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PREFACE 

This dissertation is an exposition of characterizations and 

properties of sets of constant width. In the plane, a disc is a set of 

constant width. However, among its properties this one is usually not 

emphasized. The first paper published on sets of constant width 

induding sets other than discs was by the great Swiss mathematician 

and astronomer, Leonhard Euler (1707 .. 1783), in the year 1778, a 

period in which Euler was totally blind. Since then other mathemati

cians have studied these sets and have written papers concerning them. 

However, :much of their work has been in E 2 and E 3 , two and three 

dimensional Euclidean space, respectively. 

There are a number of significant theorems concerning plane 

sets of constant width but it is not known whether all of the n-dimen-

s ional analogues are true or not. As a matter of fact, as late as 1958, 

Eggleston in his book on convex sets remarks, "Considering the number 

of papers published on sets of constant width it is surprising how little 

is known about them. 11 

I want to acknowledge the excellent work of O. D. Chakerian, 

whose articles on sets of constant width awakened in me an interest in 

the subject. One of the basic characterizations was first pointed out 

to me in one of.his articles (cf. [8]). 

The topic of sets of constant width appeals to a wide range of 

audien<;:es. Many of the concepts of this paper when restricted to the 

plane are within easy grasp of the student of high school geometry. 
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Almoi;t anyone will be fascinated by the constructions of the sets of 

constant width in E 2 which appear in Chapter I, Some of the simple 

facts of Chapter I have led to impor.tant research and applications in 

engineering. HowE)ver, the pure mathematician is interested in the 

theoretical developments in E , n > 3, where the intuitive guide of a 
n 

figure has limitations. 

There are at least four engineering appU,cations for sets of 

I 

constant width. First, a rotor in the shape of a ReulE)aux triangle is 

the basis of a device which transforms constant circular motion to an 

intermittent linear motion, This is precisely what happens in the 

gripper of a movie projector, In 1954, Felix Wankel, a German 

engineer, designed an internal combustion engine where rotors of 

constant width are employed instead of the conventional pis tons, This 

engine, called the Wankel engine, is very compact, very light in 

weight in contrc1,s t to the power developed, and it is noted for easy 

starting in cold weather. Two manufacturers are now producing cars 

equipped with this type of engine. Harry James Watts in 1914 designed 

a drill which drills square holes. An adaptation of a set of constant 

width makes this possible. The fourth application is, perhaps, more 

in the nature of an unsolved problem. The problem is in determhiing 

the "roundness" of a roller bearing or ball bearing. It is possible, 

for instance, for a ball bearing to be of constant width but not round. 

I have also investigated a number of properties of sets of con~ 

stant width in E 2 . The first result which is due to Pal asserts the 

existence of a regular circumscribed hexagon for every plane set of 

constant width. Very closely related is the fact that every set of 

constant width in the plane admits a circumscribed rhombus. This 
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follows trivially from the statement of Pal. These two results enable 

one to prove the following two theorems: 

_ Blaschke-Lebesgue Theorem: For all plane sets 

of constant width, the circle has the greatest area and the 

Reuleaux triangle has the least area. 

Barbier Theorem: For any plane sets of constant width 

X., the perimeter has length TrX. .•. 

At the present time, thel,'e are available three excellent books 

on convexity which have sections or chapters devoted to sets of con-

s tant width. 

The first and best book from the standpoint of sets of constant 

width is Konvexen Karper by ~on.nesen and Fenchel [4]. This book 

is well written and includes an excellent sectj.on on sets of constant 

width. The book covers practically all of the :results on s-ets of con

stant width known at the time of publication in 1934. Obviously, this 

book is not complete in the sense that results disoove;red since 1934 

a;re not in this book. A major di$advantage to the English speaking 

student is that it is written in German. 

The sec;:ond book is Convexity by H. G. Eggleston [14]. This 

entire book by the admission of the author is only a brief introduction 

to convexity. This i$ espeda.Jly true concerning the chapter on sets 

of constant width. There appears to be an ambiguity in the way 

Eggleston introduces the ide.a of a complete set. Also Eggleston's 

~ook was published in 1958, a.nd so it, too, is not completely up--to·- '·,:; .. 

date. 

The third book, an English translation of a Russian book, is 

Convex Figures by Y~lom and Boltyanskii [37 ]. In this book there- is. 
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one chapter on sets of constant width. All of their work is in two and 

three dimensions. Most of the concepts and proofs are presented 

from a purely intuitive viewpoint, It was written as a sequal to 

Euclidean geometry for the gifted Russian high school student, the 

undergraduate, or the high sc;:hool teacher. It was hoped that it would 

awaken geometric intuition, one of the sources of mathematical in

spiration. With these objectives in mind, the authors have done an 

excellent job. The book is ideal as a source of concrete examples and 

basic intuitive notions concerning sets of constant width. However, 

this book contains none of the more sophisticated results, and having 

been printed in 1951 1 it contains none of the discoveries since that time, 

As has been noted before, there have been many papers pub.,. 

lished in mathematical periodicals on sets of constant width. These 

articles use a variety of notations and have different objectives. It 

seems desirable to collect, organize and discuss the subject sets of 

constant width, using consistent notation throughout. 

In the literature on sets of constant width,·· it was discovered 

that detailed analytic proofs were noticeably lacking. In fact, almost 

all the proofs were at best sketchily outlined or omitted entirely. Upon 

a closer look it was found that the proofs could not always be easily 

constructed in a straight-forward manner. Proofs of some of the 

theorems were found to be lengthy and difficult. For these reasons 

it seems useful to supply proofs in more detail. 

Thus the existing literature on sets of constant width, which is 

excellent in most respects, contained the following situations which 

are disadvantages to the beginning student in the subject. 

1. The best writings of the basic facts are in German. 
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2, The existing books are not up to date. 

3. There are ambiguities in the existing literature, as 

· weU as places where there is vagueness. 

4. There are no examples of detailed analytic proofs avail-

able for the beginner to follow and pattern. 

5, Recent discoveries are hidden in scattered periodicals. 

In view of these five facts 1 this dissertation is offered as a remedy for 

these deficiencies. Chapter I, which is an introduction, consists 

largely of examples of sets of constant width in E 2 and E 3 and can be 

read by anyone with a little elementary geometry background. The 

remaining part of th~ thesis is on characterizations and properties of 

sets of constant width which are valid in any Euclidean space E , n > l. 
n 

In Chapters II, III, and IV, a proof is given of the characterization of 

sets of constant width in terms of the completeness of a set. The.first 

half of the characterization is proved in Chapter II. Chapter III con-

cerns itself with properties of complete sets. Thes.e properties are 

interesting and useful in themselves, but their primary purpose is to 

· enable us to prove the second part of this Characterization which is. in 

Chapter IV. Chapters V through VIII include three other characteriza-

tions and various properties. Throughout the thesis beyond Chapter .I, 

the emphasis is on detailed analytic proofs. With these objectives in 

mind, the applications referred to earlier and the results applying 

only in E 2 are omitted. 

Although the discussion is limited to Euclidean space, E , it is 
n 

possible to generalize the theorem$ and proofs to Hilbert space. The 

main difficulty would be due to the fact that compactness is not equiva-

lent to closed and boundedness in infinite dimensional Hilbert spaces. 
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Near the end of Chapter I is a brief review of the most basic 

fundamental mathematical facts concerning linear spaces, inner pro-

ducts and norms a$ functions, Euclidean n~space En, and hyperplanes. 

For this part of Chapter I and the remainder of the paper, it is assumed 

that the reader has a background of functional analysis or of convexity 

as treated in,Parts I and II of Valentine's book [36]. Much of the 

terminology and notation is from his book and is standard. However, 

in particular, attention should be called to the usage of H+ and H"'.' 

where His a hyperplane. Precisely these are defined as follows: 

+ H = {x : f(x) > O} 

and 

· H- = {x : f(x) < O}. 

The figures in the text are drawn as two or three dimensional 

and are supplied to guide the intuition and to provide insight in the 

nature of the corresponding problem in the plane or in space. However, 

these figures c;1.re not parts of the proofs and can be omitted as. far as 

the logic of proof is concerned. 

I wish to thank Loretta Beckham for typing the manuscript. My 

wife, Eloise, and daughters,. Sharon and Pamela,. deserve a note of 

appreciation for the sa.crif:i,ces they have made that I might attend 

graduate school. I am especially indebted to· Professor E. K. 

McLachlan, without whose inspiration, encouragement and help this 

thesis would never have been accomplished, I also want to express 

appreciation to Professors John Jobe, W .. Ware Marsden, and. Robert 

T. Alciatore for serving as members of my advisory committee. 
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CHAPTER I 

INTRODUCTION 

For the simplest example of a set of constant width in the plane; 

consider a disc of diameter D where the distance between any pair of 

parallel tangent lines is D ( cf. Figure 1 -1). Any compact convex set 

in the plane with this property is a set of constant width. The term 

11 cons tant width" denotes the property of a set, that the distance between 

any pair of parallel tangent lines is constant. 

Figure 1-1. 
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Another possible viewpoint is to consider a pair of fixed parallel 

lines both of which are tangent to a disc. The disc can be rolled or 

rotated arbitrarily between these fixed parallel lines. It might seem 

plausible that the disc is the only such set with this property. However, 

this is not the case. Actually there are infinitely many plane sets whose 

width is constant and which therefore can be rolled or rotated between 

two fixed paraUel lines to which tht;iy remain tangent throughout. 

To illustrate this, consider the following set bounded by three 

arcs: Let the vertices x 0 , x 1, and x 2 of an equilateral triangle be 

centers of arcs of circles passing through the opposite two vertices and 

whose radii are s, the length of a side of the equilateral triangle (cf. 

Figure 1-2). Such a set is called a Reuleaux triangle, after Franz 

Reuleaux, the nineteenth century German engineer who first noted the 

constant width property of such a set. The distance between H0 and H 1 

is s for every pair of pc\,rallel tangent lines. 

Fig"Qre 1-2. 
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In a similar manner,· it is possible. to start with any regular 
-··· 

plane polygon with an odd number of sides and get a set of constant 

width. This set .is called a Reuleaux polygon. Figure 1-3 illustrates 

such a set where a regular pentagon is the basis for the construction, 

'Xo 

Figure 1-3. 

Michael Goldberg prefers the term Reuleaux rotor instead of 

Reuleaux polygon. He prefers this first of all because a Reuleaux 

polygon is not a polygon; and secondly, he notes that the other name 

fails to emphasize the property of freely rolling or rotating between 

two fixed parallel tangent lines. 

An interesting variation of the Reuleaux triangle is the following: 

Again start with an equilateral triangle with vertices x 0 , x 1, and x 2 , 

Denote the length of each side bys. With each vertex as center, draw 

an arc of radius p where p is greater than s and where the arc is inside 
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the corresponding angle (cf. Figure 1-4). Then with each vertex of 

the triangle as center draw an arc of radius p 1 = p - s within the angle 

formed by extending the sides of the triangle. The set bounded by these 

arcs is of constant width p + p1. 

Figure 1-4. 

In Figure 1-2 many tangent lines exist for the Reuleaux triangle 

at each of the boundary points x 0, x 1, and x 2 , Any such boundary 

point with this property is called a corner point. The aforementioned 

variation of the Reuleaux triangle that is illustrate:d in Figure 1-4 has 

no corner point. 

Any plane polygon of an odd number of sides can be used as the 

starting point for the construction of a plane set of constant width. For 

example in Figure 1-5, let x 0 , x 1, and x 2 be the vertices of any. 



triangle where the longest side has endpoints x 0 and x 1. With x 0 as 

center and llx0 -x 1 II, the length of the line segment x 0x 1 as radius, 

construct an arc from x 1 to x 3 . Next USie x 2 as center and llx2 -x3 !I 
as radius and draw an arc from x 3 to x 4 . Next with x 1 as center and 

II x4 -x1 II as radius, draw an arc from x 4 to x 5 . Similarly, using x 0 

and x 2 as centers, l!x5 -x0 1! and l!x6 -x2 11 as radii respectively, 

H, 

Figure 1- 5. 

finish the construction as; shown. The set bounded by these arcs is a 

set of constant width and has a corner point at x 1. The distance be

tween H 0 and H 1 is I lx2 -x3 11 + l!x2 -x6 II. This sum is equivalent to 

llx6 -x0 1! + !lx0 -x3 II which is equal to p 1 + p 2 . Notice that the dis

tance between any two parallel tangent lines is p 1 + Pz· 
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It is possible to begin with the same triangle as in Figure 1-5 

and construct a set of constant width without a corner point. To elim

inate the corner point, the first radius must be bigger than l!x0 -x 1 II, 
This is illustrated in Figure 1-6. Note these sets in Figure 1-5 and 

1-6 are not symmetric if the original triangle does not have a pair of 

sides of equal length. 

, 
' 

,. 
' "i.2. 

/ 
/ 

, 
/ , 

- -f~ - - L---..:...P ___ -::-

, , , 
/ , 

'lf.o 
/ 

Figure 1-6. 

P, 

A general method for constructing an unsymmetrical curve of 

constant width is called the star-polygon method. A convex polygon of 

an odd number of sides is taken for the basis of this constr1,1ction. 

From each vertex construct two adjacent diagonals omitting equally 



many vertices on the opposite sides of the two diagonals. These 

diagonals form a star-polygon. Then arcs are drawn using each of 

the vertices as a center and an appropriate radius. The method is 

illustrated in Figure 1-7 for the polygon with vertices x., 0 < i < 6. 
. . 1 - -

From x 0 draw diagonals to x 3 and x 4 and extend them outside 

the polygon. Similarly draw two diagonals from each vertex .. All 

7 

these diagonals form the star-polygon. With x 0 as center, draw an 

arc from y O to y 1 where the radius of the arc is greater than any of 

the diagonals of the star-polygon. Use x 4 as center and l!x4 -y1 11 as 

radius draw an arc fromy 1 toy2. Nextusex 1 as center and l!x 1-y2 11 

as radius, draw an arc from Yz to y 3 . Continue this same process all 

around the polygon, 

To show that the set bounded by the arcs is a set of constant 

width, let II y 7 -y O II = A, Let H 0 and H 1 be a pair of parallel tangent 

lines as shown in Figure 1-7. The distance between H 0 and H 1 is 

II z 0 -x2 II + !lx2 -z 1 II· By the equality of the radii of a circle, 

= A. 

In a similar manner, it can be shown that the distance between any two 

parallel tangent lines is A. 
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H,-~~~~--t:~==-----~----~ z, 

Figure 1-7. 
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If all the diagonals of the star-polygon have equal length, it is 

possible to construct a set of constant width which passes through the 

vertices of the polygon. In this situation each vertex is a corner point; 

This is shown in Figure 1-8. 

Figure 1-8. 

It is known that plane sets of constant width exist such that no 

parts of their boundaries are arcs of circles. To indicate such a set 

( cf. Figure 1-9), let C 1, c 2 , c 3 be three circles mutually tangent at 

x 0 , x 1, and x 2 . Any involute of the fig1.+re determined by the three 

arcs x 0x 1, x 1x 2 , and x 2x 0 is a curve of constant width. For proof and 

further discussion, see [ 6] and [ 34], 



\ I 
\ I 
' ~ ' , ' / ,.... _,;, 

..... ,..._ ; . ,-' ____ ...... 

Figure 1-9. 

I 

I 
I ,. 
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As might be expected, there are three-dimensional objects of 

constant width. The sphere is one example. Any two parallel planes 

tangent to the sphere are a constant distance apart. If a pair of 

parallel tangent planes is fixed, the sphere can be rolled or rotated 

arbitrarily and always remains tangent to these planes. 

The simplest example of a nonspherical solid of constant width 

is obtained by rotating a Reuleaux triangle about one of its axes of 

symmetry (cf. Figure 1-10). This object when viewed from an axis 

of symmetry appears like a circle, and when observed perpendicular to 

an axis, has the characteristic shape of a Reuleaux triangle. 

A regular tetrahedron can be used to form a set of constant 

width, A spherical cap is placed on each face of the tetrahedron. 

Each spherical cap has the opposite vertex as center and a radius 

Figure 1-10. 
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equal to an edge of length s of the tetrahedron. Consider the trihedral 

angle determined by x 0 (d. Figure 1-11) and the three edges emanating 

from x 0 . Remove from the spherical cap on x 1x 2x 3 any part not con-

tained in this trihedral angle. This is repeated using each vertex x. 
1 

and the corresponding trihedral angle determined by x., l < i < 3 and 
l - ·-

three edges emanating from x., 
l 

Figure 1-11 shows a cross secbon T of the spherical cap on 

x 1x 2x 3 formed by arc c and edge x 1x 2 . This cross section was formed 

when a part of the spherical cap was removed by the trihedral angle 

with vertex x 0 . Another cross section T 1 on edge x 1x 2 and congruent 

to T is formed when the spherical cap on x 2x 1x 0 is cut by the trihedral 

angle with vertex x 3 . Rotate c about edge x 1x 2 through an appropriate 

angle so that at the end of the rotation c matches the corresponding 

curve on T 1 • 

When this is done at each edge, the set bounded by the parts of 

the spherical caps remaining and these rotations of an arc at each edge 

Figure 1-11. 
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is a set of constant width. This process is the three-dimensional 

analogue of the process used in the plane as illustrated in Figure 1-·4. 

All the examples of sets of constant width so far are in. E 2 o:r 

But the discussion of sets of constant width fits naturally in E . 
n 

Euclidean space, En' is a real 1inear space where the vectors 

x = (x 1, , .. , xn) are the real n-tuples. Addition and scalar multipli

cation are componentwise. There is an inner product 

n 

(x, y) = I xiyi 

i= 1 

defined for each pair of vectors x and y of E., and there is a norm 
n 

defined for each vector x in E . 
n 

It is easy to note that the inner product has the following 

properties: 

1. Linearity: 

(x+y, z) = (x, z) + (y, z), for x, y, z e E . , 
n 

(a.x,y) = a.(x,y), 

2. Symmetry: 

(x,y) = (y,x), 

3. Positivity: 

for x, ye E., a. e R. 
n 

for x, ye E . 
n 

(x, x) > 0, if x # (/) where (/) represents the origin. 

Using the linearity property of inner product and the property of the 

additive zero in a linear space, one can show (r/J, x) = 0 for any x e E . 
n 
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F-u,rthermore, it is also easy to observe that the norm has the 

following properties: 

1. Triangle inequality: 

II x+y II < II x 11 + 11 YI I, 
2. Absolute homogeneity: 

II ax II :;: f a I 11 x 11 • 

3. II x 11 :?:. 0 • 

4. II x II -1- 0 if x -1- (I.I. 

The distance between x and y is 

l!x-yjJ = 

n 

~ (x.-y./ L..J 1 1 

i= 1 

Thus II x IJ represents the distance between the origin, (I.I, and x, 

A topology ir;, defined for E in terms of the norm. An open set 
n 

in E is a set S such that if a E S, then there exists 
n 

contained in S. 

N(a, r) :;: {x: !Ix-all < r} 

With this topology, E is complete in the sense that 
n 

each Cauchy sequence in E has a limit in E . Thus, in summary, E n n n 

is a complete, normed, finite dimensional linear topological inner 

product space. 

In the plane E 2 , the tangent lines played a role in observing that 

a set had constant width. Similarly, in E 3 , tangent planes were used, 

The appropriate gemeralization of these ideas to En is the supporting 

hyperplane. That is, in any linear space, a hyperplane His a translate 

of a maximal proper subspace. Thus in E 2 and E 3 hyperplanes are 
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lines and planes, respectively, 

For any hyperplane H, there exists a non-trivial real linear 

functional f and a real scalar a. such that H = {x: f(x) = a} . Conversely, 

any such linear functional f defines a hyperplane. The inner product 

(x, u) for some fixed u which is not the origin is a linear function of x, 

and (u, u) > 0 implies that the function is not identically zero. In fact_ 

if f is linear in· E. , then there is a fixed u such that f(x) = (x, u) for all 
n i 

x e E (cf. [35], Thro 4, 8lc, page ?45). 
n 

Therefore in E., hyperplanes can always be represented using 
n 

the inner product, The set {x: f(x) = a} is sometimes abbreviated to 

[f : al. 

Two hyperplanes H 0 and H 1 are parallel if one is a non-trivial 

translate of the other. This means either H 0 = x 0 + H 1 or H 1 = Yo + H 0 

where neither x 0 nor y O is the originf The distance between parallel 

hyperplanes H 0 and H 1 is 

..• 
' A hyperplane H = [f :a] bounds a set A if f(A) > a\\or f(A) < d• 

- \: - I 

where f(A) = { f(x) : x e A}. The hyperplane H is said to support the 

set A if A contains at least one point of A and H bounds A. 

In the preceding examples, the 11 tangent lines" eac:;h contained 

only one point of the set, and the entire set was situated on one side of 

each 11 tangent line. 11 Strictly speaking these 11 tangent lines" should be 

called lines of support. As a matter of fact, most of the lines of 

support at a corner point of a set of constant width are not tangent 

lines. 
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· In. E 2 , p(H 1, H 2 ) is simply the perpendicular distance between 

parallel lines of support. 

In the examples the sets that were of constant width were all 

convex and compact. Thus, it is natural to make the following defini-

tion: 

Definition 1-1. A compact convex set S in E · is of constant 
n 

width if every pair of parallel support hyperplanes are the same d.is -

tance apart. 

The first published account of sets of constant width that were 

not discs was in 1778 by Euler. Since then many mathematicians have 

studied and contributed to the theory of sets of constant width~ Among 

these mathematicians in the earlier developments we find Reuleaux, 

Minkowski, Meissner, Blaschke, Lebesque, and Schilling. In more 

recent times Chakerian, Besicovitch, Eggleston, Cooke,. Bonnesen, 

Fenchel, Hammer and Melzak have written and published artic;les on· 

sets of constant width. 



CHAPTER II 

COMPLETE SETS 

A bounded set is complete if the diameter of the set is increased 

whenever any point is adjoined to the set. 

Consider the disc Kin E 2 (cf. Figure 2-1). The diameter of 

K U {xo} is greater than the diameter of K for any point x0 i K, 

Therefore K is complete as well as a set of constant width, 

'X.o 

Figure 2., 1. 

For the set M, y0 can be adjoined to M, and it is true that there 

are two points in M whoi:; e distance apart is greater than any distance 

from y O to any point in M. So the set M is not complete, and neither 

is it a set of constant width. 

17 
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Ernst Meissner, a Swiss mathematician, first introduced the 

idea of a set being complete. A close relationship exists between com-

plete sets and sets of constant width. A part of this relationship ii:; 

stated in the following theorem: 

Theorem 2-1: .(\ set X in E is of constant width >.. only if X is 
n 

complete and of diameter >... 

Since the proof is long it is divided into lemmas, One of these 

is Lemma 2-3 which is very useful in itself and is used repeatedly 

elsewhere. 

Lemma 2-1: If the set.Xis compact, there are two points x,y 

in x so that !Ix - YII = D(X), the diameter of x. 

Proof: The diameter of X ii; defined as follows: 

D(X) = sup {llx-yjj :x,ye X} 

Since X is a bounded set, D(X) is finite, Using the properties of the 

supremum, there are two sequences {x } and { y } of points in X so · n n 

that 

lim II x - y II = D (X), n n 

If the sequence {x } is an infinite set, the boundedness of X implies 
n 

{xn} has an accumulation point x,which belongs to X since X is closed. 

If, however, { x } is a finite set, then some element must be repeated 
n . 

infinitely often. For simplicity, this element can also be denoted by x. 

Notice again in this catSe that x is an element of X. In both cases, a 

subsequence, {x'n}, of {xn} can be selected for which 

lim ·x• = x. 
n 

n-+m 



Similarly, there exists a subsequence, {y'n}, of {Yn} so that 

It follows that 

Um y' = y E X. 
n n-+c:o 

limllx' -y'II = D(X). n n n ...... co 

19 

It remains to show that llx - YII = D(X). For E > 0 there exist 

Nl and NZ such that llx~ - xii _:s. E/3 for n > Nl and IIY~ - YII < E/3 

for n > N 2• The statement 

lim 11 x' - y' 11 == D (X) 
n n n-c:o 

assures the existenc;e of N3 such that for n > N 3, 

D (X) - E / 3 < II x 1 - y' II < D (X) + E / 3 • 
n n 

Select N = max { N 1, N 2, N3 }, then for n > N, one gets 

D(X) - E/3 < llx~ - Y~II 

< E/3 + llx - 'yll + E/3. 

Thus, 

D(X) ~ E < llx - YII < D(X) 

for any E > 0, and hence D(X) :,: I /x - y 11. 

Lemma 2-2: There are two parallel support hyperplanes 

H- H~ of X at x and -y, respectively, so that the distance between x' y 

H- and H- is 
x y 

11~-YII = D(X) =\, 
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Proof: Let H- andH- be hyperplanes defined as follows: 
x y 

H- = {x {x-x, y-x) = O}, 
x 

·H- = {x: (x-y, x-y) = O}. 
y 

Clearly, 

x e H~ and y E H-. 
x y 

The positivity property of the inner product, 

shows that 

(H-)+ y E X = {x (x-x, y-x) > 0} . 

If we let XO E Hx' then 

Thus 

(xo, y) - (xo, x) - (x, y) + (x,.x) = o. 

Multiplying by two and adding two terms leads to 

Therefore, 

This can be interpreted as the Pythagorean relationship for the triangle 

whose vertices are x, y and x 0, where xis the vertex of the right angle 

and XO is an arbitrary point in Hx (cf. Figure 2-2). 

- + ...., 
It has already been shown that y E (H-) and x E H- . In order . x x 

to show that H- is a support hyperplc1,ne, it must now be shown that 
x 

(y-x, y-x) .c O for every y E x. An indirect method of proof will be 
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Figure 2-2. 

used here, that is, suppose 

(y-x, y-x) < o! ( 2-1) 

From the properties of the inner product we know 

(x-y, y-x) < o. 

Therefore, 

(y, y-x) < (x, y-i) < (y, y-x). (2-2) 

Let 

0 
(i, i-i) - (y, y-x) = 
(y' y-x) .- (y' y-x) 

= {x-y, i-i) 
(y-y, y-x) 

From (2-2), 0 < 6< 1. Since y and y are points in X, it follows from 

the convexity of X that 

z - o-:;; + ( 1 .,. o) y 

is a point of X. Then 



(z, y-x) = (oy+(l- o)y, y-x) 

= 6 (y - y, y ~ x) + (y, y ~ x) 

__ (x .- . v. r -x) - - -
(y - y, y - x) + (y, y - x) 

(y - y, y - ~) 

:,: (x - y, y - x) + (y, y - x) 

= (x, y - x) 

or 

(z - x, y .. x) = 0. 

Hence, z E H- (cf. Figure 2-3 ). x 

Figure 2-3. 

By the Pythagorean relationship 

Since llx - z II 2 > 0, then 
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An evaluation of 11 y - z 11 leads to the following: 

Therefore, 

II y - z 11 = 11 y - ( 6 Y + ( 1 - 6 ) y) 11 

= 11 (1 6 )y - ( 1 - 6) y) 11 

= 11 ( 1 - 6 HY - y) II 

= (1 - 6) IIY - YII 

< IIY-YII -

However, since y, ye X, it must be true that 

D(X) = IIY-xll ~ IIY-YII 

23 

(2-3) 

which contradicts (2-3). So (2-1) is false. Therefore, H- is a support 
x 

hyperplane of X at x, and by a similar argument H- is a support hyper
y 

plane of X at y. 

It will now be shown that 

H- = H~ + (x - y), 
x y 

that is, H- and H- are parallel hyperplanes. For any ye H-, 
x y y 

(y - y, x - y) = 0, 

Then 

(y + x - y, y - x) = (y - y, y - x) + (x, y - x) 

= (x, y - x), 

or 
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( (y - :x - y) - x, Y - x) = o. 

Hence 

y - x - y e Hi, 

and thus, 

H- ' H-. + (x - y). x __) y . 

Similarly, for any x e Hx, 

(x - x, y - x) ::i: 0, 

Then 

(x - x + y, x - y) = (x - x, y ~ x) + (y, x - y) 

= (y, x - y), 

or 

( (x - x + y) - y, x - y) = 0. 

This means x - x + y E H- or x E H-- + (x - y) and henc;e y y 

So H- is a translate of H- and these two hyperplanes are parallel. 
x y 

The distance between the hyperplanes H ..... and H-, 
x y 

p(H-, H-) ::i: inf { II x - y II : x e H-, y e H-}, 
x y x y 

is less than or equal to llx - ylj. Suppose there existx y e H 
O' 0 · x' 

Hy, respectively, such that 

(2-4) 

First, since x 0 e Hx and y O e Hy, it follows that 
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(xo, y - x) = (x, y - x) 

and 

(y O, x - y) = (y, x -y). 

Therefore, 

(xO - Yo• Y - x) = (x - y, y - x) {2-S) 

which is equivalent to 

(x0 - Yo - x + y, y - x) = o. (2-6) 

From (2-4) we have 

which implies 

(2-7) 

By (2;..5) the right half of (2-7) is equal to (x0 - y 0, x - y). Therefore, 

(2-8) 

Combining (2-6) with (2 .... 8) leads to 

(xo - y O - x + y, XO - y O - x + y) < 0, 

which is a contradiction of the positivity property of the inner product. 

So it must be true that 

p (H- ' H-) = II x - y II . x y 

But, 11 x - YI I = D(X). Since X i1;1 a set of constant width "-, 

p(H-, H-) = J\., Finally, D(X) = "-· 
x y 

Lemma 2 -3: For a.ny closed convex set K in En and y O i K 

there is a un.ique orthogonal projection x 0 e K of y O onto Kand 



H = {x : (x - x 0 , Yo - x 0 ) = 0} 
XO 

as a support hyperplane of K. 

Proof: The existence of x 0 is described in the lemma comes 

from the following important theorem :i.n functional analysis (cf. [11], 

Thm. 1. 12. 3, p. 94): 

Theorem 2-2: If Lis a Hilbert space, KC L, K is closed and 

convex and y O E L , then there exists a unique point x 0 E K such that 

/ly0 - x0 /I~ /ly0 - xi/ for every x e K. 
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The point x 0 , with the property stated in the theorem, is called 

the orthogonal projection of y O onto K. Since Euclidean space is one 

example of a Hilbert space, in E the theorem asserts the existence 
n 

of the orthogonal projection x 0 of y 0 onto K. 

It remains to show 

is a support hyperplane of K. Since (y O - x 0 , y O - x 0 ) > 0, then 

+ 
Yo e (H ) . 

XO 

(cf. Figure 2-4). We wish to show H bounds K, that is 
XO . 

(y - XO' Yo - xo) ~ 0 for every ye K. 

Suppose 

(y - XO' y O - xo) > 0 

for some y e K. This means y e (H ) + as shown in Figure 2-4. 
XO 

Let 

z = o (xo - y) + y = 6 XO + ( 1 - 6) y 

(2-9) 



where 

' Figure 2-4. 

(xO - y, Yo - y) 
8 = 

(xo - y, XO - y) 

It shall be shown that O < 8 < 1, and ~hus z is between y and x 0 . 

Inequa.lity (2-9) leads to the following: 

By adding -(x0, y) + (y, y) to (2-10) 1 

or 

(xo - y, XO - y) > (xo - y, Yo - y). 
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(2-10) 

This means that 8 < 1. Since y e K and x 0 is the orthogonal projection 
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of y 0, then 

( 2-11) 

Adding 

to (2-11) gives: 

or 

( y - y O' y O • XO) + ( y O - y' y O - Y) > O • (2-12) 

Since the real inner prod-uct is symmetric and since an interchange in 

signs in each argument leaves the outside sign positive, (2-12) can be 

rewritten as 

or 

Therefore, the numerator of 6, as well as the denominator, is also 

positive and O < 6 < 1. So by the convexity of K, z = 6 x 0 + ( 1 - 6) y 

is a point of K. By routine manipulation and sub1;1titution 

2 2 
11 Yo - z 11 + 11 xo - z 11 = (yo - Y - 6 (xo - y)' Yo - Y - 6 (xo - y) ) 

+ (x0 .., y ... 6 (x0 ., y), x 0 - y ·- 6 (x0 - y) ) 

= (yo -w, Yo -y) - 26(xo -Y,Yo -y) 

2 · 2 
+ 6 (Xo ·Y,Xo-y)+(l-6) (xo·Y,Xo·Y), 

(2-13) 

Let 

Ol = (xo - y' y O - y) 



and 

then -1 6 :;: al3 . Then (2-13) becomes 

(y O - y, y O - y) - 2 6a + 6213 + ( 1 - 6 )213 

or 

2 -1 -1 2 -1 
(YO - Y, YO - Y) - Z a 13 + 13 ( 1 - 2a j3 ) + 2 a f3 

which is equivalent to 

(y O - y, y O - y) + 13 - 2 a . 

Using the values for a and 13, yields 

(Yo - y, Yo - y) + (xo - y, XO - y) - 2(xo - y, Yo - y). 

Rewriting this in the form 

(Yo - Y, Yo - y) - (xo - Y, Yo - y) + (xo - Y, xo - y) - (xo - Y, Yo - y) 

results in 

which is equal to . 

Therefore 

(2-14) 

2 
Since O < 6 < 1, then z ,;/. x:0 and 11 x 0 - z 11 > 0. Hence, from (2-14), 

(2-15) 

However, since z E K, we see that 



which contradicts (2-15). Henc;:e (2-9) is false and H bounds K . 
. XO 
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Proof of Theorem 2-1: Lemmas 2-1 and 2-2 have shown that 

D(X) == X.. It remains only to show that X is complete. Suppose the 

contrary, Let y O be any point not in X and show 

By Lemma 2 .,3, there is x 0 E X such that 

for every x e X. Furthermore, 

is a support hyperplane of X. 

Let 

where 

(2-16) 

and let 
~ .. ,-r-- : 

(2-17) 

Then 

2 2 
== x. µ (xo - Yo· xo - Yo) 

2 . 
= x. , 

and hence llx0 - x' II == X. (cf. Figure 2-5). 
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Figure 2-5. 

It will now be shown that 

Let x 1 e H which means . 

for some x 2 e H . Then 
. . XO 
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or using (2-17) 

Therefore, 

which implies that 

To show inclu$ion the other way select x 3 so that 

Then 

or using (2-17) 

which means that 

Since 

it follows that 

Therefore, 

H :) {x; : (x, XO - y O ::: (x 1 , XO ..., yon . 

The distance between H and H is A. Since x 0 e H . , x 1 e H, 
XO XO 



it follows that 

p (H , H) ~ II x 0 - x' 11 = >.. · 
XO 
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To show that p(Hxo' H) = >.. suppose there exist y 1, y 2 where y 1 E Hxo' 

Y2 E Hand 

If Yz E H,. then 

where x 3 E H . Then 
XO 

(2-18) 

and therefore, the term 2>..µ (x0 - y 0, y 1 - x 3) is zero. Therefore, 

Since 

thus 

which is contrary to (2-18). 

II Y1 - y 211 > x. 

So the distance between H and H is >... 
x:o 
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The hyperplane H bounds the set X. Since, by definition of x 1 , 

and hence it follows that 

which implies that x 0 E H-. So it is necessary to show 

for aU y E X. 

Suppose, however, that 

for some y E X where y I x'. Using the inequalities 

it is possible to see that if 

QI ::: 

0 < QI < 1. Let 

(y-x',xo-Yo) 

(y - xo, xo - Yo) , 

z = QI XO + ( 1 - a) y 

= QI (xo "T y) + y . 

which is in X by the convexity of X (Gf, Figure 2-6), Using the 

definition of a, the following calculation: 

(2-19) 
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H 

Figure 2-6. 

shows that z e H. 

By using the properties of the inner product and subst~tuting 

for x 1 and a, 
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z = >..µ. (xo• XO - y 0) + >.. - >..µ. (x'' XO - Y 0) 

= >..µ. (xO' xo-Y 0) + >.. 2 - >..µ. (xO + >..µ.(xo-Y 0), xo- y 0) 

= 0 • 

Therefore, 

(2-20) 

Expanding (2-20) and multiplying by 2 l~ads to 

-2(xo, x') + 2(x 1, x: 1) - 2(x 1, z) = - 2(xo, z). (2-21) 

Adding (x0, x0 ) + (z, z) to both sides' of (2-2,1') results in 

which is equivalent to 

Since x 1 I z, 

which implies 

But x 0 and z ~re both in X and D(X) = >.. means 11 x 0 - z 11 ~ >... This 

contradiction implies (2-1 9) is false, Therefore, 



for every y .e X, and H is a hyperplane that bounds X. 

If x 1 e X, then H would be a supporting hyperplane for X. 

Suppose x' t X. It is impossible for any z, not x 1, to be in H (i X 

since I lxo - z 11 > x.. Therefore, H n x = o, and xis not a set of 

constant width X.. So x 1 must be in X, and H is a suppo:rting hyper• 

plane of X at x'. 
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Since y 0, x 0, and x' are on the same line with x 0 in between 

Yo and x', 

Since y O f:. x 0, II Yo - x 0 II > 0, and consequently, 

The pre·cecrling paragraphs sho.w 

D(X). < D ({ y 0} U X) 

for arw y O f. X. Hence X is complete. 



CHAPTER IlI 

PROPERTIES OF COMPLETE SETS 

Completeness of a set as defined in Chapte:r II is a very simple 

notion. However, it turns out that a complete set has m~ny significant 

properties, ;maki;ng compl~tenes s a powez-ful idea. 

It will be convenient to use the following notation. For any 

a e E , r e R, let 
n 

N(a, r) = {x: ll,c all 1< r}. 

D (a, :r ) = { x : II x - a II ~ r} , 

C ( a, r) = { x ; II x - a II = r} . 

In proving properties of complete sets, we will need the followF 

ing lemma: 

Lemma 3-1: For any bounded ~et S, D(S) = D(conv S). The 

symbol conv S rep:resent13 the convex hull of the ~et S. 

The proof is omitted since this is a well ~nown result in general 

convexity (cf. [14], Thm. 12, p. 23). 

A complete set has many remarkable p:rope:rties. Lemmas 3-2 

and 3 -3 express two such properties, The13e properties give some 

insight into the structure of~ <;:omplete set. 
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Lemma 3-2: If S if;! a complete set, then S is c;losed. 

Proof: If S is not closed there must be an accumulation point 

x 0 for the set S but x 0 {. S. The diameter D(S U{:x0} ) > 6 where 

6 = D(S). Thus, theI;"e is x 1 e S where llx1 - x 0 11 > o. Let 

Consider N(x0 , e /2). Since x 0 is an accumulation point of S, 

N(x0 , e/2)ns-/:- O. 

Sa let 

Xz e N(xo, e /2) n s. 

By the tdangle inequaJity 
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This inequality implies e + 6 < 6 + e I 2 which says e I 2 ~ 0, a contra-

diction. 

Lemma 3-3: If S is complete set, then S is convex. 

Proof: For any Eiet S, S ( conv S and by completeness 

S = conv S or D(S) < D(conv S). By Lemma 3-1, D(S) = D(conv S), so 

the only possibility is for S = conv S, Since conv Sis a convex set, it 

follows that S is convex. 

We will have need for the following uotation: 

S(X) ::; n {D(x.~r: x E :X}: 
'rhe next lemma further des cdbes i:i, complete set: in terms of n-

dimensional spheI;"es whose centers are point.s of the seL 
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Lemma 3-4: For any complete set X of diameter X., S(X) = X. 

Proof: If we select c:1,ny x 0 E X, then j jx0 - :,i;: 11 < X. for every 

x E :x;. This means x 0 e D(x, X.) for every x E X. Therefore, 

XO E n {D(x, X.) ! x E x} 

which proves X C S(X). 

Suppose S(X) (j_ X. This means there is at least one y E S(X) 

where y i X. Thus I y E D(x, X.) for every x E X. This implies 

D(X U {Y}) = D(X) 

which contradicts the hypothesis of completeness. 

In a complete set X, we find a generalized concept of convexity. 

In any convex set, the line segment determined by two points in the set 

is contained in the set. In a complete s e~ of diameter X., every arc of 

radius X. and joining any two points in the set is contained in the set, 

and by the convexity of the set, all points between the 1;1.rcs are in the 

set (cf. Figure 3-1). A set having this property is called >...~arc convex. -- ·,. 

In a 3-dimens iona! 1;1 et X, this condition implies that between any two 

points of X lies a football shaped region that is completely ~ontained 

in x. 

Lemma 3-5: If Xis complete and D(X)::;: X., then Xis X.-arc 

convex. 

Proof: Let x 1 and x 2 be any points of X. Then since D(X) = X., 

I lx 1 - x 2 / I ~X.. Fo:i:- simplicity let X. = 1. Consider any arc of radius 

one and with endpoints x 1 and x 2 , Without loss of generality, let the 
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Figure 3-L 

centel:' of the circle be the origin <I> (cf. Figure 3-2). 

Notice that 

X;::: n{D(x,X.):xEX}C D(xl,X.)flD(x2,X.):::: A. 

That is, x e A if and only if !Ix - x 1 11 .:S. 1 and !Ix - x 2 11 i 1. 

Let x 4 be in a,.rc x 1x 2 and show x 4 e X. This result seems 

intuitively obvious when looking at the Hgure. However, the problem 

is an n-dimensional problem, and therefore requires an analytic proof. 

Suppose x 4 i X. Then by completeness of X there if;il a point 

ye X so that llx4 - Yi!> 1. Since ye X CA, IIY -x1 11 ~1 and 

I I y - x 2 I I .:S. 1. Also, if x 4 i X then x 4 "f x 1 or x 2 . Hence it fo!Lows 

that O < a < 13 .:S. Tr /3 where a and 13 a11e as indicated in Figure 3-2. 
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\ 

Figure 3-2. 

The method of proof here is indirect and under the supposition 

x 4 ¢ X, / I x 4 - y 11 ~ 1 will be shoym to hold, which contradicts 

11 X4 - YI/ > 1. 

First, 11 y - x: 1 / I ~ 1 leads to the following: 

(y,y) - 2(x 1, y) < 0. 

Therefore, 

O < (y, y) < 2(x1, y). (3 -1) 
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Similarly, 

O < (y, y) < 2(x2 , y) (3-2) 

follows from II y - x 2 II ~ L 

Using the Gram-Schmidt orthogonalization processi let 

Recall that 

and 

Therefor~, 

and 

x' 3 

Furthermore, 

= l - 2 cos 2 13 + cos 2 13 

2 
= 1 - cor;; 13. 

Let 

Therefore, 



X3 

Then x4 is equal to 

l cos~ = Xz - xl /1 - 2 Ji . 2 
cos 13 - cos 13 

l ~ :;:: 
sin 13 Xz - sin 13 xl 

(cos a )x 1 + (sin a) x 3 or 

sin a 
sin 13 

(sin a )(cos @ ) 
Xz. - sin fS . Xl • 

Ne;xt the needed inequality 

s in 13 - sin a + s in ( a - 13 ) < 0 
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(3-3) 

(3-4) 

is established" This ineqµality is sh,own to hold for the; special r'3-nge 

of values O < a < 13 ~ TT/3 by the following argument: 

First cos (13 - a)~ 1 for any angles a and 13 and cos a> cos fS or 

cos a - cos 13 > 0 for O < a < 13 < rr/3. Thus, 

coa (13 - a) .:S 1 +cos£¥ - cos 13, 

cosl3 cos a +sinl3 sin a< 1 +cos a - cos 13, 

or 

sin 13 sin a < 1 + cos a - cos 13 - cos fl! cos 13. 

Factoring 

sin 13 sin a~ (1 + cos a)(l - cos 13) 

and multiplying by sip a > 0 giv~s 

sin 13 sin2 a< sin a (1 + cos a)(l - cos l3). 

Substituting for s i:p. 2 a gives 
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sin 13 (1 - cos 2 a)< sin a (1 + cos a)(l - cos j3),, 

or 

sin 13 (1 + cos a)(l - cos a) S, (1 + cos a)(l - cos j3)(sin a) 

or 

sinj3 (1 - cos a) <sin a (1- cosl3') 

after dividing by 1 + cos a. Then 

sin 13 - sin j3 cos a s_ sin a - sin a cos 13 

or 

sin j3 - sin a < sin j3 cos a - sin a cos 13 

which is 

s in j3 - s in a S, s in (f3 - a ) , 

sin 13 - s in a - sin (13 - a) < 0, 

or 

sin 13 - ,sin a+ sin (a - 13) < 0. 
' -

For a specific y, (x2, y) < (x1, y) or (x 1, y) < (:x2• y). If 

(x2, y) ~ (x 1, YL_ the following will show llx4 - y 11 < l. Observe 

Using (3-2), (3-,3), and (x4 ,x4 ) = 1, equation (3-·5) leads to 

(3-5) 

ll x4 -Yll 2 <.1+2 (x2 ,y)-2cosa(x1,y)-2 sin a (x y)+Z·sin~c,os@ (x.,y) 
sin 13 2' s1nrj3 1 



Using O < (x2 , y) ~ (x1, y), the quantity of (3~6) is not greater than 

l + s~ l3 [sin 13 - sin a+ sin a cos~ - cos a sin 13] (x 1, y) 

which is not greater than 

1 + si~ l3 [sin 13 - sin a+ sin (a - j3)] (x1, y). 

Therefore, using the inequalities sin 13 > 0, (x1, y) > 0, and 

(3 -4), the inequality II x 4 - y II < l follows. 

If (x 1, y) ~ (x2, y), then it follows that 
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sin a ( ) + 2 sin(l'cos !3 < 1+2(x1,y)-2cosa(x 1,y)-2 sinl3 x 2,y sinl3 (xl'y) 

< 1 + 2 [ sin 13 - sin 13 c~s a+ sin a cos ~ J (x 1, y) _ 2 sin a ( ) 
Sln l3 sin f3 Xz, y 

<l+ 2 [sinl3-sinf3cosa+sinacosf3-sina](x 1 ,y) 
sin f3 JI. 

< l + s i~ l3 [ sin 13 - sin a + sin (a - 13) ] (x 1, y), 

Again II x4 - y II < 1. So in either case, II x4 - y II < 1 which contra

dicts llx4 - y II > 1. 

Therefore the supposition x4 I X is false and x4 E X. Since 

x 4 was an arbitrary point in the arc, the lemma is proved, 

A convex body is a convex set which has at least one interior 

point. Every complete set, e:x;cept a trivial set, turns out to be a 

convex body. 
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Lemma 3-6: If Xis complete of diameter>.. and has at least two 

points, then X is a convex body. 

Proof: Let x 1,x2 be any two points of X, By Lemma 3-3. X ie1 

convex and hence x 3 =,(l/2)x 1 +(1/2)x2 is a point in X. Let 

and 

It will be shown that N(x3 , c) C :X, and therefore X has an interior 

point. 

Select an arbitrary point x 4 E N(x3 , c), If x4 is on line segment 

with endpoints xl' x 2 , then by convexity, x 4 E X, Ux4 i1:1 not on the 

line segment, consider the plane determined by x 1, x 2, and x 4 . In this 

plane let x 5, x 6 be centers of circles with radii >,,. and passing through 

xl"x2 as shown in Figure 3-3. By Lemma 3-5 and convexity, the set 

bounded by these arcs. which includes x 4 , is in :X. The;refore, 

N(x3 , c) C X. 

Figure 3-3. 
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The proof of Lemma 3-6 is somewhat intuitive sinGe it can be 

reduced to a problem in the plane. However, an analytic proof can be 

supplied. 

Lemma 3 - 7 states properties of a translate of a complete set, 

This may seem rather c;1.rtificial, but i,ts real signifi~ance will c1,ppear 

in the proof of Lemma 3-9. 

Lemma 3 - 7: If X is complete and hai;; diameter A, then 

X 1 = X + x - y is convex, complete and D(X 1) = A.. 

Proof: 

i) x 1 is convex. Let x 1, y 1 be in x 1 which means x 1 =x0 +x -y, 

x 2 ::c y O + x - y for some x 0 and y O e X. For O :::_ a :::_ 11 

a xl + (1 - a) Y1 = Q!Xo + a(x - y) + (1 - a )yo + (1 - a)(x - y) 

= Cl!XO + (1 - a)y0 + (a+ 1 - a}(X - y) 

= ax0 + ( 1 - ~) y O + x - y e x + x - y, 

·which shows x 1 is convex. 

ii) x 1 is complete. If x 1 is not complete, then there is sorr1e 

XO ef xl for which 

Then x 0 + y -x r/. X and by completeness of X, 

D( {x0 + y - x} U X) > >... 

This n1eans there is y O e X so that 
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i I (xo + Y - x) - Yo 11 > A 

or 

The point y O + x - y e x 1 and the statemeri-t 

contradict the hypothesis, 

iii) D(X 1) :;:: \.. For every x, y te X, II x - y 11 ~A., and there a:re 

two points x, y E x so that I Ix - YI I :;:: \.. Lei! Xz, Yz be any points in xl. 

Then x 2 = x 1 +x-y and Yz = y 1 +x-y for some x 1,y1 in X and 

This means D(X 1 ) ~ \., Since x, ye X, x + x - y and y + (x ~ y) are in 

x 1. Consequently, 

llx+x-y-(y+x-y)/1:;:: llx-yll;:: x., 

Combining this result with D(X 1) 5 \. leads to D(X 1) :;:: \.. 

The following definition.Si are introduced to be 'US ed in the next 

set of lemmasi: 

Bu = p(L 1, L 2 ) where L 1, L 2 are the parallel support 

hyperplanes perpendicular to u a:Q.d where llull:;:: 1, 

W - inf { B : u e E , 11 u 11 "' 1 } , u n 

W :::: sup { II x - y II ; x, y e X, x - y :;:: yl,l,, y e RL u 
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d = inf {W : u E E , !lull = l} . u n 

Lemma 3-8: If X is complete then for any arbitrary direction 

u there must be x, y E x so that llx -y II ;:: w u' 

Since X is a bounded set, the Wu is finite. Using the meaning 

of supremum, there are two sequences {x } and { y } consisting of n n 

points in X where for each n, x - y has direction u and n n · 

lim 
n- oo 

= w . u 

The sequence {x }, if it is an infinite set, must have an accum
n 

ulation point x by the boundedness of X. If it is a finite set, then some 

point is repeated infinitely often whkh can .also be denoted by x. ln 

either case, it is possible to select a subsequence {x' } of {x } so that 
r n n 

lim x' = x. 
n 

The vector x e X since X is closed. 

Similarly, there is a sequence { y' } so that .n 

Furthermore, 

lim y' = y E X. n 

lim llx'n - y'nll = Wu. 
n -oo 

Using these three limit statements, it wHl be shown that 

/Ix - YII = Wu. Fore > O there are three numbers Nll Nz, N3 so t;hat 

whenever n > N 1, 

/Ix' -xii< e/3 
.n 



whenever n > N2 , and 

whenever n > N3 . Let 

Then 

< llx'n - xii + llx "T YII + IIY - Y'nll 

< Ze /3 + 11 x - vi I -,-

whenever n > N. Therefore, 

but by definition 

Therefore, 

W -E < llx-yll, u 

llx - YII < w. 
u 

W - E < u Iii - YII < 

for every positive e and hence 

llx - YII = w. 
u 

w 
u 
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Lemma 3 -9: For a complete set X and x, y two points in X for 

which 11 x - y 11 = W ti,' there are parallel support hyperplanes H 1, Hz of 

X at x and y, ;respectively, 



Proof: Let X 1 = X t x -y. We shall first show that 

X n int xl :r: 0. 
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On the cont:ra:ry suppose p 1 E X n int x1. From fqnctional 

analysis 

int X 1 :r: int (X t x - y) 

= int X t x - y. 

Since pl E int X 1, 

P1 = P t x ,.. y 

for some p E int X, and 

Pl - p = x - y. (3-7) 

If p E int X, there must be N(p, e) C X for some e > 0. Define 

a real number 

6 = 

Let 

E /2 t IIP - P1 II 
IIP - p II . l 

and show x 0 e N(p, e) C X (cf. Figure 3-4), 

Subtracting p from Qoth .Iii id~s 9f.(3 ~·8J leads to 
. ,. "•"" 

40 - p = P1-p+6(p-pl) 

= ( 6 - 1 )(p - pl) 

or 

XO ., p 
e/2 

(p ., p 1) . = 
IIP-P11l 

Thus, 

(3-8) 
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II XO - P 11 :c e / 2 < e, 

and hence 

XO IE N(p, E) c x. 

The etatement 

(3-9) 

followe from (3-8), 

;Figure 3 -4. 

Since 6 > 1 it £ol1ows thcl,t 

(3-10) 

Then from (3-7) and (3-8), 

XO - p 1 ::: o (p - P 1) 

:: 6 (y .. x) 



means x 0 - p 1 has the same direction i;l.S y - x and. 

since x 0,p 1 e X. Therefore, from (3-9) and (3-10) IIP-Pi II< Wu 

but 

This contradiction shows X (] int x 1 = 0. 
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By Lemma 3-7 x 1 is convex, complete, D(X 1) = X.. and x 1 is 

a convex body by Lemma 3-6. Then core x 1 = int x 1 since x 1 is a 

convex body ( cf. Theorem 1. 16 in [ 36]). Since X I 0, core X 1 -f. 0, 

X n core x 1 = 0, there is a hyperplane H 1 separating X and x 1 (cf. 

Figure 3-5 and Th~orem Z. 7 in [36] ). 

The hyperplane H 1 is a support hyperplane for X and x 1 since. 

x e X fl X 1 .. A linear functional f, f 'f 0, and a real number a exists 

so that 

H 1 = {x: f(x) = a} . 

. ,Assign the value j3 to f(y - x). With loss of ~enerality assume 

f(X 1) ::: a. 

Let Hz = H 1 +y - x ancl. show that Hz is a support hyperplane 

for X. The point x e Hl' and so x+y - x:::: y is a point in H 2 . In fact, 

y e X fl H 2 . Let XO e X and X = X l t y - x. Then XO = x l + y - x for 

some x 1 e X. The value 

If H 2 = [ f: a+j3], then Hz would be a support hyperpl~ne of X. 



x, 

Figure 3-5. 

f(hz) = f(hl) + f(y - x) 

= a + 13 • 

H, 

So the hyperplane Hz C [f: a +13]. If x0 ~ [£: a+13], then 

f(xo) = a + 13 

= a + f(y - x) 

or 

f(x.o - y + x.) = a, 

Thus, 

which implies 
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Therefore, [ f: a + 13] C Hz. So Hz r:; [f: a+ 13] and H2 is a, support 

hyperplane for X. Sinc:e Hz was def!ned as a translate of H 1, the two 

are parallE:ll and satisfy the conclusion of the lemma. 

Lemma 3-10: Fo:r the complete set X, d = W. 

Proof: From the definitioni; of d at1.d W, d. < W. By Lemma 3-8 

for any direction u, there is a chord xy inX so that llx-yjj = Wu. 

From Lemma 3·~9 there are two parc1-1lel support hyperplanes H 1, H2 

of X at x, y, respectively, So 

;:,; w, 
u 

and this statement holds for every u. Therefore inf Wu> W, but 

inf W = d. The statement of the lemma follows from d > W and d ~ W 
u 

Lemma 3-11: If X is co:i:nplete, there are two points x 1, x 2 E X 

such that II XI - Xz II = d. 

Proof: By J..emma 3-8 fo;r each u.,. there are two points 
n 

x , y e X such that n n 

The set 

llx - Y 11 = w n n u 
n 

{W :uEE, llull=l} 
u n 

is bounded below by zero, and so inf {W } = d exist~. Hen~e there are 
u 

sequences {x }, {y} so that 
n n 

um II x - y 11 = d, n n n.- co 
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The sequence {xn} either has an accumulation p9int or some element 

repeated infinitely often. In either case, denote th~ element by x 1. 

Similarly {y } has suGh a point y 1. Select subsequences {x 1 }. {y 1 } n . n n 

for which 

lim x' = xl , 
n-i.. ro n 

lim yl = X2 , n n-+ a, 

and 

lim II x' - y' 11 = d. n n 

Both points x 1, x 2 are in X by the closure property of X. 

The following standard li:r;nit procedure shows I lx1 - x 2 II = d. 

For e > 0 ther~ exist three numbers N 1, N 2 , N 3 so that 

II x'n ~ x 1 II < e /3 

whenever n > N 1, 

II y'n - x2 II < e I 3 

whenever n > N2, and 

II xi - yi II - d I < e /3 n n 

whenever n > N3 . 

For n > N ;::: max { N 1, N 2, N 3} , 

< e /3 + (d + e /3) + e /3 

= d + E. 
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Also, 

d - E /3 < llx'n - y'nll 

< e/3 + llx1 - ;x:2 11 + e/3, 

which implies 

Combini;ng 

with 

gives 

I II x 1 - xz_ 11 - d I . <- e • 

Therefore, !lx1 -x2 11 :::d, 

Lemma 3-12: If Xis a complete set and xI, x 2 e X for which 

11 xl - x2 I I = d, then there are parallel support, hyperplanes, Hl.' Hz of 

X at xI, x 2, respectively, such tha.t :x:1 - x 2 is perpendiculai:. to H 1 and 

Bz· 

Proof:. By Lemma 3-9 there exist two parallel support hyper-

planes H1, H 2 of x-·at xp x 2 resp.eatively. S:uppose x 1 - x2 is not per

pendicular to H 1 or H 2. Then 

But this last statement is impossible. 
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Lemma 3 -13: If X is a complete set and has diameter >.., then 

for any x in the boundary of X, there is a point y in X for which 

llx-yl/ = }... 

Proof: Supposef<;>reverysetxe X, llx-x1 11 <>.., SinceXi:g 

bounded, let 

}.. 1 = sup { 11 x .. x 1 11 : x «; X} ~ >i... 

If X. 1 = X., there· is a sequence {x } of points in X such th<1-t 
n 

The sequence {xn} either has an accumulation point or some element 

is repeated infinitely often, In either case, denote the element by i'. 

By the closure of X, xis an element of X. One can 1;,elect a subse-

qu.ence {x' } of {x } so that 
n n 

and 

lim x' =· x 
n n -+ro 

lim 11:ic~ - x 1 11 = >i... 
n-+ ro 

For e > 0, there is N so thc;1.t 

A - e/2 < llx'n - x1 11 

whenever n > N, Thul:!, 

>i.. - e ~ 11 x - x 1 11 < A 
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for every e > 0 which means 11 ::,j: - x 1 II = X.. Howeverr it was assu.med 

. 11 ~ -· x 1 11 < X. for all x e X. Therefore, it follows that for all x e X, 

Now let e = (1 /2)(X. - X. 1 ) and consider. a point x 3 e N(x1, e)"-X (cf. 

Figure 3-6), For every x e X, 

II x - X3 II < llx-xlll + II x1 - "3 II -

< x. i + x. - A I 
- ·-y-

X. + X.' 
= 2 

which contradicts completeness of X; The:i:-efo:re, there is y e X such 

that II y - x 1 11 = x. • 

.. \ 

1 
\ 

Figure 3-6. 



CHAPTER IV 

A COMPLE'l'E SET IS A SET OF CONSTANT WIDTH 

We now further i;nvestigate the relationship of com:plete sets and 

sets of constant width. It sho1,1ld be noted that Theorem 4-1 is the con'"' 

verse of Theorem 2~1. Thus to$ether tll,ese theorems form a useful 

characterization of sets of constant width. 

Theorem 4-1: If X is complete and has diameter ~. then X is a 

set of' constant width"-· 

Proof: An indirect proof will be given, a:p.d it will be divided 

into two parts, 

( 1) There are parallel support hype:i;-plc;1,nes H 1, H 2 of X at 

x 1, x 2 of X, respectively, so that llx 1 - x 2 11 ;::: d, and x 1 ,.. x 2 is pe:r;

pendicular to both H 1 and H 2, (This is the same constant d as defined 

in Chapter III. ) 

(2) By Lemma 3-13, there is ye X such that lly-x1 II= X. 

since x 1 is a boundary point of X. The arc yx2 of a circle through y 

and x 2 with radius X. and in the plane determined by y, x 1, and x 2 has 

a point x 4 which is not in X. This will give us a contradiction to 

Lemma.3-5. 

Proof of ( 1): If X fa not of con(3tant width, there are two paraUel 

support hyperplanes P 1, P 2 of X so that 
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The value of d must be 11:!SS than A. since D(X) ::: >.... Therdore d < A. 

under the supposition that X is not of constant width. 

Lemma 3-11 a,.sserts the existence of two points x 1 , x 2 in X 

that l/x1 - x 2 I/ ::: d, and Lemma 3-:--12 shows that there are two parallel 

support hyperplanes H 1, H 2 of X at x 11 x 2 so that x 1 - ~ 2 is pe:rpendicu~ 

lar to H 1 and H 2 , 

Proof of (2): Consider the plane determined by x 1,x2 and y. 

Le:t (/) be the center of a circle through x 2 and y with radius A as shown 

in Figure 4-1. 

H, 

Figure 4-1. 
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Select the vector x 4 in arc yx2 and such that the line determined 

by 0 and x 4 is parallel to x 2 - x 1. It will be shown that x4 i X which 

will contradict Lemma 3,.. 5. 

First observe 

Select a so that 

which means ax4 e H 1. From this, a must equal 

If a ~ 0, 

(xl I Xz - Xl) 

(x4, Xz - Xl) 

which means x 4 ,/. X. H a > 0, 

or 

= 
(X l I Xz - Xl) 

)l.d 

a A 
-1 - 1 

= (x l' Xz - x l) A A d 

It will be shown that 
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which means x 4 ,_ X. First, 

so if 

then 

So assume 

( 4-1) 

By the triangle inequality, 

(4-2) 

If equality holds in (4-2), then the following relationshipij hold: 

From linear algebra, for 11x1 11 'I O and 11 x2 I I 'f 0, then 

if and only if xp x 2 are linearly dependent. $9 in this situation 
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then 

or 

(4-3) 

In particular, 

(x 1, y) > 0. (4 

Since 11 x 1 - y II = X. and II x 2 - y 11 :::_ >,., angle 13 is less than or equal to 

rr/3 (cf. Figure 4-2). Consequently, 

( 4-5) 

Figure 4-2. 
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> 0. 

By (4-4) o must be greater than 1. However, (4-5) implies 

and so 

which implies 

(x 1, x 1 -y) < O (4-6) 

smce 6 > L However, by (4-3) and (4-4), 

and (x 1, y) > 0 proves 

which means (x 1, x 1 -y) > 0, contradicting (4.,.6). Therefore, 

and this is equivalent to 

A < 11 xl 11 + d, 

Transposing d and squaring gives 
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or 

(4 .. 7) 

It is now possible to evaluate (X! 1, x 2 • :x; 1) in terms of }\. and d 

as follows: Write 

in the form 

which is equivalent to 

Therefore, 

(4-8) 

or 

Rewriting equation (4-8) leads to 

Therefor.e, 

[ 2 2 ] -1 ::;: 'X. - d - (x 1, x 1) ~ , 

Equation (4-7) implies 
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[ 2 2 . ] -1 [ 2 2 2] -1 A - d - (xl' x 1) 2 < A - d - (\ - d) . Z 

= <l(A - d). 

Therefore, 

and 

From this it follows that A - 11 a x 4 I I > d. Thus x 4 r/: X, a contradic

tion. Recall that the supposition X is not of constant width, thus 

leading to this contradiction. Therefore X being complete and of 

diameter A implies X ha1:1 constant width A, 

Meissner was the first one to recognize the close relationship 

of complete sets and sets of consta11t width as stated in Theorems 2-1 

and 4-1. This relationship, which is a charac;;terization of sets of 

constant width, can now be summarized in the following theorem: · 

Theorem 4-2: A set X in E is of constant width A if and only 
n 

· if X is complete and of diameter X.. 

Meissner proved the theorem for n = 2, ~ in 1911, but it was 

not until 1928 that Borge Jessen of Copenhagen proved the theorem 

for any integer n, The proof given here follows the outline of a proof 

sketched by Eggleston [ 14]. 



C;I-IAPTER V 

ENCLOSING SETS IN COMPLETE SETS 

In the plane it seems intuitively obvious th~t a set of diameter 

)\. could be contained in some set of const~nt width X.. In fact Pal was 

the first to prove this result in a paper published in 1920 [30], 

Lebesque proved the general result for arbitrary n in 1921 [ 24], In 

1922., for the case of the plane, Reinhardt gave a proof different from 

the one given by Pil [ 32]. 

Two proofs of the general theorem will be given here. The 

first but longer proof uses the Blaschke Convergence Theorem 

(Blaschke Selection Theorem). The second proof uses Zorn 1s Lemma. 

Let 

A = U D(a, r), 
P aeA 

0 < p' 

be called the parallel~ of A. If the distance between two :p,on-empty 

bour1ded sets A and B in a Minkowski space L 1 n 

d(A, B) = inf { p : A C B , B C A } , 
. p p 

then d defines a metric on the bounded sets in Ln. A sequence of 

c;onvex sets A, in a Minkowski space L is said to converge to a convex 
1 n 

set A if 

lim d(A., A) = 0. 
1 
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The Blaschke Convergence Theorem states: A uniformly bounded 

infinite collection of closed convex sets in a Minkowski space contains 

a sequence whic;h converges to a non-empty compact convex set (cf. 

[ 36] for a proof). 

Theorem 5-1: A set Min E of diameter X. is a subset of a 
------ _n 

complete set of diameter. X.. 

Proof: The i;;teps of the proof are as follows; 

(1) The diameter of Cl (M), the dosu.re of M, is D(M). 

(2) The set A(M) = {x : D( {x} U M) = D(M)} is closed. 

(3) If p(x,M) = inf { llx-mll :m EM}, then there is x E A(M) 

for which p(i, M) = p(M) = sup {p(x, M) : x E A(M)}. 

(4) There e::icists a comp!ete set M* such that MC M*, 

Proof of (1): Suppose X.' ;::: D(Cl M) > D(M) = X. and let 

E = A1 - A> o. 

There must be two points x, yin Cl M for wh:i,ch 

llx - yll > A1 - e/4 = X. + e - e/4 

= X.+3e/4. 

Both x and y cannot be elements of M. So let x be in Cl M \. M. Since 

xis a li~it point of M, there is a sequence {xn} of points in M an,d 

lim x = x. 
n ( 5-1) 



Since y is in Cl M, there exists m* in N(y. e /4) n M, Then 

using triangle inequality 

II x -m* 11 + 11 m* - YI I > 11 x - Y 11. 

But 

llx-yjj > >..'-e/4 

results in 

11 x - m * 11 > fr - E I 4 - 11 m * .. Y 11 

> >..' - e/4, .. e/4 

or 

11 x - m* 11 > >..' - e /2 = e + >.. - e /2 

= >.. + E /2. 

From(S-l)for e/2>0, therem-ustbeanNsothat llx -xii< e/2 
n 

whenever n > N. 

Then for n 0 greater than N, 

llx-m*II 

< e/2 + >... 

But this contradicts (5-2). 
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Hence for the theorem itsel(, let M be a c;losed set which does 

not affect its diameter. Since th~ diameter of M, >.. implies M is 

bounded, then it can be ass"Umed that Mis a compact set. 

Proof of (2): · Let A(M) :r { :x; : D({,c} UM) = D(M)}. Suppo::ie 

A(M) has an accumulatior:r point x which is not in A(M). Let 

>.. 1 = D( {x} U M) > D(M) = >.. and e = >.. 1 - >... Using the properties of 
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an accumulation point, there is a sequence {~n} of points in A(M) for 

which 

(cf. Figure 5-1) 

lim x = x 
n 

/ 
I 

., 

- I 11., 
I 
I 
I 

Figure 5-1. 

Using the compactness 0£ M and continuity of the norm function, there 

is an m>:< in M so that 

llx-m*II > X'-E/2 = X+E/2. (5-3) 

For e /2, an N exists so that 11 x - i"J J < e /2, whenever n > N. Select 
n 

x so that n 0 > N. Then 
no 

which contradicts ( 5-3). 
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Proof of (3): Define p(M) = sup {p(x, M): x e A(M)}. Since 

p(x, M) is bounded apove by X. for every x in A(M) 1 p(M) exists, Ther!l:)-· 

fore, for each positive integer n, the:re is c!,n xn so that 

p(x , M) > p(M) - 1/n, 
n 

The sequence {xn} is a bounded infinite set of points in A(M) or some 

point is repeated infinitely often. In either case a subsequence {x 1n} 

can be selected which for simplicity can be called the subsequence 

{xn} and such that 

lim x =x. 
n 

Now x belongs to A(M) since A(M) is closed (cf. Figure 5-2), 

.... __ .,, 

Figure 5-2. 

To show the equality of p(x, M) and p(M), suppose p(x, M) < p(M) 

and let p(M) - p(x,M) = e .. For e/2, there is N 1 so that llxn- xii< e/2 

whenever n > N 1. There also must be N 2 so that 

p(x, M) > p(M) - 1/n > p(M) - e/2 
n 
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whenever n > N2 . Let n 0 be greater than the maximum of N 1 and N 2, 

Therefore, 

and 

11 x - xii < E/2 no 

p(x ,M) > p(M) - E/2. 
no 

(5-4) 

The compactness of M assures the existence of a point m 0 in 

M for wh~ch 

llx - mo II ,:; p(x, M), 

Then 

But p (x, M) = p (M) - E and therefore 

llx -m0 ll<p(M)-E/2. no 

From the definition 

p(x , M) = inf {II x .,. m 11 ; m E M}, 
no . no 

p(x. , M) < p(M) - E/2, 
no 

contradicting (5-4), 

Proof of (4): If Mis not complete, select x 1 such that 

and 

p(x1, M) = sup { p(x, M) : D({x} UM) = D(M)}; 

By (3) such an x 1 exists. 
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If M is not complete, there is at least one x 0 e A(M) which is 

not in M. By the compactness of M, p(x0, M) is positive, The:r;efo:re, 

sup { p(x, M) : x E A(M)} is positive which implies that x 1 is not in M 

(cf. Figure 5-3). 

Let 

By ( 1) 

By Lemma 3-1 

Since D({x1} U M) = ~, it follows that D(M1) = >... 

I 

I 

I 
I 
I 
I 

- - - ---

Figure 5-3. 
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Observe that Mis a proper subset of M 1, and that M 1 is dosed 

and convex. In a similar manner if M 1 is not complete, select x 2r-not 

in M such that D({x2} U M) = D(M), and 

Then let 

The diameter if M 2 is X. and M 1 is a proper subset of M 2. The process 

is continued in this same manner. 

If this process does not enq afte!i ~initely :r;nany steps, there 

exists an infinite sequence {M) of cloi;;ed convex sets which is a 

properly increasing sequence and uniformly bounded. Therefore, by 

the Blaschke Selection Theorem, there is an infinite subsequence {M!} 
1 

from the sets in the sequence {M.} which converges to a compact 
1 

convex set M*. 

A new sequence {M'!} is now selected from the sequence {M'.}. 
1 1 

The first element M 11 is selected to be M 11. If M'l is contained in M2, 
then let M'z equal M'z· If M 11 is not contained in M 12 , there is an 

integer n 0 > 1 so that M 11 ii, contained in M'no· This must be true for 

if we suppose M 11 is not contained in M'n for every n > 1, then· M'n is 

contained in M'i for infinitely many values of n, which is not true. In 

this case let 

M" 2 

Continuing this process produces a subsequence {M'U which is a sub

sequence of {M'.} and hence also converges to M*. Fol;" simplicity 
1 

denote the new subsequence, {M'!} by {M.}. Observe that it is a 
1 l 
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properly increasing sequence of compact convex sets each of which has· 

diameter X.. 

Suppose there is a set M which ia not contained in M*. This 
no 

means the:re would be an x 0 in M but not in M* (cf. Figure (5-4). By 
. no 

the compactness of M*, there is m* in M* so tha,t 

Then from 

p(xo· M*) = 11:x;o - m* II = E > 0. 

lim d(M , M*) = 0, 
n 

there is an integer N so that :d(Mn~· M*) < EI 2 wheneve.r ;n >. N. · This 

means Mn C (M*) E 12 for n > N. If n 0 > N, then M C (M*) 12. 
n 0 E 

But this is impossible since p(x0 P M*} = E. If n 0 ~ N, then 

and there is the same difficulty. 

is contained in M*. 

The:refore, the entire sequence {M.} 
i 

Figure 5-4. 



78 

To prove that D(M>:c) = >.., observe that since M. C M* and 
l 

D(M.) = >.. for every i, the diameter of M* cannot be less thap "-· So 
l 

suppose D(M*) = >..' > >.. and let X.' ~ >.. = e. Then 

d(M., M*) = inf { p : M. C (M*) , (M*) C (M.) } 
l i p l p 

> e/3, 

which contradicts 

d(M., M~') = 0, 
l 

(cf. Figure 5-5). Therefore, D(M*) = >.. •. 

Suppose M* is not complete. Thus there must be y not in M* 

such that D({y} U M>.~) =>..(cf. Figure 5-3). Let 

6 = p ( y, M*) = inf { 11 y - m 11 ·· : m e , M*}. 

Since M* is compact, there is m* in· M* for which 11 y ~ m* 11 = 6. The 

pointy cannot be equal to m*, and therefore 6 is positive. 

Figure 5-5. 
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Consider the two points x., x. with j > i where x. and x. are the 
l J l J 

special points used to define M. and M.. Let 
l J 

p(M. 1) = p(x., M. 1) = sup {p(x, M. 1) D({x} U MJ. _ 1) = A}. 
J- J J- J-

Since 

D({y} U M. 1) = X., M. l CM., y i M., 
J- J- J J 

then 

for some x in M. (cf. Figure 5-6), 
J 

Because o = p(y,M>:<) ap.d all Mi are in M>:,, o < Jjy-x/j. 

From x. e M. 1, it follows that 
l J-

p(M. 1) < !Ix. - x. JI. 
J - J 1 

Therefore O < 6 ~ 11 xj - xi 11- But it is impossible to have infinitely 

many distinct points in a compact region of E , every two of which are 
n 

at least 6 distance apart where o is fixed and positive. Every infinite 

Figµre 5-6. 
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subset of a compact subset of E must have an accumulation point. 
n 

This contradiction shows that M>!< is complete. In fact, M'~ is a com-

plete set of diameter X. of which Mis a subset. 

The second proof of Theorem 5-1 makes use of Zorn 1s Lem.ma 

which states that every non-empty p;;i.rtially ordered family ~ in which 

every linearly ordered subset has an upper bound in 18 must have a 

maximal element, 

Let 

= {F.: MC F., D(F.) = X.}. 
1 l l 

This family is non-empty since M Js a member. Set inclusion partially 

orders 18. 

Let the set { F : a E A} represent a linearly ordered subset 
Q! 

ffii of ta. Set 

F = U 
Q!E A 

F 
Q! 

The set Mis contained in F since Mis in F for every a. Let x. and 
Q! l 

x, be points in F where 
J 

implies /I xi - xj I/ ~ A • 

i~j. Thenx.andx.areinF.andD(F.)= °A. 
l. J J J 

This means that D(F) = X. and that F is an 

upper bound of 18 1 and F is in '8. 

Therefore, by Zorn 1 s Lemma, there is a maximal element M>!< 

. in !B • 

Suppose M* is not complete. Thus there must be x 0 not in M~' 

such that D({x 0} U M>!<) = X.. Since M,:, is in '8, Mis in M,:, and so M 

is in {x0 } UM,:,. Therefore the set {x0 } U M,:, is an element in the 

family 18. But M,:, is properly contained in {x0} U M,:, which contra.

diets the maximality property of M,:,. Therefore, M,:, is complete and 

satisfies the requirements of the theorem. 



CHAPTER VI 

OTHER PROPER TIES OF SE TS OF CONS TANT WIDTH 

There are other ways of characterizing sets of constant width 

b1esides noting that they are complete sets, A second characterization 

will be given in terms of boundary points. The following theorem 

summarizes this characterization: 

Theorem 6- 1: A set K is of constant width X. if and only if K 

is closed, convex with diameter X. and such that for each boundary 

point~ of K there is a y in K whose distance from xb is X.. 

Proof: The "only if'' portion foLlows from Lemma 3-13, hence 

it remains only to prove the "if" portion. 

To prove this, by Theorem 4-2 it is sufficient to show that K 

is a complete set. Let p be an arbitrary point not in K. Let x: 1 be 

the orthogonal projection of p onto K. This means x 1 is in K, and 

( 6 -1) 

for every x in K (cf. Figure 6~1). 

If K is equal to the bound;uy of K, then x 1 is a boundary point. 

Suppose that K is not equal to the boundary of K. Then it will be shown 

that x 1 is a boundary point. Thus suppose that x 1 is an interior point 

of K. This means there is an open set N(x 1 ,e) in K for some value 

of e. Then there is y in the relative interior of the line segment x 1 p 
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such that y is in N(x 1, e) for which IJ p - y I J < 11 p - x 1 II, contradicting 

(6-1 ). Therefore, x 1 is a boundary point of K. By the hypothesis 

there is x 2 e K so that JJx 1-x2 11 = X.. From Lemma 2-3, 

is a support hyperplane for K and separates K from point p. 

H 

p 

Figure 6-1. 

Two cases are considered here. First, if x 2 is in H, thep 

using the Pythagorean relationship, / J x 1 - x 2 / j = X. and j / p - x 1 11 1 0 

results in J / p ·- x 2 / j > X. which means that K is complete 

The second case :i.s for x 2 not in H. Let 
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QI :;: 

From the definition of H, 

By adding 

the inequality 

(p-xl,p-xl) 

(xz - p, xl - p) 

results, and thus QI is positive. Rewrite 

in the form 

To this inequali.ty add 

and get 

Therefore 

and a < 1. Let 

To see that x 0 E H, observe that 
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= 0. 

This shows that x 0 is in H. Therefore, 

But 

or 

and 

Therefore, 

= :>.... 

So for any p not in K, the diameter of ({p} U K) is greater than D(K) 

which means that K is complete and therefore of constant width. This 

finishes the proof of Theorem 6-1. 

If Xis a convex set and ;fl is a support hyperplane of X at some 

point x 0 , then a vector u # (b orthogonal to Hat x 0 is called a normal 

of the set X at x 0 . The line containing x 0 and determined by the 



. vector u is called the normal line of the set X at x 0 , If the normal 

line of the set X determined by a normal u contains two boundary 

85 

points of X at which parallel support hyperplanes qf X exist and such 

that u is orthogc,mal to theE>e hyperplanes, then u is called a double 

normal of X. 

If the set X is a set of constant width X... then every normal is a 

double normal. For by Lemmas 3-8 a.nq. 3.., 9, if u is an arbitrary 

direction, then there are two points x and yin X for which 

llx-yj) = w = sup { llx-yll :x;, y E x, x-y = au, a 1- O}, 
u 

and there are two parallel support hyperplanes Ht' Hz of X at x, y, 

respectively. If x - y is not orthogonal to H 1 a,nd Hz, then II x - y II > X., 

a contradiction of D(X) = X.. Therefore, x - y is a double normal of X 

for direction u. 

Suppose there is another normal line of X at x 0 in the direction 

of u. If XO Ex n HI' then llxo-YII > x., which is contrary to D(X) = x.. 

A similar statement can be made if x 0 e X n Hz. Therefore, the 

vector x - y determines the only normal line for direction u. 

It is also immediate that each hyperplane of support of a set X 

of constant width contains exactly one point of X, If two points of X 

were in a support hyperplane, then two normal lines of X would be 

determined for the same direc;:tion~ contradicting the preceding result, 

The family of sets of constant width is closed under Minkowski 

addition; that is, if X and Y are two sets of constant width X. and p, 

respectively, the Minkowski sum, 

X + Y = {x + y : x E X, y E Y}, 
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has the constant width X. t p, This theorem follows easily from the 

lemmas derived in Chapter II~. 

Theorem 6-2: If X ~nd Y have constant width X. and p, respec-

tively, then X + Y has constant width X. + p, 

Proof: Let u be any direction in E such that 11 u II = 1. Then n 

there are two points x 0,x 1 in X, two points y 0 , y 1 in Y so that 

x 0 - x 1 = x.u, and y O - y 1 = pu. In addition, 

H 0 = {x : (x-x0, X. u) = O}, 

H 1 = {x: (x-x1, X.u) = O} 

are parallel support hyperplanes of X, and 

L 0 = {x : (x-y O' pu) = O}, 

L 1 = {x: (:x;-y 1, pu) = O} 

.are parallel support hyperplanes of Y (cf, Figure 6-2). 

Let 

First of all, 

x 0 + y O e M 0 n (x + Y). 

Next, let x + y be any point in X + Y where x e X and y e Y .. Since 

x e X then (x - x 0 , u) < 0 and y e Y impltes (y - y 0, u) .:s_ 0, Adding 

these two inequalities. results in 
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Figure 6.Z. 

which implies that M 0 bounds the set X + Y. This combined with 

x 0 +y0 e M 0 implies that M 0 is a-support hyperplane of X + Y. Similarly, 

one can show that 

is a support hyperplane of X + Y and that M 0 and M 1 are parallel by 

showing one is a translate of the other. 

To find the distance between. Mo and M 1, recall that 

XO + y O e Mo (J X + Y, 
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and that 

is a double normal of X + Y with respect to M 0 and M 1. Then 

Therefore, 

Since u was arbitrarily chosen, X + Y is a set of constant width \ + p. 

Using the same techniques one can show that if X is a set of 

constant width >.., then 6X has constant width I & IX. where 6 il;i a real 

number different from zero. 

Before proceeding to the next chal;'acterization, a lemma 

needed in its prciof is inserted here. 

Lemma 6-1: If a is in C(cp, r)::; {x: llxll = :r} then 

H 0 = {x: (x - a, a) = O} is a support hyperplane for D(cp, r), 

Proof: Since a is in H0 and cp is in H~~ Iio will be a support 

hyperplane of D( cp, r) if it can be ahown that (x 1 - a, a) < 0 for all x 1 

in D(cp, r). 

Let x 1 be in D(cp, r) and so !lx1 II ;:S_ r (cf. Figure 6-3). Suppose 

2 
(x 1 -a, a) > 0. Then (x 1, a) > (a, a) = r From this it follows that 

-2(x 1,a) < -2r 2. Adding llx1 11 2 < ~2 and llall 2 = r 2 leads to 

or 
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Figure 6-3. 

a contradiction of the positivity property of the norm function. There-

fore, H 0 is a support hyperplane 0£ D( <p, r). 

The following theorem is another characterization of sets of 

constant width. 

Theorem 6-3: A necessary and sufficient condition for a set 

K to be a body of constant width X. is for K - K to be a spherical ball 

of radius X.. 

Proof: First let K be a body of constant width X.. By the two 

previous theorems K - K is a set of constant width 2X.. For each u, 

there are two points x 0, x 1 in K such t:P,at 11 ~ 0 - x 1 11 :;: X., Observe that 

x 0 - x 1 is a point in K - K. Therefore, for each direction u, there 

exists a point in K - K whose distance from the origin is exactly X.. 

Let x 2 be in Kand Yz in (-l)K, For Yz to be in (-l)K means 
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there is y3 in K so that Yz = -y3 and x 2 + y 2 is in K - K. Then 

andx2,y3 bothinKimply lix2-y3 Jj _:s>-... Therefore, K -Kis spherical 

ball of radius >-... 

Suppose that K - K is ~ spherical ball of radius X.. Let qi be the 

center of K ~Kand select u e E so that !lull = 1. Since Jj>-..ull ::: X., 
n 

:\.u is in the boundary of K - K (cf. Figure 6-4). But X.u in K ~ K means 

Ho 

H, 

Figure 6-4. 



that X.u = x 0+y0 for some x 0 in·K and y 0 in (-K) or y 0 = -x 1 for some 

x 1 in K. So X.u = x 0 -x 1 and 11>..ull = X. implies l!x0-x1 II= X.. 

By Lemma 6-1, 

H 0 = {x : (x - (x0 + y 0), u) = 0} 

is a support hyperplane for K - K. Let 

H 1 = {x : (x - x 0, u) = O}. 

Select an arbitrary y in K. Then y + y O is in K - K and 

(y + y O - (xo + y 0). u) = (y - XO' u) < 0. 

Thus,. H 1 is a support hyperplane of K. Similarly, 

Hz = {x : (x - x 1, u) = O} 
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is parallel to H 1 and is a support hyperplane of K. The vector x 0 - x 1 

is perpendicular to H 1 and Hz, j jx0 -x1 11 = X., and therefore 

p (H 1, Hz) = X.. Since u was an arbitrary direction, the set K is of 

constant width X.. 



CHAPTER VII 

ORTHOGONAL PROJECTIONS 

For any set X, let H be an arbitrary hyperplane in En and 

select a direction v perpendicular to H. Now consider the collection 

of points X(H) ::: {x + X.v : x e X, X. e R such that x + X.v e ;H}. The set 

X(H) will be called the orthogonal projection of X on the hyperplane H. 
I . ' 

Consider the following question: What can be said about the 

orthogonal projections of a set of constant width? Hermann, Minkowski, 

a Polish mathematician, was the first to observe the following property: 

Theorem 7-1: If X is a set of constant width X., then any 

orthogonal projection of X is a set of constant width X., 

Proof: Let H0 be any hyperplane in E and such that the origin . n 

is in H 0 . In this case H 0 is a subspace. Select u in H0 such that 

!lull.= 1 (cf. Figure 7-1). Take u' such that llu' 11 = 1, (u,u') = 0, 

and (x, u') = 0 for every x in H0 • In fact, u' is perpendicular to H0 and 

For the direction u, there are two points x, yin X for which x - y = X.u, 

two parallel support hyperplanes H 1, Hz of X at x, y respectively; x -y 

is perpendicular to H 1 and H 2, and p(H1, Bz) = X.. It is also known that 

H 1 = {x (x - x, u) z: O}, 
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and 

~ ,-·- -...... ., ' , ' 
x -- - -- - --

I 

(" 

.. 
Figure 7-1. 

H 2 = {x : (x - y, u) = O}. 

Select 13 = -(x, u' ). Then 

(x + 13 u', u') = (x - (x, u') u', u') 

= (x, u') - (x, u 1)(u 1, u') = 0 .. 
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Therefore, x + j3 u' is in H 0 . Also observe that 

(i'.+ j3u', u) = j3 (u',u) = 0 

which implies x + j3u' is in H 1. Similarly, for a= -(y, u'), the point 

y + au' E Ho n Hz· 
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The hyperplane H0 can be written as x + [3u' + L 0 where L 0 is 

some subspace. Also H 1 = :x: + j3u' + L 1 where L 1 is some subspace. 

At this point define H0 l = H0 (') H 1, It follows that 

Since L 0 n L 1 is a subspace, H 01 is a translate of a subspace. 

From the equation 

it follows that dim (L0 (') L 1) = n - 2 since L 0 and L 1 are (n-1)-dimen

sional and L 0 + L 1 is n-dimensional. Therefore, H01 is a hyperplane 

in H0 and we can write 

Ho l = {x e Ho (x - x, u) = O}. 

From 

(y + au' - x, u) = (y - :x;, u) + a(u 1, u) 

= (y ~ x, u) 

= - x.(u, u) 

< 0, 

observe that y + au' e H~ 1. Let x 1 be in X then x 1 + ou' e H 0 for 



o = -(x 1, u 1). Then 

(xl + ou' - x, u) = (xl - ~. u) + o(u'. u) 

< 0 

since x 1 e X ~nd X C H1 U H 1. Therefore, 

(x 1 + 6u 1 - x, u) < O 

and x + j3u' e H 01 means that H 01 is a support hyperplane for X(H0 ). 

Similarly, define H 02 = Ho (") H 2 and show that 

and is a support hyperplane for X(H0 ). 

It can be shown that H 01 is parallel to H 02 by showing 

8 02 = y - x + HO l' 

Let Xoz be any element in Hoz. Consider 

(x - y, Xoz- y +au')= (AU, Xoz- y) t (Au,au') = 0. 

This implies x - y is perpendicular to H 02 and similarly, x - y is 

perpendicular to H 01 , But 

x + i3u' - y - au' = x - y 

and 

II x + j3u' - y - au' II = A, 
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So H 01 , H 02 are parallel support hyperplanes of X(H0 ). Furthermore, 

p(Ho1•Hoz) = A. 



Since u was an arbitrary unit vector in H0 , X(H0 ) is a set of 

constant width A.. 

Lemma 7-1. If x, y are nontrivial vec;tors in En, there is a 

vector z E E such that (x, z) = (y, z) = 0 if and only if n > 3 or x = \y 
n -

when n = 2. 

Proof: The conditions (x, z) = 0 and (y, z) = 0 imply that 

If 

- (· X l Xz • • • Xn. ) A - ' 
Y1 Y2 •.. yn 
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then there is a nontrivial solution if and only if n - p(A) > 0 where p(A) 

is the rank of the matrix A. If n > 3, there is a nontrivial solution z. 

If n = 2, n - p(A) > 0 if and only if p(A) = 1. From p(A) = 1 it follows 

that x = A.Y· 

This lemma will be now used in proving the following theorem 

which is the converse of the preceding theorem. 

Theorem 7·-2: If Xis a closed bounded convex body such that 

each orthogonal projection of X is a set of constant width, then Xis a 

set of constant width, 

Proof: In any closed bounded set X in E there are two points 
n 

x 0 , x 1 in X so that 

II x 0 - x 1 // = max { II x - y I/ : x, y E X}; 
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By translation of X, let x 0 = cj>. Take H 0 to be any hyperplane in E n 

such that cj> and x 1 are in H0 (cf. Figure 7~2). 

Let X(H 0) be the projection of X on H 0 . Select any u in E such n 

that /lul/ = 1. 

Ho 

By Lemma 7-1, there exists a vecto:r u' in E so that n 

Figure 7-2. 
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(u, u') = 0 and (u', x 1) = 0. Let H 1 = {x : (x, u') = O} and consider X(H 1) 

the projection of X on H 1, By hypothesis X(H 1) is a set of constant 

width, and it is here asserted that this constant width is equal to II x 1 II· 
To see this, let x., y be the orthogonal projections of x, y, respec.,. 

p p . 

tively. Observe that II~ - YI!~ llxp-Ypll· Since 

II <I> - x 1 11 = max { Ii x - y II : x, y E X}, 

it follows that jjx1 II > !Ix -y II for all x , y, in X(H 1). Notice that - p p p p 

<I> and x 1 are in X(H 1). Therefore, X(H 1) has constant width l lx 1 II. 
Since X(H 1) is a set of constant width, for direction u,,.. there 

must be two points xz, x 3 in X(H 1) so that 11 xz- x 3 II = 11x1 11 and there 

are two parallel support hyperplanes H21 ,H31 of X(H 1) for which 

p(HZl' H31) = 1 lxl jj. 

Then 

and 

Let 

Hz = {x : (x - Xz, X3 - Xz) ::c o}, 

and 

and note that Hz and H 3 are parallel. 

Since HZl is a support hyperplane of X(H 1), there must be x 2 

in X such that 
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This Xz is in Hz and similarly, there is X3 in X (") H3. 

Now consider any x e X and let :x; be the projection of x on a 1. 

Sox is inX(H 1), and (x-x2, x3 -x2 ) :::_ 0 implies that 

Then 

(X - x 2, x 3 - x 2) = (x, x 3 - Xz) - (x2, x 3 - Xz)" 

Using inequality (7-1), 

:::: o. 

(7-1) 

Therefore~ (x - x 2, x 3 - x 2 ) :::. 0, and H 2 is a support hyperplane of X. 

In a similar manner H 3 · is a support hyperplane of X, and 

The direction u was arbitrarily selected, and so for every 

direction there are two parallel support hyperplanes of X, and the 

distance between them is always 11x1 11 · Therefore, Xis a set of 

constant width. 

Note that in the hypothesis of Theorem 7-2, the width of each 

orthogonal projection is not designated, Observe aleo that Theorems 

7·-1 and 7-2 form another characterization of sets of constant width. 

An interesting question presents itsel~. What is the least 

number of directions for this converse to be true? It 1;1eems reason-
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able that a countable dense set of directions would be sufficient. A 

simple exampl~ can be constructed in E 3 showing that three directions 

are not suffi<::ient. 



CHAPTER VIII 

INSPHERES AND CIRCUMSPHERES 

Let K be a conve:x; and compact set in E . An insphere of K is 
n 

a sphere of largest r;;1.dius contained in K, and a circumsphere is a 

sphere of smallest radius containing K, A circumsphere of K is 

unique, but in general an insphere is not unique except where K is a 

set of constant width (cf. [27)). The minimal spherical shell of I.< exists 

uniquely and consists of the closed set of points between two concentric 

spheres such that K is contained in the closed set of points and such 

that tp.e difference of the radii of these spheres is a minimum. For 

the content of this chapter, the existence of insphere, circumsphere, 

and minimal spherical shell for K is assumed. Recall that conv (X) 

is the convex hull of X and bdy K is the boundary of K, 

A proof will be given of the theorem stating that the insphere 

and circumsphere of a set of constant width "- are concentric and that 

the sum of their radii is "-· The preliminary results are important in 

themselves, but their main purpose is the proof of the theorem. 

The first result, Theorem 8-1, presents a property of the 

circumsphere of an arbitrary convex compact set. In E 2, a circum

sphere is simply a circle, commonly caUed a circumcircle. The 

property de$cribed in this theorem,. interpreted in E 2, intuitively 

means that for a compact set K and its circumcircle C, there must be 

at least one diameter of C where each of its endpoints lies in the 
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boundary of K and on C. 

Theorem 8-1: Let K be a compact convex set in En with 

circumsphere D(cj>, r), then cj> E conv (C (cj> 1 r) n bdy K), 

· Proof: Suppose cj> i conv (C (<I>, r) n bdy K). The set 

conv (C (cj>, r) n bdy K) is a closed convex set in E . Hence 9 by 
n 

Lemma 2-3, there is x 0, the orthogonal projection of <I> on 

conv (C (cj>, r) (J bdy K), and HO = {x : (x - x 0, x 0 ) = O} is a support 

hyperplane of conv (C (cj>, r) (J bdy K). Let Yo= (l/2)x0 and 

H 1 = {x: (x-y0, y 0 ) = O}. The set conv (C (<!>, r) (J bdy K) is con

tained in H; (cf. Figure 8-1). 

+ Let K' = K (J complement H 1 . The set K 1 is closed and 

bounded and therefore compact. Let D = { I Ix - cj> 11 : x E K 1}. The 

H; 
Ho 

Figure 8-1. 

H. 

\ 
l 

+ H. 
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norm, a continuous function, attains its maximum value on a compact 

set. Therefore, there is x inK 1 such that llxll ?:_ llxll for every 

x e K'. Let I !xi I = r' where r' is le$s than or equal to r. 

To prove that x is not in C(cj>, r) suppose x e C(cj>, r). First, ;!!:: 

is in K', which means that xis in bdy K (") G(cj>. r), and thus xis in H:. 
But x e K' implies xis in complement of H:. This contradiction 

shows x ,. C(cj>, r) and therefore I !xi I = r' < r. 

Let r - r 1 = 6 > 0 •. Select c such that c e intv cj> y O and 

II c II < 6 /2. Since c e intv cj> y 0, c = ay O for some a such that O <a< 1. 

Select x 1 in H 1 n C(cj>, r). 

Let 

It will be shown that S ii:! a $phere with center c and radius less than 

r and such that KC S, thus contradicting the assumption that D(cj>, r) 

is a circumspherE). 

Obviously, r - 6/2 < r. Then, 

< lixl - Yoli 2 + i1Yoli 2 

= llxl 112 

2 
= r ' 

It yet remains to demonstrate K C S. first, let x e K' and 
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then 

llx - ell< llxll + llcll 

< r - 6 + 6/2 

= r - 6/2 

shows that x e S. Now select any x e K where xis in H 1 U H:. The 

point x in· H 1 U H: implies that (x.,. y 0, y 0) ::. 0 or (x, y 0) > (y 0, y 0). 

Since xl e Hl' (xl~Yo· Yo)= 0 or (~1·Yo) = (yo,Yo). Therefore, 

(x, y 0 ) ::_ (x 1, y 0 ). The real number a is positive, so multiplying this 

last inequality by -2a leads to 

Substituting c for O!Yo yields 

-2(c, x) < -2(c, x 1 ). 

To this inequality add llxll 2 <l!x1 11 2 and llcll 2 = llcll 2 resulting in 

which is equivalent to 

or 

Thus, again x e S, and hence K C S where S has a smaller radius 
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than the radius of the circumsphere. Thus we have reached a contra-

diction to the hypothesis of the theorem. 

The following theorem, which is the converse of Theo:rem1 8- l, 

together with Theorem 8-1, forms a characterization of the circum-

sphere. 

Theorem 8-2: If K is compact convex contained in D(tj>, r) such 

that cj> E conv (bdy K n C(cj>, r) ), then D(cj>, r) is the circumsphere of 

K. 

Proof: Suppose D(cj>, r) is not a circ1,1msphere. This means that 

there is S, a circumsphere with center x 0 and radius r 1 , where r 1 < r 

and K C S (cf. Figure 8-2). 

Since K is closed, bdy K C K. Then 

Figure 8-2. 
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bdy K 11 C(cj>, r) C S 11 C(cp, r). 

If S 11 C( cp, r) = 0, then bdy K 11 C(cp, r) = 0, but by hypothesis 

cp e conv (bdy K 11 C(cp, r) ). This contradiction shows that S 11 C(cp, ?")IO 

and cp f:. x 0 . The set bdy K is contained in S, and so 

bdy K 11 C(cp, r) C S 11 C(cp, r). 

This leads to 

conv (bdy K n C(cp, r) ) C conv (S n C(cp, r) ). 

The assumption cp e conv (bdy K n C(cp, r) ) implies that 

<I> E conv (S n C(cp, r) ). 

Let 

If 

then a is positive. The inner product (xo·<I>) = 0 < a · implies that cp E Ho. 

Let ai E s n C( <j>, r). This implies II ai - XO II ~ r I' and lead.s to 

lla,112-Z(xo,a.)+ llxo112 < r'z. 
l. l. ~ 

This last inequality is equivalent to . 

Using the fact 11 a. I I = :r and the last inequality results in the statement 
1 

2 I 2 2 (x0, ai) ?: (l/2)(r + lx0 11 - r 1 ) = a. 



Since the origin cp is in c.anv (~ 11w·•<:::(q,, r) )·~ 

where 

m 

~ 
i= 1· 

Then 

m 

cp - I 13. a. 
l l 

i::: 1 

13. = 1, 13. > 0, 
l l 

a. E s n C(cp, r). 
l 

m 

(xo, <I>) ;:: (xo, ~ 13. a.) 
l l 

i= l 

ffi. 

= I j3. (xo, a.) 
l 1 

i::: 1 

m 

> I 13. a - l 

i= 1 

m 

- a I 13. 
l 

l= 1 

= a. 

+ Therefore, (x0, q,) > a implies that cj> E Bo U H 0 , a contradiction of 

cp EH;. 
Before proceeding with a characterization of an insphere, a 

lemma needed in the characterization is inserted. 
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Lemma 8-1: Let M be any, convex compact body in En contain~ 

ing the origin, and let 
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t == min { II x II : x e bdy M} . 

. Proof: Suppose x 1 v. Mand let x 2 be the orthogonal projection 

of x 1 onto M (cf. Figure 8~3 ). The point x 2 is a boundary point of M. 

Let 

By Lemma 2-3, His a support hyperplane of M separating x 1 and cp, 

In fact, x 1 is in H+ and <j> is in H-. 

Let 

13 == 
(Xz, Xl - x2) 

(xl, Xl- Xz) 

Figure 8-3. 

H 
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First, (x2 , x 1 - x 2) is positive since <j> e H-, an:d as clearly (x 1 -x2,. x 1-x2) 

is positive. Adding these two inequaliUes results in (x 1, x 1 - x 2) > O, 

which implies that 13 is positive. Also, from (x 1 - x 2, x 1 - x 2) > 0 it 

follows that 

and hence 13 < 1. 

= 0 

shows that x 3 is in H. Therefore, 

By the Pythagorean relationship, 

Since 11 x 1 - x 2 j j is not zero, 

Using the triangle inequality, 
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it follows that 

Therefore, 

and hence llx 1 II> llx2 11 ~ t since x 2 is a boundary point of Mand 

t = min {jjxjj : x e bdy M}. 

But by hypothesis 11 x 1 11 ~ t, This contradiction shows that x 1 e M, 

Theorem 8-3: If K is a compact convex body in E and D(<j>, r) 
n 

is an insphere, then cp E conv (bdy Kn C(cp, r) ). 

Proof: Suppose cp i conv (bdy Kn C(cp, r) ) and let x 0 be the 

orthogonal projection of <j> onto conv (bdy Kn C(<j>, r) ). Then 

· H 0 = {x : (x - x 0 , x 0 ) = O} is a support hyperplane for 

conv (bdy KI) C(cp, r) ). Let Yo =(l/2)x0, H 1 = {x: (x-y0 , y 0 ) = 0}, 

+ and KV = bdy Kr\ complement Hl (cf. Figure 8-4). The set K' is 

compact and non-empty. 

To see that K' is non-empty, assume it is empty which means 

bdy KC Hl u H:. So for any element b E bdyK, (b,yo) 2:. (Yo·YoL 

Since <j> is in interior of K, there are two points b and d in the boundary 



- .ii .,. ..... - GQ, .............. ~., 

/ 1< ~lei>•") 
I 

' g 

Figure B-4. 

of K such that <p" <>b + (1 - <>)Q for some a > O. Then 

But 

imply that 

+ 
and hence </> , H1 . But ( </> - y, y O) < O implies that <p , Ii/, a contra. diction. 

Let D " {/ / '< - </> I/ : J< , K '}. Since the norm is a continuous 
function and K• is compact, there is a point X in,;, such that 



112 

I/xii ~ llx II for all x in K 1• Let llxll :; r' ~ r. 

To show that xis not in C(cp, r), assume the contrary. Since 

x EK' then xis in bdy Kn C(cp, r). The hyperplane Ho support~ 

conv (bdy Kn C(cp, r) ) 

and x in H 0 U H; implies that 

This is equivalent to 

or 

This leads to (x - Yo~ y 0) > 0 which implies that x E H:. But 

- . + 
x e K' C (complement (H 1 ) ). Therefore, xis not in C(cp, r) and 

11 x I/ = r 1 > r. Let 6 = r' - ;r > 0. 

Select c so that cp e intv cy O and I Jc/ I .::. o/2. Thus 

for O < a < l and 

c = 

cj> - ac + (1 -a)yo 

where a - 1 
O:' 

Take any point x 1 in H 1 n C(cj>, r) and let 

< 0. 

To finish the theorem, it is now proved that the radius of S is greater 

than r and that S C K. This will be a contradiction of the hypothesis 
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that D(cj>, r) is an insphere of K. 

First observe that r + 6/2 > r. Then 

2 = r 

implies that· 11 x 1 - c 11 > r. Therefore the radius of S is greater than 

r. Lets ES(') H:; that is, since s Es, "!;! - cll 2 < llx1-cll 2 or 

equivalently 

Therefor.e, 

+ 
Since s E H 1, (s -y0,y0)> 0 which implies that (s,y0 ) > (y0 ,y0 ). The 

point x 1 E H 1 leads to (x1, y 0) = (y 0, y 0). · Therefore, from these two 

statements 

But rewriting (8-1) and substituting for y O results in 

0 < (s - x 1, y 0) = (s - x 1, a a_ 1 c) 

= a~ 1 (s - xl, c) 

= ___g_..., tx -s · c). l-a··--1 I·· .. , · 

(8-1) 



From this it can be concluded that O < (x 1 - s, c) since a(l -a)- 1 .is 

positive. From 
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it follows that II s II ~ II x 1 11 c r, which proves that s E D( <!>, :r) C K or 

+ S n H 1 C K. 

+ Now select any s E S n complement H 1 . Suppose there is 

such an s which is not in K. Since s is in S then 11 s - c 11 ~ r + 6/2. 

Ifs is not in K 1 lls II > llxll by Lemma 8-1. Knowing llxll:;: r 1 = 6+ r, 

it follows that 6 + r < 11 s II· Therefore, 

llsll = lle~c+cll 

< !Is - ell+ llcll 

< :r + 6/2 + 6/2 

= r + 6 

< 11 s 11. 

a contradiction, This demonstrates that S is a spher~ with radius 

greater than r and S C K, q. contradiction of the hypothesis that D(q>, r) 

is an insphere. 

Lemma 8-2: Let H be a hyperplane such that a e H n C(<j>, r) 

and a is not orthogonal to H, then H is not a support hyperplane for 

D (<J>, r ). 

Proof: Let x 2 be the orthogonal projection of <J> onto B (cf. 

Figure8-5), Therefore llx2 11 =r!<r, 



Then the hyperplane H = {x , (x-x2, x 2 ) = O} and cj> E H-. 

Consider the point (r Ir 1) x 2 and notic::e tµat 

Furthermore, 

= 
r-r' 
r' (x2, x 2) > 0. 
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+ Thus, (r/r') Xz E C(cj>, r) n H . But cj> E D(cj>, r) n H implies that H 

is not a support hyperplane for D(cj>, r). 

This lem¥1a, along with Lemma 6-1, shows that a hyperplane 

of support of a sphere D(cj>, r) at point a must have the form 
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{x : (x - a 1 a) :;: O}. 

Theorem 8-4: Let K be compact convex body in E . If D(<j), r) 
n 

is contained in K and cp e conv (C (cp, r) n bdy K), then D(cp, :r) is an 

insphere. 

Proof: Suppose that D(cp, r) i~ not an insphere. Thu!:! ther~ 

must be a sphere S with radius r' > r and a center x 0 (cf. Figure 8-6). 

Let H 0 :;: {x : (x, x 0 ) = O}. S:j.nce the point cp is in 

conv (bdy K (1 C(cp, r) ), then 

<I> = 

where 

-,,,.. ,, 
/ 

m 

I 
i= l 

X.. y. ' 
l l 

.... 

' ' 
l ~ ~1 Ha 

\ 
\ ~o I . 

' 'H-
' I I 

' I ...... 
/ ..,,,,. 

Figure 8-6 . . 



m 

I >..i = 1, 

i= l 

and y. E bdy K n C(<j>, r). Then, 
l 

>... > 0, 
1-
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shows that (y., x 0) > 0 for at least one i. Without loss of generality, 
l -

let (y0, x 0) :::_ 0, and hence Yoe HOU H;. Since Yo is in bdy K (J C(<j>, r), 

there is a support hyperplane H 1 for K through y 0 (d. Theorem 2~15 

in [36]). The point y0 in C(<I>, r) and C(<I>, r) C K, implies that H 1 is 

also a supporting hyperplane for D(<I>, r), and H 1 bounds the spher~ S. 

By Lemmas 6-1 and 8-2, H 1 mus~ have the form 

{x : (x - y 0 , y 0) = O}. Let 

Then 

r+r' 
= Zr r 

r+r' < r' = z-

shows that x 1 e S. Now 
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Using the fact (x0 , y 0) > 0 and 
' 

it follows that (x 1 -y0, y 0 ) is positive. Therefore H 1 is not a support 

hyperplane for K, a contradiction. Therefore D(<I>, r) is an. insphere. 

The previous two theorems give a characterization of an in-

sphere. In proving the main theorem of this chapter, it turns out to 

be convenient to have a second characterization of an insphere in terms 

of an open half sphere. 

,f-
If D(a, r) is a sphere and a is in a hyperplane H, then H n D(a,r) 

is an open half sphere of D(a, r) determined by H. 

Theorem 8-5: Let K be a compact convex body in En. If D(cj>, r) 

is a sphere such that cj> E conv (C(cj>, r) n bdy K), then C(cj>, r) n bdy K 

cannot be contained in any o:pen half sphere of D(cj>, r). 

Proof: Suppose C(cj>, r) n bdy K is contained in some open half 

sphere of D(cj>, r). Thus, there is a hyperplane H such that cj> e H and 

C(cj>, r) 11 bdy KC H+n D(cj>, r). 

Let x 0 e En where x 0 is perpendicular to H. The form of H 

If a. e C(cj>, r) n bdy K, then (a.,xo) > 0 
1 1 

must be {x : (x, x 0 ) ;::: O}. 

+ since a. E H n D(cj>, r). Since cj> E conv (C(cj>, r) n bdy K), 
1 



where 

m 

L 
i= 1 

m 

X.. a., 
1 1 

L Ai = 1, X. i ~ 0, ai E C(<I>, r) ll bdy K 

i= l 

and hence, 

m 

o = (xo, <I>) = I X.i (c\i' xo). 

i= l 

But (ai, x 0 ) > 0 for all i implies that 

m 

L 
i= l 

a contradiction. 

X.. (a.,x0 ) > 0, 
1 1 

Theorem 8-6: Let K be compact convex body in E . If 
n 
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C(<j>, r) n bdy K is not empty and cannot be contain~d in any open half 

sphere of D(<j>, r), then <I> E conv (C(<j>, r) n bdy K). 

Proof: Suppose <j> r/ conv (C(q;, r) n bdy K) and let x 0 be the 

orthogonal projection of <j> onto conv (G(<j>, r) r\ bdy K), (cf. Figure 8-7). 

Let H 1 = {x: (x-x0, x 0 );;: O}, By Lemma 2-3, H 1 is a support 

hyperplane of conv (C(cj>, r) (') bdy K). The origin <j> is in Hi, and there

fore, conv (C(<j>, r) n bdy K) C H1 U Ht Let y E C(<j>, r) r\ bdy K, 

and by the support property of H 1, (y - x 0 , x 0) > 0, or 

That is, (y, x 0 ) > 0. 
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Figure 8-7. 

The set H = {x : (x, x 0 ) = O} is a hyperplane through cj>. Thus 

(y, x 0 ) > 0 implies that y is in H~. Therefore, C(cj>, r) n bdy K is 

contained in H;. Since C(cj>, r) n bdy K is contained in D(cj>, r), it 

follows that C(cj>, r) n bdy KC H; n D(cj>, r). However, this contra

dicts the hypothesie of the theorem since H; n D(cj>, r) is an open half 

space of D(cj>, r). 

Lemma 8-3: Let X be a compact convex body in E whose 
n 

minimal sphericai shell is formed by c 1 = D(cj>, r 1 ) and c 2 = D(cj>, r 2 ). 

If A= c 1 n bdy X and B = C'z n bdy X where ci1 = C(cj>, r 1) and 

C 12 = C(cj>, r 2), then it is impossible for any hyperplane through cj> to 

strictly separate A and B. 

Proof: Let r 1 > r 2 and suppose there is a hyperplane H contain-

+ -ing cj> and strictly separating A and B. Assu.me A E H and B E H 

( cf. Figure 8-8). 



Figure 8-8,. 

Select an x 0 e En s11ch that x 0 is perpendicular to H at cp. 

Therefore, H:::: {x : (x, x 0 ) = O} and x 0 E.· rt. 
Let K 1 = X n complement H+. The set K 1 is compact and 

therefore the set { II x II : x e 1)} has a maximum value at x 1 e K 1. 

Let llx 1 11 = r 11 < r 1 and define o1 = r1 - r\ > 0. 

Similarly, let K 2 = bdy X fl complement H-. The set 
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{/Ix I I : x e K 2} has a min:imum value at x2 e K 2. Let I lx2 l I = r 12 > r 2 

and r 12 - r 2 = 62 > 0, 

Let 6 be the smaller of o1 and o2 . Select c = A.XO for some 

positive A. so that II c 11 = 6/2. 
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Let 

( c, ) s1 D 
2 + (~)2 - rl 

and 

D ( c, + (~) 2 ) . Sz 2 
= rz 

If it can be shown that 

1) 

and 

then since S 1 and s2 are concentric, it follows that C 1 and c 2 do not 

form a minimal spherical shell for X. 

2 
Proof of 1): For any r 1 and r 2 , (r 1 - r 2 ) > 0, which is equiva-

lent to 

Ne:x;t, multiplying by the positive number (6/2) 2 and then adding 

leads to 

By factoring ·each side, one obtains the relationship 
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All of the quantities involved are positive. Thus first taking square 

roots and then multiplying by ( - 2) leads to 

By adding. 

2 2 2 (-26) 2 rl + rz + 

results in 

2 2 
rl + r2 - 2 

2 

+ 2 ( i) < 

(8-2) 

By rearranging terms, write (8-2) in the fo;rm 

+ (f - 2 Jr: + ( f 
which is equivalent to 

Again, since all the quantities which are squared are positive, the 

square roots of both sides result in 
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which was to be proved, 

Proof of 2): First it will be shown that X C S 1. Let x E :X (t 

+ complement H = K 1, By the t:J;'iangle inequaiity, 

II~~ ell ~ llxll + llcll, 

The value of llxll is less than r 1 since r 1 is the maximum value for 

the norm function of any point in K 1, Therefore, 

Then 

This proves that 

llxll + llcll ~r1 + 6/2. 

6 
r' + -2 1 

< -

= 

rl -

rl -

61 + 
61 
T 

261 
+ z""""' 

61 
T 

I Ix - c 11 < J,f + m 2 

which shows that x e s 1. 

Next, let x e X n complement H"". Here observe that 

2 2 2 
11 x - c 11 = 11 ~ 11 - 2 ( c, x) + 11 c 11 • 
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Sincexe X C c 1, llxll <r 1• Hence, 

I Ix - c II 2 ~ rf - Z(c, x) + (! r. 
'1 -

The inner product (c, x) = >...(x0, x) > 0 since x E complement H • There-

fore, 

rf - Z(c,x) + (f < rf + (:t 
which implies that 

Therefore, x E sl andXC sl. 

+ It will now be shown that s 2 C X. Let x ~ s 2 n complement H . 

Therefore, x E s2 ir,nplies that 

2 2 + (~) 2 
II x - c 11 < r2 ~ 

which is equivalent to 

- 2(c,x) + +(:( 
From this 

2 < rz + 2(c, x). 

The point x E complement H+ implies that (c, x) = >...(x0, x) ~ 0 or 

0 ~ -2(c, x). Therefore 11 x 11 2 < rf, .;JPhich says tha:t x e C2 C X. 

If x e $2 11 co,:rnplement H-, 

llxll - llcll < llx - ell <' 
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Therefore, .· 

II x II 6 6 
< rz + 2 + 2 = 

By Lemma 8-1, x E X. Therefore, s 2 C X, and the proof of the lemma 

has been completed. 

The main objective of this chapter is to present and prove the 

following theorem: 

Theorem 8-7: If Xis a set of constant width X., then the 

insphere and circumsphere are concentric, and the sum of thei;r radii 

is X., 

Proof: Let c 1 ::; D(<I>, r 1) and c 2 = D(<I>, r 2 ) form the minimal 

spherical shell for X. Let C ~ and C~ represent the boundaries of C 1 

and c 2 , respectively. As in the preceding lemma, let 

A = {x : ;K E c~ n bdy X}, 

and 

B = { ~ : x e c~ n bdy x}. 

Let x 0 e A and let 

By Lemma 6-1, H 0 is a suppo:r;-t hyperplane of c 1. The set Xis also 

supported by H 0 at x 0 (cf. Figure 8-9) 

Let H 1 be the parallel Sl.lpport hyperplane of X at y 0 e X. Since 

the point y 0 cannot be an interior point of c 2, IIY0 -x0 11:::, r 1 + r 2 . 

But 11 y O - x 0 11 = X. and hence X. ~ r 1 + r 2 . 



I 
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I 

Figure 8-9. 
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Let x 2 E Band let H 2 be a support hyperplane of X at x 2 . The 

set c 2 is also supported by H 2 at x 2 . By Lemmas 6-1 and 8-2, 

Let H 3 be the pal;'allel support hyperplane of X at y 2 . The point Yz 

cannot be an exterior point of c 1 and hence 11 y 2 - x 2 I I ~ r 1 + r 2. Since 

lly2 -x2 II = \., \. ~ r 1 + r 2 . This,· along with the inequality\.::::_ r 1 +r 2 

implies that \. = r 1 + r 2 , 

By Lemma 8-3, there is no hyperplane through <p strictly 

separating A and B. Therefol;'e, A is not contained in any open half 

sphere of C 1, and B is not contained in any open half sphere of c 2. 

Using Theorem 8-6, <p E conv (A) and <p E conv (B) where 

A= C~ n bdy X and B = C~ n bdy X. 
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By Theorem s .. 2. X C Cl and cp e conv c~ n bdy X) implies· 

that c 1 is the circumsphere of X. Similarly, using Theorem 8-4, 

Cz C X and cp e conv (Cz n bdy X) implies that c2 is the insphere. 

As a corollary to the theorem, consider the following state-

ment: 

Corollary 8-1: The radius r 1 of the circumsphere D(cj>, r 1) of 

a set X of constant width X. in E lies between 
n 

i X. and X. {zn: 2 • 

Proof: If r 2 is the radius of the insphere, then r 1 + r 2 = \.. 

Since r 1 :::_ r 2 , 2r 1 :::_ r 1 + r 2 = A from which r 1 :::_ (l/2)X.. 

Since cp is the center of the circumsphere, by Theorem 8-1, 

cj> e conv (C(cp, r) n bdy X). Then by Caratheodory's theorem, 

m 

<I> :;: I x.. x. 
l l 

i = l 

where 

l<m<n+l, X..=l, allX..>O 
l 1 -

i = 1 

and xi e C(cj>, r) n bdy X. Observe that m - 1 ;/. 0 for if m - 1 = 0, then 

cp = x where x E G(cj>, r). 

Let 6 = max { II x. - x. II 1 < i .:5_ m, 1 < .. j .:S. m}. For any fixed 
1 J 

j, 1 ~ j ~ m, 
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m 

(1 -~.)62 = 162 - ~- 62 = I ~. 62 - ~. 62 
J J 1 J . 

i = 1 

m m 

[llxi II Z - 2(xi, xj) + I lxj II 2] > I ~. 11 x. - x. 11 2 = I ~. - 1 1 J . 1 

i = 1 i = 1 

m m m 

I x. [2r: - 2(xi, xj>] . 
2 I x. - 2 L ~.(x., x.) = = Zr 1 1 1 1 1 J 

i = 1 i = 1 i = 1 

2 - zp .. lxl + ... +~ x . , x.) 2 
• Z ( ~ X;x;, xj ) ::; 2r 1 = Zr 1 mm J 

i = 1 

2 2 Therefore, (1 - X.) 6 > 2r 1 and the sum of these inequalities over all 
J -

j results in 

j = 1 j = 1 

which is equivalent tq m62 - 62 ~ zrf m. From this 

and since n + 1 ::::._ m, 

which can be changed to 

m > 

62 
n + 1 > 

- 62 - Zr z ' . 1 

2 . 2 2 
(n + 1) 6 - Zr 1 (n + 1) > 6 
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or 

2 2 
6 (n+ 1- l) > 2r 1 (n+l) 

which is eq_ual to 

62 2 
( n; l) > 2r 1 -

Since 

>.. > 6 > rl j 2nn+ 2 
' - -

the final result 

rl < I\ /zn~2 -

follows. Thie ref ore, 

.!_ >.. < rl < >.. /znn+2 2 - ..... 

To show that the left limit is attained, consider any sphere. In 

such a case r 1 = r 2 , and 2r 1 =>..or r 1 =(1/2)>... 

In E 2 consider the Reuleaux triangle (cf. Figure 8-10). In this 

situation 

and so, 

(2) l / 2 
= rl {3 · 6 = 

Thus, the right limit is attained, 
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Figure 8-10. 
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