set as defined in Chapter II is a very simple notion. However, it turns out that a complete set has many significant properties, making completeness a powerful idea.

It will be convenient to use the following notation. For any  $a \in E_n$ ,  $r \in R$ , let

 $N(a, r) = \{x : ||x - a|| < r\},$  $D(a, r) = \{x : ||x - a|| \le r\},$  $C(a, r) = \{x : ||x - a|| = r\}.$ 

In proving properties of complete sets, we will need the following lemma:

Lemma 3-1: For any bounded set S, D(S) = D(conv S). The symbol conv S represents the convex hull of the set S.

The proof is omitted since this is a well known result in general convexity (cf. [14], Thm. 12, p.23).

A complete set has many remarkable properties. Lemmas 3-2 and 3-3 express two such properties. These properties give some insight into the structure of a complete set.

### Lemma 3-2: If S is a complete set, then S is closed.

Proof: If S is not closed there must be an accumulation point  $x_0$  for the set S but  $x_0 \notin S$ . The diameter  $D(S \cup \{x_0\}) > \delta$  where  $\delta = D(S)$ . Thus, there is  $x_1 \notin S$  where  $||x_1 - x_0|| > \delta$ . Let

$$||\mathbf{x}_1 - \mathbf{x}_0|| - \delta = \epsilon > 0.$$

Consider  $N(x_0, \epsilon/2)$ . Since  $x_0$  is an accumulation point of S,

$$N(x_0, \epsilon/2) \cap S \neq 0.$$

So let

$$x_2 \in N(x_0, \epsilon/2) \cap S.$$

By the triangle inequality

$$||\mathbf{x}_1 - \mathbf{x}_0|| \le ||\mathbf{x}_1 - \mathbf{x}_2|| + ||\mathbf{x}_2 - \mathbf{x}_0||.$$

This inequality implies  $\epsilon + \delta \leq \delta + \epsilon/2$  which says  $\epsilon/2 \leq 0$ , a contradiction.

Lemma 3-3: If S is complete set, then S is convex.

Proof: For any set S,  $S \subset \text{conv S}$  and by completeness S = conv S or D(S) < D(conv S). By Lemma 3-1, D(S) = D(conv S), so the only possibility is for S = conv S. Since conv S is a convex set, it follows that S is convex.

We will have need for the following notation:

$$S(X) = \bigcap \{D(x,\lambda) : x \in X\},\$$

The next lemma further describes a complete set in terms of ndimensional spheres whose centers are points of the set. Lemma 3-4: For any complete set X of diameter  $\lambda$ , S(X) = X.

Proof: If we select any  $x_0 \in X$ , then  $||x_0 - x|| \le \lambda$  for every  $x \in X$ . This means  $x_0 \in D(x, \lambda)$  for every  $x \in X$ . Therefore,

$$x_{\Omega} \in \bigcap \{ D(x, \lambda) : x \in X \}$$

which proves  $X \subset S(X)$ .

Suppose  $S(X) \subset X$ . This means there is at least one  $y \in S(X)$ where  $y \notin X$ . Thus,  $y \in D(x, \lambda)$  for every  $x \in X$ . This implies

$$D(X \cup \{y\}) = D(X)$$

which contradicts the hypothesis of completeness.

In a complete set X, we find a generalized concept of convexity. In any convex set, the line segment determined by two points in the set is contained in the set. In a complete set of diameter  $\lambda$ , every arc of radius  $\lambda$  and joining any two points in the set is contained in the set, and by the convexity of the set, all points between the arcs are in the set (cf. Figure 3-1). A set having this property is called  $\lambda$ -arc convex. In a 3-dimensional set X, this condition implies that between any two points of X lies a football shaped region that is completely contained in X.

Lemma 3-5: If X is complete and  $D(X) = \lambda$ , then X is  $\lambda$ -arc convex.

Proof: Let  $x_1$  and  $x_2$  be any points of X. Then since  $D(X) = \lambda$ ,  $||x_1 - x_2|| \le \lambda$ . For simplicity let  $\lambda = 1$ . Consider any arc of radius one and with endpoints  $x_1$  and  $x_2$ . Without loss of generality, let the

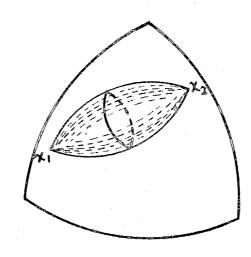


Figure 3-1.

center of the circle be the origin  $\phi$  (cf. Figure 3-2).

Notice that

 $X = \bigcap \{D(x,\lambda) : x \in X\} \subset D(x_1,\lambda) \cap D(x_2,\lambda) = A.$ 

That is,  $x \in A$  if and only if  $||x - x_1|| \le 1$  and  $||x - x_2|| \le 1$ .

Let  $x_4$  be in arc  $x_1x_2$  and show  $x_4 \in X$ . This result seems intuitively obvious when looking at the figure. However, the problem is an n-dimensional problem, and therefore requires an analytic proof.

Suppose  $x_4 \notin X$ . Then by completeness of X there is a point  $y \in X$  so that  $||x_4 - y|| > 1$ . Since  $y \in X \subset A$ ,  $||y - x_1|| \le 1$  and  $||y - x_2|| \le 1$ . Also, if  $x_4 \notin X$  then  $x_4 \neq x_1$  or  $x_2$ . Hence it follows that  $0 < \alpha < \beta \le \pi/3$  where  $\alpha$  and  $\beta$  are as indicated in Figure 3-2.

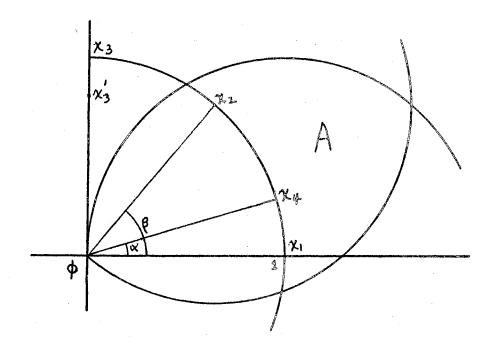


Figure 3-2.

The method of proof here is indirect and under the supposition  $x_4 \notin X$ ,  $||x_4 - y|| \le 1$  will be shown to hold, which contradicts  $||x_4 - y|| > 1$ .

First,  $||y - x_1|| \le 1$  leads to the following:

$$||y - x_1||^2 = (y, y) - 2(x_1, y) + (x_1, x_1) \le 1$$

Since  $(\mathbf{x}_1, \mathbf{x}_1) = 1$ , then

$$(y, y) - 2(x_1, y) \leq 0.$$

Therefore,

$$0 < (y, y) \leq 2(x_1, y).$$
 (3-1)

Similarly,

$$0 < (y, y) \le 2(x_2, y)$$
 (3-2)

follows from  $||y - x_2|| \le 1$ .

Using the Gram-Schmidt orthogonalization process, let

$$\mathbf{x}_{3} = \mathbf{x}_{2} - \frac{(\mathbf{x}_{1}, \mathbf{x}_{2})}{||\mathbf{x}_{1}|| ||\mathbf{x}_{1}||} \mathbf{x}_{1}.$$

Recall that

$$||\mathbf{x}_1|| = ||\mathbf{x}_2|| = 1$$

and

$$(x_1, x_2) = ||x_1|| ||x_2|| \cos \beta.$$

Therefore,

$$(\mathbf{x}_1, \mathbf{x}_2) = \cos \beta,$$

and

$$x_{3}^{*} = x_{2}^{*} - (\cos \beta) x_{1}^{*}$$

Furthermore,

$$||\mathbf{x}'_{3}||^{2} = (\mathbf{x}_{2}, \mathbf{x}_{2}) - 2 \cos \beta (\mathbf{x}_{1}, \mathbf{x}_{2}) + \cos^{2} \beta (\mathbf{x}_{1}, \mathbf{x}_{1})$$
$$= 1 - 2 \cos^{2} \beta + \cos^{2} \beta$$
$$= 1 - \cos^{2} \beta.$$

Let

$$x_3 = \frac{x_3'}{||x_3'||}$$
.

Therefore,

$$x_{3} = \frac{1}{\sqrt{1 - \cos^{2}\beta}} \quad x_{2} = \frac{\cos\beta}{\sqrt{1 - \cos^{2}\beta}} \quad x_{1}$$
$$= \frac{1}{\sin\beta} \quad x_{2} = \frac{\cos\beta}{\sin\beta} \quad x_{1}$$

Then  $x_4$  is equal to  $(\cos \alpha)x_1 + (\sin \alpha)x_3$  or

$$\mathbf{x}_4 = (\cos \alpha)\mathbf{x}_1 + \frac{\sin \alpha}{\sin \beta} \mathbf{x}_2 - \frac{(\sin \alpha)(\cos \beta)}{\sin \beta} \mathbf{x}_1. \quad (3-3)$$

Next the needed inequality

$$\sin\beta - \sin\alpha + \sin(\alpha - \beta) < 0 \qquad (3-4)$$

is established. This inequality is shown to hold for the special range of values  $0 < \alpha < \beta \le \pi/3$  by the following argument:

First cos  $(\beta - \alpha) \leq 1$  for any angles  $\alpha$  and  $\beta$  and cos  $\alpha > \cos \beta$  or cos  $\alpha - \cos \beta > 0$  for  $0 < \alpha < \beta \leq \pi/3$ . Thus,

$$\cos (\beta - \alpha) < 1 + \cos \alpha - \cos \beta,$$

 $\cos\beta\,\coslpha\,+\,\sin\beta\,\sinlpha\,\leq\,1\,+\,\coslpha\,-\,\coseta,$ 

or

$$\sin\beta\,\sin\alpha<1+\cos\alpha-\cos\beta\,-\,\cos\alpha\,\cos\beta$$

Factoring

$$\sin\beta\,\sin\alpha<(1+\cos\alpha)(1-\cos\beta)$$

and multiplying by  $\sin \alpha > 0$  gives

$$\sin\beta\,\sin^2\alpha<\,\sin\alpha\,(1+\cos\alpha)(1-\cos\beta).$$

Substituting for  $\sin^2 \alpha$  gives

$$\sin\beta \ (1 - \cos^2 \alpha) \leq \sin\alpha \ (1 + \cos\alpha)(1 - \cos\beta),$$

or

$$\sin\beta \ (1+\cos\alpha)(1-\cos\alpha) \le (1+\cos\alpha)(1-\cos\beta)(\sin\alpha)$$

or

$$\sin \beta (1 - \cos \alpha) < \sin \alpha (1 - \cos \beta)$$

after dividing by  $1 + \cos \alpha$ . Then

$$\sin \beta - \sin \beta \cos \alpha < \sin \alpha - \sin \alpha \cos \beta$$

or

$$\sin \beta - \sin \alpha \leq \sin \beta \cos \alpha - \sin \alpha \cos \beta$$

which is

 $\sin \beta - \sin \alpha \leq \sin (\beta - \alpha),$ 

 $\sin\beta - \sin\alpha - \sin(\beta - \alpha) \leq 0,$ 

or

$$\sin\beta - \sin\alpha + \sin(\alpha - \beta) \leq 0.$$

For a specific y,  $(x_2, y) \le (x_1, y)$  or  $(x_1, y) \le (x_2, y)$ . If  $(x_2, y) \le (x_1, y)$ , the following will show  $||x_4 - y|| \le 1$ . Observe

$$||\mathbf{x}_4 - \mathbf{y}||^2 = (\mathbf{y}, \mathbf{y}) - 2(\mathbf{x}_4, \mathbf{y}) + (\mathbf{x}_4, \mathbf{x}_4).$$
 (3-5)

Using (3-2), (3-3), and  $(x_4, x_4) = 1$ , equation (3-5) leads to

$$\left|\left|\mathbf{x}_{4}-\mathbf{y}\right|\right|^{2} \leq 1+2 \ (\mathbf{x}_{2},\mathbf{y}) - 2\cos\alpha(\mathbf{x}_{1},\mathbf{y}) - 2 \ \frac{\sin\alpha}{\sin\beta} \ (\mathbf{x}_{2},\mathbf{y}) + 2 \ \frac{\sin\alpha\cos\beta}{\sin\beta} \ (\mathbf{x}_{1},\mathbf{y}) + 2 \ \frac{\sin\alpha\beta}{\sin\beta} \ (\mathbf{x}_{1},\mathbf{y}) + 2 \ \frac{\sin\beta\beta}{\sin\beta} \ (\mathbf{x}_{$$

$$\leq 1 + 2 \left[ \frac{\sin \beta - \sin \alpha}{\sin \beta} \right] (\mathbf{x}_{2}, \mathbf{y}) + 2 \left[ \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\sin \beta} \right] (\mathbf{x}_{1}, \mathbf{y}).$$
(3-6)

Using  $0 < (x_2, y) \le (x_1, y)$ , the quantity of (3-6) is not greater than

$$1 + \frac{2}{\sin \beta} \left[ \sin \beta - \sin \alpha + \sin \alpha \cos \beta - \cos \alpha \sin \beta \right] (x_1, y)$$

which is not greater than

$$1 + \frac{2}{\sin\beta} \left[ \sin\beta - \sin\alpha + \sin(\alpha - \beta) \right] (x_1, y).$$

Therefore, using the inequalities  $\sin \beta > 0$ ,  $(x_1, y) > 0$ , and (3-4), the inequality  $||x_4 - y|| \le 1$  follows.

If  $(x_1, y) \leq (x_2, y)$ , then it follows that

$$||x_4 - y||^2 = (y, y) - 2(x_4, y) + (x_4, x_4)$$

$$\leq 1 + 2(x_1, y) - 2\cos\alpha(x_1, y) - 2\frac{\sin\alpha}{\sin\beta}(x_2, y) + \frac{2\sin\alpha\cos\beta}{\sin\beta}(x_1, y)$$
$$\leq 1 + 2\left[\frac{\sin\beta - \sin\beta\cos\alpha + \sin\alpha\cos\beta}{\sin\beta}\right](x_1, y) - 2\frac{\sin\alpha}{\sin\beta}(x_2, y)$$

$$\leq 1 + \frac{2}{\sin \beta} \left[ \sin \beta - \sin \beta \cos \alpha + \sin \alpha \cos \beta - \sin \alpha \right] (x_1, y)$$

$$\leq 1 + \frac{2}{\sin\beta} \left[ \sin\beta - \sin\alpha + \sin(\alpha - \beta) \right] (x_1, y).$$

Again  $||x_4 - y|| \le 1$ . So in either case,  $||x_4 - y|| \le 1$  which contradicts  $||x_4 - y|| > 1$ .

Therefore the supposition  $x_4 \notin X$  is false and  $x_4 \in X$ . Since  $x_4$  was an arbitrary point in the arc, the lemma is proved.

A <u>convex</u> <u>body</u> is a convex set which has at least one interior point. Every complete set, except a trivial set, turns out to be a convex body. Lemma 3-6: If X is complete of diameter  $\lambda$  and has at least two points, then X is a convex body.

Proof: Let  $x_1, x_2$  be any two points of X. By Lemma 3-3, X is convex and hence  $x_3 = (1/2)x_1 + (1/2)x_2$  is a point in X. Let

$$r = ||x_1 - x_3||$$
 and  $c = \lambda - \sqrt{\lambda^2 - r^2}$ .

It will be shown that  $N(x_3, c) \subset X$ , and therefore X has an interior point.

Select an arbitrary point  $x_4 \in N(x_3, c)$ . If  $x_4$  is on line segment with endpoints  $x_1, x_2$ , then by convexity,  $x_4 \in X$ . If  $x_4$  is not on the line segment, consider the plane determined by  $x_1, x_2$ , and  $x_4$ . In this plane let  $x_5, x_6$  be centers of circles with radii  $\lambda$  and passing through  $x_1, x_2$  as shown in Figure 3-3. By Lemma 3-5 and convexity, the set bounded by these arcs, which includes  $x_4$ , is in X. Therefore,  $N(x_3, c) \subset X$ .

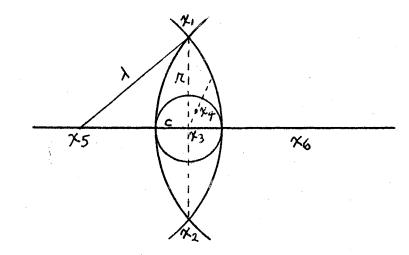


Figure 3-3.

The proof of Lemma 3-6 is somewhat intuitive since it can be reduced to a problem in the plane. However, an analytic proof can be supplied.

Lemma 3-7 states properties of a translate of a complete set. This may seem rather artificial, but its real significance will appear in the proof of Lemma 3-9.

Lemma 3-7: If X is complete and has diameter  $\lambda$ , then X<sub>1</sub> = X + x - y is convex, complete and D(X<sub>1</sub>) =  $\lambda$ .

Proof:

i)  $X_1$  is convex. Let  $x_1, y_1$  be in  $X_1$  which means  $x_1 = x_0 + x - y$ ,  $x_2 = y_0 + x - y$  for some  $x_0$  and  $y_0 \in X$ . For  $0 \le \alpha \le 1$ ,

$$\begin{aligned} \alpha \, x_1 + (1 - \alpha) \, y_1 &= \alpha x_0 + \alpha (x - y) + (1 - \alpha) y_0 + (1 - \alpha) (x - y) \\ &= \alpha x_0 + (1 - \alpha) \, y_0 + (\alpha + 1 - \alpha) (x - y) \\ &= \alpha x_0 + (1 - \alpha) \, y_0 + x - y \, \epsilon \, X + x - y, \end{aligned}$$

which shows X<sub>1</sub> is convex.

ii)  $X_1$  is complete. If  $X_1$  is not complete, then there is some  $x_0 \notin X_1$  for which

$$D(\{x_0\} \cup X_1) = \lambda$$

Then  $x_0 + y - x \notin X$  and by completeness of X,

$$D(\{x_0 + y - x\} \cup X) > \lambda.$$

This means there is  $y_0 \in X$  so that

or

$$||x_0 - (y_0 + x - y)|| > \lambda.$$

The point  $y_0 + x - y \in X_1$  and the statement

$$||x_0 - (y_0 + x - y)|| > \lambda$$

contradict the hypothesis,

$$D(\{x_0\} \cup X_1) = \lambda.$$

iii)  $D(X_1) = \lambda$ . For every  $x, y \in X$ ,  $||x - y|| \le \lambda$ , and there are two points  $\overline{x}, \overline{y} \in X$  so that  $||\overline{x} - \overline{y}|| = \lambda$ . Let  $x_2, y_2$  be any points in  $X_1$ . Then  $x_2 = x_1 + x - y$  and  $y_2 = y_1 + x - y$  for some  $x_1, y_1$  in X and

$$||x_2 - y_2|| = ||x_1 - y_1|| \le \lambda.$$

This means  $D(X_1) \le \lambda$ . Since  $\overline{x}, \overline{y} \in X$ ,  $\overline{x} + x - y$  and  $\overline{y} + (x - y)$  are in  $X_1$ . Consequently,

$$||\overline{\mathbf{x}} + \mathbf{x} - \mathbf{y} - (\overline{\mathbf{y}} + \mathbf{x} - \mathbf{y})|| = ||\overline{\mathbf{x}} - \overline{\mathbf{y}}|| = \lambda,$$

Combining this result with  $D(X_1) \leq \lambda$  leads to  $D(X_1) = \lambda$ .

The following definitions are introduced to be used in the next set of lemmas:

$$\begin{split} B_u &= \rho(L_1, L_2) \text{ where } L_1, L_2 \text{ are the parallel support} \\ &\quad \text{hyperplanes perpendicular to u and where } ||u|| = 1, \\ W &= \inf \{ B_u : u \in E_n, ||u|| = 1 \}, \\ W_u &= \sup \{ ||x - y|| : x, y \in X, x - y = \gamma u, \gamma \in R \}, \end{split}$$

$$d = \inf \{ W_{11} : u \in E_{n}, ||u|| = 1 \}.$$

Lemma 3-8: If X is complete then for any arbitrary direction u there must be  $\overline{x}, \overline{y} \in X$  so that  $||\overline{x} - \overline{y}|| = W_u$ .

Since X is a bounded set, the  $W_u$  is finite. Using the meaning of supremum, there are two sequences  $\{x_n\}$  and  $\{y_n\}$  consisting of points in X where for each n,  $x_n - y_n$  has direction u and

$$\lim_{n \to \infty} ||\mathbf{x}_n - \mathbf{y}_n|| = \mathbf{W}_u.$$

The sequence  $\{x_n\}$ , if it is an infinite set, must have an accumulation point  $\overline{x}$  by the boundedness of X. If it is a finite set, then some point is repeated infinitely often which can also be denoted by  $\overline{x}$ . In either case, it is possible to select a subsequence  $\{x_n'\}$  of  $\{x_n\}$  so that

$$\lim_{n \to \infty} x^{i} = \overline{x}.$$

The vector  $\overline{x} \in X$  since X is closed.

Similarly, there is a sequence  $\{y_n^\iota\}$  so that

$$\lim_{n \to \infty} y_n^{i} = \overline{y} \in X.$$

Furthermore,

$$\lim_{n \to \infty} ||\mathbf{x}_n' - \mathbf{y}_n'|| = \mathbf{W}_u.$$

Using these three limit statements, it will be shown that  $||\overline{x} - \overline{y}|| = W_u$ . For  $\epsilon > 0$  there are three numbers  $N_1, N_2, N_3$  so that

$$||\mathbf{x}_{n}^{1} - \mathbf{x}|| \leq \epsilon/3$$

whenever  $n > N_1$ ,

 $||y_n^i - \overline{y}|| \le \epsilon/3$ 

whenever  $n > N_2$ , and

$$\left| \left| \left| \mathbf{x}_{n}^{i} - \mathbf{y}_{n}^{i} \right| \right| - \mathbf{W}_{u} \right| \leq \epsilon/3$$

whenever  $n > N_3$ . Let

$$N = max \{N_1, N_2, N_3\}$$

Then

$$W_{u} - \epsilon/3 \leq ||x_{n}^{i} - y_{n}^{i}||$$

$$\leq ||x_{n}^{i} - \overline{x}|| + ||\overline{x} - \overline{y}|| + ||\overline{y} - y_{n}^{i}||$$

$$\leq 2\epsilon/3 + ||\overline{x} - \overline{y}||$$

whenever n > N. Therefore,

$$W_u - \epsilon \leq ||\overline{x} - \overline{y}||,$$

but by definition

$$||\overline{\mathbf{x}} - \overline{\mathbf{y}}|| \leq W_{\mathrm{u}}.$$

Therefore,

$$W_u - \epsilon \leq ||\overline{x} - \overline{y}|| \leq W_u$$

for every positive  $\varepsilon$  and hence

$$||\overline{\mathbf{x}} - \overline{\mathbf{y}}|| = W_{\mathbf{u}}.$$

Lemma 3-9: For a complete set X and x, y two points in X for which  $||x - y|| = W_u$ , there are parallel support hyperplanes  $H_1, H_2$  of X at x and y, respectively.

On the contrary suppose  $p_1 \in X \cap int X_1$ . From functional analysis

$$int X_1 = int (X + x - y)$$

= int X + x - y.

Since  $p_1 \in int X_1$ ,

$$\mathbf{p}_1 = \mathbf{p} + \mathbf{x} - \mathbf{y}$$

for some  $p \in int X$ , and

$$p_1 - p = x - y.$$
 (3-7)

If  $p \ \varepsilon$  int X, there must be  $N(p, \varepsilon) \subset X$  for some  $\varepsilon > 0.$  Define a real number

$$\delta = \frac{\epsilon/2 + ||\mathbf{p} - \mathbf{p}_1||}{||\mathbf{p} - \mathbf{p}_1||}$$

Let

$$x_0 = p_1 + \delta(p - p_1)$$
 (3-8)

and show  $\textbf{x}_0 ~ \varepsilon ~ \textbf{N}(\textbf{p}, \varepsilon) ~ \sub{K}$  (cf. Figure 3-4).

Subtracting p from both sides of (3-8) leads to

$$x_0 - p = p_1 - p + \delta (p - p_1)$$
  
=  $(\delta - 1)(p - p_1)$ 

or

$$x_0 - p = \frac{\epsilon/2}{||p - p_1||} (p - p_1)$$

Thus,

$$|\mathbf{x}_0 - \mathbf{p}|| = \epsilon/2 < \epsilon,$$

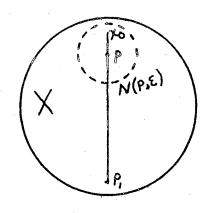
and hence

$$\mathbf{x}_{0} \in \mathbf{N}(\mathbf{p}, \epsilon) \subset \mathbf{X}.$$

The statement

$$||\mathbf{p} - \mathbf{p}_1|| = \frac{||\mathbf{x}_0 - \mathbf{p}_1||}{\delta}$$
 (3-9)

follows from (3-8),





Since  $\delta > 1$  it follows that

$$\frac{||\mathbf{x}_0 - \mathbf{p}||}{\delta} < ||\mathbf{x}_0 - \mathbf{p}_1||.$$
 (3-10)

Then from (3-7) and (3-8),

$$x_0 - p_1 = \delta (p - p_1)$$
  
=  $\delta (y - x)$ 

means  $x_0 - p_1$  has the same direction as y - x and

$$||x_0 - p_1|| \le ||x - y|| = W_u$$

since  $x_0, p_1 \in X$ . Therefore, from (3-9) and (3-10)  $||p - p_1|| < W_u$ but

$$||p - p_1|| = ||x - y|| = W_u.$$

This contradiction shows  $X \cap int X_1 = 0$ .

By Lemma 3-7  $X_1$  is convex, complete,  $D(X_1) = \lambda$ , and  $X_1$  is a convex body by Lemma 3-6. Then core  $X_1 = \text{int } X_1 \text{ since } X_1$  is a convex body (cf. Theorem 1.16 in [36]). Since  $X \neq 0$ , core  $X_1 \neq 0$ ,  $X \cap \text{core } X_1 = 0$ , there is a hyperplane  $H_1$  separating X and  $X_1$  (cf. Figure 3-5 and Theorem 2.7 in [36]).

The hyperplane  $H_1$  is a support hyperplane for X and  $X_1$  since  $x \in X \cap X_1$ . A linear functional f,  $f \neq 0$ , and a real number  $\alpha$  exists so that

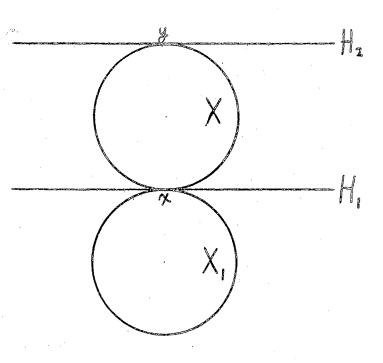
$$H_1 = \{x: f(x) = \alpha\}.$$

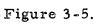
Assign the value  $\beta$  to f(y - x). With loss of generality assume  $f(X_1) \geq \alpha \; .$ 

Let  $H_2 = H_1 + y - x$  and show that  $H_2$  is a support hyperplane for X. The point  $x \in H_1$ , and so x + y - x = y is a point in  $H_2$ . In fact,  $y \in X \cap H_2$ . Let  $x_0 \in X$  and  $X = X_1 + y - x$ . Then  $x_0 = x_1 + y - x$  for some  $x_1 \in X$ . The value

$$f(x_0) = f(x_1) + \beta \ge \alpha + \beta.$$

If  $H_2 = [f: \alpha + \beta]$ , then  $H_2$  would be a support hyperplane of X.





If 
$$h_2 \in H_2$$
 then  $h_2 = h_1 + y - x$  for some  $h_1 \in H_1$ . Thus  

$$f(h_2) = f(h_1) + f(y - x)$$

$$= \alpha + \beta.$$

So the hyperplane  $H_2 \subset [f: \alpha + \beta]$ . If  $x_0 \in [f: \alpha + \beta]$ , then

$$f(\mathbf{x}_0) = \alpha + \beta$$
$$= \alpha + f(\mathbf{y} - \mathbf{x})$$

or

$$f(x_{\alpha} - y + x) = \alpha$$

Thus,

$$x_0 - y + x \in H_1$$

which implies

$$\mathbf{x}_0 \in \mathbf{H}_1 + \mathbf{y} - \mathbf{x} = \mathbf{H}_2.$$

Therefore,  $[f: \alpha + \beta] \subset H_2$ . So  $H_2 = [f: \alpha + \beta]$  and  $H_2$  is a support hyperplane for X. Since  $H_2$  was defined as a translate of  $H_1$ , the two are parallel and satisfy the conclusion of the lemma.

# Lemma 3-10: For the complete set X, d = W.

Proof: From the definitions of d and W,  $d \le W$ . By Lemma 3-8 for any direction u, there is a chord xy in X so that  $||x - y|| = W_u$ . From Lemma 3-9 there are two parallel support hyperplanes  $H_1, H_2$ of X at x, y, respectively. So

$$W \leq \rho(H_1, H_2) \leq ||x - y|| = W_u,$$

and this statement holds for every u. Therefore inf  $W_u \ge W$ , but inf  $W_u = d$ . The statement of the lemma follows from  $d \ge W$  and  $d \le W$ 

Lemma 3-11: If X is complete, there are two points  $x_1, x_2 \in X$ such that  $||x_1 - x_2|| = d$ .

Proof: By Lemma 3-8 for each  $u_n$ , there are two points  $\overline{x}_n,\overline{y}_n\in X$  such that

$$||\overline{\mathbf{x}}_{n} - \overline{\mathbf{y}}_{n}|| = W_{u_{n}}.$$

The set

$$\{W_{u}: u \in E_{n}, ||u|| = 1\}$$

is bounded below by zero, and so inf  $\{W_u\} = d$  exists. Hence there are sequences  $\{\overline{x}_n\}$ ,  $\{\overline{y}_n\}$  so that

$$\lim_{n \to \infty} ||\overline{x}_n - \overline{y}_n|| = d,$$

The sequence  $\{\overline{x}_n\}$  either has an accumulation point or some element repeated infinitely often. In either case, denote the element by  $x_1$ . Similarly  $\{\overline{y}_n\}$  has such a point  $y_1$ . Select subsequences  $\{x_n^i\}$ ,  $\{y_n^i\}$ for which

$$\lim_{n \to \infty} \mathbf{x}'_n = \mathbf{x}_1,$$

$$\lim_{n \to \infty} y_n^i = x_2,$$

and

$$\lim_{n\to\infty} ||\mathbf{x}'_n - \mathbf{y}'_n|| = \mathbf{d}.$$

Both points  $x_1, x_2$  are in X by the closure property of X.

The following standard limit procedure shows  $||x_1 - x_2|| = d$ . For  $\epsilon > 0$  there exist three numbers  $N_1$ ,  $N_2$ ,  $N_3$  so that

$$||\mathbf{x}_{n}^{i} - \mathbf{x}_{1}|| < \epsilon/3$$

whenever  $n > N_1$ ,

$$||y'_n - x_2|| < \epsilon/3$$

whenever  $n > N_2$ , and

$$\left|\left|\mathbf{x}_{n}^{\dagger}-\mathbf{y}_{n}^{\dagger}\right|\right|$$
 - d <  $\epsilon/3$ 

whenever  $n > N_3$ .

For 
$$n > N = \max \{ N_1, N_2, N_3 \}$$
,  
 $||x_1 - x_2|| \le ||x_1 - x_n'|| + ||x_n' - y_n'|| + ||y_n' - x_2||$   
 $< \epsilon/3 + (d + \epsilon/3) + \epsilon/3$   
 $= d + \epsilon$ .

Also,

$$\begin{aligned} d - \epsilon/3 &< ||x_{n}^{i} - y_{n}^{i}|| \\ &\leq ||x_{n}^{i} - x_{1}|| + ||x_{1} - x_{2}|| + ||x_{2} - y_{n}^{i}|| \\ &< \epsilon/3 + ||x_{1} - x_{2}|| + \epsilon/3, \end{aligned}$$

which implies

 $d - \epsilon < ||x_1 - x_2||.$ 

Combining

$$||\mathbf{x}_1 - \mathbf{x}_2|| < d + \epsilon$$

with

$$d - \epsilon < ||x_1 - x_2||$$

gives

$$||\mathbf{x}_1 - \mathbf{x}_2|| - d < \epsilon$$

Therefore,  $||\mathbf{x}_1 - \mathbf{x}_2|| = d$ .

Lemma 3-12: If X is a complete set and  $x_1, x_2 \in X$  for which  $||x_1 - x_2|| = d$ , then there are parallel support hyperplanes  $H_1, H_2$  of X at  $x_1, x_2$ , respectively, such that  $x_1 - x_2$  is perpendicular to  $H_1$  and  $H_2$ .

Proof: By Lemma 3-9 there exist two parallel support hyperplanes  $H_1, H_2$  of X at  $x_1, x_2$  respectively. Suppose  $x_1 - x_2$  is not perpendicular to  $H_1$  or  $H_2$ . Then

$$\rho(H_1, H_2) < ||x_1 - x_2|| = d = W \le \rho(H_1, H_2).$$

But this last statement is impossible.

Proof: Suppose for every set  $x \in X$ ,  $||x - x_1|| < \lambda$ . Since X is bounded, let

$$\lambda^{i} = \sup \{ ||\mathbf{x} - \mathbf{x}_{1}|| : \mathbf{x} \in \mathbf{X} \} \leq \lambda.$$

If  $\lambda^{\tau}$  =  $\lambda, \ there \ is a sequence <math display="inline">\{x_n^{\phantom{t}}\}$  of points in X such that

$$\lim_{n \to \infty} ||\mathbf{x}_n - \mathbf{x}_1|| = \lambda.$$

The sequence  $\{x_n\}$  either has an accumulation point or some element is repeated infinitely often. In either case, denote the element by  $\overline{x}$ . By the closure of X,  $\overline{x}$  is an element of X. One can select a subsequence  $\{x_n^i\}$  of  $\{x_n\}$  so that

$$\lim_{n \to \infty} x_n^{!} = \overline{x}$$

and

$$\lim_{n \to \infty} ||\mathbf{x}_n^{\mathsf{i}} - \mathbf{x}_1|| = \lambda.$$

For  $\epsilon > 0$ , there is N so that

$$\begin{aligned} & |\mathbf{x}_{n} - \epsilon/2 \leq ||\mathbf{x}_{n}^{\dagger} - \mathbf{x}_{1}|| \\ & \leq ||\mathbf{x}_{n}^{\dagger} - \mathbf{x}_{1}|| + ||\mathbf{x} - \mathbf{x}_{1}|| \\ & \leq \epsilon/2 + ||\mathbf{x} - \mathbf{x}_{1}|| \end{aligned}$$

whenever n > N. Thus,

$$\lambda - \epsilon \leq ||\overline{x} - x_1|| \leq \lambda$$

for every  $\epsilon > 0$  which means  $||\overline{x} - x_1|| = \lambda$ . However, it was assumed  $||x - x_1|| < \lambda$  for all  $x \in X$ . Therefore, it follows that for all  $x \in X$ ,

$$||\mathbf{x} - \mathbf{x}_1|| \leq \lambda^{1} < \lambda.$$

Now let  $\epsilon = (1/2)(\lambda - \lambda^{\dagger})$  and consider a point  $\mathbf{x}_3 \in N(\mathbf{x}_1, \epsilon) \setminus \mathbb{X}$  (cf. Figure 3-6). For every  $\mathbf{x} \in \mathbb{X}$ ,

$$||\mathbf{x} - \mathbf{x}_{3}|| \leq ||\mathbf{x} - \mathbf{x}_{1}|| + ||\mathbf{x}_{1} - \mathbf{x}_{3}||$$
$$\leq \lambda^{1} + \frac{\lambda - \lambda^{1}}{2}$$
$$= \frac{\lambda + \lambda^{1}}{2}$$
$$< \lambda$$

which contradicts completeness of X. Therefore, there is  $y \in X$  such that  $||y - x_1|| = \lambda$ .

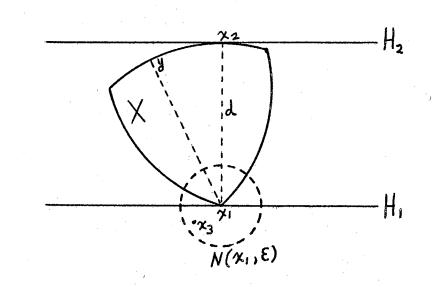


Figure 3-6.

#### CHAPTER IV

# A COMPLETE SET IS A SET OF CONSTANT WIDTH

We now further investigate the relationship of complete sets and sets of constant width. It should be noted that Theorem 4-1 is the converse of Theorem 2-1. Thus together these theorems form a useful characterization of sets of constant width.

<u>Theorem 4-1</u>: If X is complete and has diameter  $\lambda$ , then X is a set of constant width  $\lambda$ .

Proof: An indirect proof will be given, and it will be divided into two parts.

(1) There are parallel support hyperplanes  $H_1, H_2$  of X at  $x_1, x_2$  of X, respectively, so that  $||x_1 - x_2|| = d$ , and  $x_1 - x_2$  is perpendicular to both  $H_1$  and  $H_2$ . (This is the same constant d as defined in Chapter III.)

(2) By Lemma 3-13, there is  $y \in X$  such that  $||y - x_1|| = \lambda$ since  $x_1$  is a boundary point of X. The arc  $yx_2$  of a circle through y and  $x_2$  with radius  $\lambda$  and in the plane determined by  $y, x_1$ , and  $x_2$  has a point  $x_4$  which is not in X. This will give us a contradiction to Lemma 3-5.

Proof of (1): If X is not of constant width, there are two parallel support hyperplanes  $P_1, P_2$  of X so that

61

$$\rho(\mathbf{P}_1, \mathbf{P}_2) = \mathbf{d} \neq \lambda.$$

The value of d must be less than  $\lambda$  since  $D(X) = \lambda$ . Therefore  $d < \lambda$ under the supposition that X is not of constant width.

Lemma 3-11 asserts the existence of two points  $x_1, x_2$  in X such that  $||x_1 - x_2|| = d$ , and Lemma 3-12 shows that there are two parallel support hyperplanes  $H_1, H_2$  of X at  $x_1, x_2$  so that  $x_1 - x_2$  is perpendicular to  $H_1$  and  $H_2$ .

Proof of (2): Consider the plane determined by  $x_1, x_2$  and y. Let  $\emptyset$  be the center of a circle through  $x_2$  and y with radius  $\lambda$  as shown in Figure 4-1.

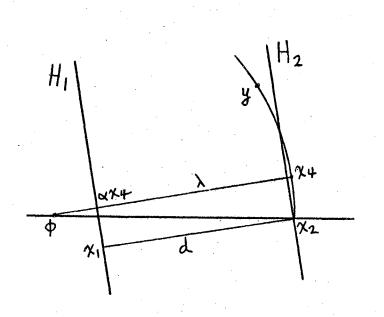


Figure 4-1.

Select the vector  $x_4$  in arc  $yx_2$  and such that the line determined by  $\emptyset$  and  $x_4$  is parallel to  $x_2 - x_1$ . It will be shown that  $x_4 \notin X$  which will contradict Lemma 3-5.

First observe

$$(x_4, x_2 - x_1) = ||x_4|| ||x_2 - x_1|| \cos 0^\circ = \lambda d.$$

Select  $\alpha$  so that

$$(\alpha x_4 - x_1, x_2 - x_1) = 0$$

which means  $\alpha x_4 \in H_1$ . From this,  $\alpha$  must equal

$$\frac{(x_1, x_2 - x_1)}{(x_4, x_2 - x_1)} = \frac{(x_1, x_2 - x_1)}{\lambda d}$$

If  $\alpha \leq 0$ ,

or

$$\lambda - ||\alpha x_4|| > d$$

which means  $x_4 \notin X$ . If  $\alpha > 0$ ,

$$||\alpha \mathbf{x}_{4}|| = \sqrt{(\alpha \mathbf{x}_{4}, \alpha \mathbf{x}_{4})}$$
$$= \alpha \sqrt{(\mathbf{x}_{4}, \mathbf{x}_{4})}$$
$$\alpha \lambda = (\mathbf{x}_{1}, \mathbf{x}_{2} - \mathbf{x}_{1}) \lambda \lambda^{-1} d^{-1}$$

It will be shown that

$$\lambda - ||\alpha \mathbf{x}_4|| > d$$

=  $(x_1, x_2 - x_1) d^{-1}$ .

1

which means  $x_4 \notin X$ . First,

$$\lambda - ||\alpha \mathbf{x}_4|| = \lambda - (\mathbf{x}_1, \mathbf{x}_2 - \mathbf{x}_1) d^{-1}$$

so if

$$(\mathbf{x}_1, \mathbf{x}_2 - \mathbf{x}_1) \leq 0,$$

then

$$\lambda - ||\alpha \mathbf{x}_4|| > \mathbf{d}.$$

So assume

$$(x_1, x_2 - x_1) > 0.$$
 (4-1)

By the triangle inequality,

$$|| \phi - \mathbf{x}_2 || \le || \phi - \mathbf{x}_1 || + || \mathbf{x}_1 - \mathbf{x}_2 ||.$$
 (4-2)

If equality holds in (4-2), then the following relationships hold:

$$||\mathbf{x}_{2}|| = ||\mathbf{x}_{1}|| + ||\mathbf{x}_{1} - \mathbf{x}_{2}||,$$
  

$$||\mathbf{x}_{2}|| - ||\mathbf{x}_{1}|| = ||\mathbf{x}_{1} - \mathbf{x}_{2}||,$$
  

$$||\mathbf{x}_{2}||^{2} - 2||\mathbf{x}_{1}|| ||\mathbf{x}_{2}|| + ||\mathbf{x}_{1}||^{2} = ||\mathbf{x}_{1} - \mathbf{x}_{2}||^{2}$$
  

$$= ||\mathbf{x}_{1}||^{2} - 2(\mathbf{x}_{1}, \mathbf{x}_{2}) + ||\mathbf{x}_{2}||^{2}$$

$$||\mathbf{x}_1|| ||\mathbf{x}_2|| = (\mathbf{x}_1, \mathbf{x}_2).$$

From linear algebra, for  $||\mathbf{x}_1|| \neq 0$  and  $||\mathbf{x}_2|| \neq 0$ , then

$$(x_1, x_2) = ||x_1|| ||x_2||$$

if and only if  $x_1, x_2$  are linearly dependent. So in this situation

 $x_2 = \delta x_1$  for some  $\delta \in \mathbb{R}$ . Also, since

$$||\mathbf{x}_1 - \mathbf{y}||^2 = ||\mathbf{y}||^2$$

then

$$(x_1, x_1) - 2(x_1, y) + (y, y) = (y, y)$$

or

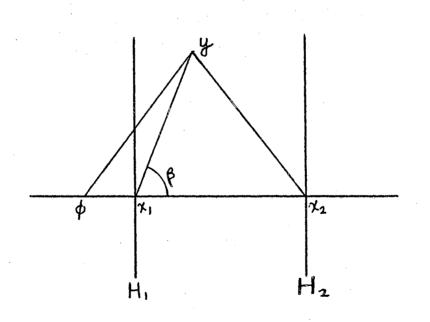
$$(\mathbf{x}_1, \mathbf{x}_1) = 2(\mathbf{x}_1, \mathbf{y}).$$
 (4-3)

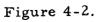
In particular,

$$(x_1, y) > 0.$$
 (4-4)

Since  $||x_1 - y|| = \lambda$  and  $||x_2 - y|| \le \lambda$ , angle  $\beta$  is less than or equal to  $\pi/3$  (cf. Figure 4-2). Consequently,

$$(y - x_1, x_2 - x_1) > 0.$$
 (4-5)





By assumption (4-1),  $(x_1, x_2 - x_1) > 0$  and so  $(y, x_2 - x_1) > 0$ . Then

$$(y, x_2 - x_1) = (y, \delta x_1 - x_1)$$
  
=  $(\delta - 1)(y, x_1)$ 

> 0.

By (4-4)  $\delta$  must be greater than 1. However, (4-5) implies

$$(y - x_1, \delta x_1 - x_1) = (\delta - 1)(y - x_1, x_1) > 0$$

and so

$$(\delta - 1)(x_1 - y, x_1) < 0$$

which implies

$$(x_1, x_1 - y) < 0$$
 (4-6)

since  $\delta > 1$ . However, by (4-3) and (4-4),

$$(x_1, x_1) = 2(x_1, y)$$

and  $(x_1, y) > 0$  proves

$$(\mathbf{x}_1, \mathbf{x}_1) > (\mathbf{x}_1, \mathbf{y})$$

which means  $(x_1, x_1 - y) > 0$ , contradicting (4-6). Therefore,

$$||\mathbf{x}_{2}|| < ||\mathbf{x}_{1}|| + ||\mathbf{x}_{1} - \mathbf{x}_{2}||,$$

and this is equivalent to

$$\lambda < ||\mathbf{x}_1|| + \mathbf{d},$$

Transposing d and squaring gives

$$(\lambda - d)^2 < ||\mathbf{x}_1||^2$$

or

$$-(\mathbf{x}_{1},\mathbf{x}_{1}) < -(\lambda - d)^{2}.$$
 (4-7)

It is now possible to evaluate 
$$(x_1, x_2 - x_1)$$
 in terms of  $\lambda$  and d as follows: Write

$$d^2 = ||x_1 - x_2||^2$$

in the form

$$d^{2} = (x_{1}, x_{1}) - 2(x_{1}, x_{2}) + (x_{2}, x_{2})$$

which is equivalent to

$$(x_1, x_1) - 2(x_1, x_2) = d^2 - (x_2, x_2)$$
  
=  $d^2 - \lambda^2$ .

Therefore,

$$2(\mathbf{x}_{1}, \mathbf{x}_{2}) - (\mathbf{x}_{1}, \mathbf{x}_{1}) = \lambda^{2} - d^{2}$$
 (4-8)

or

$$(x_1, x_2) = [\lambda^2 - d^2 + (x_1, x_2)]2^{-1}.$$

Rewriting equation (4-8) leads to

$$(x_1, x_2) - (x_1, x_1) = \lambda^2 - d^2 - (x_1, x_2)$$

Therefore,

$$0 < (\mathbf{x}_{1}, \mathbf{x}_{2} - \mathbf{x}_{1}) = \lambda^{2} - d^{2} - [\lambda^{2} - d^{2} + (\mathbf{x}_{1}, \mathbf{x}_{1})] 2^{-1}$$
$$= [\lambda^{2} - d^{2} - (\mathbf{x}_{1}, \mathbf{x}_{1})] 2^{-1},$$

Equation (4-7) implies

$$[\lambda^{2} - d^{2} - (x_{1}, x_{1})] 2^{-1} < [\lambda^{2} - d^{2} - (\lambda - d)^{2}] 2^{-1}$$
$$= (2 d\lambda - 2d^{2}) 2^{-1}$$
$$= d(\lambda - d).$$

Therefore,

$$0 < (x_1, x_2 - x_1) < d (\lambda - d)$$

and

$$\lambda - (x_1, x_2 - x_1) d^{-1} > d.$$

From this it follows that  $\lambda - ||\alpha x_4|| > d$ . Thus  $x_4 \notin X$ , a contradiction. Recall that the supposition X is not of constant width, thus leading to this contradiction. Therefore X being complete and of diameter  $\lambda$  implies X has constant width  $\lambda$ .

Meissner was the first one to recognize the close relationship of complete sets and sets of constant width as stated in Theorems 2-1 and 4-1. This relationship, which is a characterization of sets of constant width, can now be summarized in the following theorem:

<u>Theorem 4-2</u>: A set X in  $E_n$  is of constant width  $\lambda$  if and only if X is complete and of diameter  $\lambda$ .

Meissner proved the theorem for n = 2, 3 in 1911, but it was not until 1928 that Börge Jessen of Copenhagen proved the theorem for any integer n. The proof given here follows the outline of a proof sketched by Eggleston [14].

### CHAPTER V

## ENCLOSING SETS IN COMPLETE SETS

In the plane it seems intuitively obvious that a set of diameter  $\lambda$  could be contained in some set of constant width  $\lambda$ . In fact Pál was the first to prove this result in a paper published in 1920 [30]. Lebesque proved the general result for arbitrary n in 1921 [24]. In 1922, for the case of the plane, Reinhardt gave a proof different from the one given by Pál [32].

Two proofs of the general theorem will be given here. The first but longer proof uses the Blaschke Convergence Theorem (Blaschke Selection Theorem). The second proof uses Zorn's Lemma.

Let

$$A_{\rho} = \bigcup_{a \in A} D(a, r), \quad 0 \leq \rho,$$

be called the <u>parallel</u> set of A. If the distance between two non-empty bounded sets A and B in a Minkowski space  $L_n$ ,

$$d(A,B) \ = \ \inf \ \{ \ \rho \, : \, A \subset \ B_{\rho}, \ B \ \subset \ A_{\rho} \, \},$$

then d defines a metric on the bounded sets in  $L_n$ . A sequence of convex sets  $A_i$  in a Minkowski space  $L_n$  is said to converge to a convex set A if

$$\lim_{i \to \infty} d(A_i, A) = 0.$$

69

The Blaschke Convergence Theorem states: A uniformly bounded infinite collection of closed convex sets in a Minkowski space contains a sequence which converges to a non-empty compact convex set (cf. [36] for a proof).

<u>Theorem 5-1</u>: A set M in  $E_n$  of diameter  $\lambda$  is a subset of a complete set of diameter  $\lambda$ .

Proof: The steps of the proof are as follows:

- (1) The diameter of Cl (M), the closure of M, is D(M).
- (2) The set  $A(M) = \{x : D(\{x\} \cup M) = D(M)\}$  is closed.
- (3) If  $\rho(\mathbf{x}, \mathbf{M}) = \inf \{ ||\mathbf{x} \mathbf{m}|| : \mathbf{m} \in \mathbf{M} \}$ , then there is  $\mathbf{\overline{x}} \in \mathbf{A}(\mathbf{M})$ for which  $\rho(\mathbf{\overline{x}}, \mathbf{M}) = \rho(\mathbf{M}) = \sup \{ \rho(\mathbf{x}, \mathbf{M}) : \mathbf{x} \in \mathbf{A}(\mathbf{M}) \}.$
- (4) There exists a complete set  $M^*$  such that  $M \subset M^*$ ,  $D(M^*) = \lambda$ .

Proof of (1): Suppose  $\lambda^{i} = D(C1|M) > D(M) = \lambda$  and let  $\varepsilon = \lambda^{i} - \lambda > 0$ .

There must be two points  $\overline{x}, \overline{y}$  in Cl M for which

$$||\overline{\mathbf{x}} - \overline{\mathbf{y}}|| > \lambda^{1} - \epsilon/4 = \lambda + \epsilon - \epsilon/4$$

=  $\lambda + 3\epsilon/4$ .

Both  $\overline{x}$  and  $\overline{y}$  cannot be elements of M. So let  $\overline{x}$  be in Cl M  $\setminus$  M. Since  $\overline{x}$  is a limit point of M, there is a sequence  $\{x_n\}$  of points in M and

$$\lim_{n \to \infty} x_n = \overline{x}.$$
 (5-1)

Since  $\overline{y}$  is in Cl M, there exists m\* in  $N(\overline{y},\,\varepsilon/4) \cap$  M. Then using triangle inequality

$$||\overline{\mathbf{x}} - \mathbf{m}^*|| + ||\mathbf{m}^* - \overline{\mathbf{y}}|| \geq ||\overline{\mathbf{x}} - \overline{\mathbf{y}}||.$$

But

$$||\overline{\mathbf{x}} - \overline{\mathbf{y}}|| > \lambda' - \epsilon/4$$

results in

$$||\overline{x} - m^*|| \geq \lambda^* - \epsilon/4 - ||m^* - \overline{y}||$$
$$> \lambda^* - \epsilon/4 - \epsilon/4$$

or

$$||\overline{\mathbf{x}} - \mathbf{m}^*|| > \lambda^{1} - \epsilon/2 = \epsilon + \lambda - \epsilon/2$$
$$= \lambda + \epsilon/2. \qquad (5-2)$$

From (5-1) for  $\epsilon/2 > 0$ , there must be an N so that  $||x_n - \overline{x}|| < \epsilon/2$ whenever n > N.

Then for  $n_0$  greater than N,

$$||\bar{\mathbf{x}} - m^*|| \le ||\bar{\mathbf{x}} - \mathbf{x}_n|| + ||\mathbf{x}_n - m^*||$$
  
<  $\epsilon/2 + \lambda$ .

But this contradicts (5-2).

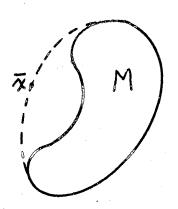
Hence for the theorem itself, let M be a closed set which does not affect its diameter. Since the diameter of M,  $\lambda$  implies M is bounded, then it can be assumed that M is a compact set.

Proof of (2): Let  $A(M) = \{x : D(\{x\} \cup M) = D(M)\}$ . Suppose A(M) has an accumulation point  $\overline{x}$  which is not in A(M). Let  $\lambda^{i} = D(\{\overline{x}\} \cup M) > D(M) = \lambda$  and  $\epsilon = \lambda^{i} - \lambda$ . Using the properties of

an accumulation point, there is a sequence  $\{x_n^{\phantom{i}}\}$  of points in A(M) for which

$$\lim_{n \to \infty} x_n = \overline{x}$$

(cf. Figure 5-1)





Using the compactness of M and continuity of the norm function, there is an m\* in M so that

$$||\overline{\mathbf{x}} - \mathbf{m}^*|| > \lambda' - \epsilon/2 = \lambda + \epsilon/2.$$
 (5-3)

For  $\epsilon/2$ , an N exists so that  $||x_n - \overline{x}|| < \epsilon/2$ , whenever n > N. Select  $x_n = 0$  so that  $n_0 > N$ . Then

$$||\overline{\mathbf{x}} - \mathbf{m}^*|| \le ||\overline{\mathbf{x}} - \mathbf{x}_{\mathbf{n}_0}|| + ||\mathbf{x}_{\mathbf{n}_0} - \mathbf{m}^*|| < \epsilon/2 + \lambda$$

which contradicts (5-3).

Proof of (3): Define 
$$\rho(M) = \sup \{\rho(x, M) : x \in A(M)\}$$
. Since  
 $\rho(x, M)$  is bounded above by  $\lambda$  for every x in A(M),  $\rho(M)$  exists. There-  
fore, for each positive integer n, there is an  $x_n$  so that

$$\rho(x_n, M) > \rho(M) - 1/n.$$

The sequence  $\{x_n\}$  is a bounded infinite set of points in A(M) or some point is repeated infinitely often. In either case a subsequence  $\{x_n'\}$ can be selected which for simplicity can be called the subsequence  $\{x_n\}$  and such that

$$\lim_{n \to \infty} x_n = \overline{x}.$$

Now  $\overline{x}$  belongs to A(M) since A(M) is closed (cf. Figure 5-2),

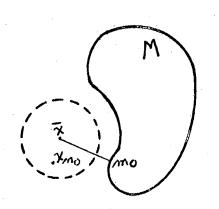


Figure 5-2.

To show the equality of  $\rho(\overline{x}, M)$  and  $\rho(M)$ , suppose  $\rho(\overline{x}, M) < \rho(M)$ and let  $\rho(M) - \rho(\overline{x}, M) = \epsilon$ . For  $\epsilon/2$ , there is  $N_1$  so that  $||x_n - \overline{x}|| < \epsilon/2$ whenever  $n > N_1$ . There also must be  $N_2$  so that

$$\rho(x_n, M) > \rho(M) - 1/n > \rho(M) - \epsilon/2$$

whenever  $n>N_2. \ \ Let n_0$  be greater than the maximum of  $N_1$  and  $N_2. \ \ Therefore,$ 

$$||\mathbf{x}_{n_0} - \mathbf{x}|| < \epsilon/2$$

and

$$\rho(x_{n_0}, M) > \rho(M) - \epsilon/2.$$
 (5-4)

The compactness of M assures the existence of a point  $\mathbf{m}_0$  in M for which

$$||\overline{\mathbf{x}} - \mathbf{m}_0|| = \rho(\overline{\mathbf{x}}, \mathbf{M}),$$

Then

$$||x_{n_0} - m_0|| \le ||x_{n_0} - \overline{x}|| + ||\overline{x} - m_0|| < \epsilon/2 + \rho(\overline{x}, M).$$

But  $\rho(\mathbf{x}, M) = \rho(M) - \epsilon$  and therefore

$$||\mathbf{x}_{n_0} - \mathbf{m}_0|| < \rho(\mathbf{M}) - \epsilon/2.$$

From the definition

$$\rho(x_{n_0}, M) = \inf \{ ||x_{n_0} - m|| : m \in M \},$$
  
$$\rho(x_{n_0}, M) < \rho(M) - \epsilon/2,$$

contradicting (5-4).

Proof of (4): If M is not complete, select  $x_1$  such that

$$D(\{x_1\} \cup M) = D(M)$$

and

$$\rho(\mathbf{x}_1, \mathbf{M}) = \sup \{ \rho(\mathbf{x}, \mathbf{M}) : D(\{\mathbf{x}\} \cup \mathbf{M}) = D(\mathbf{M}) \}.$$

By (3) such an  $x_1$  exists.

If M is not complete, there is at least one  $x_0 \in A(M)$  which is not in M. By the compactness of M,  $\rho(x_0, M)$  is positive. Therefore, sup { $\rho(x, M) : x \in A(M)$ } is positive which implies that  $x_1$  is not in M (cf. Figure 5-3).

Let

$$M_1 = Cl \text{ conv } (\{x_1\} \cup M).$$

By (1)

$$D(M_1) = D(Cl M_1) = D(conv ({x_1}) \cup M)).$$

By Lemma 3-1

 $D(\operatorname{conv}({\mathbf{x}_1}) \cup M)) = D({\mathbf{x}_1} \cup M)).$ 

Since  $D(\{x_l\} \cup M) = \lambda$ , it follows that  $D(M_l) = \lambda$ .

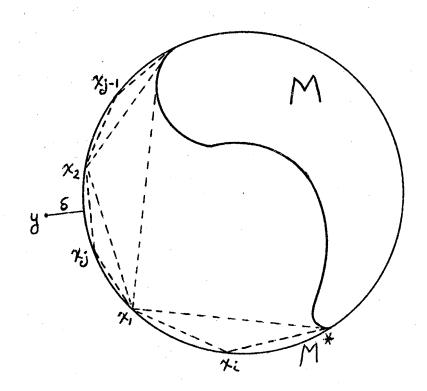


Figure 5-3.

Observe that M is a proper subset of  $M_1$ , and that  $M_1$  is closed and convex. In a similar manner if  $M_1$  is not complete, select  $x_2$  not in M such that  $D(\{x_2\} \cup M) = D(M)$ , and

$$\rho(x_{2}, M_{1}) = \sup \{ \rho(x, M_{1}) : D(\{x\} \bigcup M_{1}) = D(M_{1}) = \lambda \}.$$

Then let

$$M_2 = Cl \text{ conv } (\{x_2\} \bigcup M_1).$$

The diameter if  $M_2$  is  $\lambda$  and  $M_1$  is a proper subset of  $M_2$ . The process is continued in this same manner.

If this process does not end after finitely many steps, there exists an infinite sequence  $\{M_i\}$  of closed convex sets which is a properly increasing sequence and uniformly bounded. Therefore, by the Blaschke Selection Theorem, there is an infinite subsequence  $\{M_i'\}$ from the sets in the sequence  $\{M_i\}$  which converges to a compact convex set M\*.

A new sequence  $\{M_{1}^{"}\}$  is now selected from the sequence  $\{M_{1}^{'}\}$ . The first element  $M_{1}^{"}$  is selected to be  $M_{1}^{'}$ . If  $M_{1}^{"}$  is contained in  $M_{2}^{'}$ , then let  $M_{2}^{"}$  equal  $M_{2}^{'}$ . If  $M_{1}^{"}$  is not contained in  $M_{2}^{'}$ , there is an integer  $n_{0} > 1$  so that  $M_{1}^{"}$  is contained in  $M_{n_{0}}^{'}$ . This must be true for if we suppose  $M_{1}^{"}$  is not contained in  $M_{n}^{'}$  for every n > 1, then  $M_{n}^{'}$  is contained in  $M_{n}^{'}$  for every n > 1, then  $M_{n}^{'}$  is contained in  $M_{1}^{"}$  for every n > 1, then  $M_{n}^{"}$  is contained in  $M_{1}^{"}$  for every n > 1.

$$M_{2}^{''} = M_{n_{0}}^{'}$$

Continuing this process produces a subsequence  $\{M_i^{"}\}\$  which is a subsequence of  $\{M_i^{"}\}\$  and hence also converges to  $M^*$ . For simplicity denote the new subsequence,  $\{M_i^{"}\}\$  by  $\{M_i\}\$ . Observe that it is a

properly increasing sequence of compact convex sets each of which has diameter  $\boldsymbol{\lambda}.$ 

Suppose there is a set  $M_{n_0}$  which is not contained in M\*. This means there would be an  $x_0$  in  $M_{n_0}$  but not in M\* (cf. Figure (5-4). By the compactness of M\*, there is m\* in M\* so that

$$\rho(\mathbf{x}_0, \mathbf{M}^*) = ||\mathbf{x}_0 - \mathbf{m}^*|| = \epsilon > 0.$$

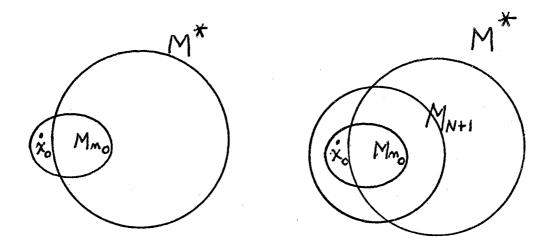
Then from

$$\lim_{n \to \infty} d(M_n, M^*) = 0,$$

there is an integer N so that  $d(M_n, M^*) < \epsilon/2$  whenever n > N. This means  $M_n \subset (M^*)_{\epsilon/2}$  for n > N. If  $n_0 > N$ , then  $M_{n_0} \subset (M^*)_{\epsilon/2}$ . But this is impossible since  $\rho(x_0, M^*) = \epsilon$ . If  $n_0 \le N$ , then

$$\mathsf{M}_{\mathsf{n}_0} \subset \mathsf{M}_{\mathsf{n}+1} \subset \mathsf{(M*)}_{\varepsilon/2}\text{,}$$

and there is the same difficulty. Therefore, the entire sequence  $\{M_i\}$  is contained in M\*.



## Figure 5-4.

77

To prove that  $D(M^*) = \lambda$ , observe that since  $M_i \subset M^*$  and  $D(M_i) = \lambda$  for every i, the diameter of  $M^*$  cannot be less than  $\lambda$ . So suppose  $D(M^*) = \lambda' > \lambda$  and let  $\lambda' - \lambda = \varepsilon$ . Then

$$d(M_{i}, M^{*}) = \inf \{ \rho : M_{i} \subset (M^{*})_{\rho}, (M^{*}) \subset (M_{i})_{\rho} \}$$
$$= \inf \{ \rho : M^{*} \subset (M_{i})_{\rho} \}$$
$$\geq \epsilon/3$$

which contradicts

$$\lim_{i\to\infty} d(M_i, M^*) = 0,$$

(cf. Figure 5-5). Therefore,  $D(M^*) = \lambda$ .

Suppose M\* is not complete. Thus there must be y not in M\* such that  $D(\{y\} \cup M^*) = \lambda$  (cf. Figure 5-3). Let

$$\delta = \rho(y, M^*) = \inf \{ ||y - m|| : m \in M^* \}.$$

Since M\* is compact, there is m\* in M\* for which  $||y - m*|| = \delta$ . The point y cannot be equal to m\*, and therefore  $\delta$  is positive.

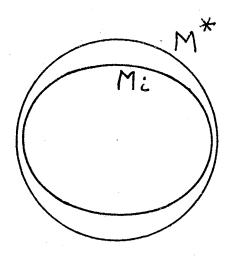


Figure 5-5.

Consider the two points  $x_i$ ,  $x_j$  with j > i where  $x_i$  and  $x_j$  are the special points used to define  $M_i$  and  $M_j$ . Let

$$\rho(M_{j-1}) = \rho(x_j, M_{j-1}) = \sup \{\rho(x, M_{j-1}) : D(\{x\} \bigcup M_{j-1}) = \lambda\}.$$

Since

$$D(\{y\} \cup M_{j-1}) = \lambda, \quad M_{j-1} \subset M_j, \quad y \notin M_j,$$

then

$$||\mathbf{y} - \mathbf{x}|| \leq \rho(\mathbf{M}_{j-1})$$

for some x in  $M_1$  (cf. Figure 5-6),

Because  $\delta = \rho(y, M^*)$  and all  $M_i$  are in  $M^*$ ,  $\delta \le ||y - x||$ . From  $x_i \in M_{j-1}$ , it follows that

$$\rho(\mathbf{M}_{j-1}) \leq ||\mathbf{x}_j - \mathbf{x}_i||.$$

Therefore  $0 < \delta \leq ||\mathbf{x}_j - \mathbf{x}_i||$ . But it is impossible to have infinitely many distinct points in a compact region of  $\mathbf{E}_n$ , every two of which are at least  $\delta$  distance apart where  $\delta$  is fixed and positive. Every infinite

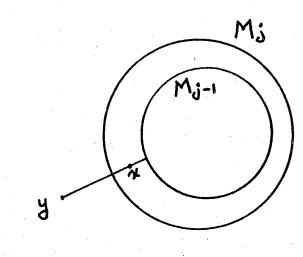


Figure 5-6.

subset of a compact subset of  $E_n$  must have an accumulation point. This contradiction shows that M\* is complete. In fact, M\* is a complete set of diameter  $\lambda$  of which M is a subset.

The second proof of Theorem 5-1 makes use of Zorn's Lemma which states that every non-empty partially ordered family <sup>®</sup> in which every linearly ordered subset has an upper bound in <sup>®</sup> must have a maximal element.

Let

$$\mathfrak{B} = \{ \mathbf{F}_{i} : \mathbf{M} \subset \mathbf{F}_{i}, \mathbf{D}(\mathbf{F}_{i}) = \lambda \}.$$

This family is non-empty since M is a member. Set inclusion partially orders **B**.

Let the set  $\{F_{\alpha} : \alpha \in A\}$  represent a linearly ordered subset  $\mathfrak{B}^{i}$  of  $\mathfrak{B}$ . Set

$$\mathbf{F} = \bigcup_{\alpha \in \mathbf{A}} \mathbf{F}_{\alpha}.$$

The set M is contained in F since M is in  $F_{\alpha}$  for every  $\alpha$ . Let  $x_i$  and  $x_j$  be points in F where  $i \leq j$ . Then  $x_i$  and  $x_j$  are in  $F_j$  and  $D(F_j) = \lambda$  implies  $||x_i - x_j|| \leq \lambda$ . This means that  $D(F) = \lambda$  and that F is an upper bound of  $\mathfrak{B}$  and F is in  $\mathfrak{B}$ .

Therefore, by Zorn's Lemma, there is a maximal element  $M^*$  in  $\mathfrak{B}$ .

Suppose M\* is not complete. Thus there must be  $x_0$  not in M\* such that  $D(\{x_0\} \cup M^*) = \lambda$ . Since M\* is in  $\mathfrak{B}$ , M is in M\* and so M is in  $\{x_0\} \cup M^*$ . Therefore the set  $\{x_0\} \cup M^*$  is an element in the family  $\mathfrak{B}$ . But M\* is properly contained in  $\{x_0\} \cup M^*$  which contradicts the maximality property of M\*. Therefore, M\* is complete and satisfies the requirements of the theorem.

## CHAPTER VI

#### OTHER PROPERTIES OF SETS OF CONSTANT WIDTH

There are other ways of characterizing sets of constant width besides noting that they are complete sets. A second characterization will be given in terms of boundary points. The following theorem summarizes this characterization:

<u>Theorem 6-1</u>: A set K is of constant width  $\lambda$  if and only if K is closed, convex with diameter  $\lambda$  and such that for each boundary point  $x_b$  of K there is a y in K whose distance from  $x_b$  is  $\lambda$ .

Proof: The "only if" portion follows from Lemma 3-13, hence it remains only to prove the "if" portion.

To prove this, by Theorem 4-2 it is sufficient to show that K is a complete set. Let p be an arbitrary point not in K. Let  $x_1$  be the orthogonal projection of p onto K. This means  $x_1$  is in K, and

$$||\mathbf{p} - \mathbf{x}_1|| \le ||\mathbf{p} - \mathbf{x}||$$
 (6-1)

for every x in K (cf. Figure 6-1).

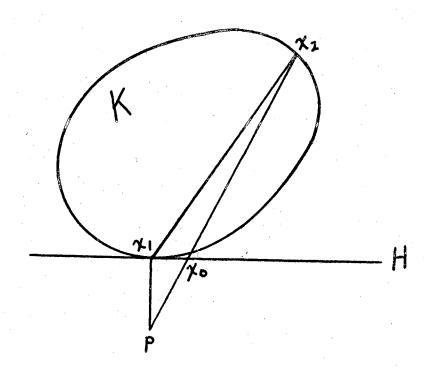
If K is equal to the boundary of K, then  $x_1$  is a boundary point. Suppose that K is not equal to the boundary of K. Then it will be shown that  $x_1$  is a boundary point. Thus suppose that  $x_1$  is an interior point of K. This means there is an open set  $N(x_1, \epsilon)$  in K for some value of  $\epsilon$ . Then there is y in the relative interior of the line segment  $x_1 p$ 

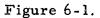
81

such that y is in  $N(x_1, \epsilon)$  for which  $||p - y|| < ||p - x_1||$ , contradicting (6-1). Therefore,  $x_1$  is a boundary point of K. By the hypothesis there is  $x_2 \epsilon$  K so that  $||x_1 - x_2|| = \lambda$ . From Lemma 2-3,

$$H = \{x : (x, p - x_1) = (x_1, p - x_1)\}$$

is a support hyperplane for K and separates K from point p.





Two cases are considered here. First, if  $x_2$  is in H, then using the Pythagorean relationship,  $||x_1 - x_2|| = \lambda$  and  $||p - x_1|| \neq 0$ results in  $||p - x_2|| > \lambda$  which means that K is complete

The second case is for  $x_2$  not in H. Let

$$\alpha = \frac{(p - x_1, p - x_1)}{(x_2 - p, x_1 - p)} .$$

From the definition of H,

$$(x_2 - x_1, x_1 - p) > 0.$$

By adding

 $(x_1 - p, x_1 - p) > 0,$ 

the inequality

$$(x_2 - p, x_1 - p) > 0$$

results, and thus  $\alpha$  is positive. Rewrite

$$(x_2 - x_1, p - x_1) < 0$$

in the form

$$(x_2, p - x_1) < (x_1, p - x_1),$$

To this inequality add

$$(-p, p - x_1) = (-p, p - x_1)$$

and get

$$(x_2 - p, p - x_1) < (x_1 - p, p - x_1).$$

Therefore

$$(p - x_2, p - x_1) > (p - x_1, p - x_1),$$

and  $\alpha < 1$ . Let

$$\mathbf{x}_0 = \mathbf{p} + \alpha(\mathbf{x}_2 - \mathbf{p}).$$

To see that  $\mathbf{x}_0 \, \boldsymbol{\varepsilon} \, \, \mathbf{H}, \, \, \mathrm{observe} \, \, \mathrm{that}$ 

$$(p + \alpha (x_2 - p) - x_1, p - x_1) = (p - x_1, p - x_1) + (\alpha (x_2 - p), p - x_1)$$
$$= (p - x_1, p - x_1) + \frac{(p - x_1, p - x_1)}{(x_2 - p, x_1 - p)} (x_2 - p, p - x_1)$$
$$= 0.$$

This shows that  $x_0$  is in H. Therefore,

$$||\mathbf{x}_2 - \mathbf{p}|| = ||\mathbf{x}_2 - \mathbf{x}_0|| + ||\mathbf{x}_0 - \mathbf{p}||.$$

But

$$|\mathbf{x}_2 - \mathbf{x}_0|| + ||\mathbf{x}_0 - \mathbf{x}_1|| \ge ||\mathbf{x}_2 - \mathbf{x}_1||$$

or

$$||\mathbf{x}_2 - \mathbf{x}_0|| \ge ||\mathbf{x}_2 - \mathbf{x}_1|| - ||\mathbf{x}_0 - \mathbf{x}_1||$$

and

$$||x_0 - p|| > ||x_0 - x_1||.$$

Therefore,

$$||\mathbf{x}_{2} - \mathbf{p}|| > ||\mathbf{x}_{2} - \mathbf{x}_{1}|| - ||\mathbf{x}_{0} - \mathbf{x}_{1}|| + ||\mathbf{x}_{0} - \mathbf{x}_{1}||$$
$$= ||\mathbf{x}_{2} - \mathbf{x}_{1}||$$
$$= \lambda.$$

So for any p not in K, the diameter of  $(\{p\} \cup K)$  is greater than D(K) which means that K is complete and therefore of constant width. This finishes the proof of Theorem 6-1.

If X is a convex set and H is a support hyperplane of X at some point  $x_0$ , then a vector  $u \neq \emptyset$  orthogonal to H at  $x_0$  is called a <u>normal</u> of the set X at  $x_0$ . The line containing  $x_0$  and determined by the vector u is called the <u>normal line</u> of the set X at  $x_0$ . If the normal line of the set X determined by a normal u contains two boundary points of X at which parallel support hyperplanes of X exist and such that u is orthogonal to these hyperplanes, then u is called a <u>double</u> normal of X.

If the set X is a set of constant width  $\lambda$ , then every normal is a double normal. For by Lemmas 3-8 and 3-9, if u is an arbitrary direction, then there are two points  $\overline{x}$  and  $\overline{y}$  in X for which

 $\left|\left|\overline{\mathbf{x}}-\overline{\mathbf{y}}\right|\right| = W_{11} = \sup \left\{ \left|\left|\mathbf{x}-\mathbf{y}\right|\right| : \mathbf{x}, \mathbf{y} \in \mathbf{X}, \ \mathbf{x}-\mathbf{y} = \alpha \, \mathbf{u}, \ \alpha \neq 0 \right\},$ 

and there are two parallel support hyperplanes  $H_1, H_2$  of X at  $\overline{x}, \overline{y}$ , respectively. If  $\overline{x} - \overline{y}$  is not orthogonal to  $H_1$  and  $H_2$ , then  $||\overline{x} - \overline{y}|| > \lambda$ , a contradiction of  $D(X) = \lambda$ . Therefore,  $\overline{x} - \overline{y}$  is a double normal of X for direction u.

Suppose there is another normal line of X at  $x_0$  in the direction of u. If  $x_0 \in X \cap H_1$ , then  $||x_0 - \overline{y}|| > \lambda$ , which is contrary to  $D(X) = \lambda$ . A similar statement can be made if  $x_0 \in X \cap H_2$ . Therefore, the vector  $\overline{x} - \overline{y}$  determines the only normal line for direction u.

It is also immediate that each hyperplane of support of a set X of constant width contains exactly one point of X. If two points of X were in a support hyperplane, then two normal lines of X would be determined for the same direction, contradicting the preceding result.

The family of sets of constant width is closed under Minkowski addition; that is, if X and Y are two sets of constant width  $\lambda$  and  $\rho$ , respectively, the Minkowski sum,

 $X + Y = \{x + y : x \in X, y \in Y\},\$ 

has the constant width  $\lambda + \rho$ . This theorem follows easily from the lemmas derived in Chapter III.

<u>Theorem 6-2</u>: If X and Y have constant width  $\lambda$  and  $\rho$ , respectively, then X + Y has constant width  $\lambda + \rho$ ,

Proof: Let u be any direction in  $E_n$  such that ||u|| = 1. Then there are two points  $x_0, x_1$  in X, two points  $y_0, y_1$  in Y so that  $x_0 - x_1 = \lambda u$ , and  $y_0 - y_1 = \rho u$ . In addition,

$$H_{0} = \{x : (x - x_{0}, \lambda u) = 0\},\$$

$$H_1 = \{x : (x-x_1, \lambda u) = 0\}$$

are parallel support hyperplanes of X, and

 $L_0 = \{x : (x-y_0, \rho u) = 0\},\$ 

$$L_1 = {x : (x-y_1, \rho u) = 0}$$

are parallel support hyperplanes of Y (cf. Figure 6-2).

Let

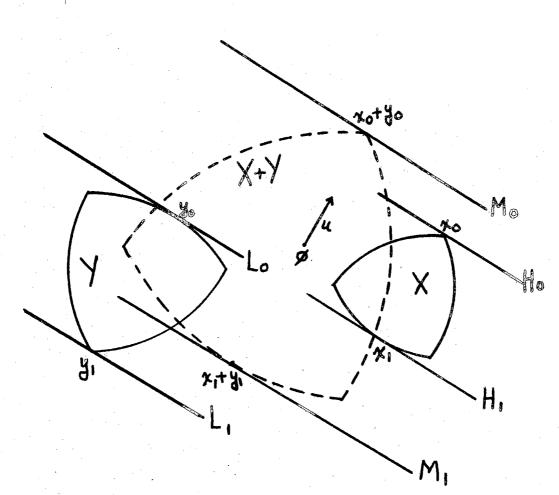
$$M_{0} = \{x : (x - (x_{0} + y_{0}), u) = 0\},\$$

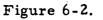
First of all,

$$\mathbf{x}_0 + \mathbf{y}_0 \in \mathbf{M}_0 \cap (\mathbf{X} + \mathbf{Y}).$$

Next, let x + y be any point in X + Y where  $x \in X$  and  $y \in Y$ . Since  $x \in X$  then  $(x - x_0, u) \leq 0$  and  $y \in Y$  implies  $(y - y_0, u) \leq 0$ . Adding these two inequalities results in

$$(x + y - (x_0 + y_0), u) \le 0$$





which implies that  $M_0$  bounds the set X + Y. This combined with  $x_0 + y_0 \in M_0$  implies that  $M_0$  is a support hyperplane of X + Y. Similarly, one can show that

$$M_{1} = \{x : (x - (x_{1} + y_{1}), u) = 0\}$$

is a support hyperplane of X + Y and that  $M_0$  and  $M_1$  are parallel by showing one is a translate of the other.

To find the distance between  $M_0$  and  $M_1$ , recall that

$$\mathbf{x}_0 + \mathbf{y}_0 \in \mathbf{M}_0 \cap \mathbf{X} + \mathbf{Y}$$

$$\mathbf{x}_1 + \mathbf{y}_1 \in \mathbf{M}_1 \cap \mathbf{X} + \mathbf{Y},$$

and that

$$x_0 + y_0 - (x_1 + y_1)$$

is a double normal of X + Y with respect to  $M_0$  and  $M_1$ . Then

$$||x_0 + y_0 - (x_1 + y_1)|| = ||(\lambda + \rho) u|| = \lambda + \rho$$

Therefore,

$$\rho(M_0, M_1) = \lambda + \rho.$$

Since u was arbitrarily chosen, X + Y is a set of constant width  $\lambda + \rho$ .

Using the same techniques one can show that if X is a set of constant width  $\lambda$ , then  $\delta X$  has constant width  $|\delta|\lambda$  where  $\delta$  is a real number different from zero.

Before proceeding to the next characterization, a lemma needed in its proof is inserted here.

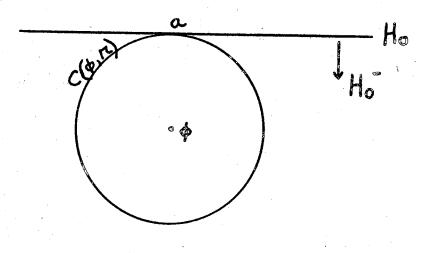
Lemma 6-1: If a is in  $C(\phi, r) = \{x : ||x|| = r\}$  then  $H_0 = \{x : (x - a, a) = 0\}$  is a support hyperplane for  $D(\phi, r)$ .

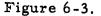
Proof: Since a is in  $H_0$  and  $\phi$  is in  $H_0^-$ ,  $H_0$  will be a support hyperplane of  $D(\phi, r)$  if it can be shown that  $(x_1 - a, a) \leq 0$  for all  $x_1$ in  $D(\phi, r)$ .

Let  $x_1$  be in  $D(\phi, r)$  and so  $||x_1|| \le r$  (cf. Figure 6-3). Suppose  $(x_1-a, a) > 0$ . Then  $(x_1, a) > (a, a) = r^2$ . From this it follows that  $-2(x_1, a) < -2r^2$ . Adding  $||x_1||^2 \le r^2$  and  $||a||^2 = r^2$  leads to

 $||\mathbf{x}_1||^2 - 2(\mathbf{x}_1, \mathbf{a}) + ||\mathbf{a}||^2 < 0$ 

٥r





$$||\mathbf{x}_1 - \mathbf{a}||^2 < 0,$$

a contradiction of the positivity property of the norm function. Therefore,  $H_0$  is a support hyperplane of  $D(\phi, r)$ .

The following theorem is another characterization of sets of constant width.

<u>Theorem 6-3</u>: A necessary and sufficient condition for a set K to be a body of constant width  $\lambda$  is for K - K to be a spherical ball of radius  $\lambda$ .

Proof: First let K be a body of constant width  $\lambda$ . By the two previous theorems K - K is a set of constant width  $2\lambda$ . For each u, there are two points  $\mathbf{x}_0, \mathbf{x}_1$  in K such that  $||\mathbf{x}_0 - \mathbf{x}_1|| = \lambda$ . Observe that  $\mathbf{x}_0 - \mathbf{x}_1$  is a point in K - K. Therefore, for each direction u, there exists a point in K - K whose distance from the origin is exactly  $\lambda$ .

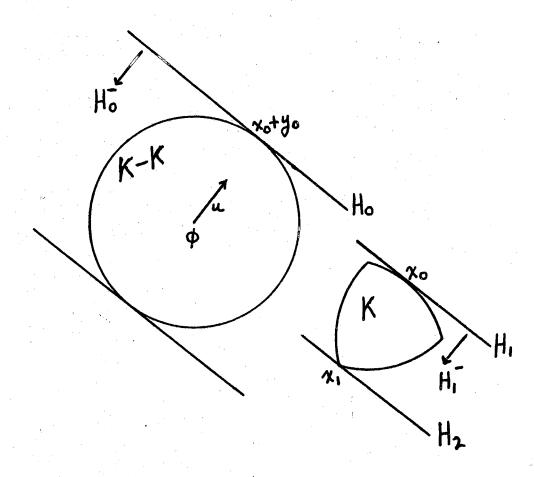
Let  $x_2$  be in K and  $y_2$  in (-1)K. For  $y_2$  to be in (-1)K means

there is  $y_3$  in K so that  $y_2 = -y_3$  and  $x_2 + y_2$  is in K - K. Then

$$||\mathbf{x}_{2} + \mathbf{y}_{2}|| = ||\mathbf{x}_{2} - \mathbf{y}_{3}||$$

and  $x_2, y_3$  both in K imply  $||x_2 - y_3|| \le \lambda$ . Therefore, K - K is spherical ball of radius  $\lambda$ .

Suppose that K - K is a spherical ball of radius  $\lambda$ . Let  $\phi$  be the center of K - K and select  $u \in E_n$  so that ||u|| = 1. Since  $||\lambda u|| = \lambda$ ,  $\lambda u$  is in the boundary of K - K (cf. Figure 6-4). But  $\lambda u$  in K - K means





that  $\lambda u = x_0^+ y_0^-$  for some  $x_0^-$  in K and  $y_0^-$  in (-K) or  $y_0^- = -x_1^-$  for some  $x_1^-$  in K. So  $\lambda u = x_0^- - x_1^-$  and  $||\lambda u|| = \lambda$  implies  $||x_0^- - x_1^-|| = \lambda$ . By Lemma 6-1,

y Hennina 0 - 1,

$$H_0 = \{x : (x - (x_0 + y_0), u) = 0\}$$

is a support hyperplane for K - K. Let

$$H_1 = \{x : (x - x_0, u) = 0\}.$$

Select an arbitrary y in K. Then  $y + y_0$  is in K - K and

$$(y + y_0 - (x_0 + y_0), u) = (y - x_0, u) \le 0.$$

Thus,  $H_1$  is a support hyperplane of K. Similarly,

$$H_2 = {x : (x - x_1, u) = 0}$$

is parallel to  $H_1$  and is a support hyperplane of K. The vector  $\mathbf{x}_0 - \mathbf{x}_1$ is perpendicular to  $H_1$  and  $H_2$ ,  $||\mathbf{x}_0 - \mathbf{x}_1|| = \lambda$ , and therefore  $\rho(H_1, H_2) = \lambda$ . Since u was an arbitrary direction, the set K is of constant width  $\lambda$ .

# CHAPTER VII

#### ORTHOGONAL PROJECTIONS

For any set X, let H be an arbitrary hyperplane in  $E_n$  and select a direction v perpendicular to H. Now consider the collection of points X(H) = {x +  $\lambda v : x \in X$ ,  $\lambda \in R$  such that x +  $\lambda v \in H$ }. The set X(H) will be called the <u>orthogonal projection</u> of X on the hyperplane H.

Consider the following question: What can be said about the orthogonal projections of a set of constant width? Hermann Minkowski, a Polish mathematician, was the first to observe the following property:

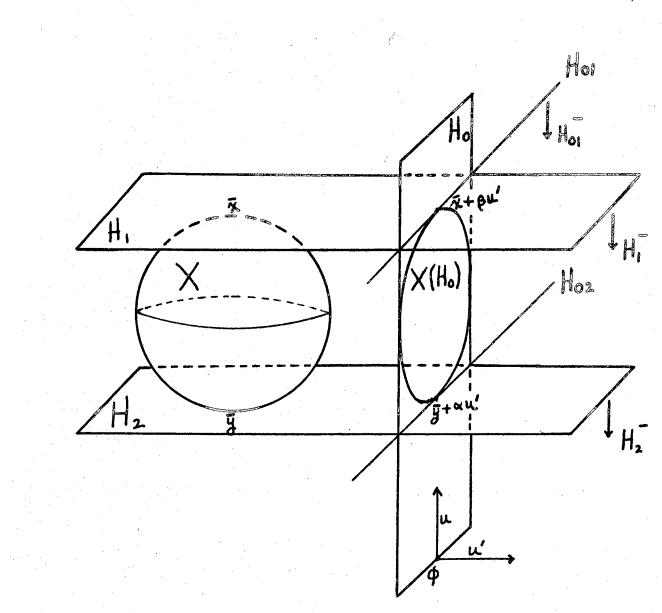
<u>Theorem 7-1</u>: If X is a set of constant width  $\lambda$ , then any orthogonal projection of X is a set of constant width  $\lambda$ .

Proof: Let  $H_0$  be any hyperplane in  $E_n$  and such that the origin is in  $H_0$ . In this case  $H_0$  is a subspace. Select u in  $H_0$  such that ||u|| = 1 (cf. Figure 7-1). Take u' such that ||u'|| = 1, (u, u') = 0, and (x, u') = 0 for every x in  $H_0$ . In fact, u' is perpendicular to  $H_0$  and

 $H_0 = \{x^{i}: (x, u^{i}) = 0\}.$ 

For the direction u, there are two points  $\overline{x}, \overline{y}$  in X for which  $\overline{x} - \overline{y} = \lambda u$ , two parallel support hyperplanes  $H_1, H_2$  of X at  $\overline{x}, \overline{y}$  respectively,  $\overline{x} - \overline{y}$ is perpendicular to  $H_1$  and  $H_2$ , and  $\rho(H_1, H_2) = \lambda$ . It is also known that

$$H_1 = \{x : (x - \overline{x}, u) = 0\},\$$





and

$$H_2 = \{x : (x - \overline{y}, u) = 0\}.$$

Select  $\beta = -(\overline{x}, u')$ . Then

$$(\overline{x} + \beta u', u') = (\overline{x} - (\overline{x}, u') u', u')$$
  
=  $(\overline{x}, u') - (\overline{x}, u')(u', u') = 0.$ 

Therefore,  $\overline{x} + \beta u'$  is in  $H_0$ . Also observe that

$$(\overline{\mathbf{x}} + \beta \mathbf{u}', \mathbf{u}) = \beta (\mathbf{u}', \mathbf{u}) = 0$$

which implies  $\overline{x} + \beta u'$  is in  $H_1$ . Similarly, for  $\alpha = -(\overline{y}, u')$ , the point  $\overline{y} + \alpha u' \in H_0 \cap H_2$ .

The hyperplane  $H_0$  can be written as  $\overline{x} + \beta u' + L_0$  where  $L_0$  is some subspace. Also  $H_1 = \overline{x} + \beta u' + L_1$  where  $L_1$  is some subspace. At this point define  $H_{01} = H_0 \cap H_1$ . It follows that

$$H_0 \cap H_1 = \overline{x} + \beta u^{t} + L_0 \cap L_1.$$

Since  $L_0 \cap L_1$  is a subspace,  $H_{01}$  is a translate of a subspace.

From the equation

$$\dim(L_0 \cap L_1) = \dim L_0 + \dim L_1 - \dim(L_0 + L_1)$$

it follows that dim  $(L_0 \cap L_1) = n - 2$  since  $L_0$  and  $L_1$  are (n-1)-dimensional and  $L_0 + L_1$  is n-dimensional. Therefore,  $H_{01}$  is a hyperplane in  $H_0$  and we can write

$$H_{01} = \{x \in H_0 : (x - \overline{x}, u) = 0\}.$$

From

$$(\overline{y} + \alpha u^{\dagger} - \overline{x}, u) = (y - \overline{x}, u) + \alpha (u^{\dagger}, u)$$
  
=  $(\overline{y} - \overline{x}, u)$   
=  $-\lambda(u, u)$   
< 0,

observe that  $\overline{y} + \alpha u' \in H_{01}^-$ . Let  $x_1$  be in X then  $x_1 + \delta u' \in H_0$  for

 $\delta = -(x_1, u')$ . Then

 $(\mathbf{x}_{1} + \delta \mathbf{u}' - \overline{\mathbf{x}}, \mathbf{u}) = (\mathbf{x}_{1} - \overline{\mathbf{x}}, \mathbf{u}) + \delta(\mathbf{u}', \mathbf{u})$  $= (\mathbf{x}_{1} - \overline{\mathbf{x}}, \mathbf{u})$ 

<u><</u> 0

since  $x_1 \in X$  and  $X \subset H_1 \cup H_1$ . Therefore,

$$(x_1 + \delta u^i - \overline{x}, u) \leq 0$$

and  $\overline{x} + \beta u' \in H_{01}$  means that  $H_{01}$  is a support hyperplane for  $X(H_0)$ . Similarly, define  $H_{02} = H_0 \cap H_2$  and show that

$$H_{02} = \{x \in H_0 : (x - \overline{y}, u) = 0\}$$

and is a support hyperplane for  $X(H_0)$ .

It can be shown that  $H_{01}$  is parallel to  $H_{02}$  by showing  $H_{02} = \overline{y} - \overline{x} + H_{01}$ .

Let  $x_{02}$  be any element in  $H_{02}$ . Consider

$$(\overline{\mathbf{x}} - \overline{\mathbf{y}}, \mathbf{x}_{02} - \overline{\mathbf{y}} + \alpha \mathbf{u}^{\dagger}) = (\lambda \mathbf{u}, \mathbf{x}_{02} - \overline{\mathbf{y}}) + (\lambda \mathbf{u}, \alpha \mathbf{u}^{\dagger}) = 0.$$

This implies  $\overline{x} - \overline{y}$  is perpendicular to  $H_{02}$  and similarly,  $\overline{x} - \overline{y}$  is perpendicular to  $H_{01}$ . But

$$\overline{\mathbf{x}} + \beta \mathbf{u}^{!} - \overline{\mathbf{y}} - \alpha \mathbf{u}^{!} = \overline{\mathbf{x}} - \overline{\mathbf{y}}$$

and

$$||\overline{\mathbf{x}} + \beta \mathbf{u}' - \overline{\mathbf{y}} - \alpha \mathbf{u}'|| = \lambda.$$

So  $H_{01}$ ,  $H_{02}$  are parallel support hyperplanes of  $X(H_0)$ . Furthermore,  $\rho(H_{01}, H_{02}) = \lambda$ .

95

Since u was an arbitrary unit vector in  $H_0$ ,  $X(H_0)$  is a set of constant width  $\lambda$ .

Lemma 7-1. If x, y are nontrivial vectors in  $E_n$ , there is a vector  $z \in E_n$  such that (x, z) = (y, z) = 0 if and only if  $n \ge 3$  or  $x = \lambda y$  when n = 2.

Proof: The conditions (x, z) = 0 and (y, z) = 0 imply that

 $x_1z_1 + x_2z_2 + \ldots + x_nz_n = 0$ ,

 $y_1z_1 + y_2z_2 + \ldots + y_nz_n = 0.$ 

If

m Alla

$$A = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{pmatrix},$$

then there is a nontrivial solution if and only if  $n - \rho(A) > 0$  where  $\rho(A)$ is the rank of the matrix A. If  $n \ge 3$ , there is a nontrivial solution z. If n = 2,  $n - \rho(A) > 0$  if and only if  $\rho(A) = 1$ . From  $\rho(A) = 1$  it follows that  $x = \lambda y$ .

This lemma will be now used in proving the following theorem which is the converse of the preceding theorem.

<u>Theorem 7-2</u>: If X is a closed bounded convex body such that each orthogonal projection of X is a set of constant width, then X is a set of constant width.

Proof: In any closed bounded set X in  $E_n$  there are two points  $x_0, x_1$  in X so that

$$||x_0 - x_1|| = \max \{ ||x - y|| : x, y \in X \},$$

By translation of X, let  $x_0 = \phi$ . Take  $H_0$  to be any hyperplane in  $E_n$  such that  $\phi$  and  $x_1$  are in  $H_0$  (cf. Figure 7-2).

Let  $X(H_0)$  be the projection of X on  $H_0$ . Select any u in  $E_n$  such that  $||\mathbf{u}|| = 1$ . By Lemma 7-1, there exists a vector u' in  $E_n$  so that

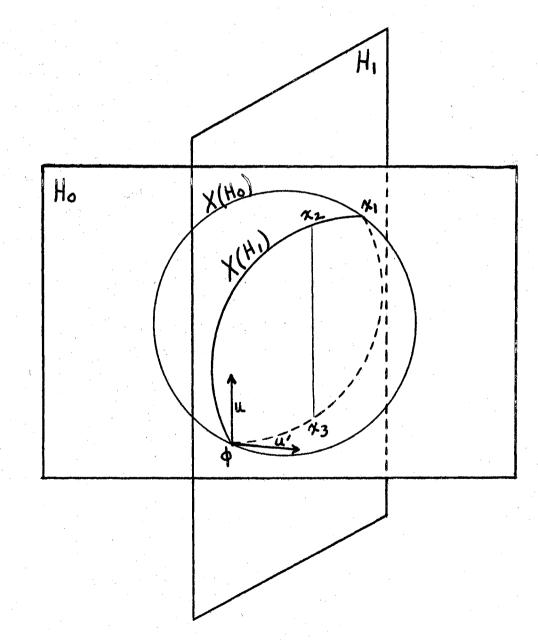


Figure 7-2.

(u, u') = 0 and  $(u', x_1) = 0$ . Let  $H_1 = \{x : (x, u') = 0\}$  and consider  $X(H_1)$ the projection of X on  $H_1$ . By hypothesis  $X(H_1)$  is a set of constant width, and it is here asserted that this constant width is equal to  $||x_1||$ . To see this, let  $x_p, y_p$  be the orthogonal projections of x, y, respectively. Observe that  $||x - y|| \ge ||x_p - y_p||$ . Since

$$||\phi - x_1|| = \max \{ ||x - y|| : x, y \in X \},$$

it follows that  $||x_1|| \ge ||x_p - y_p||$  for all  $x_p, y_p$  in  $X(H_1)$ . Notice that  $\phi$  and  $x_1$  are in  $X(H_1)$ . Therefore,  $X(H_1)$  has constant width  $||x_1||$ .

Since  $X(H_1)$  is a set of constant width, for direction u, there must be two points  $x_2, x_3$  in  $X(H_1)$  so that  $||x_2 - x_3|| = ||x_1||$  and there are two parallel support hyperplanes  $H_{21}, H_{31}$  of  $X(H_1)$  for which  $\rho(H_{21}, H_{31}) = ||x_1||$ .

Then

$$H_{21} = \{ x \in H_1 : (x - x_2, x_3 - x_2) = 0 \},\$$

and

$$H_{31} = \{x \in H_1 : (x - x_3, x_2 - x_3) = 0\}$$

Let

$$H_2 = \{x : (x - x_2, x_3 - x_2) = 0\}$$

and

$$H_3 = \{x : (x - x_3, x_2 - x_3) = 0\},\$$

and note that  $H_2$  and  $H_3$  are parallel.

Since  $H_{21}$  is a support hyperplane of  $X(H_1)$ , there must be  $\overline{x}_2$  in X such that

$$0 = (\overline{x}_{2} + \alpha u' - x_{2}, x_{3} - x_{2})$$
$$= (\overline{x}_{2} - x_{2}, x_{3} - x_{2}) + (\alpha u', x_{3} - x_{2})$$

$$= (\bar{x} - x_2, x_3 - x_2).$$

This  $\overline{x}_2$  is in  $H_2$  and similarly, there is  $\overline{x}_3$  in  $X \cap H_3$ .

Now consider any  $x \in X$  and let  $\overline{x}$  be the projection of x on  $H_1$ . So  $\overline{x}$  is in  $X(H_1)$ , and  $(\overline{x} - x_2, x_3 - x_2) \ge 0$  implies that

$$(-x_2, x_3 - x_2) \ge (-x, x_3 - x_2).$$
 (7-1)

Then

$$(x - x_2, x_3 - x_2) = (x, x_3 - x_2) - (x_2, x_3 - x_2).$$

Using inequality (7-1),

$$(x, x_3 - x_2) - (x_2, x_3 - x_2) \ge (x, x_3 - x_2) - (\overline{x}, x_3 - x_2)$$
$$= (x - \overline{x}, x_3 - x_2)$$

= 0.

Therefore,  $(x - x_2, x_3 - x_2) \ge 0$ , and  $H_2$  is a support hyperplane of X. In a similar manner  $H_3$  is a support hyperplane of X, and

$$\rho(H_2, H_3) = ||x_1||.$$

The direction u was arbitrarily selected, and so for every direction there are two parallel support hyperplanes of X, and the distance between them is always  $||\mathbf{x}_1||$ . Therefore, X is a set of constant width.

Note that in the hypothesis of Theorem 7-2, the width of each orthogonal projection is not designated. Observe also that Theorems 7-1 and 7-2 form another characterization of sets of constant width.

An interesting question presents itself. What is the least number of directions for this converse to be true? It seems reasonable that a countable dense set of directions would be sufficient. A simple example can be constructed in  $E_3$  showing that three directions are not sufficient.

# CHAPTER VIII

#### INSPHERES AND CIRCUMSPHERES

Let K be a convex and compact set in  $E_n$ . An insphere of K is a sphere of largest radius contained in K, and a circumsphere is a sphere of smallest radius containing K. A circumsphere of K is unique, but in general an insphere is not unique except where K is a set of constant width (cf. [27]). The minimal spherical shell of K exists uniquely and consists of the closed set of points between two concentric spheres such that K is contained in the closed set of points and such that the difference of the radii of these spheres is a minimum. For the content of this chapter, the existence of insphere, circumsphere, and minimal spherical shell for K is assumed. Recall that conv (X) is the convex hull of X and bdy K is the boundary of K,

A proof will be given of the theorem stating that the insphere and circumsphere of a set of constant width  $\lambda$  are concentric and that the sum of their radii is  $\lambda$ . The preliminary results are important in themselves, but their main purpose is the proof of the theorem.

The first result, Theorem 8-1, presents a property of the circumsphere of an arbitrary convex compact set. In  $E_2$ , a circumsphere is simply a circle, commonly called a circumcircle. The property described in this theorem, interpreted in  $E_2$ , intuitively means that for a compact set K and its circumcircle C, there must be at least one diameter of C where each of its endpoints lies in the

101

boundary of K and on C.

<u>Theorem 8-1</u>: Let K be a compact convex set in  $E_n$  with circumsphere  $D(\phi, r)$ , then  $\phi \in \text{conv} (C(\phi, r) \cap bdy K)$ .

Proof: Suppose  $\phi \notin \operatorname{conv} (C(\phi, r) \cap \operatorname{bdy} K)$ . The set conv (C( $\phi$ , r)  $\cap$  bdy K) is a closed convex set in  $\mathbb{E}_n$ . Hence, by Lemma 2-3, there is  $x_0$ , the orthogonal projection of  $\phi$  on conv (C( $\phi$ , r)  $\cap$  bdy K), and  $H_0 = \{x : (x - x_0, x_0) = 0\}$  is a support hyperplane of conv (C( $\phi$ , r)  $\cap$  bdy K). Let  $y_0 = (1/2)x_0$  and  $H_1 = \{x : (x - y_0, y_0) = 0\}$ . The set conv (C( $\phi$ , r)  $\cap$  bdy K) is contained in  $H_1^+$  (cf. Figure 8-1).

Let  $K' = K \cap \text{complement } H_{1}^{+}$ . The set K' is closed and bounded and therefore compact. Let  $D = \{ ||x - \phi|| : x \in K' \}$ . The

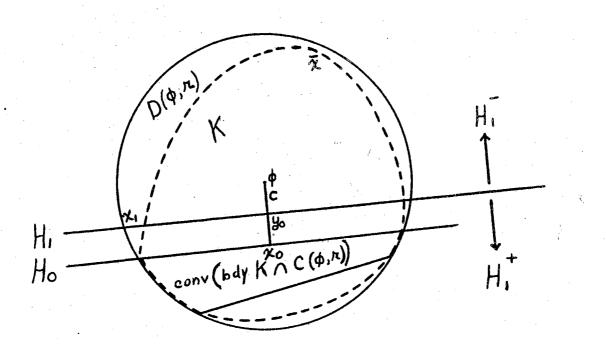


Figure 8-1.

norm, a continuous function, attains its maximum value on a compact set. Therefore, there is  $\overline{x}$  in K' such that  $||\overline{x}|| \ge ||x||$  for every  $x \in K'$ . Let  $||\overline{x}|| = r'$  where r' is less than or equal to r.

To prove that  $\overline{x}$  is not in  $C(\phi, r)$  suppose  $\overline{x} \in C(\phi, r)$ . First,  $\overline{x}$  is in K', which means that  $\overline{x}$  is in bdy  $K \cap C(\phi, r)$ , and thus  $\overline{x}$  is in  $H_{1}^{+}$ . But  $\overline{x} \in K'$  implies  $\overline{x}$  is in complement of  $H_{1}^{+}$ . This contradiction shows  $\overline{x} \notin C(\phi, r)$  and therefore  $||\overline{x}|| = r' < r$ .

Let  $r - r' = \delta > 0$ . Select c such that  $c \in intv \phi y_0$  and  $||c|| \le \delta/2$ . Since  $c \in intv \phi y_0$ ,  $c = \alpha y_0$  for some  $\alpha$  such that  $0 < \alpha < 1$ . Select  $x_1$  in  $H_1 \cap C(\phi, r)$ .

Let

$$S = \{x : ||x - c|| \le \max[r - \delta/2, ||x_1 - c||]\}$$

It will be shown that S is a sphere with center c and radius less than r and such that  $K \subset S$ , thus contradicting the assumption that  $D(\phi, r)$  is a circumsphere.

Obviously,  $r - \delta/2 < r$ . Then,

$$||\mathbf{x}_{1} - \mathbf{c}||^{2} = ||\mathbf{x}_{1} - \mathbf{y}_{0}||^{2} + ||\mathbf{y}_{0} - \mathbf{c}||^{2}$$
$$= ||\mathbf{x}_{1} - \mathbf{y}_{0}||^{2} + ||\mathbf{y}_{0} - \alpha \mathbf{y}_{0}||^{2}$$
$$< ||\mathbf{x}_{1} - \mathbf{y}_{0}||^{2} + ||\mathbf{y}_{0}||^{2}$$
$$= ||\mathbf{x}_{1}||^{2}$$
$$= \mathbf{r}^{2},$$

shows  $||\mathbf{x}_1 - \mathbf{c}|| < \mathbf{r}$ .

It yet remains to demonstrate  $K \subset \mbox{ S. }$  First, let  $x \in K'$  and

then

$$||\mathbf{x} - \mathbf{c}|| \le ||\mathbf{x}|| + ||\mathbf{c}||$$
$$\le ||\overline{\mathbf{x}}|| + ||\mathbf{c}||$$
$$\le \mathbf{r} - \delta + \delta/2$$
$$= \mathbf{r} - \delta/2$$

shows that  $x \in S$ . Now select any  $x \in K$  where x is in  $H_1 \cup H_1^+$ . The point x in  $H_1 \cup H_1^+$  implies that  $(x - y_0, y_0) \ge 0$  or  $(x, y_0) \ge (y_0, y_0)$ . Since  $x_1 \in H_1$ ,  $(x_1 - y_0, y_0) = 0$  or  $(x_1, y_0) = (y_0, y_0)$ . Therefore,  $(x, y_0) \ge (x_1, y_0)$ . The real number  $\alpha$  is positive, so multiplying this last inequality by  $-2\alpha$  leads to

$$-2(\alpha y_0, x) \leq -2(\alpha y_0, x_1).$$

Substituting c for  $\alpha y_0$  yields

$$-2(c, x) \leq -2(c, x_1).$$

To this inequality add  $||\mathbf{x}||^2 \le ||\mathbf{x}_1||^2$  and  $||\mathbf{c}||^2 = ||\mathbf{c}||^2$  resulting in

$$||\mathbf{x}||^2 - 2(\mathbf{c}, \mathbf{x}) + ||\mathbf{c}||^2 \le ||\mathbf{x}_1||^2 - 2(\mathbf{c}, \mathbf{x}_1) + ||\mathbf{c}||^2$$

which is equivalent to

$$||\mathbf{x} - \mathbf{c}||^2 \le ||\mathbf{x}_1 - \mathbf{c}||^2$$

or

$$||x - c|| \le ||x_1 - c||.$$

Thus, again x  $\varepsilon$  S, and hence  $K \subset$  S where S has a smaller radius

than the radius of the circumsphere. Thus we have reached a contradiction to the hypothesis of the theorem.

The following theorem, which is the converse of Theorem 8-1, together with Theorem 8-1, forms a characterization of the circumsphere.

<u>Theorem 8-2</u>: If K is compact convex contained in  $D(\phi, r)$  such that  $\phi \in \text{conv}$  (bdy  $K \cap C(\phi, r)$ ), then  $D(\phi, r)$  is the circumsphere of K.

Proof: Suppose  $D(\phi, r)$  is not a circumsphere. This means that there is S, a circumsphere with center  $x_0$  and radius r', where r' < r and K  $\subset$  S (cf. Figure 8-2).

Since K is closed, bdy  $K \subset K$ . Then

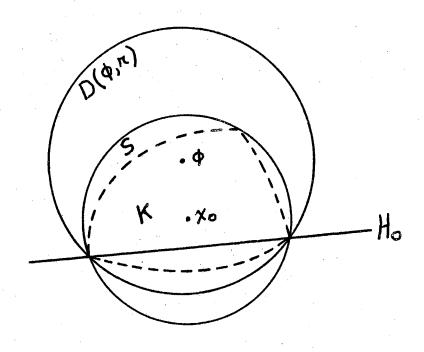


Figure 8-2.

If  $S \cap C(\phi, r) = 0$ , then bdy  $K \cap C(\phi, r) = 0$ , but by hypothesis  $\phi \in \text{conv}$  (bdy  $K \cap C(\phi, r)$ ). This contradiction shows that  $S \cap C(\phi, r) \neq 0$ and  $\phi \neq x_0$ . The set bdy K is contained in S, and so

bdy 
$$K \cap C(\phi, r) \subset S \cap C(\phi, r)$$
.

This leads to

$$\operatorname{conv}$$
 (bdy K  $\cap$  C( $\phi$ , r) )  $\subset$  conv (S  $\cap$  C( $\phi$ , r) ).

The assumption  $\varphi \in {\rm conv}$  (bdy K  $\cap$  C( $\varphi, r)$ ) implies that  $\varphi \in {\rm conv} (S \ \cap \ C(\varphi, r)).$ 

Let

$$H_0 = \{x : (x, x_0) = (1/2)(r^2 + ||x_0||^2 - r'^2)\}.$$

If

$$\alpha = (1/2)(\mathbf{r}^2 + ||\mathbf{x}_0||^2 - \mathbf{r}^2),$$

then  $\alpha$  is positive. The inner product  $(x_0, \phi) = 0 < \alpha$  implies that  $\phi \in H_0^-$ . Let  $a_i \in S \cap C(\phi, r)$ . This implies  $||a_i - x_0|| \le r'$ , and leads to

$$||a_i||^2 - 2(x_0, a_i) + ||x_0||^2 \le r^2.$$

This last inequality is equivalent to

$$-2(x_0, a_i) \leq r^{1^2} - ||x_0||^2 - ||a_i||^2.$$

Using the fact  $||a_i|| = r$  and the last inequality results in the statement

$$(\mathbf{x}_0, \mathbf{a}_i) \ge (1/2)(\mathbf{r}^2 + ||\mathbf{x}_0||^2 - \mathbf{r}^2) = \alpha.$$

Since the origin  $\varphi$  is in conv (S  $\bigcap C(\varphi, r)$  ),

$$\phi = \sum_{i=1}^{m} \beta_i a_i$$

where

$$\sum_{i=1}^{m} \beta_i = 1, \quad \beta_i \geq 0, \quad a_i \in S \cap C(\phi, r).$$

Then

$$(\mathbf{x}_{0}, \phi) = (\mathbf{x}_{0}, \sum_{i=1}^{m} \beta_{i} \mathbf{a}_{i})$$
$$= \sum_{i=1}^{m} \beta_{i} (\mathbf{x}_{0}, \mathbf{a}_{i})$$
$$\geq \sum_{i=1}^{m} \beta_{i} \alpha$$
$$= \alpha \sum_{i=1}^{m} \beta_{i}$$

Therefore,  $(x_0, \phi) \ge \alpha$  implies that  $\phi \in H_0 \cup H_0^+$ , a contradiction of  $\phi \in H_0^-$ .

 $= \alpha$ .

Before proceeding with a characterization of an insphere, a lemma needed in the characterization is inserted.

Lemma 8-1: Let M be any convex compact body in  $E_n$  containing the origin, and let

If  $||\mathbf{x}_1|| \leq t$ , then  $\mathbf{x}_1 \in \mathbf{M}$ .

Proof: Suppose  $x_1 \notin M$  and let  $x_2$  be the orthogonal projection of  $x_1$  onto M (cf. Figure 8-3). The point  $x_2$  is a boundary point of M. Let

$$H = \{x : (x - x_2, x_1 - x_2) = 0\}.$$

By Lemma 2-3, H is a support hyperplane of M separating  $x_1$  and  $\phi$ . In fact,  $x_1$  is in H<sup>+</sup> and  $\phi$  is in H<sup>-</sup>.

Let

$$\beta = \frac{(x_2, x_1 - x_2)}{(x_1, x_1 - x_2)}$$



First,  $(x_2, x_1 - x_2)$  is positive since  $\phi \in H^-$ , and as clearly  $(x_1 - x_2, x_1 - x_2)$  is positive. Adding these two inequalities results in  $(x_1, x_1 - x_2) > 0$ , which implies that  $\beta$  is positive. Also, from  $(x_1 - x_2, x_1 - x_2) > 0$  it follows that

$$(x_1, x_1 - x_2) > (x_2, x_1 - x_2),$$

and hence  $\beta < 1$ .

Let 
$$x_3 = \beta x_1$$
. Then  
 $(\beta x_1 - x_2, x_1 - x_2) = \left(\frac{(x_2, x_1 - x_2)}{(x_1, x_1 - x_2)} | x_1 - x_2, x_1 - x_2\right)$   
 $= \frac{(x_2, x_1 - x_2)}{(x_1, x_1 - x_2)} | (x_1, x_1 - x_2) - (x_2, x_1 - x_2)$   
 $= (x_2, x_1 - x_2) - (x_2, x_1 - x_2)$ 

shows that  $x_3$  is in H. Therefore,

$$||\mathbf{x}_1|| = ||\mathbf{x}_3|| + ||\mathbf{x}_1 - \mathbf{x}_3||.$$

= 0

By the Pythagorean relationship,

$$||\mathbf{x}_1 - \mathbf{x}_3||^2 = ||\mathbf{x}_1 - \mathbf{x}_2||^2 + ||\mathbf{x}_2 - \mathbf{x}_3||^2.$$

Since  $||x_1 - x_2||$  is not zero,

$$||x_1 - x_3 \rangle ||x_2 - x_3||.$$

Using the triangle inequality,

$$||\phi - x_3|| + ||x_3 - x_2|| \ge ||\phi - x_2||,$$

it follows that

$$||x_3|| \ge ||x_2|| - ||x_2 - x_3||.$$

Therefore,

$$||\mathbf{x}_{1}|| = ||\mathbf{x}_{3}|| + ||\mathbf{x}_{1} - \mathbf{x}_{3}||$$

$$> ||\mathbf{x}_{2}|| - ||\mathbf{x}_{2} - \mathbf{x}_{3}|| + ||\mathbf{x}_{2} - \mathbf{x}_{3}||$$

$$= ||\mathbf{x}_{2}||,$$

and hence  $||\mathbf{x}_1|| > ||\mathbf{x}_2|| \ge t$  since  $\mathbf{x}_2$  is a boundary point of M and  $t = \min \{||\mathbf{x}|| : \mathbf{x} \in bdy M\}.$ 

But by hypothesis  $||x_1|| \le t$ . This contradiction shows that  $x_1 \in M$ .

<u>Theorem 8-3</u>: If K is a compact convex body in  $E_n$  and  $D(\phi, r)$  is an insphere, then  $\phi \in \text{conv}$  (bdy  $K \cap C(\phi, r)$ ).

Proof: Suppose  $\phi \notin \operatorname{conv}(\operatorname{bdy} K \cap C(\phi, r))$  and let  $x_0$  be the orthogonal projection of  $\phi$  onto conv (bdy  $K \cap C(\phi, r)$ ). Then  $H_0 = \{x : (x - x_0, x_0) = 0\}$  is a support hyperplane for  $\operatorname{conv}(\operatorname{bdy} K \cap C(\phi, r))$ . Let  $y_0 = (1/2)x_0$ ,  $H_1 = \{x : (x - y_0, y_0) = 0\}$ , and  $K' = \operatorname{bdy} K \cap \operatorname{complement} H_1^+$  (cf. Figure 8-4). The set K' is  $\operatorname{compact}$  and non-empty.

To see that K' is non-empty, assume it is empty which means bdy K $\subset$  H<sub>1</sub> $\cup$  H<sub>1</sub><sup>+</sup>. So for any element b  $\epsilon$  bdy K, (b, y<sub>0</sub>)  $\geq$  (y<sub>0</sub>, y<sub>0</sub>). Since  $\phi$  is in interior of K, there are two points b and d in the boundary

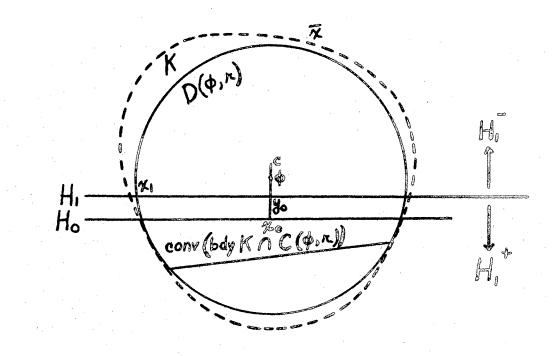


Figure 8-4.

of K such that 
$$\phi = \alpha b + (1 - \alpha)d$$
 for some  $\alpha > 0$ . Then  
 $(\alpha b + (1 - \alpha)d - y_0, y_0) = \alpha(b, y_0) + (1 - \alpha)(d, y_0) - (y_0, y_0).$ 
But

imply that 
$$(1-\alpha)(d, y_0) \ge (1-\alpha)(d, y_0)$$

 $\alpha(b, y_0) + (1 - \alpha)(d, y_0) - (y_0, y_0) \ge 0,$ and hence  $\phi \in H_1^+$ . But  $(\phi - y, y_0) < 0$  implies that  $\phi \in H_1^-$ , a contradiction. Let  $D = \{||\mathbf{x} - \phi|| : \mathbf{x} \in K'\}$ . Since the norm is a continuous function and K' is compact, there is a point  $\overline{x}$  in K' such that

$$||\overline{\mathbf{x}}|| \leq ||\mathbf{x}||$$
 for all  $\mathbf{x}$  in K'. Let  $||\overline{\mathbf{x}}|| = \mathbf{r}' \geq \mathbf{r}$ .

To show that  $\overline{x}$  is not in  $C(\phi, r)$ , assume the contrary. Since  $\overline{x} \in K'$  then  $\overline{x}$  is in bdy  $K \cap C(\phi, r)$ . The hyperplane  $H_0$  supports

conv (bdy  $K \cap C(\phi, r)$ )

and  $\overline{x}$  in  $H_0 \cup H_0^+$  implies that

$$(\overline{x} - x_0, x_0) = (\overline{x} - 2y_0, 2y_0) \ge 0.$$

This is equivalent to

$$2(\bar{x}, y_0) - 4(y_0, y_0) \ge 0$$

or

$$(\overline{x}, y_0) \ge 2(y_0, y_0) > (y_0, y_0).$$

This leads to  $(\overline{x} - y_0, y_0) > 0$  which implies that  $\overline{x} \in H_1^+$ . But  $\overline{x} \in K^{\dagger} \subset (\text{complement } (H_1^+))$ . Therefore,  $\overline{x}$  is not in  $C(\phi, r)$  and  $||\overline{x}|| = r^{\dagger} > r$ . Let  $\delta = r^{\dagger} - r > 0$ .

Select c so that  $\phi \in intv cy_0$  and  $||c|| \le \delta/2$ . Thus

$$\phi = \alpha c + (1 - \alpha) y_0$$

for  $0 < \alpha < 1$  and

$$c = \frac{\alpha - 1}{\alpha} y_0$$
 where  $\frac{\alpha - 1}{\alpha} < 0$ .

Take any point  ${\bf x}_1$  in  ${\bf H}_1 \cap \, C(\phi,r)$  and let

$$S = \left\{ \mathbf{x} : ||\mathbf{x} - \mathbf{c}|| \le \min \left[ \mathbf{r} + \delta/2, ||\mathbf{x}_{1} - \mathbf{c}|| \right] \right\}.$$

To finish the theorem, it is now proved that the radius of S is greater than r and that  $S \subset K$ . This will be a contradiction of the hypothesis

that  $D(\phi, r)$  is an insphere of K.

First observe that  $r + \delta/2 > r$ . Then

$$|\mathbf{x}_{1} - \mathbf{c}||^{2} = ||\mathbf{x}_{1} - \mathbf{y}_{0}||^{2} + ||\mathbf{y}_{0} - \mathbf{c}||^{2}$$
  
>  $||\mathbf{x}_{1} - \mathbf{y}_{0}||^{2} + ||\mathbf{y}_{0}||^{2}$   
=  $||\mathbf{x}_{1}||^{2}$   
=  $\mathbf{r}^{2}$ 

implies that  $||x_1 - c|| > r$ . Therefore the radius of S is greater than r. Let  $s \in S \cap H_1^+$ ; that is, since  $s \in S$ ,  $||s - c||^2 \le ||x_1 - c||^2$  or equivalently

$$||\mathbf{s}||^2 - 2(\mathbf{s}, \mathbf{c}) + ||\mathbf{c}||^2 \le ||\mathbf{x}_1||^2 - 2(\mathbf{x}_1, \mathbf{c}) + ||\mathbf{c}||^2.$$

Therefore,

$$||\mathbf{s}||^2 \le ||\mathbf{x}_1||^2 - 2(\mathbf{x}_1 - \mathbf{s}, \mathbf{c}).$$

Since  $s \in H_1^+$ ,  $(s - y_0, y_0) > 0$  which implies that  $(s, y_0) > (y_0, y_0)$ . The point  $x_1 \in H_1$  leads to  $(x_1, y_0) = (y_0, y_0)$ . Therefore, from these two statements

$$(s, y_0) > (x_1, y_0).$$
 (8-1)

But rewriting (8-1) and substituting for  $\boldsymbol{y}_{0}$  results in

$$0 < (s - x_1, y_0) = (s - x_1, \frac{\alpha}{\alpha - 1} c)$$
$$= \frac{\alpha}{\alpha - 1} (s - x_1, c)$$
$$= \frac{\alpha}{1 - \alpha} (x_1 - s, c).$$

From this it can be concluded that  $0 < (x_1 - s, c)$  since  $\alpha(1 - \alpha)^{-1}$  is positive. From

$$||s||^2 \le ||x_1||^2 - 2(x_1 - s, c)$$

it follows that  $||s|| \leq ||x_1|| = r$ , which proves that  $s \in D(\phi, r) \subset K$  or  $S \cap H_1^+ \subset K$ .

Now select any  $s \in S \cap \text{complement H}_1^+$ . Suppose there is such an s which is not in K. Since s is in S then  $||s - c|| \le r + \delta/2$ . If s is not in K,  $||s|| > ||\overline{x}||$  by Lemma 8-1. Knowing  $||\overline{x}|| = r' = \delta + r$ , it follows that  $\delta + r < ||s||$ . Therefore,

$$||s|| = ||s - c + c||$$
  

$$\leq ||s - c|| + ||c||$$
  

$$\leq r + \delta/2 + \delta/2$$
  

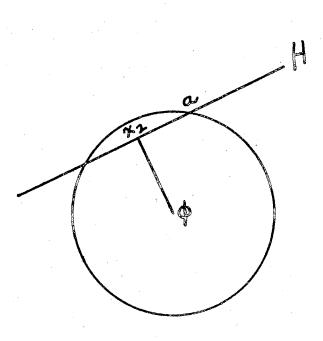
$$= r + \delta$$
  

$$< ||s||,$$

a contradiction. This demonstrates that S is a sphere with radius greater than r and S  $\subset$  K, a contradiction of the hypothesis that D( $\phi$ , r) is an insphere.

Lemma 8-2: Let H be a hyperplane such that a  $\in$  H  $\cap$  C( $\phi$ , r) and a is not orthogonal to H, then H is not a support hyperplane for D( $\phi$ , r).

Proof: Let  $x_2$  be the orthogonal projection of  $\phi$  onto H (cf. Figure 8-5). Therefore  $||x_2|| = r! < r$ .





Then the hyperplane  $H = \{x : (x-x_2, x_2) = 0\}$  and  $\phi \in H^{-}$ . Consider the point  $(r/r') x_2$  and notice that

 $||\frac{r}{r'} x_2|| = \frac{r}{r'} ||x_2|| = r.$ 

Furthermore,

$$(\frac{\mathbf{r}}{\mathbf{r}^{+}} \mathbf{x}_{2} - \mathbf{x}_{2}, \mathbf{x}_{2}) = (\frac{\mathbf{r}}{\mathbf{r}^{+}} - 1)(\mathbf{x}_{2}, \mathbf{x}_{2})$$
  
=  $\frac{\mathbf{r} - \mathbf{r}^{+}}{\mathbf{r}^{+}} (\mathbf{x}_{2}, \mathbf{x}_{2}) > 0.$ 

Thus,  $(r/r') x_2 \in C(\phi, r) \cap H^+$ . But  $\phi \in D(\phi, r) \cap H^-$  implies that H is not a support hyperplane for  $D(\phi, r)$ .

This lemma, along with Lemma 6-1, shows that a hyperplane of support of a sphere  $D(\phi, r)$  at point a must have the form

115

 ${x : (x - a, a) = 0}.$ 

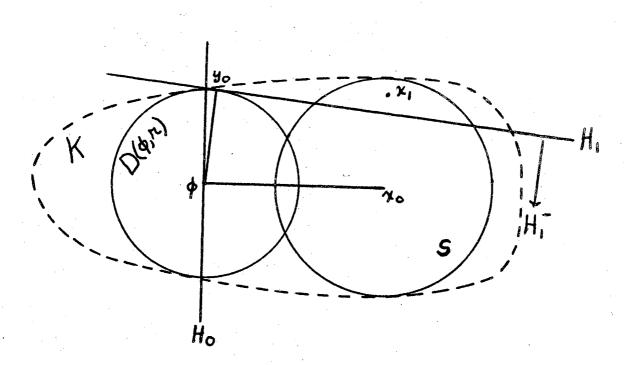
<u>Theorem 8-4</u>: Let K be compact convex body in  $E_n$ . If  $D(\phi, r)$  is contained in K and  $\phi \in \text{conv} (C(\phi, r) \cap bdy K)$ , then  $D(\phi, r)$  is an insphere.

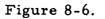
Proof: Suppose that  $D(\phi, r)$  is not an insphere. Thus there must be a sphere S with radius r' > r and a center  $x_0$  (cf. Figure 8-6).

Let  $H_0^{}$  = {x : (x, x\_0^{}) = 0}. Since the point  $\varphi$  is in conv (bdy K  $\bigcirc$  C( $\varphi,\,r)$  ), then

$$\phi = \sum_{i=1}^{m} \lambda_{i} y_{i},$$

where





$$\sum_{i=1}^{m} \lambda_i = 1, \quad \lambda_i \ge 0,$$

and  $y_i \in bdy K \cap C(\phi, r)$ . Then,

$$0 = (\phi, \mathbf{x}_0) = \left(\sum_{i=1}^m \lambda_i \mathbf{y}_i, \mathbf{x}_0\right) = \sum_{i=1}^m \lambda_i (\mathbf{y}_i, \mathbf{x}_0)$$

shows that  $(y_1, x_0) \ge 0$  for at least one i. Without loss of generality, let  $(y_0, x_0) \ge 0$ , and hence  $y_0 \in H_0 \cup H_0^+$ . Since  $y_0$  is in bdy  $K \cap C(\phi, r)$ , there is a support hyperplane  $H_1$  for K through  $y_0$  (cf. Theorem 2-15 in [36]). The point  $y_0$  in  $C(\phi, r)$  and  $C(\phi, r) \subset K$ , implies that  $H_1$  is also a supporting hyperplane for  $D(\phi, r)$ , and  $H_1$  bounds the sphere S.

By Lemmas 6-1 and 8-2,  $H_1$  must have the form  $\{x : (x - y_0, y_0) = 0\}$ . Let

$$\mathbf{x}_1 = \mathbf{x}_0 + \left(\frac{\mathbf{r} + \mathbf{r}^{\mathsf{T}}}{2\mathbf{r}}\right) \mathbf{y}_0.$$

Then

$$||\mathbf{x}_{1} - \mathbf{x}_{0}|| = ||\mathbf{x}_{0} + \left(\frac{\mathbf{r} + \mathbf{r}^{T}}{2\mathbf{r}}\right) \mathbf{y}_{0} - \mathbf{x}_{0}|$$
$$= \frac{\mathbf{r} + \mathbf{r}^{T}}{2\mathbf{r}} ||\mathbf{y}_{0}||$$
$$= \frac{\mathbf{r} + \mathbf{r}^{T}}{2\mathbf{r}} \mathbf{r}$$
$$= \frac{\mathbf{r} + \mathbf{r}^{T}}{2\mathbf{r}} < \mathbf{r}^{T}$$

shows that  $x_1 \in S$ . Now

$$(\mathbf{x}_{1} - \mathbf{y}_{0}, \mathbf{y}_{0}) = (\mathbf{x}_{0} + \left(\frac{\mathbf{r} + \mathbf{r}^{\dagger}}{2\mathbf{r}}\right) \mathbf{y}_{0} - \mathbf{y}_{0}, \mathbf{y}_{0})$$
$$= (\mathbf{x}_{0} + \left(\frac{\mathbf{r}^{\dagger} - \mathbf{r}}{2\mathbf{r}}\right) \mathbf{y}_{0}, \mathbf{y}_{0})$$
$$= (\mathbf{x}_{0}, \mathbf{y}_{0}) + \frac{\mathbf{r}^{\dagger} - \mathbf{r}}{2\mathbf{r}} (\mathbf{y}_{0}, \mathbf{y}_{0}).$$

Using the fact  $(x_0, y_0) \ge 0$  and

$$\frac{r'-r}{2r} (y_0, y_0) > 0,$$

it follows that  $(x_1 - y_0, y_0)$  is positive. Therefore  $H_1$  is not a support hyperplane for K, a contradiction. Therefore  $D(\phi, r)$  is an insphere.

The previous two theorems give a characterization of an insphere. In proving the main theorem of this chapter, it turns out to be convenient to have a second characterization of an insphere in terms of an open half sphere.

If D(a, r) is a sphere and a is in a hyperplane H, then  $H^+ \cap D(a, r)$  is an open half sphere of D(a, r) determined by H.

<u>Theorem 8-5</u>: Let K be a compact convex body in  $E_n$ . If  $D(\phi, r)$  is a sphere such that  $\phi \in \text{conv} (C(\phi, r) \cap \text{bdy } K)$ , then  $C(\phi, r) \cap \text{bdy } K$  cannot be contained in any open half sphere of  $D(\phi, r)$ .

Proof: Suppose  $C(\phi, r) \cap bdy K$  is contained in some open half sphere of  $D(\phi, r)$ . Thus, there is a hyperplane H such that  $\phi \in H$  and  $C(\phi, r) \cap bdy K \subset H^{\dagger} \cap D(\phi, r).$ 

Let  $x_0 \in E_n$  where  $x_0$  is perpendicular to H. The form of H must be  $\{x : (x, x_0) = 0\}$ . If  $a_i \in C(\phi, r) \cap bdy K$ , then  $(a_i, x_0) > 0$ since  $a_i \in H^+ \cap D(\phi, r)$ . Since  $\phi \in conv (C(\phi, r) \cap bdy K)$ ,

$$= \sum_{i=1}^{m} \lambda_i a_i,$$

φ

where

$$\sum_{i=1}^{m} \lambda_i = 1, \ \lambda_i \ge 0, \ a_i \in C(\phi, r) \cap bdy K$$

and hence,

$$0 = (x_0, \phi) = \sum_{i=1}^{m} \lambda_i (a_i, x_0).$$

But  $(a_i, x_0) > 0$  for all i implies that

$$\sum_{i=1}^{m} \lambda_i (a_i, x_0) > 0,$$

a contradiction.

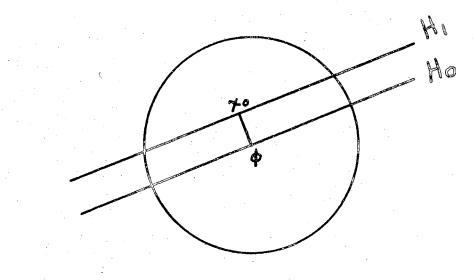
<u>Theorem 8-6</u>: Let K be compact convex body in  $E_n$ . If  $C(\phi, r) \cap bdy K$  is not empty and cannot be contained in any open half sphere of  $D(\phi, r)$ , then  $\phi \in conv (C(\phi, r) \cap bdy K)$ .

Proof: Suppose  $\phi \notin \operatorname{conv} (C(\phi, r) \cap \operatorname{bdy} K)$  and let  $x_0$  be the orthogonal projection of  $\phi$  onto conv ( $C(\phi, r) \cap \operatorname{bdy} K$ ), (cf. Figure 8-7).

Let  $H_1 = \{x : (x - x_0, x_0) = 0\}$ . By Lemma 2-3,  $H_1$  is a support hyperplane of conv (C( $\phi$ , r)  $\cap$  bdy K). The origin  $\phi$  is in  $H_1^-$ , and therefore, conv (C( $\phi$ , r)  $\cap$  bdy K)  $\subset H_1 \cup H_1^+$ . Let  $y \in C(\phi, r) \cap$  bdy K, and by the support property of  $H_1$ ,  $(y - x_0, x_0) \ge 0$ , or

$$(y, x_0) \ge (x_0, x_0) > 0.$$

That is,  $(y, x_0) > 0$ .



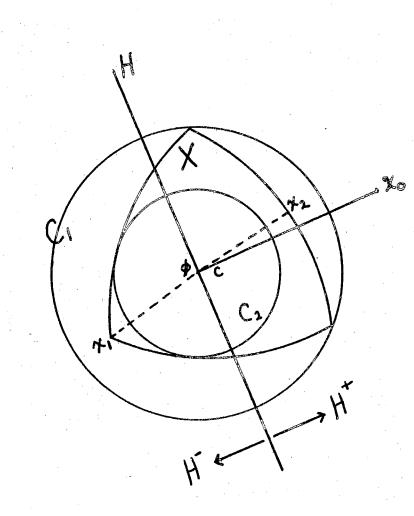


The set  $H = \{x : (x, x_0) = 0\}$  is a hyperplane through  $\phi$ . Thus  $(y, x_0) > 0$  implies that y is in  $H_0^+$ . Therefore,  $C(\phi, r) \cap bdy K$  is contained in  $H_0^+$ . Since  $C(\phi, r) \cap bdy K$  is contained in  $D(\phi, r)$ , it follows that  $C(\phi, r) \cap bdy K \subset H_0^+ \cap D(\phi, r)$ . However, this contradicts the hypothesis of the theorem since  $H_0^+ \cap D(\phi, r)$  is an open half space of  $D(\phi, r)$ .

Lemma 8-3: Let X be a compact convex body in  $E_n$  whose minimal spherical shell is formed by  $C_1 = D(\phi, r_1)$  and  $C_2 = D(\phi, r_2)$ . If  $A = C_1^{i} \cap bdy X$  and  $B = C_2^{i} \cap bdy X$  where  $C_1^{i} = C(\phi, r_1)$  and  $C_2^{i} = C(\phi, r_2)$ , then it is impossible for any hyperplane through  $\phi$  to strictly separate A and B.

Proof: Let  $r_1 > r_2$  and suppose there is a hyperplane H containing  $\phi$  and strictly separating A and B. Assume A  $\epsilon$  H<sup>+</sup> and B  $\epsilon$  H<sup>-</sup> (cf. Figure 8-8).

120





Select an  $x_0 \in E_n$  such that  $x_0$  is perpendicular to H at  $\phi$ . Therefore,  $H = \{x : (x, x_0) = 0\}$  and  $x_0 \in H^+$ .

Let  $K_1 = X \cap \text{complement } H^+$ . The set  $K_1$  is compact and therefore the set  $\{ ||x|| : x \in K_1 \}$  has a maximum value at  $x_1 \in K_1$ . Let  $||x_1|| = r'_1 < r_1$  and define  $\delta_1 = r_1 - r'_1 > 0$ .

Similarly, let  $K_2 = bdy X \cap complement H^{-}$ . The set {  $||x|| : x \in K_2$ } has a minimum value at  $x_2 \in K_2$ . Let  $||x_2|| = r_2 > r_2$ and  $r_2 - r_2 = \delta_2 > 0$ .

Let  $\delta$  be the smaller of  $\delta_1$  and  $\delta_2$ . Select  $c = \lambda x_0$  for some positive  $\lambda$  so that  $||c|| = \delta/2$ .

Let

$$S_{1} = D\left(c, \sqrt{r_{1}^{2} + \left(\frac{\delta}{2}\right)^{2}}\right)$$
$$S_{2} = D\left(c, \sqrt{r_{2}^{2} + \left(\frac{\delta}{2}\right)^{2}}\right)$$

If it can be shown that

1) 
$$\sqrt{r_1^2 + (\frac{\delta}{2})^2} - \sqrt{r_2^2 + (\frac{\delta}{2})^2} < r_1 - r_2,$$

and

and

2)  $S_2 \subset X \subset S_1$ ,

then since  $S_1$  and  $S_2$  are concentric, it follows that  $C_1$  and  $C_2$  do not form a minimal spherical shell for X.

Proof of 1): For any  $r_1$  and  $r_2$ ,  $(r_1 - r_2)^2 > 0$ , which is equivalent to

$$r_1^2 + r_2^2 - 2r_1r_2 > 0.$$

Next, multiplying by the positive number  $\left(\delta/2\right)^2$  and then adding

$$r_1^2 r_2^2 + \left(\frac{\delta}{2}\right)^4$$

leads to

$$r_{1}^{2}r_{2}^{2}+r_{1}^{2}\left(\frac{\delta}{2}\right)^{2}+r_{2}^{2}\left(\frac{\delta}{2}\right)^{2}+\left(\frac{\delta}{2}\right)^{2}+\left(\frac{\delta}{2}\right)^{4}>r_{1}^{2}r_{2}^{2}+\left(\frac{\delta}{2}\right)^{4}+2r_{1}r_{2}\left(\frac{\delta}{2}\right)^{2}.$$

By factoring each side, one obtains the relationship

$$\left[r_{1}^{2} + \left(\frac{\delta}{2}\right)^{2}\right] \left[r_{2}^{2} + \left(\frac{\delta}{2}\right)^{2}\right] > \left[r_{1}r_{2} + \left(\frac{\delta}{2}\right)^{2}\right]^{2}.$$

All of the quantities involved are positive. Thus first taking square roots and then multiplying by (-2) leads to

$$-2 \sqrt{r_1^2 + \left(\frac{\delta}{2}\right)^2} \sqrt{r_2^2 + \left(\frac{\delta}{2}\right)^2} < -2 \left[r_1r_2 + \left(\frac{\delta}{2}\right)^2\right].$$

By adding

$$\mathbf{r}_1^2 + \mathbf{r}_2^2 + 2\left(\frac{\delta}{2}\right)^2$$

results in

$$r_{1}^{2} + r_{2}^{2} - 2 \sqrt{r_{1}^{2} + \left(\frac{\delta}{2}\right)^{2}} \sqrt{r_{2}^{2} + \left(\frac{\delta}{2}\right)^{2}} + 2 \left(\frac{\delta}{2}\right)^{2} < -2r_{1}r_{2} + r_{1}^{2} + r_{2}^{2}.$$
(8-2)

By rearranging terms, write (8-2) in the form

$$r_1^2 + \left(\frac{\delta}{2}\right)^2 - 2\sqrt{r_1^2 + \left(\frac{\delta}{2}\right)^2} \sqrt{r_2^2 + \left(\frac{\delta}{2}\right)^2} + r_2^2 + \left(\frac{\delta}{2}\right)^2 < (r_1 - r_2)^2$$

which is equivalent to

$$\left[\sqrt{r_{1}^{2} + \left(\frac{\delta}{2}\right)^{2}} - \sqrt{r_{2}^{2} + \left(\frac{\delta}{2}\right)^{2}}\right]^{2} < (r_{1} - r_{2})^{2}.$$

Again, since all the quantities which are squared are positive, the square roots of both sides result in

$$\sqrt{\mathbf{r}_1^2 + \left(\frac{\delta}{2}\right)^2} - \sqrt{\mathbf{r}_2^2 + \left(\frac{\delta}{2}\right)^2} < \mathbf{r}_1 - \mathbf{r}_2$$

which was to be proved,

Proof of 2): First it will be shown that  $X \subset S_1$ . Let  $x \in X \cap$  complement  $H^+ = K_1$ . By the triangle inequality,

$$||x - c|| \le ||x|| + ||c||.$$

The value of  $||\mathbf{x}||$  is less than  $r_1^i$  since  $r_1^i$  is the maximum value for the norm function of any point in  $K_1$ . Therefore,

$$||x|| + ||c|| \le r_1^{i} + \delta/2.$$

Then

$$r_{1}^{\prime} + \frac{\delta}{2} = r_{1} - \delta_{1} + \frac{\delta}{2}$$

$$\leq r_{1} - \delta_{1} + \frac{\delta_{1}}{2}$$

$$= r_{1} - \frac{2\delta_{1}}{2} + \frac{\delta_{1}}{2}$$

$$< r_{1} < \sqrt{r_{1}^{2} + \left(\frac{\delta}{2}\right)^{2}}$$

This proves that

$$||\mathbf{x} - \mathbf{c}|| < \sqrt{\mathbf{r}_1^2 + \left(\frac{\delta}{2}\right)^2}$$

which shows that  $x \in S_1$ .

Next, let  $x \in X \cap$  complement H<sup>-</sup>. Here observe that

$$||\mathbf{x} - \mathbf{c}||^2 = ||\mathbf{x}||^2 - 2(\mathbf{c}, \mathbf{x}) + ||\mathbf{c}||^2$$

Since  $x \in X \subset C_1$ ,  $||x|| \leq r_1$ . Hence,

$$||\mathbf{x} - \mathbf{c}||^2 \leq |\mathbf{r}_1^2 - 2(\mathbf{c}, \mathbf{x}) + (\frac{\delta}{2})^2.$$

The inner product  $(c, x) = \lambda(x_0, x) \ge 0$  since  $x \in \text{complement } H^-$ . Therefore,

$$r_1^2 - 2(c, x) + \left(\frac{\delta}{2}\right)^2 \leq r_1^2 + \left(\frac{\delta}{2}\right)^2$$

which implies that

$$||\mathbf{x} - \mathbf{c}|| \leq \sqrt{\mathbf{r}_1^2 + \left(\frac{\delta}{2}\right)^2}.$$

Therefore,  $x \in S_1$  and  $X \subset S_1$ .

It will now be shown that  $S_2 \subset X$ . Let  $x \in S_2 \cap$  complement  $H^+$ . Therefore,  $x \in S_2$  implies that

$$||\mathbf{x} - \mathbf{c}||^2 \leq \mathbf{r}_2^2 + \left(\frac{\delta}{2}\right)^2$$

which is equivalent to

$$||\mathbf{x}||^2 - 2(\mathbf{c},\mathbf{x}) + ||\mathbf{c}||^2 \leq \mathbf{r}_2^2 + \left(\frac{\delta}{2}\right)^2.$$

From this

$$||\mathbf{x}||^2 \leq \mathbf{r}_2^2 + 2(\mathbf{c},\mathbf{x}).$$

The point  $x \in \text{complement H}^+$  implies that  $(c, x) = \lambda(x_0, x) \leq 0$  or  $0 \leq -2(c, x)$ . Therefore  $||x||^2 \leq r_2^2$ , which says that  $x \in C_2 \subset X$ . If  $x \in S_2 \cap \text{complement H}^-$ ,

$$||\mathbf{x}|| - ||\mathbf{c}|| \le ||\mathbf{x} - \mathbf{c}|| \le \sqrt{\mathbf{r}_2^2 + (\frac{\delta}{2})^2} \le \mathbf{r}_2 + \frac{\delta}{2}.$$

Therefore,

$$||\mathbf{x}|| \leq \mathbf{r}_2 + \frac{\delta}{2} + \frac{\delta}{2} = \mathbf{r}_2 + \delta \leq \mathbf{r}_2 + \delta_2 = \mathbf{r}_2^1.$$

By Lemma 8-1,  $x \in X$ . Therefore,  $S_2 \subset X$ , and the proof of the lemma has been completed.

The main objective of this chapter is to present and prove the following theorem:

<u>Theorem 8-7</u>: If X is a set of constant width  $\lambda$ , then the insphere and circumsphere are concentric, and the sum of their radii is  $\lambda$ .

Proof: Let  $C_1 = D(\phi, r_1)$  and  $C_2 = D(\phi, r_2)$  form the minimal spherical shell for X. Let  $C'_1$  and  $C'_2$  represent the boundaries of  $C_1$  and  $C_2$ , respectively. As in the preceding lemma, let

$$A = \{x : x \in C_1^! \cap bdy X\},\$$

and

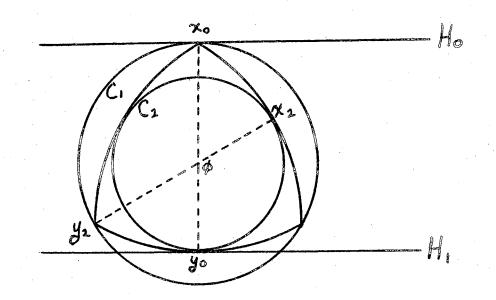
$$B = \{ x : x \in C_2^{!} \cap bdy X \}.$$

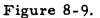
Let  $x_0 \in A$  and let

$$H_0 = \{x : (x - x_0, x_0) = 0\}.$$

By Lemma 6-1,  $H_0$  is a support hyperplane of  $C_1$ . The set X is also supported by  $H_0$  at  $x_0$  (cf. Figure 8-9)

Let  $H_1$  be the parallel support hyperplane of X at  $y_0 \in X$ . Since the point  $y_0$  cannot be an interior point of  $C_2$ ,  $||y_0 - x_0|| \ge r_1 + r_2$ . But  $||y_0 - x_0|| = \lambda$  and hence  $\lambda \ge r_1 + r_2$ .





Let  $x_2 \in B$  and let  $H_2$  be a support hyperplane of X at  $x_2$ . The set  $C_2$  is also supported by  $H_2$  at  $x_2$ . By Lemmas 6-1 and 8-2,

$$H_2 = \{x : (x - x_2, x_2) = 0\}.$$

Let  $H_3$  be the parallel support hyperplane of X at  $y_2$ . The point  $y_2$  cannot be an exterior point of  $C_1$  and hence  $||y_2 - x_2|| \le r_1 + r_2$ . Since  $||y_2 - x_2|| = \lambda$ ,  $\lambda \le r_1 + r_2$ . This, along with the inequality  $\lambda \ge r_1 + r_2$  implies that  $\lambda = r_1 + r_2$ .

By Lemma 8-3, there is no hyperplane through  $\phi$  strictly separating A and B. Therefore, A is not contained in any open half sphere of C<sub>1</sub>, and B is not contained in any open half sphere of C<sub>2</sub>.

Using Theorem 8-6,  $\phi \in \text{conv}(A)$  and  $\phi \in \text{conv}(B)$  where  $A = C_1' \cap \text{bdy } X$  and  $B = C_2' \cap \text{bdy } X$ . By Theorem 8-2,  $X \subset C_1$  and  $\phi \in \operatorname{conv} C'_1 \cap \operatorname{bdy} X$  implies that  $C_1$  is the circumsphere of X. Similarly, using Theorem 8-4,  $C_2 \subset X$  and  $\phi \in \operatorname{conv} (C'_2 \cap \operatorname{bdy} X)$  implies that  $C_2$  is the insphere.

As a corollary to the theorem, consider the following statement:

<u>Corollary 8-1</u>: The radius  $r_1$  of the circumsphere  $D(\phi, r_1)$  of a set X of constant width  $\lambda$  in  $E_n$  lies between

$$\frac{1}{2}$$
  $\lambda$  and  $\lambda \sqrt{\frac{n}{2n+2}}$ 

Proof: If  $r_2$  is the radius of the insphere, then  $r_1 + r_2 = \lambda$ . Since  $r_1 \ge r_2$ ,  $2r_1 \ge r_1 + r_2 = \lambda$  from which  $r_1 \ge (1/2)\lambda$ .

Since  $\phi$  is the center of the circumsphere, by Theorem 8-1,  $\phi \in \text{conv} (C(\phi, r) \cap \text{bdy X})$ . Then by Caratheodory's theorem,

$$\phi = \sum_{i=1}^{m} \lambda_i x_i$$

where

$$1 < m \le n + 1$$
,  $\sum_{i=1}^{m} \lambda_i = 1$ ,  $all \lambda_i \ge 0$ 

and  $x_i \in C(\phi, r) \cap bdy X$ . Observe that  $m - 1 \neq 0$  for if m - 1 = 0, then  $\phi = x$  where  $x \in C(\phi, r)$ .

Let  $\delta$  = max {  $||x_i - x_j||$  :  $1 \le i \le m, \ 1 \le j \le m$  }. For any fixed j,  $1 \le j \le m,$ 

$$(1 - \lambda_{j}) \delta^{2} = 1\delta^{2} - \lambda_{j} \delta^{2} = \sum_{i=1}^{m} \lambda_{i} \delta^{2} - \lambda_{j} \delta^{2}$$

$$\geq \sum_{i=1}^{m} \lambda_{i} ||\mathbf{x}_{i} - \mathbf{x}_{j}||^{2} = \sum_{i=1}^{m} \lambda_{i} \left[ ||\mathbf{x}_{i}||^{2} - 2(\mathbf{x}_{i}, \mathbf{x}_{j}) + ||\mathbf{x}_{j}||^{2} \right]$$

$$= \sum_{i=1}^{m} \lambda_{i} \left[ 2r_{1}^{2} - 2(\mathbf{x}_{i}, \mathbf{x}_{j}) \right] = 2r_{1}^{2} \sum_{i=1}^{m} \lambda_{i} - 2 \sum_{i=1}^{m} \lambda_{i} (\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$= 2r_{1}^{2} - 2(\lambda_{1}\mathbf{x}_{1} + \dots + \lambda_{m}\mathbf{x}_{m}, \mathbf{x}_{j}) = 2r_{1}^{2} - 2\left(\sum_{i=1}^{m} \lambda_{i}\mathbf{x}_{i}, \mathbf{x}_{j}\right)$$

$$= 2r_1^2 - 2(\phi, x_j) = 2r_1^2.$$

Therefore,  $(1-\lambda_j)\;\delta^2\geq 2r_1^2\;$  and the sum of these inequalities over all j results in

$$\sum_{j=1}^{m} (1 - \lambda_{j}) \delta^{2} \geq \sum_{j=1}^{m} 2r_{1}^{2},$$

which is equivalent to  $m\delta^2 - \delta^2 \ge 2r_1^2 m$ . From this

$$m \geq \frac{\delta^2}{\delta^2 - 2r_1^2},$$

and since  $n+l \ge m$ ,

$$n+1 \geq \frac{\delta^2}{\delta^2 - 2r_1^2},$$

which can be changed to

$$(n + 1)\delta^2 - 2r_1^2 (n + 1) \ge \delta^2$$

or

$$\delta^2 (n + 1 - 1) \ge 2r_1^2 (n + 1)$$

which is equal to

$$\delta^2 \geq 2r_1^2 \left(\frac{n+1}{n}\right)$$

Since

$$\lambda \geq \delta \geq r_1 \sqrt{\frac{2n+2}{n}}$$
,

the final result

$$r_1 \leq \lambda \sqrt{\frac{n}{2n+2}}$$

follows. Therefore,

$$\frac{1}{2} \lambda \leq \mathbf{r}_{1} \leq \lambda \sqrt{\frac{n}{2n+2}}$$

To show that the left limit is attained, consider any sphere. In such a case  $r_1 = r_2$ , and  $2r_1 = \lambda$  or  $r_1 = (1/2)\lambda$ .

In  $E_2$  consider the Reuleaux triangle (cf. Figure 8-10). In this situation

$$\lambda = \sqrt{\frac{3}{4} r_1^2 + \frac{9}{4} r_1^2} = r_1 \sqrt{3} ,$$

and so,

$$\lambda \sqrt{\frac{n}{2n+2}} = r_1 \sqrt{3} \left(\frac{2}{6}\right)^{1/2} = r_1.$$

Thus, the right limit is attained.



Figure 8-10.

# BIBLIOGRAPHY

 W. Blaschke. "Einige Bemerkungen über Kurven und Flächen von konstanter Breite." <u>Sächsische Akademie der Wissen-</u> schaften Leipzig. <u>Mathematisch-Naturwissenschaflich</u> <u>Klasse</u>, Berichte über die Verhandlungen, 67 (1915), 290-297.

2. . "Konvexe Bereiche gegebener konstanter Breite und kleinsten Inhalts." <u>Mathematische Annalen</u>, 76 (1915), 504-513.

3. <u>Kreis und Kugel.</u> Printed in Veit, Leipzig, 1916; reprint, Chelsea Publishing Company, New York, 1949.

4. T. Bonnesen, and W. Fenchel. <u>Theorie der konvexen</u> Körper. Springer-Verlag OHG, Berlin, 1934; reprint, Chelsea Publishing Company, New York, 1948.

5. H. Bückner. "Uber Flächen von fester Breite." Jahresbericht der Deutsche Matematiker-Vereinigung, 46 (1936), 96-139.

6. J. F. Burke, "A Curve of Constant Diameter." <u>Mathe-</u> matics Magazine, 39 (1966), 84-85.

7. G. D. Chakerian. "The Affine Image of a Convex Body of Constant Breadth." Israel Journal of Mathematics, 13 (1965), 19-21.

8. . "Sets of Constant Width." <u>Pacific Journal</u> of <u>Mathematics</u>, 19 (1966), 13-21.

9. . "Sets of Constant Relative Width and Constant Relative Brightness." <u>Transactions of the American Mathematical</u> Society, 129 (1967), 26-37.

10. G. Cooke. "A Problem in Convexity." <u>London Mathemati-</u> cal <u>Society Journal</u>, 39 (1964), 370-378.

11. R. E. Edwards. <u>Functional Analysis</u>. Holt, Rinehart and Winston, New York, 1965.

12. H. G. Eggleston. "A Proof of Blaschke's Theorem on the Reuleaux Triangle." <u>Quarterly Journal of Mathematics</u>, 3 (1952), 296-297.

13. <u>Problems in Euclidean Space</u>. Pergamon Press, New York, 1957. 14. \_\_\_\_\_. Convexity. Cambridge University Press, 1958.

15. L. Euler. "De Curvis Triangularibus." <u>Acta Academiae</u> Petropolitoneae, (1778), 3-30.

16. Martin Gardner. "Mathematical Games" <u>Scientific</u> <u>American</u>, 208, 2 (1963), 148-156.

17. Michael Goldberg. "Rotors in Polygons and Polyhedra." Mathematics of Computation, 14 (1960), 229-239.

18. David Hall. "The Wankel Engine." Oklahoma State Engineer, December (1967), 9-14.

19. P. C. Hammer, and Andrew Sobczyk. "Planar Line Families I." <u>Proceedings of the American Mathematical Society</u>, 4(1953), 226-233.

20. P. C. Hammer, "Constant Breadth Curves in the Plane." Proceedings of the American Mathematical Society, 6 (1955), 333-334.

21. Börge Jessen. "Über konvexe Punktmengen konstanter Breite." Mathematische Zeitschrift, 29 (1928), 378-380.

22. V. Klee. <u>Convexity</u>. American Mathematical Society Proceedings of Symposia in Pure Mathematics, 7 (1963), edited by V. Klee.

23. H. Lebesque. "Sur le problème des isopérimètres et sur les domaines de largeur constante." <u>Bulletin de la Société mathé-</u> matique de France, Comptes-rendus, (1914), 72-76.

25. Earl E. Lindberg. "A Discussion on the Out-of-Roundness of Machined Parts and its Measurement." <u>General Motors Engineering</u> Journal, April-May-June, (1961), 11-15.

26. E. Meissner. "Punktmengen konstanter Breite." <u>Vierteljahrsschrift der naturforschenden Gesellschaft in Zürich</u>, 56 (1911), 42-50.

27. Z. A. Melzak. "A Note on Sets of Constant Width." <u>Proceedings of the American Mathematical Society</u>, 11 (1960), 493-497.

28. . "A Note on the Borsuk Conjecture." Canadian Mathematical Bulletin, 10 (1967), 1-3.

29. H. Minkowski. "Über die Körper konstanter Breite." <u>Recueil mathématique</u> de la <u>Société</u> <u>mathématique</u> de <u>Moscou</u>, 25 (1904), 505-508. 30. J. Pál. "Über ein elementares Variationsproblem." <u>Det</u> <u>Kongelige</u> <u>Danske</u> <u>Videnskabernes</u> <u>Selskab</u>. <u>Mathematisk-fysiske</u> <u>Meddelelser</u>, III, <u>2</u> (1920), 2-35.

31. Hans Rademacher, and Otto Toeplitz. <u>The Enjoyment of</u> <u>Mathematics</u>. Translated from German by Herbert Zuckerman, Princeton University Press, 1957.

32. K. Reinhardt. "Extremale Polygone Gegebenen Durchmessers." Jahresbericht der Deutsche Matematiker-Vereinigung, 31 (1922), 251-270.

33. F. Schilling, "Die Theorie und Konstruktion der Kurven konstanter Breite." <u>Zeitschrift für Mathematik und Physik</u>, 63 (1914), 67-136.

34. D. J. Struik. <u>Lectures on Classical Differential Geometry</u>. Addison-Wesley, 1950. pp. 47-51.

35. A. E. Taylor. <u>Introduction to Functional Analysis</u>. John Wiley and Sons, Inc., New York, 1958.

36. F. A. Valentine. <u>Convex Sets</u>. McGraw-Hill Book Company, 1964.

37. I. M. Yaglom, and V. G. Boltyanskii. <u>Convex Figures</u>. Translated from Russian by Paul J. Kelly and Lewis F. Walton. Holt, Rinehart and Winston, New York, 1961.

# VITA

#### Marion M. Bontrager

#### Candidate for the Degree of

## Doctor of Education

# Thesis: CHARACTERIZATIONS AND PROPERTIES OF SETS OF CONSTANT WIDTH

#### Major Field: Higher Education

## Biographical:

- Personal Data: Born in Shipshewana, Indiana, August 22, 1923, the son of Earley and Delcie Bontrager.
- Education: Attended elementary and high school at Shipshewana, Indiana, and was graduated in 1941; received the Bachelor of Arts degree from Goshen College, Goshen, Indiana, in June, 1949, with a major in mathematics; attended NSF Institute for High School Mathematics Teachers at Rutgers University, New Brunswick, New Jersey, 1961-62; received the Master of Arts degree in mathematics from Indiana University, Bloomington, Indiana, in June, 1965; completed requirements for the Doctor of Education degree with emphasis in mathematics at Oklahoma State University in May, 1969.
- Professional Experience: Mathematics and science teacher in Whitmer High School, Toledo, Ohio, 1949-51; service work among the Navajo Indians for the Mennonite Board of Missions, 1951-54; mathematics teacher in Rushville High School, Rushville, Indiana, 1955-58; mathematics teacher in Goshen High School, Goshen, Indiana, 1958-61; graduate assistant in the Department of Mathematics, Indiana University, 1962-65; assistant in NSF Institutes for High School Mathematics Teachers in the summers of 1963, 1964, and 1965; graduate assistant in the Department of Mathematics and Statistics, Oklahoma State University, 1965-68.

Professional Organizations: Member of the Mathematical Association of America.