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CHAPTER- I 

INTRODUCTION AND STATEMENT OF PROBLEM 

The Cutting Function _of Field Machinery. 

Cutting is the first step of many field operations~ 

Conventfonal fqrage harvesting involves cutting the plant 

stalks; and:many seed crops are-harvested by combines whith. 

first cut.off the entire stalk, or th~t. portion of it to 

which the seeds -are attached, then remove the seed in subse­

quent-operations. 

Forage crops may be chopped or cut with a flail-type 

mower bu:'Lusua11y are .. mowed witr knives aitached to a recip­

rocating:sickle bar.· This same method is gen~rally used on 

combines to cut se~d bearing_ crops. In mowing forage crops, 

high knife speed is required to attairi adequate capaciti~s 

in acres-mowed per hour. Slower knife speeds are feasible 

in cutting seed crgps .. On a combine, typical'speed of the 

sickle driv~ flywheel is from 400 to 450 rpm, resulting in· 

800 tQ QOO cutting strok~s par minute. Practical sic~le 

dri~e spee~s for tractor mowers without a -reciprocating 

c9unter balancp range from 800 to 1000 rpm (1600 to 2000 

cutting strokes per minute) (1). 

1 
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Requirements and Design Goals for Cutting 
Devices Used-6n-Forage Cr6ps - -

To reduce irregular-stubble length ca~sed by excessive 

stalk deflettion before cutting and for minimum power re­

quirements~ Kepner (2) recommends a mower cutting action of­

high-velocity.extending over a·large part of the,cutt1ng 

cycle~ Further~ he r,commends that unbalanced forces be kept 

to a minimum, that the. included angle between the cutting 

edges should be kept.small enough so that stalks will be cut:· 

before being expelled forward, and that desitetj cutting. 

action and mechanical durability be maintained at forward 

speeds up to 10 miles per hour. 

Design Goals for Gutting Devices 
Used on Seed ~raps 

The design objec~ives specified for forage c~tting de­

vices also apply to the cutting mechanisms of combines. But 

here a furth~r requirement~is made in that the cutting of 

seed bearfng plants should be done with minimum disturbance 

of the stalks~to avoid shattertng andslosing a portion of,the 

seed. Also the reel and other devices used to guid~ plants 

into the cutter bar and mov~ the cut(stalks from the sickle 

onto the combine header pan. should.not unduly shake the 

plants. In·a five year study of- soybean harvesting prac­

tices, Lamp, Johnson~ and Harkness (3) found that harvest 

losses varied from 8.8 to 19.3 percent, with the average loss, 

exceeding 10 percent~ Over 80 percent-of the harvesting 

losses were gathering losses, almost all of-which resulted 



from knife and reel agitation of the plants. Even greater 

gathering losses occurred in the first attempts to harvest 

castor beans with a combine. About 50 percent of the seed 

3 

· shattered to the ground at normal combine forward speeds, 

according to Arms (4) •. Many seed shattered when the r~el. en-
\">· r 

gaged the plant. Additional -seed were-:, jarred loose from 

the plant and fell to the ground whe~ the knife cut the 

stalk-, 

lnadequacie$ of Converitional Cutting Devices 
and Schemes t6 Correct The~ 

The speed of the 9utting khives of a cb~ventional 

mower is limited by the high, unbalanced inertia forces in­

duced by the mass-of-the reciprocating sickle bar. - These 

unbalanced forces vary as the square of,the speed of the 

driving crank and produce high, cyclic lo~di on the drive 
. . ~ 

members -and supporting frame. The loading must be kept 

below levels that un~uly shorten the useful life of the 

drive and frame-parts, .hence the limit on maximum operating 

speed. 

A portion of the input energy is dissip~ted·t~ work to 

overcome the opposition to retiprocating motion imposed by 

the inertja of-the unbalanced mass. Also friction forces, 

which oppose-the s~iding action of the cutter bar, waste 

input energy and cause rapid wear. 

Several design sc~emes to overcome the speed limitations 
' 

of the conventional mower have-beeninve~tigated .. Elfes (5) 

lists-the different approaches as: (1) balancing out- a major 



portion of -the inertia forces generated by the single recip­

rocating sickle bar through the addition of a practical 
-

counterbalancing device or by the use of two oppositely 

4 

travelling reciprocating sick1es, each ba1ancing the inertia 

force of the·other; (2) replacing the reciprocating sickle 

with an endless chain or band fitted with suitably spaced 

knives; (3) using a high-speed, single-element, impact~ 

cutting blade rQtating in a horitontal plane; (4) using a 

reel type mower similar to the common lawn mower. Each:of 

these approaches proved to have limitations. With double 

reciprocating sickle mowers, suitable guards tQ protect the 

knives w1thout·interfert~g with the cutting action have been 

a problem. High energy losses due to friction plague both 

counterbalanced, single-sickle mowers ·and the double~sickle 

mowers.· The endless band type mower has prov~d subject to 

plugging in cutting fine, tough: grasses~ possibly because of 

the constant directton of motion~' The single-el~ment, 

impact-type, rotary mower makes multiple cuts on each stalk 

and thus requires more power than a device which cuts each 

stalk only once. An ex~essively large diameter reel~type 

mower· is required to.cut tall grasses satisfactorily. 

In regard to cutting with minimum disturbance of the 

plant, one approach that met wtth some success was the sub­

stitution of a high speed circular saw for the reciprocating 

sickla blades on a castorbean harvester (6). A saw, 12 in-

ches in diameter, was driven at 2500 rpm in a horizontal 

plane. The· saw cut-the castor stalks easily, without 



5 

vibration~ and with no shaking off of the seed capsules. 

There was no positive means to move the plants, once cut-off; 

back away from the saw, however. As a result, plants accumu-

lated at the saw feed opening and obstructed the proper flow 

of plants tb the saw. 

The power requirement for cutting with a single recip-

rocating sickle ,bar was estimated by Kepner · to be 60 

percent of the ~nergy input to the mower. In evaluating a· 

newly designed high speed mower, Elfes (5) determined that· 

cutting required an average of only 33 percent of the input 

energy. Peak energy requirement for cutting was. only 12 per­

cent of the total peak energy input, Chancellor (7) measured 
,__,,,. 

the energy required to cut inclividua1 stalks of forage and 

from these determinations calculated the power requirement 

for cutting a 7 foot swath bf 2 feet tall .timothy hay, yield­

ing 2 tons of 20 percent moisture hay per acre, At a forward 

speed of 7 miles per hour, the average cutting power was 

computed to be 0.22 horsepower. Assuming.an average total 

input power of 2.5 horsepower, the 0,22 horsepower for 

cutting represents only 9 percent of the.input.power to the· 

mower. Prince, Wheeler, and. Fisher (8) .determined the cut­

ting energy for individual forage stalks and for mowing 

masses of stalks with a reciprocating sickle_bar. They 

found a wide difference in the actual energy.required to mow 

the masses of stalks and that theoretically required based 

on values measured for cutting individual stalks. The in­

crease is attributed to bending of stalks to the ledger 



plate, the Gutting-of one stalk-against. anoth~r, ahd·cutttng 

with the knife edge at other than a 90 degree angle-to the 

sta 1 k, 
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Harbage and Morr (9) in.developihg·a high~capacity, ten -

foot mow~r, found that peak cuttihg~loads on the-mower drive 

pitman were less'than,the peak ihertia loads when using a 

sharp knife,· With a dull knife, however, peak cutting loads 

exceeded peak ihertia loads by.a· factor of--two when mowing 

bluegrass~ This finding.would.indicate cutting energy:re­

quirements depend on degree-of knife. sharpness; hence, 

previously,listed estimate~ are·with. the assumption of a 

sharp knife~ 

A further esttmate.of cutting.·energy-requirements- that•·· 

corroborates the findings_of:Elfes.ahd,Chancellor is that: 

made by Richey (10); .He:reported·test results:for cylinder 

and f1ywhee1 type for~ge:choppers-which indica~e cuttinQ 

eneryy makes up from 13.to:32 percent of.the_ input energy~ 

The remainder .of the.input.energy was attributed to ait and 

bearing friction~ kinetic energy impartad-to.the,chopped 

material, and t-0 the frictional resistance:encountered by 

the chopped material in-passing thtough.the.hous1ng. 

In view of -the fi-ndii:1gs.of various investigators, an· 

acceptable~estimate~of the maximum required cutting energy 

for- a mower, assuming a sharp blade, is about one third of, 

the t9ta·l inpu~ energy, Thus. the mechanical effi.c;iency of 

a mowet is l~ss than 33 percent~ rather low. 



Proposed New_ Rotary Cutting Device 

An investigation of a different type cutting d~vice 

appears warranted, especially for use in harvesting-seed 

bearing crops. Such a device should be simpl~ in design, 

e,sy to adjust and repair, and ~apab]e of cutting either 

forige or seed bearing crops! the cutting action should 

impart little disturbance to shatter th~ seed from the 

stalk. If the device could fulfi.11 t~e additional function 

of movihg-th~ severed stalks awiy. from the cutting zone, 

still with minimum disturbance.of~-the plants~. it .would be a 

significant i~provemen~ -:one.simple:macbine.c~mponent, 

capable of -cutting ahd.trajecting plant.stems.while-impart­

ing minimum disturbance to the stems,.and operating at high 

speeds with high mechanicalcefficiency •.. 

7 

The· use of ~utting e1_ements- arranged.spirally about a 

horizontal, rotating shaft:possibly can.provide the object­

ives soughtj Direction of~rotation would.be:such that the 

cutting edges move forward.and up in-engaging the plants. 

With proper-balancing,,there wo~ld be·no restriction on 

speed. Since-speed would be.constant-and cµtting continuous, 

there would be no power- surges· or cutting force peaks, hence 

little vibration impa~ted to drive or frame members. Motion 

would be imparted to the cut-off plant by energy transfer 

during impact of,the cutting elements with the plant. Ve­

locity components up, forward, and tb one side would result. 

Because of the forward motion of the mower relative to t~e -

plant 1 . the plant would already. have:a rearward component of 
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velocity relative to the cutting-elements.- Hence,·the re­

sultant velocity.of. the cut-off-plant could be such as to 

deliver it to a receiving platform behind the cutting member,. 

Research Objectives 

1. Design and fabricate·a balanced,.rotary cutting device 

having blades approximately helical in-~onfiguration. · 

Provide a method of attaching blades to the rotor 

structure th~t allows replacement of the blades. 

2; Evaluate the proposed cutter experimentally, using a 

typical edible'seed crop (soybean~), to accomplish the 

following purpose$: 

A. Test .the hypothesis that such a device can 

both cut and traject-plant stems·effectivelY 

in one operation. 

B. Determine the mechanism of cutting utilized 

by the device with square edge (dt1ll) and. 

with-sharp edge.blades through high speed 

motion picture·phOt9graphy. · 

C. Screen th~ principal-design~and.o~erating 

parameters of the cutter that might possibly 

affect the responses-of input energy per· 

stem cut, maximum torque developed per stem 

cut, and resulting displacements of the 

severed stem to determine those, factors that 

do have a non-trivial effect and the de­

sirable levels of those factors. Perform 



the screening~of~parameter tests~for both 

square edge and,sharp edge rotor blades 

using a statistically designed orthogonal 

main-effect experimental plan. 

D. Compare results for-the square edge and 

sharp edge blades to test the hypothesis 

of no difference in effectiveness of the 

blade types. -If one is more effective, 

develop dimensionally.correct functional 

relationships:between.the important re~ 

sponse variables-and-the pertinent:des1gn, 

operating~ and plant physical property 

parameters for the cutter fitted with the 

more-effective blade type ~-within the 

limits provided by the screening-of-parameter 

data collected. 

9 



CHAPTER II 

REVIEW OF LITERATURE 

Several aspects of cutting plant stalks have been in­

vestigated and reported in the literature. Topics included 
' .. 

are the basic nature of cutting, differences in means of 

cutting, and the effect of plant and knife variables on the 

requirements for cutting. 

Basic Nqture of Cutting 

Stroppel (11} examined several methods of cuttihg 

solid, homogeneous materials like metals. He proposed an 

explanation of the cutting action and extended the theory 

to include non-rigid, fibrous materials such as plant 

stalks. His definition of cutting as quoted by Feller (12) 

i s : 

a mechanical separation process on a SJ>]icl 
body by the use of a cutting tool whnse 
wedge-formed cutting parts are under pressure 
and overcome the cohesion of the material due 
to the higher specific normal and thr~st 
forces along the cutting edge. 

He classified cutting tools into: (1) those employ1ng a 

single element; (2) those employing two opposed elements; 

and (3) those using multiple, miniature single elements 

(saws). Either single ~lement or two opposed element tooJs 

1 0 
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can produce a 11 kni fe cut 11 or a 11 shear cut 11, depending on the 

design of the cutting blades. 

In knife cutting, the zone of failure precedes the 

cutting edge through the body. Severance of the material 

is attributed to the concentrated force along the knife 

edge and not to the components of force perpendicular to 

the wedge surfaces which intersect to form the edge .. In· 

other words, knife cutting differs from splitting. Motion 

of the knife can be normal to the cutting edge (a pressing 

cut), in the same direction as the edge (a slicing cut), or 

both simultaneously. The effectiveness of a slicing type 

of cut with a smooth blade is related to th~ microscopic 

notches along the edge resulting from grinding irregularities. 

These minute notches are said to produce a fine sawing effect. 

In 11 pure shear 11 cutting, forces applied to the cutting 

tool cause failure along a shear plane .. The tool edge does 

not penetrate through the material being cut in the manner 

of knife cutting. 

Sawing combines the actions of khife cutting and pure 

shear cutting. The multiple teeth making up the cutting 

edge penetrate the material from pressure on the blade 

normal to the direction of motion.· Then each tooth shears 

and-removes a small particle of material as a result of 

motion albng the blade edge. 

Knife cutting and pure shear cutting for single ele­

ment and two opposed element tools are described schemati­

cally as shown in Figure 1. 
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Figure 1., Schematic Diagram of Knife Cutting and Pure 
Shear Cutting 



It is implied that for single elemant cutting, the support: 

of, or the inertia of, the body reacts to the cutting tool 

pressure to permit c;:utting without acce1eratfng the -bod,y. 

Mode of Stem Failure - T~o 6~posed Element Cuttin~ 

13 

Sin~e small.plant stems are nbt rigidly suppor~ed_and 

are of relatively low mass, it is common-to cut them be­

tween two opposed edges forced together. The resulting cut­

ting action on the hetergeneous, fibrous plant stems differs 

from that of shearing homogeneous, crystalline substances· 

like metals, as Koniger (13) emphasizes. He states that 

metals are cut between two opposing edges by inducing fail~ 

ure along a -shear plane without appreciable pe~etratfon of 

the cutting tool (the 11 pure shear 11 cut defined b.y Stroppel). 

, ____ A more detailed c:iescription of this action is given by Svahn 

and Lundstrom (14) who state that a normaLmetal shearing 

ope~atibn is characterized by the followtng~sequ~nce of 

actions: (a) elastic deformati6n, (b) ptastfc defor~ation, 

(c) cutting action, and_ (d} she~ring fractore, In contrast, 

fibrous materials, according to Koniger, ar~ cut by the 

knife acting as·a wedge to cause separation of the cell 

structure. The components of force perpendicular to the -

wedge surfaces are depicted as being of prime importance' in 

causing the cutting action,. Thus he-disagrees with Stroppel 's 

theory that fibrous materials are severed by concentrated 

forces along the knife edge and not by splitting. Figure 2 
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illustrates his theory of cutting fibrous materiali be~ween · 

two opposed elements. 

Along the Fiber Trans verse to the Fiber· 

Figure.2o Theorized Cutting Action ,in Ma'." 
terial of Fibrous N~ture 

Fi s h e r , Ko 1 e g a , a n d W h e e 1 e r (l 5 ) ~on d u ct e d te s t s i n 

which individual sterns of.forage·pla~ts were tut between two 

opposed elements and proposed an e~planatibn of the mode of 

failure based on the experimental evidence~ Beca~se of the 

stem structure of common forage plants, 11 an outer annu·lar 

ring of-rather tough fi.ber with either a hollow center or 

soft core, 11 they theorized that the first action of opposed,.· 

beveled knives acting on a stem would be: 

O ooone.of compression in which the normal nearly 
circular cross section isdeformed into an .. oval 
shapeo Bending of the outer fibers also occµrs 
along the longitudinal axi~ of the stem, making 
this a three-dime~sional bending problem ... , 

This concept is illustrated by Figure 3? 



Knives, 

Figure 3. Thre~-dimensional Bending of·a 
Single Stalk Between Two Knives 

1 5 

It was further theori~ed that.after the compression 

phase, cutiing of the outer fibers· began "due· to either the 

shearing action of the knives, failure of-these fibers due 

to excessive bending,. or both. 11 .· Because of extreme compres­

sion along the line-like cutting edge of the knives, it was 

thought that some wedging action might occur du~-t~ the 

sharpn~ss angle'of-th~ knife;-as hypothesized by Koniger. 

This action might elongate the fibers along their longitu­

dinal axes, causing them to -fai1·in·tension.- With further 

compression·of--the bunched fibefs, it was:thought the knif~ 

force·increased markedly to shear the uncut mass of-fibers 

then suddenly drop off to zero. 

An ·apparatus was·made' in which the force on the movihg 

knife was incremented slowly by the addition of hangin~ 

weightsi The distance between the~knife edges was contin­

uously measured. Thus a load-deflection curve for a single 

stem of alfalfa was plotted. Figure 4 illustra~es the 
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result. It shows the failure of-the stem did proceed in two 

disti.nct .steps as hypothesized. - Also .shown in Figure 4; for 

comparison, is a load~def]ectfon curv~· resulting from shear­

ing sheet iron between two edges. The sc~le is reduced~so 

that the shape may be more directly compared to the shape 

of the stem load-deflection curve. The sheet iron curve was 

plotted by. Kr~bbe as discussed by Svahn:and Lundstrom (14). 
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Figure 4; Comparison of Load Def6r~atioh CLlrves,for 
Plant-Stalks and Sheet Iron: 

By measuring the energy required. to cut d1ffer~ht size 

stems,with sharp and du11 knives, it was found that th~ 

effe~b of dullne~s was more-pronijunc•d for smjJT stems. 

Thus it~~$ reasoned that the nature of~the cutting action 

C-hanged -With i n9rease in st~i'n si Z~. Si n~e the beVel a11gl e ~ 

of the knife cutting edge ~ouJd prqduce more of a-wedging 

effect on la.rger stems, it was hypothesize-d that dul1·b1ades 
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cause small stems to fail in shear, while with larget stems, 

tensile failure of the fibers might-occur from the wedging 

effect."· 

Chancellor (16) used-30-power· laboratory binoculars to· 

observe slow tutting of single stalks of-fotage plantsi He 

determined that initial flattehing of-the stem was accom­

panied by cracking along its length produced by failure of 

the transverse bonding of the· fiber groups to each other. 

This cracking allows flattening of the stem for ah extensive 

distance:each side of the area i~ direct contatt,with the 

cutting edges •. Thus. inttial longitudinal bending is less 

pronounced than shown by Figure 3, The- initfal flattening 

produced, in eff~ct, t~o,sheets of ·fibers, one-above the 

other between the cutting edges. The top.fiber s~eet .. (the, 

one in contatt with moving.cutting e~ge) failed first, fol~ 

1 owed by i n c r ea s e d f o r c es p re v i o us to · · fa il u re o f th e -s e co n d . 

sheet of fibers. This= is>the pattern.of-failure predicted 

by Fisher, Kole:ga, -and-Wheeler. (l5), Fai1ure·of the fiber 

sheets was along a plane inclined roughlj 45 degrees to 

the longitudinal axis of the stem. 

Chancellor proposed that each of the two sheets of fi-· 

ber fails as a result of bending and transverse compressfv~, 

stresses imposed by the b~a~e edge.· He reaso~ed that-these 

stresses ~ombine. to· produce a shear stress of greatest in­

tensity along a plane inclined-appro~imately 45 degrees to 

the longitudinal axis of the stem. He concluded that fail­

ure took place on the plane of maximum shear stress, but he 



thought that failure of the individual cells of the fibers 

might be of a tensile nature.: 
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In consideration of the effetts of p1ant_phys1ca1 prop­

erties on cutting, McClelland and Spielrei~ (17) designed a. 

static grass tester to determine the ultimate bendihg 

strength of forage stems. They found a,lihear relationship 

between bending force causing failure and the linear density 

(weight per unit.length) for ryegrass, lucerne, oats, and 

wheati Their conclusion was t~at the stems, although of 

biological character, "obeyed a rea(iily established law of 

mechanical behavior." Differen~ species of plants and 

different varieties·within a speciei exhibited different in­

herent me~hanical characteristics; But it was stated t~at 

once the mechanical constants of a· particular variety of 

plant-were ,determined, a predi~tion of-bending strength 

could be made'by.measuring the linear density.· 

In_a simi1,ar_investigation,'Prince (18) designed­

special t~sting machines to determine the ultimate- bending 

and torsional strengths of forabe stalks~ He also determin­

ed the rel~tionship between stalk diameter and linear. 

density. Kis findings corroborate those of McClelland and 

Sprilrein with respect to bending strength; that. is, the· 

force required to cause failure of a stalk in bending varies 

1inearly:with the weight per unit;length (linear density) 

of the stalk, However,.· Prince found that moisture content 

of the stalk affected the bending strength, Thijs knowledge. 

of the moisture content, linear density, species~ and 
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variety of a plant is required to predict,the ultimate bend­

ing strength of the stalk. -

The ultimate torsional strength of -alfalfa stalks was 

found to vary linearly with the -weight-per unit length of 

the stalk. Also, as with ultimate bending strength, the 

slope of thestraight-line.graphof the relationshipwas 

steeper for stalks of lower,moisture.content .. 

To gain'further insight-into-the mode of failure of -

fora~e stalks when subjected to the action of two opposed 

knife elements, a comparison-of the ultimate:tensile strength 

and ultimate shear strength of the stalk is in order. One 

of the equations-for ultimate bending strength determined by 

Pri.nce (18) applies to 38 day old alfalfa :of 71% moisture 

content (wet. basis). One· of--the equations. for ultimate 

torsion~l;strength applies to 41 day al~ alfalfa of 68% 

moisture content.- If these stalks are assumed equivalent 

an~ a ltnear density;of 0.05:grams per centimeter is se 7 

lected as typical, the computed u1timate:bend1ng force~ by 

Prince 1 s equation,. is: 

F =--144.85 + 3572.83 (.05) =-63.79 gms. 

This force a~ted at a distance;of 5.8 centi~eters from the 

stalk-s~pport to produce a moment of (5.8} (63.79) = 369.98 

gm-cm. wh,n the stalk failed. The ultimate torque on-th~ 

same ste~ when torsional -failure occurs is: 
,. . . . . 

T = 67.38 + 1_085.83 (,05) =-1?L67 gm-cm. 

From _Figure 4, it is apparent that for a·plant stem cut -

between two opposed edges, the load-deflection curve for 
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each of ihe two sheets of fibers of the flattened stem is 

simil~r in shape to the curve for sheet iron sheared between 

two opposed edges, Therefore, assume for comparison purposes 

that the heterogeneous stalks fail similarly to homogeneous 

metal ro<is subjected to the same type of loading. Fictitious 

maximum tensile and shear strengths~.computed f~r the 

equivalent metal rod,.should.provide a reasonably accurate. 

estimate,of the actual ultimate tensile strength to shear 

strength ratio. Then if 

Sfu = ultimate flexural stress; 

S5 u = ult1mate·tors1ona1,stress~ 

M 

c 

I 

J 

r 

= applied bending moment; T = applied torque, 

= mo,ment o.f inert~,.a of th.e cross .. section, 

po 1 a r mo me.n t o f i n e r t i a o f t h e c r o s s s e ct; i o n , 

= .. radius pf the rod, 

= Mc/I 
Tr/d 

But r = -c~ and J = 21 for a circular cross section. 

2M 

T 
= gJ,_369.98) = 

121.67-
6.08 

This estirpate shows that. forage· sta1 ks are about six times 

stronger _in tensile strength than in shear stren~th. If 

this is so, _then it is most-probable that failure of the 

stem o~cuts by shearing along t~e plane of maximum shear 

stre~$. · The maximum shear stress.results from the combined 
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locali~e~ bending and transverse shear loads imparted by the 

two opposed edges acting on the stalk~ With the assumed 

loading, there seems to be little logic in supposing t~at 

failure of the individual fibers is in tensiono Nor does it 

appear likely that tensile failure of stem·fibers, resulting 

from the wedging action of the knife, dccurs wh@n large 

stems are'cut with a dull knife (as. opposed tb pure shear­

cuttin~ of smaller stems by the same knife)o Rather the 

dull knife can effect concentrated localized bending stress 

on-the coarse fibers of.the·large~ stiff stems to increase 

the combined shear -stress.onthe.failure·plane·of the.fibers, 

Thus, less force is required than for failure by transverse 

shear loading .alone~ The· same dull e~ge is rel,tively wide 

with respect to the fibers of~small stems; thus tr~nsverse 

shear loading, with little.localized bending, results and 

requires higher forces to.produce:failure~ · 

Mode of Stem Failure.-.Single Element (Impact) Cutting 

Chancellor (16) studied impact cutting by photographing 

the plant ste~ at the instant.Qf cut with.a. high speed 

camerao He found that the stems deflected: little during im­

pact cutting and only in the vjcinity of the knifeo After 

the·cut, the severed stem underwent additional deflection 

because:of energy, in excess of that requiretl to sever the 

stem, imparted by impulse during the cutting p-rocesso He 

the o r i zed th a t · t h·e me c ha n i s 111 o f fa 11 u re w a s b a s i c a 1 l y t he 

same as that of a stem cut between two elements. In-this-
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c; a s e , the i n er t 1 a o f -the p 1 a n t a ct s -- a s -t h'Ei" s e c; o n ,r e 1 em en t • 

The cutting f6rce is reacted by the ~ttempted instantaneous. 

acceleration of the stem fibe~s. Because of -the bigh ve­

locity of·the blade, the force acting:on the•stem is large 

enough to cut individual fibers befo~e-their movement rela­

tive to other fibers results. in compression of the stem into 

two flat sheets.· Thus. impact. cutt:ing is charatterizec;l_ by_ 

continuous·seveting of~the stem ftbe~s-rath~r than-first 

compressin~ them into two flat sheets and then·.cutting th~ 

sheets individually as occurs when shearihg between two 

elements. 

Johnston (1~), in studyi~g the behavior~of·crops during 

mowihg-by .the use of high.~peed motion pfcture 0 ph6tography, 

observed the nature of the impact fotce developed between a 

single-plant stem and-the advancing.knife.· .. In_this instance, 

the knife velocity was.cohsiderably below~tbat commonly used 

for impact cutting. Still, the results are similar, and he· 

gives a c~ear explanation of the action •....... ··-

Impact is considered to la~t while the.section of 
straw'at the point of-contact is being accelerated 
to knife speed. The mass of the length of-straw 
pear the knife edge will be more important~over 
this -small interval of time because bending will 
raptdly reduce the acceleration expsrie~ced by 
higherorlower parts. As-the bending.deflection 
inc~eases, the force,due to·the rigidity of the -
straw wi1l ·become· important ... Thus the force be­
tween-the straw and the knife edge will, apart 
from impact, depend on the deflection of the straw, 
that is; on the distance the knife has moved. 

His film showed that when.the knife contacted a sin~le· 

straw, considerable'bending occurred in the portion of the 

straw in front of-the knife, while the top of the straw 
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moved very little. A drawing (Figure 5) showing superimposed 

frames of the high speed photographs is used io illustrate 

this action. 

Numbers 
1 ~2;3,4 

Indicate 
Consecutive 
Positions 

of 
Stalk 

and 
Blade 

Figure 5. Reaction of a Single Stalk to 
Knife Force 

He concluded that 11 the straw resisted the knife motion 

as a propped cantilever [beam], the inertia of the top of 

the straw being in effect the prop. 11 This conclusion is 

corroborated by a high speed moving picture study conducted 

by Fell~r (12) of the cutting action of a single element 

impact blade. He found that with a cutting velocity of 25.8 

feet per second, 11 When the knife hit the stalks they were 

pushed about 1 inch before being cut while the top part 

did not move~ 11 
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The assumption of the stalk'reacting to the knife motion 

like a propped cantilever beim appears to confirm Chancellor 1 s 

conclusion that impact Cl.ltting produces the same type of stem 

failure as cutting betweeri two elements. Transverse shear 

and bending loads combine to.produce a stress exceeding the 

shear strength of the stem fibers and cause separation along 

the plane of maximum shear. -

Mode of-Stem Failure - sawing 

One key difference in cutting between two opposed elQ-
- ' ' 

ments and by a single high speed blade is noted in consid­

ering a slicing or sawin~ cut. Motion of the stem along the 

knife edge, as it is penetrated and severed by the knife, is 

a defining characteristic of a· slicing cuL Johnston's high 

speed motion picture films of-the cutting actiOn'of two 

opposed knives (.angle between cutting edge and direction of 

mo t i o n a p pro xi ma t e 1 y 6 O d e gr e e s ) s how e d . n o _ s l i p o f t h e 

s ta 1 k a 1 o n g t he e d g e -in tr a n s po r t · to t h e . o p p o s i n g 1 e d g e r 

plate or during cutting (19). Thus cutttng-between two ele­

ments is a pure pressing type of cuL In'"contrast, Feller's 

film of single element cutting showed extenstve slip or 

sliding of·the stalk along the blade to give a combination 

pressing-slicing type of cut (12). 

To better explain the ktnd of cutting action investi­

gated, Chancellor (16) define-d a chopping (purepressing) 

cut as one in which-the normal force between the blade and 
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the stalk assume~ whatever_value~necessary tb cause unfform 

motion of the·blade through the stalk.with no motion along 

the blade. 

A p u re. s 1 i c i n g o r s aw i ~ g c u t i s . o n e . i n w h i c h t he f o r c e 

perpendicular to the blade e~ge remains constant~ and the 

stalk"move~ along the bl_ade the required distan~e for 

cutting.· 

Both Fe11er (12} and Chancellor (l6) refer to V. ·p. 

Goryachk1ns 1 s equation for a s11cing,type of -cut as given-by 

Bosoi (20); .. 

where 

P = the normal pressure of the blade on the st~lk 

S = the distance the stalk-moves along-the blade_before 

being completely severed 

K =-a constant 

Goryachkin stated that a slicing type cut required less power 

than a pure-pressing type of cut •. Chancellor 1 s experiments 

refuted this claim. He found the energy required for a· pure· 

slicing cut to be .approximately twice that r,quired for 

chopping - with smobth, serrated~ or saw tooth blades. 

Smooth blades required the -most· energy, serrated next, 

and the saw tooth.blade required the least of the three for 

cutting.· However, an_increa.se-in·the normal pressure on 

smooth o~ serrate~ blades reduc~~ the cutting-en~rgy re­

quir~ments to the point of approaching~ but still not equ~l­

ing,. the energy required for chopping. 
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Feller (12), on the other,hand, found that a combined 

pressing-slicing type of cut required less energy for single 

element cutting th_an a pure pressing cut alone, He determin­

eci that a knife angle (angle between~the blade·edge and the· 

direction of motion) of 60 degrees.required minimum cutti-ng 

energy.· By introducing Goryachkin 1 s equation in the formula 

for work done {energy exper:ided}~.i.e., work·is proportional 

K K to P x S = P x ~- = ~- he claimed to verify Goryachkin 1 s -
p3. ' p2 ' 

finding for knife angles up to 60 degrees, since P increases 

with larger-knife angles. Above this value, the relationship 

d O e S llO t h O 1 d • · 

The increased energy.required for sm,11 knife angles 

(producing pure slicing) is explained by .Feller as resultirtg 

from th~ high friction.force caused by tbe~blade.wedging 

into the stalk; Energy is dissipated by .. tbis.friction force_· 

acting over the distance.the stalk slides along the blade 

during cutting.· 

Chancellor (16} gave a somewhat differarrt:explanation 

for i n treas e d energy re q u i red for s 1 i c i n g .., : . He . the or i zed th a t 

the individual fibers were-eng~ged by the:.blade in small 

gr o ups and bent a n·d, s tr etched · i n the di rec ti on of motion i n 

a manner:similar to a taut hori~ont~l cord fixed at both 

ends with a weight'.hung at the center.· He suggested that a 

smooth blade engaged the fiber bundles by friction; thus it 

would catch and release the bundles several times before 

causing failure~ A serrated blade is more positive in 
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engaging the fibers ahd carryi~g them to·f~ilure. A saw 

blade is the most-positive-of all. .The tensile nature of the 

failure plus multiple engageme~t and release of the fiber 

bundle~ by smooth and serrated blades require more energy to 

cause failure.· 

After studying the nature-of-sa~ing:wood; Harris (21) 

described the mode of failure of-individual fibefs as·a 

shearing action. - But whether-failure. is by shearing, by 

tension and flexure, or by:a combination of the three, the 

distinguishin~,feiture of sawing with a toothed blade is the 

formation of-a kerf (notch) with accompanying sawdust. This 

re_sults from successive teeth bejng 1'set 11 (deformed slightly) 

to opposite sides of the:blade; Thus cutting. takes place in 

two parallel planes. produting~-as Chancellor (16) points 

out, 11 twice as many cuts,as··necessary. 11 

To reduce the high energy required by.cuttihg in·two 

parallel planes when sawin~, Alex Lundbe~g.of.Sweden de­

signed~ saw with modified.teeth; The Lundberg saw teeth 

have the high point in the center instead of on the outside 

like. conventional· teeth, F_igure·6. With this design, a 

finer set is permissible; produci~g less of a kerf and a 

smaller amount of saw dust. A coarsef pitch (larger teeth. 

and fewer of them) is feasible, and power requirements are 

reportedly reduced (22). 

An approach "similar to that of Lundberg 1 s design might 

well reduce the energy required for sawing small stems.· 



Lundberg Saw 
Teeth 

Conventfonal Saw 
Teeth 

Figure 60 Comparison of Lundberg and 
Conventional Saw Teeth 

MotionJof Severed Stems Resulting:From·Impact Cutting 
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A plant stem, being flexible, acquires. some velocity 

before- being severed by a.single, high velocity blade. Thus 

energy in excess·of--that:required for cutti.ng. is --transferred 

to the stem, as evidenced by its_ ~ain ih~momeptum •. ·This 

acquired kinetic energy,produtes motion of the severed stem 

after the knife has_ passed~· 

An indication of-the extent of energy trahsfer to the 

severed plant is shown by high speed motion pictures of 
l 

impact cutting taken by Feller (12). Alfalfa stalks, 18 

inches tall and 1/8 in9h in diameter at the base~ were 

thrown a distance of--15 feet when cut 3 inches above the 

base by a sharp knife traveling 31.8 feet·per second With 

the knife ed·:ge perpendicular to the ciire~tion of -travel. 

The film showed that after the stem was cut, the lower part 



of it moved faster than.the.upper part~such-tbat=the stem 

approached a-horizo~tal.position tn:flight~ · 

29 

Conside~ing the s~parated stem as-a rigid free· body and 

assuming that a constant.force acts:at.the·cut end.for a 

short·time to_ give ·an.impulse e~uivalent:to·that causing the 

gain in momentum durin~ cutti~g.leads.to·ariticipation of the 

plane motion shown by-_the fi.)mo · The horizontal force act­

ing at the ·cutting zone can~be'.replaced.by an-equivalent 

horizontal force and·a couple .. acting.atthe center of_gravity 

of the -stalk,· This ... for.ce system:would produce combined 

trans1ation-and rotatioh of theistalko Figure 7~ · 
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Figure 7. Force System on Single Stalk and 
Resulting Motion 
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The amount of ener,gy_ transferred.to the 'severed stem de­

pends on a· number of variables. Feller (12) determined that 

knife angle~ knife,velocity, plant hetghti and plant species 

influenced the energy transfer,. Chancellor (16) inve~tigated 

the effects -of knife velocity, stem:size; blade-sharpness, 

and distance between the cut and.the point of stem support,. 

on the energy transfer,. He:clamped:81/2 inch long stems 

of-timothy plants at one:end.and photographed the deflection 

of the free~end when cut.by an~impact·kntfe (blade edge 

perpe~dicular to th~ direction of trav~l). By considering 

the ·clamped stem as a canti1ever. beam, he calculated the 

energy trans fer n e c es s a r y . t cL ca us e the ·gt v en · de fl e c ti on ~ 

Results of-these two.investigations are summarized in 

tab 1 e I . 

Variables~Affectt~g.Cutting 

Variables ·influencing.the ability of.a:cutttng mechanism 

to se.ver plant··stalks and.affecttng the.force.level and 

. energy input required to accomplish thi~ cutting may be 

grouped into three broad catagories: kntfe:de~ign para~ 

meters, knife operati~g,parameters, and.p1ant:chatacterist1cs. 

An important design .. parameter is the .. angle between ·th~ 

knife edge· and the direction-of motion of the knife (for im~ 

paci cutt1hg) or between-the two opposed cutting elements 

{for·two element-shearing). Both of-these angles are·de· 
' 

scribed as the knife angle. Other important design para­

meters inc1ude"the bevel ·angle of the knife edge and the 



VARIABLE 

1. Knife Angle 

~foo e = Knife 
Angle 

Cutting Edge Blade 

2. Knife Velocit;i'. 

3. Blade Shareness r"' >.0035"Dull 
C::::::, <.0035" 

T Sharp 

4. Distance of Cut From 
Point of Stem Sueeort 

i=_i_ 
-rnk-f 

5. Stem Size 

~ Diameter or Wf ght Per 
U it Length 

6. Plant Height 

1~ Cutting 
Plane. 

7. Plant seecies 

TABLE I 

EFFECT OF VARIABLES ON ENERGY TRANSFERRED 
TO SEVERED STEMS BY IMPACT CUTTING 

INVESTIGATOR RESULTS 

Fell er ( 12) With a sharp knife, max·imum .energy transferred with 0 = 96°. 

Very small transfer with 0 = 30°. 

Fell er (12) With a sharp knife, energy imparted was greater for ~igher 
velocities when cutting 18 inch tall alfalfa plants 1/8 dia. 
stems). Velocity range: 9.52 to 27.3 ft. per sec. Knife angle: 
60 to 90 degrees. 

Velocity had no effect when cutting 18 inch tall 
(l/4 dia.) unaer the same conditions. 

sudan grass 

Chancellor Sma 11 increase of deflection with velocity in range of 136, 205, 
(16) & 237 ft. per sec. when cutting 8 1/2 inch long timothy stems 4 

inches from support with a sharp knife & 90 degree knife angle. 

Chancellor Greater energy transferred by dull knife (90 degree knife angle) 
(16) for sma 11 stems. Difference between dull and sharp blades less 

pronounced for large stems. 

Chancellor Greater energy transfer with increased distance between cut and 
(16) point of stem support. (Cuts 2, 4, & 6 inches from support; 

8 1/2 inch long stems) · . 

Chancellor Greater eneigy transfer to heavier stems (. 015 gms. per cm. 
(16) ~ .035 gms. per cm.) 

Fell er (12) Increased energy transfer with increased velocity for 18 inch 
tall alfalfa plants; no increase of energy transfer with in-
creased velocity for 5 1/4 inch tall alfalfa plants. (Sharp 
knife, 45 degree knife angle; cut 1/4 inch above base of plants.) 

Fe 11 er (12) Marked difference in amount of energy transferred to alfalfa 
and sudan grass stems at higher velocities. Difference possibly 
related to stiffness of the stems. 

w __, 
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degree of sharpness of the e~ge as defined· by ·the thickness 

at the poin~ of the bevel~ The clearance b~tween two 

opposed sheafing elements affects cUttt~g:fotce ahd energy 

requirements~ .Its:effect.depends,on,the·degree of knife 

sharpnessj however, being more.prOhounced with a dull knife· 

than~with a sharp one .. Still other.design"parameters.are 

the type of·bl~de (smooth, serrated~·~r-notched} and the· 

w i d t h o f b 1 ad ·e · c on ta ct w i th _ 1; he : m a, t e r i a 1 · to · b e · c u t . T h e 

latter il det~rmined by the knife section dimensions and 

the spacing of the -sections· alo~g.the. cutter bar. 

Knife. v~locity, in the.direction of mott6n of the bl-de· 

edge~ is an ope~ati~g parameter,of prf~e'import~nce: - Further~ 

the relationship of .the-knife~veloctty to the forwa~d motion 

of-the knife;carriage determines ·the feed rate; or th~ for­

ward advance·of the carriage:per .. cutting stroke,· The feed 

rate in turn determines the·area,'of-p1ant.sta1ks.cut per 

stroke,.the height of cut:above.the ·base.of..:the.plant-for a· 

given cutter. bar.height ,adjustment~ and. t"he:ori entation. of 

plant stalks re1ative.t6.tbe.kntfe edge ~hen~cut. All 

these variables have beep.found.to affect cutting force and: 

energy, .as h~ve the cutter -bar height setting and the normal 

fo-rce on th-e blade (in sawing). 

Plant characteristics which affect cutting force and 

energy requirements are species and maturity of the plant, 

stalk diamB~er, plant height, and moisture content. 



VARIABLE 

1. Knife Angle 

2. Bevel Angle 

TABLE II 

EFFECT OF KNIFE DESIGN PARAMETERS ON (UTTING FORCE & ENERGY 
AS REPORTED IN THE LITERATURE 

CUTTING ACTION 

Two Element Shearing 

qg 
Single Element 
Impact 

~' 

INVESTIGATOR 

Chancellor (16) 

McClelland & 
Spielrein (23) 

Feller (12) 

Two Element Shearing I Chancellor (16) 

~ 
Fisher-Schlemn 
(Cited by 
McClelland & 
Spielrein (23) 

McClelland & 
Spielrein (23) 

RESULTS 

Less energy required for knife angles between O & 20 
degrees. Force required decreases with increased knife 
angles (angles tested: 0, 15, 30~ & 45 degrees). 

For smooth, shar~, beveled knife and ledger plate blades 
(19° bevel angle), minimum energy required for knife angle 
between 17 & 25°. Angles tested: 0, 17, 25, & 35 degrees. 

With a sharp knife (15° bevel angle), m1n1mum energy re­
quired for knife angle of 60° when cutting pla~ts 3 inches 
above point of support; and«= 45° when cutting plants 
1/4 inch above point of support. Angles tested: 7, 15, 
30, 45, 60, 75, & 90 degrees. 

With dull knife (15° bevel; 1/32 radius at point), best 
performance with«= 90°. 

Slight increase in energy & force required with increase 
ofs from 20° to 30°. Rapid increase fors above. 30°. 
(Range tested: 20° - 80°) " 

Optimum energy & force requirements with minimum wear when 
B = 24°. (Range tested: 14° - 30°) 

Compared angles of 19° & 90° (square). From 2.5 to 3.5 
times more energy required for B = 90°. 

w 
w 



TA£LE II (Continued) 

VARIABLE CUTTING ACTION INVESTIGATOR RESULTS 

3. Knife Two Element Shearing Chancellor (16) With edge width below .0035 inch, little effect on force 
Sharpness or energy; above .0035 inch width, force & energy in­

crease with increased width of flat (a= 25~). 

Liljedahl et al. Sharp knife required less energy and was little affected =?(3 L (24) by knife to ledger plate clearance or plant moisture con-
__L tent. With a = 30°, I.= sharp (no radius at point); II = il .003 inch radius; III= .006 inch R.; IV= .012 inch R., 

then at zero clearance, ratio of energy fequirement~ was: 
Width I:II:III:IV = 1:1.2:2.2:3.1. At .016 inch clearance, 
Edge I:II:III:IV = 1:2.7:4,9:6. 
Point 
Bevel Prince & Using a knife blade with a= 25° and a square ledger plate~ 

~ Wheeler (25) energy requirement doubled when a 1/32 inch radius was put 

~ 
on edge of ledger plate. 

Single Element Chancellor (16) Increase of force and energy requirements for a dull knife 
R Impact with response similar to cutting between two elements. 

Feller (12) Energy requirements doubled by putting 1/32 inch radius on 
edge of blade. ( = 15°). 

4. Clearance Two Element Shearing Chancellor (16) With sharp knife, clearance below .025 inch has little 
effect. Energy & force increase with increased clearance 
above .025 inch. Range tested: .005, .015, & .025 inch. ~o Liljedahl et al. Little effect with sharp knife. Rapid increase in energy 

(24) requirements with increase of clearance with dull knife. 
Range tested: 0 to .016 inch in increments of .002 inch. 

u 
T McClelland & Slight increase in energy requirements for .026 cm. clear-

Cl _J Spielrein (23) ance over .005 cm. clearance with sharp, beveled blade. 
earance Ratio of 1.2 to 1. For square blades, ratio was 2.2 to 1. 

w 
.i:=,. 



VARIABLE CUTTING ACTION 

5. TtQe of Blade .. Two Element Shearing 
.·• 

D 
. e~ ·· ger Plate · 

Smooth Beveled 
Knife 

D 
--
lmo;th 

Beveled 
Ledger 
Plate 

Under serrated 
Beveled Knife 

Pure Slicing 
or Sawing 

TABLE II (Continued} 

INVESTIGATOR RESULTS 

Chancellor (16) Three combinations tested: 
1---underserrated, beveled blade with a square shear plate 
11--smooth, b~Ve1ed blade with a square shear plat~ 
III-smooth, beveled blade with a smooth, beveled shear 

plate 
(Avg. ) Ratio of energy requirements: I:Il:III = 1.6:1.2:l. 

Liljedahl et al. Three combinations tested: 
(24) I---,smooth; beveled blade/square shear plate 

II--smooth. beveled blade/beveled shear plate 
III-sm.ooth, beveled blade/sq11are shear plate including 

r.elief angle 
No advantage to III. Lowest energy required by II. With 
dull blade, ratio of en~rgy required was I:II • 2:1. 

McClelland & Three combinations tested: 
Spielrein (23) !---square, notched blade/square, notched shear plate 

II--square, smooth blade/square, notched shear plate 
III-beveled smooth blade/square, notched shear plate 

Ratio of energy required in cutting oats; I:II:111 = 5:3:l. 

Prince & Four combinations tested: c 

Wheeler (25) r~--smooth, beveled blade/beveled shear plate 
II--smooth, beveled blade/square shear plate 
III-smooth, square blade/bev~led shear plate 
IV--smooth, square blade/square shear plate 

Ratio of energy requirements (.14" dia. alfalfa stems): 
I:11:111:IV = 1:1.5:1.8:3.5 

Chancellor (16) Three types of saw blades tested: . 
I---smooth; II--serrated; III-saw toothed (32 teeth/inch) 

Average energy requirement ratio: 
I:II:111 = 2.8:1.1:1 

w 
.u, 



1. 

2. 

TABLE III 

EFFECT OF KNIFE OPERATINB PARAMETERS ON CUTTING FORCE & ENERGY 
. AS REPORTED IN THE LITERATURE 

VARIABLE CUTTING ACTION IN VEST! GATOR RES UL TS 

Knife Velocit.}'. Two Element Shearing Chancellor (16) Change of velocity in range of 5.75 to 17 ft. per sec. had 
(in direction little effect on either force or energy requirements; 
of motion of slight increase in energy. slight decrease in force with in-
blade edge) creasing velocity. ·(Sharp knife) 

McClelland & Slight increase in energy requ{rement~ with increase in 
Spielrein (23) velocity in range of 1.88 to 4.05 ft. per sec. (Sharp 

knife) 

Single Element Chancellor (16) Ch~nge of velocity in range of 140 to 280 ft. per sec. had 
Impact little effect on energy requirement. Minimum velocity 

recommended: 150 ft/sec. (Sharp knife) 
, 

Feller (12} With sharp knife, velocity increase in range of 9.57 to 
31 .8 ft./sec. did not affect cutting energy. 
Min. vel. to cut 1/8 dia. alfalfa: 8.4 ft./sec. 
Min. vel. to cut 1/4 di a. sudan grass: 21.6 ft./sec. 

Feed Rate Two Element Shearing Kepner { 2) Feed rate recommended: 2/3 relative motion of two cutting 
( forward travel elements per stroke. For fixed ledger plate, & cutt~r b~r 
of knife car- movement of 3 incher per stroke, F=2/3x3=2 in./stroke 
riage per cut- F=V/S=h/1 For knife throat depth of 1 3/4 in., I=h/f=l.75/2 = .88 
ting stroke) I=hS/V=h/f 

F, feed rate. in,/stroke. Lamp, Johnson, Minimum cutting index recommended~ .45 
V, forward velocity, in./min. & Harkness ( 3) F=h/1=1.75/.45=3.89 in./stroke 
S, strokes/min. 
h, throat depth of knife, in. 
I, cutting index 

Single Element Chancellor (16) Feed rate recommended: that which allows cutting one stem 
Impact at a time 

w 
O'I 



VARIABLE 

3; Thickn.ess of 
Material Cut 
eer Knife 
Stroke 

4. Orientation 
of Sta 1 k · 
Relative to 
Rnife When 
Cut 

5. Height of 
Cut Above 
Base of 
Plant 

6. Normal Force 
on Blade 

TABLE III (Coritinuedl 

CUTTING ACTION· INVESHGATOR . RES UL TS 

Two Element Shearing Chancellor (16) For a given number of stems to be cut, force & energy 

darld 
increase with the thickness of material cut. 

Thickness of Liljedahl For a given number of stems to be cut, doubling the thick-

Mat~i al ~~td 
et al. (24) ness increased energy required by 25%. 

Alf\d -z 
Prince & Incr~ased energy required for increased thickness of tut. 

Same Number of Stems ~el er (25) 
But Increased Blade ~idth 

Two Element Shearing Prince & Energy required with plant oriented such that ex=ey=90~· 

~·~' Wheeler (25) is greater than that for another ~rientation. The particular 
lvt I , p!),rl best orientation depends on the plant species and the type 

:· ' ei t . of knife & shear plate used. (i.e., for alfalfa, and knifi 
I & ledger plate with 25° bevel angles, By had no effect; 

. ·<> ez=75° tequired 14% l~ss energy than ez=90°) 

Single Element Chancellor (16) Increased energy required with increased distance.of cut from 
Imp a.ct point of support (8 1/2 in~ timothy stems cut 2, 4, & 6 

r~· 
inches from support). 

Feller (12), Wlth all other conditions constantt changing cutting heighi 
from 3 to .25 inches above support decreased cutting energy 
by 50%. . .. 

Pute Slicing Chancellor (16) Increased normal force decreased cutting energy proportion-
(Sawing) ally, for smooth blade. Less effect on .energy for serrated 

~ .r,otJ 
_blade; only slight effect for saw-toothed blade. 

jJ.O 
/ 

~NORMAL 
FORCE w 
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VARIABLE 

1. Plant seecies 

2. Maturi ti of 
Plan ts 

3. Moisture 
Content 

4. Diameter of 
Stalk 

5. Height of 
Plant 

TABLE IV 

EFFECT OF PLANT CHARACTERISTICS ON CUTTING FORCE & ENERGY 
AS REPORTED IN THE LITERATURE 

CUTTING ACTION INVESTIGATOR RES UL TS 

Two Element McClelland & Ultimate bending strength varies with species, affecting both 
Shearing Spi"elrein (17) force & energy required for cutting. 

& 
Single Element Prince ( 18) Ultimate bending & ultimate torsional strengths vary with 
Impact species, affecting both force & energy required for cutting. 

Pure Slicing Chancellor (16) Difference in ultimate tensile strength of stem fibers of 
or Sawing various species has some effect on cutting energy. There was 

little effect on cutting force. 

Two Element Pri nee & Younger plants require less energy. (i.e. alfalfa at 55 days 
Shearing Wheeler (25) required twice the cutting energy as alfalfa at 28 days with 

the same diameter stalk. Moisture content of the two samples 
were within 10% of each other) 

Two Element Chancellor (16) Higher energy requirements but lower forces at higher.moisture 
Shearing contents. Maximum force required at 35% moisture content 

(wet basis). 

Lilijedahl ~ Maximum energy requirement at about 30% moisture content (wet 
(24) basis). With a sharp blade, moisture content had little 

effect on energy requirement; with a dull blade, effect more 
pronounced. 

Princ_e & Energy requirement increased by 40% as moisture content de-
Wheeler (25) creased from 74% to 48% (w. b.). Further drying to 20% 

moisture had no effect on energy. 

Two Element McClelland & Linear relationship bjtween bending force for failure ind mass 
Shearing Spiel rein (17) per unit length of stalk. Thus force & energy to cause fail-

ure are proportional to stalk diameter. 

Prince ( 18) Ultimate bending & torsional strengths of plant stems are pro-
portional to linear density of stem. Linear density is pro-
portional to stem diameter. Thus force & energy requirements 
for cutting increase with stem size. 

Single Element Chancellor (16) Force & energy requirements increase as stem size increases. 
Impact 

Single Element Chan cell or (16) No effect on force or energy_ requirement for 8.5 inch tall 
Impact timothy stems extending 2.5, 4.5, & 6.5 inches above 

cutting plane. 

Fel-1 er (12) Slight increase in energy requirement for taller plants 
(i.e., .47 ft-1 b per stalk for 1/4 dia. sudan grass stems 
8 inches tall comp a red to .59-ft-lb per stalk for the same 
diameter stem 18 inches tal 1. All other conditions 
constant.) 

w 
OJ 
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Results of previous investigations of the effect of -the 

different variables on cutting force and energy are 1isted 

in Tables II throug~ IV. 

Previous Design of Rotary Cutters wfth Blades -
Approximately Helical -in Configuration 

The idea of a 11 rotary sickle'.' to replace the reciproca­

ting cutter bar of mowing machines was considered during the 

period between 1885 and 190Q. Beekman (26) (27) was granted 

United States patents on.at least two devices using rotary 

knives on a horizontal shaft! In-his patent claims, he 

refers to 11 a rotating-cutter provided with a helical cut­

ting edge lying in the surface-of a-cone. 11 His concept was 

one -of hooked knives rotating on a horizontal shaft with 

downward motion during the cutting cycle; The spiral outer 

surface of the knives would feed the grass or grain later­

ally into the sharp inne( hook· surface of the adjacent knife 

where cutting would take,p1ace. 

The use of -a helical shaped cutting: .. edge.was proposed 

for lawn mower designs during the period·.::from.1940-to 1950. 

The he 1 i ca 1 e d g e was approx i mated by e 1 l·i pt i· ca 1 s hap e d 

disks equally spaced along a· horizontal shaft. and positioned 

at an angle to the shaft center line such that the peripheral 

surface of the disks was cyc1indrica1. Newton (28) received 

a patent on such a device in 1942. Figure 8 (A) illustrates· 

his design.- Positioned beneath the rotor disk assembly 

(shadeci on the drawing) was a stationary cutter bar having 

V-shaped sections. The disks rotated downward on the 



Rotor Drive 
Belt---~ 

Rotor Shown 
Shaded----J 

Forward Travel 
R. T. NEWTON HELICAL MOWER 

(A) 

/ 
Forward Travel 

W. BRAUER HELICAL MOWER 
{B) 

Disk Overlap 

t 
Forward Travel 

· J. A. CHAMBLISS HELICAL MOWER 
(C) 

· Fi g u r e 8 , · P rev 11 o us Ro to r y C ut t e rs 
Approximately He11ta1 1~ 
Configuratton .· 
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cutting stroke to separate the grass, grain, or other mater­

ial into bunches and cut them by a shearing action between 

the fixed ledger blades and the rotating disk edges. Be­

cause of its inclined position on the shaft, each disk de­

flected the material to be cut first to one side then to the 

other in one complete revolution. 

Another design, patented by Brauer (29) in 1946, in­

corporates a rotor with fixed ledger blades beneath it very 

similar to the Newton design. The principal difference is 

that half the disks are inclined on the rotor shaft in one 

direction and half in the opposite direction as illustrated 

by Figure 8 (~). Direction of rotation is downward-during 

the cutting cycle. 

Chambliss (30) proposed a mower design.that eliminated 

t h e s ta t i o n a r y 1 e d g e r bar he n ea th t he rot o r • . C u t ti n g w a s 

to be accomplished by the 5~ything act1on,of.the flat in­

clined disks of the rotor. assemb1y alone •.. In. his design, 

granted a United States .patent 1h 1958, ha~proposed square 

or rectangular shaped.disks with serrated'.edges. The dim­

ensions -0f the disks and the spacing of them along the 

rotor axis was such that the cutting swath of each disk 

o~erlapped that of the adjacent one. Figure 8 (C) illustrates 

the arr·a.ngement. Direction of rotation of the- d.isk edg·es-

was speci fi-ed to be .!:!E_Ward on the cutting stroke rather than 

d own w a rd 1 i 'ke t ha t o f p r e v i o us d es i g n s , By s p e c i f y i n g t h a t 

cutting was to be effected by the rotor disk edges alone, it 

was 1mp11ed that the effective diameter of the disks and the 
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rotational speed would be great enough to give peripheral ve­

locities in the range of 150 feet per second, that required 

for single element impact cutting witti squar~ knife edges. 

Apparently without prior knowled]e of the patented mowar 

designs using horizontal rotors with cutting edges approxi-

mately helical in configuration, Miller (31) conceived d 

built a stalk cutter based on these same principles ih 1965. 

The rotor assembly of his design consists of e11tpt1tal 

shaped disks arranged at an angle to the rotor shaft like 

that of the Newton design. A key difference exists in the 

con guration of the fixed ledger blades in Miller 1 s design, 

however, He used curyed ledger blades to be concentric with 

the peripheral surface of the rotor disks for an arc of 

approximately 90 degrees. 

In evaluation tests.of the sta1k cutter,.Mi11er found 

that the cutting action was effective. A modarate stand of. 

alfalfa stems and weeds with stems up to 3/8 inch in diam· 

eter were cut easily and without winding of stems about the 

rotor or c1ogging of the feed openings. _ Upward rotation of 

the rotor disks during the cutting cycle.produced better re­

sults than duwnward rotation. With upward rotation, the 

severed stems fell to the rear of the cutter assembly. 

Rotor speeds of 3380, 3600, 5650, and 6750-revolutibns per 

minute were tried with no excessive vibration noted, Feed-

ing the plant stalks into the cutt~r at a rapid rate proved 

to be a problem, And small stems had a tendency to bend 

over and slip between the rotor and ledger blade edges 



43 

without being cut. Close clearance·between·the·rotor cutter 

edges and the concentric le~ger blades ·was required for a 

good shearing action. 

A graphical analysis of one cutting cycle of the cutter 

designed by Miller should give some insight to the cutting 

action of· the helical cutters described thus far, since the­

rotors of the Newton, Brauer, and-Chambliss machines are. 

very similar to Miller's design. Fi~ure 9 presents the 

analysis~ Part (A} of the illustration shows a rotor disk 

just after it has completed deflecting plants to the ledger 

blade on the right side and is about to begin sweeping the 

next group of plants fed into the feed opening to the left~ 

side ledger blade~ Note that the knife ·angle.at poiht 1 on 

the disk is 16 degrees.·. Also not~ that the. upper portion of 

the disk virtually closes.off-the V-shaped.feed.opening be­

tween the ledger blades to the right and left of the disk. 

Section E - E through point 1 on the .disk.and in the plane 

of rotation of the disk·shows the effective:beYel angl~ of 

the disk cutting edge at point 1 to be 145 degrees.· 

Portion (B) of the illustration shows the rotor disk 

after it has rotated to the position where point 2 is at 

bottom dead center. The V-shaped feed opening still is 

largely blocked by the upper portion of the disk~ The 

knife angl~ has changed to 25 degrees, and the effective 

bevel angle at point 2 is 119 degrees. 

Portion (C} of the illustration depicts the disk after 

it has further rotated until point 3 is at bottom dead 
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center. Here its position is such that its face plane is 

viewed as a line and the knife angle is 30 degrees, the 

nominal or design knife angle-of the cutter. The effective 

bevel angle at point 3 is 90 degrees. 
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Further rotation of the disk brings point 4 to bottom 

dead center, the situation shown by portibn (D) of the illus­

tration. - Here the knife angle has decreased to 26 degrees, 

and the effective bevel angle at point 4 is 61 degrees. 

It is seen that points 1 and 4 are shrouded by the 

ledger blades. Therefore all contact of the.disk edge with 

plant stalks in moving them to the left ledger blade occurs 

between points 1 and 4. Assuming two element shearing of 

the stalks between the disk edge and the concentric ledger 

edge, the shearing occurs along that portion.of the disk edge 

between points 3 and 4 .. The effective bevel.angle of the 

disk edge where actual cutting takes place:j.s then greater 

than 61 degrees but less than 90 degrees ... ln .. effect it is a 

dull cutting edge. Since~theccurved ledger.blades.were made 

by forming standard mower.ledger=blades,.the-angl~.between 

the ledger edge and the direction of motion:of:points on the 

rotor is approximately 8.degiees. The knjfe.an~le for two 

el~ment shearing thus,vari~s from about 36 to 38 degrees. 

The peripheral speeds of points along the disk edge 

during the tests conducted by Miller were: at 3380 rpm, 

29.5 ft. per sec.; at 3600 rpm, 31.4 fL. per sec~; at 5650 

rpm, 49.3 ft, per sec.; and at 6750 rpm, 58.9 ft. per sec. 

The maximum peripheral velocity tested was only about one 
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third the recommended 150 ft. per sec~ velocity for single 

element impact cutting with a dull edge; As a result, it is -

correct to assume that cutting took place by two element 

shearing between-the effectively. 11 du11 11 rotor edge and the 

ledger blade edge~ The dull rotor edge explains the tlose 

clearante between the rotor.and· ledger blades found necessary 

for cutting small stems. ~t is a: requirement predicted by 

the work of other researchers on;the effects of knife design 

parameters on cutting. See Table II. 

Another characteristic of helical cutters employing the 

elliptical disk type rotor can be understood by referring to 

Figure 10. End and top views of the rotor designed by 

Miller are shown with the disk in a position such that its 

face plane is normal to.the.plane ofthe.paper,_ Consider 

two equal and diametritally opposite particles of mass making 

up the rotor disk, particles.P.and P 1 in_tbe:illustration. 

When the rotor i s s ta ti o nary .. ( pa rt ( A } o, f ::.1'::i:gu . .r e .1 O ) , the 

moment about the rotor,center, O, due to.th~ weight of 

particle Pis equal and opposite to that due to the weight 

of particle P 1 • · The same is true for every two diametrically 

opposite mass particles,.and the rotor is thus staticalll 

balanced. 

When the rotor assembly rotates about its axis, however~ 

a different situation arises, as is shown by part (B) of 

Figure 10. Since the particles P and P 1 have equal mass and 

have equal angular velocity due to rotation of the disk, the 

centrifugal force produced by each is equal. But since the 
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forces C and C1 are not.coll.inear,.a .. coaple;'T=Cd~·ispro­

duced. The total effect produced.by the mass of the entire 

disk being non-symmetrically disposed along the shaft axis 

is a larger couple which.produces unequal bearing forces 

and induces vibration of,the.assembly. 

From the preceding discussion~ the charatteristics of 

helical cutters utilizing.the,.elliptical disk type of rotor 

construction can be summarized as: 

1. The knife angle:varies from point·to point,along 

the cutting edge, since.the:disk edge only approximates a 

tr u e c y 1 i n d r i ca 1 h e 1 i c a 1 1 i n e • . The no m i n a l o r .- 11 d es i g n II 

knife angle can be defined.as the.angle betweeh the plane of 

the rotor disk when it is viewed as a·line and the plane of 

rotation of the disk. Then.the.knife angle~at,points along 

the edge of the disk.to.either:stde'of the;point where the 

disk planeappears as·a-linewill·be progr.essi.vely less 

than the nominal knife.angle. The knife~angle.at any point 

remains unchanged as.the:point.rotates about the shaft akis, 

however. 

2, The effective:bevel angle of the .. disk ed~e varies 

from an obt~se to an atute.angle when°sections are taken in 

the plane of rotation.but.at different. points along- the 

shaft axis. In general, the bevel angle is well above the-

30 degree maximum angle recommended for sharp edge cutting 

and thus presents an effectivelyllsquare 11 or dull cutting 

edge to the plant stems. 



3. An inherent dynamic, unbalance exists in the rotor 

design. 

4. Plant stalks are partially blocked from entering 

the cutting zone of the disk edge during the early part of 

each cutting cycle. The upper part of-the disk occupies 

the available space· and prevents the plants from entering 

the zone. 
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A mower based on the Chambliss (30) patent was intro­

duced to the~agricultural.equipment market during the year 

1968 by the Spinslicer Co~pany (32); The rotor of this 

machine is constructed with a ten inch diameter base cylinder 

to which are welded protrusions for attaching fo~r longitu­

dinal rows of inclined and curved edge cutter.blades. The 

four rows of blades.are-equally spaced about.the periphery 

of the base cylinder, and adjacent rows of-blades are in. 

clined in opposite directions. - Each blade:is attached to its 

s up port i n g bas e · p rot r us i on by three b o l ts.::. · ~ The : bl ad es and 

mounting protrusions,are:posttiohed obliquely.to th~ base 

cylinder axis; In other.wor,ds, there is_.no.point about 

the periphery.of- the base cylinder when vtewed in the plane 

of rotation,.perpendicular to the cylinder.axis, at which a 

blade surface appears JS a line. This construction reduces 

the effective bevel angle of the blades. This feature~ along 

with a chamfer on the trailing edge of each blade, provides 

for a "sharp eage 11 type of cutting action. The radial dis­

tance from a point on the cutter edge to the rotor center 

line is approximately seven inches. Rotor speed is 



approximately 2000 rpm. Thus the peripheral veloc i ty of 

points along the cutting edges is about 122 ft . per sec . , 

almost high enough for single elemeht impact cutting even 

with a square edge or dull type of blade . Figure 11 ill us ­

trates the general construction features of the Sp i nsl ic er 

machine rotor. 

Figure 11. Rotor of Spinsl i cer Mowihg Mach i ne 
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CHAPTER III 

DESIGN OF THE CUTTING DEVICE 

When the cutting device for this study was designed, . . 

during the months ·Of-May throuih July, 1966, the previous 

work on cyljndrJcal. helical cutters was unknown to the 

author .. As a consequenc;e, tbe expedient design guides that 

might-have:been drawn from the,informatjon presented in the 

last section of Chapter II were not available. 

Approach_ 

The general cutting principles developed by other re­

searchers as recorded in Tables I through IV of Chapter II 

were utjliz~d in.deciding overall design specifications .. 

For e~ample, from the tables the optimum knife angle for 

two el~ment shearing is within the range of 15 to 25 de­

grees. The optimum_ knife angle for single. e,ement impact. 

cutting is within the-range of 45 to 90 degrees, depending 

on.whether the.blade is sharp or dull. Feller (12) report­

ed an optimum angle.of 60:degrees for a sharp blade.· 

Since t~e mechanism of cutting_with a cylindriGal:helical 

blade was not knQwn, it was desired· to span the range of 15 

to 60 degree knife angles in the device to be designed-and 

t es t. e d . Ano t h er e x amp 1 e p e rt a· i n s to t h e be v e 1 , a n g 1 ~ o f a 
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sharp blade. From the tables, it shoOld be less than 30 de­

grees, preferably.around 25_degrees. 

Being concerned with both effecttve cutting and the_ 

trajection of:the s~vered stems made design requirements 

more strict than would. be the case if cutting.effectiveness 

alone comprised the objective. The twofold purpose required 

that compromis~s be made in desired specification~ .. Rota­

tional speed and the size of the cutter diameter is a case 

in:point •. A large cutting edge ~iameter ~llows high periph­

eral velocities at lo~er rotational speed than a small diam-

eter cutier. But a large diameter cutter makes necessary a . . 

larger.energy transfer·to the severed stem in order to tra­

ject the·cut end.high enough to.clear the cutter. High 

peripheral velocity to insure impact cutting is-de~ired, but 

rotational speed sho.u1d.not be so high as to require unreal~ 

istic feed rates (forward travel per.cutter .. revolution} of a 

h a r v e s t i n g ma c h i n e t ha t m i g ht·.. u t i 1 i z e a he 1 i ca 1 c u t t e r . 

Thus a sacrifice in peripheral velocity to. keep a reasonal;>le 

size cutter diameter and feed rates was thought necessary. 

Model Study 

To gain a better understanding of design alternatives 

availabl~ and thu, to keep a rational footin~ in deciding on 

the cutter.specifications, a model cylindric~l ~eltcal 

cutter was built; Figure 12 .. A portibn of·a three inch di­

ameter c;onveyor auger formed the rotors_. Conventional· 

square edge flighting c;omprised one rotor; a modified 
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flighting, the 'Conventional square edge type with a ledge 

welded to the outer periphery to provide a sharper edge, 

comprised another. Square edge and beveled .. edge ledger 

tubes were made. A plant holding block was designed and 

located beneath the rotor-ledger tube assembly of the model . 

The plant holding block had guide rails for lateral and 

transverse positioning relative to the rotor axis. 

Qualitative cutting tests using the model provided 

valuable insights into desirable cutter specifications . It 

was clear that the rotor having a sharp edge provided by the 

ledge on its outer periphery cut more effectively than the 

square edge rotor. Also tests emphasized the fact that a ll 
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points along the rotor edge haYe.radial motion only; lateral 

motion of plant stems derives from slidi~g of the ~terns along 

the edge ... To prevE;int s:t:ems from being expelled forward out 

of the cutting z9ne in two_el~ment s~e~ring between the rotor 

and ledger tube e~gesj it appeared a reverse slope-ledger 

blacle angle (opposite to the. slope of the rotor blade angle) 

would be desirable. Further, it appeared that a_cutttng 

zone 1,rge enough to.accept an~ allow severing plant stems 

at least 1/2 ·inch in diameter shoulcl have· a minimum width of 

1 1/2 inch~s. The importance of not blocking the cutting 

zone with t~e inactive blades if mu,tiple blades were used 

about the rotor periphery w~s demonstrated; 

General Specifications and-Design· 

Detail~ of the Cutter, 

Fol,owing the.model study, extensive.graphic analyses 

of possible. geom~tric configurations for a.cylindrical. hel­

ical cutter were made .. A cutter diameter.of 3.1/2 inches 

was chosen. as a workable compromise to fu1. fill the ob­

jectives of:a desirable peripheral speed.and.:minim~.m space 

requirements~ At 3600 rpm the peripherat:velocity is 55 

feet per second, which is about 1/3 the velocity required 

for single element impact cutting with a dull blade but 

almost double t~e 32 feet per second velocity at which 

Feller observed impacticutting with a sharp blade. An 

attempt to approxjmate a -20 degree double he lex for- a 

suitable cutter configuration failed to meet space 
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requirement~. A 26 degree nominal blade or khife angle turn­

ed out to be the minimum obtainable within the space require­

ments set. 

The geometric configuration selected as best for fab­

rication and tes'I: is one that might be classified as a modi­

fied elltptical disk design,.since only portions of complete 

elliptical disks are used.· Figure.13 illustrates the;design. 

Two identi~al sec:tors, which.appear v-shaped in~the t~p view 

of Figure 13, are positioned diam~tricallj opposite on the 

rotor shaft to provide a structur~ with inherent static and 

dynamic balance. Th~ two diametri"cal ly opposed v-shaped 

sectors comprise one rotor-knife section; Each 11 legllof the 

v-shaped sectors consists of ·a portion of:'.a flat elliptical 

disk set,·at an ang1e to the rotor shaft SUGh that· it!;! 

per i. p her y 1 i es · i n >the s u r face of a r i g ht ci r cul ii r cy 1 i n de r · 

with an axis identical to that of th~ rotor shaft. The 

disk edges, which ~ie in the c:ylindrical:-surface, ,then 

approximate cylindrical helices with a heiit:a~gle~equal to 

the angle between the plane:of the disk and:the. plane·-Of­

rotation. At the -periphery of each disk,:on. its 11 outside 11 . 

face~ a ledge is ~xtended transverse to the:disk,facei The 

outer edge of the ledgei -which lies in-the cylindrical sur~ 

face and:is approximately parallel·to the disk edge~ a1so. 

forms an approximation to a cylindrical helix. The ledge-. . . 

has a bevel angle of ·30.degrees, measured parallel to -the 

rotor-axis, at every point along.its edge. This edge_forms 

one,of -the two cutting edges of ·eac:h v-shaped sector. 
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assembly, Thus the effective bevel angl, of the cutting 

edge, measured in the plane of ·rot~tion, will be less than 

30 degrees at every point. Ttie periphery of the ledge 

extends,.the periphery:of the c;lisk sector to form a wide 

surface for attaching blades .. This feature fulfills the 

design~objecttve of detachabl~ blades to allow trial of 

botti square edge and sharp edge blades - and to allow blade 

replacement:instead of sharpening on production rotor 

assemblies of this type. 

Each v-shaped sector.assembly is symmetric about the 

plane of rotation through the center .of the "vee.11 Thus· 

the left side of the ·sector approximates a right. haod 

cylindrical hel1x and will deflect-plant stems to the left 

while the rfght ·side.of-the sectot approximates a left. 

hand:cylinc;lrical helix and wil.l deflect.plant stems to the 

right. Each of the .two identical sector assemblies dia­

metrically opposed on ttie rotot shaft will:deflect plant~ 

sterns in the same mann~r~ The-alternate.direction de~ 

fleeting action characteristic of the comp1ete elliptical 

disk or wobble plate design is not:-present. However, 

since plant stems are·deflected toward a~ledger-blade along 

a later~l distance"that is at most only. 1 1/2 inchesj and­

since there is !!£.lateral motion of the rotor blade rela"". 

t i v e to t ti e · f i x e d ledger b 1 ad e · to ca us e j a mm i n g o f p 1 a n t 

f-ibers in the clearance space betwe·en the·m tn the first 

place···(this is true of the comple-te ellipti:cal disk-or 



wobble plate design also), there appears to be little ad­

vantage in th~ two-way deflection action, 
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Since each sector assembly is symmetric about the plane. 

of rotation through its center, and the cutting edge action 

of the sector on either side of the plane of symmetry is 

judged to be identical except for lateral deflection of the 

plant stems in opposite directions, just the left half of 

the rotor sector geometry was fabricated for test, A 

cylindrical :plate was included at the plane of symmetry to 

improve the rigidity of the structure and to provide for 

drilled holes to correct the unbalance due to construction­

al inaccuracies. To adequately span the desired range of. 

knife angles, rotors with 26, 36, 46, and 56 degree knife 

angles were constructed. To provide for quick interchange 

of the four. rotor assemblies, a mounting shaft with snug 

fitting contacting surfaces at each end of the rotor 

mounting section and with one attaching bolt at the outer 

end was designed. Figure 14 shows these features. 

The ledger tube configuration was arbitrarily de­

termined, The ledger blade angle is five degrees, with a 

slope opposite to that of the rotor blade angle. It was 

intended that the replaceable ledger blade be concentric 

with the rotor peripheral surface. However constructional 

inaccuracies made the surfaces ecGentric. When the ledger 

blade touched the rotor periphery in line-to-line contact 
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at either end of its:90 degree arc of_e~tent, the center of 

the blade clear,d the rotor surface.by approxi~ately-0,010 

i n c b • The 1 edger tube was des i g n e d s u ch that i t co ul d be 

rotated about tbe rotor axis and be. clamped at differel'lt 

positions t9 change the location of the start of the cut~ 

ting zone.· Start of the cutti_ng zone is defined to be-where 

the. ledger tube shielding of the rotor blade ends. The 

l~dger tube-rotor assembly arrangement~ shown by a line 

drawing in Figure 14, is further illustrated by Figures 15, 

16; and 17. Figure 15 is a ·phot~graph of the rotor·mount­

ing shaft and le~ger tube without-·a rotor assembly in- place. 

Figure·l6 presents -the s~me view but with the 36 degree 

rotor as~embly mounte~ on the shaft. Figure 17 depicts 

the 36 degree'roto~ and the le~ger assembly as viewed from 

the rear; The two caps~rews:clamping the.ledger assembly 

tq the matn~frame - through slot~~d holes.to allow changing 

the angular ori-entation of.the ledger tube.,.. are seen in 

this view. The black tape covering parts:of-the ledger 

assembly was used to reduce the fluorescer,t_ 1 i ght emitted 

by these surface~ during ultraviolit light.photographic 

studies,of severed plant stem motibn. In these illustra~ 

tions, the 36 degree rotor is fi-tted with square edge (dull) 

blades. 

A detailed description of -the test rotor -assembly. 

construction will be given with reference to the 36 degree 

rotor. The photograph:comprising Figure 18 gives a per­

spective view of this rotor assembly. Figure 19 is a 
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Figure 16. Top View of 36 Degree Rotor 
Assembly Mounted in Ledger 
Tube 

Figure 17. Rear View of 36 Degree Rotor 
Assembly Mounted in Ledger 
Tube 
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line drawing of.the perspective view with the component 

parts of the assembly labeled. 

The hub is machined from 1 11 ·0.D. ·x 7/32 wall cold 
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drawn seamless steel tubing (AISI Cl015). Slots for ac­

curately positioning the sector plates at the correct knife 

angle orientation were machined in the hub. The sector 

plates, geometrically portions of an elliptical disk, were 

machined from #7 Ga. (.1793 11 thick) cold rolled sheet 

steel: The sector segments are attached to the plates by 

#3-56UNF stainless steel flat head machine screws. After 

being tightened in place the heads and ends of the machine 

screws were tack welded to prevent loosening. The sector 

segments, which provide the bevel angle required for sharp 

edge blade cutting, are fairly complex parts. The segments 

were machined from 3 1/2 11 0.D. x 5/16 wall cold drawn seam­

less steel tubing (AISI C1015). Figure 20 shows the 

fabrication procedure and gives a clear picture of the con­

figuration of the segments. As noted in the illustration, 

the plane surface of the segment that abuts against the 

elliptical shaped sector plate in assembly. is bounded by 

two elliptical curves and approximates a right helicoid. 

The outer elliptical curve matches that of the sector 

plate. The periphery of the segment is a:portion of the 

3 1/2 inch diameter cylindrical surface of the tube from 

which it is machined; The surface which provides the bevel· 

angle for the cutter structure is seen to be a portion of 

the surfate of a truncated right circular cone with a 30 
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deg~ee angle betwe~A its axis and elements. The base and 

truncatin~ plane'of .the c~ne are oblique to the cone axis 

such that the coniGal.surface of the segment approximates ~­

an oblique~he1icoid~ After the segment.was attached to 

the :plate for·each_sector, the sector assemblies were welded 

to the rotor hub and_end plate. Th~ cylindtical peri~hera~ 

surfaces were then turned and'ground in-a lathe to a di­

arnete~_of 3.440/3.436 inch.· Holes fa~ attaching the blades 

were located, drilled and tapped, an~ the blades were at­

tached to complete the rotor assemblies. - The assembly then 

was balahce~ at_3600,rpm pn a dynamic balancing machine. 

Cross sections of the two types of blades tested on 

the rotors ate_shown by F{gure 21. 

--f' • ••• -• • ___________ ...... 0 ........ ··-·· ·-·· .......... N ______ _.... 

. -

Figure 21. Cro$S Se9tions of Square and Sharp Edge 
Blades Tested (Section Magnified lOX; 
20 Degree Bevel Angle on Sharp Blade) 
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In the photogr~ph, the blade:cross section are magnified ten . . 

times by an:optical comparator, The square edge blade does 

indeed present,a square edge, 90 degree angle, to the plant: 

stems to be cut. It was fabrica~ed from 1/32 inch thick 

steel Milfor~ precision fl.qt stqck which was in anannealed 

state. The sharp edge blade has a 20.degree'bevel angle and 

was fabricated from 0.028 inch thick Milford 3808K1 band 

knife stock (used on _band saws)., The blade material.had 

to be stretch~d to.seat property on- the rotor sector sur­

faces, and this operation required heating the band:knife 

stock~ The temper of the metal in the cutting edge was not 

appreciably altered in_·the process; however, as it retained 

its shape and sharpness and was not damaged.by subsequent 

cutting of ,plant 'stems~ .Had the blades been fabricated 

from a 3 1/2 inch tube of, blade sto~k,. the. cyl_indrical sur'.'" 

face required could have been.obtained without stretching 

the matetial. The blades.were,attached to:tbe.rotor 

sectbrs with #3-56UNF flat head stainless.steel.machine 

screws. · The heads wete recessed in countersunk. holes in 

the blac;le material-.· After attaching-the·.blades, the rotor 

assembly was mount~d in.a lathe and t~e cy1i~drica1 outer 

surfaces -of-the blades subjected to a light grind operation 

to trµe'.them. With the sharp blades,·the space:above the 

attaching screw_h~ads in the-recessed blade holes was filled 

with solder before the final grind operation. 



The·effective bev~l angle of the bl~d~'rotot sector . . . 

. ass~mb]y is .illus~.r-~ted by Ffgure. 22. for the square edge 

~-. 

END VIEW • SQ EDGE. BLADE 

END OF SINGLE 
ELEMEIIJT CUTTING 

. SEGMENT EDGI: 
~ MOTION 

("START OF SINGLE 
1 ELEMENT CUTTING 

TOP VIEW 

EFFECTIVE BEVEL 
ANGLE, (3, OF BLADE 

~~­. ----r~ 
· END Vl EW- SHARP EDGE BLADE 

Fi·g1Are 22-. Effective Bev~l Angles at Start a.nd End of-­
Single Element Cutting for 46 Degree 
Rotor · 
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and-sharp edge blades attached to the 46'degree rotor. For 

the sharp edge blade; the-transition between the blade bevel 

angl~ and the se~tor segment,bevel angle is seen to be.a 

smooth one~ The squa~e edge blade presented a cutting edge 

similar to the elliptical disk roto~s discussed in the -

last:section of Chapter II~ At the potnt along the blade 

edge where the knife angle is equal to the nominal knife 

angle of the rotor sector, the effective bevel angle-of the 

blade can be calculated from the equation 

where 

a• = arctan (tans sin-a.) 

s'-is the effective'bevel angle(in the. plan.e 

of rotation) 

a is the ·blac;le bevel -angle 

a. is the knife angle 

(3-1) · 

Since· the nominal knife angle is the maximum knif~ angle of 

a rotor assembly, the above relation gives the maximum 

effect-tve bevel angle of the rotor assembly. Table V 

lists these maximum effective-bevel angles for the rotor 

assemblies-test~d. The acute effective bevel. angles _give 

decisively sharp cutting edges for the rotor sectors.· 

A comparison of the four test rotor assemblies fitted 

with sharp blades is pres,ntec;I by Figure ?3. 

The v~riation in kn}fe angle from the nominal value 

with lateral distance along the blade edge is charted~for 

ea~h rot6r_in Figure 24~-



TABLE - V 

MAXIMUM EFFECTIVE BEVEL ANGLES OF BLADES 
FOR ROTOR ASSEMBLIES TESTED 

ROTOR ASSEMBLY MAX EFFECTIVE BEVEL ANGLE OF BLADE 

26 DEGREE 

36 DEGREE 

46 DEGREE 

56 DEGREE 

:\ 

go 4 I 

12° 5 I 

14° 40 I 

1 7o l 5 I 

Figure 23. Test Rotor Assemblies Fitted 
with Sharp Blades (Left to 
Right Arrangement: 26, 36, 
46, and 56 Degree Rotors) 
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Direction Of Rotor 
Blade Motion Al 
f>oinl P ~--

.. Overlap---- .......,,'----,._ 
l2 For 26° Rotor 

fi For 36.0 - 56° Rotors·. 

EFFEOTiVE .KNIFE ANGLE 
SINGLE ELEMENT CUTTING 

60 

55 

Tangent To Ledger 
Blade Edge At 
Point P' ----. 
Direction Of Rotor 
Blade Motion Al 
Point P' __ _.. 

·--frototion - -

EFFECTIVE KNIFE ANGLE 
two ELEMENT CUTTING 

(Start Of Single. Element Cutting 
--~56o. 
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50 

55• 1Roto, {End Of Two Element Cutting 
.542 

511• 
0 

FEnd Of Single Element Cutting 
2 sol! . 491• 

... ... ... .. 
"" ... 
o. 

I 

~ 
·o, 
c 
c:t 

... -c 
:,,: 

45. 

40 

35 

30 

25 

20 

15 

10 

5 

35° 
34° 

2 \ 2 
\ 

44 1oloc 

1lstort Of Two Element Cutting 

O L----'---'---'-.,__...__-'---'---'-.1.... 
1,5.t_l.4 1.2 1.0 .8 .6 .4 .2 0 

Start Of Cutting 
Distance From Bottom Corner Of 

Ledger Blade - lnc~es 

VARIATION OF KNIFE ANGLE. WITH 
DISTANCE ALONG SHAFT 

Figure 24~ Vatiation in Knife Angle with Lateral 
Distance Along Blad~ Edge 



CHAPTER IV 

KINEMATIC AND CUTTING FORCE ANALYSIS 

Kinematic Analysis 

The trace on a vertical plane of a point on the cutting 

edge of the helical blade rotor is one of a family of curves 

that may be described as inverted looped trochoids. The 

particular curve traced will depend on the angular velocity 

of the rotor and the linear velocity of the center of the 

rotor relative to the plants to be cut.- or ground.' For a 

rotor of diameter D, if for example the linear velocity, V, 

of the rotor center, is such that the center moves forward 

(translates) a dist~nce 3/2 D for each revolution of the 

rotor, a point on the rotor petiphery wi11:trace the curve 

shown in Fig~re 25. The solid line represents a point on 

the outer ci¥cumference of one of the two identical dia­

metrically opposed sectors of the rotor. The phantom line 

(solid line interrupted periodically with two short dashes) 

represents a point on the other sector exactly opposite the 

first point, 

Assume a point along the edge of the rotor sector blade 

will cut into a plant stem any time the point is moving 

forward (where forward is defined as the direction of the. 

velocity, V, of the rotor center relative to the earth), 



u 
PL4Nr 5e"Rlt!:S J ---z____..._' 
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' 0 
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Figure 25. Geometry of Motion of Points on the Cutter Rotor Relative to 
Uniformly Spaced Plants Along the Row 
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With this assumption, the activ~ cutting zones of two 

opposite points on the rotor~periphery ate as shown by the 

heavy shadi~g along the curves in· Figure _25. The cutting 

zone of any point on a sector blade edge begins at bottom 

dead center of t~e rotor since_ th~ shielding-portion of the 

ledger tube ends there. 

If-the plants tQ be cut are uniformly spaced,a dis~ 

tanGe R apart~along the row, successive plants will-engage 

a point on the sector blade at different positions along 

its zone of -action as shown by Fi.gure 25. For each plani 

to be engaged at an identical position in_ the zone, the 

plant spacing, R, would have.to equal ·the rotor center ad­

vance per revolution, or some integral multiple thereof. -

The position in the cutting zone.of the first. plant in a 

series of equally spaced plants- is entirely.random. It 

might be engaged by a point oh.the sector just;after bottom 

dead center or just before exit of.the point.from its active 

cutting zone. Compare plant_series 1 and:2 on, Figure 25. 

Hence the extent of rotation of a point.on:the blade past 

bottom dead center when it first engages.the. plant to be 

cut is a random value. - Eva1uate4 over.a~Jong.enough period 

of cut ti n g , th i s v a 1 u e s ho u 1 d be a nor ma 1 ly di s tr i but e d 

functio~, of which the.arithmetic mean could be considered 

the nominal value of the function. 

Examination of the cutting zone$ of two opposite points 

on-the rotQr diagramed in Figure 25 reveals that if a plant 

should be cut in the upper end of the cutting- zone of one 



sector, the remaining stubble will be cut again by the 

opposite sector~ This possibility-of 11 double cutting•• is 

illustrated in_ further detail by Figure ?6, As ·shown by 

Figure 26, the zone of double cutting is greate~ in length 

for lower values of advance of-the rotor center per rev­

olution (f,ed rate). Thus the prob,biljty of double 
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cutting for a feed rate 0 of L = D/2 is about~three times that· 

for a feed·rate of:L = 20. 

However·anot~er parameter affects the extent-of the 

zone of double cutting - as well as the.extent of the cut­

tine zone itself.· Th1s parameter is the angular position 

of the.stationary ledger tube. The normal position of-the 

tube may be consideretj that which exposes-a.point on the 

rotor blade for active cutting at bottom dead center of the 

rotor, Figure27a. Rotation of -the ledger tube in a clock­

wise direction froin the normal position .exposes the blade 

tq the plant before botto~ dead center is.reached~ This 

lengthens the cutting zone- and in~reases.the.zone of double 

cutting~ Figure 27b. Counterclockwise rotation of the 

ledger tube prevents exposure of -the blade.to. the plant: 

until afte.r bottom dead center is passed,.-which ·shortens 

the cutting zone: The shorter cutting zo~e may completely 

eliminate the double cu~ting zone and introdu~e a zone of 

11 drag cutting 11 in-its place; Figure 27c; Plan~ stems in 

the-drag cutting zone will be untouc;:hed,by the first rotor 

sector, then cont~cted by the edge of the ,edger tube and 

deflected or 11 dragged 11 forward slightly before the second-
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I ZONE' Or OOl/BLc 

Ct/TT/NG 

a. Nor1oal Position - Blade Exposed at Bottom Dead Center 

b~ Position for Lengthened Cutting Zone - Greater Double 
Cutting Zone 

c. Position tor Shorter Cutting Zone - Elimination of 
Double Cutting Zone 

Figure 27. Effect of Ledger Tube Angular Position 
on Cutting Zone and Double Cutting 
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sector blade engages and cuts them,. Thus the angular posi­

tion of the rotor shield portion of the ledger tube relative 

to bottom dead center of the rotor is a parameter which must 

be considered in evalu?ting the cutting device - from either 

an energy input or plant motion standpoint. 

Cutting Force Analysis 

The resultant force of a rotor sector blade on a plant 

stem when motion of the stem along the blade edge is im­

pending is diagrammed in Figure 28. The point-of contact 

of the blade edge with the plant stem is point P. The 

angular position of this point from bottom dead center of. 

the rotor.is denoted angle.p. This angle, the knife angle,. 

a, and the frictioQ ahgle between.the plant and the blade, 

~' all.affect the line of action of the.resultant force F. 

Since the blade configuration is an approximation to a 

cylindrical helical edge, the knife angle, a, varies with 

change in axial location of the cutting point along the 

blade edge .. (For a true cylindrical heljcal edge, the 

knife angle would be constant with respe~t to akial loca~ 

tion of the cutting point.) However, for:any.point on the 

blade, the knife angle, a, is unchanged with rotation of 

the point about the rotor center. And for a given pla~t 

species and blade material, the friction angle, ~' would 

be expected to remain constant. Thus change in angular 

position of the blade point about the ro_tor center, angle p, 

is the principal cause of a constantly changing line of 



FRICTION ANGLE,p., 

~ 
~ 

~ ~ \ ~ . .i€0TATION 
JA... FROM 8. OTTOM · . . . ac.,;o 

. v 

LEOGER 7tJ8c 
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Figure 28. Diagram of Resultant Force on a 
Plant. Stem from a Point on the 
Rotor Sector Blade Edge 
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action of the resultant force. (The stiffness of the plant 

stem in bending is assumed to be the same in any direction 

transverse to the stem . ) 

PcANT STE.# 

DIRECTION o,c ROTOR 
BLAO!: MOTION 

BEING CV"T-------

TANG'!::NT TO l.cOG.:,[? 
BLA.OE E.OG£ 

Figure 29 . Two Element Cutting of a· Plant Stem 
Between the Ledger and Rotor Blades 

The discussion so far assumes the rotor blade cuts 

into a plant stem on contact to give .single element impact 

cutting , Should the force system not produce this type of 

cut, and certainly it will not with a square edged or dull 

blade at low velocities, then the plant stem will slide 



80 

along the blade edge into a position to be cut between th, 

ledger tube ffxed blade an~ the moving rotor blade. Figure 

29 illustrates the resulting two-element type of cut, 

The force diagram of Figure 28 applies to either 

singl~ element impact cutting of. the plant stem or to de­

flection-of the stem alorg the blade. If the resultant 

force~ F, is resolved into componehts along the rotor axis, 

FY;· paral 1~1 to a vertical centerline of the rotor, F2 ; a.nd .· 

perpendicular to a vertical centerline of the rotor~ Fx; 

the component forces are defined by 

F y = F. cos (a+1/)) 

F x- = F sin (a+1/)) cos p 

Fz = F .Sin (a+1/)} sin. p 

(4""1) 

(4-2) 

(4-3) 

The axial or II Si de II component of force, FY, depends only 

on Fi a~ and 1/Jt while the _vertical component and.the 

horizontal component in a vertical plane depend on F, a, 

1/J, and p, The axial force.component, Fy,~is the one which 

moves the plant stem along the rotor blade·int6 contact with 

the ledger tube blade for two-element cutting.between th~ 

two blades. And it is independent of abgular_position of. 

the point on the blade about the rotor center. Therefore a 

plant:stem will-be deflected toward the ledger blade by a 

point on the rotor blade at all times during contact of the 

blade and the stem.· The ground area encompassing plants 

who s e s t ems w i 1 1 b e d e f J e ct e d by ea ch s e .Cto r o f · th e r o to r . ' . . 

per revolution can:be determined graphically by plotting the. 



forward motion of successive points along the~rotor blade 

edge. This is done in Figure 30. 

To traject the severed stems onto a catching platform 

of a harvesting machine, it would seem d~sirable to have 

2so 0 ROT,4.?;<:;A1 re) s-va 
OF 2 ELedlcA/T Cc./TT/Nc,- ---,.-----,,""4 

Figure 30. Area of Plants Cut by Each Rotor Sector 
Per Revolution (Diagram Shown Is for 
Feed Rate L = 3/2 D) 
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minimum acceleration of th'e stem in the direction of forward 

travel of the m~chine. Further, upward acceleration of the 

whole stem, or at least a pronounced upward rotation of the 

cut end is desirable to allow the platform to 11 run under 11 

the severed stem before it falls downward due to the ~arth 1 s 
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gravity field. The cutting actjon to accomplish thesa.pur­

poses should be one with a minimum Fx force component. In 

the equation for Fx, the friction angle~ is assumed cons­

tant. For a given resultant cutting force F, then, to ob­

tain a minimum Fx component: the knife angle a should be 

small and the angle p should be large. This implies the 

26 degree rotor with the ledger tube oriented counter­

clockwise from its normal position should give the best 

stem trajection resultsi 



CHAPTER V 

DIMENSIONAL ANALYSIS 

One of the objectives of ~~is study is to relate the 

response variables df "intere~t to the independent, control­

lable parameters th.at have a non-trivial effect on them. 

The response variables to be considered are the input energy 

per stem cut, maximum torque developed per stem cut, and the 

displacement of the stem center of gravity an4 cut end in 

three orthogonal directions after cutting. Dimensional 

analysis affords a means of reducing the number of variables 

to be considered in an experiment and of reporting results 

in a general, dimensionally correct. form, 

Energy Input and Maximum Torque Responses 

Consider now the pertinent quantities or fundamental 

parameters involved in the energy input to cut and impatt 

motion to plant stems, using the helical cutter, Knife 

angle, wh~ther for single element or two~element cutting is 
• I 

an important parameter. For the approximate cylindrical 

helical configuration of the cutting edge of the design pro­

posed, however, the knife angle and the rate of change 

of k~ife angle with axial distance depend on the angle be­

tween the~Rlane of the rotor sector plate and the rotor 
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axis (angle a of Figure 31), the axial distance from the in­

tersection of the plane and the axis to the point where con­

tact with the plant stem is made (distance 1 1 of Figure 31), 

arid the rotor diameter (dimension Don Figure 31). Since 

the rotor is fixed axially with respect to the ledger tube, 

the axial distance from the intersection of the rotor plane 

and axis (1 1 ) can be defined in terms of the axial distance 

from a referente point (bottom corner) of the fixed ledger 

blade to the point of contact. On Figure 31, l 1 =1-g. 

It will be assumed that the rotor shaft diameter (di­

mension din Figure 31) will be kept small enough such as 

not to interfere with plants entering the cutting zone of 

the rotor blades. Thus it will not be a pertinent variable 

in the cutting and trajectory analysis. 

It is known that input energy and force required to 

cut plant stems depend on the plant species, maturity, 

mositure content, and stem diameter (16, 17, 18). But 

this group of mixed parameters - some qualitative, some 

quantative - should be replaced with pertinent~ control­

lable, quantative ones if possible. For cutting and tra­

jecting plant stems, parameters giving some measure of th~ 

shear strength and stiffness in bending_of the stems seem 

logical choices. Figure 32 shows typical load-deflection 

curves resulting from transverse shear failure tests and 

bending tests (one inch or greater deflection) of the 

soybean plant material used in this study. The load -

deflection curves for both types of test are highly 
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TOP VIEW E N D V I L:. '; ... ; 

Figure 31. Geometric Parameters of Helical Cutter 

non-linear and subject to wide variation from stem to stem. 

Ultimate shear force and maximum bending force for a one 

inch deflection migf1t be adopted as the variables indica­

tive of shear strength and stiffness in bending of a given 

plant stem at a given cutting height. However, it appears 

less variation in test values would result if some sort 
) 

of mean ultimate shear and mean bending load were used. 
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Test D-46 
Applied Load: 3 3/ 8 11 

above base 
Wet Linear Density: 

0.2700 Gm/ In 
Dry Linear Density: 

0.2051 Gm/ In 

. .. .......,...,.........,·-~-· _:>·~~.~a J 

Test D-50 
Applied Load: 3 1 I 211 

above base 
Wet Linear Density: 

0. 1804 Gm/in 
Dry Lin ear Density: 

0. 1380 Gm/In 

(a) Shear failure curves for 17/64 dia. soybean stems 
conditioned 4 hrs. Moisture content: 31% dry basis. 
Avg ~ dia. · of stems at failure cross secti ons: 0.1,9 in . 
Vertical scale: 50 lb. per cm.; Hori. scale: 0!16 
in/cm. 

\ 

Test D-46 
Applied Load: 3 3/8 11 

above base 

j 

....... J 
Test 0-50 

Applied Load: 3 1/2" 
above base 

(b) Cantilever bending load-deflection curves for 17/64 
dia. soybean stems described in (a) above 

, Figun~ 32. Typical Load Deflection Curves for (a) 
Transverse Shear Failure (b) Bending 
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Thus the variables chosen are input energy Cin - lbf) per 

unit stem average diameter to shear the stem at a given 

height, and input energy {; n - 1 bf) per unit deflection to 

deflect the stem one inch at the given heighto 

In light of the above considerations, the pertinent 

quantities relating to the response of energy input per stem 

cut are judged to be as listed in Table Vlo Symbols are in 

reference to Fig~re 31. 

TABLE VI 

FUNDAMENTAL QUANTITIES FOR ENERGY INPUT ANALYSIS 

No. Symbol Description of Quantity, Units Dimensions 

Pert~ining to Cutter Geometry 

1 

2 

3 

4 

5 

6 

7 

8 

D. 

n 

1 

(3 

a 

t 

~ 

Diameter of rotor, in. 

Number of cutting elements about 
periphery of rotor 

Angle between plane of rotor sector 
plate and plane of rotation, rad. 

Axial distance from ledger blade 
~ottom corner to point of contact 
with plant stem, in. 

Bevel angle of rotor blade ledge, rad. 

Width of rotor blade ledge, i n . 

Thickness of point of bevel of rotor 
blade {knife sharpness), i n , 

ledget edge angle, rad. 

L 

L 

L 

l 
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TABLE VI (Continued) 

No. Symbol Description of Quantity, Units Dimensions 

9 y Bevel angle of ledger blade 
edge, rad. 

10 b Overlap of. rotor and ledger L 
blade edges, in. 

l l c Clearance between rotor and L 
ledger blades, i n . 

l 2 p Angular d i s p l a c.e men t of stem 
contacting point on rotor, rad. 

Pertaining to Oper~ting Characteristics 

l 3 w Rotor angular velocity, rad./sec. T-1 

14 v Velocity of rotor center, in./sec, LT- l 

l 5 e Height of cut above base of L 
plant, i n . 

l 6 Angular position of bottom 
corner of ledger tube blade 
relative to bottom center 
of rotor, rad, 

1 7 u Input energy to cut and impart LF 
motion to plant stern, in·lbf. 

Pertaining to Plant 

l 8 m Wet linear density of stalk in ML - l 
vicinity of point of cut, 
lbm/in. 

l 9 h Height.of stalk center of 
gravity.above ground l in e , i n . L 

20 Se Energy per unit average diameter LF/L=F 
to shear stem at point.of cut, 
in-lbf/in. 

21 Be Energy per unit deflection to L FIL= F 
deflect stem one inch at point 
of cut, in-lbf/in. 
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TABLE VI (Continued) 

No. Symbol Description of Quantity, Units Dimensions 

22 Friction angle between plant stem 
and blade edge, rad. 

Other 

23 Ne Newton's second 1 aw coefficient, FM-ll -lT 2 
lbf/lbm in/sec2 

24 G Strength of earth's gravity FM-l 
field, l bf/1 bm 

With 24 fundamental quantities and with a dimensional 

matrix rank of 4, Buckingham's Pi Theorem defines 24-4=20 

pi terms (33, 34, 35), By inspection these pi terms are 

determined to be: 

In,ergy inp.~~t index; index of ratio 

of total input energy to the poten­

tial energy of the stem in the 

earth's gravity field due to a 

measure of its wet mass and the 

height of its center of gravity. 

This potential energy is a function 

of the size of the plant, therefore 

rr 1 may be thought of as an index of 

total input energy per unit 11 size 11 

of plant. 
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Feed rate index; jndex of ratio of 

rotor center velocity relati~e to 

plant to. the rotor peripheral velocity. 

Rotor speed index; index of ratio of 

centrifugal force at rotor blade edge 

to gravity force. 

Rotor angle index; rotor s~ctor.plate 

angle. 

Lateral position index; index of ratio 

of lateral position of plant relative 

to bottom corner of ledger tube to 

rotor diameter. 

Ledger orientation index; angular orien-

tatiori of ledger tube relative to rotor 

bottom dead center. 

Cutting height index; index of ratio of 

cutting height to rotor diameter. 

Shear force to bending force index; 

index of ratio of mean shear force to 

mean bending force for one inch deflec~ 

tion at point of cut. 



h 
ng = o 

n, l = t o 

n, 2 = a o 

n, 3= 
b 
o 

rr14= 
c 
o 

rr, 5 = . s 

rr,6= <P 

rr17=.y 

rr,a= n 

Plant center of gravity height index; 

index of ratio of height of plant 

center of gravity to rotor diameter. 

Shear force to gravity force index; 

index of ratio of mean shear force of 
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stem at point of cut to gravity fore! on 

the stem. Since the gravity force is 

a function of the wet mass per unit 

length of the stem and the teight of 

its center of gravity, qudntities 

relating to size of the stem, n10 may 

be considered an ind.ex of the mean 

shear force per 4nit 11 size 11 of stem. 

Knife sharpness index. 

Rotor ledge width index. 

Blade overlap index. 

Blade clearance index. 

Rotor cutting edge bevel angle. 

Ledger edge angle. 

L•dger blade edge bevel angle. 

Number of cutting elements about 

periphery. 



Friction angle between plant and knive 

blade. 

Angular displacement of the stem con­

tacting point on the rotor blade from 

bottom dea.d center of the rotor. 

The first pi term, rr 1 , is the response dimensionless 

quantity, and it may be written as some function of rr 2 

through rr 20 . Thus 
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( 5-1) 

But II 1 2 through II l 8 a re to be held constant through fixed 

geometry of the cutter as follows: 

II i 2 ' rotor ledge width index, -· a 
o = 0.375 

3.5 = 0. l 07 

II 1 3' blade overlap index, = b _ 0. 157 o =· :Ls- = 0.045 

blade clearance index, c 0.005 0.0015 II l 4' = o = 3':S· .{avg.)= . . 

II 15 , rotor cutting edge ~evel angle,~s~30°or 0.524 rad. 

II 16 , ledger edge angle,=•= 5° or 0.087 rad. 

II 17 , ledger blade edg~ bevel angle, =y= 30° or 0.524 
rad. 

II 18 , nu~ber of cuttin~ elements about periphery, =n= 2 
sectors. · 

Also, as previously discussed, II 19 =,,the friction angle 

between the plant stem and the blade edge, will be assumed 

constant for a given species -0f plant and for a given blade 

material. And II 20 = p, angular displacement of the 



conta~t point on the rotor blade from bottom dead center 

of the rotor will be assumed equal to a mean value. Then 

rr 1, may be written as a new function of rr 2 through rr 11 
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rr 1 = F 1 (rr2 ,rr 3 , .. .,, 11 11 ) (5-2) 

or 
2 U = F1 (_..:!_, w NeD, a, 1, cS, e, Se, h, Se , t) 

Gmh2 wD G D D Be D Gmh D 
(5-3) 

The maximum torque developed in cutting a plant stem 

is influenced by the same set of fundamental quantities -

variables and dimensional constants - that relate to input 

energy per stem cut. Tberefore, let a new dimensionless 

response variable (dependent pi term) including the maximum 

torque developed in cutting, Tmx' be defined: 

rr 1 1 = ~~~2, Maximum torque index; index of the ratio 

or maximum torque developed in cutting 

and trajecting a ~lant st~m to potential· 

torque developable at a unit radius due 

to the plant stem linear mass and height 

of its center of mass in the earth 1 s 

g r a v i ty f i e 1. d • 

Then in a different functional relationship, the maximum 

torque index, rr 1 1 , can be related to the same set of 

dimensionless quantities (pi terms) as the input energy 

index. Thus 

IT I 

1 (5-4) 

or 



94 

Tmx 2 
Gmh 

2 = f( V, w NeD, a, l, o, e, Se, h, Se , t) 
D IT Be· IT Gmh o 

(5-5) 
wD G 

Motion of Severed Plant Stalks 

With reference tq Figure 33, the severed plant is seen 

to be an uncqnstrained rigid body in space with six degrees 

of freedom; i.e., six independent spatial coo~dinates are 

required to define the spatial motion of the body with re­

spect to chosen reference axes. Thus translation in the 

x, y, and z directions and rotations in the xy, xz, and yz 

planes must be considered. Rotation of the plant in the 

xz plane is certain to occur, and possibly in the xy and· 

yz planes also. These rotations will be checked by high 

speed motion picture photography, particula'rly with refer­

ence to shock that could cause seed shattering. But 

attempts to correlate resulting motion with independent 

parameters will be restricted to the maximum horizontal 

displacements of the plant center of gravity ahd of its 

Figure 33. Left-handed Coordinate System Established to 
Define Motion of Severed Plant Stems 



cut end in the x and y directions on a reference grid 

board and to the maximum upward vertical displacem~nt of 

the center of gravity and the cut end (in the positive z 

direction), 
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The left-handed coordinate system chosen to define the 

stem motion is assumed fixed to the cutter. Th~ Y-axis co­

incides with the centerline of the rotor shaft, and the X­

axis coincides with the centerline of the row of plants to 

be cut, 

Since force and displacement are vector quantities 

(having both magnitude and direction), it is allowable and 

convenient to resolve the quantities into their components 

in the x, y, and z directions and to consider each motion 

component, and the fore• system causing it, independently. 

A preliminary high speed motion picture study of the 

cutting action of the 26 degree rotor fitted with a square 

edge or dull blade showed that the stem cut end left con­

tact with the cutting surface of the rotor immediately 

after being severed, The kinetic energy imparted to the 

stem to affect its path of trajection was transferred by 

impact while the stem was being deflected to the fixed 

ledger blade by the rotor and when being cut between the 

ledger and rotor blades, No two stage - cut then traject -

force system exists. For this cutting mechanism, and if 

air resistance (drag forces) are assumed of second order 

significance or negligible, exactly the same set of funda­

mental quantities apply to the responses of stem 
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displacement as to energy input and maximum t9rque deVel- .. 

oped. 

It appears logical to make the above assumptions for 

this study and to assert that all the response pi terms to 

be considered are different functions of the same set of 

independent pi terms. Hence if 

x 
=~··' ,, p 

II c 

rr1 (2) 

x .. END 
~' 

II II 

1 ( 3) 

y 
= C. G. 

0 

II II 

l ( 4) 
--o-, 

C. G. X-displacement index; index 

of ratio of resultant displacement 

of the severed stem center of grav­

ity in the X direction to the rotor 

diameter. 

end X-displacement index; index of 

ratio of resultant displacement of 

the severed stem cut end in the X 

direction to the rotor diameter. 

C. G. Y-displacement index, index of 

ratio of resultant displacement of 

the severed stem center of gravity 

in the Y direction to the rotor . . 

diameter. 

end Y-dtsplacement index; index of 

ratio of resultant displacement of 

the severed stem cut end in the Y 

direction to the rotor diameter. 
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z 
II l 

II C, G. c . G. Z-displacement index, index of -· D ( 5 ) 
ratio of resultant positive displace-

ment of the severed stem center of 

gravity in the z direction to the 

rotor diameter. 

nl 
II = 

2END end Z-displacement index, index of -0- ' (6) 
ratio of resultant positive displace-

ment of the severed stem cut end in 

the z direction to rotor diameter. 

Then 

n, II = F 1 (n 2 ,n 3 , .... ,n 11 ) (5-6) 
( l ) ( l ) 

Ill 
II = F 1 (rr 2 ,rr 3,.,,, ,nll) ( 5-7) 

( 2 ) ( 2 ) 

n, II = F 1 (n 2 ,n 3 ,., .. ,n 11 ) (5-8) 
( 3) ( 3) 

n, II = F 1 (n 2 ,n 3 , .. ,.,n 11 ) (5-9) 
( 4) ( 4) 

n, II = F 1 ( 5) (rr 2 ,n 3 , ... , ,rr 11 ) 
( 5 ) (5-10) 

n, II = F 1 (n 2 ,n 3 , .... ,n 11 ) (5-11) 
( 6 ) ( 6 ) 
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Alternative Response Pi Terms Considered 

There is no unique set of pi terms relating the funda­

mental quantities pertaining to a given physical system. 

Several solutions may satisfy Buckingham's Pi Theorem cor­

rectly, but the group of solution pi terms may not all be 

equally useful (35). No 11 standard 11 dimensionless groups 

seemed applicable to the analysis of the helical cutter. 

The dimensionless groups specified hopefully have a rational 

and direct relationship to this particular problem, but 

there is no guarantee that.such is the case. The descrip~ 

tion of each pi term following its definition attempts to 

convey the logic behind its selection. 

To be easily understood, it is desirable that the 

energy input inde~ and maximum torque index have neatly a 

one to one correspondence with the dimensioned response 

variables of energy input per stem cut and maximum torque 

developed per stem cut. That is, if the energy input per 

stem cut increases with increase of an independent variable 

pi term, rotor speed index, for example, then the input 

energy index should likewise increase - and in relatively. 

the same proportion. At the same time, it is desirable to 

remove the effects of stem size from the response, that is, 

put all energy input values on a 11 per unit stem si.ze 11 

basis. The dimensionless groups of variables listed for 



the energy input and maximum torque indices at least tend 

to accomplish these goals. 

Another dimensionless group of variables was first 

chosen as the energy input index. This group, NeMV~h' was 

corisidered an index of the ratio of total input energy per 

stem cut to the kinetic energy of the plant relative to 
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the rotor center. Preliminary analysis of test results us­

in~ this response pi term revealed that it did not follow 
' 

the response pattern of the dimensioned variable energy 

input per stem cut. The velocity of the plant relative to 

the rotor center distorted the response pattern. Thus this 

pi term was discarded in favor of the one listed. 



CHAPTER VI 

EXPERIMENTAL PLAN AND TEST PLANT MATERIAL 

As in~icated in Chapter v~ at least ten independent 

variables may influence each of the response pi terms to be 

considered in an experimental analysis of the proposed 

helical cutter. However, one of the independent variable 

pi t e s , rt ·11 , the kn i fe sharpness i n de x , w i 1 l be fixed at 

two discrete values: that for a square edge or dull blade. 

W,.th t _ ,031 _ o - ---r:""5" -

edge blap-e with 

8.85 x ,o- 3 ; and that for a sharp, beveled 

t. = ~ = 0.28 x 10,.. 3 Cons~quently, the .D ., • o 

strutture of the required experimental plan must be that 

of two series of tests, one series with use of the dull 

blade and another with use of the sharp blade, as diagram­

meq in Table VII. As Table VII indicates, each of the two 

series of tests required is a multifactor experiment with 

eight response variables and nine independent variables or 

factors. 

Types of Multifactor Experimental Plans 

Two basic types of experimental plans are used for 

multifactor experiments, the classical plan and the factor­

ial plan (36),. In the classical approach, all independent 

variables except one are held constant while this one is 

}00 
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TABLE VII 

STRUCTURE OF. REQUIRED EXPERIMENTAL PLAN 

D u .1 l . B 1 ad e Series Sharp B~ade Seri es 
t (rr 11 =11-s. 85 x 10- 3) .frt11=6- =0.28 x 10:-- 3) 

R Proposed R Proposed 
Response Functional Response Functional 
Variable Relationship Variable Relationship 

ii.:t,il'< n, IT 1 

rr i II I 

1 R=f{II 2 ,II 3·,· .. , ~IIlO) 1 
R=f 1 (II2,II3,· ... ~II~rj 

. 19 , II 

~ 1 ( 1 ) II 1 ' ,, ( 1) . . . . . . ... 
II i II II ' II 

I 

(6) .. l ( 6) 

chang~d through its range of values and the effect on the 

response variable noted. This proc,dure is r~peated for 

each of the indepe~dent vari~bles. In th~ factorial ap­

roach, all the~indepe~dent variables are changed for each 

teJt run as specified by some predesigned st~tistical 

scheme. For an .. equa1.·number of trials, the factorial plan 

gives results much g~eater in precision than the claisic~l 

plan; that is, the experimental ertor will be lower in the 

factorial plan, sine~ each eff~ct is based on all trials in 

3~ . the .. ex~:er i men t where as ; ea c::h·. effect· in t hli:l c 1 ass i ca 1 
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plan is based on just the trials over.the r~n~e:of ·one fac­

tor, assuming no replication of runs. However-the factorial 

plan _is restricted .to response· fur)ctions that are sums of 

functions of the independent variables -or.ones that are 

products of functions of.the independent variables. 

One form,of the classical plan recommended by Murphy 

(33) for determining prediction ~quations in engineering 

experiments is termed the component egu~tion method. With­

its use; ·the multi-factor expe_riment is converted into a 

series of:single factor experiments in which all the inde­

pendent variabl~s but one are held at some mid~range value .. 

The results from each series of ·experiments are used to 

relate the r!';!sponse variable to one- independent variable by 

a component equation. The componentequations then are com­

bined to determine the multifactqr ~rediction equation .. 

This method is valid only when no interactions exist between. 

the independent variables. That is~ the resultant predic­

tion iquatiqn must be either an additive-or:multiplicative 

mathematical expression and not a mixed·.one .. If·an a~ditive 

expression relates the response va.r.i:a.6.le~to,..th_e .. i.ndependent 

v~riabl~s, then it must have no te~ms involving products of 

two or more:independent variables. If a multiplicative ·ex­

pression fits the results, it -must ha\'e no terms that has. 

one independent variable as an exponent of another. 

If int~raction exists~ the component equation method, being 

simply a limited classical plan, offers .the advantage of 

ready transformation into a more complete classic~l plan. 



1 P 3 

sriimply by includting additional experimental trials, :r:o Rln­

ravel interaction relationships, each independent variable 

must be changed through its range in additional test sequen­

ces, with the other independent variables held at different 

values in each sequence; 

Where no interaction between independent variables is 

a dostified assumption, the orthogonal main-effect experi­

mental plans designed by Addelman and Kempthorne (36) are 

applicable and give-more precise results with a fewer num­

ber of trials then the classical, component equation method. 

The plans are based on asymmetrical, fractional, factorial· 

experiment designs and provide unbiased estimates of the 

main effects of all t:1:c.lud.ed factors when no 'interactions 

are present. If interactdons between factors are present, 

estimates of the main effects will deviate from their true 

values by other than experimental error. The effect of a 

factor is measured by the change in response produced by 

a chang~ in the level of the factor. When the levels of 

a factor (independent variable) are egMally spaced over the 

range of values to be tested, the nature of the polynomial 

regression function that best .describes the factor effect 

on the response variable can be readily determined by 

either regression or analysis of variance techniques utiliz­

ing orthogonal polynomial coefficients (37). Thus poly­

nomial component equations are defined by this method. 
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Choice of Experimental Plan 

With highly variable. soybean stems comprising the ex­

perimental units for the proposed investigation, inprecise 

results were anticipated, and a factorial type experimental 

plan was the logical choice. Nine independent pi terms~ rr2 

through n10 , were to be screened to determine which ones had 

non-trivial effects on .each of the response variables. Of 

these nine ihdependent pi terms, however, the two relating 

to plant physical properties could notbe accurately con­

trolled. To overcome this·difficulty, a statJstica1 

approach that disregards dimensions and sets response vari­

ables as-equal to a .function of· dimensioned quantities was 

adopted. P 1 ant· stern nominal· di amete.r at the base (ground) 

line i.s control.lable ~nd was selected to replace n,o = Se 
·Gmh 

as·one independent variable. Time of treatment in a mois-

ture condittonihg chamber is precisely co~trollable and was 

selected to replace n8= ~ as an independent variable. The 

remaining seven independent pi terms can be· controlled with­

in close- limits. 

To a11ow:coriversion back to all dimensionl~ss ·f~ctOrs 

in determintng predictionaequatiohs for selected response pi 

terms, it was decided to 11 pair 11 the test plant sterns; that 

is, to select two nearly id~ntical stems for each. experi­

mental· trial. TheJ1 for ~ach. stem subje:~ted. to~a cutting 
. '. .,.., .. 

test, a nearly i(i,enti~al s,tem. would be subjected to physical 

tests to_determin:~ its stiffness in bending and its 
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transverse shear strength at the height above ground that 

the first stem was cut, The average diameter of the physi~ 

cal test stem would be determined near the test cross 

section, and the moristure content and lineaf density of both 

stems would be measured. These measurements would be made 

on portion~ of the stem adjacent to the cµt section. 

Three levels of rr 3 , feed rate index, and of rr~, cutting 

height index, were judged sufficient to allow determining 

the effect on the response variables and to allow spanning 

a realistic range of operating values. Four levels were 

sp~cified for each of the other factors. The levels for all 

factors were to be equally spaced to allow determinin~ the 

type of po 1 y no mi a 1 ·. response • fun ct i on th a t best f i t the e f;.. 

feet of each factor. These requirements call for a basic 47 

x 32 (seven factors with four levels; two factors with three 

levels) orthogonal main-effect plan. Of the plans listed by 

Addelman and Kempthorne (36), basic plan 13 ~ith 32 trials 

was the one selected for use. 

To provide a more accurate basis for computing experi­

mental error, two replications of each treatment combination 

were specified (three replications were specified at first, 

but the sizeable time period required for each experimental 

run forced.a reduction to two.) Thus each of the two main 

multifactor experiment series was enlarged to 64 trials. 
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Randomizatton: Procedure 

The randomization procedure ptesctibed by Addelman and 

Kempthorrie was fol1owed~ This procedure is: 

1~ Choose the appropriate plan. 

2. Randomly assign the factors to the columns 
of the chosen ~1an. 

3. Randomly assign th~ levels of each factor to 
the-numbers 01 1,2,3 representing the levels 
of factors in the listed experimental plan. 

4. Random1y assign the treatments to the 
experimental units. 

In carrying out step 4, al1 the plant stem experi­

mental units were necessarily pre-sized according to four 

levels of nominal diameter and according to four levels of 

height of center of·gravity within each diameter classi­

fication. Also to facilitate execution of the experiment, 

the order Of· treatment combinations .was arranged to allow 

all trials involving a given level of.the factor 11 time of 

treatment in moisture chamber 11 to be run consecutively, 

Main Experimental Plans 

Table· VIII lists the factors in each of the main test 

series and the code assigned to each factor level accord-

ing to the randomization procedure. Tables I~ and X ~re-
·:: .r,,,.~ 

sent the experimental plans for the dull blade and sharp 

blade test~series respectively. As ~reviously noted. the 

dull blade lest series was begun with a plan t~at called 

for three replications of each treatment c~mbi~ation. ~fter 

30 runs~ thi~ plan was revised to the tw-0 replication plan 
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TABLE VI II 

FACTOR LEVEL CODING AS DETERMINED BY RANDOMIZATION PROCEDURE 

Dull Blade Series Sharp Blade Series 
Test Plan Code Test Pian Code 

Column AssigneJ Column Assigned 
Factor Factor Levels Randomly to Randomly to 

Assigned Factor Assigned Factor 
to Levels to Levels 

Factor Factor 

13/ 64 in. 3 0 

Nomi na 1 17 /64 in. 3 0 4 2 

Diameter 21/64 in. 2 1 

2 5/ 64 in. 1 3 

Time 2 hr. 2 1 

in 4 hr. 4 3 1 2 

Chamber 6 hr. 0 0 

8 hr. 1 3 

322 { 1800 rpm) I 1 0 
rr2 

644 { 2546 rpm) 2 3 7 3 Rotor Speed 
{ 3118 Index 966 rpm) 0 2 

1288 (3600 rpm) 3 l 

rr3 0.08 { 1 . 7 5 in/rev) l 2 

Feed Rate o. 14 (3.06 in/rev) 8 0 8 1 

Index o. 20 (4.38 in/rev) 2 0 

IT4 
0.454 {26°) 2 l 

Rotor Angle 0.628 { 36 °) 2 l 7 3 

Index 0.802 { 46°) 0 0 

0. 97 6 (56°) 3 2 

I 0. 1 07 { o. 38 in) 0 2 
fl5 

Lateral Position I 0.214 { 0. 7 5 in) 6 1 6 0 

Index 0. 321 { l . 12 in) 2 l 

0.428 ( 1. 50 in) 3 3 

n6 -0.0873 (-50) 0 0 
·. -

Ledger 0.0000 { oo) l 3 

Orientation I 0.0873 { + 5 0) 2 1 

Index o. 17 46 { + 1 0° ) 3 2 

.. ·-· 

IT7 0.286 { 1. 00 in) l 2 

Cutting Height 0.500 { 1 • 7 5 in) 9 0 9 0 

Index 0.714 { 2. 50 in) 2 l 

Ilg 
2.25 (7.88 in) 2 3 

C.G.·Height 2.75 ( 9. 62 in) l 1 2 2 

Index 
3. 2 5 { 11. 38 in) 3 0 

3. 7 5 ( 13. 12 in) 0 1 
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I ,· 

PlariCol.. No. 1 

· Factor . Ilg 

Trial No. 

.. 1 3 

2 0 

3 3 

4 l 

5 0 

6 3 

7 0 

8 0 

9 2 

10 1 

11 3 

12 1 

. 13 2 

14 2 

15 2 

16. 1 

17 l 

Hi 2 

19 0 

'20 3 

21 .3 

22 1 

23 2 
.· 

24 Q 

25 l 

26 2 

27 0 

28 3 

29 0 

30 3 

31 2 

32 1 

2 

ll4 

1 

3 

2 

3 

0 

2 

3 

0 

1 

0 

1 

3 

1 

2 

2 

·O 

l 

0 

2 

3 

0 

2 

3 

2 

2 

0 

1 

0 

l 

3 

3 

l 

TABLE IX 

MAIN EXPERIMENTAL PLAN 
DULL BLADE SERIES . 

3 .4 5 

Nom. Dia. Time ln n6 Chamber 
Coded Value of Factor 

0 0 3 

1 0 1 

1 .0 2 

2 0 3 

0 0 0 

l 0 2 

1 0 1 

0 0 0 

3 0 1 

3 0 2 

0 0 3 

2 0 3 

3 0 1 

2 0 0 

2 0 0 

3 0 2 

2 2 1 

2 2 2 

0 2 2 

0 2 1 

l 2 0 

3 2 0 

3 2 3 

0 2 2 

3 2 0 

2 2 2 

1 2 3 

l 2 0 

l 2 3 

0 2 l 

3 2 3 

2 2 1 
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6 7 8 9 

n 5 n2 n . 
.3 ll7 

Levels 

3 2. 1 2 

3 1 2 0 

0 3 1 2 

2 3 0 1 

0 0 0 0 

0 3 1 2 

3 1 2 0 

0 0· (i 0 

2 0 1 1 

1 2 2 1 

3 2 1 2 

2 3 0 1 

2 0 1 1 

1 l 1 1 

1 1 1· 1 . 

l 2 2 l 

0 3 1 0 

3 1 0 . 2 

2 0 1 .1 

1 2 0 1 

2. 3 2 1. 

3 2 1 0 

0 0 2 2 

2 0 1 1 

3 2 1 0 

.3. l 0 2 

l l l l 

2 3 2 l 

l l l 1. 

l 2 0 l 

0 0 2 .2 

0 3 l 0 
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TABLE IX (Continued) 

Plan Col. No. l 2 3 4 5 6 7 8 9 

Factor Ilg 114 Norn. Dia. Time in 116 ll5 112 Il3 117 Chamber ' 
Trial No.· Coded Value of Factor Levels 

33 3 3 2 3 2 l 0 l D 

34 0 ] 3 3 0 l 3 0 2 

35 l 1 0 3 2 0 l 2 l 

36 l 2 l 3 3 3 0 0 l 

37 2 0 0 3 l 3 3 l l 

38 0 l 3 3 0 l 3 0 2 

39 0 2 2 3 l 2 2 2 2 

40 1 l 0 3 2 0 1 2 l 

41 2 0 D 3 1 3 3 l l 

42 3 0 3 3 3 2 l 1 D 

43 1 2 l 3 3 3 0 0 1 

44 0 2 2 3 l 2 2 2 2 

45 3 3 2 3 2 l 0 1 0 

46 2 3 l 3 0 0 2 l l 

47 2 3 l 3 0 0 2 1 l 

48 3 0 3 3 3 2 1 l 0 

49 1 0 l l l l 0 1 2 

50 2 1 l l 2 2 2 0 0 

51 3 l 2 l 0 3 0 2 1 

52 l 0 l l l l 0 l 2 

53 0 0 2 l 3 0 2 l l 

54 2 l l l 2 2 2 0 0 

55 3 2 3 l 1 0 1 0 1 

56 3 1 2 l 0 3 0 2 l 

57 0 3 3 l 2 3 3 l l 

58 2 2 0 l 3 l 3 2 0 

59 l 3 0 l 0 2 1 1 2 

60 2 2 0 1 3 l 3 2 0 

61 3 2 3 l l 0 l 0 1 

62 l 3 0 l 0 2 1 l 2 

63 0 3 3 l 2 3 3 1 l 

64 0 0 2 1 3 0 2 l l 



Plan Col. No. 1 

Factor Ti me in 
Chamber 

Trial No. 

1 D 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 0 

9 0 

10 0 

11 0 

12 0 

13 0 

14 0 

15 0 

l 6 0 

17 1 

18 1 

1 9 l 

20 l 

21 1 

22 l 

23 1 

24 1 

25 1 

26 1 

27 l 

28 l 

29 1 

30 1 

31 1 

32 l 

TABLE X 

MAIN EXPERIMENTAL PLAN 
SHARP BLADE SERIES 

2 3 4 

Ilg 112 Norn. Di a. 

5 

116 

Coded Value of Factor 

3 l 0 l 

0 0 0 0 

2 2 3 l 

3 3 l 2 

1 3 3 0 

1 1 2 3 

0 2 1 3 

2 0 2 2 

3 3 1 2 

2 2 3 1 

0 2 1 3 

l 3 3 0 

0 0 0 0 

2 0 2 2 

l 1 2 3 

3 1 0 1 

3 0 1 0 

1 0 3 2 

1 2 2 1 

3 2 0 3 

1 0 3 2 

2 3 2 0 

0 3 0 2 

0 l 1 1 

2 l 3 3 

2 3 2 0 

1 2 2 1 

0 3 0 2 

0 1 l 1 

3 0 1 0 

2 l 3 3 

3 2 0 3 

110 

6 7 8 9 

115 114 113 117 

Levels 

3 1 2 0 

0 0 0 0 

2 2 2 2 

3 3 1 1 

1 3 0 2 

1 1 l 1 

0 2 1 1 

2 0 1 1 

3 3 1 1 

2 2 2 2 

0 2 l l 

l 3 0 2 

0 0 0 0 

2 0 l l 

1 l 1 l 

3 1 2 0 

2 l 1 2 

0 1 2 1 

0 3 l 0 

2 3 0 l 

0 l 2 l 

3 2 l 0 

l 2 2 1 

l 0 1 2 

3 0 0 1 

3 2 1 0 

0 3 l 0 

l 2 2 l 

l 0 1 2 

2 1 1 2 

3 0 0 l 

2 3 0 1 
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TABLE X (Continued) 

Pl an Col. No. 1 2 3 4 5 6 7 8 9 

Fae tor Time in Ilg rr2 Norn. Di a. rr6 1!5 IT4 IT3 IT7 Chamber 

Trial No. Coded Va 1 ue of Facto.r Levels 

33 3 2 3 l l D 1 0 1 

34 3 0 3 3 3 2 l l 0 

35 3 2 l 0 2 0 3 l 2 

36 3 0 l 2 0 2 3 2 l 

37 3 2 3 l l 0 l 0 l 

38 3 l 2 l 0 3 0 2 l 

39 3 l 0 0 3 3 2 l 2 

40 3 3 0 2 l l 2 0 l 

41 3 3 2 3 2 1 0 l 0 

42 3 0 3 3 3 2 l l 0 

43 3 2 l 0 2 0 3 l 2 

44 3 1 2 l 0 3 0 2 l 

45 3 3 0 2 l l 2 0 1 

46 3 0 l 2 0 2 3 2 l 

47 3 l 0 0 3 3 2 l 2 

48 3 3 2 3 2 l 0 l 0 

49 2 3 l 3 0 0 2 l l 

50 2 l 3 0 l 2 0 l l 

51 2 0 2 2 2 3 l 0 2 

52 2 3 3 2 3 0 0 2 2 

53 2 2 2 0 0 l l l l 

54 2 2 0 l 3 l 3 2 0 

55 2 0 2 2 2 3 1 0 2 

56 2 2 0 l 3 l 3 2 0 

57 2 l 3 0 l 2 0 l l 

58 2 l 1 1 2 2 2 0 0 

59 2 3 3 2 3 0 0 2 2 

60 2 2 2 0 0 l 1 1 l 

61 2 0 0 3 l 3 3 1 l 

62 2 l l l 2 2 2 0 0 

63 2 0 0 3 l 3 3 1 1 

64 2 3 1 3 0 0 2 l 1 



No 

Test Trials 

No in 

Test 

CED-1 l O 

CE0-2 lO 

CED-3 l O 

CED-4 10 

CE0-5 10 

CED-6 · l O 

CED-7 10 

CED-8 10 

crn .. g 10 

CED-1 0 10 

CED-11 10 

CED-12 10 

CED-13 10 

CE0-14 10 

CED-15 l O 

CED-16 10 

TABLE XI 

EXPERIMENTAL PLAN FOR PRELIMINARY 
CUTTING EFFECTIVENESS TESTS 

DULL BLADE SERIES 

Conditions 

Plant Stems 
Rotor Rotor Feed (1965 Crop) 

Angle Speed Rate Norn. Time in 
Dia. Conditioning 

(Degrees) (RPM) (In/Rev) (In . ) Chamber 
(Hrs) 

26 1800 l . 7 5 17/64 0 

26 1800 5. 25 17 I 64 0 

26 3600 l . 75 17 I 64 0 

26 3600 5.25 17 I 64 0 

56 1800 l. 75 17/64 0 

56 1800 5.25 l 7 /64 0 

56 3600 l . 7 5 21/64 0 

56 3600 5.25 21/64 0 

56 3600 5.25 21 I 64 8 

56 3600 1. 75 21/64 8 

56 1800 5. 25 21/ 64 8 

56 1800 1 . 7 5 21/64 8 

26 1800 1 . 7 5 17/64 8 

26 1800 5.25 l7 /64 8 

26 3600 5.25 17 I 64 8 

26 3600 1. 75 17/64 8 

Note1 1 Stem per Trial 

Responses to be Observed: Type of Cut 
Actual Cutting Height 
X & Y Displacements of 

Stem Cut End & C. G. 
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TABLE XII 

EXPERIMENTAL PLAN FOR HIGH SPEED MOTION PICTURE STUDY 
DULL BLADE SERIES 

Test No: Con.ditions 
For 

Photographing 
Description 

Rotor Rotor Feed 
Cutting Stem Angle Speed Rate Nom 

Dia Crop 
Action Trajectory (Degre es ) ( RPM) (In./Rev) (In) Year 

PD-1 PD-12 26 1800 l. 75 17 I 64 1965 

PD-2 PD-11 26 3600 l. 7 5 17 / 64 1965 

PD-3 PD-10 26 3600 5.25 17 / 64 1965 

PD-4 PD-7 56 1800 1. 75 17 / 64 1965 

PD-5 PD-8 56 3600 l. 75 17 / 64 l 965 

PD-6 PD-9 56 3600 5.25 17/64 1 965 

TABLE XIII 

EXPERIMENTAL PLAN FOR HIGH SPEED MOTION PICTURE STUDY 
SHARP BLADE SERIES 

Test No. Conditions 
For Description 

Photographing 
Rotor Rotor Feed 

Cutting Stem Angle Speed Rate Nom 
Dia Year 

Action Trajectory (Degrees) (RPM) (In./Rev) (In) Crop 

PS-1 PS-11 26 1800 1. 75 17 / 64 1965 

PS-2 PS-10 26 1800 l. 75 17/64 1968 

PS-3 PS-9 26 3600 5.25 17/64 1968 

PS-4 PS-8 56 3600 5.25 17 I 64 1968 

PS-5 PS-12 56 1800 1. 75 17/64 1968 

PS-6 PS-7 46 3600 3.06 21 / 64 1968 

l 1 3 

of Plant Stems 

Ti me in 
Conditioning 

Chamber 
(Hrs. ) 

2 

2 

2 

2 

2 
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of Plant Stems 

Ti me 1 n 
Conditioning 

Chamber 
(Hrs.) 
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shown. For those treatment combinations where three repli­

cations were run, one of the three was eliminated by proced­

ures explained in Chapter IX before the results were 

analyzed. 

Auxiliary Experiment Plans 

A preliminary series of tests was planned to check the 

suitability of the range of levels chosen for some of the 

independent variables and to give an indication of cutting 

effectiveness of rotors equipped with square edge blades. 

Table XI diagrams the experimental plan for this test 

series. 

Cutting effectiveness tests were also run in connection 

with the high speed motion picture studies to determine the 

mechanism of cutting with dull and sharp blades. Tables XII 

and XIII indicate the experimental plans for these tests. 

Plant Material Used In Tests 

The stems of soybean (Glacine Max) plants of the Hill 

variety comprised the experimental units for all the cutter 

evaluation tests. Approximately 4000 plants were gathered, 

part of them on September 25 and the remainder on October 1, 

1965, at the Perkins Experiment Station of Oklahoma State 

University. The planting date was May 25, 1965, and the 

seedlings emerged May 27. Thus the plants were gathered 120 

and 127 days after emergence. Yield of the crop was 26.2 

bushels per acre. The plants were pulled from the ground -
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roots and all -and tjed into bundles of from about 30 to 80 

plants each. These bundles were hung from racki - tops down 

- in an indoor storage area until used for test. 

To determine the size range of the plant stems, a random 

sample was taken from the lot and analyzed. The roots were 

cut off at the ground line. Then the average diameter of 

the stem at the ground line was measured with calipers and 

rec6rded. Figure 34 presents the histogram of the results. 

The average diameter of the lot is seen to be about 1/4 

inch, with the range extending from 5/64 to 29/64 inch. 

The four levels of nominal diameter at the base of the 

stems to be used for the cutting tests were chosen as 13/64, 

17/64, 21/64, and 25/64 inch rpspectively. The plants were 

measured for nominal diameter by a gage made for this pur­

pose as illustrated by Figure 35. 

The height of the center of gravity above the base of a 

plant was determined by balancing the stem on a horizontal 

pin and marking it. Figure 36 shows the fixture used for 

this purpose. Since the location of the center of gravity 

changed with change of mosture content.of the plant stem, 

this quantity was not determined until .just previous to run-
' 

ning a test.· However a preliminary investigation of vari-

ation of height of center of gravity within the diameter 

classifications was made to learn what a representative 

range of values .for this factor would be: Distance from the 

base end of the stems to the center of gravity varied from. 

10 to 19 inches, the average being about 15 inches. A 
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Figure 35. 

~igure 36. 

Gage and Method Used for Deter­
mining Stem Nominal Diameter 

Fixture and Method Used f or 
Locating Center of Gravity 
of . Plant Stem 
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d.i s tan c e o f . 1 · l / 2 i n ch was a 1 l owed for sec u r i n g the bottom 

end of a stem in a holding clamp for cutting tests. If the 

base (ground) line is then assumed to be the top of the 

c l a mp o r l 1 / 2 i n c h a b o v e t h e s t em e n d , th e d i s ta n c e from 

the base line to the center of gravity Yfrried from 8 1/2 to 

17 1/2 inches, This distance is 11 h 11 in the pi term;= Ilg, 

The four levels first selected for Ilg were 2.75~ 3.25, 3.75 

and 4.25. 

Of course the position of the center of gravity of the 

stems shifted towarq the base when seed shattered from the 

pods, most of which were located on the upper portions of 

the plants. As the plants dried during the long indoor 

storage period, a large portion of the seed pods opened and 

let the seeds fall out. After this change, a new range of, 

values had to be chosen for Ilg· The new levels were 2.25, 

2.75, 3.25, and 3.75. 

The change in the center of gravity due to seed loss 

was undesirable for two reasons: (1) the new center of 

gravity location nearer the base end of a stem was not typi­

cal of stems with a full complement of seed; (2) the loss of 

the seed previous tq the cutting tests prevented full evalu­

ation of the seed shattering effect of the different cutting 

treatment combinations., Although undesirable, this change 

caused stem trajectory results to be on the conversat1ve 

side, for a stem with all its seed pods intact would. have 

more of its mass concentrated near the top. This would tend 

to decrease the extent of motion of·the top in the direction 
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of the cutter bar forward travel and increase the relative 

motion between the top and the machine catching platform. 

The 21/2 to 3 year storage period was not anticipated 

when the plants were gathered. The time required to design 

and fabricate the cutter and test stand and t~ procure the 

necessary instrumentation to run the tests turned out to be 

much greater than expected~ Except for the loss of seed, 

the stems did not deteriorate in storage, however. There 

was no visible evidence of-decay whatsoever. 

To check further against change in physical character­

istics of-the stems, a number of plants for the 1968 crop of 

Hill variety soybeans grown at the Perkins Experiment Sta~ 

tion were gathered for comparison with the 1965 crop stems. 

Planted May 12, 1968, the seedlings emerged seven days later 

on May 19. The stems were gathered October 2l, 1968, 155 

days after emergence~ Yield of the plot was 25.6 bushels 

per acre: Physical tests-were run to determine shear 

strength and stiffness in bending of these stalks, which ap­

peared less sound than those gathered in 1965. Figure 37 

gives a q~alitative comparison of results of tests on the 

1965 and 1968 crop stems. 

Another comparison of stalks from the two crop years 

was provided by using groups of stems from both in the 

high speed motion picture test series for the rotors fitted 

with sharp blades. This test series also gave limited data 

on seed shattering effectst since the 1968 crop plants had 

numerous well filled seed pods intact. 



Shear Failure Curve 

Vert. Scale: 
Hori. - Scale: 

5 lb/mm 
0.016 in 

Bending Load-Defl. Curve 

Vert. Scale: 
Hori. Scale: 

0.5 lb/mm 
0.025 in/mm 

120 

Load Point: 2. 5 in above 
base 

Load Point: 2.5 in from base 

Typical 1965 Crop Stem: 18.65% moisture (Dry Basis); 
0.2450 gms/ i n dry linear density, 0.208 in. avg. dia 
2 1/2 in. from. bas e 

"t:>,2st. --~_,_~_,,_w~~·~~~ 

Shear Failure Curve 

Vert. Scale: 5 lb/ mm 
Hori. Scale: 0. 01 6 in. I mm 
Load Poi·nt: 2.38 in above 

base 

/, 

Bending Load-Defl. Curve 

Vert. Scale: 0 . 5 lb/mm 
Hori. Scale: 0.025 in./mm 
Load Point: 2.38 in above 

Typical 1968 Crop Stem: 19.62 % moisture (Dry Basis); 
0.2508 gms/in linear density; 0.238 in avg. dia. 2 3/8 
in. fro m base 

base 

Figure 37. Comparison of Physical Properties of Stems from 
1965 and 1968 Crops 
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After 2 1/2 to 3 years in storage, the plant stems 

dried to a very low moisture level - about 7 to 9 percent 
i 

(dry basis). It was thus-necessary to reconstitute the 

stems and moistuie in some way to learn how physical prop­, 
~rties ·influen_ced '.by_ moisture cori'tent affected .the cutting_ 

and trajectory responses. 

A small environment control chamber equipped jith an 

air conditioner and water sp~ay inlet and with a drain out-

1 et. in the bottom was used. for this purpose. A series of 

tests was run with the chamber to determine a way to in~ 

crease moisture content of the plants in a predictable man­

ner. The treatment found best was that of spraying a mist 

of preheated water (180°F) above the plant stems suspended 

tops down in a holding rack. The moisture content in­

creased roughly in proportion to the period of time the 

st~ms were so trQated. The nozzle used was a Delavan WDA 

1~00 90°A hollow cone type. The air conditioner fan only -

no refriger~tioh Of air was involved - was used to circti­

late air in tffe chaMber arid thus prevent the"intetior walls 

from b,ing s&~µra~ed with water to cause structural damage. 

Figyre 38 is ah ~xterior view of the co~ditioning chamber. 

In the foregrdun~ is the w~ter heater with thermostat set 

tor: 180°F wat~r temperatur~. Water from the heatJr flows 
I • . ' ! 

l 

*o ~he nozzle inside the chamber through the hose leadjng 
! 

to ihe chamber top. The, air conditioner Llnit is seen 

moufited in one s~d, of- the chamber. Figure 39 shbws plani 

stems being treated ihside the chamber . . , 



Figure 38. 

Figure 39. 

Conditioning Chamber and Auxiliary 
Equipment for Changing Moisture 
Content of Plant Stems 

Interior View or Conditioning Chamber 
Showing Stems Subjected to Mist of 
Hot Water from Overhead Nozzle . 
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The desirable response of stem moisture content.as a 

ltnear function of time of conditioning in the chamber was 

only paitially realized, as Figure 40 (a) illustrates. The. 

graphs-show that the response varied with stern homih~l 

diameter. Avera9ed-over stem.diameter, hbwevet, the 

response has a more desirable form. figure 40(b). With a 

correlation coefficient-of only .90 and a standard deviation 

of 16.27% moisture content, the results _are a far cry from 

the opti~um~ but were considered the best obt~inable with 

the equipment available. Thus, time of treating stems in 

the chamber was adopted as one of the controllable indepen­

dent variables in place of the more pertinent vatiable 

"moisture content," which in turn would be in place of the 

most pertinent variable: a dimensionless combination of 

stem physical properties affected by moisture content. 
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CHAPTER VII 

APPARATUS FOR THE EXPERIMENT 

The equipment needed to carry o~t a planned experiment 

is that. necessary to measure the response terms, or those 

variables from which the response terms can be calculated, 

and that necessary to adjust the independent factors to 

the desired levels and to accurately keep them at those 

levels. 

The response variables of interest in this study are 

input energy per stem cut, the maximum torque:developed per 

stem cut, and the resultant displacement along three ortho­

gonal reference axes of the center of gravity and cut end of 

the severed stem. A self contained torque_transducer mount­

ed in the rotor drive system would give.a-continuous readout 

of instantaneous torque developed. This"response variable 

in conjunction with a readout of instantaneo~s angular dis­

placement of the rotor shaft provides information for a 

torque - displacement plot from which both input energy per 

stem cut and maximum torque developed per stem cut can be 

obtained. Therefore a torque pickup and a rotor shaft 

angular displacement ~~nsor were selected as two of the 

over-all specifications for the apparatus. The severed 

stem displacements with respect to the reference axes chosen 
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and illustrated in Chapter V pose additional measurement 

problems. The x and y displacements - in a horizontal 
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plane - are easy enough to determine by use·of a simple 

horizontal grid board. But the positive vertical displace­

ment (z displacement) must be obtained while the trajected 

stem is in flight. For a permanent record of this response, 

photographic techniques prove the most direct measuring 

method, and their use was specified as another over-all 

requirement of the apparatus. 

Of the tef independent factors to be screened in this 

investigation, three relate to the cutter design. These are 

rotor angle index, knife sharpness index, and ledger orien­

tation index. As discussed in Chapter III, four rotor 

assemblies were built to provide the four.desired levels of 

rotor angle index. The two desired levels.of knife sharp­

ness index were provided by the detachable. blade feature of 

the rotors. The four desired levels of ledger tube orienta­

tion were provided by the method of attaching the ledger 

tube assembly to the main frame. 

An additional three independent factors.of the ten to 

be screened pertain to plant stem physical properties and 

were discussed in Chapter VI. - These are nominal diameter 

of the stem, time of treatment in the moisture conditioning 

chamber, and height of the stem center of gravity. However, 

additional auxiliary equipment to measure and plot the load 

deflection data for shear failure and cantilever bending 

tests of the stems, and to determine the stem linear density, 



moisture·content, and average diameter~at the cut section 

had to be designed and built as a part of·the over-all 

apparatus requirements. 
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The four remaining independent factors of the ten to be 

invest1gated ·may be considered operating parameters. The 

four are rotor:speed index~ feed rate index, lateral position 

inde~, and cutting height in~ex. Attaining and controlling 

the desired rotor speeds must.be includ~d in the require­

ments of the-rotor drive syst~m. Feed rate, lateral 

position of the plant stem relative to the ledger blade when 

contacted by the rotor blade, and cutti~g height pertain to 

another .system, that of the-mobile machine relative to the 

fixed plant: row - in.terms of prototype harvesting equipment. 

Considering the res.ponse.variables again, the resultant dis­

placements of the seyered stem-are to be measured. in rela­

tion tb a set of reference axes-fixed:to the.mobile. harvest­

ing machine. Since relative motion between:the:plant row 

and the mobile machine is involved, for. test. purposes, this 

sys t em can be des i g n e d i n e i the r o f two ways .: . . (1 ) keep the 

plant stems stationary and move the cutter:assembly along 

a simulated row of plants or (2) keep the·cutter assembly 

stationary and move the row -0f plants relative to it. Con­

sidering the equipm~nt components available for use in this 

study, it was decided that better control over the independ­

ent f~ctors could be maintained by keeping the cutter assem~ 

bly stationary. 
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With the over-all specifications.of·the·test apparatus 

determined~ componeht parts were designed·and fabricated or 

procured~ and the c~mponents were assembled into the final 

test unit. Description of the resulting·make-up of the 

apparatus falls logically under four headings: (1) The 

Rotor Drive System and Instrumentation.for Determining Input 

Energy, (2) Plant Stem Carriage, Track, and Drive System; 

(3) Instrumentation to Determine Stem Displacement; and 

(4) Apparatus for Plant Physical Property Tests. For the 

high speed motion picture studies, additional equipment was 

required and will be described.under the heading·of Auxiliary 
' . 

Equipment for High Speed Motion.Picture Studies. 

Rotor Drive System and Instrum~ntati6n 

for Determining Input Energy 

The rotor drive system was designed. to. use. the speed 

control components and the torque pickup_ . .unit.available in 

the Agricult~ral Engineering.Department .equjpment inventory. 

A Master Electric Div. type OM 1/2 HP shunt:wound direGt 

current electric motor comprised the power source. A 

Minarik Electric Co. Model SH56EFB speed control unit suppli­

ed direct current to the armature and field windings of 

the motor. The controller unit has full wave silicon recti-

fiers for AC to DC conversion and has provision for motor 

speed adjustment by means of a variable autotransformer that 

supplies voltage to the armature rectifiers. A high degree 

of speed regulation is provided by a transistorized feedback 
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control drcuit. A BLH Electronics Type -A.;05 torque pickup 

having a capacity of 500 in~lbf was the-torque sensor used. 

Slip ring noise can cause errors if a torque pickup 

is used to measure torques below ten percent of its capacity 

(38). It was estimated that torque requirements to sever 

soybean plant stems with,the helical-cutter would be about 

10 to 50 inch-pounds~ depending on the diameter of the stem. 

Thus in order to use the A-05 torque pickup according to 

recommended practice,_it-was-necessary to 11 m1..1ltiply 11 the 

cutting torque before-applying-it.to the sensor unit. To 

make this provision, a countershaft mounting arrangement for 

the sensor was designed in:which the:cutting torque was 

stepped-up by a factor of four before application to the 

torque pickup shaft. 

The layout of the rotor drive system is shown by Figure 

41. The full-load torque of the 1/2 HP electric motor 

was not sufficient to meet the estimated cutting torque 

requirements of the rotor assembly. Consequently, it was 

necessary to incorporate a flywheel in the drive system. 

And to protect the torque pickup against possible overloads, 
r 

a shear bolt arrangement was included in the flywheel to 

torque unit drive line. The design provided for the bolt 

to fail at 550 in-lbf torque. Calculations for the fly­

wheel and shear bolt designs are recorded in Appendix A. 

The torque pickup was mounted in the countershaft 

assembly as a floating shaft sensor with flexible couplings 

at each end, and it was carefully aligned such that total 
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runout of the torque unit shaft - measured with a dial in-. . ' . 

dicator on the coupling peri~hery - was below 0.002 inch. 

Worthington, 3/8 inch pitch, positive drive belts were used 

to transmit power from the motor to the countershaft and 

from the countershaft to the rotor d~tve shaft.-

Instrumentation to measure the energy·input per stem 

cut centered about a Sanborn Model 321 Carri~r- - Amplifier -

Recorder .. The t?r9ue pickup served as one full (four arm} 

resistance bridge transducer to one channel of the recorder. 

The second channel was used in a half (two arm} resistance 

bridge circuit.to record rotor shaft angular position.· The 

sensor in this circ1.dt was.a Tann-Controls Co. Model MA 60 

Pro xi mi t single po 1 e, normally open, permanent magnet, prox­

imity swit~h. Response time of the switch from open to 

close or close to open condition·is less than:one milli­

second. A toothed wheel was used to actiYitate the switch 

at each one half revolution of the rotor .. shaft. As shown 

by Figure 41, a friction clamp held the toothed wheel in 

position on the countershaft assembly. Thus it could be 

set to 11 trip 11 the switch.at.any position:of·the rotor 

shaft. The marker circuit~of-the recorder:was used_ in 

conjunction with a second Tann Model MA 60'Proximit switch 

~o monitor the velocity of the stem holding:carriage as it 

passed below the cutter. Three lugs, spaced 18 inches 

apart and-e~tending to the right of the carriage, 11 tripped 11 

this switch. 
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The response of-the recorder. galvanometer writing arms 

was too slow to give accurage inditation of instantaneous 

torque during the short c~tting periods at high rotor 

speeds - 1800 to 3600 rpm. To overcome this difficulty, the 

monitor output signals from the t~o channels:of,the recorder 

were fed to the two channels of a Tektronix_Inc.--Type 502 A 

Du~1 Beam Oscillosc-0pe. The single sweep feature of thfs 

oscilloscope was used to_ give.one:dfsplay of cutting torque­

and rotor shaft displacement during cutting.: A DC~signal, 

taken as an AC signal .through.an ind~ctive,coupling with the 

carriage velocity monitoring circuit• then-rectified by a 

diode bridge, triggered the single:sweep.of.the dual beams 

of the oscilloscope. Thus the oscilloscope_was triggered 

when the pro~imity switch.tripping,lug at.the. front of the 

carriage passed under the rotor and cuttfng,was imminent. 

A Hewlitt-Packard Model .197 A Oscilloscope.Camera with a 

Polaroid Land Camera back was used to record the traces of-

a singl~ sweep.of the oscilloscope 4ual beams •... 

Figure 42 presents.a schematic diagram.of the instrumen­

tation system. Figure.43 is·a photograph of the rotor drive 

system showing the tor_que, shaft angular di_splacement, and 

the carriage velocity tr~nsducers. Figure 44 shows the 

rotor drive speed controller (in foreground), the carrier­

amplifier-recorder~ and the dual-beam oscilloscope with the 

camera attached_.· 

The no load ~orque signal from the torque pickup showed 

cyclic variation of the ·s9,me frequency as the countershaft 
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rotational speed. The magnit~de of this cyclic variation 

went as high as 2 in-lbf peak to peak at som- rotational 

speeds. Extensive experimentation was carried out in an 

attempt to "smooth ou4 !J 4hese effects. First the rotational 

torque of each of·the six bearings (other than the motor 

bearings) in ~he_drive assembly was checked and those in-

dica~ing the highest torque were replace<;L Then recordings 

of the cy~lic effect wer~ made-over a speed range from 500 



· Figure 43. Rotor Drive System and Associated 
Instrumentation 

Figure 44. Rotor Drive Speed Controller (In 
Foreground) ,Carrier - Amplifier ­
Recprder, and Dual Beam Os­
cilloscope · and Ca~era 
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to 3600 rpm. The cyclic variations were.attributed to tor­

sional vibration of the rotational system and thus would be 

related to the natural frequencies of the system. It ap­

peared that the variation was greatest when the cutter rota­

tional speeds were 900, 2700, and 3600 rpm. To lessen the 

variation~ the first rotor speed range selecited for test, 

900 through 3600 rpm, was revised to a new ran~e of from 

1800 to 3600 rpm. 

Plant Stem Carriage, Track, 

and Drive Systern 

To accurately control the velocity of plant stems as 

they were moved t~rough the cutting zone (simulating the 

forward velocityiof a harvesting machine moving through the 

field), it,was d~cided to isol~te accel~rating loads from 

the carriage driVe system and to use flywheel effects to 

smooth out any. speed variations due to cutting loads trans­

mitted by the plant stems before they were completely sev­

ered; Thus the carriage dri~e system was designed in three 

parts: accelerati6n section, constant velocity section, 

and deceleration or braking section. In the acceleration 

section, Hunter Spring 11 Neg 1 ator 11 constant force springs 

were used to provide the carriage acceleratihg energy. 

Two sets of springs were use~, and the spring attaching arm 

of the accelerating dolly was designed to allow coupling 

to either set-in4ividually or to both sets simultaneously. 

Constant-forces -of· approximataly 48, 80, and 128 pounds 
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thus were available to act on the dolly and carriage. With 

an accelerating distance of up to 39 inches, in increments 

of approximately 1/4 inch, the carriage could be brought to 

any desired velocity up to 20 mph. A winch, release handle, 

and ratchet lock were used to 11 1oad 11 the qOlly-carriage 

system. Kinetic energy of the dolly was absorbed by having 

it impact against thick rubber bumpers faced with metal 

plates. Arriving at a suitable bumper design required much 

trial and effort. 

Figure 45(a) shows the carriage~ dolly, release lever 

arrangement when the system is ready to be 11 loaded 11 by the 

winch. Figure 45(b) shows the system with both sets of 

~ p r i n gs a t ta c h e cl to t h e d o 1 1 y a rm a n d ext e n d e d to a 11 1 o a d ed II 

position. Figure 46(a} is an action shot of the carriage 

and plant stems being accelerated by the 80 pound spring set. 

Figure 46(b) illustrates the dolly in 11 homeposition 11 after· 

the carriage has traveled on down th~ track. 

The constant velocity portion of the carriage drive 

system had as its chief component a 236 pitch 1 ength of 

Rex C-2059, 1 1/4 inch, double pitch, hollow pin, carrier 

roller conveyor chain. Extended over tw-0 20 tooth 7.991 

inch pitch diameter sprockets spaced 135 inches apart, the 

chain rollers were supported on a frame member. Hardwood 

block guides were added on each side of the chain - for 

both its top and bottom lengths - to restrain its side move­

ment and confine each roller to a straight line path. 



(a) 

Figure 45. 

Figure 46. 
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( b ) 

Carriage-Dolly-Release Lever System (a) Ready 
To Be Loaded by Winch (b} In Loaded Position 

(a) (b} 

(a) Carriage-Dolly System Undergoing Accelera­
tion by Action of · 80-Pound Spring Set; (b) 
Dollj in Home Position 



Two spring loaded pawls1 one at each end of the car­

riage, e,ngaged the chain rollers to drive the carriage at 

chain velocity. The pawls were designed to override the 

chain rollers if the carri~ge were traveling at a higher 

velocity th an the chain. · 
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Energy input to the chain drive was provided by a 1/2 

HP. AC electric motor through a Graham Variable Speed Trans­

mission. Output from the Graham unit was infinitely vari­

able from Oto 230 rpm. A radius arm arrangement (~o allow 

raising and lowering the trac~ without disturbing the drive) 

of 84 pitc~es of No. 40 (1/2 inch pitch) roller chain con­

nected the Graham variable speed output to the carriage 

drive chain input. A speed step-up ratio of 4.286 was em­

ployed. The carriage drive input-shaft was equipped with 

two 8 1/2 inch diameter by 1 inch thick steel flywheels 

symmetrically placed on either side of the main drive 

sprocket. 

The deceleration section of the carriage drive system 

consisted of a braking frame whi~h latched to th~ front of· 

the carriage when impacted by it and which was free to move 

rearward with the ~arri~ge except for the opposing force of 

t~o 16.5 pound constant force springs. Figure 47 pres~nts 

a rear view of the test stand which shows in the fQreground 

the braking frame assembly and the constant force springs 

which provide the braking force; Figure 48 shows the 

carriage latch~d to the braking frame after.deceleration, 



Fi gure 47. Rear View of Test Stand Showing 
Braking Frame Assembly 

• 

Figure 48. Carriage Latched to Braking 
' Fra~e After Decel erati on 
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The carriage proper consisted of a structure, six feet 

in length, made principally of 3/4. inch square steel tubing. 

Attaching holes were provided for locating stem clamping 

blocks at l 1/2 inch intervals along its length. Four 1 1/4 

inch diameter cam follower rollers were the _wheels of the 

carriage. Two additional cam follower rollers of the same 

size _but mounted vertically constrained the carriage later­

ally in the guiding track. Three proximity switch tripping 

lugs extended from the right side of the carriage. These 

were mounted 1 .5 ft. apart. Figure 49 shows the carriage 

construction. Figure 50 is a cross section of the carriage 

and its guiding track. This illustration also shows the 

method employed to .clamp plant stems in the ca~riage blocks~ 

To provide adjustment to the desired levels of cutting 

height index and lateral position index, the entire carriage 

track assembly was made adjustable vertically and laterally 

with respect to the cutter rotor. The track was designed in 

three sections: front (accelerating section), center (con­

stant velocity section), and rear (decelerating section). 

The center section was the main section, and lateral and 

vertical adjustment were built into it.- Each end section 

had auxiliary supports with vertical adjustment only. For 

lateral adjustment, the vertical supports were slid across 

the floor. The center track section was attached to the 

main frame by a track support beam assembly. The beam 

a~sembly moved up and down on two circular columns of the 

main frame by ~eans of· linear bearings. A screw and 
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~djusting han~le, centered between the two support columns 

raised and lowered the beam. The beam assembly had three 
'-!'<:·, 

equally spaced pins, each two inches in diameter, on which 

sleeves of~the center track section mounted. A screw 

and handle assembly through the centet pin provided lateral 

adjustment of the track section .on the pins. Set screws 

w~re used to ~lamp the two end sleeves on the pins at de­

sired lateral locations. Figure 51, an overal 1 view of the. 

center track section, shows the construction. 

Instrumentation to Determine 

Stem Displacement 

With respect_ to the reference axes chosen (Fig~re 33, 

Chapter V), the X and Y displacements of the c~~ter of· 

gravity and the cut end of a severed stem were read from a 

grid board. A horizontal plane through the rotor shaft~ 

cen~er line contained the top surface of the grid board. 

It was approximately 3 ft. wide by 4 ft. long and was made 

from a perforated, wood composition panel 1/4 inch thick. 

The perforations were one inch on center. These holes w~re 

used as guides in scribing the grid lines on the board, th~ 

grid lines being 1/2 inch apart in~both the X and·Y direct­

ions. The· grid board was attached to the main frame of the 

test stand through slotted holes. This attaching method. 

provided for adjusting the same base or 11 ;zero 11 reference 

1 ine to the simulated plant row center when the _lat-eral 

position of the row with respect to the ledger blade was 
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changed as called for by the experimental plan. At the high­

er rotor speeds and feed rates, the severed stems were often 

trajected past the original grid board. Consequently, a 

sheet m~tal ta~le 11 extensionll-was constructed to increase 

the area of the board. Figure 52 illustrates the original 

grid board and the extension to it) also the vertical grid 

board used 1 

The vertical grid boarc;I, with .a height of 24 inches and 

a width of 6 inch~s~ had graduations 2 inches apart.; The 

grid lines were scribed and filled in with white ink mixed 

with a fluorescent powder .. A Graflex Inc. Graphic View II 

camera with a Polaroid Land Model 500 4 x 5 inch film holder 

back was. positioned to the front of the vertical grid board 

as shown by Fjgure ~3. The camera had a 135 mm f/1.4 lens 

which was fitted with a Kodak 28 fi.lter. This filter would 

pass only flµoresced ultraviolet light; reflected ultra­

violet light was blgcked. A Black Light Eastman Corp. 

Model B-lOO Spectroline long wave ultraviolet lamp with a 

spot bulb and filter was used to incite fluorescence of the 

2 inch s~aced grids of the vertical grid board and of the 

center of.gravity and_ lower ends of the plant stems, these 

areas of the stem having been coated previous to eath test 

with a slurry made from fluorescent powder and water. The 

tests were run in a darkened room, and a time exposure of 

the stem trajectory made on the film due to the fluorescence 

of.the slurry coated areas when activated by the ultraviolet 

light beam. The lamp used a high pressure mercury vapor 



Figure 51. 

Figure 52. 

Overall View of Test Stand Show­
ing Con~truction of . Center 
Track Section 

Front View of Rotor Drive System 
and Horizontal and Vertical 
Grid Boards for Determining 
Stem Displacements 
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bulb rated at lOO watts and operated on 115 volt, 60 cycle, 

AC power. Figure 54 is a photograph of the equipment setup. 

Apparatus for Plant Physical Property Tests 

A stem testing machine utilizing the cross feeds and 

precise way alignment of a 16 inch engine lathe was built 

to determine the shear failure and cantilever bending load­

deflection curves of the plant stems. The frame of the 

testing machine was made of-aluminum to avoid marring the 

lathe-ways on which it was aligned and clamped. The load 

was applied to the stem~ by means of a ram attached to the 

compound rest cross slide of the lathe. Since the velocity 

of the cross slide was constant regardless of the applied 

load, deflection measurement was determined by the cross 

slide and recorder chart velocities. Suggs and Splinter 

(39) measured deflection for load-deflection tests of to­

bacco plant stems in a similar manner.· An axial load cell 

was fabri~ated by machining a steel strap to a thin cross 

section and attaching two etched~foil, paper backed BLH 

Corp. strain gages. An identical part with two of the same 

strain gages attached served as a dummy gage assembly for 

temperature compensation. The four gages were wired in a 

4 leg resistance bridge circuit such that bending loads 

on the.load cell had cancelling effects, and only axial 

loads were measured. This transducer circuit coupled to 

a Sanborn Model 321 Carrier-Amplifier-Recorder produced the 

load-deflection curves of interest. 
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Figure 55 is a photograph of the testihg machine, recorder, 

and an oscilloscope with camera that provided for greater 

resolution of· the curves for smaller stems. It was found 

that the oscilloscope and camera were not needed for the 

tests of this study, however. Figure 56 provides a sche­

matic diagram of the testing mathine .. 

The lathe had 3 spindle speeds and 48 lead screw feeds 

such.that 144 cross slide 9onstant velocities were available 

to drive the testing machine ram. A computer program was 

written to calculate and print out each of these available 

v e loci ties . 

A wide range of loading rates have been employed by 

other investigators studying physical properties of plant. 

stems. McClelland and Spielrein (17) _used a rate of 9.45 

inches per minute in applying bending loads to stems of al­

falfa, ryegrass~ wheat, and oat plants. Prince (18) employ­

ed a loading rate of.1~5 in~hes per-minute in bending al­

falfa, timothy, and oat st~ms. Suggs and Splinter (39) 

loaded tobacco stems in bending at a rate of 0.2 inches per 

minute. Halyk and Hurlbut (40) used a loading rate of 1 

inch per minute in bending and shear tests of alfalfa stalks. 

This rate. was adopted for the tests 11 because it approximated 

the ASTM standard breaking time for textile yarns. 11 

The cross slide velocity that came closest to a one 

inc~ per minute loading rate, that of 0.9694 inches per 

minute, was selected for use in the.shear failure tests. 

For the ~Bntilever bending tests~ a cross slide velocity of 



Figure 54. Photograph of Equipment Used to Record Stem 
Vertical Displacement -

Figure 55. Stem Testing M~chine and Load - De ­
flection Curye Recording 
Instruments 
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Figure 56. S~hematic Drawing-of Stem-Testtng Machine 

7,4419 inches -per minute was sele~t~d because its use, alQng 

with ttJe -use of a .5 millimeter per second recorder chart 

speed, gave a\convenie~t ·chart deflection scale~ 1/ 4 ·inch 

def\ection~per centimete~ gra~uation on the;-chart. 

To determine linear densi~y and moist~re content of· 

th~ stems ··tested, it was ,n~cessary to aq:urat_ely cut~a 

specified leDgth-from-th~ s~em for weighing, drying, ·an~ 

reweighing.: This:was ac~omplis~ed by using a 60 tooth saw, 

l 11,2,.inches_in di~mete_r an<;! 0~023 in9h thJJ:k, manufact~red· 

by the C-hi,<:ago Wheel Co .. and dr-iving it~at-10~000 rpm by a 
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1/4.HP Dumore Inc. universal electric motor. The saw and 

its drive assembly were included in a test fixture which 

also had a stem holding clamp and locating collars to allow 

sawing exactly one inch lengths from a plant stem. This 

fixture was patterned after one designed by Bartek and 

Prince (41). figure 57 shows the stem specimen sawing 

apparatus. 

The one inch stem specimen were weighed on a Mettler 

Model H6 Analytical Balance and were dried in a controlled 

temperature oven manufactured by Precision Scientific Co. 

The method used to determine the average diameter of a 

stem cross section was to cut out a disk of the stem about 

1/8 inch thick near the section of interest using the stem 

specimen sawing apparatus previously described. The bark 

was sanded from the disk and the pith removed from the cen~ 

ter of the disk.· The disk shaped cross section then was 

pla'ced in the viewing field of a Wilder Optical Co. Model 

AF Micro Projectorw The image projected on the viewing 

screen was magnified by ten. Kodak Kodabromide F5 photo­

graphic paper was exposed to the image (in a darkened 

room) for three seconds. The exposed photographic paper 

was placed in a light ti~ht box and taken to a film pro­

cessor for developing. Figure 58 shows three stem cross 

sections with identifying symbols in the viewing field.of 

the micro projector. 



Figure 57. Saw and Fixture for Cutting One 
Inch Lengths from Test Stems 

Figure 58 . Stem Cross Sections on Micro Pro ­
jector Ready for Images To Be 
Recorded on Photosens i tive 
Paper 
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Auxiliary-Equipment for Htgh Speed 

Motion .Picture Studie.s 
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A Fastax camera; Category I: - WF 3~mode1,·manufactured· 

by Revere~Wollensak Division of t~e 3M Company, comprised 

the--chief i tern of equipment:for the high speed motion pie-

ture f i lrni n g. This· camera used 100 -foot rolls of 16-mm 

film. A.superior-Electric Co. Powerstat variable trans;_ 

former, model 1168, provided.the input volta,ge to drive the: 

cameraj Maximum output of.the tra~sformer was 140~volts 

AC~ which ~ave a maximum mean picture~frequency: 

("Mean pi~ture frequency refers to the picture fre-:­
quency at the midpoint of-th~ usabl~ film strip. or 
abotit-60 feet from tha beginning of-the fll~~ 11 (42)) 

of about:4800 frames per second. The camera was equipped 

with two neon lamp~ for placing timing and event marks on 

the outboard a~d-in~oard sides respectively of:the film. A 

model 3106A Wollensak. Pulse Generator was used with the out-
• I • • ' • . ' 

boarel neon lamp to place a tim1ng mark on the film each 

millisecond .. Every tenth pulse from this unit hac:I a duration 

of 100.microsecQnds- compared:to 30,microsecond duration for 

the other pulses. This feat-ure resulted.in-every tenth tim­

ing mark on the film being wider in-extent and assisted 

greatly\during micromotion analysis of the film. A circuit 

including the rotor.shaft positioD indicating proximity_ 

switch:and toothec;I "tripping": wheel was designed-to supply 

the inboard neon lamp with a signal for each:half revolu­

tion of the rotor shaft: These:resul~ing marks on the fflm, 



in conjunction with the,_tirning marks,_wereused. to-check 

rotational speed of-the cutte~ .. 
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A switching ~ircuit:was d~vised· to. automatically turn 

on the camera:at th, proper time so that it was up to speed 

by the.time cutting of the plani stems·begah. A maint~ined 

conta~t~ single pole, double thto~, sn~p action;switch with 

a ro 11 er leaf act ~a tor was. operated, by -a cam fhced to the 

carriage:to-close the contac~s of-a switching relay~. The 

heavy,duty ~ontacts_of· the relay closed the cfrcuit on the 

secondaty:or output side of the variable-transformer to pro~ 

vide operatihg vo1tage to the.camera. The snap action 

swit~h operated-by_the carriage was clamped to the track and 

thus coul~ be positioned at different distances from the 

cutter.rotor.' With this arrangement, the start~up tim~ for; 

the cJmera ~ouJd be held to desired values regardl~ss of the 

carriage-velocity - which changed with c~anges in rotor 

speed and f,ed rate indices~ 

Two differ~nt lens assemblies were ~sed in the Fastax 

camera for the motion pictur~ studies. To photograph the 

cutting action, a 152 mm-f/2.7 lens was the objective lens; 

to photograph the severed stem trajectory, a 35 mm f/2.0 

lens was the objective lens .. 
~ . . ' . 

The minimum subject to camera focal plane distance for 

the lSS·mm lens is about 72 in~hes. · To obtain thj_s-distance 

in .filming t~e rotor cutting action~ and still retain the 

object framing desired~ a camera'tripod mounti~g stand was. 

built! For filming the severed st~m tr~jectory, a back­

ground screen, constructed of tar- paper (15:lb. weight 

black felt paper) was used as recommended by-Hyzer (43). 
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A fla.t mirror, set_at a 45 degree angle with the plaht row 

center line was- included in the field of view of the c;amera 

lens when filming the stem trajectories.· This-provided a 

view of the motion of~the stems transverse to the row center 

line which other,ise would not have'.appeared) since the lens 

axis was perpendicular to the row center line. The mirror 

was not mounted in line with the camera lens axis, however; 

so that the view was not: a truf;! one - distances appeared 

foreshortened ... 

Two Wollensak WF 323 high intensity incade,cent lamps, 

made especially for'.high speed motion picture filming, pro­

vided the ·printiple lighting source for taking the motion 

pic;tures. Additional No~ 2 Superflood EBV incadescent 

lamps were used to increase the available light; but their 

effect was minimal, especially in. the traject_ory filming 

sequence$. where there was a severe need for additional 

illumination .. 

Figure 59 shows a schematit diagram of the equipment 

setup for th~ h1gh speed movie filming. Figure 60 is a 

photograph of the set~p for filming the cutting action; 

Figure 61 is a view from the c,mera position of the arrahge­

ment for fil~ing the stem trajectories. 
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Figure59._ Schematic Diagram of Equipment Arrangement for 
Filming High Speed Motion Pictures of Cut~ 
ting Ac ti.on and Stem Trajec~ory, 



Figure 60. Camera Location and Equipment 
Arrangement for Taking the 
Cutting Action Films 

Figure 61. Equipment Arrangement for Stem 
Trajectory Filming as Seen 
from Camera Location 
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CHAPTER VII I 

EXPERIMENTAL PROCEDURE 

~or:this investiga~ion,· experimental procjdures relate to 

ca1ibration of the equipment, to data taking, and to reduc­

tion of. the raw data to a form suitable for ahalysis. 

Calibration.of Equipment 

Speed of the-cutter,rotor ahd of the carriage propelling 

chain:driVe sprocket were adjusted to desired.levels by use 

of a General Radio Co. type~ 1531-A 11 Strobotac 11 electronic 

stroboscope. Before~each,check-of speed adjustmen~; the 

st~oboscope was calibrated to line freque~cy-at the high and 

low dial:settings recommended.by the manufatturer. ·The·ac~ 

curacy of the instrumeht.is.supposed to.be:+1% of the dial 

reading afte~ calibration .. Consequently,. the.rotor.and 

carriage velocities are:believed to-have been maintained at­

least within +2% of nominal values~ 

The velocity of the carriage resulting.from accelera~ 

tion b~ the constaht force spring assembly was synchronized 

to the velocity of the carriage propelling chain by a pre­

liminary_ s~ries-of·trials. A computer program was written 

to calculate the theQretical:velocity of the carriage at the­

end of tbe acce1e~ation ac~ion by the 48, 80j and 128 lbf 
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spring combinations for one inch.increments of spring de­

fl-ection up to 42 inches total deflection. The work-energy 

method of analysis was used in making the calculations. By 

accurately weighing component parts of the carri~ge and 

typical plant stems, the mass of the.carriage with stems in 

place was estimated to be 25.lbsm~ This value was used in 

the calculations. The print out of the computations pro­

vided initial settings for trial. The carriage velocity 

monit9ring instrumentation, described in Chapter VII, was 

used to check the carriage velocity just.before it engaged 

the propelling chain for the constant·velocity.portion of 

its travel.· Adjustments were made in the spring deflection 

distanGe until the velocity of the carriage at the end of 

its accelefating period just matched.the propelling chain 

velocity specified in the experimental plan .. The required 

spring deflection distances were.marked along the top 

surface of the side guide.angle of the track assembly to 

compl~te the calibration. An index mark on the carriage 

was brought in alignment with the correct calibration mark 

for a given carriage velocity by means of the loading 

winch. When released at-this position, the accelerating 

dolly attached to the constant force springs acted on the 

carriage to bring it up to the chain velocity. Engagement 

of the carriage pawls with the propelling chain rollers was 

a very smooth action, as a result. 

For a given velocity, the lowest spring force {and, 

conyersely, the longest deflection distance) that cou)d 
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ac~elerate,th~ c:~rriage up to speed,within the tot,1 accel­

erating distance- provided.was selected for use. This kept 

the magnitude of the acceleration at a·minimu~ to avoid in­

ducing motion of the plant stems mounted in the carriage. 

blocks~ The highest carriage velocity used in the tests~ 

26.25 · ft, per sec. for a feed rate of 5.25 inches per 

revolution at 3600 rpm rotor:speed, was attainecl in an 

~cc~lerating distanc~ of just under 3 1/2-ft. by use of· 

the 128_pound spring combination. The resulting acceleration 

magnitude was approximately 100 ft .. /sec~ 2 or just··over 3 

g's. This acceleration induced no vibratory.motion of the 

plant sterns~ judgi~g from the high speed motibn,picture 

films shbwing the stems.as they appro~ched the -cutting 

zone. 

A summary of the various.rotor.and carriage velocities 

used in-the.experiment and.of.the spring size-deflection, 

co~binations required to.accelerate th~ carriage·to pro­

pelling chain velocity are-record~d in tabular from ih 

Appendix B. 

To calibrate the recorder and oscilloscope response de­

flecttons to torque·pickup.output, a ·static.<or, "c;iead weightll 

calibration procedure was adopted~ A balanced, symmetric 

lever was constructed ~o attach to the rotor drive shaft. 

The lever was d~signed with a support beam for mo~nting 

standard slotted kilogram weights, like those used in soils 

testing laboratories~ at a-distance of 2.835 inches from the· 

shaft c:enter .. See Figure 62., A one{· kilogram weight mounted 
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on the support-beam~ such that its center of mass was 2~835 

inches from the rotor shaft center, would apply a torque of 

6.25 in-lbf to the rotor shaft, and a torque of 25 in-lbf 

to the cou~t&rshaft 9ontainin~ the torque pickup. The mass 

of each kilogramcalibrati-on weight used was checked on an 

analytical balance~ Where necessary, corrections were made 

by the addition of small standard metric weight clips to the 

symmetric lever arm when using the wetght disk of inco~rect 

mass. 

Two and four kilogram wei9ht.co~binations, giving tor­

que~ of 50 and- 100 in-lbi on the torque pickup shaft, were· 

used in the calibration procedure which was as follows: 

1. Warm up and balance the recorder and oscilloscope~ 

2. Clamp the flywheel of the rotor drive·system so 

that the symmetrical lever with the kilogram 

weights attached is horizontally level. 

3~ Set the gain on the recorder and the oscilloscope­

such .that_ a torque of 50 in-lbf (2 kilograms on­

lever inducing a torque of 12;5 in-lbf _on the 

rotor:shaft} applied to the torq~e pickup gives 

full scale:deflection (25mm on recorder; 50mm on 

oscilloscope) at the Xl position of the recorder 

attenuator .. 

4. · Check t~e gain idjustment-of step 3 by loadi~g the 

torque pickup with a torque of 100 in-lbf (4 kilo­

grams on lever to induce-a torque of 25 in'-lbf_on 

the rotor shaft}. Exactly fu-11 scale deflection-
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of the recorder writing arm should result with the 

recorder attenuator set at the X2 position. 

The plant stem physical property testing machine was 

calibrated in a similar way using static loads. Weights 

were constructed to give loads of precisely 1, 5, and 

25 lbf on the load cell of the.machine. The recorder gain 

was set such t~at at the Xl attenuator position, a 1 lbf 

load gave a writing arm deflection of 2 millimeters. 

Figure 63 shows the.equi~ment arrangement for cali­

brating the carrier-amplifier-recorder and the oscilloscope 

used to record the cutting torque. The flywheel stop is 

attached. The symmetric lever arm is attached to the rotor 

shaft, and one of a pair of kilogram weights to be used is 

mounted on the support beam of the symmetric lever. Figure 

64 shows the equipment arrangement for calibrating the stem 

testing machine. In the photograph the force applied to 

the load cell by the hanging weight is one pound. 

Figures 65 and 66 present typical recorder oscjllograph 

chart calibration records. The initial calibration of-the 

recorder and oscilloscope· used for cutting torque measure­

ments was rechecked midway through the experimental test 

series and after tests were completed, No change was ob­

served. The calibration of the stem testing machine instru­

mentation was rechecked several times during the course of 

running tests a~d found t9 be accurate. 



Figure 63. 

Figure 64. 

Torque Pickup Calibration 
Equipment 

Stem Testing Machine Calibration 
-Equipment 
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Figure 65. Oscillograph Record of Torque Pickup 
Calibration 

Figure 66. Oscillograph 
Record of 
Stem Testing 
Machine 
Calibration 
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Data Taking Procedure 

The method of obtaining data for an experimental anal­

ysis of the helical cutter may be explained by considering 

the step by step procedure followed in conducting one trial 

of the main experimental plan. The plant stems were sorted 

according to nominal diametJr and roughly according to height 

of the center of gravity within the diameter classifications 

as previously explained (Chapter VI). The stems within a 

classification were paired and randomly assigned to experi­

mental trials. The trial numbers then were marked on the 

stems. After this preliminary assignment of experimental 

material~ the procedure was to: 

1. Check the moisture chamber nozzle to be certain 

a uniform mist of 180°F water was being sprayed 

and adjust if necessary. Place four numbered 

pairs of plant stems (and enough additional stems 

for a rerun of each size classification if re­

quired) in the holding racks under the nozzle~ 

Leave for the time period specified by the experi­

mental plan. (Note that enough plants for four 

trials were usually conditioned at the same time). 

2. Install rotor assembly with the rotor angle index 

called for by the experimental plan. Adjust the 

ledger orientation to the level specified by the· 

plan. Measure and record the clearance between 

the rotor and ledger blades at each end and at 

the center of the ledger blade. Color the edge 
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and:top of one rotor blade wttb~a-red'.grea~e 

pencjl~ color~th~ opposite blade with a ~reen grease: 

pencil such that the sector doing the cutting could 

be identified by the color t~ansferred· to the 

severed stem at the cut.section. 

3 .. Adjust the carriage track.vertical height,and 
' . . . 

lateral position to obtain the cutting height:and 

later~position:indices called for by the·experi­

mental plan. 

4~ Adjust the friction:clamp of the toothed wheel 

that trips the rotor shaft angular.displacement 

monitorfng proximity switch so that,the.switch 

trips _just as _the rotor blade leaves the ledger 

tube;protectiye shrotid at the lateral:position~ 

where the plant ste~.would.bi_engaged. This 

c~us,d a blip in the;shaft disp1acement trace on 

the recorder chart and.oscilloscope screen at the 

earliest ·time cutting couJd commence~ .. 

5. Adjust the. lateral .posi~ion of.tbe .. horizontal gri-d 

board until· the base 1 i ne coincided with the pl ant 

row center line. 

6. Install correct stem.holding blocks for the size 

stem to be tested on the stem physical-property 

test i n g mac h. i n e; 

7r After the al-lotted time in the moisture chamber, 

remove· the stems and let them drain thirty minutes 

at_ambiint humidity and temperature.· Afte~ thirty 
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minµtes, place all but,the pair·of stems to be 

tested in a walk-in cooler with inside temperature 

controlled to 40°F. +l0°F. 

8. Start the Graham variable speed drive and adjust 

its speed to provide the carria~e·propelling chain 

velocity called for by the experimental plan. 

Check the velocity by measuring the rotational 

speed of the chain drive.sprocket with the 

stroboscope. 

9. Start the rotor drive motor and set the speed 

controller dial to the predetermined value that 

gave the required rotor speed. Let the fluctua­

tions due to the feedback control circuit over­

shooting smooth out then make final adjustment of 

tbe speed controller, checking rotor speed with_ 

the stroboscope. 

10. Mark the requited center of gravity.height location 

on the stem to be cut~ Check the location of the. 

actual center of gravity on the-horizontal pin 

fixture and adjust.it to tbe req1,Jired.position by 

breaking off small bits of the.top:of the plant. 

Clamp the stem.in-.the .. plant ho·ldingblock of the 

carriage with its base end-flush with the bottom of 

the lower wooden holding block. Coat stem center 

of gravity and about 3 to 4 inches of the lower 

portion of the stem with a fluorescent slurry. 



Count the number of intact seed pods on the stem 

and record. 
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11. Check operational readiness of recorder and oscil­

loscope. Set adjustments on oscilloscope camera. 

Set_ triggering switch on oscilloscope. 

12. Turn on ultraviolet lamp and adjust the beam to the 

expected position of the severed stem trajectory. 

13. Extend carriage accelerating spring assembly to the 

required distance by the winch and lock in place. 

14. Load polaroid film holder of graphic view camera 

used to record vertical displacement of the severed 

stem. Check camera adjustments and set shutter 

for operation.· 

15. Have one man operate the oscilloscope camera and 

recorder chart drive. - Have a second man operate 

the camera photographing the stem trajectory. - Have 

a third man release the carriage when all is ready 

and the room lights are turned off_by a remote 

switch. Run test.through synchronized efforts of 

these men~ 

16. Develop polaroid film of oscilloscope trace during 

cutting. Develop polaroid film of stem trajectory. 

Coat prints and store. 

17. Note horizontal coordinates of the severed stem 

center of gravity and cut end on the grid board 

and record. 
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18. Examine severed stem cut end and the cut end of the 

stubble for indications of the type of cut and re-

cord observations. From measurements on stubble 

and on the severed stem relative to the center. of 

gravity, determine the actual height of cut above 
,, 

the base (base being the top of the carriage upper 

stem holding wooden block) and record. 

19. Check severed stem on.horizontal pin fixture to 

determine shift of center of gravity resulting from 

the lower end of the stem being cut off·and record 

the shift. Note the number of seed pods intact 

and record. 

20. Adjust the position of stem clamping block of the 

stem physical property testing machine to load the 

test stem in cantilever bending at.the same height 

a b o v e · the b a s e · a s . i ts 11 t w i n II s t e m w a s . c u t • R u n th e 

cantilever bending test and obtain a load-deflection 

curve on the recorder chart. 

21. Adjust the stem testing machine for a transverse 

shear test at the same cross section wh~re the can-

tilever bending load was applied. Run the shear 

fa. i 1 u re t e s t . 

22. Cut one inch lengths from both the cut stem and the 

physical property test stem at a point adjacent to 

the cut section and shear failure section, re­

spectively. Identify these one inch stem lengths, 
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weigh them on a Mettler~analytic balance, and place 

them in an oven to dry 24 hours at 180°F. 

23. At a point on the physical property test stem adja­

cent to the shear fai 1 ure section but on· the side 

opposite that from which the one inch length was 

cut, saw out a 1/8 inch thick disk, identify it, 

and place it in a container to later record an 

enlarged image of its eras~ section on photosens­

tive paper for average diameter analysis. 

24. Remove one inch stem test lengths from oven after 

24 hours, reweigh them and record data for moisture 

content and linear density determination. 

For each experimental trial, the same 24 steps was re­

pea~ed, except that for some of the tests~ the stems had 

been stored· in ·the walk-in cooler after a 11 batc;:h 11 • treatment 

in the moisture chamber, as noted in step 1. 

Procedure for the cutting effectiveness tests with the 

square edge blade was basically the same as for the main 

experimental series. Photographs of the stem trajectory 

were not taken, and photographs of the torque-angular shaft 

displacement traces during cutting were taken for only two 

or three runs~ randomly selected from the ten runs in each 

test series. 

For the high speed motion picture sequences, position~ 

ing of th~ motion picture camera and camera operating and 

light adjustments, camera switching set up, film loading, 

etc. took the plac;:e of operating the still camera to 
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record stem trajectory in the main test series. Degree of 

illumination of the subject was measured with a Wollensak 

WF-327 exposure meter and camera lens diaphram opening set 

to suit the light available at the operating speed de­

sired. Also nine plants were cut in each run. These were 

mounted in the carriage clamping blocks and numbered with a 

marking pen according to order of cuti Otherwise the pro­

cedure again was basically the same as with the main ex­

perimental test series. 

To record the test data in an orderly form, three data 

sheets were designed and used: .one for the cutting effect­

iveness tests, one for the main test sequence, and one for 

the physical property tests. Typical completed data sheets 

are shown in Appendix B. 

Data Reduction 

To reduce the raw data of the main test series to a 

form suitable for further-analysis, graphical-procedures 

were followed. On the polaroid print of,tbe.torque-angular 

displacement traces, the line of no-load.torque was estab­

lished. The net positive area under the. torque trace re­

sulting from cutting a stem was then determined. A Kueffel 

and Esser Co. No. 4236 compensating polar planimeter was 

used to calculate the area under the curve. From five to 

ten determinations of the area were obtained by one operator 

and the results averaged for the final area figure. A 

second operator then made five additional determinations and 
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averaged them to check the results of-the first operator. 

lf a discrepancy in the results appeared, the area determin­

ation was redone. Next the vertical and horizontal scales 

of th~ photographic trace were established. The Hewl~tt 

Packard Model 197 oscilloscope camera had ·a"specified ob­

ject-to-image ratio adjustment range-of 1:1 to 1:0.7. _ 

Through careful adjustment before the test sequence was 

commenced, it was thought that the ratio was set at·l :1. -

However, repeated measurements revealed that the distance 

between consecutive centimeters graduation lines of the· 

photograph was actually 1.04 centimeters. Thus a 

correction factor-was introduced to compensate for the 

difference. The horizontal scale on.the photograph (angular 

displacement scale) was determined by measurjng the dis­

tance between the trace blips for either four or eight 

complete revolutions of the rotor shaft ... This amounted to 

either one or two complete revolutions of.the-toothed 

wheel that.actuated the proximity switch~to:produce the 

trace blips. Thus the same tooth actuated:both. blips 

between which the distance measurement extended, and-there­

fore the effect of any machining inaccuracies. in the toothed 

wheel was eliminated. It-was thought unacceptable to use 

the oscilloscope nominal sweep rate setting to determine the 

horizontal scales for such a procedure resulted in the cal­

culated rotor speed being higher than what actually was run. 

The sweep rate accuracy of the oscilloscope is specified as 
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+3%. This wide accuracy tolera~ce band could account for­

the discrepancy~ 

Once the net area under the torque curve and the hori­

zontal and vertical s~ales were determined~ calculation of 

cutting torque per stem cut was a straight forward operation. 

Results were recorded on the data sheets. See the sample 

data sheet in Appendix B. A similar procedure was followed 

in analyzing data from the.stem physical property tests - to 

determine bending and shear energy input. 

To ascertain the positive vertical displacement of the 

center of gravity and cut end of the trajected stem, measure­

ments were made on the polaroid,print of the trajectory. 

Since the graduation lines of-the horizontal and ~ertical 

.grid boards are clearly visible in-the photographs, the 

scale of measurement was.readily fou~d. If.the,trajectory 

went out5ide the limits of~the photograph, an estimate of -

the vertical displacements was made based on that_ portion 

of the trajectory shown.on the photograph.~:. 

When the lower end of the plant was.cat:off in severing 

the stem from the stubble~ the center of 0 gravity of the sev­

ered stem shifted toward.the top of the stem from the posi­

tion previously marked; .The change varied from one to four 

inches, averaging about 2 5/16 inch. The data for center.of 

gravity displacements refer to the marked center of gravity 

of the stem~ determined before it was clamped in the carriage 

holding blo~k. 
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.... ,. 
The high speed motion picture-films were ~~alyzed ac­

cording to the procedJreoutlined. by Hyzer {44). First the 

films were repeatedly.viewed with use of a 16mm-motion pic­

ture ·projector.· Then a frame .by frame study of the films 

was made on a microfilm reader. Typical _cqtting sequenc:es 

were noted~ and the film.strip was marked at the beginning 

of these~ The film was stretched out on a lo~g table top, 

and-the distance to successive timing marks from the zero 

or reference frame timing mark was measured and recorded. 

These timing mark-distan~e data pai~s were-analyzed through 

use of a l_east squ.ares p.olynomial curve fitting c9mputer 

program. A se~-0nd degree polyno~ial_ gave the. response of 

elapsed· time as .. a function of.frame-number.with a correla-

. tion coefficient~ r, of 0.99999+ for:every film sequence 

analyzed. 

A Vanguard Motio~.Analyzer was used to-measure. in 

suctetsive fra~es the~coordihates~of points:on.a'plant stem 

~elative to a ·fixed references point in the.fje]d of view 

~ecorded on the film. These.measurements,proYided data-for 

a plot of displacement of the point on a plant stem under­

going cutting as a functton·of elapsed time or film frame 

number~ Using.the elapsed time versus frame number rela­

tionship previously _determined, data for plots of velocity 

and acceleration of the point during cutting versus elapsed 

time were calc~lated. Digital computer programs were 

written to carry out the calculationi. 
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If a 11 micromotion 11 analysis like the one roughly out­

lined above is to provide accurate information, a point of 

high contrast must be selected to be followed in a frame by 

frame·determinatioh of displacemenL. Unfortunately, no 

such points of high contrast existed on the plant stems. As 

a consequence, the plots of displacement and, especially, of 

velocity and acceleration of a point on the stem undergoing 

cutting or trajection turned out to be erratic, 



CH.APTER IX 

PRESENTATION AND ·ANALYSIS·OF-DATA 

Cutting Effecti~eness Tests 

As outlined in tbe experimental plan (Chapter VI)~ the 

CEO, PD, and .PS test series were to provide data for cuttihg 

effectiveness analysis. 

Classification of Severing Actio'ns 

Data-collected in the_thre~ test series are tabulated 
I I 

in Appendix. C-1. By close-observation of the seve,red· ends 

of the~stems and-of·the stubble from which the stems were 

s e par a t e d , s i x types of c u t ti n g -act i o n were d et e c t e d . The 

most desirable severing action was· a cle~n, apgled cut~ 

When the~stem was completely severed but by a torn~ r~gged 

cut, the.action ~aJ judged effectiv~ but less desirable. 

Another-type of-cut that effectively severed th• stem at the 

point of-blade contact produced ends that resembled those 

of a twig that i$ cut part.way through with a pocket knife 

then broken at this weakened section by bendirg, This 

action was defined a$ a partial cut.and break at the knife 

contact point. Figures 67 and 68 show typical cut ends of 

stems severed in the main, screening of.parameter, test 

series. The cuts shown in Figure 67 were made with square 

177, 
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edge blades on the rotor~ Note the torn, ragged cuts pro­

duced by the 56 degree rotor. Sharp blades made the cuts 

pictured in Figure 68. 

Noneffective severing actions included those that re­

sulted in the-:__stem breaking at the base rather tha.n at the 

blade contact point. There were a few instance in which the 

stem slipped under the.rotor without being cut. This action 

resulted when the stem partially broke at the base when con­

tacted by the rotor blade, then deflected backward and down 

to pass under the rotor without being severed; 

Figure 69 summarizes the severing actions noted to have 

acted on the stems of the CED, PD~ and PS test series re­

corded in Appendix C-I. Consideratton of these results 

brings the following observations: 

1. The 26 degree rotor ~vas more effective than the 

56 degree rotor in cutting plant stems with use 

of a square edge blade. 

2. · Moisture content of the stems had a decided effect 

on the type of severing action obtained when using 

square edge blades. 

3. Rotor speed and feed rate appear to have had some 

effect on the cutting action of the square edge 

blades. 

4. · Overall, the sharp blade was more effective than 

the square edge blade in producing d~sirable 

cutting actions, and there was less difference in 
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the action of the 26 and 56 degree rotors when 

sharp blades were used. 

Variation in Actual Cutting Height. 

181 

Since stubbl~ length is one criteria used in judging 

cutting .devices,.note the variation in actual ·cutting height 

obtained for the nominal height-setting of 1 -3/4'inchas used 

for most of the trials in the CEDi PD, and PS test series. 

The mean cµtting heightj standard error of the mean, maximum 

and minimum values, and the range is recorded for each test 

series in the tables of Appendix c~r. 
The cutting height data from thi CED t~st series is 

,, 

biased by the_large number of stems which broke at the base. 

When a stem broke at the base on contact with the rotor 

blade, the cutting height was taken as the point the blade 

contacted the stem. Had the stem b~e~ deflected to the fix­

ed ledger blade and cut, however~ the cutting height might 

well have been different from the initial point of rotor 

blade contact.· Co~parison of actual cutting height mean 

values theref6re will be limited to results for the PD and PS 

test series~ -Figure 70 illustrates the manner in which the 

cutting height was deif.if'.oed and measured, 
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Consider~tion of ·the cutting hetght data· for the PD 

and PS test series-leads to these inference~: 

l 82 

1. · With a nominal cutting height setti~~ of 1-3/4 

inches and with use of square edge blades, mean cutting 

height for the 2.6 degree rotor varied form 2.50 to 2.75 

inc~es. Standard.error of the mean varied from 0.05 to·O,ll 

inches. Mean 1 cutting height for:the 56 degree rotor under 

the same-conditioDs vari~d,from 2.65.to 3.00-inches with a 

stand~rd error of the mea~ of from 0.07 to 0,21 inches. 

Thus the mean cutting height is:significantly lower for the 

26-degree.rotor with ~he~use of square ed~e blades. 

2. When sharp blades were:used with.a.nominal cutti:ng 

height of 1-3/4.inches~ mean cutting height.fa~ the 26 de­

gree rotor varied from 2.16 to:2.40 inshes~ Standard error. 

of·the mean varied from 0.05 tq Oil2 inches. For the 56 

degree rotor, the mean cytting height-varied from 2.18 to 
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to 2.25 inch,s~ with a standard.error of th~ mean of 0.07_to 

0.12·inches~ Thus no significant difference in mean cutting 

height was indicated for·the two rotors when sharp blades 

were used. -

3. For both t~~ 26.degree and 56 degree rotors, mean. 

cutti.ng height was--signi fia~ntly lower with- use of sharp 

blades~ 

Trajection of Seveted Stems -

Ftgure 71 summarizes the -range of center of grayity 

and cut end displac,m~nts for the stems severed in-the CED. 

test.series. 

A desirable ~isplacement pattern is one with positive 

X displacement ljmita, a mean c.gi X displace~ent of large 

magnitude,.a mean c!g. Y displacement of low magnit4de, and 

With an area_.encJosecl by the-range ofc.~.--X displacements 

and-c.g. Y displaceme~ts of low magnitude.-. Positive X dis-­

plac~ment values indicate ttavel of the severed stem onto 

the_catcbing.platform of-a harve~ting machine. Negative X 

displacement;values indicate the ste~ being trajected in the; 

directio~ of machine travel-at-a velocity excee~ing that of­

the machine~ Thus the:stem would not-fall on the catghing_ 

platform.· Minimum Y dtsplacement values lessen the possi­

bility of plants c~t by;adjacent_secttons-of·the cutte~ 

rotor_colliding and:becomihg entangled while in the trajec­

tion paih: A small area enclosed by the -range of X and Y 
•' 

displacements i·ndicates a predictable path of trajectory, 
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Figure 71. Severed Stem Displacement Patterns for CED Test 
Series 
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one without_excessive variations. 

From ex~~ination of·the displace~ent pattetns of Figure 

71, in light Of the above criteria, it may be concluded 

that: 

1. ID general~ the 26 degree.rotor trajects the sev~ 

ered stems in a more desirable manner than the 56 degree 

rotor with the use of square edge blades - especially when 
. ' . 

stems are_in the 11 as dried 11 condition. 

2, Any stem that breaks at the base before being 

completely severed by the rotor blade play~ havoc with the 

displacement pattern~ The-stem.may be thrown a great dis­

tance in the positive X directiori, the negative X direction, 

or straight up. The dashed linJs for trial CED~l4 repre~ 

sent the extenston ,of the displacement range resulting from 

one stem breaking at the base. 

3. High rotor speeds and feed rates insure positive X 

displacements of-the severed stems but also_increase the 

variabi 1 ity of-. the displacement pattern. The maximum feed 

rate of 5.2.Sinc:hes pe·rrevolution at-the 3600 rpm rotor 

speed resulted in displacements far exceeding the range of 

the grid board made to measure them. 

Figure 72 shows the displacement patterns of the PD and 

PS test series. The superiority of the sharp blade patterns 

over the dull blade-ones:is clearly evident~ 
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Conclusions Regarding Independent 

Variable Ranges 

The cutting effectiveness tests indicated that two 

changes would be necessary in the proposed limits for the 

levels of th~ independent variables considered. 
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Excessive breaking of st-ms at the base before being 

cut resulted when severing stems in the 11 as dried 11 condition 

(0 hours in the conditioning chamber) with the square edge 

blades. Moisture content of the as dried stems ranged from·' 

7 to 12 percent, dry basis. This is below the range expec­

ted for stems to ~e harvested in the field. Accordingly, 

the 1 ower 1 i mi t of the 11 ti me in chamber II independent va ri -~ · 

able was increased from 0-hours to 2 hours. The 2 hour­

treatment provided a stem moisture content in the neighbor­

hood of 20 to 25 percent (dry basis). 

The up~er limit of the feed rate index was decreased 

fro~ 24 x 10- 2 (5.2.5 inches per revolution), to 20 x 10- 2 , 

(4.38 inches per revolution). This change was made to bring 

the X displacement values·within convenient range of the 

measuring grid boardi 

High Speed Motion Picture Studies 

The films of th~ cutting action and stem trajectory 

show clearly the cutting mechanism and motion characterts~· 

tics resulting with the dull and sharp rotor blades. Ex­

~mples of the detailed graphic information provided by a 

sequence of frames from the high speed films are shown by 
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Figures 73 and 74. Composite overlay drawings of such se­

quence of film frames provide a basis for analyzing the cut­

tin~ action and resulting stem trajectory. 

Cut~ing Mechanism - Square Edge 

Blaqes, Low Speed Level 

The films of trials PD-1 and PD-4 reveal the cutting 

action of square edge blades at the low level of rotor speed 

(1800 rpm). For these trials, nominal cutting height was 

1 3/4 inches, and the lateral position of the row center 

line relative to the ledger blade bottom corner was 1 1/8 

inches, 

Figure 75 shows typical cutting actions of trial PD-1, 

which involved the.26 degree rotor, Five stems were cut in 

this trial. The oscillograph cutting torque trace for the 

five stems is shown at left center of the illustration. The 

more accurate oscilloscope trace of instantaneous cutting 

torque for stems 1 and 2 is at right center of the figure. 

The cutting action for stems l ,3, and 4 was the same, Stems 

2 ~nd 5 were cut alike but in a dffferent manner from the 

others. 

Part 1-A of the illustration presents a detailed analy­

sis of the way in which stem 1 was cut. The square blade 

edge of one sector of the 26 degree rotor contacted the stem 

at frame 0. Frame 5 shows the stem position 2,79 millisec­

onds later. As can be seen, the stem has slid along the 

rotor blade edge while being deflected sharply toward the 
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ledger blade. The stem is stressed in bending; the lower 

position of it undergoing severe deflection while the entire 

upper portion of it is accelerated to the left to relieve 

the bending load. In frame 15, 8.36 msec. after the stem 

was contacted by the blade~ it is being severed by two ele­

ment shearing between the rotor and ledger blades. The led­

ger blade has penetrated nearly through the stem. Frame 23, 

taken 12.82 msec. after the stem was contacted, shows the 

clean cut completed and the severed stem translating in the 

X and Y directions. Notice the pronounced Y component of 

translation. Also note that there was no contact of the 

severed stem with .the rotor sector once the severing action 

was completed. Any impulse that affected the stem trajec­

tory ,as imparted previous to and during the cutting. 

The oscilloscope trace of instantaneous torque applied to 

the rotor shaft during the cutting of-stem l indicates a 

peak cutting torque of 23 lbf-in .. Energy input to sever the 

stem was calculated to be 23.3 in-lbf. 

One of the effects of the low feed rate (1 3/4 in. per 

rev.) used in t~tal PD-1 is shown by part 1-B of Figure 75. 

Frame 33, taken 18.39 msec. after the stem was first con­

tacted, shows that the rotor sector opposite to the one 

which cut the stem has engaged the stubble and is cutting it 

in two element shearing in conjunction with the ledger blade. 

Frame 38, exposed 21 .17 msec. after frame 0, shows the com­

pleted second cut of the stubble~ This action very closely 

resembles that predicted for low feed rates by the kinematic 
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analysis of Chapter IV. See Figure 26 in Chapter IV. The 

instantaneous torque trace reveals that a peak torque of 

about 18 l~f-in. was develop~d in second cutting of tbe 

stubble; energy input was calculated to be 14.6 in.-lbf' 

more than half that required to sever the stem. Total en­

ergy expendit~re fmr stem 1 was therefore 37.9 in.-lbf. 

Whereas stem 1 was contacted by a point on the rotor 

blade in the lower part of its cutting zone, stem 2 was con­

tacted by a point about to leave its cutting zone. (Refer to 

Figure 25, Chapter IV, for a graphic illustration of the 

cutting zone). The result is an impulsive deflection of the 

stem as show~ by 2-A of Figure 75. The upper pbrtion of the 

stem is moved in a clockwise direction; the lower part, in 

the immediate vicinity of the point of blade contact, is 

moved to a lesser extent in a counterclockwise direction. 

In 2-B of Figure 75, it is seen that stem 2 is severed by 

the rotor sector opposite to the one that first engaged it~ 

Frame 46, taken 17.92 msec. after referenc, frame 0, shows 

the beginriing of the cutting action. Frame 56, exposed 

21.84 msec. after reference frame O, depicts the stem about 

severed between the ledger and rotor blades. The cut was 

th rough ay: ,n c;{d e of the s t em and re q u i red a peak a pp l i e d tor -

que of 42 lbf-in., almost double that required 'for stem 1. 

The cutting action w~s not complete, however. A small tag 

of fibers still connects with the stubble in frame 86, ex­

posed 33.64 msec. after frame O, as shown by 2-C of Figure 

75. This view emphasizes that critical clearance adjustment :.l 
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must be maintained between rotor and ledger blades for clean 

cutting with a square edge rotor blade. As was the case 

with stem 1, the stubble of stem 2 is second cut, in this 

instance by the rotor sector that first contacted it, This 

action is shown in 2-D, frame 101, exposed 39.57 msec, after 

reference frame 0. 

The initial deflection of the stem by the rotor con~. 

sumed very little energy as the small instantaneous torque 

trace area confirms. Input energy to initially deflect, 

then cut the stem through a node was 57,9 in.-lbf. This 

value does not include the energy expended in second cut~ 

ting the stubble. 

Films of trial PD-4 show the stem severing action of 

the 56 degree rotor fitted with square edge blades and under 

the same conditions defined for the 26 degree rotor shown in 

Figure 75, The severing action was similar to that just 

des c r i bed f o r s t ems l and 2 for tr i a 1 PD - 1 , Th e 5 6 ·deg re e ., 

rotor had a strong tendency to deflect the stems violently 

in the negative X direction o~e, two, or three times before 

finally bringing them against the ledger blade to be cut, 

The two element shearing action took place on the upper por­

tion of the ledger blade edge; and in several instances, the 

rotor blade appeared to finally R!U.l the last connecting 

stem fibers in two through tensile stress, The first stem 

of trial PD-4 partially broke at the base when contacted by 

the 56 degree rotor blade, then bent rearward, and passed 

under the rotor shaft without being cut. The remaining five 
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stems of the trial were completely severed, but with peak 

torque levels of from 35 to 65 lbf-in .. Three of the five 

cuts required peak torque inputs in.,excess of 42.5 lbf-in. 

This is not surprising, since the large X and Z force com­

ponents evidenced qy the cutting action of the 56 degree 

rotor are predictable by equations (4-2) and (4-3) of Chap­

ter IV for large values of. knife angle,_a. 

Point A on stem 1 of trial PD 1, shown in 1-A of Fig­

ure 75, was subj~cted to a mfcromotion analysis using a Van­

guard Motion Analyzer. The displacement of the point in the 

X and Y directions relative to its initial position in frame 

Oare plotted in Figure 76. The instantaneous X and Y 

velocities -0f point A, calculated from the displacement and 

elapsed time-frame data for the film.sequence is also plot~,.• 

ted. Instantaneous acceleration of the point in the .two or­

thogonal directions was calculated, in addition, but was not 
. . l . 

plotted because of the somewhat erratic nature of the data­

explained in Chapter VIII. The Y velocity component of 

point A was known to be zero befo~e the stem was contacted 

by the rotor blade. Therefore the kinematic relation: 

( 9-1 ) 

where 

Y = displacement in Y direction 

( Ay \ 1 v g . = aver:- age a cc e 1 er at i on . from res t i n the 
Y direction 

t = elapsed time for d~splacement from 
rest 

can be used to calculate the average acceleration in the Y 
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direction of-point A in the inter~al of time from when th~ 

stem was first cbntacted by the bl_ade until when cutting be­

gan. Tbis calculation is shown on Figure 76. The average Y 

acceleration of a point on th~ stem in the immediate vicin' 

ity of the blade contact gives an indication of the inertia. 

force acting on the stem. 

Th~ typical trajection patt~rn for a stem severe~ under 

the conditions defined for stem l of trial PD-1 is shown by 

Figure 77(a). The path of motion shown is that for stem 3 

of trial PD-12, which was run with exactly the same specifi­

cations as trial PD-1. Observe that the stem has a pronounr 
( 

ced Y direction displacement, and note in particular the 

rotation 6r spin about the Z axis. By following the top 

seed pod from frame to frame in the film sequence, it is 

seen that the Z rotation is approximately one revolution per 

128 msec. Spinning of the severed stem about its vertical, 

or Z, axis indicates that it was stressed in torsion when 

being deflected and cut. 

If point A of stem l, shown in 1-A of Figure 75, is 

followed from frame to frame during the defl~ction and cut-

ting sequence, it can be seen .to undergo a clockwise or pos~ 

itive _Z rotation previous to the stem being severed. Ac~ 

cordingly, it appears the stem is subjected to a complex 

stress condition at the time it is severed. Bending, trans­

verse shear, torsion, and tensile loads all are simultan­

iously applied. Transverse shear is the governing load 

causing stem failure, however, for not until it is applied 
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through the combined action of the rotor and ledger blades 

does stem failure ·(cutting) occur. 

The inertia force due to the mass of the upper portion 

of the stem acts in a direction opposite to the direction of 

acceleration of the center of mass of-this portion of the 

stem and thus opposite to the direction of the resultant 

force applied to the stem by the rotor blade edge at the 

point of contact (force F in Figure 28, Chapter IV). If the 

resultant force F and the inertial force do not lie in the 

same vertical plane, a couple is produced to act on the stem 

resulting in a torsional load about the Z axis. Rotation of 

the severed stem about its Z axis is thought to be a result 

of this applied couple. 

Figure 78 shows clearly the Z roiation of stem 3, trial 

PD-1, immediately after it is severed. 

Cutting Mechanism - Square Edge Blades, 

High Speed Level 

The cutting action of square edge blades at the high 

level of rotor speed (3600 rpm) and feed rate (5 1/4 in, per. 

rev.) is shown by the films of trials PD-3 and PD-6, Cut­

ting height setting was 1 3/4 inches; lateral position set~ 

ting was 1 1/8 inches, 

Figure 79 shows the cutting action typical of trial PD-

3, run with the 26 degree rotor. The composite overlay 

drawings comprising Figure 79 were made from some of the 

individual film frames shown in Figure 73. Of the nine 
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stems cut in the trial, stems 1, 4, 5, 6, 7 and 9 were sev­

ered in a manner identical to that for stem 3. Stems 2 and 

8 were deflected to the ledger blade first by one sector to 

be partially cut; the opposite sector of the rotor then com­

pleted the severing action. 

The traces of instantaneous torque show that for the 

nine stems cut in the trial, stems 3 and 7 required the 

highest peak cutting torque, about 22 lbf-in. Stems 4 and 

6 required 8.5 lbi-in; stem 5 required 13 lbf~in. Comparing 

these peak torque values with those of trial PD-1 leads to 

the observation that lower peak torque values are required 

for cutting at the high level of rotor speed. 

What are the reasons for this phenomena? Analysis of. 

frames showing the progressive cutting of,stem 3 reveals an 

action very similar to that which severed stem 1 of trial 

PD-1. There is one important differencei however. The top 

portion of the stem does not translate in the Y direction as 

much, so that there is greater bending of the stem about the 

point of blade contact. Consequently, flexural stresses in 

the stem must be at a much higher level than those developed 

in stem 1. of trial PD-1. Although two-element shearing 

still is the governing cause of cutting the stem, the re­

quired shear forces evidently are lower due to the increase 

in bending stress imposed on the stem. Possibly torsional 

stresses are higher also, since they too are related to the 

inertia force imposed by the mass of the upper portion of 

the stem. 
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The r~sults of a micromotion analysis of point Bon 

stem 3, trial PD-3, are plotted in Figure 76, Average ac­

celeration of this point in the Y direction previous to cut­

ting of the stem is calculated to be approximately 291 g's, 

a value more than double the 117 g average Y acceleration 

cald.1lated for point A of stem 1, trial PD-1. This differ­

ence explains the in~reased inertia force and the resulting 

lower peak torque levels required to cut stems at the high 

level of rotor speed. 

With use of the high level of feed rate, second cut~ 

ting of the stubble was less frequent. Note that the stub­

ble of stem 3, trial PD-3, broke at the base about the time 

the stem was cut (frame 20), 

The input energy for stems of trial PD~3 is difficult 

to discern, Because of torsional oscillation of the rotor­

counter shaft-positive drive belt system, area under the 

torque trace of a particular stem is confounded with 'the 

area under the torque tra~e of the previously cut stem, The 

double peaks of the cutting torque traces of stems 4 and 6 

are thought to be a result of this confounding. The area 

under the trace for stem 5 is. the 11 cleanest 11 that appears 

on the oscilloscope record. Input energy to cut.stem 5 was 

calculated to be 32.7 in-lbf. 

Figure 77(b) presents the trajection of stem 9 of 

trial PD-10, Conditions for this trial were the same as 

for trial PD-3, and the pattern of motion shown is typical. 

Again note the pronounced spin of the stem about its 
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vertical (Z) axis as it also revolves (but more slowly) 

about the Y axis and translates in the X, Y, and Z direc­

tions. Because of the increased inertia force involved in 

cutting stems of this trial, the Y translation is less than 

for the stems of trial PD-12. 

Cutting action of the 56 degree rotor at the high 

level of rotor speed and feed rate and with square edge 

blades was nearly the same as that described for the low 

speed and feed rate levels. However, bending of the stem 

in the negative X direction on contact with the blade was 

much more severe due to the greater inertia forces induced 

by the high speed. Four of the nine stems comprising trial 

PD-6 were broken at the base by the impulse imparted by 

blade contact before cutting was completed. Three other 

stems had the last 1/4 of the connecting fibers to the 

stubble torn or pulled in two by the 56 degree blade 

action. Peak cutting torque ranged from 15 to 65 lbf-in., 

but five of the stems were cut (or broken at the base) at 

peak torque levels of from 25 to 30 lbf-in. 

The high level of rotor speed was combined with the 

low level of feed rate in trials PD-2 and PD-5 for the 26 

degree and 56 degree rotors respectively. The cutting 

mechanism was the same as for trials PD-3 and PD-6. 

Second cutting of the stubble was more common, however. 



Cutting Mechanism: Sharp Blades~ 

Low Speed Level 

205 

Trial PS-1 for the 26 degree rotor was iqentical to 

trial PD-1 except that sharp blades were used. Figure 80 

illustrates the cutting of two stems of trial PS-1. In 5-A 

of Fi~~re 80, at frame O the rotor blade has not yet con­

tacted stem 5. At frame 20, 4·.19 msec. later,·the blade 

has .. engaged the .. stem, deflect'ing it to the le'ft·, but at the 

same time_the sharp blade edge ha~ started to slice into 

the stem. Fift~en frames (3.09 msec.) later, the stem al­

ready is completely severed, throli9h single element cutting. 

The cut end of the stem slides along the bevel surface of 

the rotor ledge until it is discharged to the left as shown 

by frame 65, In 5-B of Figure 80, second cutting of the 

stubble is illustrated, The torq~e trace indicates consid-
.l . 

erable torque developed and energy expended by the second 

cut. 

Stem 6 of trial PS~l is contacte~ by a rotor blade 

near the end of its cutting zone, as was stem 2 of trial 

PD-1. Instead of merely deflecting the st~m as was the 

case in trial PD-1, however, the sharp blade slices a plug 

out of the stem. This action is shown by 6-A of Fi~ure 80, 

The opposite sector of the rotor then completely severs·. the 

item by singl~ elemeht cutting is shown in 6-B. The tor­

que trace indicates that a higher peak torque and a greater 
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expenditure of energy resulted from cutting the plug from 

the stem than from severing it at the weakened section. 
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Data from a micromotion analysis of point.Con stem 5 

of trial PS-1 is plotted in Figur~ 81. Average Y accelera­

tion to the start of cut was calculated to be 552 g's. The 

initial translation of point A on stem 1 of trial PD-1 re­

sulted in accelerations near this magnitude, but the result~ 

ing inertia force was not sufficient for the square edge 

blade to begin cutting the stem. This level of inertia 

force, in conjuction with the .stress concentration at the 

edge of the sharp blade~ did cause cutting of the stem. 

Figure 82 illustrates the two typical stem motions re­

sulting from cutting under the conditions of trial PS-1. 

Part (a) shows the trajectiory of stem 1 of trial PS-11 ~ 

where the stem was severed cleanly by one sector of the 

rotor. Part (b) shows the motion of· stem l of trial PS-10, 

where one sector cut out a plug half way through the stem 

without severing it. The opposite sector then completed the 

cut. This situation was illustrated by 6-A and 6-B of Fig­

ure 80. In both. cases, spin of the severed stem about its 

Z axis is present. 

With sharp blades, the 56 degree rotor cut as cleanly 

as the 26 degree one. The cutting sequences filmed in trial 

PD-5 show that as a result of severe b~nding about the Y 

axis (stem deflected sharply in the negative X direction at 

the point of blade contact), the last few fibers appear to 

break in t~o ahead of the blade edge rather than being cut. 
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Trajection of the severed stems was more like that illustra- .. 

ted by Figure 82(a). In some instances, the cut end of the 

stem rotated forward to lead the stem top portion in X 

translation. This type of trajectory offers evidence that, 

in this case, the rotor sector does impart additional energy 

to the stem cut end after the cut is completedo 

Cutting Mechanism: Sharp Blades, 

High Speed Level 

. Figure 83 illustrates the mechanism of cutting with the 

26 degree rotor fitted with sharp blades ·and rotating at 

3600 rpm. The·:single el~m~nt, impact type of cut shown for 

stem '3. in. Figure 83 __ is .typical of the manner in wh.ich the 

n1ne st~ms. 6f~trial PS~3 were cut. However stem·5 w~~ de-. 

fleeted.to the ledger blade bef6re cutting was completedo 

It can .be seen that. the seed pod attached to stem 3, shown 

in the il.lustration, is no"t ... unduly shaken by the cutting. 

Point D, at the position of attachment of the seed pod, was 

subjected to a micromotion analysis, the results of which 

are shown by Figure 840 Since the X translation of point D 

exceeded its Y translation before cutting began, the average 

X-acceleration was calculated to give an indication of the 

enertia forces involved. With the average X acceleration in 

excess of 1000 g's, the inertia force reached a high magni­

tude and provided for the almost instantaneous severing of 

the stem by the sharp blade, once it contacted ito As in­

dicated by the torque traces, the peak cutting torque 
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required was low, just 14 lbf-in~ for stem 3. Energy input 

for stem 3 was calculated to be 39.9 in.-lbf; for stem 2 it 

was 51.1 in.~lbf. 

Figure 85 shows the cutting action of the 56 degree 

rotor fitted with sharp blades and under the same conditions 

as those described for trial PS-3. The film sequence is of 

trt~l PS-4, stem 6. Five of the nine stems of the trial 

were cut in the manner shown. The other four broke at the 

base before cutting was complete. The cut illustrated by 

Figure 85 took place in less than one millesecond, immedi~ 

ately after the blade contacted the stem. The cut end of 

.the stem was then given an added impulse of energy as it 

slid along the rotor sector ledge to be discharged to the 

left. Plot$ of displacement and velocity of point Eon stem 

.6 ,re given in Figure 84. The average X acceleration of 

point E before cutting began was calculated to be about 1273 

g 1 ~; therefore th~ inertia force acting on the stem had a 

decisive affect on the manner of cut. The peak torque 

levels for those stems which did not break at the base was 

about 22.5 lbf-in. consistently. The peak cutting force 

therefore was greater than that of the 26 degree rotor under 

the same. conditions but less than that of the 56 degree 

rotor operated at 1800 rpm. Input energy varied from 48 to 

59 in~-lbf per stem cut. 

The pattern of trajection of the severed stems of 

trials PS-3 and PS-4 are shown in Figure 86. In (a) the 

motion of· stem 9 of trial PS~9, run under the same 
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conditions as trial PS-3, is shown. In (b) the motion of 

stem l of trial PS-8, run under the same conditions as trial 

PS-4, is depicted. The added energy imparted to the severed 

end of the stem by the 56 degree :rotor is seen to 11 kick 11 the 

lower end ahead of the top of the plant in the XZ plane, 

The characteristic spin of the stem about its vertical Z 

axis is present in both cases. 

Figure 87 illustrates the severing of stem 8 of trial 

PS-6. For this trial, nominal cutting height was 1 inch, 

lateral position was 3/8 inch, and the stem diameter was 

21/64 inch. The 46 degree rotor fitted with sharp blades 

did the cutting. Feed rate was 3 1/16 in./rev. With a dif­

ferent rotor, stem size, feed rate, lateral position, and 

cutting height, the cutting mechanism was still the same as 

for trials PS-3 and PS-4: single element impact cutting, 

Further Analysis of Severed 

Stem Trajectory 

A better understanding 

lation of the severed stem 

of the charac:teri sti c x trans-

might result from consideration 

of the motion of only one or two points along the stem 

length. The ultraviolet photographic techniques used to 

record the Z displacement of the cut stems in the trials of 

the main experiments afford a way of doing this. The trace 

of the center of gravity of the stem of trial 28, dull blade 

test series, presents a clear picture of the e.g. X dis­

placement. This stem underw~nt almost pure planar motion 
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after being cut. There was little or no Y translation or 
:~ 

rotation about the X axis, as the final stem position on the 

horizontal grid board shows. See Figure 88. Since the 

ultraviolet light pulsed each 1/60 second, that is the time 

interval between successive trace marks in the photograph. 

The grid lines of the horizontal grid board are distinc­

tively visible in the photograph and give an accurate linear 

scale for distance measurement. The drawing made by an 

overlay of the photograph is shown at the center of Figure 

88. Calculated X velocity of the stem before being contac­

ted by the rotor blade is 10.85 ft./sec .. Theoretical 

carriage velocity for this trial was 10.83 ft./sec .. Hence 

the graphic procedure gives accurate results. During cut­

ting, the stem e.g. is decelerated to an X velocity of 6.65 

ft./sec .. As it begins its descent under the influence of 

gravity, the stem e.g. still has an X velocity of 6.65 ft./ 

sec .. Although this analysis is not conclusive, it does in­

dicate that compared to gravity forces, the~ force on 

the severed stem has a lesser, second order effect on the 

motion. Therefore it appears justified not to have in­

cluded drag force in the dimensional analysis of the system 

(Chapter V). 

Check on Rotor Speed 

A check on the accuracy with which rotor speed was 

maintained in the filming sequences was made through analy­

sis of some of the timing and event mark data placed on the 
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film with the equipment described in Chapter VII, Results 

are presented in Table XIV, 

Trial No, 
and 

Stem Cutting 
Shown on 0 

Film 0 

Sequence co 
.--

PS-10 #1 -· x 
P S-11 #1 x 
PD-12 #3 x 

PD-3 #3 
PS-7 #2 
PS-8 #1 
PS-9 #9 
PD-10 #9 

TABLE XIV 

COMPARISON OF THEORETICAL AND 
CALCULATED ROTOR SPEEDS 

Theo. 
Rotor Calculated 
Speed Rotor Speed 

0. From 
0 Timing Mark 
c..o· ' Data ('I') 

I. 

I 1729 Based on 8 rev. j 

l 1719 Based on 8 rev. 
1702 Based on 4 rev. 

x 3586 Based on 4 rev. 
x 3441 Based on 4 rev. 
x 3508 Based on 4 rev. 
x 3481 Based on 4 ·rev. 
x 3403 Based on 4 rev. 

Percent 
Deviation 

from 
Theo, 

3.9 
4.5 
5,4 

0.4 
4.4 
2.6 
3.3 
5,5 

The variation was greater than expected~ but it must be 

remembered that the rotor necessarily slows down momentarily 

when a stem is cut due to extraction of energy from the 

rotary system. Since the checks extended over at most eight 

revolutions of the rotor, the effects of the momentary 

speed decreases are included in the periods analyzed. 
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Main, Screening of Parameter, Tests 

The reduced data for the main, screening of parameter 

experiment series are tabulated in Appendix C. The dull 

blade series main test data comprises Appendix C-II; the 

sharp blade series main test data comprises Appendix C-III. 

As was indicated in Chapter VI, the dull blade test series 

was begun with three replications of each treatment combin­

ation, but was revised to a two replication plan after 30 

trials. Where three replications were run, one had to be 

eliminated before analysis on a two replication basis could 

proceed. The criteria for discarding one of the three 

trials was as follows: 

1. If one trial involved a noneffective cutting action 

(breaking of the stem at the base before it was completely 

severed, for example) while effective cuts were made in the 

other two trials, the trial with the noneffective cut was 

discarded.• 

2. If all three trials resulted in effective cuts, or 

if there were two noneffective cuts, then the trial having 

the greatest deviation in moisture content or stem dry 1in­

ear density was eliminated. 

For statistical analysis of the data. two dimensioned 

response variables were added to the eight dimensionless 

response pi terms previously defined through dimensiona1 

analysis. The new response variables were energy input per 

stem cut (in.~lbf) and maximum torque developed per stem cut 

{lb,-in.). 
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Analysis of Variance 

An analysis of variance was performed on the reduced 

data for each of the ten response terms in both the dull 

blade and the sharp blade test series, This was done on an 

IBM 360 digital computer, The fortran program for the com­

puter was written to also calculate a table of treatment 

means for each response variable. Results of this analysis 

are listed in Appendix D-I for the dull blade series and in 

Appendix D-II for the sharp blade series. 

Results of the analysis of variance are summarized in 

Table XV. The test of significance of an independent 

variable is based on the F-ratio calculated from its effect 

on the response term. Two confidence levels will be con­

sidered in judging the significance of independent factors. 

At the 85 percent confidence level, any independent factor 

that has the slightest non-trivial effect on a response 

variable will be assessed significant, At the 95 percent 

confidence level, there is only one chance in twenty that 

an independent variable will be judged significant when in 

fact it is not; therefore this level provides a more crit­

ical basis for judgement. 

Table XVI lists the factors calculated to have a sig­

nificant effect on the response terms at each of the two 

confidence levels. The 85 percent confidence level is the 

a - .15 level; similarly, the 95 percent confidence is the 

a, = ,05 level. 
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Graphs of Treatment Means and 

Discussion of Results 

To answer the question of what type of effect - linear, 

quadratic, cubic - that each significant factor (at the 85 

percent confidence level) has on the response variables, the 

treatment means are graphed in Figures 89 through 96. Anal­

ysis of variance data were utilized to draw the correct type 

of curve representing the response. With reference to Fig­

ures 89 through 96, and to Tables XV and XVI, consider now 

each response variable in turn. 

Energy input per stem cut depended primarily on the 

plant stem nominal diameter, or on those stem physical prop­

erties having a one to one correspondence with the nominal 

diameter, for both the dull and sharp blades. The relation­

ship was linear for the sharp blades and linear tending to­

ward quadratic at the larger diameters for the dull blade 9 

as Figure 89 shows. 

For the sharp blade, the next most significant factor 

affecting energy input was time in the conditioning chamber, 

which is a measure of moisture content of the stem. For 

the dull blade, time in chamber was barely significant 

at the 85 percent confidence level. The effect was cubic 

for both the sharp and dull blades. Mean input energy for 

cutting was greatest for stems treated six hours in ,the 

chamber. This treatment time corresponds to mean moisture 
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contents of 35 percent (D.B.) for the dull blade series of· 

tests and 43 percent (D.B.) for the sharp blade series of 

tests. 

After diameter~ the lateral position index had the· 

greatest eff~ct-on energy input for th~ dull blade test. 

series, an<;I had a signifi.cant effect for the sharp blade 

series, too, but not so much as. the rotor angle index. The· 

rotor angle index did not have appreciable effect with use 

of the dull~blade. With both the dul]. and-sharp blades, the 

effect of lateral position wa~ quadratic. There was a 

noticeable increase in:energy input between the first and 

second levels of lateral position index, but the increase 

11 tapered off 11 among the· second, third and fourth 1 evel s. 

This effect may be attributed to the added energy required 

to bend the stem to the ledger blade _with increasing dis­

tance for the dulJ blade. For the sharp blade, it may be 

attributed to increased.energy imparted to the severed end 

of the stem while it is in contact with the rotor sector 

after cutting. This added.energy affects the stem 

trajectory. 

The rotor aogle:index had a cubic effect with usa of 

sharp blades, The 46 degree rotor required the least mean 

energy input per stem cut; the 36 degre~ rotor re~uired the 

most, On-examining the trials-involving the 36 degree;rotor, 

it was noted that:there were many instances where o~e sector 

sliced a plug from the stem without severing it completely; 

the opposite sector th.en cgmpleted the cut. This 11 double 
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contact'' type of cutting expends considerable amtiunts of 

energy, as was shown in the previous section describing the 

cutting mechanism involved. Although rotor angle index did 

not have a significant effect with use of the dull blade. 

examination of the table of mean values reveals that the -26 

degree rotor required the least mean energy input, followed 

in order by;the 3~, 46, and 56 degree;rotors. This was the 

expected result since two element cutting was involved~ 

The feed rate index is the final independent variable 

considered which had a significant effect:on energy input 

per stem cut for the dull blade series. Surprisingly, the 

feed rate index did not~have a significant effect in the 

sharp-blade tests~ For the dul] blad,~ the effect was quad­

ratic; the energy input dropped rapidly between the first 

and second levels; it was about tbe sam~ for the second and 

third levels. 

The-plant stem center of gravity height.index was high­

ly significant-for the sharp blade test series. It had pri­

marily a linear effect but tended toward a cubic, effect. with 

energy input. per stem cut: incr~asing with in~reasi~g height 

of center of;gravity of the plant. 

The ledger orientation index and the cutting height 

index were of about the same order of importance in affecting 

the.input energy. The ledger orientation had a cubic effect, 

with the +10 d~gree setting giving best mean results~ 
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followed by the o degree:setting. Effect of the cutting 

height was linear, energy:input decreasing with increasing 

cutting height. 

The rotor speed index did.not have a significant 

effect on energy input. per stem cut. for either the dull or 

sharp blade .test:series. 

Figure 90 illustrates the influence on maximum torque 

developed per stem cut for each of the independent variables 
-

which affected it at the 85 percent confidence level. As 

was the case with the.response of en~rgy input, nominal 

diameter of the ·stems had the greatest effect on maximum 

torque developed for both the dull and sharp blade test 

series. Again-the effect was linear for the sharp blade 

and ljnear tending toward quadratic for the dull blade. 

Following nominal diameter, the r9tor speed index was 

the next most-important independent variable· affecting cut~ 

ting torque .• {ts effect was quadratic for both the dull and 

sharp blades. With increasing rotor speed, the maximum 

cutting torque dropped rapidly at the low level of the speed 

range~ Then it leveled off and began to increase slightly 

at the upper end of the range. Minimum values of peak 

cutting torque occurred fqr rotor speeds between 3100 and 

3600 rpm for both the.dull and sharp blade rotors. 

Next to toter speed index in importance was the rotor 

angle index - for both dull and sharp blades. For dull 

blades the effect was linear, peak torque levels increasing 

with increase of the rotor angle. With sharp blades, the 
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effect was cubic. The 46 degree rotor developed the least 

mean peak torque, followed by the 26 degree rotor. The 36 

degree rotor produced the maximum mean peak torque value. 

Time in chamber had a highly significant effect for the 

sharp blade series and no effect (at the 85 percent confi­

dence level) for the dull blade series. The effect was 

quadratic for the sharp blade series. Stems treated four 

hours required slightly greater torque levels for cutting 

than those treated two hours. The required cutting torque 

level decreased with increasing time in chamber for the six 

and eight hour treatment times. 

Ledger orientation significantly affected peak torques 

developed in the sharp blade test series only. The effect 

was cubic with the O degree setting developing the least 

mean peak torque. 

The lateral position index had a significant effect on 

peak torque for the dull blade test series only. The 

effect was linear (with a slight cubic tendency). Peak 

torque per stem cut became greater with increase in lateral· 

position. 

In both the dull and sharp blade series, maximum tor­

que developed was dependent on the plant center of gravity 

index. The effect was linear with quadratic tendencies for 

both series. With increasing values of the C.G. height 

index, the maximum torque per stem cut mean values increased. 
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The feed rate index had no effect on the maximum torque 

per stem cut at the 85 percent confidence level for either 

the dull or sharp blade series~ 

As stated in Chapter V, it was hoped that the dimension­

less response variables, energy input-index and maximum 

torque index, would be related to the independent variables 

in nearly the same manner as the dimensioned response vari­

ables, energy input per stem cut and maximum torque per stem 

cut. The principal exception desired was that the effects 

of diameter and moisture content would be removed by the 

denominator terms of the dimension1ess variables. Examina­

tion of Figures 91 and 92, which show how the energy input 

index and maximum torque index relat~ to t~e independent 

variables~ will confirm that the goals sought were only 

partly realized. The effects of diameter and time in 

chamber are still present~ although less significant. 

The other relationships are fairly parallel for the dimen­

sioned and dimensionless response variables in most but not 

all cases. For instance, in the case of energy input per 

stem cut, the effects of the plant C.G. height index are 

magnified and give a curve of reverse slope for the dimen­

sionless response: term. And rotor speed index comes into 

significance whereas it wa~ not for the dimensioned response 

term. In the case of maximum torque per stem cut, _the C.G. 

height index again gives a magnified curve of reverse slope, 

and cutting height index becomes a significant variable for 

the.sharp blade series. 
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Relationships of the severed stern displacement indices 

to the significant independent variables are shown by Figures 

93, 94, and 95, Rotor speed index and feed rate index affect 

the X displacement both for the dull and sharp blade test 

series, Increasing values of these indices give increasing 

X displacement - in an almost linear manner. The rotor 

angle index affects X displacement for the sharp blade series 

only, The effect is cubic, and it is the 46 degree rotor 

that gives the best response, 

The Y displacement indices are affected by a number of 

independent variables with use of dull blades. Only the ro­

tor speed and lateral position indices are significant with 

use of sharp blades. The rotor speed index invokes a cubic 

response, with minimum Y displacements at a rotor speed of 

3118 rpm, The Y displacement of the stern cut end increases 

linearly with increase of the lateral position index. 

The Z displacement indices are affected by a number of 

independent variables with use of sharp blades, With dull 

blades, the rotor speed, feed rate, rotor angle, and lateral 

position indices are significant. 

In Chapter IV, from consideration of the kinematic and 

force analysis, a prediction of maximum X displacement for 

the stern C,G. and maximum Z displacement for the severed end 

of the stern was made for the 26 degree rotor with a +10 de­

gree ledger orientation. This prediction is partly verified 

and partly revoked by test results, With dull blades, the 

26 degree rotor did give the greatest mean X displacement 
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of the stem C.G., but the 56 degree rotor produced a mean 

displacement almost as great, the response over the rotor 

angle index range being quadratic. This result indicates 

that even with two element cutting, the 56 degree rotor im­

parts energy to the stem after it is severed. The ledger 

orientation index did not significantly affect the end Z 

displacement index for the dull blade tests. With sharp 

blades, the ledger orientation index did significantly affect 

the end X displacement, and the +10 degree level did produce 

the greatest response. 

Comparison of Responses for 

Dull and Sharp Blades 

A review of the response curves shows a consistent 

difference in the curves representing the dull and sharp 

blade test data. A comparison in the overall means for 

the two blade types, .for each response variable considered 

in the tests, is presented in Table XVII. 

A listing of criteria for evaluating parameter combina­

tions for a rotary sickle type of helical cutter con~idered 

in this investigation was begun in the first section of the 

chapter. With inclusion of input energy and maximum torque, 

the criteria can be extended such that evaluation of the 

parameter combinations is based on the determination of mean: 

1. Energy input per stem cut~ minimum value best. 

2. Peak torque per stem cut; minimum value best. 

3. Stem C.G. X displacement; maximum value best~ 
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4, Stem C.G. Y displacement; minimum value best. 

5. Stem cut end Z displacement; maximum value best. 

6. Actual cutting height; minimum value best. 

The cutting effectiveness tests showed the sharp blade 

superior on the basis of mean actual cutting height. The 

data in Table XVII show the sharp blade superior on the basis 

of energy input, peak torque, and X displacement of the stem 

C.G. - at the 99 percent confidence level. For the other 

displacements there was no difference in results with the 

two blade types. 

For the range of values of the independent variables 

comprising the main experiment test 'series, optimum values 

can be defined for those parameters which allow selective 

control. These values, presented in Table XVIII, are based 

on the response data previously analyzed in this chapter. 

Parameters like stem diameter, moisture content, stem C.G. 

height index, and lateral position index, which would be 

random variables in relation to a field going cutting device, 

are not considered in the list. 



TABLE XVIII 

OPTIMUM VALUES OF SELECTED INDEPENDENT 
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Parameter Dull Blade Sharp Blade 
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· Ori e Ii ta ti o·n _50 or ao oo 
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Stem Physical Property Tests 

The reduced.data from the stem physical property tests 

are tabulated in-Appendix E. In the tables, the data are 

classified first into four levels of nominal diameter. With­

in each nominal diameter section, the listings are further 

classified ac~ording to cutting height and are ranked in 

order of moisture content within each cutting height group. 

Since 30 trials of the dull blade test series were run on a 

three replication plan, there are.nine more tast results in 

this group of data than in the sharp blade results. Overall, 

137 trials are included in the tabulated data. 

It_was anticipated that n8 , Se/Be, could be related to 

stem moisture content by a polynominal prediction equation 

for each cutiing height range within each diameter classi­

fication. A family of curves would result such that by 

knowing stem nominal diameter, the height of cut, and the 

stem moisture content, a fairly exact value .of n8 could be 

determined. An attempt was made to analyze the data in such 

a manner. Trials with wide .variation in stem average dia­

meter, dry linear density, or actual cutting height were 

treated as outliers, as stated in the footnote to Appendix 

E, and were not included in the curve fitting analyJes. 

Still the results were disappointing. Figures 96 and 97 show 

that the curves obtained could not be classified as a family. 

The summary of results of the regression analyses, listed in 

Table XI~, shows that correlation coefficients for most of 

the curves were low. Thus the equations would give imprecise 
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Nom1nal 
S,tem 

Dia 
{In) 

13/64 

13/M 

l>/M, 

17 /64 

17/64 

17 /64 

17/6~ 

21 / 64 , 

21/64 

,21/64 

25/64 

25/ 64 

,25/64 

TABLE XIX 

SUMMARY OF REGRESSION ANALYSIS FOR rr 8 = Se/Be 
VERSUS STEM MOISTURE CONTENT 

Ng 
Data Quadratfc Fuhctional· Devh ttoris 

Cutting Pairs R,ela t.ionshi p Curve Corr. About 
He19tot I ncTuded Coef'fi ~i ents No 
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Range 
of 

Moisture 
Content Coef.f. Regression 

On) in Y=A+BX+CX2 Mea·n ~qua re (Ory Basis) 
Analysis (Y.•SE/BE; X=%Moht., p. B.) 

1 1/4 ' 1 3/4 8 A . 25; 11512 SP-1 .344 17044 20 - 81% 
B = i); 61934 
c = -0.00708 

2 - 2, 7/8 14 A = 56.89900 SP·2 . 627 14.,88 19 - 84% 
B = ~Q.00681 
Q . .Q.00503 

- 3 5/.8 9' A =-SL 27o68 SP-3 .502 16.67 32 - 90% 
e·= 4.08417 
c = -0. 03530 

1 1/8 - 1 7 /8 A = 23.73134 5pc4 . 319 4.55 22 - 86% 
B = •0.32285 
c = 0.00311 

2 - 2 1 I 4 · 10 A = 11.6309,~ SP-5 .488 5.54 18 -·80% 
B = 0.74928 
c = -o. 00788 

2 1/2 - 2 7/8 A = 18.93596 SP-6 .660 5.81 26 - 78% 
8 . o: 18616 
c = 0.00071 

3 3/ 8 - 3 5/8 A =-10.32384, SP.7 .392 17.32 14 - 38% 
B = 4. 51838 
c = -0. 07794 

l 1./8 - 1 3/ 8 A = .Q.40295 SP,8 . 791 1. 38 15 - 70% 
.B = Q.54314 
c -0,00558 

2 - 2 7/8 J3 A.= -2.1221!\ SP-9 , 35.3 10. 42 15 - 51% 
8 = ] .74140 
c = -0.0,2216 

3 - 3 l/4 A = 66.60173 SP-10 .56,3 6, 64 22 - 106% 
B = , L 59809 
c = 0.01216 

1 - 1 7 / 8 8 I( = 8.3517,1 SP ell . 383 4.,80 , 21 - 80% 
B = Q.44017 
c = o0.00493 

2 1/2 - 2 7/~ 6' A = -2,43609 SP,12 . 685 ll .(\8 8 - 35% 
8 • 2 o',35,906 
c = -Q.02?59 

3 1/8 - ,4 A = 96.97622 SP -13 . 8.55 9.48 14 - 54% 
8 .= -4.33682 
c . 0:0734.7 
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results if used for prediction. In some instances, polynom­

inals of higher degree than the second degree ones listed 

gave better correlation; but the improvement was considered 

artificial, since no dramatic differences pointing to a 

true relationship were obtained. 

The poor results experienced with the stem physical 

property analyses may be attributed to several causes: 

1. Inability to accurately control moisture content 

of the stems. 

2. High inherent variability of physical properties 

of seemingly identical stems. 

3. Strong influence of cutting height differences 

on physical property variation. 

4. Strong influence of stem average diameter differ­

ences on physical property variation. 

More precise results might have resulted if a realis­

tic average cutting height had been used for all the physical 

property tests, and a greater number of replications of each 

treatm~nt had been run. Better control over the moisture 

content and the general similarities of stems used as the 

experimental units for the replications of a given trial are 

additional prequisite conditions for more precise test 

results. 

Prediction Equations 

Attempts to precisely determine the stem physical prop­

erty pi terms were not successful; and since analysis of 
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variance results indicate these terms are highly significant 

in determining energy input and maximum torque index respon­

ses, accurate prediction equations for these responses cannot 

be determined from the data of this experiment. However, an. 

attempt was made to determine the general form of the pre­

diction equation for the energy input index, using average 

values of rr 8 and rr 10 . 

With the highly variable stem test material, and the 

random position of a given stem in the cutting zone when 

first contacted by a rotor blade, it was doubted that dis­

placement indices could be accurately related to independent 

pi terms either. Average values calculated from more than 

just two replications of each treatment combination would 

be needed for precise results. But in this case also, the 

general form of the equation relating the stem C.G. X dis­

placement index to the significant variables affecting it 

was sought through multivariable regression techniques; 

Since the sharp blades gave results superior to dull 

blades, the analysis was restricted to the sharp blade test 

data. Table XX lists the variation of stem mean moisture 

content with the levels of time in conditioning chamber for 

different parts of the experiment, The information in this 

table is plotted in Figure 98. It is seen that roughly 

linear relationships existed between mean moisture content 

and time in chamber for the stems cut in the main test 

series, but that the group of stems subjected to physical 

property tests in the sharp blade series gave a roughly 



TABLE XX 

MEAN VALUES OF MOISTURE CONTENT VERSUS TIM.E IN CHAMBER 
FOR VARIOUS PARTS OF THE EXPERIMENT 

TIME 
IN DULL BLADE SERIES CHAMBER 

(HRS) CUT STEMS 

2 

4 

6 

8 

TABLE XXI 

MEAN VALUES OF ne AND n10 FOR 
LEVELS.OF NOMINAL DIAMETER 

SHARP BLADE SERIES 

NOMINAL Se _ Se 
DIAMETER llg = Be "l O = Gmh 

I 

I I 

13/ 64 38.7 57 90 

l 7 /64 25.9 7 006 

2 l / 64 21. 8 7 932 

25/ 64 JI I 
1 19. 9 : 9064 

23.6 

36.8 

35.2 

55.9 

PER CENT MOISTURE (DRY BASIS) ~EAN VALUES 

DULL BLAD.E SERIES 
PHYSICAL PROPERTY 

TEST STEMS 

27.9 

35.9 

38.9 

52.0 

SHARP BLADE SERIES SHARP BLADE SERIES 
CUT STEMS PHYSICAL PROPERTY 

TIME 
IN 

CHAMBER 
(HRS) 

2 

4 

6 

8 

24.4 

37.9 

43.4 

61. 2 

TEST STEMS 

26.l 

39.6 

46.3 

46.2 

TABLE xxrr 
MEAN VALUES OF MOISTURE CONTENT 

TI3, l/Il3, AND n10 FOR LEVELS 
OF TIME IN CHAMBER 
SHARP BLADE SERIES 

PERCENT 
11 = Se l /n = Be MOISTURE 

(DRY BASIS) 8 Be 8 Se 

2 6. l 27.7 3.6 x 10-2 

! 39. 6 26.0 3.8 x 10-2 
! 
I: 46.3 25. l 4.0 x 10-2 !I I 

I 

i! 46.2 I 27.2 I -2 i 3. 7 x l O 

= ~ rrl o Gmh 

8174 

7932 

6788 

7097 N 

-""' 
\0 
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linear response only over the first three levels. Moisture 

content values for six and eight hour treatment times were 

the same. Tables XXI and XXII list the mean values of rr 8 

and n10 , the physical property pi terms, for the different 

levels of nominal diameter and time in chamber. If the 

mean values of either n8 or n10 are to be substituted for the 

levels of nominal diam~ter and time in chamber in a regres­

sion analysis, then a linear relationship existing between 

the pi terms and the diameter and time in chamber must be 

found. From the information in Tables XXI and XXII, it 

was judged that nominal diameter varied approximately linear­

ly with the mean values of n10 . For the first three levels 

of time in chamber, mean values of the reciprocal of n8 

varied approximately linearly with time in chamber, Figure 

98 shows graphs of these relationships, and also shows the 

assumed value of l/n8 for the eight hour time in chamber 

level. 

For the multivariate regression analysis, all factors 

having a significant effect at the 90 percent confidence 

level were included. Thus from Table XV, for th~ energy 

input index, factors to be included are nominal diameter 

(substitute n10 ), time in chamber (substitute l/n8 ) rr 2 , n4 , 

n7 , and n9. For the stem C.G. X displacement index, factors 

to be included are n2 , n3 , and n4 . 

Using the additive model defined by the AOV data for 

n1 , energy input index, resulted in a multiple correlation 

coefficient, r, of only 0.439. Thirty-two input data points 
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were used - after averaging the two replications of each 

treatment combination to eliminate variation between repli-

cations. A multiplicative model for rr 1 resulted in a value 

for r of 0.798, a significant improvement over the additive 

model. The resulting prediction equation is: 

rr 1 x 10- 1 = (4.6 x ,o- 9) (rr 10 ),. 86 (l/rr 8)- 2 · 46 

(rr 2 ).076 (rr 4 ).24 (rr 7)-.105 (rr 9)-l.56 ( 9_2 ) 

The additive model for the stem C.G. X displacement 

index, rr 1 11 (1); resulted in a prediction equation with a 

value for r of 0.774. The equation is: 

rr, 11 (1) = -16.56 + 64IT3 + O.Olrr2 + 14.8IT4 

3 -4.97rr 4 (9-3) 



CHAPTER X 

SUMMARY AND CONCLUSIONS 

Summary 

The objectives of this study were to: (1) design a 

balanced, rotary sickle with detachable blades approximately 

helical in configuration; (2) test the device to determine 

if it could effectively cut and traject stems of a typical 

seed-bearing crop in one operation; (3) determine the mech­

anism of cutting involved with such a device when equipped 

with square edge (dull} and sharp blades through high speed 

motion picture photography; (4) identify and screen the 

pertinent design, operating, and plant physical property 

parameters that might affect the responses of energy input 

per stem cut, peak torque developed per stem cut, and re­

sulting displacement of the trajected stem to determine 

which parameters do have a non-trivial effect; (5) determine 

the form of dimensionally correct prediction equations rela­

ting the response terms with significant independent 

parameters. 

A careful review of the literature was made to learn 

the nature and significance of design, operating, and plant 

physical property parameters affecting conventional cutting 

devices, The results are summarized in Tables I through IV. 
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The rotor segment bevel angle specification and the range 

of knife angles to include in this investigation were 

determined from these data. 
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To develop design ideas, a model auger knife was con­

structed. Through qualatative cutting effectiveness tests_ 

with two rotor and ledger tube designs for the model, it 

was decided the prototype cutter should have a ledge on the 

leading surface of the rotor disk to provide the effective 

acute bevel angle of sharp blades. 

The rotary sickle was designed utilizing a rotor and 

concentric ledger tube with the blades of each approximately 

helical in configuration. Rotor diameter was 3 1/2 inches. 

Details of the design are described and illustrated in 

Chapter III. Previous helical cutters are described in 

Chapter II. 

Through kinematic, force, and dimensional analysis, ten 

parameters that might have an effect on energy inputj peak 

torque, or stem displacement responses for the rotary sickle 

were identified. These are listed in Chapter V. 

An experimental plan to test the significance of the 

independent parameters on the response terms was adopted, 

and a special test stand and instrumentation were designed 

and-built or procured to run the experiment. 

Initial _cutting tests identified effective and non 

effective types of severing actions. A clean, angled cut 

typifies effective severing; the stem breaking at the base 

before being complet~ly severed typifies non effective 



severiAg. It was determined that stubble length was sig­

nifitantly lower with use of sharp blades. 
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High speed motion picture films were taken which give 

a clear description of the cut~ing mechanism ~nvolved with 

square edge (dull) and sharp blades on the rotor. 

With square edge blades, the stem slides along the 

rotor blade edge without damage as it is deflected toward 

the ledger to be severed in two element shear between the 

rotor and ledger plades. Once severed the-stem loses con­

tact with the rotor sector. The stem trajectory is char­

acterized by a noticeable spin of the stem about its 

vertical axis. 

With sharp blades, when the stem is contacted by the 

blade edge and deflection toward the ledger is started, the 

sharp edge immediately slices into the stem cross section 

and single element, impact cutting results. The severed­

end of the stem then slides along the beveled rotor sector 

ledge until distharged to the side. Additional energy to 

affect the stem trajectory is imparted during this phase'. 

The stem trajactory is characterized by the sa~e spin about 

the vertical axis as when c~t by the square ~dge blade. 

Through micromotion analysis~ points on the stem near the 

. po i n t ·O f b 1a'd e CO n ta Ct Were de t e rm i n e d t O be S U b j e Ct e d 1; 0 

... 

accelerations in excess of 1000 g 1 s at the 3600 rpm rotor 

speed. 

For both blade types·, deformatio-ns o.f the stem during 

cutting .indicate that bending, torsional, and tensi1e 



stresses, as well as transverse shear, act on the stem to 

cause failure, 

The main, screening of parameter, test series proves 
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s ta, t i s t i c a 1 l y t h a t t h e s h a r p b 1 ad e i s s up e r i o r to t h e d u 1 1 

with respect to minimum input energy, minimum peak torque 

developed, and maximum stem C.G. X displacement responses. 

The most significant parameters affecting energy input were 

stem physical properties relating to nominal diameter and 

moisture content for both the dull and sharp blades. Rotor 

angle was highly significant with use of sharp blades, In 

addition to the stem physical properties, rotor speed had a 

highly significant effect on peak torque developed. Rotor 

speed, feed rate, and rotor angle had significant effect on 

severed stem displacements. Table XV summarizes the factor 

effects, 

Attempts to characterize significant stem physical 

properties by one dimensionless term were not successful, 

Lack of control over moisture content, failure to consider 

just one mean cutting height, and insufficient replication 

of tests were contributing causes, The special testing 

machine built to determine the stem physical properties gave 

accurate results. 

Prediction equations relating the energy input index 

and stem C.G. X displacement index to significant independent 

pi terms had low correlation coefficients (,798 and .774 

respectively). A multiplicative model gave best results for 
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th~ energy input index; an additive, polynomial type model 

was used for the displacement index. 

Conclusions 

1. The rotary, helical sickle designed in this study 

can effectively cut and traject plant st~ms in one opera­

tion. The limiting factor in trajecting severed stems onto 

the catching platform of a field going machine using the 

rotary sickle might be insufficient forward velocity, since 

the lowest level of forward velocity considered in this 

study was 2.98 mph (with 1800 rpm rotor speed). 

2. The governing mechanism of cutting for the rotary 

sickle fitted with square edge blades is two element shear­

ing between the rotor and ledger blades. 

3. The governing mechanism of cutting for the rotary 

sickle fitted with sharp blades is single element impact 

cutting. The stem rarely is deflected to tbe ledger blade 

before it is severed. 

4. A suitable structural model for a stem undergoing 

cutting by the rotary sickle, with either-dull or sharp 

blades, is that of a propped cantilever beam with an eccen­

tric, inclined, concentrated load applied at the point of 

blade contact. The inertia of the top portion of the stem 

acts as the prop.· The characteristic spin about its 

vertical. axis of a stem trajected by action of the rotary 

sickle results from the load being eccentrically applied. 
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5, The important design parameters considered in this 

study were knife sharpness index (sharp blade is superior) 

and rotor an~le index (26 degree angle best for dull 

blades; 46 degree angle best for sharp blades), Ledger 

orientation index was not significant at a confidence level 

greater than 90 percent, except for the response of 

maximum torque per stem cut for the sharp blade where the 

confidence level was 95 percent. Lateral position index 

might be considered a design parameter in that a wider 

feed opening than the one used in this study (1.5 inches) 

would increase energy input requirements, 

6, The important operating parameters considered were 

rotor speed index (highly significant on peak torque and stem 

displacement responses), feed rate index (highly significant 

on energy input for dull blade rotor and on stem displace­

ments), and cutting height index (highly significant on peak 

torque and energy input indices for sha,rp blade rotors), 

7, All three stem physical property parameters, 

nominal diameter, time in chamber, and C.G. height index 
\ 

had highly significant effects on one or more response 

variables .. 

8. For design of a field-going rotary sickle, sharp 

blades, a 46 degree knife angle, zero degree ledger tube 

orientation, 3118 rpm rotor speed, and a feed rate of 4.38 

in./rev, should be specified, in accordance with the best 

results obtained in this experiment. Judging from the 

response curves, however; probably a range of values, 
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extending t5 percent of the nominal values cited, would be 

entirely satisfactory.· 

Suggestions for Further Study 

1. Evaluate a prototype rotary sickle in field condi­

tions with special consideration to effect of the inter­

action of masses of plants on trajection pattern and to 

seed shattering effects. 

2, Initiate a study of ledger tube design features to 

determine optimum values of ledger blade knife angle and 

extent of arc length. 

3; Adopt principles used in low acceleration cam de­

velopment to perfecting a guard design for the ledger tube. 

Plants impacting against the guard surface before being 

guided into the cutting zone suffered seed shattering 

effects (the cutting of stem 1 of trial PS-4 exhibited this 

action very clearly on the high speed films). 

4. Plan and execute controlled experiments to accurate­

ly determine Ilg as a function of moisture content for soy­

beam stems, If a dimensionless term such as Ilg can ade­

quately characterize stem physical properties for cutting 

energy, torque, and displacement relationships, it should 

prove useful in comparing cutting energy required for. 

different crops4 
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CALCULATIONS FOR FLYWHEEL AND 

SHEAR BOLT DESIGN 
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B-I SUMMARY OF ROTOR AND CARRIAGE VELOCITIES USED IN THE 
EXPERIMENT 

B-II SAMPLE DATA SHEET FOR CUTTING EFFECTIVENESS TESTS 

B-III SAMPLE DATA SHEET FOR SCREENING OF PARAMETER (MAIN 
EXPERIMENT) TEST SERIES 

B-IV SAMPLE DATA SHEET FOR STEM PHYSICAL PROPERTY TESTS 

B-V SAMPLE DATA SHEET FOR DETERMINING AVERAGE DIAMETER 
OF STEM CROSS SECTION 
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Explanation of Table in Appendix B-I 

In the column headed "Corresponding Blade Edge Ve­

locity (.01528 N Ft/Sec)," N represents the rotor speed in 

rpm. 

Information in the upper left hand cell of the "Re-
i 

quired Carriage Velocity for Specifie9 Feed Rates" table is 

ty pi ca 1 and w i 11 be exp 1 a i n e d i n de ta i 1 . The f i rs t l i n e i s 

the required carriage velocity in ft/sec. The second line 

lists this same velocity in mph. The third line gives the 

theoretical distance on the recorder chart (100 mm/sec chart 

speed) between blips representing a 3 ft. travel of the 

carriage. The fourth line lists the theoretical rotational 

speed of the carriage drive chain sprocket (7.991 P.O.) to 

provide the correct carriage velocity. In the divided sub­

cell, the number combination on the left indicates the spring 

set (48 lb) and its deflection (12 inches) to accelerate the 

carriage to the required velocity. The number on the right 

(3.7) is the approximate dial setting for the Graham vari-

able speed drive to give the correct chain velocity. 



Rotor 

Speed 

(RPM) 

1800 
60 Cutting Cycles/Sec 

8 Lobe cam 
1.67 mm/Cutting Cy. 
16. 7 Mi 11 i secon.ds/C ut 

2546 
84.87 Cutting Cy/Sec 

8 Lobe Cam 
l. 18 mm/Cutting Cy-. 
11.8 Milliseconds/Cut 

3118 
103. 93 Cutting Cy/Sec 

8 Lobe Cam 
0.964 mm/Cutting cy. 
9.64 Milliseconds/Cut 

3600 
120 C~tting Cy/Sec 

8 Lobe Cam 
0.833 mm/Cutting Cy. 
8.33 Millise~otids/Cut 

APPEND! X B- I 

SUKMARY O.F ROTOR AND CARRIAGE VELOCITIES 
USED llj TliE E.lP ERIMENT 

Corr es ponding 
TI· Required Carriage Velocity For Spe.cified Feed Rates 

2 V .. · -2 ir3 .. !0-14 x 1 o ""2· • Il3=!0-20 x 10-2 Il3=!0-24 x 10- 2 Blade Edge n3\j)o-8 x JC · 
w2 NeG DIN t=Z. D = L=t D = 3 D Velocity -0-.- L=2 REV= L=2 ,. 8 

{. 01528 N Ft/Sec) 1. 75 IN/REV 3.0625 IN/REV 4.375 IN/REV 5.25 IN/REV 

4.38 Ft/Sec 8.26 Ft/Sec 10. 94 Ft/Sec 13.12 Ft/Sec 
27.5.04 Ft/Sec 

4.805 x 107 2.98 MPH 5.22 MPH 7.46 MPH 8.95 MPH 
68.6 mm/3Ft 39.18 mm 27 .. 43 mm 22.9 mm 

306.048 In/Sec 125.48 RPM 219. 58 .RPM 313.69 RPM 376.43 RPM 
(7.991 P.O. 

Sprocket) 

48-12 I 3.7 48~20} 6.7 48-30,]0 80-22112.6 

6.19 Ft/Sec 10,83 Ft/Sec 15.47 Ft/Sec 18.52 Ft/Sec 
38.903 Ft/Sec 

9. 610 x 107 
4.22 MPH 7. 38 MPH 10.55 MPH 12.63 MPH 

48. 5 mm 27.70 mm 19.39 mm 16~ 2 mm 
466.836 In/Sec 177.48 RPM 310.59 RPM 443. 70 RPM 531.24 RPM 

48-16 I s.4 48-301 9.9 80~29J14.5 128-28, 18.10 

7. 58 ft/Sec 13.26 Ft/Sec 18. 95 Ft/Sec 22.73 Ft/Sec 
47. 643 Ft/Sec 

14 .415 x 107 
5. 17 MPH 9.04 MPH 12. 92 MPH 15. 61 MPH 

39.6 mm 22.62 mm 15.83 mm 13.2 mm 
571. 716 In/Sec 217.35 RPM 380.36 RPM 543.38 RPM 652.06 RPM 

48-20 I 6.7 80-24j12 128-32,18.5 128-361 22 

8.}5 Ft/Sec 15.31 Ft/Sec 21. 88 Ft/ Sec 26.25 Ft/Sec 
55, 008 Ft/ Sec 

19.220 x 107 
5. 97 MPH 10. 44 MPH 14.91 MPH 17.90 MPH 

34.3 mm 19.59mm 13. 71 mm 11. 43 mm 
660.096 In/Sec 250.95 RPM 439.16 RPM 627.38 RPM 752.8.5 RPM 

48-24 I 8.o 80-28 ,14. 5 12.8-36,21.5 128-41 j 26. 1 
l'\) 

O"I 
00 
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APPEND! X B-1 I 

SAMPLE DATA SHEET FOR CUTTING EFFECTIVENESS TESTS 
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APPEN DIX B-III 

SAMPLE DATA SHEET FOR SCREENING. OF PARAMETER 
(MAIN EXPERIMENT) TEST -· st~I~S 

A. /J/S,()CA<:5:M't'NT OF' 
SSi'l!'l!lfLJ ~'>T$";1,'/: 

t XcG· ~ ,t x_, ~ 
3 . le s "- """" 4 Jf;.,/) ~ #40 
Si!,.~ T~ -4,..:'*1141 

"~ 1$..$11) 

C, $ € ,fl, ,5NA'TTCA'kV6 
Kt~:;;,-f!"t): 

l 1,vTAC'J' .l'(),(;S_ &!F-8:<€ ¢/1'; 

? l#rACr. P..X.s ;t.Ft'"IJ( :.t/_r 
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APPENDIX B-IV 

SAMPLE DATA SHEET FOR STEM PHYSICAL PROPERTY TESTS 

aw~~ e.M(' 

~ 

,,. ..... -!l'..~~~-K-/~s.tND·~~ 

..................... ...._ __ 1111. 
____ ,S(l.ttJ. 

------

RAM SP!ifit> , N N1..S GM~~ s:M..eJ74: t2.:.Lt.a/. to\ 
cH~I sPe.eO ,i_MM/SS:,, C:..t4~RT ~. SCAUl '·?/'9 IN/~M 
$4GAA S'l'Re~ PER UIJM' ~ DIA. -=-L£.c:?.. 1.$/e.u zs ltJ ... €91,.Jf/ )$/\N 
$t41:1'R .S."T'RelJGTH PER Uj,!IT A~E:A ,. LB/ fJ/,, 



APPENDIX 8-V 

SAMPLE DATA SHEET FOR DETERMINING AVERAGE DIAMETER 
OF STEM CROSS SECTION 

P-ZI' 

N 
'-I 
N 



APPENDIX C 

C-I CUTTING EFFECTIVENESS TEST DATA 

C-II DULL.BLADE SERIES MAIN TEST DATA 

C-III SHARP BLADE SERIES MAIN TEST DATA 

273 



274 

Explanation of Tables 

C-I 

The column headings under the description of cutting 

action section of the tables are to int~rpreted as follows: 

Effective 

CC - clean cut 
TRC - torn, ragged cut 

PCBKC - partial cut and break at knife contact point 

Noneffective 

PCBB - partial cut.and break at base 
BB - break at base 

SUB - slipped under blade without being cut 

C-II and C-III 

The comment code letters have the following meaning: 

A - One sector hit and deflected stem without 
completely cutting it; opposite sector 
then severed stem. 

B - Torn, ragged cut. 

C - Stem was cut 1/2 to 7/8 through then broke 
at base. 

D - One sector cut 1/2 to 7/8 through stem then 
opposite sector completed cut. 

E - Second cut of stubble. 

F - Clean cut. 

G - Cut through node of stem, 
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H - Stem partially cut, then partially broke 
at base and was deflected under rotor without 
being cut. 

I - One sector cut stem 1/2 to 7/8 through then 
opposite sector hit and broke stem at base. 

Coded values of independent variable pi terms are ex­

plained as follows. It should be noted that these coded num-

bers are not the same~ those listed j_!}_ the experimental 

~· 
0 = 322 
l = 644 
2 = 966 
3 = 1288 

(1800 rpm) 
(2546 rpm) 
(3118 rpm) 
(3600 rpm) 

o = 8 x 10- 2 
1 = 14 x ,0- 2 
2 = 20 x 10- 2 

(1.75 in/rev.) 
(3.06 in/rev.) 
(4. 38 in/rev.) 

-1 
0 = 4.54 iX 10_, 
1 = 6.28 x 10 l 
2 = 8.02 x ,o-
3 = 9.76 x 10- 1 

o = 1.01 x 10- 1 
1 = 2.14 x 10- 1 
2 = 3.21 x 10- 1 
3 = 4.28 x 10- 1 

-2 0 = -8.73 x 10_2 
l = 0.00 x 10_2 
2 - 8.73 x 10_2 
3 = 17. 46 x 1 0 

1 - 1 0 = 2.86 x O l 
1 = 5.oo x 10- 1 
2=7.14xl0-

(26°) 
(36°) 
(46°) 
(56°) 

(0.38 in.) 
(0.75 in.) 
(1.12 in.) 
(1.50 in.) 

(-50) 
( oo) 
( 5 0 ) 

( 1 0 °) 

(l .00 in.) 
(1.75 in.) 
(2.50 in.) 

0 = 2.25 
l = 2.75 
2 = 3.25 
3 = 3e75 

( 7 . 88 i n. ) 
( 9.62 in.) 
( 11 . 38 i n. ) 
(13.12 in.) 



APPENDIX C-1 

CUTTING EFFECTIVENESS TEST DATA 

Conditions Description of Severing Action 
No. 

Test Stems Rotor Angle, Rotor Speed, Effective Noneffective Response 
No in Feed Rate, Norn. Dia., Variable 

Test Time in Chamber, C.G. cc TRC PCB KC PCBB BB SUB 
Height, ,Crop Year 

CED l 10 .26°, 1800 RPM, 1.75 In/Rev, 6 2 2 Cutting Height 

17 I 64 In. , 0 Hrs. , l 2 l I 4 C. G. X-Disp . 
to 13 1/8 In •• 1965 C. G. Y-Disp 

Cut End X-Disp 

Cut End Y-Disp 

CED 2 10 26°, 1800 RPM, 5.25 In/Rev, 6 l 3 Cutting Height 

17/64 In., 0 Hrs., 12 3/8 C. G. X-Disp 

to· 13 1/8 Iii., 1965 C. G. Y-Disp 

Cut End X-Disp 

Cut End Y-Disp 

CED 3 l O 26°, 3600 RPM, l.75 In/Rev, l O Cutting Height 

17/64 In., 0 Hrs., 12 to C. G. X-Disp 

13 1/8 In., 1965 C. G. Y-Oisp 

Cut End X-Disp 

Cut End Y-Di sp 

CED 4 10 26°, 3600 RPM, 5.25 In/Rev, 7 l 2 Cutting Height 

17/64 In., 0 Hrs., 10 1/8 C. G. X-Disp 

to 11 1/2 In., _1965 C. G. Y-Disp 

Cut End X-Di s p 

Cut End Y-Disp 

CED 5 10 56°, i800 RPM, 1.75 In/Rev, 1 9 Cutting Height 

17/64 In., 0 Hrs., 14 1/2 c' G. X-Disp 

to 15 In. , l 96 5 C. G. Y-Disp 

Cut End X-Disp 

I Cut End Y-Disp 

Std 
No. Mean Error 

Items (In) of 
Analyzed Mean 

(In) 

9 2.75 0.07 
6 6.0 3.8 
6 19.2 5.7 
6 2.6 4.8 
6 17. 9 5.0 

10 2.52 o. 12 

5 8.6 4.0 

5 10.9 6.2 
4 3. 5 4.8 
4 0.2 7.7 

10 2.50 0. l O 

9 16. 9 3.0 

9 14.5 2.4 
9 16. l 3.7 

9 13. 1 3.8 

7 2.54 o. 14 

7 70.9 15. 2 
7 17. 4 lo. 7 

l -4.0 

1 14.0 

10 . 2. 69 0. 07 

10 -31. 8 12.3 

l O 15.6 7. 2 

0 
0 

Max Min 
Value Value 
(In) (In) 

3. 12 2.38 

21. 0 -3.0 
39.0 0.5 
20.0 -11. 0 
38.5 5.0 

3.25 2.00 

23.2 l. 0 
25.0 -8. 0 

16.5 -5.0 
20.5 -16.0 

3.00 l. 88 

32.0 7. 9 

27.0 6.5 
38.0 3. 0 
35.0 3.0 

3.00 2.00 

120.0 4.0 
60.0 -24.0 

3.00 2.50 
42.0 -96. 0 

60.0 -18.0 

Range 
(In) 

0.74 
24.0 
38. 5 
31. 0 
33.0 

1.25 
22.2 

33.0 
21. 5 
36.5 

l. 12 
24. 1 

20.5 
35.0 
32.0 

l. 00 
116. 0 
84.0 

0.50 
138. 0 

78.0 

N ......, 
0) 



APPENDIX c~r (Continued} 

Conditions Description of Severing Actior 
No. 

Test Stems Rotor Angle, Rotor Speed, Effective Noneffective Response 
N.o in Feed Rate, Norn. Dia., Variable 

Test Time tn Chamber, C.G. cc TRC PCBKC PCBB BB SUB 
Height, Crop Year .. 

cm 6 1 0 56°, 1800 RPM, 5.25 Jn/Re·v, 2 8 cutting Height 

17/64 In., 0 Hrs., 12 7/8 C. G. X-Disp 

to 16 3/8 In., 1965 C. G. Y-D.isp 

Cut End X-Disp 

Cut End Y-Di's p 

CED 7 10 56°, 3600 RPM, 1.75 In/Rev, 4 6 Cutting Hei gh.t 

21/64 In., 0 Hrs., 12 3/4 C. G. X-Disp 

to 13 1/8 In., 1965 C. G. Y-Disp 

Ctit End X-Di SJ) 

Cut End YsDisp 

CED 8 lO 56°, 3600 RPM, 5.25 In/Rev, 7 l 2 Cutt Ing Rei gbt 

21/64 In., 0 Hrs., 12 5/8 C. G. X-Disp 

to 13 In., 1965 C. G. Y-Disp 

Cut End X-Di sp 

Cut End r-_Disp 

CED 9 1 0 56°, 3600 RPM, 5.25 In/Rev, l 3 5 1 Cutt.fng Height 

21/64 In., 8 Hr., 10 1/8 C. G; X-Disp 

to 10 3/8 In., 1965 C. G. Y-Disp 

Cut End X-Disp 

I 
1Cut End Y-Disp 

CEO 10 10 56°, 3600 RPM, 1.75 In/Rev, I 4 6 Cutting Height 

21/64 In., 8 Hr., 10 1/8 C. G. X-Disp 

to 10 3/8 In., 1965 C. G. Y--Disp 

Cut End X-Di s p 

Cut End Y-Disp 

Std 
No. Mean Error 

Items ·(In) of 
Analyzed Mean 

(In} 

10 2.96 0.11 

10 23.2 lo. 3 

10 -3.6 4.8 

2 58.2 19. 8 

2 4.8 8.2 

'9 2.65 0 .11 

6 -8.6 15.7 

6 8.7 8.0 

2 15.0 6.0 

2 25.5 3.5 

9 2.58 0.06 

8 51. 8 16.6 

8 13.4 9.6 

8 53.5 15. 4 

8 15. 0 9.9 

8 2.27 0. 16 

6 97.0 19.0 

6 33.5 18.6 

4 87.5 26,4 

4 4.5 3.0 

10 2.78 0.08 

1 0 -1. 8 10.0 

10 28.0 8.9 

6 17. 3 7.9 

6 26.5 7. 2 

Max Min 
Value Va 1 ue 

(In) (In) 

3.50 2.50 

69.0 -24.0 

18.0 -24.0 

78,0 38.5 

13.0 -3.5 

3.25 2.00 

28.2 -72.0 

36.0 -12.0 

21. 0 9.0 

29.0 22.0 

2.88 2.38 

12 9. 0 -25.0 

50.0 -26.5 

118. 0 -16. 5 

56.0 -28.0 

3.25 1.88 

156. 0 43.0 

108.0 -6.5 

150.0 37.0 

10.0 -4.0 

3.25 2.50 

46.0 -42 .. 0 

60.0 -36.0 

50.0 -2.5 

55.0 5. 5 

Range 
(In) 

l. 00 

93.0 

42.0 

39.5 

16. 5 

1.25 

l 00. 2 

48.0 

12.0 

7.0 

0.50 

154. 0 

76.5 

134. 5 

84.0 

l. 37 

113. 0 

114. 5 

113. 0 

14.0 

0.75 

88.0 

96.0 

52. 5 

49.5 

f') 

'.J 
...... 



APPENDIX C-1 (Continued) 

Conditions Description of Severing Action 
No. 

Test Stems Rotor Angle, Rotor Speed, Effective Noneffective Response No. 
No in Feed Rate, Norn. Dia., Variable Items 

Test Time in Chamber, C.G. cc TRC PCB KC PCBB BB SUB Analyzed 
Height, Crop Year 

CED 11 l O 56°, 1800 RPM, 5.25 In/Rev, 3 3 4 Cutting Height 10 
21/64 In., 8.5 Hr., 12_ 7/8 c. G. X-Disp 10 
to l 3 1 I 8 In. , l 965 C. G. Y-Disp 10 

Cut End X-Disp 10 
Cut End Y-Disp l O 

CED 12 10 56°, 1800 RPM, 1.75 In/Rev, 5 1 l 2 l Cutting Height 10 
21/64 In., 8.5 Hr., 12 7/8 C. G. X-Disp 9 
to 14 5/8 In., 1965 C. G. Y-Disp 9 

Cut End X-Disp 0 
Cut End Y-Disp 0 

CED 13 10 26°, 1800 RPM, 1.75 In/Rev, 1 0 Cutting Height 10 
17/64 In., 9 Hr., 12 7/8 C. G. X-Disp 10 
to 14 3/4 In., 1965 C. G. Y-Disp 10 

Cut End X-Di s p 10 
Cut End Y-Disp 10 

CED 14 10 26°, 1800 RPM, 5.25 In/Rev, 9 1 Cutting Height 10 
l 7 / 64 In. , 9 Hr. , l 2 to 17 L G. X-Disp 10 
In., 1965 C. G. Y-Disp 10 

Cut End X-Disp 9 
Cut End Y-Disp 9 

CED 15 10 26°, 3600 RPM, 5.25 In/Rev, 9 l Cutting Height l O 
17/64 In., 9 Hr., 10 1/8 C. G. X-Disp 10 
to 12 7/8 In., 1965 C. G. Y-Disp 10 

Cut End X-Di s p 4 

Cut End Y-Disp 4 

Std 
Mean Error Max 
(In) of Value 

Mean (In) 
(In) 

2. 78 0.05 3.00 
38.7 6.0 64. 0 
25.0 5. l 59.0 
41. 2 6.0 69.0 
28.2 6.6 69.5 

2.68 0. 11 3.00 

-12. 4 13.3 56.0 

32.2 3.3 48.0 

2.52 0.06 2.88 

5.0 1. l l 0. 0 
15. 4 3.6 39.0 

5. 5 2.0 13. 5 
11. 4 5.4 47.5 

2.41 0.06 2.75 
45 .. 6 12.2 144.0 
16.0 7. 3 72.0 
31. 6 8.0 69.0 
10.0 3.6 22.0 

2.59 0.08 3.00 
52.3 7.7 84.0 
-2.3 6. 6 25.5 
51.2 16.2 81. 0 

11.1 9. 5 30.5 

Min 
Value 

(In) 

2.50 

14.0 
4.0 

12. 0 
0.2 

2.00 

-72.0 
18.0 

2.25 

-1. 5 
2.0 

-8. 0 . 

-2. 5 

2. 12 
14.0 

-13.0 
2. 0 

-4:5 

2.25 
18. 2 

-48.0 
12.5 
-9.0 

Range 
(In) 

0.50 
50.0 
55.0 
57.0 

69.3 

1. 00 

128.0 
30.0 

0.63 

11. 5 
37.0 
21. 5 
50.0 

0.63 
130.0 
85.0 
67.0 
26.5 

o. 75 
65.8 
73.5 
68.5 
39.5 

N 
'-I 
co 



APPENDIX C-I (Continued) 

Conditions Description of Severing Acti.or 
No. 

Test Stems Rotor Angle, Rotor Speed, Effective Noneffective Response No. 
No in Feed Rate, Norn. Dia., Variable Items 

Test Time in Chamber, C.G. cc TRC PCB KC PCBB BB SUB Analyzed 
Height, Crop Year 

CED 16 10 26°. 3600 RPM, 1. 75 In/Rev, 10 Cutting Height 10 

17/64 In., 9 Hr,, 9 7/8 C. G. X-Disp 10 

to 13 1/4 In., 1965 

I 
C. G .. Y-Disp 1 0 

Cut End X-Disp 7 

Cut End Y-Disp 7 

PD l 5 26°, 1800 RPM, l.75 In/Rev, 4 1 Cutting Height 5 

17/64 In., 2 Hr., 13 1/2 C. G .. X-Disp 5 

to .15 1/4 In., 1965 C. G. Y-Dis.p 5 

Cut End X-Di sp 5 

Cut End Y-Oisp 5 

PD 2 9 26°, 3600 RPM, l.75 In/Rev, 9 Cutting Height 9 

17/64 In., 2 Hr., 12 1/4 · C. G. X-Disp 9 

to 1 6 In. , 1 9 6 5 c. G. Y-Disp 9 

Cut End X-Disp 9 

Cut End YcDisp 9 

PD 3 9 26°, 3600 RPM, 5.25 In/Rev, 8 1 Cutting Height 9 

17/64 In., 2 Hr., 13 1/2 c. G. X-Oisp 9 

to 14 7/8 In., 1965 C. G. Y-Disp 9 

Cut End X-Disp 9 

Cut End Y>Disp 9 

PD 4 6 56°, 1800 RPM, l. 75 In/Rev, 5 1 Cutting Height 6 

17/64 In., 2 Hr., 13 1/2 C. G. X-Disp 5 

to 14 1/2 In., 1965 c. G. Y-Disp 5 

Cut End X-Disp 5 

Cut End Y-Disp 5 

Std 
Mean Error Max 
(In) of Value 

Mean (In) 
( I.n) 

2.42 0.08 2. 88 

4.7 4.5 23.6 

13. 0 3.9 40.0 

9.4 3. 5 29. 1 

5. 9 2.4 19.0 

2. 81 0.08 3. 12 

6. 0 2.4 14. 5 

16. Q 8.9 49.5 

4.2 5. 5 19. 0 

12. 5 7.2 39.0 

2.65 0.08 3. 12 

19. 1 1. 9 27.5 

12.7 2.7 28.2 

11. 9 3.6 35.0 

10.3 2.5 27.8 

2.45 0.08 2. 88 

87.4 6.4 107. 0 

13. 3 2.9 29.0 

84. 1 7.7 11 o. 0 

11. 6 3.3 30.0 

2.62 0.21 3. 12 

6.2 7.8 24. 5 

1 5. 0 2. 5 25.0 

7.2 5. 1 19.0 

17.0 3. 1 22.2 

Min 
Value 

(In) 

2. 19 

-30.0 

0.0 

2. 0 

-0.5 

2.69 

o. 5 

-4.0 

-9.5 

l. 5 

2.38 

12.8 

3.2 

2. 5 

2.0 

2. 12 

46.0 

-2.5 

33.0 

-3.0 

1. 62 

-22.0 

11. 0 

-12.0 

6.0 

Range 
(In) 

o .. 69 

53.6 

40.0 

27. l 

19.5 

0.43 

14. 0 

53. 5 

28.5 

37.5 

0.74 

14.7 

25.0 

32.5 

25.8 

0.76 

61. 0 

31. 5 

77. 0 

33.0 

1. 50 

46.5 

14. 0 

31. 0 

16.2 

N 
'--.! 
UJ 



APPENDlX C-1 (Continued) 

Conditions De·scrii>"tion of Severing Action 
No 

Test Stems Rotor Angle, Rotor Speed, Effective Noneffective Respons.e No. 
No in Fe·ed Rate, N_om •. D-ia., Variable Items 

Test Time in Chamber, t. G. cc . TRC PCB KC PCBB BB SU Analyzed 
Height, Crop Year 

.. 

PD 5 9 56°, 3600 RPM, 1.75 In/Rev, 7 1 1 Cutting Height 9 
17/64 In., 2 Hrs., 12 1/4 C. G. X-Disp 9 
to 13 1/4 In., 1965 C .. G. Y-Disp 9 

Cut End X-Disp 9 
Cut End Y-Disp 9 

PD 6 18 56°, 3600 RPM, 5.25 In/Rev, 2 9 1 6 Cutting Height 14 
17/64 In., 2 Hr., 11 1/2 C. G. X-Disp 18 
to 13 In., 1965 C. G. Y-Disp 18 

Cut End X-Disp 18 
Cut End Y-Disp 18 

PD 7 9 56°, 1800 RPM, 1.75 In/Rev, 1 6 1 1 Cutting Height 9 
17/64 In., 2 Hr., 10 1/2 C. G. X-Disp 9 
to 13 5/8 In., 1965 ,C. G. Y-Dtsp 9 

Cut End X-Disp 9 
Cut End Y-Disp 9 

PD-8 9 56°, 3600 RPM, 1.75 In/Rev, 2 3 4 Cutting Height 9 
17/64 In., 2 Hr., 11.1/2 r • G. X-Disp 9 

to 13 5/8 In., 1965 C. G. Y-D.i.sp 9 

Cut End X-Di sp 9 
3 4 1 1 rut End Y-Disp 9 
3 4 1 1 ·-- -- - -- -- -· -·- - -

PD 9 9 56°, 3600 .RPM, 5.25 In/Rev, 3 4 1 1 rutt·i ng Height 9 
17/64 In., 2 Hr., 12 1/4 C. G. X-Disp 9 

to 13 1/2 In., 1965 C. G. Y-Disp 9 

Cut End X-Di s p 9 

Cut End Y-Disp 9 

Std 
Mean Er.ro·r Max 
(In) of Value 

Mean (In) 
On> 

3_. 01 o. 14 3.50 
24.5 6.6 56.0 

25.6 5.3 55.0 
23.2 7.4 59.0 
22.9 5.1 46.5 

2.82 0.11 3.38 
117.0 11,1 185.5 

11. 1 4.7 55.0 

116. 6 12.3 190.5 

11.2 4.3 46.0 

2.71 o. 07 3.00 
~31.2 14.4 8.2 

34. 8 8.3 71. 8 
-25. 4 14.5 19. 5 
33.4 7.4 63.0 

2.94 0.11 3.25 

8.0 9.9 58.0 

26.8 6.9 77.5 

6.1 10.9 59.0 

26. 1 7.0 77 .5 

2.92 0. 13 3.25 

17.9 13.0 135. 8 

19. 1 4.3 38.0 

7.9. 4 l2.7 135.9 

21.0 5.0 41. 5 

Min 
Value 
(in) 

2. 12 
2.0 

3.8 

2.0 

2.5 

2. 12 

34.5 

-22.5 

22.0 

-24.0 

2.50 
-94.0 

7.8 
-88.0 

5.5 

. 2. 19 
-37 .5 

9.0 

-41.2 

5.5 

2.12 

29.0 
-5.2 

21. 0 
-7. 5 

Ra.nge 
(J·n) 

1.38 
54.0 

51. 2 

57.0 

44 .. 0 

l.26 

151. 0 

71. 5 

168. 5 
7.0, 0 

0.50 
102. 2 

64.0 
107. 5 

57.5 

1. 06 

95.5 

68.5 

100.2 

72.0 

1.13 

106. 8 

43. 2 

114. 9. 

49.0 

N 
00 
0 



APPENDIX C-I (Continued) 

Conditions Description of Severing Action 
No 

Test Stems Rotor Angle, Rotor ·Speed, Effective Non.effective Response No. 
No -i-n Feed Rate, ·.Norn. Di a. , Variable Items 

Test Time in Chamber, C. G. cc TRC PCB KC PCBB BB SUB Analyzed 
Height, Crop Yeai 

PD 10 9 26°, 3600 RPM, 5.25 In/Rev, 7 1 1 Cutting Height 9 

17/64 In., 2 Hr., 10 3/8 le. G. X-Disp 9 

to 11 3/8 In., 19!>5 C. G. Y-Disp 9 

Cut End X-Di sp 9 

Cut End Y-Disp 9 

PD 11 9 '26°, 3600 RPM, 1.75 In/Rev, 9 Cutting Height 9 

17/64 In., 2 Hr., 9 5/8 C. G •. X-Disp 9 

to 12 5/8 In., 1965 C. G •. Y-Disp 9 

Cut End X-Disp 8 

Cut End Y-Disp 8 

PD 12 18 26°, 1800 RPM, 1.75 In/Rev, 14 4 Cutting Height 18 

17/64 In., 2 Hr., 9 5/8 C. G. X-Disp 18 

to 13 7/8 In., 1965 C. G. Y-Disp 18 

Cut End X-Oisp 18 

Cut End Y-Disp 18 

PS l 9 26°, 1800 RPM, 1.75 In/Rev, 9 Cutting Height 9 

17/64 In., 2 Hr., 14 1/2 C. G. X-Disp 9 

to 17 5/8 In., 1965 C. G. Y-Disp 9 

Cut End X-Di sp 9 

Cut End Y-Disp 9' 

PS 2 9 26°, 1800 RPM, 1 .75 In/Rev, 7 1 1 Cutting Height 9 

17/64 In., 0 Hr., 14 1/8 C. G. X-Disp 8 

to 17 1 / 4 In. , 1 968 C. G. Y-Disp 8 

Cut End X-Disp 8 

Cut End Y-Disp 8 

Std 
Mean Error Max 
(In) of ·Value 

Mean (In) 
(In) 

2.62 o. 11 3.12 

69.8 10.9 111. 0 

11. 3 7.7 47.5 

69.5 12.7 117 .0 

10.8 8.7 49.0 

2,74 0. lO 3.38 

16. 3 2.7 31. 0 

14. 1 3.9 42.0 

12 .• 3 3.4 25.2 

6.9 ' 1. 6 13. 5 

2.63 0.05 2.88 

-1. 4 3.5 14.0 

23.2 2.7 51. 2 

2.0 3.9 19.1 

22.4 3.3 48.5 

2.40 o. 12 2.88 

10.3 2.5 29.0 

6. 1 1.5 15. 5 

2.4 3.8 29.5 

2.9 0 •. 6 6.8 

2.44 0.08 3.00 

13.8 3. 1 29. 1 

7.4 1.8 16.2 

2.6 3.2 17. 8 

5.2 3.2 20.0 

Min 
Value 

(In J 

2. 12 

19. 8 

-19. 0 

13.2 

-24.0 

2.38 

6.8 

3.5 

0.2 

0.2 

2.25 

-32. 5 

5.5 

-31. 0 

2.0 

1.88 

3.2 

0.2 

-6.5 

LS 

2.25 

6.0 

o.o 
-6.5 

-9. 1 

Range 
(In J 

1. 00 

91. 2 

66,5 

103.8 

73. 0 

1. 00 

24.2 

38.5 

25.0 

13. 3 

0.63 

46.5 

45.7 

50. 1 

46.5 

T. 00 

25.8 

15. 3 

36.0 

5.3 

0.75 

23. 1 

16.2 

24.3 

29. 1 

N 
co .....,, 



APPENDIX C-I (Continued) 

Conditions Description of Severing Action 
No 

Test Stems Rotor Ang 1 e, Rotor Speed, Effective Noneffective Response 
No in Feed Rate, Norn. Dia., Variable 

Test Time in Chamber, C. G. cc TRC PCB KC PCBB BB SUB 
Height, Crop Year 

PS 3 9 26°, 3600 RPM, 5.25 !.n/Rev, 5 3 1 Cutting Height 

17/64 In., 0 Hr., 15 3/4 C. G. X-Disp 

to 18 3i4 In., 1968 C. G. Y-Disp 

Cut End X-Disp 

Cut End Y-Disp 

PS 4 9 56°, 3600 RPM, 5.25 In/Rev, 1 3 4 1 Cutting Height 

17/64 In., 2 Hr., 14 5/8 C. G. X-Disp 

to 19 3/4 In., 1968 C. G. Y-Disp 

Cut End X~Disp 

Cut 'End Y-Disp 

PS 5 9 56°, 1800 RPM, 1. 75 In/Rev, 8 1 Cutting Height 

17/64 In., 2 Hr., 15 3/8 C. G. X-Disp 

to 20 In., 1968 C. G. Y-Disp 

Cut End X-Di s p 

Cut End. Y-Disp 

PS 6 9 46°, 3600 RPM, 3.06 In/Rev, 9 Cutting Height 

21/64 In., 2 Hr., 15 1/4 C. G. X-Disp 

to 17 7/8 In., 1968 C. G. Y-Disp 

Cut End X-Disp 

Cut End Y-Disp 

PS 7 9 46°, 3600 RPM, 3.06 In/Rev, 6 1 1 1 Cutting Height 

21/64 In., 2 Hr., 13 3/4 C. G. X-Disp 

to 21 1/2 In., 1968 C. G. Y-Disp 

Cut End X-Disp 

Cut End Y-Disp 

Std 
No. Mean Error 

I terns (In) of 
Analyzed Mean 

(In) 

9 2.28 0.07 

9 61. 9 6.8 

9 5.8 2. 9 

9 66.5 8.3 

9 6.4 2.8 

9 2. 17 o. 12 

8 Tl 0. 6 9.8 

8 19. 9 4.2 

8 113. 3 1 o. 5 

8 18.9 6. 9 

9 2.39 0. 07 

9 21. 6 5.7 

9 11. 2 4.6 

9 12. 9 8.4 

9 16.2 5.2 

9 1. 38 0.08 

9 50.2 5.7 

9 1. 6 1. 8 

9 48.7 8. 1 

9 0.6 2.5 

9 l. 53 0. 10 

9 37.9 4. 1 

9 1. 8 2.0 

9 36.8 5.6 

9 4. 5 3.9 

Max Min 
Value Va 1 ue 
(In) (In) 

2.62 2.00 

1 05. 0 37.0 

17.0 -5.5 

117. 0 35.0 

15. 0 -12.0 

2.88 1. 75 

141. 0 53.0 

35.5 4.0 

144.0 56.0 

42.5 -5.5 

2.50 1. 88 

65.8 11. 2 

34.5 -1.8 

77 .8 -2.2 

46.0 3.5 

1. 75 1. 00 

95.0 39.0 

9.0 -6.0 

106. 0 28.8 

9.5 -14. 5 

2.00 1. 25 

58.0 16.2 

16. 0 -4.0 

69.5 20.5 

24.0 -15. 0 

Ran~e 
(In 

0.62 

68. 0 

22.5 

82.0 

27.0 

1.13 

88. 0 

31. 5 

88.0 

48.0 

0.62 

54.6 

36.3 

80.0 

42.5 

0.75 

56.0 

15. 0 

77. 2 

24.0 

0.75 

41. 8 

.20. 0 

49.0 

39.0 

N 
co 
N 



APPENDIX C-1 (Continued) 

Conditions Description of Severing Actia, 
No 

Test Stems Rotor Angle, Rotor Speed, Effective Noneffective Response 
No in Feed Rate, Nam. Dia., Variable 

Test Time in Chamber, C. G. cc TRC PCB KC PCBB BB SUE 
Height, Crop Year 

PS 8 9 56°, 3600 RPM, 5.25 In/Rev, 5 3 1 1Cutti ng Height 

17/64 In., 2 Hr., 18 3/4 C. G. X-Disp 

to 22 5/8 In., 1968 C. G. Y-Disp 

Cut End X-Oi sp 

Cut End Y-Disp 

PS 9 9 26°, 3600 RPM, 5.25 In/Rev, 7 2 Cutting Height 

17/64 In., 2 Hr., 15 5/8 c. G. X-Disp 

to 22 3/8 In., 1968 C. G. Y-Disp 

Cut End X-Disp 

Cut End Y-Disp 

PS 10 9 26°, 1800 RPM, 1.75 In/Rev, 8 1 Cutting Height 

17/64 In., 2 Hr., 18 1/4 C. G. X-Disp 

to 21 1/2 In., 1968 C. G. Y-Disp 

Cut End X-Oisp 

Cut End Y-Disp 

PS 11 9 26°, 1800 RPM, 1.75 In/Rev, 8 1 'Cutting Height 

17/64 In., 2 Hr., 15 1/4 C. G. X-Oisp 

to 17 3/8 In., 1965 C. G. Y-Disp 

Cut End X-Disp 

Cut End Y-Oisp 

PS-12 9 56°, 1800 RPM, 1.75 In/Rev, 4 3 2 Cutting Height 

17/64 In., 2 Hr., 15 3/8 C. G. X-Disp 

to 20 1/8 In., 1968 C. G. Y-Disp 

Cut End X-Disp 

Cut End Y-Disp 

Std 
!'fa. Mean Error 

I terns (In) of 
Analyzed Mean 

(In) 

9 2.22 0. 11 

9 117.7 4.3 

9 9.9 2.9 

9 127. 3 6.7 

9 7. 9 5. 9 

9 2.04 0.05 

9 79.6 7.6 

9 1. 0 2.5 

9 85. 1 9.2 

9 0.4 3.0 

9 2,35 0.11 

9 22.6 3.9 

9 6. 6 3.5 

9 17. 1 5. 5 

9 9.2 4.7 

9 2.22 o. 10 

9 3. 9 3.0 

9 10.6 3.7 

9 -1. 4 2.4 

9 9.5 5.5 

9 2. 11 0.07 

9 23.5 9.6 

9 15.2 4. 1 

9 11. 8 10.0 

9 17.0 4.4 

Max Mi.n 
Va 1 ue Value 
(In) (In) 

2. 62 1. 7 5 

127.5 90.0 

23.0 -3.5 

142. 5 80.5 

32.0 -14.0 

2.25 1. 75 

127. 5 47.0 

14.0 -9.0 

140. 0 39.0 

13.2 -16.0 

2.75 1. 88 

37.5 o.o 
23.0 -7.0 

48.0 -5.0 

32.8 -15.0 

2.88 1. 88 

9.8 -18.0 

38.0 2. 0 

16.8 -8.0 

47.0 -3.2 

2.50 1. 75 

69.2 -24.0 

37.0 -10.0 

57.0 -41. 0 

31. 2 -12.0 

Ranri 
(In 

0.87 

37.5 

26.5 

62.0 

46.0 

0.50 

80.5 

23.0 

101. 0 

29.2 

0.87 

37.5 

30.0 

53.0 

47.8 

1. 00 

27.8 

36.0 

24.8 

50.2 

0.75 

93.2 

47.0 

98.0 

43. 2 

N 
(X) 

w 



APPENDIX C- II 

DULL BLADE SERIES MAIN TEST DATA 

Theo Actual Per Cent Plant Size 
Energy Max Relative Ht. of Moisture Wet Dry Dia Time 

Run Comment Input Torque Contact Posi.ti ve Cut Ory Linear Lin-ear x in Coded ·values ·of- Independent 
No. Code ln-Lbf Lbf-In Velocity X Disp Y Di s.p l Di Sp Above Base Basis Density Density Ht. from Chamber Variable Pi Terms 

Ft/Sec In n In In % Gm/In · Gm/In End to C.G. Hrs. 
C. G. End C. G. End C. G. End In n2 Il3 Il4 Il5 n6 Il7 Ilg 

Dl A,B 114.1265 20.0 45.09 7. 4 1. 2 10.0 3.2 l. 5 2.0 2. 38 35,286 0. 3025 0.2236 11/64 x 12 7/8 6 1 0 1 3 3 0 

011 a c 84.2263 36. 0 45.09 0. 0 6.0 40.0 48.0 as.ob as.ob 2.00 46.814 0.4356 0.2967 17/64 x 12 7/8 6 1 0 1 3 3 0 

016 0 132.8119 37.5 45.09 22.5 21.2 · 17.9 27.2 3.0 3. 0 2.00 36. 800 o. 3472 0.2500 17/64 x 12 7/8 6 1 0 1 3 3 Q. 2 

D2a C ,E 136. 6230 33.8 70. 32 o.o 7.0 21. 0 15. 0 36. ob 4-o. ob 3. 38 35. 106 0.524-8 0.3911 21/64 x 11 1/8 

06 B 130.5778 33. 0 70. 32 58.0 57 .0 .30.5 24. 2 14.6 25.0 3. 25 26.580 0.4271 0. 3374 21/64 x 11 1/8. 6 

Dl 7 c 143.9259 33. 0 70:32 38. 5 31. 0 -5.0 -14. 0 60. ob 64. ob 3. 75 23.857 0.5202 0. 4200 21/64 x 11 1/8 6 3 1 3 

DJ . C,E 148.7039 56. 0 38.44 4.0 6.0 24. 0 15. O 84.0b .84. ob 4.00 30.769 0. 6392 0.4888 25/64 x 14 5/8 6 0 ' 2 3 3 

010 D~ E 251. 0605 ~15. 0 38. 44 0.0 6.0 16.0 20. 0 84.0b 84.0b 2.88 19. 496 0. 5694 0.4765 25/64 x 14 5/8 6 0 2 3 3 1. 

D22a C,E 112.0864 42.0 38.44 -22.0 -24. 0 32. 0 36.0 Q.O 4.0 2. 75 35.741 o. 5655 0.4166 25/64 x 14 5/8 6 0 2 3_ 

04 F, E 197.5170 37.0 63. 76 13.8 4.5 2 .4 4.5 6.0 8.0 1.88 40. 432 0. 5644 0. 4019 25/64 x 12 7/8 6 3 0 0 0 2 

09 B ,E 136.8343 28.0 63. 76 37 .2 44.2 7:8 14.2 22.0 26. 0 1.88 35.193 o. 5305 0. 3924 25/64 x 12 7/8 6 3 0 0 () 

D20a G, F ,E 193. 9485 40.0 63.76 -18.0 -9. 2 -3. 5 -2. 0 3.0 3. 0 l. 38 21.895 0.6920 0. 5·677 25/64 x 12 7/8 

osa A 45.943'9 23. 0 31.88 -14.2 0 9.0 0.0 0.0 o.o 3.0 2. 75 34. 255 0.3884- 0.2893 21/64 x 9 3/8 6· i O 0 0 1 0 

Dl9 F ,E 112.7423 30. 0 31.88 -4.0 0.0 8.0 7.0 3.0 8.0 3. 38 21.658 o. 4005 o. 3292 21 / 64 x 9 3/8 6 i O 0 0 1 0 2 0 

021 F, E 147.5617 40. 0 31 .88 -4. 0 -2. 0 2.0 4.0 0.8 2.0 2,88 42 .483 0. 5668 0.3978 21 /64 x 9 3/8 6 0 0 0 1 0 ·2 0 

07 F, E 27. 4857 13.8 60.90 60.0 53.0 so. 0 42.0 6. 0 19.0 2 .. 25 37. 145 0. 2854 0.2081 17/64 x 14 5/8 6 2 1 2 0 0 

012 F 40.0832 15. 0 60. 90 29.5 18.5 7.2 8.5 0.8 2 .• 5 1.88 33. 102 0.3320 0. 2496 17/64 x 14 5/8 6 2 1 2 0 0 

01 sa D, B 56.8672 16.8 60. 90 40. 5 30. 0 4.0 4.5 0.8 12.0 2. 12 79.230 0.2891 0.1613 17/64 x 14 5/8 

08• B 30. 2430 15. 3 54. 37 27. 8 25.8 5.5 11. 2 ]_.O 7. 0- 3.38 73.182 0. 1905 0. 11 00 13/64 x 11 l/.8 6 1 2 2 1 2 2 

D14 B 38.8437 15.0 54 .. 37 55. 0 <\~. 2 7.0 3. 8 . 12.0 19. 0 3. 12 35. 836 0. 1827 o. 1345 13/64 x 11 1/8 

. 024 F 25.9189 6.5 54. 37 31. 0 30.2 1. 5 ~5. 5 3. 0 8.'5 2~ 88 36. 654 o. 1454 0. 1064 13/64 x 11 1/8 6 1 2 2 1 2 2 1 N 
CX) 
..i:,. 



P.P PENO IX C-II ( Conti nu e d ) 

Theo Actual Per Cent Plant Size 
Energy Max Relative Ht. of Mai sture Wet Dry Dia Time 

Run .Comment Input Torque Contact Positive Cut Dry Linear Linear x in. Coded Values of· lndepe-ndent 
No. Cod·e In-Lbf Lbf-1 n Velocity X Dis p Y Di sp l Di Sp Above Base Basis Density Density Ht. from Chamber Vari.able PF Terms. 

Ft/Seo In I In • % Gm/In Gm/In End t·ci C.G. ·Hrs. 
C. G. End C. G. End C. G. End In IT2 Il3 Il4 n5 rr6 Il7 Ilg 

D13 F 23.6612 6. 5 55.n 7.2 1. D 4.2 4.D 0. 0 1. 0 3. 00 53.353 0. 1509 0 .0984 13/ 64 x 9 3/8 6 . 2 0 1 2 1 2 

018 F ,E 25.6417 10. 0 55. 22 -2.0 2.0 4.0 5. 2 o. 0 3. o.b 3. 12 54.376 o.·1164 0;0754 13/64. x 9 3/8 6 2 0 1 2 l 2 0 

023a 8 33.0864 13. 5 55. 22 33. 2 29. l 15 .. 4 16. 5 11. 5 11. 5 3.62 68. 054 0.\978 0.1177 13/64 x 9 3/8 6 2 0 1 2 i 2. 

025 F, E 103.2932 23.0 63. 76 43. 0 39. 0 0. 0 -6. 0 7.2 7.8 2. 38 14· .. 001 0.4128 0 .• 3621 21/64 x 11 1/8 

041 A, 8, E 101.0221 32. D· 63.76 -Z.6. 0 -24. 0 -7. o. -3.0 12 .. 5 13. 0 2.38 36. 3% 0. 4467 0.3275 21/64 x 11 l/8 2 3 0 1 0 l 1· 

D26 H 74. 8408b ·40. ob 35. 76 -6. cib -1 o. ob 30. ob 25·. ob 20 .. 0b 24. ob 2.00 36. 953 0.635·6 0:4641 21 I 64 x 9· 3/8 2 0 1 2 3 2 0 0 

035 A, 8 116.1902 52.0 35 .. 76 -12. 0 -12.0 51. 0 56. 0 12. o0 7 2. ob 2.50 24. 867 0.3756. 0. 3008 21 / 64 x 9 3/ 8 2 0 

U2 l LJ 71.3918 24.0 55.22 5.0 -3. 4 11. 0 5. 2 0.5 3. 8 3.38 17.032 0.2824 0.2413 17/64 x 14 5/8 2 2 0 0 2 2 2 

033 F, E 80.5710 16. 0 55.22 13.4 9. 5 3.5 -5. 6 3.8 6. 2 3.38 13.804 0.2333 0. 2 050 17/64 x 14 5/8 2 2 0 0 2 

D28 F 51.1101 19. 5 49 ·. 7 3 so .. 0 42.0 0.0 0. 5 2. 5. 8.0 3.38 12. 838 .0. 3041 o .. 2695 17/64 x li 7/8 

039 B 56 .. 6373 26. 5 49, 7 3 28.5 22.0 -6.5 -10. 2 5. 2 11. 8 3. 3:8 "23.558 0. 3000 0.24:28 17/64 x 12 7/8 

D29a F, E 32. l744 ro.o 45 .1)9 4. 0 -2. 5 8.2 8.5 0.0 2.0 2.88 35.211 0.1344 0. 0994 13/64 x 11 1/8 2· 1 0 0 3 0 

031 F 28.3187 8.5 45.09 1. 0 -5.0 7.5 4.2 3. 2 11. 8 2 .·62 31. 26.0 0.1625 0. 1_2 38 13/64 x 11 1/8 2 1 0 

D34 F ,E 32.4832 7.5 45.09 4.0 l O. 0 33. 0 38.0 10.0 1 o. 5 2.75 2.2. 248 0. 1577 0. 1290 13/64 x 11 1/8 2 l 0 0 3 0 

D30 I 172.3517 25. 0 76.88 12. 2 2. 5 8.5 15. a· 14. 0 24. 0 .4. 00 24.ZJl O.S091 0 .. 4098 25/64 x 12 7/8 2 3 2 2 2 0 

D37 F 185. 5896 50. 0 76. 88 44. 0 35. 0 -8. 0 -8. 0 0. 5 6. 5 2.50 23.265 0.4726 0.3834 25/64 x 12 7/8 

032 F 10.4·on 5.5 66.59 7-0. 0 63.0 -5.0 -7. 0 3.6 9. 5 l. 7.5 30.346 0.1353 0. 1036 13/64 x 9 3/8 2 2 2 3 0 3 0 0 

040 B 20.2652 5.0 66.59 35. 0 33.0 -3. 5 4.0 0.0 6. 3 1. 50 31. 521 o. 1815 0. 1380 13.'64 x 9 3/8 

D36 F, E 137.9290 63. 0 31 .88 4 .. 9 o. 0 8.8 o.o 1. 8 ·2.0 3. 25 16.725 0.3657 0.3133 25/64 x 14 5/8 2 0 0 l 1 3 

038 F, E 153.4641 65.0 31. 88 1. 5 -2.0 -2.5 -1-0. 0 48. ob 60. ob 3. i 2 18.472 o. 519.5 0. 4385 25/64 x 14 5/8 2 0 0 l l 3 2 3 N 
co 
01 



APPENDIX C-I I (Continued) 

Theo Ac ta ul Per Cent Plant Size 
Energy Max Relative Ht. of Moisture Wet Ory Di a Time 

Run Comment Input Torque Coil tact Positive Cut Ory Li-near Linear x in Coded Values of Independent 
No. Code In-Lbf .Lbrln Velocity X Oisp Y Dis p ;,_ Di sp Above Base Basis Density Density Ht. from Chamber Variab-le Pi Terms 

Ft/Sec In In In ! n % Gm/In Gm/In End to C. G. Hrs. 
C. G. End C. G. End C. G. End In n2 n3 IT4 rr5. n6 IT7 n9 

042 A, B, E 136.5732 40. 0 55. 22 12.0 3.8 6.0 6.2 l. 3 3. l 2. 88 51. 36 9 0.3925 0.2593 21/64 x 12 3/8 4 2 D 3 l 2 l 2 

054 A,F 14 3. 2482 42.5 55.22 4.0 -3.8 7. 5 3. 0 3.0 4. 8 2. 12 38.017 0.4763 0.3451 21/64 x 12 3/8 

D43 F 44. 7390 10. 0 70.32 64.0 77.0 -15. 0 -20. 0 2.0 15. 0 l. so 45.822 0. 1623 0. 1113 13/64 x 14 5/8 4 3 l l 1 0 0 

04 7 O,F 40.9945 9. 0 70.32 25.6 14. 0 0 .. 5 l. 0 0.0 5.3 l. 38 59.263 0. 1470 0.0923 13/64 x 14 5/8 4 3 l 1 l 0 0 

044 B, E 36. 5810 27.5 38. 44 12. 0 6. 0 -15. 0 -15. 5 0. 8 2. cib 3. 62 16. 316 0.2103 o. 1808 17/64 x 11 1/8 4 

049 B,E 22.9047 16. 0 38. 44 -5.0 -1 l. 0 -24.0 -25.0 4.0 6.0b 3. 50 29. 077 0.2042 0. 1582 17/64 x ll 1/8 4 0 2 1 0 2 

045 A,F 128. 223.4 34. 0 60.90 5.0 0.0 6.0 2. 0 0.5 l. sb 3.25 22. 416 0. 4407 0. 3600 25/64 x 11 1/8 

052 F 144.8227 46. 0 60.90 46.0 49. 0 9.0 3. 0 15. 0 20.0 3.25 2 9. 002 0.4359 0.3379 25/64 x 11 1/8 

046 A,F 123. 5707 36. 0 63. 7 6 5.0 0.5 13. 0 12. 0 6.0 8.0 3. 38 30.913 0.2507 0. 1915 17/64 x 9 3/8 

050 A, F, E 66.0371 1 o. 0 63. 76 2.0 7.0 41. 0 41. 5 36. ob 44.0b 3. 50 22. 080 0. 1913· o. 1567 17/64 x 9 3/8 4 3 0 2 3 1 2 0 

048 F 53.0624 39. 0 54.37 53. 5 65.0 -1 l. 0 -1 l. 2 5. 5 14. 4 l. 38 24.658 0.4565 0. 36 62 21/64 x 14 5/8 4 1 2 0 2 1 0 

053 c 89. 5371 45. 0 54.37 44.0 55.0b -10.0 -14.0b 84. ob 84.0b l. 25 57.220 0. 5770 0.3670 21/64 x 14 5/8 

051 B,E 23.7852 15. 3 31. 88 28.0 35. 0 40.5 35. 0 10. 0 14.0b 2. 88 29. l Bl 0. 1421 0. 11 00 13/64 x 12 7/8 

056 8,E 51. 3270 23. 8 31. 88 -56.0 -49. 0 24.0 1 9. 0 72.0b 72.0b 2. 88 30.229 0. 187 4 o. 1439 13/64 x 12 7/8 

055 D, B 161.4170 65. 0 45.09 -13. 0 -9.2 l. 0 2.0 0.0 2. ob 3. 75 87.735 0. 6567 0.3498 25/64 x 9 3/8 4 1 0 3 0 0 2 

057. 8,E 85. 1834 40. 0 45.09 20.0 16.0 32. 0 35. 0 48. ob 48.0b 3. 12 14.746 o. 377 4 0.3289 25/ 64 x 9 3/8 4 l 0 3 0 0 2 0 

058 B, E 166.6724 46.0 55.22 8. 5 0.5 4.2 1. 8 0. 0 4.9 l. 38 .95.503 0.6782 0.3469 25/64 x 11 l/8 

061 0 ,B 243. 7522 58. 0 55.22 7.5 0. 5 7. 5 2.2 0. 7 l. 4 b l. OQ 61. 432 0. 8945 0.5541 25/64 x 11 1/B 

N 
Q.J 
0) 



APPENDIX C-11 (Continued) 

Theo Actua 1 Per Cent 
En:ergy Max Relative Ht. of Moisture Wet 

Run Comment Input Torque contact Positive Cut Dry Li near 
No. Code I n-Lbf .Lbrln· Velocity X Di Sp Y Di Sp ;! Di Sp Above Base Basis Dens·; ty 

Ft/Sec In In .Jn In % Gm/In 
CG. End C. G. End C. G. End 

059 D 144.8118 47. 0 49.73 -9. 0 -5.5 28. 0 31.. 5 13.0 15. ob .2. 25 23.464 0. 6935 

063 F, E 149.9224 39. 0 49.73 2. 2 -3.2 3. 1 3. 5 o. 0 3. 1 2.38 34. 800 0.3552 

060 F 71.3675 20. 0 66.59 23. 2 15. 0 4.0 4.2 1. 0 12.8 2.88 . 36. 991 0.3570 

u65 D,F 93.4446 22.0 66. 59 40.4 46. 2 1. 8 -3.5 1. 0 8.0 3. 12 51.550 o. 57fi5 

062 F, E 77.8762 29. 0 45.09 6. 0 -4.0 1. 0 2.0 0, 0 1.8b ·3. 25 35.32'5 0.4076 

07 3 D 94. 3336 32.0 45.09 4.5 -5.5 ~-0 -0.5 0. 2 3. 1 2.75 33. 521 0. 3792 

064 F, E 21. 5889 11. 0 35. 76 1 s. 4 14.8 10.8 17.2 4. 8. 5. 6 3. 25 32.841 0. 1889 

070 F ,E 26,9742 1-1. 0 35. 76 39. 0 44.0 -11. 0 -12. 0 0.0 2.0 3 .. 25 87.782 0.2930 

1l66 O,B 53. 2.524 11. 5 63.76 24.5 16. 2 5.0 8. 8 2.8 4.0b 4. 12 121.416 0. 2564 

·072 G ,B 47. 9752 27 .o 63.76 7 3. 0 64. 0 16.0 15.0 18.6b 26.8b 3. 62 37.305 0. 18_55 

067 F 20.8225 4. 0 76.88 20.ob 23. ob 28.0b 33. ob · 1. 0 10.5 2 .. 00 7 3. 460 0. 4085 

069 F 88.0503 22.0 76.88 115; 0 120.0 33-. 5 36.5 22.0b 29.0b 2. 12 25. 199 o. 3294 

068 D,B 108.3101 43 .. 0 31 .88 1. 2 -5.2 14. 5 19.0 5.5 7.0b 2.00 2 3. 826 0.2822 

071 D ,B 66.4240 27.5 31. 88 -3. 0 -i o. 0 16:0 19. 0 26. ·ob 33.0b 1. 88 125.669 0.4466 

--
aNot Used in Analysis of Results . 
bEstimated.Value; Exact Value Unobtainable Be·cause th.e Vertie.al ·Trace EX'tende·d Out 

of the Camera Field or Stem Fell Outside Li.mits of Horizontal Grid Board 

Pl ant Size 
Ory Di a Tjme 

Linear x in 
Density Ht. from Chamber 

Gm/·ln E·nd to_ C. G. Hrs. 
In 

0. 5.617 ·25/ 64 x 9 3/8 8 

0.2635 2 5/ 64 x 9 3/8 8 

o. 2606 21/64 x 12 7/8 8 

0.-3804 21/64 x 12 7/8 8 

o. 3012 21/64 x 14 5/8 8 

0.2840• 21/64 x 14 5/8 8 

o. 1422 13/64 x 12 7/8 8 

o. 1603 13/64 x 1.2 7/8 8 

0. 1158 13/64 x 14 5/8 8 

o. 1351 13/ 64 ·x 14 5/ 8 8 

0. 2 355 17/64 x 9 3/8 8 

o .. 2631 17/64 x 9 3/8 8 

0.2279 17/64 x 11 1/8 8 

0.]979 1,7/64 x 11 1/8 8 

. Coded Val~u. of Inciepen<limt 
Variable Pi Terms 

"2 "3 ·".4 ll5 "6 Ii 7 JT_9 . 

1 1 1 2 2 1 0 

1 1 1 .2 2 1 0 

2 2 1 3 0 2 

2 2 1 3 0 2 2 

1 0 2 0 

1 0 2 0 

0 1 0 0 

0 1 0 0 

3 0 3 3 2 2 

3 2 0 1 3 1 

0 0 3 2 0 

0 0 3 2 0 0 

N 
co 
'-J 



APPENDIX C-II I 

SHJl.RP BLADE SERIES M.l\ IN TEST DAT/\, 

Theo Actua 1 Per Cent 
Energy Max Relative Ht. of Mo·; sture Wet Dry 

Run Comment Input Torque Cohtact PoSi ti. ve Cut Dry Linear Linear 
No. Code In-Lbf Lbrin Velocity X Dis p Y Dis p l Disp Above Base Basis Density. Dens-i ty 

Ft/ Sec In In In In 1 Gm/In Gm/ In 
C. G. End C. G. End C. G.· End 

Sl F, E 39.2512 8.2 63.76 42.0 36. 0 -6.0 -5.0 60. D0 60. o• 2.00 23.149 0. 2080 o. 1689. 

516 F ,E 36.7778 lD.O 63. 76 22. 6 26.5 18.5 14.2 ,. 5 4.oa 2.12 45.884 0. 1790 0. 1227 

S2 F ,E 29. 3736 9.6 38. 44 80. sa 71. 5• 42. o• 45.oa 28. 5• 33.0' 2.38 4 1. 52 9 0. 2 7 57 0.1948 

513 D, F, E 36. 3593 18.5 38. 44 1 o. 0 2.0 6. 0 10.D 2.5 14.0 2.62 42.747 o. 2234 0.1565 

SJ D,F · 181. 5397 40. 0 55. 22 9. 0 14.0 -17.0 -11. 0 30. o• 35. o• l. 38 21. 950 0. 6978 D.5722 

SlO D,F 132.3438 32.0 55.22 6.5 12. 5 -9 .. 0 -15.0 20. o• 26. o• 1. 25 28.526 0. 5276 0.4105 

S4 0, F, E 171.3408 40. 0 49. 7 3 -2.0 -6. 2 5.8 2.5 3. oa 4. o• 2.50 42. 896 0.4144 0.2900 

S9 D,F 7 3. 3141 17. 5 49. 7 3 1 o. 8 6.2 5. 2 3. 2 o. 3· 2. 0 3. 00 62. 626 0.4186 0.2574 

SS D,F,E 208. 4096 41. 0 54.37 23. 6 15. 0 0. 0 -7. 8 o. 8 5.0 1. 75· 24.179 O. 6132 0. 4938 

Sl 2 0., F 191.1932 52.0 54.37 27.5 22.8 13. 2 2.2 0. 5 5.5 1.00 27. 671 0. 5449 0.4268 

S6 F ,E 84.2589 18. 0 · 7 o. 32 41. 0 45.5 -20. 0 -29. 0 8.0 16. 0 3. 12 43.973 0.3500 0. 2431 

515 F ,E 84. 3317 22. 0 70.32 44. 5 42.0 20.0 30.0 l. 5 7.0 2. 88 38. 774 0.3783 0.2726 

57 F,E 98. 5266 18. 5 60.90 65.0 68.0 -11. 5 -3.5 7.2 22. 5 3. 12 76.666 0. 5300 0.3000 

S 11 F,E 97. 9084 23. 0 60.90 16. 2 8.2 -3. 0 -5. 8 2. 5 6.5 2. 88 7 9. 206 0. 7 093 0.3958 

S8 F 37 .8796 20. 5 35.76 8.5 1. 5 4.8 5.5 0. 2 4.2 2. 75 37.133 0. 3885 0. 2833 

514 F ,E 30.1024 12.5 35.16 43. 2 49. 5 1 o. 2 12.8 5.0 20. oa 2; 7.5 57. 928 0.4163 0. 2636 

Plant S--lze 
Dia Time 

x in 
H.t. from Chamber 

End to C.G. Hrs. 
In 

1 3/ 64 x 9 3/8 

1 3/ 64 x 9 3/8 6 

13/64 x 12 7/8 6 

13/64 x 12 7/8 6 

25/64 x 11 1/8 6 

25/64 x 11 1/8 6 

21/64 x 9 3/8 6 

21/64 x 9 3/8 6 

25/64 x 14 5/8 6 

25/64 x 14 5/8 

17/64 x 14 5/8 6 

17/64 x 14 5/8 6 

21/64 x 12 7/8 

21/64 x 12 7/8 6 

17/64 x 11 1/8 6 

•17/64 x 11 1/8 6 

Coded Values of Independent 
Variable Pi Terms 

n2 fl3 TI4 TI5 n6 D7 Ilg 

3 0 0 3 2 1 0 

0 2 2 1 0 

0 2 2 

2 0 3 0 2 D 1 

2 0 

1 1 1 3 3 2 0 

1 1 1 3 3 2 0 

1 2 1 2 0 

3 1 0 2 1 2. 

3 1 0 2 1 2 3 

2 l 3 1 1 2 2 

0 1 2 0 

0 1 2 0 

N 
co 
co 



Theo 
Energy Max Relative 

Run Comment Input Tofque Contact 
No. Code ln-Lbf Lbf-ln Velocity X Di sp 

Ft/Sec In 
C. G. End 

S17 0, F, E 59. 852-8 39.0 35. 76 4.5 11. 5 

S30 O,F 45.7441 20. 5 35. 76 -7. 0 -3. 5 

S18 D,f 127. 8411 48. 0 31. 88 6. 0 5.0 

S21 O,F 105.6543 37.0 31. 88 11. 0 7.0 

Sl9 F ,E 87.3689 18. 0 60.90 22.2 1L5 

S27 F, E 81.5906 20. 0 60.90 28.5 18.2 

S20 F 18.4836 5.0 66.59 47.0 43. 0 

S32 F 11. 6404 2.2 66.59 .18. 0 13. 5 

S22 D,F 76.6087 25. 0 49.73 1 o. 0 3. 5 

S26 F 76.1970 42.0 49. 7 3 6.0 7.0 

S23 D 30. 4788 12. D 45.09 30.0 38. 2 

S28 0 ,B 20.4291 11. 5 45.09 22.0 13. 5 

S24 D,F 134.5311 22.0 70.32 81. o• 9o.o• 

S29 O,F 101.6329 19. 5 70.32 56. 5 66.2 

S25 F 120.4105 23. 0 76. 88 89.8 95. 8 

S31 F, E · 84. 4056 13. 0 7 6. 88 72.5 66.0 

APPENDIX C-III (Continued) 

Actual Per Cent 
Ht. of Moisture Wet 

Positive Cut Ory Linear 
Y Di sp , Oisp At.oye Base Basis Density 

In In In % Gm/! n 
C. G. End C. G. End 

6.0 6. 0 7.2 11. 5 1. 12 14.595 0.3855 

5.0 2.0 4.0 4.0 1. 12 15.069 0.2978 

2.0 11. 0 8.0a 1 o. oa 2.75 21.935 0.4675 

13. 0 3. 5 0.8 3.0 2.62 16.658 0.4895 

-3.0 -5. 2 0. 0 4.5 2. 1.2 25.772 0.3255 

2.0 -1. 8 0.5 3.0 2. 12 23.263 0.3354 

-1. 0 3. 0 10. 5 12. oa 2.62 55. 446 0.2226 

-3. 5 -5. 5 2.5 9.0 2. 75 19. 047 0.2000 

4. 2 2. 5 1. 0 3.0 2.88 17. 7 05 0.2360 

38.0 46.0 34. o• 36. o• 1. 88 35.316 0. 3866 

10. 0 11. 5 14. o• 21. 5• 3. 00 2 3. 102 0.2595 

B. 5 6. 8 85. o• 85. o• 2.62 25.763 0. 1977 

41. o• 36.o• as.a• 85. o• 1. 12 37. 461 0. 4418 

10.2 9.0 60.0• 7 o. o• 1. 12 25. 741 0. 3688 

28.0 27.0 17. 5 24.5 2. 88 17.093 0. 5117 

5.0 4.0 9.0 19.0 2. 88 17. 060 0.3863 

P1ant Size 
Dry Dia 

Li near x 
Density Ht. from 

Gm/In End to C.G. 
In 

0. 3364 21 /64 x 9 3/ 8 

0.2588 21/64 x 9 3/8 

0. 3834 25/ 64 x 14 5/ 8 

0.4196 25/64 x 14 5/8 

0. 2588 17/64 x 14 5/8 

o. 272.1 17/64 x 14 5/8 

0. 1432 13/ 64 x 9 3/8 

0. 1680 13/ 64 x 9 3/8 

0.2005 17/64 x 11 1/8 

0.2657 17/64 x 11 1/8 

0. 2108 13/64 x 12 7/8 

0.1572 13/64 x 12 7/8 

o. 3214 21 I 64 x 12 7 I 8 

0.2933 21/64 x 12 7/8 

0. 4 37 0 25/64 x 11 1/8 

0.3300 25/64 x 11 1/8 

Time 
in 

Chamber 
Hrs. 

2 

Coded Values of Independent 
Variable Pi Terms 

n2 TI3 TI4 TI5 TI5 n7 Ilg 

0 1 0 0 0 

N 
o::> 
I.!) 



APPENDIX C-III (Cont·inued) 

Input :rheo ;rct:"-:;:-;;; l Per Cent Plant Size 

Run Comment Energy Max Relative Ht. of MoiSture Wet Dry Dia Time 
No. Code In-Lbf 

Torque Contact Positive Cut Dry Linear Linear x in Coded Values of Independent 
L bf-In Velocity X Di sp Y Di sp l Di Sp Above Base Basis Dens_i ty Density Ht. from Chamber Variable Pi Terms 

Ft/Sec I In In % Gm/In Gm/In End to C. G. Hrs. 
C. G. End C. G. End C. G. End ln rr2 Il3 ll4 ns Il6 IT7 TI.9 

533 F 59.2026 28.0 54.37 25. 8 30.5 -4.5 -9.0 7.0 17. 0 3.00 27.800 0.44SO o. 3482 .21/6_4 x 11 1/8 8 1 2 1l 

537 F 59. 6284 25.0 54. 37 24. 2 18. 8 1. 0 -3. 5 2.5 6.5 2.75 95. 618 0. 6340 o. 3241 21/64 x 11 1/E 8 

534 F ,E 81.6778 18.5 49.73 23. 0 14.0 0. 0 -0.2 1. 8 4.9 2.38 25.846 0. 5132, 0.4078 25/64 x 12 7/8 

542 D, F 74.9611 28.0 49. 7 3 18.0 8.5 9.5 10. 8 2.5 3.0 1. 88 33. 325 0. 5413 0. 4060 25/64 x 12 7/8 8 1. l 1) 

535 F_, E_ 19.8706 6.8 70.32 46.0 39. 0 7.0 2.0 2.2 9.5 1. 75 83.906 0.2514 o. 1367 13/64 x 11 1/8 

543 D,F 21.5005 11. 0 70.32 32.8 37. 8 o.o -6.5 1. 0 4.0 1.25 49.095 0.2636 O. 1768 13/64 x 11 1/8 

536 F, E 55.3396 l 0. 0 63.76 10.2 ,. 8 4.8 3. 2 1. 5 1.8 2. 62 114.057 o. 4431 o. 2070 17/64 x 12 7/8 

546 F, E 32.7956 5.0 63.76 -5.7 -14. 5 -2.5 -5. 5 7.8 8. oa 2. 88 97. 529 0. 3358 0.1700 17/64 x 12 7/8 

538 F 52.0565 11. O 55.22 34. 5 25. 2 l O. 5 6. 8 11. 5 11. 5 3. 00 42.593 0.4640 0.3254 21 /64 14 5/8 

544 F, E 63.3900 17. 5 55.22 11. 5 2. 5 2.2 6,0 o. 0 3. 5 3. 12 93.562 0. 5743 0. 2 967 21/64 x 14 5/8 

539 F ,E 26.5992 7.0 35. 7 6 25. 5 14. 2 19. 2 17. 2 10.0 10. 0 1.62 82.673 0. 2815 0. 1541 13/64 x 14 5/8 8 0 l 3 3 l 

547 F,E 9.6089 4.5 35. 76 35.5 27 .2 6.5 -2.5 21.5" 34. oa l. 25 47. 966 o. 1746 0.1180 13/64 x 14 5/8 8 

540 F, E 36.5134 23. 0 38.44 17. 8 14.0 10.2 14. 0 0.8 2.5 2.50 34.913 0. 3103 0.2300 17/64 x 9 3/8 8 

545 D ,F 33. 1225 12.5 38.44 8. 2 3. 0 7.2 6.0 2.5 3. 0 2.50 75.925 0.3800 0. 2160 17 / 64 x 9 3/8 

541 F ,E 66. 4084 29. 5 60. 90 44.0 50.0 -6. 0 -4.0 4.8 7. 4 2. 12 21 .8:rs 0. 5557 0.4347 25/64 x 9 3/8 

548 F, E 60. 6832 15. O 60.90 41. 0 35.0 -4. 0 -3. 0 3. 8 8. 0 1.&8 47. 043 0. 6042 o. 4109 25/54 9 3/8 8 2 l 2 2 3 l 0 

N 
I.D 
0 



APPENDIX C- II I (Continued) 

Theo Actual Per Cent Plant Size 
Energy Max Relative Ht. of Moisture Wet Dry Di a Time 

Run Comment Input Torque Contact Positive · Cut Dry Linear Linear x in Coded Values of Independent 
No. Code !n-Lbf Lbf~In Velocity x Di Sp Y Di sp • Di SJ) Above Base Basis Density Dens Hy Ht. from Chamber Variable Pi Terms 

Ft/Sec I In In % Gm/In Gm/In End to c. G. Hrs. 
C. G. End C. G. End C. G. End In "2 IT3 IT4 n5 il5 TI7 nr: 

549 D, F, E 85.5026 17.5 70.32 88.8 87.8 11. 8 6.0 11. oa 11. oa 2. 88 30. 5 64 0. 504 5 0. 3864 25/64 x 9 3/8 4 

564 F ,E 98. 3871 28.0 70.32 38.0 41. 8 -1. 8 -5.5 l. 5 4.0 2.88 21. 2 30 0.5676 0.4682 25/64 x 9 3/8 

550 F, E 11. 0382 5.5 49.73 88.5 98. 5 20. 0 20.5 30. 2a 39. oa 2.88 34.123 o. 1867 0. 1392 13/64 x 14 5/8 

557 F, E lo. 0497 2.5 49. 73 23. 2 15. 2 o. 8 -5. 8 4.0 6.8 2. 62 31.009 0. 197 3 o. 1506 13/64 x 14 5/8 

551 F 35.9569 18.8 66.59 75.8 69.5 19. 2 11. 5 42. oa 64. oa l. 12 64. 044 0.3796 0. 2314 17/64 x 12 7/8 4 2 2 0 3 3 0 

SSS F 22. 2335 l o.o 66.59 56. 0 50. 0 -2. 5 -10. 0 3. 0 11. s• 1. 38 36.754 0.3758 o. 2748 17/64 x 12 7/8 

•co 
°"" r, E 39~ 0457 14.0 45.09 6. 8 l. 0 3.0 2.5 0.0 1. 0 2. 25 60.320 0.2998 0.1870 17/64 x 9 3/8 4 1 0 2 l l 0 0 

559 F, E 30. 4788 l O. 8 45.09 12. 5 6.5 4.5 6.5 2.0 2.0 l. 38 37. 57 4 0. 2768 0.2012 17 / 64 x 9 3/ 8 4 l 0 2 1 l 0 

553 F ,E 21. 5335 12. 0 60.90 23. 5 22.5 -4.8 -11. O 0. 5 7.0 3. 12 45. 148 0. 1900 0. 1309 13/64 x 11 1/8 4 

560 F, E 23. 0493 l O. 5 60.90 17.0 12. 8 4.0 -0. 8 0. 2 1. 5a · 2.52 45.769 0. 2395 0. 1643 1 3/ 64 x 11 1 /8 

554 D, F, E 142.6021 47. 0 31.88 -1 o. 8 -4.5 21. 0 17.0 0.0 7. o• 2.00 ?n. 424 0. 3862 0. 3207 21/64 x 11 1/8 

556 F, E 81. 4539 35. 0 31. 88 o.o -0. 5 1.9. 8 26.5 9.5 12. 0 2.50 37.655 0.4465 0. 3224 21/64 x Tl 1/8 

SSS F,G 100.7290 35. 5 76.88 42.0 31. 0 2.5 6.0 77. o• 85.oa 1. 7 5 15.416 o·. 5 35 3 0.4638 21/64 x 14 5/8 

562 F, G 86.6744 40.0 76. 88 87.5 98.0 -9. 0 -3.5 12. 5a 21.s• 1. 88 20.509 0.4924 0. 4086 :!1/64 x 14 5/8 

561 F ,E 124.3547 85. 5 35.76 13.8 6. 8 14.8 9.5 3.2 3. 8 2. 62 54.560 0. 7 354 0.4785 25/ 64 x 12 7 / 8 4 

563 D,F 137.1385 63.0 35.76 14.8 6. 8 13.0 9.5 2.0 4. 0 2. 7 5 51.314 0. 7192 0.4753 25/64 x 12 7/8 

--

aEstimated Value; Exact Value Unobtainable Because the Vertical Trace· Extended Out of 
the Camera Field or Stem Fell Outside Limits of Horizontal Grid Board 

N 
\.0 ...... 
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1\PPENDIX 0-I 

}hLYSIS OF VARIANCE AND TABLE OF MEAN VALUES FOR DULL BLADE TEST SERIES 

DULL BLADE SERIES 
ANALYSIS QF VARIA~CE 

FOR 
ENE~GY INPUT OAfA 

SOUR:E OF VARIATION DEGREES OF 
FR EEDJ~ 

SUM OF 
SQUARES 

CDPRECT ED TOT AL 63 2;)9464.56250 

DIA~ETER 3 149065. 37 500 
L !NEAR EFFfCT l 147015.37500 
QU,uRA TIC EFFECT l 1680.10205 
ClJB!( EfFECf l 369. 90088 

Tl ME Jr,..! :Hti.M3fP 3 4424.10156 
L I\lf:A.1. EFfECT l 1068.14600 
QUADRATIC EFFECT l 495.41724 
cugr: EFFe:T l 2860.'>4004 

ROTOR SPEED INDEX 3 3434.63647 
l P,ffl'.f<, EF=~CT l 976 .98364 
Q~ADP.AT IC EFFECT l 2412.52856 
CUdlC EFFECT l 43.12381 

FEEO RAT[ INU':.X 2 5213. 08984 

"ell J< ANG LC I NJE X 3 2340.42334 
L !~<AO EFFECT l 2182.16504 
~Ul\;JH TIC HFEC T l 76.98'j6'j 
U:J!C EI-FECT I 8[.26859 

LITE~IL POSITION INDEX 3 8750.67578 
L !~ [A, EFFECT 1 5299. 3ga44 
QUADRATIC i:FFE:CT l 179'>.19995 
:u1r: ~~;::::r l l656.J7715 

L~OGER ORIE~T~TJUN INDEX 3 567.05811 
l INF!\~ EF;:'::T l 24.087'>7 
Q~ADO~TIC EFFECT I 299. 55'>42 
C!Jdl ( EFrf'CT 1 243.41531 

CUTT ING HEIGHT I!\1111::X 2 1842. 682 !, 

::::.G. H:=iGHT I \JJE X 3 228U. '>6030 
LI!\![.,\;.: EFF~CT l 147.46387 
CUA0i-<."'T1C ,: FF i-:C T I 1955.td599 
cu~ re CFFc: r l 177. 46051 

Qt; MAT Nf""I!- R 6 98'>7.06250 

EX PE1~ lMFi-.iT AL E:RROR 32 21688.94141 

MEAN 
SQUARE 

49688.45703 
147015. 37500 

1680.10205 
369.90068 

!474.70117 
l068.l460U 
49~.41724 

28&0 .54004 

1144.87866 
975 .'8364 

2412. 52856 
43.12381 

2606. 54,! 7 

7dO.l41ll 
2182.16504 

76 .98965 
81.26359 

291~ .89233 
5l99.39844 
I 7Y5. I 9995 
l656.':J7715 

189.01942 
24.~3737 

?99. '>5542 
243.41'31 

9?.. l. 34106 

76J.l3577 
147. 463,17 

l:,l5~.635·:t9 
l 77.4<>0'>1 

l642.b4375 

677. 77930 

F RAT ID 

73.3107 
216.9074 

2.4188 
0.5458 

2.1758 
1.57';9 
o. 7 309 
4.2205 

l. 6892 
1.4444 
3.559'> 
0.0636 

3.b457 

1. l 'll O 
3. 2196 
0. [ [36 
O. LI <;9 

4. 30 36 
7.8188 
2. 6486 
2.4434 

o. 2789 
u .o 3'>'> 
o. 4420 
J. 3'>9 l 

1. 3 '>94 

1.1216 

o. 21 '" 
2.d854 
0 .2613 

2. 4?39 

DULL BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
E~ERGY INPUT DATA 

F" AC TJR VALUE OF MEAN STD ERROR OF MEAN 

OVERALL ~FAN 92.5147 3.2543 
OJ AMET ER 

O l E VEL 32.2607 6.5085 
l LEVH 69. 1824 6. 5085 
2 LEVEL 105. 5998 6. 5085 
3 LE VFL I &3. Jl60 6.5085 

T ['it [ ~ CrlA~~ ER 
O LEVELV 87.2413 6. 5085 
l LEV[ L d4.5004 6.5085 
2 l EVEL 106.0935 6. 5085 
) Li:VEL n.22,,, 6.5085 

R:JLJR SPH:J !~DEX 
U l fV EL 93. 7742 6. 5085 
l L c VEL 33.5246 6.5085 
2 I FVFL 99. 22'>4 6. 5 085 
3 t f:V fl !03.5346 6.5085 

H·EJ i<:4 TJ:: r ~JEX 
D I fl/ El IOI. 5346 4.6022 
l L[VEL 83.9330 6.'>085 
? l_F Vt" l 83.0566 6.5085 

ROT fJf.: .\NGL E IN :J[X 
O l[ Vt:..L A&.2913 6.5085 
l l tVEL 87. 2'147 6.5085 
2 l fVf-L 95.5411 6.5085 
1 LE: v~ L 100.9417 6.5085 

L ,"t. T E11 ~L PJSIT ION I ~Jc X 
Q LEV[L 72.7351 6.5085 

l c VE L 100.5662 6 .5085 
L !::V !::L ~5.0557 6. 5085 
LI.' Vcl 1Jl.7Jl8 6.5085 

LEDG~~ '.3~1E~l~Tl~N Tf,j).:: x 
:! L fl/ r L 8fl.6560 6. 6085 

l c V[ L ·} 7. DZQ .1 6 .'>085 
Ll_VH 92. ,360 6. 5 Od5 
l 1-V l-l 92.0465 6.5085 

: UTT I l\J:::. 1-!:: I-; -i T I ~!)t X 
.J l t V!:L 101. 0)00 6. 5 085 
i LF'/FL -.] 3. l 86'-.] 6.S085 
?. L F Vt L 87.9209 4.~022 

C.G. Yi"" IGHT I \i [)[X 

L F V1- L 85.~951 &.so.gs 
V LL 95. l29o 6.soa5 
HL l!JO. 9 '>54 6.5085 

i LL vr L 88.2787 6.5085 ['-) 

,.o 
w 



APPENDIX D-I 

DUll BLADE SERIES 
ANALYSIS OF VARIANCE 

FOR 
MAX TORQUE DATA 

SOURCE OF VARI AT ION DEGREES OF 
FREEDOM 

CORRECTED TOTAL 63 

DIAMETER 3 
LI NEAR EFFECT l 
QJAD,ATIC EFFECT l 
CUB! C EFFECT l 

T !ME IN CHAM BER 3 
LINEAR ~FFECT 1 
QUADRAT!C EFFECT l 
CUBIC EFFECT l 

ROTOR SPEEJ INDEX 3 
LINEAR EFFECT l 
QUADRATIC EFFECT l 
CJBIC EFFECT l 

FEEJ RATE INDEX 2 

ROTOR ANGLE INDEX 3 
LINEAR EFFECT l 
QUADRATIC EFFECT l 
CUB! C EFFECT 1 

LATERAL POSIT IJN INDEX 3 
LI NEAR EFFECT 1 
QUADRATIC EFFECT l 
CUBIC EFFECT 1 

LEJGER ORIENTATION INDEX 3 
LINEAR EFFECT 1 
OUAURATIC EFFECT 1 
CJBIC EFFECT l 

:UTTIN~ HEl~~T INDEX 2 

C.G. HEIGHT INDEX 3 
LINEAR EFFECT l 
OJADRAT IC EFFECT l 
CUBIC EFFECT 1 

RE~A !~DER 6 

~XPER!MENTAL ERROR 32 

SUM OF 
SQUARES 

21442 .33594 

13316.91406 
13221.36719 

90.96390 
4.58403 

93.04047 
7,90653 

83.03764 
2. 09628 

2185. 80273 
1898.81323 
286.03247 

0.95703 

147. 79796 

1063.86914 
948.40869 

12. 46265 
42.99777 

683. 80908 
516.89014 

39.53265 
127. 38628 

374.65283 
11,21253 

185 .98140 
177. 45903 

145.75046 

640.81543 
276.58179 
250. 82640 
113 .40703 

239. 53937 

2550 .34497 

MEAN 
SQUARE 

4438.96875 
1322l..36719 

90. 96390 
4.58403 

31. 01349 
7.90653 

83. 03 764 
2.09628 

728.60083 
IB98.81323 
286.03247 

0.95703 

73 .89897 

354.62305 
948.40869 

72.4b265 
42.99777 

227.93640 
516.89014 
39.53265 

127. 38628 

124.88431 
11.21253 

185.98140 
177.45903 

72 .8752.3 

213.60515 
276.58179 
250. 82640 
113. 40703 

39.92322 

79 .69827 

F RA Tl O 

55. 6972 
165.8927 

!.1414 
0.0575 

o. 3891 
0.0992 
1.0419 
o. 0263 

9.1420 
23.8250 

3.5889 
0.0120 

0.9272 

4. 4496 
11.9000 
0.9092 
o. 5395 

2.8600 
6. 4856 
0.4960 
1.5984 

1.56 70 
0.1407 
2.3336 
2.2266 

0.9144 

2.6802 
3.4 704 
3.1472 
1. 4230 

o.5009 

(Continued) 

DULL BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
MAX TORQUE OATA 

FACTOR VALUE OF MEAN STD ERRJR OF HEAN 

OVERALL MEAN 
DIAMfTER 

O LEVEL 
1 LEVEL 
2 LEVEL 

·3 LEVEL 
Tl ME IN CHAMBER 

O LEVEL 
l LEVEL 
2 LEVEL 
3 L t'VEL 

ROTOR SPEED INDEX 
O LEVEL 
1 LEV EL 
2 LEVEL 
3 LEVEL 

FEED RATE INDEX 
O LEVEL 
1 LEVEL 
2 LEVEL 

ROTOR AN&LE INDEX 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

LATfRAL POSITION INDEX 
O LEVEL 
I LEVH 
2 LEVEL 
3 LEV EL 

LEDGER ORIENTATION INDEX 
O LEVEL 
I LEVEL 
2 LEVEL 
3 LEV EL 

CUTT! NG HE,IGHT INDEX 
O LEVEL 
1 LEV EL 
2 LEVEL 

C.G. HEIG~T INDEX 
O LEV EL 
I LEVEL 
2 LEVEL 
3 LEVEL 

29.6547 

11. 4437 
22.3937 
34. 5312 
50.2500 

28.9063 
31.1937 
30. 3937 
28. 1250 

39.1312 
29.8125 
25.2687 
24, 4063 

31.0812 
21. 4875 
28.9688 

25.1875 
27 .9688 
29 • .2125 
36.2500 

24. 4250 
31.0625 
29.8187 
33. 3125 

26. 643 7 
33.4062 
29. 3125 
29. 2562 

31.4062 
30.9000 
28.1562 

28.2500 
28.5312 
26. 8187 
35.0187 

1.1159 

2.2318 
2.2318 
2.2318 
2.2318 

2.2318 
2.2318 
2,2318 
2. 2318 

2.2318 
2. 2318 
2. 2 318 
2.2318 

1.5782 
2o 231 B 
2.2318 

2.2318 
2.2318 
2.2318 
2.2318 

2.2318 
2.2318 
2.2318 
2.2318 

2.2318 
2.2318 
2 .2318 
2.2318 

2 .2318 
2. 2318 
l.5782 

2. 2318 
2.2318 
2.2318 
2.2318 

N 
ID 
.i:::s 



APPENDIX D-I (Continued) 

DJLL. BLADE SERIES 
ANA"LYSIS OF VARIANCE 

FDR 
Ei'IERGY INPUT INDEX DATA 

SOURCE -OF VARIATION DEGREES OF 
HEED::J~ 

CORRECT ED TOT AL 63 

DIAMETER 3 
L !NEAR EFFECT l 
QUADRATIC EFFECT l 
CJBIC EFFECT l 

TIME IN cHAM3ER 3 
L I'IEAR ·EFFECT l 
QUADRATIC EFFECT l 
CUBic EFFECT l 

ROTOR SPEED INDEX 3 
Ll'IEAR EFFECT l 
QUADRATIC EFFECT 1 
CUBIC EFFECT l 

Ff ED RATE INDEX 2 

ROTOR A~GLE INDEX 3 
L !NEAR EFFECT 1 
QUADRATIC EFFECT 1 
CUBIC EFFECT 1 

LATERAL POSITION INDEX 3 
LINEAR EFFECT 1 
OUAORATIC EFFECT 1 
CUBIC Ef-FECT 1 

LEDGER ORIENTATION INDEX 3 
Ll"IEAR EFFECT 1 
QUADRATIC EFFECT l 
CUBIC EFFECT 1 

CUTT ING HEIGHT INDEX 2 

C.G. HE l~HT I N)E X 3 
LllllfAR EFFECT 1 
QUADRATIC EFFECT 1 
CUB IC EFFECT 1 

RE MAI NOER 6 

EX PER IHENT AL EPROR 32 

SUM OF 
SQUARES 

129578.75000 

1428 3. 21094 
11916. 30469 

108.51241 
2258. 39478 

3496.82056 
o. 92500 

3234.63184 
261.?636.7 

5649.30078 
1836.343-75 
2057.06128 
1755.89600 

9724 •. 77344 

1948.51099 
152.98819 

1681.53320 
113. 98944 

11827 .12500 
11078, 97651> 

593.62720 
154.52193 

326.25830 
60. 73064 

231.15129 
34.37653 

747.61719 

43324.835 94 
418 31. 96094 

1126 .83J 32 
366.04468 

l0469.4257ti 

27780.91016 

MEAN 
SUUARE 

4761.07031 
11916. 30469 

108 .51241 
2258.39<t78 

1165 .60669 
0.92500 

3234.63184 
261.26367 

1883.10034 
1836.3.4375 
2057. 06128 
1755.8%00 

4862. 38672 

649. 50366 
152.98819 

1681.53120 
113.98944 

3942.37524 
11078. 97656 

593. 62720 
15'-.52193 

108.75262 
!,J. 73064 

231.1'>129 
34. 37653 

3 73. 80859 

14441.60937 
41831. 9b094 

ll2b.&3032 
366.04468 

1744.90479 

a6a. 1sB2 

F RAT IJJ 

5.4841 
13. 7260 

0 .1250 
2.6014 

1.3426 
o •. oo ll 
3. 7259 
o. 3009 

2.1691 
2.1152 
2.3695 
2.0226 

5. 6008 

0.7461 
O. l 762 
1.9 369 
o.1313 

4.5411 
12.7615 

a. 6838 
0.1 /80 

o. 1253 
0.0100 
0.2b63 
0.0396 

0.43(Jb 

16.6349 
48. 1850 

1.2980 
0.4216 

2.0099 

FACTOR 

DULL BLADE SER IE S 
TABLE OF HEAN VALUES 

FOR 
ENERGY l~PUT INDEX DATA. 

VALUE OF HEAN STD ERROR OF HEAN ....•.........•........•......••.............••..•••.••...•••.•• 
OVEPALL ~EAN 82. 7694 3.6831 
DIAMETER 

O LE Vf:L bO. 5037 7.3661 
l LEV EL 85. 9390 7.3661 
2 LEVEL 82.2041 7.3661 
3 I.EVE L 102. 4309 7.3661 

TIME IN CHAMBER 
O LEVEL 7<t.9I79 7.3661 
l LEVEL 92. 6431 7.3661 
2 LEVEL 87.1142 7.3661 
3 LE VE L 76.4025 7.366! 

RJTOR SPEEU INDEX 
O LEVEL 78.9097 7.3661 
1 lF. VEL 81.7319 7.3661 
2 LEV EL 72.4682 1. 3661 
3 nnL 97 .9678 7.3661 

f"EFU RATE INDcX 
O LEVEL 93.2133 5. 2086 
I U' VEL 81.5857 7.3661 
2 L Ev EL 63.0654 7.3661 

ROTOR ANGLE ·1 NDEX 
O LEVEL 76.1661 7.3661 
I LEV FL 85. 4133 1. 3661 
2 LEVcL 90 .3772 7.3661 
3 LEVEL 79.1211 7.1661 

LAT ER AL PUS IT ION INDE~ 
O LEVEL 61.3769 7.3661 
I LEVEL· 82.0156 7.3661 
2 LEVEL 89 .• 6143 7.3661 
3 LE VcL 98. 0708 1. )bbl 

LEDGFR ORIENTATION l~UEX 
O LEVEL 82.531!, 7.3661 
I ·LEVEL 84.1222 7.3661 
2 LEVH 85.2175 7. 3661 
3 Li: Vcl B.2343 7.3661 

CUTTI\IG HEIGHT INOEX 
O LSVEL 78.2513 7.3661 
I LE VE l 80. 6691 7 .366 l 
2 LEVEL 86.0786 5. 2 086 

C.G. HtlGHT INDEX 
O LEVf.L 12l. 3355 7.3661 
1 l [V EL 86. 7983 1. 36bl 
2 LEVEL 10. 3485 7.3661 
3 LEVU 51.5954 1. 3661 

N 
I..O 
u, 



APPENDIX 0-I (Continued) 

SOURCE OF VARIATION 

DULL BLADE SERI E'S 
A\IAL YSJS OF VARIAN:E 

FOR 
MAX TO.RQUE INDEX DATA 

DEGREES OF 
F~EEDOM 

SUM. DF 
SQUARES 

MEAN 
SQUARE 

F RA TIO 

······~--~·····~····················································~····· 
CORR EC TED TOTAL 63 13200.2343 7 

DIAMETER 3 873.48633 291.16211 2.1305 
LINE4R EF=ECT l 734.21704 734.21704 5.3724 
QUAD~ AT IC EFFECT l 1. 75286 1. 75286 o. 0128 
CUBIC EFFECT l 137.51646 137.51646 l •. 0062 

T !ME IN CHAMBER 3 646. 79492 282.26489 2. 0654 
LI NEAR EFFECT l 108.83723 108.83723 0.7964 
QUADRATIC EFFECT l 301. 07397 301. 07397 2.2030 
CUBIC EFFECT l 436.88354 436.88354 3. 1968 

ROTOR SPEED INDEX 3 1403. 75073 467.91675 3.4239 
LINEAR EFFECT l 1065.55322 1065.55322 7.7969 
QUAORA TIC EFFECT l 304.22534 304.22534 2.2261 
C'JBIC EFFECT l 33, 97205 33. 97205 0.2486 

FEED RATE l~UEX 2 452. 73120 226.30562 1.6564 

ROTOR ANGLE INDEX 3 594.35449 198.11821 1. 4497 
LI NH~ EFFECT l 431.09595 431.09595 3.1544 
QUADRATIC EFFECT l 146.95004 146. 95004 l.0753 
CUBIC ·EFFECT l 16 .30856 H,. 30856 O. ll 93 

LAT FRAL POSIT ION IN DEX 3 486.99731 162. 33249 l.1878 
LINEAR EFFECT l 453.46973 453.46973 3.3181 
QUAD~ATIC EFFECT l 0.00386 0.00386 0.0000 
CUBIC EFFECT l 33. 52388 33.52388 0.2453 

LEDGER ORIENTATION INDEX 3 212. 94887 70.98296 0.5194 
L !NEAR EFFECT l 2. 31002 2.31002 O. Olb9 
QUADRATIC EFFECT l 121.12218 121.12218 0. 8863 
CUBIC EFFECT l 89.51666 89.51666 o. 6550 

:uTTING HEl~HT INDEX 2 100.67737 50.33868 0.3683 

C •. G. HEIGHT INDEX 3 3796.16602 1265.38867 9.2591 
LINEAR EFFECT l 3478.79712 34 78. 79712 25. 4552 
QUADRATIC EFFECT l 310. 77393 310.77393 2.2740 
CUB! C EFFECT l 6.59508 6.59508 0.0483 

REMAINDER 6 59.09325 9. 84888 0.0121 

EXPERI"ENTAL ERROR 32 43 73.23437 136.66362 

DULL BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
MAX TORQUE INDEX DATA 

FACTOR VALUE OF MEAN STD ERRJR OF MEAN 

OVERALL MEAN 26. 7171 l.4613 
DIAMETER 

O LEVEL 21.3519 2. 9226 
l LEVEL 27 .3345 2.9226 
2 LEVEL 26.4307 2.9226 
3 LEVEL 31. 7514 2. 9226 

Tl ME IN CHAMBER 
O LEVEL 25.1293 2. 9226 
1 LEVEL 32.9746 2. 9226 
2 LEVEL 24.7975 2.9226 
3 LEVEL 23.9670 2. 9226 

ROTOR SPEED INDEX 
O LEVEL 34. 0459 2.9226 
I LEVEL 27.3391 2.9226 
2 LEVEL 21. 7346 2.9226 
3 LEVEL 23. 7488 2. 9226 

FEED RATE INDEX 
O LEVEL 2 8~ 8814 2.0666 
l LEVEL · 26. 7390 2. 9226 
2 LEVEL 22.3600 2.9226 

ROTOR AN~LE INDEX 
O LEVEL 21.4940 2. 9226 
l LEVEL 27.7490 2 .9226 
2 LEVEL 28. 7158 2. 9226 
3 LEVEL 28.9096 2. 9226 

LATERAL POSITION INDEX 
O LEVEL 23. 4773 2. 9226 
l LEVEL 24.5479 2.9226 
2 LEVEL 28. 8708 2.9220 
3 LEVEL 29.9725 2. 9226 

LEDGER ORIENTATION INDEX 
O LEV!:L 25. 6154 2. 9226 
l LEVEL 26.4211 2.9226 
2 LEVEL 29. 7645 2 .9226 
3 LEV EL 25. 06 74 2. 9226 

CUTT! NG HEIGHT INDEX 
O LE VE L 25.4264 2.9226 
l LEV EL 25.4999 2.9226 
2 LEVEL 27.9711 2.0666 

C.G. HEIGH INDEX 
O LEVEL 38.6686 2. 9226 
l LE VE L 28.2413 2.9226 
2 LEV EL 20. 7857 2. 9226 
3 LEVEL 19.1728 . 2.9226 

N 
w 
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APPENDIX 0-I (Continued} 

DULL BLADE SERIES 
ANALYSIS OF VARIANCE 

FOR 
C.G. X DISP INDEX DATA 

SOURCE OF VARIATION DEGREES OF SUM OF 
SQUARES FR EEDJ'I 

CORRECTED TOT AL 63 3783.67407 

DI A~ ETER 3 161.11523 
L !NEAR EFFECT l 159. 30190 
QUADRATIC EFFECT l 1.56518 
CJSIC EFFECT l o. 24811 

TIME IN CHAMBER 3 5 8. 76909 
L !~EAR EFFECT 1 44.72826 
QUADRATIC EFFECT 1 2.00728 
CUBIC EFFECT l 12.03354 

ROTOR SPEED INDEX 3 737.78735 
LINEA.R EFFECT l 691.63062 
QUADRATIC ErFECT l 13.40867 
CUBIC EFFECT l 32.74788 

FEED RATE INDEX 2 739.88428 

ROTJR ANGLE INDEX 3 184. 27249 
L !NEAR EFFECT l 0.02317 
QUADRATIC EFFECT l 184.05766 
CJBIC EFFECT l 0.19166 

LATERAL POSITION INDEX 3 119.57979 
LIN EAR EFFECT l 63. 39597 
QUADRATl C EFFECT l 6.49704 
CUBIC EHE: T l 49 .68617 

LEDGER ORI ENT AT ION INDEX 3 68.'13594 
Ll~EAR EFFECT l 20.42941 
QUA DRAT IC EFFECT l 38.01163 
CU81 C EFFECT l 10.49490 

CUTT ING HEIGHT INDEX 2 50.29494 

C.G. HEIGHT INJEX 3 97.05435 
LINEAR EFFECT l 94. 83945 
QUADRATIC EFFECT l 1.800 39 
CUBIC EFFECT I 0.41451 

RE MAI NOE R 6 165 .68520 

EXPERIMENTAL ERROR 32 1400.29517 

MEAN 
SQUARE 

53. 70508 
159.30190 

l .56518 
o. 24817 

19.58969 
44. 72826 

2.00728 
12.03354 

245.92912 
691.63062 

13. 4086 7 
32.74788 

369.94214 

61.42416 
0.0231 7 

184.05766 
0.19166 

39.85992 
63.39597 

6.49704 
49.68677 

22. 97864 
20.42941 
38. 01163 
10.49490 

25.14 746 

32.35144 
94. 83945 

!.80039 
0.41451 

27.61420 

43. 75922 

F RAT IO 

1.2273 
3. 6404 
0.0358 
0.0057 

0 .44 77 
1.0221 
0.0459 
0.2750 

5. 6201 
15.8054 

o. 3064 
0.7484 

8. 4540 

1.4037 
o. 0005 
4.2061 
D.0044 

0.9109 
1.4487 
o. 1485 
1.1355 

o. 5251 
0.4669 
o. 8687 
0.2398 

0.5747 

o, 7393 
2.1673 
0.0411 
0.0095 

o.6310 

FACTDR 

OVERALL MEAN 
DIAMETER 

O LEVEL 
l LEVEL 
2 LEV EL 
3 LEVEL 

TIME IN CHAMBER 
O LEVEL 
l LEVEL 
2 LEV EL 
3 LEVEL 

RJTOR SPEED INDEX 
O LEV EL 
l LEVEL 
2 LEVEL 
3 LEVEL 

FEEJ RA TE INDEX 
O LEVEL 
l LEVEL 
2 LE VE L 

ROTOR ANGLE INDEX 
O LEVEL 
l LEVEL 
2 LEV EL 
3 UVEL 

DULL BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
C.G. X DISP INDEX DATA 

VALUE OF MEAN STD ERROR OF MEAN 

5. 5452 0.8269 

7 .4 777 1.6538 
6.4907 1.6538 
4.9125 1. 6538 
3.3000 1.6538 

4. 7946 1.6538 
4.4125 1.6538 
6.3237 1. 6538 
6.6500 1.6538 

0.3571 1. 6538 
5 .4925 l.6538 
6. 5134 1. 6538 
9.8179 1.6538 

2. 2244 1.1694 
7 .8339 1. 6538 
9. 8982 l.6538 

7 .2911 l.6538 
3.7845 1.6538 
3.9143 1. 6538 
7.1911 l • 6 53 8 

LATERAL POSITION INDEX 
O LEVEL 6.1679 l.6538 
l LEVEL 7. 4911 1.6538 
2 LEVEL 4.2366 l.6538 
3 LEVEL 4.2854 l.6538 

LEDGER URIENTATION IN~E X 
O LEV EL 5.3768 1. 6538 
I LE VE L 5.0652 1.6538 
2 LEVEL 4. 4839 l-6538 
3 LEVEL 7.2550 1.6538 

:uTTING HEI;~r INDEX 
O LEVEL 6.5925 l.6538 
l LEVEL 4.1375 1.6538 
2 LEVEL 5. 7254 1.1694 

C. G. HEIGHT INDEX 
O LE VE L 4.0437 1.6538 
l LEVEL 4. 9411 l.&538 
2 LEVEL 5.8139 1.6538 
3 LE VE L 1. 3821 l.6538 N 

\.0 
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APPENDIX 0-'I 

·DULL BLADE SERIES 
ANALYSIS OF VARIANCE 

FOR 
END X OISP INDEX DATA 

SOURCE OF VARIATION DEGREES JF SUM OF MEAN F .RATIO 
FREEDOM SQUARES SQUARE 

(Continued) 

FACTOR 

DULL BLADE SERIES 
TABLE OF HEAN· VALUES 

FOR 
ENO X DISP INDEX DATA 

VALUE JF HEAN STD ERROR OF HEAN ..............................................................•........... ··························································~··· 
CORRECTED TOT AL 63 4063.71631 OVERALL MEAN 4. 8606 o. 8820 

DI AHETER 
DIA~ETER 3 1 70. 87759 56. 95920 l. l,.41 O LEVEL 7.1321 1.7640 

LI NEAR EFHC T l 166.94705 166.94705 3.3534 l LEVEL 5. 2566 1. 7640 
QUAOqATIC EFFECT 1 0.00239 0.00239 · 0 •. 0000 2 LEVEL 4.4768 1.7640 
CUB IC EFFECT l 3.92814 3.92814 o. 0789 3 LEVEL 2. 5 768 l.7640 

T [ME IN CHA>IBER 
TIME I~ CHA•BE~ 3 49. 12 830• 16.37610 0.3269 O LEVEL 3 .56-45 1. 7640 

LINEAR EFFECT 1 41.08000 41.08000 o. 8252 l LEVEL 4.5589 1. 7640 
OUADRAT!c EFFECT l 5.88582 5 .88582 0 .1182 2 LEVEL 5. 7687 1.7640 
CJ BI C EFFECT 1 2.16247 2. 1624 7 o. 0434 3 LE VE L 5.5500 1.7640 

RJTDR SPEED INDEX 
R~TQR SPEED I NOE X 3 641.37134 213~79047 4.2943 O LEVEL 0.1893 1. 7640 

LINEAR EFFECT l 581.09570 581. 09570 11. 6722 l LEVEL 4.9902 1.7640 
QUADRATIC EFFECT l 2.67206 2.6720.6 0.0537 2 LEV EL 5.1396 l. 7640 
cua IC EFfECT 1 57. 60344 57.60344 1.1571 3 LEVEL 9 .1232 1.7640 

FEED RATE !~DEX 
FHD RATE INUEX 2 840.58936 420.29468 8.4423 O LEVEL 1. 3667 1. 2473 

1 LEVEL 5.9929 1.7640 
ROT OR ANGLE INDEX 3 263.69670 87.89894 1.7651, 2 LEV EL 9. 7161 1.7640 

LINEAR EFFECT 1 25.47507 25.47507 o. 5117 ROTOR ANGLE I N:JEX 
QUADRATIC EFFECT I 238.11795 238.11795 4.7830 O LEVEL 7. 6539 1.7640 
CUBIC EFFECT l 0.10378 0.10378 a. 0021 I LEV EL 3.1598 1. 7640 

2 LEVl:L 2.7036 l.7640 
LATERAL. PDSITIJN INIJE X 3 86. 00409 28.66803 o.5758 3 LEVEL 5.9250 1.7640 

LINEAR EFFFCT l 32. 79176 32.79176 0.6587 LATFRAL PflSIT ION l'IDEX 
QUADqATIC EFFECT l .11.14367 11.14367 0.2238 
CJBIC EFFECT l 42. 06863 42.06863 0.84~0 

O LEVEL 5. 0411 1.7640 
I L t\/EL 6. 6857 l. 7640 
2 LEVEL 3 .8700 1.7640 

LEJGER ORIENTATION INDEX 3 98.16756 32.72252 0.6573 3 LE VF L 3. ~455 1.7640 
LI NEAR EFFECT I 15.80007 15. 80007 o. 31 74 LEDGER ORIENTATIU~ l~DEX 
QUADRATIC EFFECT l 36.31352 36. 31352 0.7294 O LEVEL 4.~&79 l. 7640 
CUBIC EFFECT I 46. 05396 46.05396 0.9251 I I EVEL 5.·0232 1. 7640 

? LEVEL 3.1914 1. 7640 
CUTTING HEIGHT INDEX 2 37 .93965 18.'16982 o.3810 :J · LE Ve L 6.6598 1.7&40 

CUTT l~G HEIGHT IN~EX 
C.G. HEIGHT INDEX 3 75. 82069 25.27356 0.5077 O LEVEL b.1062 l.7b40 

LINEAR EFFECT l 63.42140 63.42140 1.2739 I LE VE L 3. gg&,. l.7b40 
OUADqATIC EFFECT l 12. Ol 860 12.01860 0.2414 2 LbV El 4. 6698 1.2473 
CUBIC EFFECT l 0.38068 0.38068 o. 0076 C.G. HEIGHT INDEX 

O LEVEL 3. 9929 1.7640 
RE'IA l~DER 6 207.01726 34.50287 ·o.6930 I L (\/EL J.8785 1. 7640 

2 LE Vt L 4. • 759 1.7640 
EXPERIMENTAL ERROR 32 1593.10352 t,9.78448 LEVEL 6. 5950 l. 7640 N 

\.0 
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~ULL ~LADE SERIES 
A~ALYSIS OF·VARIA~CE 

FUR 

APPENDIX D-I 

C.G. Y DISP INDEX DATA 

SOUP.CE OF VARIATION DEGREES UF 
FHE~UM 

CJRRECTED TJT.\L 63 

u!A~ETER 3 
L !~EAR EFFECT l 
QUADRATIC EFFECT l 
CUBIC EFFECT l 

TI ME IN CHAMBER 
LINEAR EFFECT 
QJAOOATIC EFFECT 
CUB! C EHEC T 

omnR SPEED INOEX 3 
LINEAR EFFECT I 
QU.40fiATIC EFFECT l 
CUB! C Ef-FECT 

f=[ED RATE l'iOEX 

QflTUR ANGLE INDEX 
L I~EA, EFFECT I 
CUAORATIC EFFECT l 
~U31C EFFECT 

LATERAL POSIT ION INQ[X 
LINF~~ EFF::CT 
QJAORATIC EFFECT 
CUill C EFFECT 

LEDGER ORIENT AT J'.JN l~UEX 3 
LI ~EA~ "l'FEC T 
QUADRATIC Ef-FECT 
CUBIC EFFECT 

CUTT [~G HE J:;HT l~JE X 

~·i.>· HEIG!-iT !NJ.EX -:S 

L !~EAR Ef-FECT I 
OUAUPAT!C EFFECT I 
cus1: EFFECT 

PEMAIN~E!<. 6 

i::-XPEP.PH:NTAL tORJR 32 

SUM OF 
SQUARES 

1240. 8593 7 

24.48351 
0.00370 
2.54516 

21.93465 

22.29950 
11.38331 

a. 05950 
10 .35669 

19.71193 
4.84422 

15. 218 .:!6 
0 .44916 

65.02998 

177.33066 
25. 60422 

0.58250 
151.14394 

162.19574 
151.21463 

10.45367 
0.52743 

37.18565 
6.60675 

24. 73996 
5.83894 

171.33702 

109.A6359 
53. 62109 
39.76653 
16.27594 

101.84462 

349.77710 

Mt AN 
SQUAR.E 

8.16117 
0.00370 
2.54516 

21.93465 

7.43317 
11.88331 

b. 05950 
10. 35669 

6. 57064 
4.04422 

15.21836 
J.44936 

32. 51498 

59.11021 
25.60422 

o. 58250 
151.14394 

54.06525 
151.21463 

10.45367 
0.52743 

12. 39522 
&.60675 

24. 73996 
5.83894 

85.66850 

36.55452 
53.62109 
39.76653 
16.27594 

16.97409 

10.93054 

F RATIJ 

o.7466 
0.8003 
o. 2.:!28 
2.0067 

0.6300 
1.0872 
0.0054 
0.9475 

o. 6011 
o. 3 700 
1.392.:! 
o. 0411 

2.9747 

5.407d 
2.3424 
o. 053 3 

13. 8277 

4. 9463 
13.8341 

0.9564 
0.0483 

1.1340 
0 .6044 
2.l634 
o. 5.:!42 

7. 8375 

3.3443 
4.9056 
3. 6 .:!81 
1.4890 

1.5529 

(Continued) 

OULL BLADE SERIES 
TA!llE OF MEAN VALUES 

FOR 
C.G. Y DISP INDEX DATA 

FACTOR VALUE OF MEAN 

OVERALL MEAN 
DIA~ETER 

O LEVEL 
l LE VE l 
2 l tVEL 
3 LEVEL 

TIMF [~ c-iAM8Es 
O LEV fl 
l LE VE l 
2 L EVFL 
3 L [V El 

RJTOR SPEcU l NOEX 
O LEVEL 
l LEV El 
2 lFVfl 
3 L EVH 

FEED RATE !NOEX 
O l E VF l 
l LEV EL 
2 LEV[ l 

PJTJR ANGLE r,wE x 
O l EV EL 
I UVcL 
2 LEVEL 
3 LEVEL 

LATERAL PJSITIJN INDEX 
1 LEVFL 
l LE Ve L 
2 L tVl:L 
3 l EV EL 

LEOGF~ ORIENTAT!CN INDcX 
O LEVEL 
l LEVEL 
2 LEVEL 
3 lEVcL 

CUTT I NG HI'! GHT I NDcX 
O L [ VEL 
l L CV FL 
2 LE VE L 

C.G. fiEIGHT INDEX 
O LEVEL 
l LE VE L 
2 l EVcL 

UVEL 

2.5858 

2.1348 
3.5741 
1. 9964 
2.6380 

2.1571 
1.8839 
3. 34 37 
2.9536 

Jc. 4482 
2.0982 
2.0982 
2. 698 7 

3. 0605 
3. 3687 
0.8536 

2. 3291 
0.3366 
5. 0259 
2.6518 

o.8871 
1.6161 
2. 74 73 
5.0929 

2. 9116 
1,4152 
2. 5130 
3. 50 36 

2.09}4 
5.3812 
l.4:144 

4.8277 
1. 5304 
2.0648 
1.9205 

STD ERROR OF MEAN 

0.4133 

o. 8265 
0 .B.265 
0.8265 
0.8265 

o. 8265 
Os8265 
o. 8265 
0.8265 

0.8265 
0.82b5 
0.8265 
o. 8265 

o.5844 
o. 8265 
0.8265 

0.8265 
0.8265 
0.8265 
0.8265 

o. 8265 
0.8265 
o. 8265 
0.8265 

0.8265 
0.8265 
0.8265 
0.8265 

o. 8265 
o. 8265 
o.5844 

0.8265 
0.8265 
0.8265 
0.821>5 N 
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APPENDIX 0-I (Continued} 

DJLL BLADE SERIES 
ANALYSIS OF VARIANCE 

FDR 
END Y DISP INDEX DATA 

SOURCE JF VARIATION DEGREES JF SUM-OF 
SQUARES. FREEDOM 

CORRECTED TOTAL 

DIAMETfR 
LI NEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

T !ME I~ CHAMBER 
L !NEAR EFFECT 
QUADRATIC EFFECT 
CJBIC HFECT 

ROTOR SPEED rNOEX 
LINEAR ·EFFECT 
QUADRATIC EFFECT 
cua1: EFFE:T 

FEED RATE iNDEX 

ROT QR AN Gl c INDEX 
LI NEAR EFFcCT 
QUADRATIC EFFECT 
CUSIC EFFECT. 

LATERAL POSITION INDEX 
LINEAR EFFECT 
QUADRATIC EFFECT 
CUB IC EFFECT 

LEDGER ORIENTATION [NDEX 
LIN EAR EFFEC'T 
QUADRATIC EFFECT 
CUBIC EFFEC.T 

CUTTING HEIGHT INDEX 

C.G. HEIGHT !~DEX 
LINEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

RfMAINJER 

EXPERIMENTAL ERROR 

53 

3 
1 
1 
1 

3 
1 
1 
l 

3 
l 
l 
l 

3 
l 
l 
I 

3 
l 
l 
l 

3 
l 
l 
l 

2 

3 
l 
l 
l 

6 

32 

1408.57153 

32.32208 
1,69362 
o.36344 

30.26501 

43. 09578 
29.41351 
0.99857 

12. 68369 

28 .3 5445 
2. 58789 

22.26491 
3.50165 

42.11037 

178.91402 
24.16229 

0.11222 
154.63948 

l49.5046l 
124. 60031 
24. 79 327 
o. l ll 00 

34 .• 04 762 
o. 4 7785 

20.38522 
13 .18456 

180.54230 

190. 75925 
109.16461 

39,18759 
42.40703 

83.56381 

445.35718 

MEAN 
SQUARE 

10. 77403 
1.69362 
o. 36344 

30.26501 

14.36526 
29.41351 
0.99857 

12. 68369 

9 .45148 
2.58789 

22.26491 
3.50165 

2L.05518 

59.63800 
24.16229 
0.11222 

154. 63948 

49.83487 
124. 60031 
24. 79327 

0.11100 

11 .34921 
0.47785 

20.38522 
13.18456 

90.27115 

63.58641 
109.16461 
39.18759 
42. 40703 

13.92730 

13.91742 

F RATIO 

o. 7741 
0.1211 
0.0261 
2.1746 

1.0322 
2.1134 
0 .0717 
0.9114 

0.6791 
0.1859 
1. 5998 
0.2516 

1. 5129 

4.2851 
1. 7.:161 
0.0081 

ll.lll2 

3.5808 
8.9526 
1.7815 
0.0080 

0.8155 
0.0343 
1. 464 7 
0.9473 

6. 4862 

4.5688 
7. 8437 
2.8157 
3. 04 70 

1.0001 

DULL BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
ENO Y OISP H'IDEX DATA 

FACTOR VALUE OF MEAN STD ERROR OF MEAN 

OVERALL MEAN 
DIAMETER 

O LEVEL 
l I EVEL 
2 LEVEL 
3 LEVEL 

T !ME IN CHAM BER 
O LEVEL 
l l EV.EL 
2 LEVEL 
~ LEVEL 

ROTOR SPEED INDEX 
O LEVEL 
l ll:VEL 
2 LEVEL 
3 LEVEL 

FEED RATE INDEX 
O l EVEL 
l LE VE l 
2 l EVEL 

ROTOR ANGLE INDEX 
O LEVEL 
l LEVEL 
2 ltVEL 
3 LEVEL 

LATERAL PDS IT ION INDEX. 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

LFDGER ORIENTATION !~DEX 
O LEVEL 
1 l EVEL 
2 LEVEL 
3 LE VE l 

CUTTl~G HEIGHT INDEX 
O LEVEL 
I LEVa 
2 l EV El 

C.G. HEIGHT INDEX 
O ll:VEL 
l l EVEL 
2 LEVH 
3 l EVEL 

2. 33 79 

2.1732 
3. 4086 
1.41 79 
2. 3518 

1. 7523 
1. 3125 
3.1134 
3.1732 

3.0929 
2.151·8 
1.3443 
2.7625 

2.7967 
2,8250 
0.9330 

2. 2505 
-0.0643 

4.6562 
2. 5089 

1. 0696 
1. 1473 
2.2836 
4.8509 

2.9893 
1. 1259 
2.4211 
2.8152 

2.23l2 
5. 1143 
1. 0029 

5. 2366 
1.0473 
2.0634 
1. 0041 

0.4663 

0.9327 
o. 9327 
0.9327 
0,9327 

0.9327 
0.9327 
0.9327 
0.9327 

0.9327 
0;9327 
0.9327 
0.9327 

o. 6595 
0.9327 
o. 9327 

0.9327 
o. 9327 
0.9327 
o. 9327 

0 .9327 
o. 9327 
o.9327 
0.9327 

0.9327 
o. 9327 
o.9327 
0 .9327 

0.9327 
0.9327 
o. 6595 

o. 9327 
0.9327 
0.9327 
o. 9327 

w 
C) 

0 



APPENDIX D-I (Continued) 

DULL BLADE SERIES 
ANALYSIS OF VARIANCE 

FOR 
C.G. l OISP INDEX DATA 

SJURCE OF VARIATION DEGREES OF 
FREEDOM 

CORRECTED TOTAL 63 

DIAMETER 3 
L J"IEAR EFFECT l 
QUADRATIC EFFECT l 
CUBIC EFFECT l 

TIME IN CHAMBER 3 
LINEAR .EFFECT l 
QJAORAT IC EFFECT l 
CUBl·C EFFECT l 

ROTOR SPEED INDEX 3 
LI NEAR t:FFECT l 
QUAORATtC EFFECT 1 
CUBIC EFFECT 1 

FEED RATE INDEX 2 

ROTOR ANGLE INDEX 3 
L l'IEAR EF'F EC T I 
QUA DRAT l.C EFFECT l 
CUBIC EFFECT l 

LATERAL POSITION INDEX 3 
L!NEAREFFECT l 
QJAORATIC HFECT l 
CUB! C EFFECT l 

LEDGER ~RIENTATlON INDEX 3 
LINEAR EF~ECT l 
QUADRATIC EFFECT l 
CUBIC EFFECT l 

CUTTING HEl$HT INDEX 2 

C.G. HEIGHT INDEX 3 
LINEAR EFFECT l 
QUADRATIC EFFECT l 
CUBIC EFFECT 1 

REMAINDER 6 

EXPERIMENTAL ERROR 32 

SUM OF 
SQUARES 

2672. 93213 

170.15695 
142. 76877 

6.03755 
21.35063 

135. 57706 
24.86449 

105. 28226 
5.43031 

414. 43750 
158.52470 
239.91797 

15.99494 

70.4 7409 

190 .15997 
120. 85634 

47.11841 
22.18520 

259.90186 
221.20750 

4.41000 
34.28458 

126. 31700 
15.27502 
25.10725 
85.93472 

110.94138 

112.79741 
26.51575 
76.25031 
10 .03135 

171. 98344 

910.18506 

MEAN 
SQUARE 

56. 71898 
142. 76877 

6.03755 
21.35063 

45.19235 
24.86449 

105.28226 
5.43031 

138.14587 
158.52470 
239.91797 

15.99494 

35.23705 

63.38666 
120.85634 

47.11841 
22.18520 

86.63402 
221.20750 

4. 41000 
34.28458 

42.10567 
15.27502 
25.10725 
85. 934 72 

55.47069 

37.59914 
26.51575 
76. 25031 
10.03135 

28.66389 

28 .• 44328 

F RAT IJ 

1.9941 
5.0194 
0.2123 
0.7506 

1.5889 
0.8742 
3.7015 
o. 1909 

4.8569 
5. 5734 
8.4350 
o. 5623 

1.2389 

2.2285 
4.2490 
l.6566 
0.7800 

3.0459 
7. 7771 
0.1550 
l. 2054 

1.4803 
0.5370 
0.8827 
3.0213 

1.9502 

1.3219 
o. 9 322 
2. 6808 
o. 3527 

1. 0078 

DULL BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
C.G. Z DISP INDEX DATA 

FACTOR VALJE OF MEAN 

OVERALL MEAN 
DIAMETER 

O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

TIME IN CHAMBER 
O LEVEL 
1 LEVEL 
2 LEVEL 
3 LEVEL 

ROTOR SPEED INDEX 
O LEVEL 
1 L EVFL 
2 LEVEL 
3 LEVEL 

FEEO RATE INDEX 
O LEVEL 
l LEVEL 
2 LEVEL 

ROTOR ANGLE INDEX 
O LEVEL 
l LEVEL 
2 LEVEL 
3 l EV EL 

LATERAL POSITION INDEX 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

LEDGER ORI ENT AT ION INDEX 
O LEVEL 
l LEV EL 
2 LEVEL 
3 l EVEL 

CUTTING HEIGHT INDEX 
O LE VE L 
l LEVEL 
2 lEVt:L 

C.G. HEIG~T INDEX 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEV EL 

3.9741 

2. 5357 
2.2241 
5.1098 
6.0268 

3. 6580 
5.1446 
5. 3687 
1. 7250 

1. 7982 
3.4125 
0.6634 
4.0223 

3.1558 
3. 8634 
5.7214 

3.2518 
l. 7116 
4. 520 5 
6.4125 

2. 0696 
l. 8982 
5. 5250 
6.4036 

2.1741 
5.9366 
3.2643 
4. 5214 

4.4964 
5. 8929 
2.7536 

4.0250 
3 .12 59 
2.6393 
6.1062 

STD ERRJR OF MEAN 

0.6667 

1. 3333 
1.3333 
1.3333 
1. 3333 

1.3333 
l.3333 
1.3333 
1.3333 

1.3333 
1. 3333 
1.3333 
1. 3333 

Q.9428 
1. 3333 
1.3333 

1. 3333 
1.3333 
1.3333 
1.3333 

1.3333 
1. 3333 
1.3333 
1. 3 333 

1.3333 
1. 3333 
1.3333 
1. 3333 

1.3333 
1.3333 
0.9428 

1. 3333 
1.3333 
1.3333 
1. 3333 w 

0 



APPENDIX 0-I (Continued) 

DULL BLADE SERIES 
ANALYSIS OF VARIANCE 

FOR 
E~D Z DISP INDEX DATA 

SOURCE OF VARIATION DEGREES OF 
FR EEOJ'I 

CORRECTED TOTAL 

DIAMETER 
L !NEAR EFFECT 
QUAD RA TIC EFFECT 
CJBIC EFFECT 

TIME IN CHAMBER 
L !llEAR EFFECT 
QUADRATIC EFFECT 
CUB IC EFFECT 

ROTOR SPEED INDEX 
ll~HR EFFECT 
QUADRATIC EFFECT 
CUB! C EFFECT 

FEED RATE INDEX 

ROTOR ANGLE I NOE X 
LINEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

LATERAL POSITION INDEX 
LINEAR EFfECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

63 

3 
l 
l 
l 

3 
l 
l 
l 

3 
l 
l 

z 
3 
l 
l 
l 

LEDGER ORIENTATION INDEX 3 
LINE~R EFFECT l 
QJADRAT IC EHECT l 
CU.Bl C EFFECT l 

CUTT ING HEIGHT l"lDFX 

C;G. HEIGHT IN)EX 
L lNEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

REMAINDER 

EXPERIMENT AL ERROR 

-------------- -- --- -- ------ -

2· 

3 
l 
1 
l 

6 

32 

SUM OF 
SQUARES 

2591.92065 

142. 82634 
118 •. 06328 

4.77735 
19.98570 

115.83371 
24. 89636 
84.90306 
6. 03430 

362 .40259 
98.21944 

247. 72511 
16.45816 

117.41472 

192 .69711 
124. 96428 
41.74081 
25. 99199 

249 .61195 
227. 42694 

0.12001 
22.06500 

89.51033 
8.29288 
6. 25000 

74.96744 

92. 56169 

127.33548 
34. 47186 
82.48531 
10.37829 

199.37091 

902.35571 

MEAN 
SQUARE 

47.60878 
118.06328 

4. 77735 
19.98570 

38 .61124 
24. 8%36 
84.90306 

6.03430 

120. 80090 
98.21944 

247. 72511 
16.45816 

58. 70735 

64.23236 
124.96428 
41.74081 
25.99199 

83.20398 
227 .42694 

0.12001 
22.06500 

29. 836 78 
8.29288 
6. 25000 

74.96744 

46. 28084 

42.44516 
34. 47186 
82.48531 
10.37829 

33.22849 

28. 19861 

F RAT IO 

1.6883 
4. l 868 
0~1694 
0.1081 

1.3693. 
0.8829 
3. 0109 
0.2140 

4. 2839 
3.4831 
8. 7850 
0.5837 

2. 0819 

2.2779 
4.4316 
1.4802 
0.9217 

2.9506 
8.0652 
o. 0043 
0.7825 

l. 0581 
0.2941 
o. 2216 
2.6586 

1.6412 

1. 5052 
1.2225 
2.9252 
0.3680 

1.1784 

DULL BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
END l DISP INDEX DATA 

FACTOR VALUE OF MEAN STD ERROR OF MEAN 

OVERALL MEAN 5.1259 0.6638 
DIA~ETER 

O LEVEL 3.8268 1.3276 
l LEVEL 3.4955 1.3276 
2 LEVEL 6.2098 1. 3276 
3 LEVEL 6.9714 1.3276 

TIHE IN CHAMBER 
O LEVEL 4.9482 1. 3276 
l LE VE L 6.1446 1.3276 
2 LEVEL 6. 4107 1.3276 
3 LEVEL 3.0000 1.3276 

R!HOR SPEED INDEX 
O LEVEL 8.5286 1. 3 276 
l LEVEL 4.3929 1.3276 
2 LEVEL 1. 9241 1.3276 
3 LEV EL 5.6580 1.3276 

FEED RATE INDEX 
O LEVEL 3. 9!ll2 o. 9387 
I LEVEL 5.2464 1.3276 
2 LEVEL 7.2946 1.3276 

ROTOR ANGLE INDEX 
O LEVEL 4.3437 l.3276 
l l EVEL 2. 83 84 1.3276 
2 l EV EL 5.7982 1. 3276 
3 LEVEL 7.5232 l. 32 76 

LATERAL PJSITIDN INDEX 
0 ·LEVEL 2.9027 1.3276 
1 LEVEL 3.4518 1.3276 
2 l EVEL 6. 7134 1.3276 
3 L~VEL 7.4357 1.3276 

LEDGER 0Rl=NTATl3N INDEX 
O LEV El 3.8464 1. 3276 
1 LEVEL 6.7.295 1. 327.6 
2 LEVEL 4. 1473 l.3276 
3 LEVEL 5.7804 1. 3276 

:UTTJNG HEIGHT INDEX 
O LEVEL 5.6393 1. 3276 
l LEVEL 6.8580 1. 3276 
2 LcVEL 4. 0031 0.9387 

C.G. HEIGHT INDEX 
O LEVEL 5.0964 1.32 76 
I LEVEL 4. 2027 1.3276 
2 LEVEL 3.7786 1.3276 
3 LEVEL 7. 4259 1.3276 w 

0 
N 



APPENDIX D-II 

ANALYSIS OF VARIANCE AND TABLE OF MEAN VALUES FOR SHARP BLADE TEST SERIES 

SHARP BLADE SERIES 
ANALYSIS.OF VARIANCE 

ffiR 
ENERGY INPUT DATA 

SOURCE OF VARIATION DEGREES OF 
FREEDOM 

SUM OF 
SQUARES 

CORRECTED TOTAL 

DIAMETER 
LINEAR EFFECT 
OUADR AT IC EFFECT 
CUB! C EFFECT 

TIME IN CHAMBER 
LI NFAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

ROTOR SPEED INDEX 
LINEAR EFFECT 
QUADRATIC EFFECT 
CU 81 C EFFECT 

FEEJ RATE INDEX 

ROTOR ANGLE INDEX 
LINEAR EFFECT 
QU ADR AT IC EFFECT 
CUB! C EFFECT 

LATERAL POSITION INDEX 
LI NEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

LEDGER DRIE~TATIJN INJEX 
L INFAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

:UTTING HEIGHT INDEX 

C .G. HFIGHT INDEX 
LINEAR EFECT 
OJADRATIC EFFECT 
CUB! C EFFECT 

REMAINDER 

EXPEilMENTAL ERROR 

63 

3 
l 
l 
l 

3 
l 

3 
1 
l 
l 

3 
l 
l 
l 

3 
l 
1 
l 

3 
l 
l 
l 

2 

3 
l 

6 

32 

141719.25000 

82373.50000 
82187 .93 750 

10.93674 
1.74.67625 

19537.65234 
2014.27930 
6518. 76172 

11004.60937 

1272.33154 
138.14844 

4.60499 
1129.57812 

181.36656 

11864. 72266 
57 .87772 

716.35181 
11090.49219 

4026.01855 
1880.67871 
1202.13867 

943. 20093 

2204. 76294 
207.04065 
532.38623. 

1465. 33569 

1905.56128 

5747. 05859 
4644.48437 

32.61[24 
1069 .96411 

1962.35352 

10643.86719 

HEAN 
SQUARE 

27457.85156 
82187.93750 

10.93674 
174.67625 

6512. 55078 
2014.27930 
6518.76172 

11004.60937 

424.11035 
138. 14844 

4.60499 
1129. 5 7812 

90.68327 

3954.90747 
57 .87772 

716. 35181 
11090.49219 

.1342. 00610 
1880.67871 
1202 .13867 

943.20093 

734. 92090 
207.04065 
532.38623 

1465.33569 

952. 78052 

1915.68652 
4644.48437 

32.61124 
1069.96411 

327. 05884 

332 .62085 

F RAT! 0 

82. 5500 
247.0919 

o. 0329 
o. 5252 

19. 5795 
6.0558 

19.5982 
33. Oij45 

1.2751 
o. 4153 
0 .0138 
3.3960 

0.2726 

11. 8901 
0.1740 
2.1537 

33.3427 

4.0346 
5.6541 
3.6141 
2.8357 

2.2095 
o. 6225 
1.6006 
4.4054 

2.8645 

5. 7594 
13.9633 
0.0980 
3.2168 

o. 9833 

SHARP BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
ENERGY INPUT DATA 

FACTOR VALUE OF MEAN STD ERRJR OF MEAN 

OVERALL MEAN 
DIAMETER 

O LEVEL 
1 LEVEL 
2 UVEL 
3 LEVEL 

TIME IN CHAMBER 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

ROTOR SPEED INDEX 
O LEVEL 
1 LEV EL 
2 LEVEL 
3 LEVEL 

FEED RATE INOEX 
O LEVEL 
1 LEVEL 
2 LEVEL 

ROTOR ANoLE INDEX 
O l EV EL 
l LtVEL 
2 LEVEL 
3 LFVEL 

LATERAL POSITION INDEX 
O LEVEL 
l LEVEL 
2 LE VE l 
3 L tVEL 

LEDGER ORI ENT AT ION INDEX 
O LEVEL 
I LEVEL 
2 LE VE L 
3 LEVEL 

CUTTING HEIGHT. INDEX 
O LEVEL 
1 LEV EL 
2 LEVEL 

C.G. HEIGHT INDEX 
O LEVEL 
l LE VE L 
2 LEVEL 
3 LEVEL 

70.6307 

22. 8777 
52.8015 
89.2867 

117.5569 

73. 9293 
65.6392 
95.8069 
47.1474 

66. 5125 
75.8783 
65.919b 
74. 2124 

73.2799 
69.1735 
70.8960 

60.1222 
91.2123 
56. 7403 
74.4481 

60. 7407 
67.3899 
82.5395 
71.8527 

72. 2995 
67.8996 
79.1302 
63. 1935 

78. 7838 
72.4198 
65.6596 

56.6591 
73.0205 
69. 6686 
83.1746 

2.2797 

4. 5595 
4.5595 
4.5595 
4. 5595 

4. 5595 
4.5595 
4.5595 
4. 5595 

4.5595 
4.5595 
4.5595 
4. 5595 

4.5595 
3.2240 
4.5595 

4. 5595 
4.5595 
4.5595 
4.5595 

4. 5595 
4.5595 
4.5595 
4.5595 

4.5595 
4.5595. 
4.5595 
4.5595 

4.5595 
4.5595 
3.2240 

4. 5595 
4.5595 
4.5595 
4.5595 

w 
0 
w 



APPENDIX 0-II 

SHARP BLADE SERIES 
ANALYSIS OF VARIANCE 

FOR 
MAX TORQUE DATA 

SOURCE OF VARIATION DEGREES OF SUM OF 
SQUARES FREEDOM 

CORRECTED TOTAL 

DIAMETER 
LINEAR EFFECT 
QUADRATIC EFFECT 
CJB!C EFFECT 

TIME IN CHAMBER 
L !~EAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFE:T 

ROTOR SPEED INDEX 
l !NEAR EFFECT 
QUADRATIC FFFECT 
CUBIC EFFECT 

"CED RATE INDEX 

ROTOR ANGLE INDEX 
L !NEAR EFFECT 
QUAUOATIC EFFECT 
CUB IC EFFECT 

LATERAL POSITION INDEX 
L !NEAR EFFECT 
QUADP.AT IC EFFECT 
cu,i1: EFFECT 

LFDGER ORIENTATION INDEX 
LINEAR EFFECT 
au ADR AT I c EFFECT 
CUd!C EFFECT 

CUTT ING HEIGHT INDEX 

C.G. HEIGHT IN9EX 
L !NEAR EFf-ECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

REf-",AI N!JER 

EXPERIMENTAL ERROR 

63 

3 
l 
l 

3 
l 
l 
l 

3 
I 
l 

3 
l 
l 

3 
I 
l 

3 
I 
l 

2 

32 

15290.88281 

6663. 61328 
6656.68750 

2.76391 
4.16328 

1114.50171 
424. 35059 
681.86255 

8.28828 

1637.43408 
1407.42236 

211. 33890 
18.6727d 

6.40797 

1457.48779 
79.10252 
7.63141 

1370.75391 

271.1261! 
256. 86523 

0.19141 
14.07003 

497.73169 
65.43152 

6. >6641 
425. 73364 

154. 2 7921 

350.07422 
196.09453 
111.56641 

42.41327 

1570.67041 

1567.55493 

MEAN 
SQUARE 

2221.20508 
6656. 68750 

2,76391 
4.16328 

371.50049 
424.35059 
681.86255 

8.28828 

545. 81128 
1407.42236 
2ll. 33890 

18.67278 

3. 20398 

485.82910 
79. 10252 
7.63141 

1370. 75391 

90. 37556 
256.86523 

0.19141 
14 .:J7003 

165.91057 
65.43152 

6. 56641 
425. 73364 

77. 13960 

116.69141 
I 96. 09453 
ll l. 56641 
42.41327 

261. 77832 

48. 98608 

F RAT ID 

45.3436 
13 5. 8893 

0.0564 
0.0850 

7. 5838 
8.6627 

13.9195 
0. 1692 

11. 1422 
28.7310 

4.3143 
0.3812 

0.0654 

9.9177 
1.6148 
0.1558 

27.9825 

1.8449 
5.2436 
o. 0039 
0.2872 

3. 3869 
1.3357 
o. 1340 
8,6909 

1,5747 

2.3821 
4.0031 
2. 2775 
0.8658 

5.3439 

(Continued) 

SHARP BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
MAX TORQUE DA TA 

FAc TOR VALUE OF MEAN STD ERROR OF MEAN 

OVERALL MEAN 
DIAMETER 

O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

TIME IN CHAMBER 
O LEVEL 
1 LE VE l 
2 LEVEL 
3 LEVEL 

ROTOR SPEED INOEX 
O l EV EL 
l LEVEL 
2 L cVEL 
3 L fVEl 

FEEJ ~ATE INDEX 
O LEVEL 
I LEVEL 
2 L!cVEl 

ROTOR ANGLE INDEX 
O LEVEL 
I LEVEL 
2 LEV EL 
3 LEVEL 

LATFRAL PJSITION INDEX 
O LEVEL 
I LE VE L 
2 LEV EL 
3 LEVEL 

LEJGER OR!ENTATlON INDEX 
O l EV EL 

LEVEL 
LEVEL 

3 LEVEL 
:UTTING HEIG~T INDEX 

O LEVEL 
l LEVEL 
2 LE VE L 

C.G. HEIGHT INDEX 
O LE VE L 
I LEVEL 
2 LEVEL 
3 LE VE L 

22.3266 

8.5500 
17.6312 
27 .4375 
35.6875 

22.3562 
27.2250 
23. 9562 
l 5. 7687 

30.1937 
23 .3312 
17.6875 
18.0937 

21,8125 
22.5875 
22.3187 

22.0937 
28.6875 
15.2750 
23.2500 

19. 7937 
20.8562 
2 3. 9062 
24.7500 

22.4437 
18.0937 
25. 9187 
22.8500 

21.8062 
24.9875 
21.2562 

18.2937 
23.9562 
23. 3375 
23.7187 

0,8749 

1. 749 8 
1.7498 
1. 7498 
1. 7498 

1. 7498 
1.7498 
1. 7498 
1,7498 

1. 7498 
1.7498 
1.7498 
1.7498 

1.7498 
l.2373 
l.7498 

l.7498 
1.7498 
1. 7498 
l. 7498 

1.7498 
1.7498 
1.7498 
1.7498 

1. 7498 
1.7498 
1,7498 
1.7498 

1. 7498 
1. 7498 
1.2373 

1. 7498 
1. 7498 
1.7498 
1.7498 

(1..l 

0 
.p. 



SHARP BLADE SERIES 
ANALYSIS OF VARIANCE 

ffiR 

APPENDIX D-II 

tNERGY INPUT INDEX DATA 

SOURCE OF VARIATION DEGREES OF 
FREEOUM 

CORR EC TED TOTAL 63 

DIA'IETER 3 
LINEAR EFFECT l 
QJADRAT!C EFFECT l 
CUB! C EFFECT l 

T !ME I~ CHA~BER 3 
LI Nl'AR EFFECT l 
QUADRATIC EFFECT l 
CUB !C EFFECT l 

ROTOR SP EEO !NOE X 3 
LINEA~ EFFECT 1 
QUADRATIC FFFEC T 1 
C:JBIC EFFECT l 

FEED RA TE INDEX 2 

ROTOR ANGLE INOEX 3 
LINEAR EFFcCT I 
Q:JAORAT IC EFFECT I 
CUB! C EFFECT l 

LATERAL POS lT IOC; INDEX 3 
LI NFAR EFf-EC1 [ 

QUADRATIC EFFECT l 
CUBIC EFFECT I 

LEDGER ORIE~TATIJN [NJEX 3 
L !NEAR EFFECT I 
QUA~PAT!C EFFECT I 
CUBIC HFE:T I 

:UTTINS HEl~--1T l~OtX 2 

C.G. HE !GHT INDEX 3 
L]CJEAR EFFFCT l 
QJAOAAT!t EFFECT l 
CUB! C EFFECT 1 

~P•1Al\lOFR 6 

EXPER.JMENTAL E:R.fH11:.'. 32 

SUM OF 
SQ UAR ES 

72149.87500 

11215.41016 
9521.60547 

890. 25293 
803.55396 

11926. 65625 
2947.81812 
2261. 77417 
6717.06250 

3358.83716 
145. 21033 
119.89839 

3093. 72 852 

1628.18408 

2714.12817 
16.09509 
45. 72935 

2652.30371 

4688. 89062 
4657.68359 

13. 77764 
17.43079 

817.10278 
166.50314 
97.74205 

557.d5742 

2338.88940 

16892. 84 706 
I 5569. 12891 

644.59448 
679.12329 

4540. 39844 

12028.52344 

"llcAN 
SQUARE 

3738. 4 7070 
9521.60547 

890.25293 
803.55396 

3975.55200 
2947.81812 
2261.77417 
6717. 06250 

lll9.61230 
145.21033 
119.89839 

3093. 72 852 

814.09204 

904. 70923 
16.09509 
45. 72935 

2652. 303 71 

1567. 9641 I 
4657.68359 

13.77764 
I 7. 43079 

272.36743 
166. 50314 
97.74205 

552.85742 

1169.44458 

5630. 94922 
15509 .12891 

644.59448 
679. U32'1 

756. 73340 

375 .89136 

F RA Tl O 

9. 9456 
25.3307 
2.3684 
2. 13 77 

10.5763 
7. 8422 
6.0171 

17.8697 

2.9786 
o. 3863 
0.3190 
8.2304 

2.1658 

2.4068 
0.0428 
O. 12 I 7 
7.0S60 

4.1500 
12.3910 
0.0367 
o. 0.-..04 

o.7246 
0.4430 
0,2600 
1.4708 

3.11 ll 

14.9803 
41.4192 
l.7l4b 
l. 8067 

2.0132 

(Continued) 

FACTOR 

OVERALL MEAN 
UIAMETER 

O LEV EL 
l LEVEL 
2 LE VE L 
3 LEVEL 

Tl ME ! N CHA MB ER 
O LEVEL 
l LEVEL 
2 LEVEL 
3 L EVfl 

~UTUR SPEED fNOEX 
O LE Vt L 
l I. tVEL 
1 LEVEL 
3 LEVEL 

FFED RATE INDEX 
O LEVEL 
I l EVEL 
z LEV EL 

kJT8R ANGLE I NUE X 
O LEVtl 
1 LEVEL 
2 LEYH 
3 LEV EL 

SHARP BLADE SERIES 
TABLE UF MEAN VALUES 

FOR 
ENERGY INPUT INDEX DATA 

VALUE OF MEAN STD ERRJR OF MEAN 

So.0741 2.4235 

37. 5647 4. 84 70 
49.5950 4.8470 
·10. 0125 4.8470 
67.1243 4.8470 

63. 3163 4. 8470 
51.3092 4. 84 70 
12.12rs 4. 84 70 
36. 4424 4.8470 

52. 312!, 4.8470 
63. 3597 4.8470 
46.051J 4.8470 
62. 5730 4.8470 

61.8535 4. 84 70 
5 7. 2359 3. 4273 
47.9710 4.8470 

53.0226 4. 84 70 
65.7805 4.8470 
48. 05&2 4.8470 
57.4350 4. 8470 

LATERAL POSITION INDEX 
O L [VFL 45. 3260 4.8470 
I l EVtL 5 l.094a 4.8470 
7 LE Vi: L 60.1254 4.8470 
3 LEV [L 6 7. 750i 4. 84 70 

Lfi)GER ORIENT AT WN INDEX 
O LE VE L 58. 3167 4.8470 
l LEV [L 54.0880 4. 84 70 
2 L[VEl '>0 .5318 . 4.8470 
3 Lt VEL 51. 359~ 4. 84 70 

ClJTTPJG HfJGHT !NOEX 
O LE VE L 56.7789 4.8470 
l L [VEL 6 5. 6886 4.8470 
2 LEV.fl 50.9[44 3.4273 

C .. G. HCI:;--if I"'JDEX 
0 LEV EL 78. 7165 4. 84 70 
l LEVEL 64.2461 4.8470 
2 l [Vol 41 •. 5549 4. 84 70 
3 LtVEL 39.7789 4. 84 70 w 

0 
u,. 



APPENDIX D-II (Continued) 

SHARP BLADE SERIES 
ANALYSIS OF VARI~~CE 

. F~ 

MAX TJRQUE INDEX DATA 

SOU~CE JF VA~IATION DEGREES OF 
FREEDD·~ 

SUM OF 
SQUARES 

MEAN 
SQUARE 

F RAT 10 

········································~·~······························· 
CORRECTED TOT AL 

DUMET!cR 
L !NEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

TIME IN CHAMRER 
L !'IEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

ROTOR SPEED INDEX 
L!NH.R EFFECT 
QUADl>AT IC EFFECT 
CUBIC ffFECT 

FEl'D RATE l'IOfX 

RJTOR ANGLE INDEX 
L !NEAR EFFECT 
QUA DR A Tl C EFFECT 
CUBIC EFFECT 

LAHRAL POSITION INDEX 
LIN EAR EFFECT 
QUADRATIC EFFECT· 
cua I c EFFE: T 

LEO.GER ORIENT AT ION INDEX 
LINEAR [FFE:C T 
QUADRATIC t'FFECT 
CUB! C EFFECT 

CUTT ING HEIGHT INDEX 

C.G. HEIGHT INDE:X 
LINEAR EFfECT 
OUADPATIC EFFECT 
CUB IC EFFECT 

RE.MAI NDER 

EXPERIMENTAL ERROR 

63 

3 
l 
1 
1 

3 
l 
1 
l 

3 
l 
l 
l 

2 

3 
l 
l 
l 

3 
l 
l 
1 

3 
l 
l 
I 

2 

3 
l 
l 
i 

~ 

32 

7708.23437 

706.25·879 
407.41650 
253.82611 

45.01622 

515.89819 
415.00684 

84.27240 
16.61897 

ll4l.39307 
923 .99072 

99.49507 
·111.90726 

97.01956 

377. 7!>952 
43.38652 

134.23958 
200.13354 

279 .99463 
245. 85417 

0.46725 
33.67342 

305 .81250-
26 .82413 

101. 32231 
177 .66617 

372.13867 

2200.41919 
2085. 71 704 

4.22519 
110. 47675 

301.72705 

1409.81567 

235.41966 
407. 41650 
2~3.82611 
45.01622 

171.96608 
415.00684 

84.27240 
16.61897 

380.46436 
923 .99072 

99. 49507 
117.90726 

48. 50978 

125.91989 
43. 38652 

134 .23958 
200.13354 

93.33160 
245. 85417 

0.46725 
33.67342 

101.93753 
26.82413 

101. 32231 
177.66617 

186. 06937 

733.47290 
208~. 71 704 

4.22519 
110.47675 

50.28784 

44. 05673 

5.3436 
9. 2475 
5.7613 
1.0218 

3.9033 
9.4198 
1. 9128 
0.3772 

8. 6358 
20.9727 

2.2583 
2.6763 

l.I 011 

2.8561 
o. <J848 
3.0470 
4.5426 

2.1184 
5.5804 
o. 0106 
0.7643 

2. 3131S 
0.6.089 
2.29<J8 
4.0327 

4.2234 

lb.6484 
47.3416 

0.0959 
2 .50 76 

1.1414 

SHARP BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
MAX TORQUE INDEX DA TA 

FACTOR VALUE DF MEAN STD ERROR OF MEAN 

·························~···································· 
OVERALL MEAN 
DIAMETER 

O LEVEL 
l l EVEL 
2 LEVEL 
3 LE VE L 

T !ME l"I CHAMRE~ 
O LEVEL 
1 LEVEL 
2 LEVEL. 
3 LEVEL 

RJTOR SPEED INDEX 
o· LFVEL 
l LE VE L 
2 LEVEL 
3 LEVEL 

FEE) RATE INDEX 
O l FVEL 
l LEVEL 
2 L tV[L 

ROTOR ANGLE INDEX 
O LEVEL 
I l EVEL 
2 LEVEL 
3 LEVEL 

LATERAL PJSJTION IN0EX 
O LEVEL 
l LEVEL 
2 LEVl::L 
3 LEVEL 

LEDGER ORIENTATION INJEX 
O LEVEL 
1 LE V[L 
2 LEVEL 
3 LEVEL 

:UTTING HEIGHT INDEX 
O LEVEL 
1 LEVEL 
2. L EVtL 

C.G. HEIGHT INDEX 
O LE VE L 
l LEVEL 
2 LEVcL 
3 LE VE L 

18.2055 

13.2040 
11. 9434 
22.4505 
19.2240 

20.7023 
!9.8081 
18.8978 
13.4136 

23.9431 
20.4789 
13.4384 
14.9616 

18.6277 
19.J501 
16. 0939 

19.9676 
19. 4979 
14.0165 
19. 3399 

15.8149 
16. 4412 
20.1406 

·20.4252 

21.0774 
15.0014 
18.8931 
17.8500 

18.4032 
22.0729 
16.1729 

25. 5339 
22.2643 
13.6328 
11.3910 

0.8297 

1.6594 
1.6594 
1. 6594 
!.65q4 

I.6594 
1.6594 
1. 6594 
1. 6594 

1.6594 
1.6594 
·1.6594 
1.6594 

1. 6594 
1.1734 
.1.6594 

1.6594 
1.6594 
1.6594 
1.6594 

1.6594 
1.6594 
1. 6594 
1.6594 

1.6594 
1.6594 
1.6594 
1.6594 

1. 6594 
1.6594 
1.1734 

1.6594 
1.6594 
l.6594 
t.6594 w 

0 
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APPENDIX D-11 (Continued) 

SHARP BLADE SERIES 
A~ALVSIS OF VARIANCE 

ffiR 
C.G. X DISP INDEX DATA 

SOURCE OF VARIATION DEGREES DF 
FREEDOM 

sur~ OF 
SQUARES 

CORRECTED TOTAL 63 3439.25854 

DIAMETER 3 103.06693 
LINEAR EFFECT 1 o. 75494 
QUADRATIC ErFECT l 91. 61224 
CUBIC EFFECT l 10.69975 

T !ME IN CHAMBER 3 95. 82376 
LI NEAR EFFECT l 51.88800 
OUAURAT!C EFFECT l 24. 22046 
CUBIC EFFECT l 19. 71530 

ROTOR SPEED !~DEX 3 819.46558 
LINEAR EFFECT 1 776.25781 
QUADRATIC EFFECT 1 42 .99611 
CJillC EFFECT I 0.21159 

FEE) RATE INDeX 2 64 7. 78564 

ROTOR ANGLE INDEX 3 488.43701 
Ll'~EAR EFFeCT l 114.31029 
QUADRATIC EFFECT l 2.35842 
CtJBI C EFFECT l 371.76831 

LATERAL POSIT ION !NilEX 3 36. 4 7928 
LINEAR EFFECT l 18 .04999 
QUADRATIC EFFECT l 2.86576 
C~BIC EFFECT l 15. 56352 

LEDGER JR!ENTATION !NJEX 3 92.03581 
LINEAR EFFECT 1 71. 82050 
QUAD KA TIC ErFEC T l 5.12699 
CUB IC ff FE CT l 15.08833 

:uTTING HEIS:-IT INIJEX 2 1. 73 755 

C .G. HEIGHT INDEX 3 131.99275 
Ll~EAK EFcECT l 104.42450 
QUADRATIC EFFECT l 0.72250 
CUBIC EFFECT l 26.84575 

REMAINDEq 6 128.89023 

EXPERI~ENTAL ERROR 32 893.54346 

MEAN 
SQUARE 

34.35564 
3.75494 

91. 61224 
10 •. 69975 

31. 94125 
51.68800 
24.22046 
19.71530 

2 73 .15503 
776.25781 
42 .9%11 

0.21159 

323.89282 

162. 81233 
114.31329 

2.35842 
371. 76831 

12.15976 
18.04~99 
2. 86576 

15. 56352 

30.67860 
11. 82050 
5.!2699 

15.08833 

0.86878 

43.99757 
104.42450 

o. 122 so 
26.84575 

21.48170 

21.92323 

F RA Tl O 

1. 2304 
0.0270 
3.2809 
o. 3832 

1.1439 
1.8582 
0.8674 
o. 7061 

9.7824 
27. 7997 

1.5398 
0.0076 

11. 5994 

5.8307 
4.0937 
0.0845 

l3.313S> 

0.4355 
0.6464 
0.1026 
o. 5574 

l.0987 
2.5721 
0.1836 
0.5404 

0.0311 

1. 5 75 7 
3. 7397 
0.0259 
0.9614 

o.7693 

FACTOR 

OVERALL MEA"l 
DIAM£ TER 

O LEVEL 
l LEVEL 
2 LE VE L 
3 LEV EL 

TI ME IN CHAMBER 
O LE VE L 
l LEV EL 
2 LEVEL 
3 LEVEL 

ROTUR SPEED INDEX 
O LE VE L 
l LEV EL 
2 I_ EVEL 
3 L tVEL 

FEED RATE INDEX 
O lf'VEL 
l LEVEL 
2 LEVEL 

P.OTOP, 4N:;LE INDEX 
O LEVEL 

LEVEL 
LEVEL 

3 LEV EL 

SHARP SLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
C.G. X DISP INDEX DATA 

~ ALUE OF ME AN STD ERR3R OF MEAN 

8.5482 0.6605 

10. 0732 1. 3211 
6.8518 l.3211 
1. 8518 l .3211 
9.4161 1. 3211 

8. A929 l .3211 
10.3107 1. 3211 

8 .0161 1.3211 
6. 97 32 l.3211 

4.6696 1.3211 
6. 2482 1.3211 
9.208~ 1.3211 

14. 0661 1. 3211 

3.6839 1.3211 
a. 9491 0.9341 

12.6107 1. 3211 

7. 6411 1.3211 
4.9089 1.3211 

12. 57!4 1.3211 
9.0714 1. 3211 

LATERAL PUSITION INDEX 
O l EV EL 7. 4036 l. 3211 
I LEVEL 9.1839 1. 3211 
2 LEVEL 8. 335 7 1.3211 
3 L FV EL 9.2696 1. 3211 

LEDGE, ORIENTATION !Nu EX 
O L cVEL 6. 6268 1.3211 
l LEVEL 9.oos .. 1.3211 
2 LE Vt: l 8. 6~3 6 1.3211 
3 LEV El 9. 9036 1. 3211 

CUTTING HEIGHT INDEX 
O LE VE L 8. 7946 1.3211 
I LEV EL 8. 3304 1. 3211 
2 l f::VEL 8.5339 o.9341 

C.G. HE!G~T IN~EX 
Ll I EVEL 7. 01 79 l. 3211 
l LEVEL 7 .2143 1. 3211 
2 I EVE L lo. 0946 l .3211 
1 LEV ,L 9.8661 1. 3211 w 

0 
'1 



APPENDIX 0-II (Continued} 

SHARP BLADE SER IE S 
AN ALYS IS OF VAR IA,~CE 

FDR 
ENO X DISP INDEX DATA 

SOURCE OF VARIATION DEGREES OF SUM OF 
SQUARES FREEDO" 

CORRECTED TOTAL 

DIAMETER 
L !NEAR EFFECT 
OUADRATIC EFFECT 
CUBIC EFFECT 

TIME IN CHAMBER 
L l'IEAR tFFECT 
OUADRAT IC EFFECT 
CU5IC EFFECT 

ROTOR SPEED INDEX 
LINEAR EFFECT 
QUADRATIC EFFECT 
CUS! C .EFFECT 

FEED RATE INDEX 

ROTOR ANGLE I NOE X 
LINEAR EFFECT 
QUA)~A TIC EFFECT 
CUBIC EFFECT 

LATERAL POSITION INDEX 
Ll~EAR EFFECT 
QUADRATIC £FFECT 
CUBIC EFFECT 

LEDGER ORI ENT AT ID"I INDEX 
LINEAR EFFECT 
OU A DRAT IC EFFECT 
CUBIC EFFECT 

CUTTING HEIGHT INDEX 

C.G. HEIGHT INDEX 
LINEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

REMA! NDER 

EX PER IM ENT Al ERROR 

63 

3 
l 
l 
1 

3 
1 
1 
1 

3 
1 
1 
l 

2 

3 
1 
l 
l 

3 
l 
l 
l 

3 
l 
l 
l 

2 

3 
1 
1 
1 

b 

32 

4089.66504 

124.30469 
1.03188 

78.'15592 
44. 31689 

158.67122 
113.28799 

34.64163 
10.74159 • 

1005.42358 
921,88794 

81.51509 
2,02066 

592. 74609 

605,61914 
138. 03 758 

0.03719 
467.54443 

14.92357 
4. 88637 

10.01210 
0.02450 

127.89928 
113.15204 

8. 61842 
6,12883 

11.27224 

59.9576.4 
47. 69637 
4.87148 
1. 38981 

173.35162 

1215.49536 

MEAN 
SQUARE 

41.43489 
1. 03188 

78.95592 
44.31689 

52.89040 
ll3.28799 

34.64163 
10.74159 

335.14111 
921,88794 

81. 51509 
2,02066 

296. 3 7305 

201.87309 
138.03758 

a .03719 
467.54443 

4.97452 
4. 8863 7 

10.01210 
0.02450 

42. 63309 
113.15204 

8.61842 
6 .12883 

5. 63612 

19.98587 
47. 69637 
4. 87148 
7.38981 

28.89194 

37. 98422 

F RAT IO 

1,0908 
o. 0272 
2.0786 
1.1667 

1.3924. 
2.9825 
o. 9120 
0.2828 

8. 82i2 
24.2703 
2.1460 
0.0532 

7. 8025 

5.3147 
3.6341 
0 .oo 10 

12.3089 

0.1310 
0.1286 
0.2636 
0.0006 

1. 1224 
2.9789 
0.2269 
0.1614 

0, 1484 

0.5262 
1,2557 
0.1283 
0.1945 

0.7606 

SHARP BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
END X DISP INDEX DATA 

FACTOR VALUE OF MEAN STD ERROR OF HEAN 

OVERALL 'IEAN 
DIAMETER 

O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

T iME IN CHAMBER 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

R~TOR SPEED INDEX 
O LEVEL 

· 1 LEVEL 
2 LEVEL 
3 LEVEL 

FEED RA TE I NOE X 
O LEVEL 
1 LEVEL 
2 LE VE L 

ROTOR ANGLE INDEX 
O LEVEL 
I LEVEL 
2 LEVEL 
3 LEVEL 

LATERAL POSITION INJEX 
O LEVEL 
1 LE.VEL 
2 LEVEL 
3 LE VE L 

LEDGER ORIENTATION INDEX 
O LEVEL 
1 LE VE L 
~ LEVEL 
3 LEVEL 

:uTTING HEIGHT INDEX 
O LEVEL 
1 LEVEL 
2 LEVEL 

C.G. HEIGHT INDEX 
O LEVEL 
l LEV EL 
2 LEVEL 
3 LEVEL 

1. 8196 

9,1321 
5. 5 357 
7.8821 
8.7286 

8.6857 
9.7000 
7. 4107 
5.4821 

3. 7768 
5,2321 
0. 1500 

14.1196 

3. 0393 
8.3661 

11. 5071 

7.0821 
3.5125 

12.0786 
8.6054 

7.0446 
8. 11 79 
8. 3125 
7.8036 

5.5304 
8. 0011 
8.3661 
9 .3750 

8.4589 
7.2804 
7.7696 

6.5375 
1. 2536 
8.9375 
8.5500 

0.7704 

1.5408 
1. 5408 
1. 5408 
1.5408 

1. 5408 
1 .5408 
1. 5408 
1. 5408 

1. 5408 
1.5408 
1. 5408 
1.5408 

'l.5408 
1.0895 
1,5408 

1. 5408 
1,5408 
1. 5408 
1.5408 

1.5408 
1.5408 
1. 5408 
1.5408 

1,5408 
1,5408 
1.5408 
1,5408 

1. 5408 
1,5408 
1. 0895 

!.5408 
1.5408 
1.5408 
1.5408 w 

0 
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SHARP BLADE SERIES 
A~ALYSIS OF VARIANCE 

FOR 
C.G. Y DISP INDEX DATA 

SOURCE OF VARI AT ION DEGREES OF 
FREEDOM 

CORR EC TED TOTAL 63 

DIAMETER 3 
LINEAR EFFECT 1· 
QlJAORAT!C EFFECT 1 
CUBIC EFFECT l 

T 1 ME IN CHAMBER 3 
LI NEAR EFFECT 1 
QUADRATIC EFFECT l 
CUB IC EFFECT 1 

RJTOR SPEED INDEX 3 
L !NEAR EFFECT l 
QUADRATIC EFFECT l 
CUBIC EFFECT l 

FEE) RATE !~DEX 2 

ROTOR ANGLE INDEX 3 
L!NE4R EFFECT l 
CUADRAT IC EFFECT l 
CUB! C EFFECT l 

LATERAL POSlT ION INDEX 3 
LINEAR EFFECT l 
QUAD>ATIC ~FFECT l 
CUB IC EFFECT l 

LEDGER ORIE"'TAT!ON INDEX 3 
LINEAR EFFECT l 
QUADRATIC EFFECT 1 
CJBIC ,EfFECT l 

cUTTIN~ HEIG'iT INDEX 2 

C.G. HE JGHT INDEX 3 
LI NEAR EFFECT l 
QUAD, AT IC EFFECT l 
CUB! C EFFECT l 

Q EMA !>.!DER 6 

EXPERIMENTAL ERROR 32 

SUM OF 
SQUARES· 

737 .3 7915 

7.65275 
6.69490 
o. 00862 
0 .94923 

3.9. 3 8622 
34 •. 92346 

3. 3.1760 
1.14515 

136. 88336 
45. 04286 

.60 .84000 
31. 00049 

2.45069 

44.87857 
2.59200 

27. 78795 
14.49861 

75.07376 
74.8.8449 

0.02469 
o •. l 6458 

13. 28949 
11. 68265 
0.09434 
1. 51250 

10.6681& 

30.79877 
4.10159 

22.35937 
4.33780 

36. 74982 

339.54761 

APPENDIX 0-II (Continued) 

MEAN 
SQUARE 

2.55092 
6.69490 
0.00862 
0.94923 

13. 12874 
34.92346 
3.31760 
1.14515 

45.62778 
45.04286 
60 .84000 
31.00049 

l.22534 

14.95952 
2.59200 

27. 78795 
14.49861 

25. 02458 
74.88449 

0.02469 
o. 16458 

4.42983 
11. 68265 
0.09434 
1. 51250 

5.33408 

10.26626 
4.10159 

22.35937 
4.33780 

6.12497 

10 .61087 

F RATIO 

o. 2404 
0.6309 
0.0008 
0.0895 

l.2373 
3.2913 
0.3127 
0.1079 

4.300 l 
4.2450 
5.7337 
2.9216 

0.1155 

1. 4098 
0.2443 
2.6188 
1.3664 

2.358,. 
7.0573 
0.0023 
o. 0155 

D.4175 
1. i 010 
0.0089 
0.1425 

0.5027 

o. 9675 
o.3865 
2.1072 
0.4088 

o.5772 

SHARP BLADE SERIES 
TABLE OF MEAN VALUES 

. FOR 
C.G. Y D!SP INDEX DATA 

FACTOR VALUE OF MEAN STD ERRJR OF MEAN 

··~···························································' 
OVERALL HEAN 
DIAMETER 

O LEVEL 
1 LEVEL 
2 LEVEL 
3 LEVEL 

Tl HE l N CHAMBER 
O LEVEL 
1 LEVEL 
2 L.EVEL 
3 LEVEL 

ROTOR SPEED INDEX 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

FEED· RATE INDEX 
O LEVEL 
1 l EVEL 
2 LEVEL 

RO TOR ANGLE l NOE X 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

LA TER4L POSI Tl ON INDEX 
O LEVEL 
1 LEVEL 
2 LEVEL 
3 LEVEL 

LEDGER ORI ENT ATION INDEX 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

CUTTJN~ HEIGHT INDEX 
O LE VE L 
1 L·EVEL 
2 LEVEL 

C.G. HEl:;H INDEX 
O LEVEL 
l LEVEL 
2 LEVEL 
3 LEVEL 

1.7946 

2. 2714 
1.7875 
1.8250 
1.2946 

2. 9536 
2.0768 
1.0571 
1. 0911 

3. 5839 
2.1286 

-0.4893 
1. 9554 

1.4875 
1. 8295 
2.0321 

1.0786 
1.7250 
3.1821 
1.1929 

o. 3857 
1.2232 
2.326l\. 
3.2429 

2.4750 
1.7411 
1. 7714 
1. 1911 

1. 89 82 
2. 4196 
1.4304 

0.9804 
1.9232 
2. 8482 
1.4268 

0.4072 

0.8144 
0.8144 
0.8144 
0.8144 

o. 8144 
o. 8144 
0.8144 
0.8144 

0.8144 
0.8144 
0.8144 
o. 81,.4 

0.8144 
0.5758 
0.81,.4 

0.8144 
0 .8144 
0.8144 
0.8144 

0.8144 
0.8144 
0.8144 
o. 8144 

0~8144 
0.8144 
0.8144 
o. 8144 

0.8144 
o. 814,. 
0.5758 

o. 8144 
0.8144 
o. 8144 
0.8144 w 

0 
\0 



SHARP BLADE SERIES 
ANALYSIS OF VARIANCE 

FOR 
E.~O Y DISP INDEX DATA 

SOURCE OF VA~IATION DEGREES OF SUM OF 
SQUARES FREEDJ~ 

CORRECT Efl TOT AL 

DIAMETER 
LINEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

TIME IN :HAMBER 
L l~EAR EFFECT 
QUADRATIC EFFECT 
CUB IC EFFECT 

ROTOR SPEED INDEX 
LINEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

FEFD RATE H'lOEX 

R.OTOR A'l GL E !NOE X 
LI NEAR EFFECT 
QUADRA Tl C EFFECT 
CJBIC EFFECT 

LATERAL POSITION INDEX 
L l~EA{ EFFECT 
QUADRATIC E,FECT 
CUBIC EFFE::T 

LEDGER URI ENT AT ION !C<DEX 
LINEA, EFFECT 
QUADRATIC EFFECT 
CU31C EFFECT 

CUTT ING HEIGHT INDEX 

:: •. G. HEIGHT I N)E X 
L !NEAR EFFECT 
QUADRATIC EFFECT 
CUBIC EFFECT 

REMAINOER 

EXPERIMENTAL ERROR 

63 

l 
l 
l 

3 
l 
l 

l 
l 

3 
l 
l 
l 

3 
l 
l 
1 

2 

l 
l 
1 

32 

894.56445 

11.94561 
6.66188 
3.80250 
1. 48123 

46 .2 6642 
41.34865 
4.65326 
0.26450 

150.82744 
56.30408 
71.04080 
23.48253 

0.89327 

74.22070 
19. 80049 
23.38412 
31. 03607 

45.03030 
43. 93494 

0.35148 
0.7438d 

11.22194 
10.51250 

0.04592 
0.66352 

40.85265 

29.60458 
1.09111 

22 .8 3473 
5.67873 

38.07887 

445.62280 

APPENDIX D-II 

MEAN 
SQUARE 

3.98187 
6. 66188 
3.80250 
l.48123 

15 .42214 
41.34865 

4.65326 
0 .2645_0 

50.27580 
56.30408 
11. 04080 
23.48253 

0.44663 

24.74023 
19.80049 
23.38412 
31.03607 

15.01010 
43.93494 

o.35148 
0.74388 

3.74065 
D.51250 
o. 04592 
0.66352 

20.42632 

9.86820 
1.09111 

22.83473 
:>.67873 

6.34648 

13. 92571 

F RAT 10 

0.2859 
o. 4 784 
0.2731 
0.1064 

1.1075 
2.9692 
o. 3341 
0.0190 

3.6103 
4.0432 
5.1014 
1.6863 

0.0321 

1.1766 
1. 4219 
1.6792 
2.2287 

1.0779 
3.1550 
o. 02 52 
0 .o 534 

o. 2&86 
0. 7549 
o. 0033 
0.0476 

1.4668 

0.7086 
o. 0784 
1. 6398 
0.4078 

0.4557 

(Continued) 

SHARP BLADE SERIES 
TABLE OF HEAN VALUES 

FOR 
END Y DISP INDEX DATA 

FACTOR VA LUE OF ME AN STD ERROR OF MEAN 
•••••••••••••••••••4••••••••••••••o•••O•••••~••••••••••••••••• 

OVERALL ~EAN 1. 4054 0.4665 
DIAMETER 

O LEVEL 1.6625 0.9329 
l LEVEL 1. 5893 o. 9329 
2 LEVEL 1. 7089 0.9329 
3 LEVEL 0.6607 0.9329 

TIME IN CHAMBER 
O LEVEL 2. 7821 0.9329 
l LEVEL 1. 4089 o. 9329 
2 LEVEL 0.8625 0.9329 
3 LE VE L o. 51, 79 0.9329 

ROTOR SPEED INDcX 
O LEVEL 3.4464 0.9329 
l l EVE L 1. 5839 0.9329 
2 l EV EL -o. 8804 0.9329 
3 LEVEL 1.4714 0.9329 

FEED RATE INDEX 
O l EVEL 1.4107 o. 9329 
l Lt VE L 1. 3071 0.6597 
2 l EV EL 1. 5964 o. 9329 

ROTOR ANGLE INDEX 
O LE VE L 0.3661 0.9329 
l LEV EL 0.8268 o. 9329 
2 LEVEL 3.1929 0.9329 
3 LE VFL 1.2357 0.9329 

LATERAL PUS IT ION INDEX 
O LEVEL 0.4161 0.9329 
l LEVtL o. 8161 0.9329 
2 LEVEL 1.8464 0 .9 329 
3 LE VE L 2. 542 9 0.9329 

LEDGER ORIENTATION INDEX 
O LEVEL 1.8768 0 .9329 
l L EVlcL 1. 7500 o. 9329 
2 LEV EL 1.1143 o. 9329 
3 LEVEL 0.98D4 0 .9329 

CUTT!Nt; HEIGHT INDEX 
O LEV EL 0.7518 0.9329 
l LE VE L 2. 7732 0.9329 
2 LEVCL 1.0482 o. 6597 

C. G. HEIGHT INDEX 
O l EVEL o. 7661 o. 932 9 
l L FV EL 1.5446 0.9329 
2 LEVEL 2.4607 0. 932 9 
3 LEVEL o. 8500 o. 9329 (Al _, 

0 



SHARP BLADE SERIES 
A~ALYS!S OF VARIANCE 

FOR 
C.G. l DISP INDEX DATA 

SOURCE OF VARIATION DEGREES OF SUM OF 
SQUARES FREEDOM 

CORRECTED TOTAL 63 2137. 53784 

'DIAMETER 3 150.26234 
L l"IEAR EFFECT l 24.32597 
QUADRATIC EFFECT l 0.00617 
CUBIC EFFECT l 125.93028 

TIME IN CHAMBER 3 16 7.4910 l 
LINEAR EFFECT I 156.00101 
OUADRAT IC EFFECT I 3. 94306 
CUBIC EFFECT l 7.54694 

ROT OR SPEED INDEX 3 185.11806 
LINEAR EFFECT I 119.98000 
QUADRATIC EF"ECT l 25.21474 
CUBIC EFFECT l 39.92329 

FEED RATE INDEX 2 29.36435 

ROTOR ANGLE INDEX 3 249.76315 
I !~EAR EFFECT I l 53. 69551 
QUADRATIC EFFECT 1 40.05081 
CUB!: EFFECT l 56.01682 

LATERAL POSIT ION INl1EX ) 111.96826 
LINEAR EFFECT l 13.21473 
QJADRATIC EFFECT l 10. 01270 
CUB! C EFFECT l 88.74081 

LEDGER JRIENTAT!DN INDEX 3 159.71397 
LI NEAR EFFECT l 107.44923 
QUA DRAT IC EFFECT l 2.65224 
CU81 C ffFECT I 49.61249 

CUTT!~ G HE JGHT I NOE X 2 103.14252 

c.s. HEIGHT INDEX 3 16 7.46173 
L IN EAR EFFECT l 49. 2 9799 
QUA DRAT IC rFFECT I 41.05147 
CU3 I~ EFFECT I 77.11224 

REMAINDER 6 66.22719 

cXP[R l~ENTAL ERR JR 32 747. 02515 

APPENDIX D-II (Continued) 

MEAN 
SQUARE 

50.08745 
24.32587 

0.00617 
125.93028 

55.83034 
156.00101 

3. 94306 
7.54694 

61. 70601 
119. 98000 
25.21474 
39.92329 

14.68218 

83.25438 
153.69551 

40.05081 
% .01682 

37.32275 
13.21473 
10.01210 
88.74081 

53. 23799 
107.44923 

2.65224 
49.61249 

51.57126 

55.82057 
49.29799 
41.05147 
77.112 24 

11.03787 

23.344,3 

F RAT IJ 

2. 1456 
1.0420 
o. 0003 
5.3944 

2. 3916 
6.6825 
0.1689 
0.3233 

2.6433 
5.1395 
1.0501 
l. 7102 

0 .6289 

3.5663 
6.5838 
1.715& 
2.3996 

!.5988 
o.5661 
0.4289 
3.8014 

2.2805 
4. 6028 
0 .1136 
2. 12 52 

2.2091 

2.3912 
2.1118 
1.758~ 
3. 30 32 

o. 4 72 8 

FACTOR 

OVERALL MEAN 
DI A METER 

O LEV EL 
l LEVEL 
2 LEVEL 
3 LEVEL 

TIME IN :HAMBER 
O l EVEL 
l LEVEL 
2 LEVcL 
3 LEV cl 

ROTOR SPEEil I NUEX 
O LEVEL 
l l EVEL 
2 LE VE l 
3 l EV fl 

FFEU RATE INDEX 
O Li: VE l 
1 LEV El 
2 LEVEL 

RJTJR ANGLE !NOE X 
O LEV EL 
1 LE VE L 
2 l EV El 
3 LEVEL 

SHARP BLADE SERIES 
TABLE OF HEAN VALUES 

FOR 
C.G. Z DISP INDEX DATA 

VALUE DF MEAN STD ERROR DF MEAN 

3 .55 71 0.6040 

5.0018 1.2019 
I .9b07 1.2079 
5. I 732 1. 2079 
2.0929 1. 2079 

6. 0536 1. 2079 
3.5464 1.2079 
3. 0714 1.2079 
1. 5571 1. 2079 

1. 9946 1.2079 
3.3760 1.2079 
2. 4 821 1.2079 
6. 3750 l.2079 

4.4929 1.2079 
2. 9116 0.8541 
3.9125 l.2079 

2. 68 75 l. 2079 
O. Bl 79 1.2019 
4. 7143 l. 2 079 
6.0089 1.2079 

LATERAL POS!Tl3N INDEX 
O l EV EL 3.8696 1. 2079 
I LE VE L 1.378& 1.2079 
2 l [VEL 4. 9446 I. 2 079 
3 l EV cl 4.0357 1.2079 

LEDGER ORIENTATION INDEX 
O LEVEL 2. 0089 1.2079 
1 LEVEL 2.0000 I. 20 79 
2 LE VE l 5. 5214 1.2079 
3 LEV El 4.6982 1. 2079 

CUTTING Hc!GHT INDEX 
O LEVEL 5. 2 714 l. 20 79 
I LEV [L 4.2839 l. 2079 
2 LEV[L 2.3366 0. 8541 

C .G. HEIGHT INDEX 
0 LEVEL 2.0696 1.2079 
I LE Ve L 2.4929 1.2079 
2 l EV EL 6.2232 1.2079 
3 LEVtL 3.4429 1.2079 w ...., 

...., 



SHARP BLADE SERIES 
ANALYSIS DF VARIANCE 

FDR 
END l OISP INDEX DATA 

SOURCE OF VARIATION DEGREES JF 
FREEDOM 

SUM OF 
SQUARES 

CORRECTED TOTAL 63 2319 .05908 

DIAMETER 3 160.12096 
LINEAR EFFECT l 31.71600 
QUADRATIC EFFECT I 1. 90046 
CUBIC EFFECT l 126. 50449 

T !ME n CHM BER 3 182.65800 
L !'!EAR EFFECT l 172.20064 
QUAJ>ATIC EFFECT l 0.33474 
CUBIC EFFECT l 10.12261 

ROTOR SPEED INDEX 3 184.99208 
L !~EAR EFFECT l 147.19186 
QUADRATIC EFFECT l 19.99367 
cusI: EFFECT l l 7 .80653 

FEED RATE INDEX 2 44.06737 

ROTOR ANGLE INDEX 3 288.41504 
LINEAR EFFECT l 148.35681 
QUADRATIC EFFECT l 50. 714 74 
CUB re EFFECT l 89.34367 

LATERAL POSITIJN INDEX 3 106. 30434 
L !NEAR EFFECT 1 12.25731 
QUADRATIC EFFECT l 12.15020 
CJd!C EFFECT l 81. 89682 

LEDGER ORIENTATION INDEX 3 192.38841 
L l"JEAR EfFECT l 162.69437 
~UADRAT IC EFFECT l 1.44000 
CUB!:: EFFECT l 28.25403 

:: UTTUJG HEIGHT INDEX 2 125.05206 

C.G. HEIGHT !NOcX 3 241. 90126 
LI NEAR EFFECT I 83.46530 
QUADRATIC EFFECT l 90.24998 
CJBIC EFFECT l 68. 18596 

REMAINJER 6 65.74382 

EXPERIMENTAL ERROR 32 727 .41528 

APPENDIX D-II 

MEAN 
SQUARE 

53. 37364 
31. 71600 
1. 90046 

126. 50449 

60.88600 
112. 20064 

0.33474 
10.12261 

61.66402 
147.19186 

19.99367 
17.80653 

22.03368 

96. 13841 
148.35681 
50.71474 
89.34367 

35.43477 
12.25731 
12.15020 
81.89682 

64.12947 
162. 69437 

1.44000 
29.25403 

62.52603 

80. 633 74 
83.46530 
90.24998 
68. 18596 

10.95730 

22. 73172 

F RAT! 0 

2. 3480 
1.3952 
0.0836 
5.5651 

2.6785 
7.5753 
0.0147 
0.4453 

2. 7127 
6.4752 
o. 8795 
0.7833 

0.9693 

4. 2293 
6.5264 
2.2310 
3. 9304 

1.5588 
0.5392 
0.5345 
3.6028 

2.8211 
7.1571 
a. 0633 
1.2429 

2. 7506 

3.5472 
3. 6 718 
3.9702 
2. 9996 

0.4820 

(Continued) 

SHARP BLADE SERIES 
TABLE OF MEAN VALUES 

FOR 
END l DISP INDEX DATA 

FACTOR VALUE JF MEAN STD ERROR OF MEAN 

OVERALL MEAN 4.8545 0.5960 
DIAMETER 

O LEVEL 6.2554 1.1919 
l LEV EL 3.4554 1. 1919 
2 LEVEL 6.5982 1.1919 
3 LEVEL 3. 1089 1.1919 

T !ME IN CHAMBER 
O LE VE L 7.1607 1.1919 
l l EV EL 5. 12 68 1. 1919 
2 LEVEL 4.7268 1.1919 
3 LEVEL 2.4036 1.1919 

MOTOR SPEED INDEX 
O LEVEL 3 .1429 1.1919 
l LEVEL 4.3250 I.1919 
2 LEV EL 4.2661 1.1919 
3 LEVEL 7.6839 1.1919 

FEEfl RATE !~DEX 
O LEVEL 5. 20 18 1.1919 
l LE VE L 4.0812 0.8428 
2 LEV EL 6. 0536 1.1919 

ROTOR ANGLE INDEX 
O LE VE L 4. 2304 1.1919 
l LEV EL 1. 6982 1.1919 
2 LEVfl 6.2304 1.1919 
3 LcVH 7. 2589 1.1919 

LATERAL POSIT ION INDEX 
O LE VE L 5. 2 089 1.1919 
l LEVEL 2. 70 54 1. 1919 
2 LEVEL 6.1321 1.1919 
3 LE VE L 5. 3 714 1.1919 

L_EDGFR OR I ENT AT !ON ["JDEX 
O LEVEL 2.8625 1.1919 
l L tV EL 3.4000 1.1919 
2 LEV EL 6.6089 1. 1919 
3 LE VE L 6.5464 1.1919 

CUTT l~G HEIGHT INDEX 
0 LEVEL 6.8571 1.1919 
1 LE VE L 5. 4696 1.1919 
2 LEV EL 3.5455 0.8428 

C.G. !ff!GHT INDEX 
O I EVEL 2. 5964 1.1919 
l LEV EL 4.1464 1. 1919 
2 LCVEL 7. 9375 1.1919 
3 LEVEL 4. 73 75 1. l 919 w ....... 

N 
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APPENDIX E 

STEM PHYSICAL PROPERTY TEST DATA 

SE BE 
Average Linear Li near x Shea·r Def1 ection 

Nomi na·l Size Dia Density Density Cutting ·Percent Energy Energy 
Y•A+BX+CX.2 Run of Plant at Cut at Cut at Cut Height Moisture per for y 

No. (In) (In) . Wet Bas.is Dry Ba-sis (In) Dry Basis Unit. Dia 1 I.n liefl SE/BE SE/GXMXH Curve No 
(Gm/In) (Gm/In) (In-Lb/In). (In~Lb/! n) 

54 3 13/64 x 11 1/8 0. 1917 5 0.22430 0. 13510 l.25000 66. 025 43.068 0.87100 ir9.447 7827.461 5P- l 

54 7 l 3/ 64 x 14 5/ 8 0 .. 19750 0.24320 0 .14:040 l ;25000 73.219 49. 132 2.08072 23.613 6264. 65.2 5P-1. 

047 13/64 x 14 5/8 0. l6225 0.26840 0. 14790 1.37500 81.473 30.221 1 .·66135 18. 191 3491. 614 5P-l 

040 13/64 x 9 3/ 8 0. 16775 0. 16580. 0.13840 1.50000 19.797 28.307 2. 161 37 13. 097 8259·. 145 5P- l 

04 3 13/6•4 x 14 5/8 0. 16750 0 .. 10720 0.08350 l. 50000 28.383 59. 781 0.91939 65.022 17292.660 5P-1 

539 13/"64 x 14 .5/8 0.15725 0.23100 0. 1400.D l. 62500 65.000 24. 618• 0.74196 33. 17 9 3304.673 SP.-1 

032 13/64 x 9 3/8 0.169Z5 0.20000 0 .. 11910 1. 75000 67.926 24.092 0. 95r65 25.316 5827.238 5P- l 

535 13/64 x 11 1/8 0.16625 0.25230 0.1283.0 l. 7 5000 96.648 32.288 1. 12907 28. 597 5216.988 5 P-1 

52 13/64 x 12 7/8 o:rn625 · 0.23050 0. 17000 2·. 37 500 35.590 46.003 1.00004 46. 001 7030. 063 5P-2 

516 13/64 x 9 3/8 0.20625 0.21250 0.11670 2. 12500 82. 090 27.027 l.01617 26.597 6152.691 5P-2 

Sl 13/64 X 9 3/ 8 0. 18350 0.33550 0. 18210 2.00000 84.240 32.066 2.08072 15. 411 4623.496 5P-2 

5 32 13/ 64 x 9. 3/8 o. 16550 0. 15560 0. 13000 2.75000 19. 692 31. 811 0.62906 50.569 9889. 7a9 5P-2 

520 13t64 x 9 3/8 0. 15625 o . .14330 O. llHO 2.62500 22. 165 31. 382 0.43550 72.059 10593.800 SP-2 

029 13/64 x 11 1/8 0.16250 0.14370 0.11'620 2.87500 23. 666 33·. 351 0. 66131 50.432 946Ll68 SP-2 

S60a 13/64 x 11 1/8 0.26350a 0.18860 0. 14720. 2.62500 28.125a 2 0. 37 2 0.98391 20.705a 4403. 281 SP-2 

051 13/64 x 12 7/8 0.16975 0. 17540 0.13580• 2.87500 29. 160 27.974 0.80648 34.686 5617.809 SP-2 

034 13/64 x 11 1/8 0. 19000 0.15270 o. 11570 2.75000 31. 97 9 30. 426 0. 69357 43.868 8122.523 SP-2 

528· 13/64 x 12 7/8 o. n 315 0.20310 0.15280 2.62500 32.918 32.083 0.70970 45.206 5564.258 SP-2 

031 13/64 x 11 1/8 0.14300 0. 16680 0.12410 2.62500 34. 407 27. 071 0.30646 88.333 6615. 988 SP-2 

Sl3 1.3/64 x 12 7/8 0.18675 0.21670 0.15530 2.62500 39.540 38. 417 L 08068 3·5. 549 4497.953 SP-2 

D24a lJ/64 x ·11 1/8 0.13875a 0. 13710 0.09650 2.87500 42. 012• 28-. 27 2 0.30646 92.252" 8406. 375 S P-2 

s'50 .13/64 X 14 5/8 0. 16350 0.16670 0. 117 20 2.87500 42.235 29.043 0. 77422 37. 513 5402.617 SP-2 

557 .13/64 x 14 5/8 0.16775 0.20700 0.13720 2.62500 50.874 42. 153 0.75809 55.605 6314.770 5P-2 

.056 B/64· x 12 7/8 0.16750 0. 2].170 0.16180 2.87500 67. 92 3 31. 431 0.93552 33.598 4074.875 SP-2 w __. 
.i:::,. 



APPENDIX E (Continued) 

SE BE 
Average Li.near Linear x Shear Deflection 

Nominal Size Di a Density Density Cutting Percent Energy Energy 
Y•A+B.X+cx2 Run of P.lant at Cut at Cut at Cut Height Moisture per for y 

No. lI n} (In) Wet B·asis Dry Basis (In} Dry Basis Unit Di a l In Oefl 5 E/BE H/GXMXH Curve No 
(Gm/In) {Gm/In) {ln-Lb/ln} (In-Lb/In) 

014 13/64 x 11 1/8 0.16725 0.16100 0.12180 3.12500 32. 183 20.985 0.62906 33.360 5313.523 5P-3 

018 13/ 64 x 9 3/8 0.18525 0.15000 0.11310 3.12500 32. 62 5 25.633 0. 51615 49.663 8266.711 5P-3 

553• 13/64 x 11 1/8 o. 27650° 0.21050 0.14270 3.12500 47.512 6 21.094 o. 69357 30.413° 4085.046 5P-3 

064 13/64 x 12 7/8 0.15225 o. 18420 0.11860 3.25000 55. 311 26.104 0.50808 51. 377 4991. 855 5p.,_3· 

070 13/64 x 12 7/8 0.18775 0.20520 0.12130 3.25000 69. 167 38 .. 763 o. 40324 96. l28 6653.961 5P-3 

523 13/64 x 12 7/8 0. 17950 0.29620 0.17190 3.00000 n.309 39. l 06 0 .• 79035 49.480 4650.586 5P-3 

013 13/64 x 9 3/8 0.15400 0.18780 0.10800 3.00000 73.888 21.785 0.48389 45.022 5611. 660 5P-3 

DB 13/64 x 11 1/8 0.15800 0.12430 0.09030 3.37500 37. 652 49. 001 0. 77422 63. 291 16070.470 5P-3 

023 13/M x 9 3/8 0.15825 0.18250 0.11450 3. 62500 59. 388 33.268 0.54841 60.663 8818.363 5P-3 

072 i3/64 x 14 5/8 0. 17525 0.22070 0.13490 3.62500 63.602 29.452 0.41937 70. 229 4138.180 5P-3 

066° 13/64 x 14 5/8 0. 15925 0. 27950 0.14720 4.12500• 89. an• 38.893 0.32259 120.565° 4315.090 SP-3 

555 17/64 x 12 7/8 0.24025 0.30110 0. 23090 l. 37500 30. 402 47.264 3. 838ff5 12.312 5529. 258 5P-4 

551 17/64 x 12 7/8 0.20950 0.36470 o. 25660 l. 12500 42. 127 55.680 4 . .43565 12.553 5377. 828 5P-4 

559 17/64 x 9 3/8 0. 17250 0.41580 0. 22240 1. 37 500 86.960 73.607 3.82272 19.255 8563.590 5P-4 

526 17/64 x 11 1/8 0.21825 0.31380 0.23350 1.875.00 21.675 53. 921 3.37109 15.995 7004.762 5P-4 

012 17/64 x 14 5/8 0.21275 0.34210 0.27080 1.87500 26.329 64.048 2.79043 22.953 5805.652 5P-4 

071 17/64 x 11 1/8 0.18800 0.27270 0.19590 l. 87 500 39.203 43. 927 2. 19363 20.025 6566.633 5P-4 

527 17/64 x 14 5/8 0.21775 0.27450 0.23350 2.12500 17. 558 61. 156 3.33883 18.316 6908.582 5P-5 

519 17/64 x 14 5/8 o. 23725 0.36100 0.29850 2.12500 20. 938 66. 137 2.67752 24. 701 5681.066 5P-5 

068 17/64 x 11 1/8 0.22200 0.30330 0.24170 2.00000 25. 486 68.587 1.93556 35. 435 9218.543 5P-5 

016 17/64 x 12 7/8 0.21100 o. 28670 0.21570 2.00000 32.916 51. 859 2.59687 19.970 6371. 535 5P-5 

07 17/64 x 14 5/8 0.20825 0.27960 D.20000 2. 250.00 39.800 47.587 1. 70974 27.833. 5277.750 5P-5 

5.52 17/64 x 9 3/8 0.20150 o. 31710 0.20630 2.25000 5 3. 7 09 71.723 2.03233 35. 291 10941.600 5P-5 

015 17/64 x 14 5/8 0. 20000 o. 28970 0.18500 2.12500 56. 594 48.002 1.59683 30.061 5138. 121 5P-5 w __. 
u, 



APPENDIX E (Continued) 

. SE BE 
Average Linear Li-near x Shear Deflection 

Nomi na 1 Size Di a Density Density Cutting Percent Energy En.ergy 
Y=A+Bx+cx 2 Run of Plant at Cut at Cut at Cut Height Moisture per for y 

No. Ctn l {[ n) Wet Basis Ory Bas:i s (In) Ory Basis Unit Dia 1 l n Defl SE/BE SE/GxMxH Curve No 
( Gm/! n) (Gm/In) ( ln-Lb/1 n) (ln-Lb/ln) 

069 17/64 x 9 3/8 0.21900 0.38200 0.23840 2.12500 60.234 62.692 2.77430 22.597 7939.051 SP-5 

011 17/64 x 12 7/8 0. 19800 0.38400 0.23350 2.00000 6-4. 453 62.563 2.30654 27. 124 5738.961 SP-5 

067 17 I 64 x 9 3/ 8 0.22275 0.36100 0.20040 2.00000 80.139 36. 611 1. 69361 21.617 4905.988 SP-5 

522 17/64 x 11 1/8 0. 24900 0.23130 0.18400 2.87500 2 5. 7 06 51. 822 2.06459 25.100 9133.363 SP-6 

545 17/64 x 9 3/8 o. 21675 0.33580 0.24730 2.50000 35.786 54.770 1.95168 28.063 7890.098 SP-6 

S36 17/64 x 12 7/8 0.23200 0.31180 0.22920 2.62500 36.038 57. 84 4 2.14524 2 6. 964 6534.730 SP-6 

58 ·17/64 x 11 1/8 0.23200 0.37540 0.26230 2.75000 43. 120 62. 294 2.30654 27.007 6764.590 SP-6 

S15 17/64 x 14 5/8 0.20750 0.25780 0.17870 2.87500 44.264 41.789 1.46780 28. 471 5026.641 SP-6 

S4D 17/64 x 9 3/8 0.19800 0.28350 0.19100 2.50000 48.429 4 3. 7 94 1.88717 23.206 7472.836 SP-6 

546 17/64 x 12 7/8 0.20800 0.39340 0.23500 2.87500 67.404 72.459 1. 53231 47.287 6487. 891 SP-6 

514 17/64 x 11 1/8 0.20100 0.38920 0.22590 2.75000 7 2. 288 52.385 1. 67748 31. 228 5486.898 SP-6 

Dl 17/64 x 12 7/8 0.21300 0.41140 0.23100 2.50000 78.095 41.680 1.19359 34. 919 3568.643 SP-6 
-~-~-

S6 17/64 x 14 5/8 0.21500 0.38530 0.30250 3.12500 27.370 90.746 2.35493 38.535 7303.383 Not Plotted 

028 17/64 x 12 7/8 0.22750 0. 29540 0.26050 3.37500 13. 397 78.500 1.74200 45.063 9360.578 SP-7 

033 17/64 x 14 5/8 0.20670 0.23350 0.20170 3.37500 1 5. 765 38.455 1. 69361 22.706 5106.969 SP-7 

027 17/64 x 14 5/8 0.21600 0.28800 0.24450 3.37500 17. 791 71.209 2.03233 35.038 7667.254 SP-7 

039 17/64 x 12 7/8 0.21950 0.32690 0.27100 3.37500 20.627 130.272 1.72587 75.482 14037 .140 SP-7 

044 17/64 x 11 1/8 o. 19950 0.24580 0. 19410 3.62500 26.635 45. 017 0 .. 67744 66.452 7466.035· SP-7 

050 17 I 64 x 9 3/ 8 0.18875 0.18040 0.13800 3.50000 30. 7 24 36.643 0.75809 48.336 9825.977 SP-7 

046 17/64 x 9 3/8 0.19250 0.27000 0.20510 3.37500 31. 643 42. 901 1.19359 35. 942 7686.344 SP-7 

049 17/64 x 11 1/8 0.18750 0.23370 0.16880 3.50000 38. 447 54. 505 0.96778 56.320 9507.598 SP-7 

w __. 
m 



APPENDIX E (Continued) 

SE 'BE 
Average Linear Linear x Shear Deflection 

Nomina·l Size. Dia Density Density Cutting Percent E.nergy Energy 
Y=A+BX+cx2 Run of Plant at Cut at Cut at Cut Height Moisture per for y 

No. lln) (In) Wet Basis Dry ·easis (In) Dry Basis Unit Dia 1 In Oefl SE/BE SE/GXMXK Curve No 
(Gm/In) (Gm/In) (In-Lb/In) (In-Lb/In) 

S30 21/64 x 9 3/8 0.24950 0.36870, 0.31930 1.12500 15.471 77. 784 14.32311 5.431 10205.600 SP-8 

Sl7 21/64 x 9 3/8 0.26325 0.52840 0.44120 1. 12500 19. 760· 137.247 l3.61341 10.082 12564.960 SP-8 

048 21/64 x 14 5/8 0. 25625 0.45630 0,.36570 1.37500 24. 774 7 9. 764 7.80674 1 o. 217 5420.641 SP-8 

52.9 21/64 x 12 7/8 0.28325 0.53530 0. 42000' 1. 12500 27.452 llC.7-92 12.50046 8;863 72,90.457 SP-8 

053 21/64 x 14 5/8 0.23025 0.42100, . 0.32360 1.25000 30.098 86. 977 7.90352 11. 005 6406.484 SP-8 

524 21/64 x 12 7/8 0. 27900 0.56610 0.33300 1. 12500 70.000 91. 020 8.; 83904 10.297 5663.516 SP-8 

562 21/64 x 14 5/8 ·0.23075 0.38650 0.32920 1.87500 17.405 97. 526 5.22600 18.662 7824.652 Not Plotted 

S58 21/64 x 14 5/8 0.27250 0.40330 0. 33440 1. 75000 20.604 90.918 4.96793 18. 301 6990. 629 Not Plotted 

D25 21/64 x 11 1/8 0.25850, 0.36690 0.31870 2.37500 15. 123 111.815 5. 03244 22.219 12423.540 SP-9 

026 21/64 x 9 3/8 0.25800 0 .·S2450 0. 43920 2.00000 19.421 108. 031 5. 74315 18.814 9963.754 SP-9 

054 21/64 x 12 5/8 0.22550 0.37600 0. 29960 2.12500 25.500 67.752 4.24209 15. 971 6347.105 SP-9 

S54 21/64' x 11 1)8 0. 19175 0.43250 0.34050 2.00000 27. 019 124.898 5.32278 23.465 11772. 320 SP-9 

041 21/64 x 11 1/8 0.24275 0.52450 0.38990 2.37500 34. 521 133.529 5.06470 26.365 10378.160 SP-9 

073a 21/64 x 14 5/8 0.21375 0.29870 o. 2405oa 2.75000 24. l 99a 54. 331 1. 82.265 29.809a 5640.414 SP-9 

021 21/6f x 9 3/8 0. 22500 0.37270 · 0. 29890 2. 87 500 24.690 69.737 1. 58070 44.118 9051. 613 SP-9 

54 21/64 x 9 3/8 0.24125 0.50830 0.39750 2.50000 27.870 92. 425 5.03244 18. 366 8796.109 SP-9 

S56 21/64 x ll 1/8 0.20250 0.43980 0.33850 2.50000 29.926 130·. 503 3.98402 32.757 12096.370 SP-9 

042 21/64 x 12 3/8 0.25275 0.44870 o. 33430 2.87500 34.220 93.938 2.83881 33.091 7672. 398 SP-9 

05 21/64 x 9 3/8 o. 23900 0.38840 0. 28930 2.75000 34. 255 90.272 1. 69361 53. 301 11243. 290 SP-9 

060 21/64 x 12 7/8 0.25500 o. 52630 0.37640 2.87500 39.824 93.919 3.04850 30.808 6285. 832 SP-9 

035a 21/64 x 9 3/8 0.28325 0.63870 0.45310a 2.50000 40.962a 147.965 4.70985 31.416a 11206.850 SP-.9 

Sll 2li64 x 12 7/8 0.23600 0. 60720 0.¢2500 2.81500 42.870 76.110 3.32270 22.906 4415.234 SP-9 

537 21/64 x 11 l/8 0.26525 0.59850 0.39600 2.75000 51. 136 96.516 3.09689 31. 166 6573.969 SP-9 w _. 

" 



APPENDIX E (Continued) 

SE BE 
·Aver·age L ioea·r 'Linear x Shear D.efl ecti on 

Nominal She Di a .Density Derislty Cutting Percent Energy Energy 
Y=A+BX+cx2 Run of Plant at Cut at Cut at Cu.t Height Moisture per for. y 

No. tlril (ln) Wet hsis Dry s·asis (In) Dry Basis Unit Dia l In Defl SE/BE SE/GxMxH Cu.r.ve No 
(Gm/In) (Gm/in) (In-Lb/In) (In-Lb/.In) 

062 21/64 x 14 5/8 0.23300 0.40760 0.33290 3.25000 22.439 84.179 2.01620 41.751 6404.176 SP-10 

538 21/64 x 14 5/8 0.26175 0. 42!150 O·. 34230 3.00000 25·. 182 82. 820 2.85494 29.009 5993.516 SP-10 

06 21/64 x 11 1/8 0.24375 0.35880 0.28090 3. 2.5000 27.732 67. 337 2. 56461 26.256 7650.605 SP-10 
- ·------ ---- --- . ------ -·----- - . 

59 21 /64 x 9 3/8 0.22675 0.37000 o. 2'8520 3. 0000.D 29.730 60.094 3. 04850 19.713 7856.863 Not Plotted 
--·----- ··------

544 21/64 x 14 5/8 0.24925 0.42530 0. 32320 3. 12500 31.590 76.206 2.79043 27. 310 5556.316 SP-10 

533 21/64 x 11 1/8 0.28100 0.43680 0.32170 3.00000 35.778 88. 168 2.70978 32. 537 8228.449 SP-iO 

065 21/64 x 12 7/8 0.24075 0.58880 0. 29300 3.12500 lD0.955 62.602 2.82268 22. 17.8 3745.133 SP-10 

57 21/64 x 12 7/8 0.24750 0.59530 O·. 28810 3.12500 106 .. 630 85.920 2. 12911 40.355 5083.988' SP-10 

019 21/64 x 9 3/8 0.26250 0.31550 0.25970 3.37500 21. 486 58.988 1.83878 32.080 9044. 551 Not Plotted 

Dl 7 21/64 x 11 1/8 0.26475 0.50960 o. 4028.0. 3.75000 26.514 95. 139 1.50006 63.424 7610.621 Not Plotted 

02 21/64 x Jl 1/8 0.27200 0.52480 D.39110 3.37500 35. l 06 85.772 3 .·016.24 28. 437 6662.563 Not Plotted 

512 25/64 x 14 5/8 0.26700 0.59350 0.49060 1.00000 20. 97 0 149. Z38 11.76818 i2.682 7797.496 SP-11 

53 25/64 x 11 1/8 0.32650 o. 65300 0. 53780 1.37500 21. 42·0 178.320 14.03278 12. 707 11132. 130 SP-11 

020 25/64 x 12 7/8 0.28250 0.64820 0.50830 1. 37500 27. 52 3 286.485 10.61330 26.993 15568.150 SP-11 

061 a 25/64 x 11 1/8 0.32350 0.88270 0.61i890a 1.00000 3l.962a 181. 888 18.38777 9.892" 8400.074 SP-11 

s10• 25/64 x 11 1/8 0.28975 0.55000 0. 39500• 1.25000 39.240" 135.027 12.48433 l 0. Bl 6a 10008. 030 SP-11 

058 25/64 x 11 1/8 0.30800 0,90060 0.50000 1.37500 80.120 106. 581 8.71000 12.237 4824 .• 363 SP-11 

55 25/64 x 14 5/8 0.28300 0.65800 o. 52140 l. 7 5000 24. 090 140.801 9.29067 15. 155 6635.516 SP-1 l 

542 25/64 x 12 7/8 o. 31125 0.57290 0.45950 l. 87 500 24.678 181. 087 10.29070 17. 597 11134. 040 SP-11· 

548 25/64 x 9 3/8 o. 31525 0.68340 0.51750 1.87500 32. 0 57 138.840 9.38744 14.790 9827.887 SP-11 

04 25/64 x 12 7/B. 0.26875 o. 64000 0.45540 l. 87500 40.535 88. 345 5.79054 15.257 4862. 367 SP-11 

09a · 25/64 x 12 7/8 0. 30150 0.62100 
. . a 

0.36970 1.87500 67.974a 127.368 7.88739 l6.148a 7224. 578 SP-11 

w 
.-J 
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APPENDIX E (Continued) 

SE BE 
Average Linear Linear x Shear Deflection 

Nominal Size Di a Density Density Cutting Percent Energy Energy 
Run of Plant at Cut at Cut at Cut Height Moisture per for y Y=A+BX+cx 2 
No. l In) (In) Wet Basis Ory Basi.s (In) Dry Basis Unit Di-a 1 In De fl SE/BE SE/GXMXH Curve No 

(Gm/In) (Gm/In) {In-Lb/In) (In-Lb/In) 

063 25/64 x 9 3/8 0.30975 0. 42700 0. 34770 2.37500 22.807 72.652 3. 85498 18. 846 8230.793 Not Plotted 

S34 25/64 x 12 7/8 0.29800 D.47960 0.38980 2.37500 23.037 103. 922 7.16156 14. 511 7632.629 Not Plotted 

059 25./64 x 9 3/8 0.27525 0.51930 0.41170 2.25000 26. 135 127. 513 5.77441 22.083 11878.390 Not Plotted 

S41 25/64 x 9 3/8 0.24625 0.44290 0.34730 2.12500 27.526 69.588 4. 66146 14.928 7600.648 Not Plotted 

S21 25/64 x 14 5/8 0.29200 0.53350 0.49120 2.62500 8. 611 125.855 6.64541 18. 9 39 7315.305 5P-12 

S 31 a 25/64 x 11 1 I 8 0.26125 0.36220 0.32390a 2.87500 11.824" 71. 915 6.38733 11.259" 8093. 984 SP-12 

s25a 25/64 x 11 1/8 0.28150 0.72430 0.62140a 2.87500 16.559a 172.355 5. 59698 30.794. 9700.555 SP-12 

S64 25/64 x 9 3/8 0.31800 0.68030 0.58280 2.87500 16.729 176.594 8. 96807 19. 691 12557.280 5P-12 

563 25/64 x 12 7/8 0.28950 0.69200 0.56490 2.75000 22.499 214. 661 5. 87118 36.562 10926. 7 30 5P-12 

037 25/64 x 12 7/8 0.29950 0. 53800 0.43500 2.50000 2 3. 67 8 155.792 6.01635 25.895 10200.170 5P-12 

010 25/64 x 14 5/8 0.29025 0. 72400 0.58180 2.87500 24. 441 · 280.969 5.04857 5 5. 65 3 12034.160 SP-12 

S6la 25/64 x 12 7/8 0.20000a 0.58160 0.44660 2.62500 30.228" 142.457 6.96800 20.444" 8627.859 5P-l 2 

022 25/64 x 14 5/8 0.26625 0.60000 0.44300 2.75000 35. 440 199.286 4. 77437 41.741 10299.640 5P-l 2 

549a 25/64 x 9 3/8 0.28350 0.65920 0.35130" 2.87500 87. 645a 7 5. 010 3.35496 22.358a 5504.543 5P-12 

036 25/64 x 14 5/8 0.27275 0.54230 0.46170 3.25000 17. 457 269.476 5. 20987 51.724 15409. 030 5P-13 

038 25/64 x 14 5/8 0.33125 0.52640 0.44420 3.12500 18. 505 150.832 4.01628 37.555 8885.328 5P-13 

052 25/64 x 11 1/8 0.29825 0.64190 0.49560 3.25000 29.519 135.678 5.58085 24. 311 8616.559 5P-13 

057 25/ 64 x 9 3/ 8 0 . .29000 0.45280 0.347.70 3 .. 12500 30.227 90. 415 3.93563 22.973 9659.480 5P-13 

045 25/64 x 11 1/8 0.24475 0.48470 0. 35330 3.25000. 37. 192 80.137 2.41944 33. 122 6739.902 5P-13 

S 18 25/64 x 14 5/8 0.27975 0.45460 0.39670 3.62500 14.595 154.245 3.37109 45.755 10521. 470 SP-13 

055 25/64 x 9 3/8 0.23325 0.43630 0.33800 3.75000 29.083 92. 940 2. 50009 37. 175 10304. 730 SP-13 

03 25/64 x 14 5/8 0.30150 0.63920 0.48880 4.00000 30.769 162.976 3. 19367 51. 031 7906.469 SP-13 

030 25/.64 x 12 7/8 0.28175 0.75850 0.49140 4.00000 54. 354 169. 271 2.14524 78.905 7860.875 SP-13 
---·-

8Denotes values cons dered outliers because of wide variation of average diameter. dry linear density~ or 
cutting height. In each nstance a superscript marks the run number, the X and Y values and the parti.cular (,,.) para·meter considered tow dely vary, i.e.~ diameter, dry linear density, or cutting height. _..., 
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