AN APPLICATION OF LINEAR PROGRAMMING TO

INDIVIDUAL FARM MANAGENENT DECISIONS USING AN AREA INFORMATION SYSTEM

By
LARRY L. BITNEY
Bachelor of Science University of Nebraska

Lincoln, Nebraska 2958

Master of Science University of Nebraska

Lincoln, Nebraska 1965

Submitted to the Froulty of the Graduate College of the Oklahoma State University
In partial fulfillment of the requirements
for the Degree of DOCTOR OF PHILOSOPHY

May, 1.969

AN APPLICATION OF LINEAR PROGRAMMING TO INDIVIDUAL FARM MANAGEMENT DECISIONS

USING AN AREA INFORMATION SYSTEM

Thesis Approved:

724850

PREFACE

I sincerely thank Dr. Odell L. Walker, graduate oommittee chairman, for his advice and encouragement thoughout this study and my entire graduate program. I greatly appreciate the advice and suggestions received from Dr. Ted R. Nelson, Dr。William L. Brant, and Dr. G. T. Stevens, Jr., graduate committee members.

Thanks are also due Roy Sharkey, area farm management agent, for his suggestions and assistance in the development and testing of the system described In this dissertation. I thank George Flaskerud and Roy Hatch for their help in fumishing data which were essential to the conduct of this study.

I am grateful to the Department of Agricultural Economics, the National Science Foundation, and United States Government for financial assistance during my graduate study.

I wish to thank Dr. P. A. Henderson, University of Nebraska, for his encouragement and inspiration which helped make this effort a reality.

I thank Miss Velda Davis for her advice and typing skills during the preparation of the final draft of this dissertation.

Finally, I wish to thank my wife, Linda, and my daughters, Shari and Jane, for their patience and encouragement throughout my graduate program.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Statement of the Problem 3
Statement of the Hypothesis 3
Previous Efforts in This Area 3
Objectives of This Study 5
A Survey of Related Programs in Other States 6
II. DEVELOPMENT OF AN AREA DATA BANK 10
Linear Programming 10
Delineation of the Area 12
Selection of Production Activities 15
Crop Activities 16
Crop Yield Variation 18
Livestock Activities 20
Government Farm Program Considerations 22
Representative Farms 26
Delineation of Representative Farm Resource Situations 27
III. DEVELOPMENT OF AN OPERATING SYSTEM 32
Alternative Approaches in Design 33
Design Characteristics of the Operating System 36
Selection of an Optimizing Program 38
The Information Loading Program (INFOID) 40
The General Purpose Subroutine (FMPLAN) 40
The Data Revision Routine 42
Construction of A Right-Hand Side 54
Execution of the Optimizing Subroutine and Subsequent Checks on the Solution 55
The Individual Farm Data Form 56
The Government Program Comparison Report (GOVPRO) 61
Part I 61
Part II 65
Part III 67
Other Information 67
Mechanles 67
Chapter Page
III. (Continued)
The Individual Farm Detailed Report (DETREP) 72
Part I 72
Part II 77
Part III 77
Other Information 80
Mechantes 80
The Parametric Price Report (PARAMP) 80
Constant Price Comparisons 88
Mechanics 89
Summary 90
IV. APPLICATIONS OF AN AREA FARM MANAGEMENT INFORMATION SYSTEM 91
Application Techniques 91
Representative Farms 92
Actual Farms 95
Administrative Recommendations 99
Development 99
Maintenance 100
V. SUMMARY AND CONCLUSIONS 102
A SELECTED BIBLIOGRAPHY 108
APPENDIX 110
Table Page
I. Coefficients of Variation for Yields of Selected Crops in North Central Oklahoma 19
II. Representative Farm Resource Situations Selected
for North Central Oklahoma 30
III. The User-Controlled Functions of the General
Purpose Subroutine, the Variables Necessary to Execute Them and the Card Format 44
IV. A Sample Listing of Input Information for the General Purpose Subroutine 46
V. Detalled Production Activity Costs as Printed by the General Purpose Subroutine 48
VI. The Individual Farm Data Form 57
VII. The Government Program Comparison Report 62
VIII. A Partial Listing of the Detailed Solutions and Shadow Prices as Printed With the Government Program Comparison Report 68
IX. The User-Controlled Functions of the Government Program Comparison Report, the Variables Necessary to Execute Them and the Card Format 70
X. The Individual Farm Detailed Report 73
XI. A Partial Listing of the Price Ranges, IncomingPrices and Prices Used for the Innear ProgrammingProblem, as Printed With the Individual FarmDetailed Report81
XII。 The User-Controlled Functions of the Individual
Farm Detailed Report, the Variables Necessary to Execute Them and the Card Format 84
XIII. The Parametric Price Report 87
XIV. Explanation of the Activity Abbreviations Used in the Linear Programming Model 111
XV. Explanation of the Constraint Abbreviations Used in the Linear Programing Model 114
XVI. The A Matrix and the Objective Functions Used in the Linear Programming Model 116
XVII. An Example of the Right-Hand Sides Computed for
Three Government Program Participation Alternatives 128
XVIII. Fortran Source Listing for the Information Loading Program (INFOLD) 130
XIX. Fortran Solure Listing for the General Purpose Subroutine (FMPLAN) 132
XX. Fortran Source Listing for the Government
Program Comparison Report (GOVPRO) 135
XXI. Header Card Listing for the Government Program Comparison Report 137
XXII. Fortran Source Listing for the Individual Farm Detailed Report (DETREP) 141
XXIII. Header Card Listing for the Individual Farm Detailed Report 145
XXIV. Fortran Source Listing for the Parametric Price Report (PARAMP) 151

LIST OF FIGURES

Figure Page

1. Map of Oklahoma Showing North Central Area Included in This Study 14
2. A Generalized Flowchart of the General Purpose Subroutine 41

CHAPTER I

INTRODUCTION

Abstract

Low net farm income is frequently cited as a symptom of problems existing in the agricultural sector of the United States' economy. In 1967, average annual per capita income for the farm population was $\$ 2037$ as compared to $\$ 2784$ for non-farm residents [22, p. 50]. Low net income on some individual farms is caused by a lack of resources. The operators do not possess sufficient land, capital or human resources to make a decent living. Alternatively, other farmers possess sufficient resources, but do not employ them efficiently. The purpose of this study is to provide a means of improving net income through well developed decision making techniques which have had limited application at the farm level.

The tendency in the economic system is toward an equilibrium of returns to a resource in all of its possible uses [17, pp. 291-299]. But, most resources employed in farming are not earning returns comparable to those possible in alternative employments, even if allowances are made for risk and other factors. Thus, a basic problem is that of resource disequilibrium between the farm and non-farm sectors of the economy. Several theorles have been advanced in an effort to explain the persistence of this problem [20, Ch. 6, pp. 28-51].

An equalization of returns to resources between the farm and non-farm sectors is the extent of economic Justice which farmers may

expect in the long run. The farmer with limited resources generally would realize a low income relative to the non-farm level even if returns to resources were equal between the two sectors. Studies and programs relating to the growth of farm firms, adJustments in resource bases and farm organization, and alternatives for farmers displaced as others expand their resource bases have been addressed to the problems of the small farmer.

Aslde from the problems of adJustment, both'small and large farmers must make decisions regarding the use of the resources which they possess. As pointed out above, the problems of a small farmer may be much broader than efficiency of resource use, but his income may be increased to some degree through more efficient use of his existing resources. Also, adjustment must come about through decisions of individual farmers. If farmers are using decision making techniques which will enable them to use their resources efficiently, they will be more likely to adjust rapidly. If the adjustment involves expansion of the resource base, they would be in a better position to determine the resources which, if added, would be most effective in increasing their income.

If the commercial former employs decision making techniques which result in efficientresource use, he may be able to realize an income level comparable to that in the nonwfarm sector. Macromeconomic factors affecting prices of farm outputs and inputs will of course finally affect the level of income which he realizes.

This study is limited to the micro-economic problem of efficient resource use on individual farms, Macro-economic problems, some of which were mentioned above, are recognized but are not within the
scope of this study. Prices, government farm program provisions and other parameters which the individual farmer cannot directly affect are treated as given.

> Statement of the Problem

Resources employed on Oklahoma farms generally do not earn returns comparable to those possible in alternative employments in other industries. The low return condxtion is partially due to inefficient resource use on individual farms.

Statement of the Hypothesis

An educational program utilizing existing decisĭon making techniques and input-output data could increase resource use efficiency and returns to resources on Individual farms In Oklahoma.

Previous Efforts in This Area

The linear programming model has been used extensively in agricultural economics research during the past decade. Much of its use has been in the determination of profit maximizing farm plans for resource situations typical of those found on individual farms. Also, It has been generally considered that Inear programming could help the individual farm operator. It could enable him to select a combination of crop and livestock enterprises which would maximize his expected profit subject to his limited resources. But, few fammers have benefited directly from the use of linear programming. Why?

A primary reason that Iinear programming has not been employed extensively as an individual farm decision making guide is the large
amount of time (expense) which is required per farm. When individual farm linear programing is attempted, inadequate farm records usually necessitate the estimation of most input-output coefficients, such as the labor requirements by time period for an acre of a given crop. Also, much professional staff time is required to assemble the data in proper matrix form. Clemical time is then required to code the matrix for running on a standard linear programming computer routine.

When an optimum farm plan comes from the computer, professional staff time again is required to examine the optimal solution for faulty logic in the matrix or for ompted activities or constraints which would yield information important in farm planning decisions. Additional professional or clerical staff time is required to decode the computer output and transpose it into a form which can be understood by the lay audience, in this case individual farmers. Extensive post-optimal analyses require additional professional and clerical staff time. A general unwilingness of commercial farmers to pay the resulting price has resulted In few firms offering the service and few farmers receiving it.

Typical, or representative, farm Inear programming has been employed as an alternative to individual farm linear programming. For example, see Plaxico [19]. Using this approach, a farm is chosen which is representative of others in an area. Since the linear programming results can be generalized from one representative farm to many farms similar to it, considerable expense can be justified in matrix building, data coding, computing and interpreting optimum plans and post-optimal analyses for representative farms.

This approach was used in many farm management studies in the
early 1960° s. In most cases, the linear programming results were published in bulletin form for general distribution. Two weaknesses of this approach were realized. First, the time lag from the computer to the reader was often six months or longer. Changes in government programs, prices or other factors during this time of ten made the results obsolete before they reached their intended audience. Also, the capability of revising the linear programming model and publishing a revised set of optimal farm plans was not retained. Second, published optimum plans for representative farms were not usually an integral part of an educational program with farmers, but were the publication of research results. Thus, generalization of the results from representative farms to actual farms was usually the duty of the farmers.

Objectives of This Study

The representative farm approach may serve as an effective technique in guiding individual fammanagement decisions if the weaknesses mentioned above are elfminated. In addition, the input-output data Which are complled for use in programming representative farms may serve as a data source for individual farm linear programing. If the latter is to be reallzed, the entry of individual farm resource situations and input-output data revisions into the system must be possible with relatuve ease.

This study was initiated to develop a pilot system which could serve both purposes efficiently. The specific objectives of this study are:

> 1. To develop a farm management information system for an economic farming area of Oklahoma which will:
a. Produce optimum organizations of representative farms in the area;
b. Allow rapid evaluation, with respect to organization and income, of actual, predicted and/or proposed changes in;
(1) Farm product or input prices
(2) Input-output coefficients
(3) Government farm program provisions
(4) Farm resource bases
c. Allow rapid dissemination of the above results to area extension agents, county extension directors and farmers;
d. Produce optimum organizations of actual farms in the area when indyvidual farm resource bases and certain other key data are provided.
2. To explore the use of the Information generated in objective one in a farm management education program with farmers.

A Survey of Related Programs in Other States

As noted earlier, linear programming has been used extensively in farm management research. It has also been used in varying degrees in farm management education programs with farmers. A national coordinating committee on the use of electronic data processing in farm management, in cooperation with the Federal Extension Service, surveyed
state universities in early 1968 to determine the characteristics of their farm record programs and the manner in which electronic data processing equipment and techniques were employed in their other extension education programs. The pubiication resulting from this survey indicated that twenty-three states were utilizing electronic data processing techniques in forward planning and decision making programs as a part of their extension farm management efforts [16].

A letter was written to a person in each of fourteen state universities which indicated in the above survey that they used linear programming in their farm management extension program. The following questions were asked in the letter:

1. To what extent is whole farm linear programming used in your extension farm management program? How much emphasis is placed on it? If individual farms are being programed, how many do you program per year?
2. What is the source of data for your linear programming? Individual farm records? Estimated budgets for similar areas or soils? Other?
3. How are these data used in forming the Inear programming model? Thàt is, do professional or clerical personnel code the data for entry into a standard Iibrary program, or do you have a spectal computer program which aids in this process?
4. What is the source of the computer program used in reaching an optimal solution? Is it a library program furnished by a computer company, or has it been written at your instifution?
5. What form is the output in when it comes from the computer? Must it be tranposed by clerical personnel before it is ready for consumption by the Intended audience?

Twelve replies to the above inquiry were received. In response to the first question, all respondents indicated that they used linear programming primarily as a teaching device in their farm management extension programs. Three respondents indicated that linear programming was used primarily on farms participating in the Tennessee Valley Authority rapid adjustment program. The number of farms programmed per year ranged from twenty-five "over the past few years" to forty-five in one year. In general, the emphasis on linear programming seemingly ranged from a minor role to a position of dominance in the farm management extension programs involved.

In answer to the second question, all respondents but one indicated that they used individual farm data whenever it was possible. One respondent indicated, however, that he attempted to use activity budgets which reflected the level of management that the farmer was striving to attain rather than his present level. In every case, standard budgets and estimates from anmal science, agricultural engineerngig or agronomy staff members and/or county extension agents were used either as a check on the induridual farm data or as a substitute for individual farm data when they were not available.

A uniform response was received to the third question. All of the respondents indicated that professional personnel assemble the data into a linear programming matrix and clerical workers perform the coding and keypunching operations prior to execution of the linear programming routine.

In response to the fourth question, five respondents indicated
that they used a linear programming routine which was not furnished by a computer manufacturer. Two of these used the same program, which Included an option for a mixed integer solution. All others utilized Itbrary programs furnished by a computer company.

All respondents indicated in answer to question five that their computer output must be simplified for presentation to the individual farmer. One respondent Indicated that he preferred to transform the output himself while he was interpreting the solution.

In conclusion, none of the responses would indicate that an inform mation system approach to the use of linear programming is being employed by these state universities at this time. One respondent indicated that he had hopes of compiling a large data bank of budgets on magnetic tape so that a matrix could be formed by calling for specific budgets on the tape. Another respondent was developing a procedure for using farm record data in linear programming. The procedure would require professional or clerical staff time for data manipulation and revision, however.

The remainder of this thesis describes the development and disw cusses the potential use of an area farm management information system. Chapter II describes the development of an area data bank. Chapter III describes the development of an operating system which uses information from the data bank to develop reports and other information for use by farmers, their advisors and educators. Chapter IV discusses the manner in which the se reports and other information may be used in a farm management education prograin With farmers. Chapter V summarizes the development of the system and its uses. In addition, possible future refinements, roles, and developments of systems are discussed.

CHAPTER II

DEVELOPMENT OF AN AREA DATA BANK

An area data bank, for purposes of this study, is that portion of an area information system which stores the data needed for repetitive use by the system. The area data benk and the operating system, which will be disoussed in Chapter $I I I$, make up the linear programming portion of an area farm management information system. The decisionmaking model which is employed by the system influences the types of data stored and the manner in which it is organized within the data bank. Consequently, a brief discussion of the decision-making model employed in this study follows.

Linear Programming

Linear programming was selected as the decisionmaking model for the area information system. Among the operational tools of agricultural economists, for use at the field level, linear programming most efficientiy approximates optimal organization decisions of an individual farmer. It chooses a combination of enterprises which will yield maximum net return to a given set of fixed resources, when prices, costs, and production coefficients are specified.

The general linear programming model (in matrix form):

Maximize $Z=C X$
Subject to $A X \leq B$ and $X>0$
where: Z represents the value of the objective function, which is net return to fixed resources for purposes of this study
C is a $n \times I$ vector of costs or returns for each of n activities and is commonly referred to as the objective function
X is a $n \times 1$ vector of aetivity levels for each of n activities
A is a $m x n$ matrix of input-output coefficients
B is a $m \times I$ vector of resources and restrictions and is commonly referred to as the right-hand side

For a discussion of the theory of linear programming, see Dantzig [6], Heady and Candier [13] or other Inear programming texts.

The standard lineax programming tableau for a farm planning probIem furnishes a pattern for the efficient organization of a data bank. The A matrix typicaliy contains orop yields, labor requirements of crop and livestock enterprises, livestock teed requirements and their resulting production, general govermment program provisions, capital requirements and accounting and transfer functions. The C vector, or objective function, contains the costs assoclated with production activities and prices associated whth buymsell activities. The B vector, or right-hand side, typicaliy contains the resource situation of an actual or representative farm。

The structure of a linear programming model for use in this system differs from the structure of a model designed only for a specific probLem and for a single use, however: "Ease of changing prices, govermment program benefiyts and pesouree situations in the linear programmagt
model is a prime consideration in its design. Also, numerous account.. Ing vectors must be Included in the model to expedite the development of readable, reproducable reports printed by computer. In general, any alternatives which increase the flexibility of the linear programming model should be incorporated if possible.

In the data bank, space for three different objective functions is allowed in an array which is named ALTC. No right-hand sides are stored in the data bank as they are usually different for each run. The A matrix is stored in the data bank in the exact form in which. it is used for repeated linear programing runs. In addition to A and $A L I C$, arrays which contain row and column names, slack variable indicators and the dimensions of A are stored in the data bank. Also, detailed production activity costs and coefficients of variation for crop yields are stored In arrays called COST and ITBLD, respectively.

The following sections of this chapter discuss considerations, principles and guidelines for developing an area data bank. The development of an area data bank for north central Oklahoma is discussed concurrently for purposes of exposition.

Delineation of the Area

A basic step in the construction of an area system which will satisfy the objectives stated tu Chapter I is the delineation of an economic farming area. Such an area should be relatively homogeneous with respect to soil productivity, weather, feasible cropping enterprises, feasible livestock enterprises, market outlets for products, product prices and the availability and prices of inputs.

In previous studies, which were a part of the Great Plains

Regional Researoh Profect GF-5, Peonomio Problems in the Production and Marketing of Great Plains Wheat" and Southern Regional Research Project $\mathrm{S}-42$, "An Bconomic Appraisal of Farming AdJustment Opportunities in the Southern Region to Meet Changing Conditions", eight generalined economic fambe areas were delineated in Orlanoma using the above criteria.

The noth central Oklehome economic Arming area was selected for use in this study.. The north oentral Oklahona area includes all or part of Alfalfa, Blaine, Ganadian, Garfeld, Grant, Kay, KIngfisher, Logan, Major, Noble, and Woods Cownties (Figure I). As Indicated by the objectrves, the scope of this study was not only to develop a sysw tem for north central Okiahona, but to explore techniques which could be used In the later development of similar systems for other economic farming areas.

Much of the source data for sofls and cropping enterprises used in this study were taken from processed series P-550 [5] and unpublished data also resulting from Oklahona Agricultural Experiment Station Project 1323. This project was carried out in cooperation with the regional project mentioned above.

Soils considered in this study are the major ones in the Reddish Prairies land resource area in north central Oklahoma. The two classifications of soils used in this study are as follows: (1) Clayey soils, such as the Tabler-Kirkland soil association and (2) Loam soils, such as the Grant-Pond-Creed-Nash soil association. Soils within each of these groups were further divided into productivity classes (designated as $C B, C C, C D, L A, L B, L C$, and $L D$ for the clayey and loam soils, respectively). Solls in a given productivity class have similar physical characteristics, productivity capabilities, and management

Figure 1. Map of Oklahoma Showing North Central Area Included in This Study
requirements. Mean annual rainfall in the area varies from 36 inches at the eastern edge of the area to 26 inches at the western edge [.9, p. 14].

The area traditionally has been a wheat farming area with beef stocker calves utilizing winter wheat pasture. The development of hybrid sorghums and, more recently, a winter-hardy, greenbug resistant barley variety has enabled other enterprises to become competitive with wheat in the area.

Selection of Production Activities.

An area model should include enterprises typical of the area as well as enterprises which are not typical, but are feasible in the area. In the operation of the system, as the reader will note in Chapter III, output printing procedures, government program provisions and the necessity of accounting vectors make it easier to delete unwanted enterprises than to add new ones, although the latter will be possible. In the construction of the north central Oklahoma area model, an exhaustive list of enterprises was not included due to the fact that the primary objectives of this study pertain to the development of a system. Aditional enterprises would not have aided in reaching these objectives, but would only have expanded the size of the system and increased the number of mechanical details dealt with. A listing of the activities included in the area system and their abbreviations appear in Appendix Table XIV. The numeric portion of the activity abbreviations correspond generally to enterprise codes used in the computerized farm record system at Oklahoma State University.

Crop Activities

The crop enterprises considered for this area are, in general, those listed in Processed Series P-550 [5]. Crops include barley, grain sorghum, wheat, forage sorghum, alfalfa, wheat pasture grazed out by May first, sudan pasture for summer grazing and sudan pasture for winter grazing. All enterprises except alfalfa can be grown on all seven soil classifications noted earlier. Alfalfa is not considered feasible on clay - D or loam - D soils.

Certain modifications were made to the crop budgets appearing in Processed Series P-550 [5] In order to use them in the area model. Machinery ownership cost (taxes, depreciation and insurance) and a charge for interest on capital used to defray variable production costs are deducted from "total specified costs" because interest on variable production costs is charged internally in the model and fixed machinery costs are not desired in the primary objective function. A second objective function does include fixed machinery costs. The "machinery ownership cost" plus a seven per cent interest charge on the "machinery ownership cost ${ }^{70}$ and "machinery capital" are added to the amount which appears in the primary objective function for the respective activities. The use of the second objective function is twofold. When it is not used as an objective function in reaching an optimal solution, $i t$ gives a measure of net returns, less fixed machinery costs, for the plan selected. When it is used as an objective function in reaching an optimal solution, the resulting farm plan reflects a longer run planning situation in a period in which machinery decisions must be made. The second objective function is computed only for the crop enterprises, as the livestock enterprises considered for this area
are supplementary in nature and do not use significant amounts of machine time.

All production from cropland and native pasture is placed in inventory, or accounting, rows. This feature allows products to be used by livestock enterprises, or to be sold. Nine such rows are used and appear in the explanation of the constraints (Appendix Table XV) and the A matrix (Appendix Table XVI)。

The barley, grain sorghum and wheat inventory rows (7lBAP., 73GSP., 76WHP.) receive production from those respective activities and make it available for sale. The prairie hay or forage sorghum row (80HAY.) receives production from the forage sorghum production activities and from purchases by a buying activity and makes available hay for use by certain livestock activities. The alfalfa hay row (81HAY.) receives production from the alfalfa activities and makes it available for sale. The "grain sorghum stubble" row (73STB.) is an inventory of dry winter pasture as xt receives stubble "production" from the grain sorghum, forage sorghum, alfalfa, and sudan for winter grazing activities and makes it available for use by livestock activities. No sales are made from this inventory row. The October to March small grain pasture Inventory row (80 MAR .) receives production from the barley, wheat, and small grain graze out activities. This production can be used by livestock or sold. The March to May smail grain pasture inventory row (80MAY.) receives production from the small grain graze out activity. Production can be used by livestock or sold. If it is sold, however, an equal amoutn of October to March pasture also must be sold. The livestock enterprises typically use small grain pasture from the two periods in that proportion and it is unlikely that only March to May
pasture would be marketable. The native pasture inventory row (86NP...) receives production from the native pasture activities. These activities merely convert acres of native pasture into animal unit months (AUM's) of pasture, Also, production from sudan for summer grazing is placed in the native pasture inventory row. Livestock activities use from this row. No sales are made from it.

Crop Yield Variation

In most areas of Oklahoma, including the area selected for this study, weather is a primary factor affecting crop yield levels [12]. Thus, for a given soll, fertilizer application rate and set of cultural practices, considerable yield variation can result. In order to deal With this problem, an array of coefficients of variation (standard deviations + means) for crop yields was included in the area system. The indicators of yield variation could have been stored as standard deviations, rather than as coefficients of variation. Coefficients of variation were available for crop yields in north central Oklahoma, consequently they were stored in the data bank, avoiding a manual computation of standard deviations. The coefficients of variation for north central Oklahoma crops are given in Table I。

In the initial construction of the crop activities, average, or expected, crop yields were used. The operator of the area system may use the coefficients of variation by indicating on an input card (one per product) the crop, product, number of standard deviations and the direction of yield change desired. The yield adjustment is computed, is made in the A matrix, and harvest costs are adjusted to correspond with the adjusted yield level.

TABLE I
COEFFICIENTS OF VARIATION FOR YIELDS OF SELECTED CROPS IN NORTH CENTRAL OKLAHOMA

Crop	Product	Unit	Coefficient of Variation
Barley	Grain	Bu 。	. 437
	Winter Pasture (Oct-Mar)	AUM	. 473
Grain Sorghum	Grain	Cwt.	. 220
	Stubble	AUM	. 261
Wheat	Grain	Bu.	- 320
	Winter Pasture (Oct-Mar)	AUM	.473
Forage Sorghum	Hay	Ton	. 261
	Stubble	AUM	. 261
Alfalfa	Hay	Ton	. 228
	Stubble	AUM	. 228
Small Grain Pasture	WInter Pasture (Oct-Mar)	AUM	.473
	Spring Pasture (Mar-May)	AUM	.231
Sudan	Pasture	AUM	. 277
Native Pasture	Pasture	AIM	. 285

Source: George Flaskerud, Unpublished data compiled from Experiment Station records, Oklahoma State University, 1968.

The manner in which this feature of the model is used is at the disgression of the user. It is possible to determine optimum farm plans for different weather or yield expectations. The yield variation feature makes possible the comparison of optimum farm plans resulting from various yield levels. Thus, the "cost of a wrong decision" relating to weather outlook could be easily evaluated.

In most cases, it is unlikely that all crop yields would be varied in the same direction ard the same number of standard deviations, as certain crops are dependent primarily on winter moisture, while others are primarily dependent on summer moisture. As a result, the crops within each of the following groups would probably be varied together:

1. Wheat and barley.
2. Small grain pasture - March.
3. Small grain pasture - May.
4. Forage sorghum, grain sorghum, sorghum stubble,
alfalfa hay, alfalfa stubble, and sudan pasture.
5. Native pasture.

Livestock Activities

Livestock enterprises were selected which are typical of the area and which utilize forage produced by the cropping alternatives. An attempt was not made to include all possible livestock enterprises for reasons noted earlier, which relate to the scope of this study.

Three cow-calf, spring calving, activities are included. WinterIng rations of: native pasture (IIIRTA); native pasture and forage sorghum (ll2RTA); and native pasture, forage sorghum and small grain pasture (1lZRTA) are assumed for each of the three activities,
respectively. A cow-calf, fall calving, activity which utilizes winter small grain pasture (111VLA) is also included.

Seven stocker steer activities are included. All begin with the purchase of a 450 pound steer calf in mid-October. Three of the activities assume that the calf is kept one year. Wintering rations of: native pasture (141TTA); native pasture and forage sorghum hay (142TMA); and native range and sorghum stubble (143TTA) are used by the three activities, respectively. Two of the stocker enterprises assume that the calf is sold in May from grazed out small grain. Both utilize a basic wintering fation of small grain pasture. One uses forage sorghum hay (144TYA) while the other uses forage sorghum hay and sorghum stubble (145TYA) In addition to the small grain pasture. The remaining two stocker activities assume March sale. One uses forage sorghum hay (146TRA) while the other uses forage sorghum hay and sorghum stubble (147TRA) in addition to wheat pasture as a wintering ration.

The source of data for all of the Ilvestock activities is Processed Serges P-459 [11]. Costs fox farm produced feed and interest on annual capital were deducted from the cost items appearing in the published budgets. The untts of feed, labor, and annual capital required were placed in the appropriate inventory rows of the innear programming model.

All buying and selling of livestock is accomplished by the use of inventory rows and buymsell activities. An accounting unit of one hundredweight was used to minimize the effort involved in making price changes and expedite the development of output formats which include livestock prices.

Government Farm Program Considerations

Since the establishment of the Agricultural Adjustment Administration in $1933[20$, ch. 10, p. 4], government farm programs have been a factor in farm planning, decisions. At the present time in Oklahoma, government farm program provisions apply to all of the major crops of the state, except hay [23, pp, 14, 19]. Also, the existing cost-price relationships of most crops make government program participation a practical necessity for most crop farmers.

Government farm programs administered by the Agricultural Stabilization and Conservation Service are designed to provide price support and stabilization for farm commodities. These programs have been deemed necessary to eliminate wide price fluctuations and extremely Low prices which may occur in an economic system that approaches pure competition [17, p. 22]. Each farmer has an insignificant effect on the prices of his products, but as each individual acts in his own Interest, the group result has often been excess production and low prices. Yet, it generally is not profitable for an individual farmer to reduce his production in an effort to raise prices, due to his insignificant contribution to the total.

The purpose of the area model is to aid individual farmers in their farm planning decisions, given a government program. Thus, the problem faced by most individual farmers, and the one which the area model is designed to deal with is: How can the individual farmer maximize his profit, given his fixed resources and the set of governmental. restrictions and alternatrves?

The decision with regard to government programs is not only "participate" or "don"t participate", but if participation is chosen,
one must decide "how to participate." The farmer must choose a program alternative, the amount of various bases or allotments that will be planted, diversion acres, and the degree of substitution of crops onto other bases. To make these decisions, he needs information such as projected yields, size of bases or allotments, loan rates, price support payment rates and cross-compliance regulations between programs. In the area model, all feasible particlpation alternatives for farmers in north central Oklahoma were considered.

Frequent changes in program provisions have been primarily responsible for the rapid obselence of published optimal farm plans, as noted in Chapter I. Thus, the inclusion of Government program provisions in the area model is necessary, but they must be included in a manner such that inter year and inter farm-intra year flexibility is maintained. That is, the number of charges in the model due to annual changes in programs and variation in yields and base acreages between farms should be minimized. The linear programming model constructed for this study will accommodate many possible changes in government programs with no changes in the structure of the matrix. In addition, the activities and restrictions pertaining to government programs are grouped in the right and lower portions of the matrix so that major structural changes in this segment, if necessary, will not alter the location of the other activities and restrictions.

The number of crops to which government programs apply and the resulting structure of an area model will vary from area-to-area of Oklahoma. The following discussion relates to those programs for crops feasible in north central Oklahoma, but the general approach may be applied to other programs.

The north central Oklahoma model, as it appears in Appendix Table XVI, reflects the 1969 wheat program [21] and an expected 1969 feed grain program.

The objective of flexibility in construction of the model and the necessity of accounting functions cause the number of rows and activities dealing with government programs in the area model to be greater than the number necessary for a single purpose matrix. For example, minimum diversion activities are present in the area model only to make the output easier to interpret and to simplify the entry of individual farm resource bases.

Although barley is included in the feed grain program, separate barley and grain sorghum bases are maintained due to the fact that additional acreage diversion payments under the feed grain program are based on the crop actually dịverted.

Alfalfa, forage sorghum, and sudan pasture help satisfy the conserving base requirement. Sudan for winter grazing and fallow help satisfy the diverted acres requirement. Small grain pasture grazed out by May first can be used to satisfy the conserving acres or diverted acres requirements or if the small grain is wheat, it may be planted on the wheat allotment so that wheat certificates can be collected on that acreage. Special treatment of crops such as this make the initial inclusion of all feasible crops in the model extremely desirable. If a new crop were to be added later, several changes in the matrix and the output format would be required.

As noted earlier, the feed grain program included in the area model is an expected, or anticipated, one. The situation which neces. sitated this is a special case, but is discussed here as an
illustration of the situations which will typically be faced in the field operation of an area information system such as this. The 1969 wheat program announcement stated that barley would not be included in the 1969 feed grain program. The 1969 wheat program included provisions for substituting feed grains for wheat, wheat for feed grains and wheat for barley, oats, and rye. In August, 1968, approximately a month after the announcement of the 1969 wheat program, the program was changed. The new announcement stated that barley was to be included in the feed grain program. This made the former substitution provisions relating to barley obsolete. But, new provisfons relating to barley would not be known until the expected feed program announcement in December. Thus, farmers of the area, as well as the operator of the area system were forced to develop expected programs to use in their decisionmaking processes. The inltial decision which farmers had to make related to the acreage of wheat and baxley to be planted in September and October.

The above example points out the need for flexibility in relation to government progxams. It also points out the need for results from an area system for use in farm planning decisions which are complex, and which must be made quickly.

Three major government program participation alternatives are considered in the area system. They are: non participation; participate in the wheat program; and, participate in the wheat and feed grain programs. Within the wheat program alternative, an optimum level of additional acreage diversion must be selected. Within the wheat and feed grain program alternative, optimum levels of additional acreage diversion for barley, grain sorghum and wheat must be selected。 Also,

If the substitution of feed grains for wheat or wheat for feed grains is profitable, the optimum amount of substitution must be determined.

Representative Farms

The system developed in this study produces optimal organizations for representative farms as well as actual farms. A discussion of the representative farm approach and a description of the representative farm resource situations selected for north central Oklahoma are presented in'this section.

The idea of using a representative or typical farm is not new in farm management education and as an ald to individual farm decisionmaking. Carter [2] and Corneman [4, p. 49-58] have surveyed the use of representative farms or firms in economics and each trace the development of this approach to Alfred Marshall. Thus, the approach was first used in the explanation of economic theory. Representative farms were used extensively in "type of farming" studies by farm management personnel in the 1920° s and 1930° s. Here, budgets of typical farms and examples of budgeting methods to show readjustments of typical farms to different prices were presented. For example, see Elliot [7]. Representative farms were also used in early supply response studies where expected responses of individual farms to price changes were determined by budgeting. For example, see Mighell [18]。 Budgeting was later rem placed by linear programming in various supply response studies of the 1950's and 1960's. Extension farm management specialists over the years have made extensive use of the representative farm approach in their educational programs with farmers. Thus, the representative farm approach has been applied in various ways from the early days of
agricultural economics until the present time.
Various criteria have been used in the selection of representative farms or firms. Marshall dealt with an "average" firm in his investiw gations. The farm management personnel carrying out the "type of farming" studies saw farm organization as an important factor in groupo ing farms. The researchers working with supply response studies have generally been interested in the land, labor, and capital resources as classification or grouping criteria. Conneman [4, pp. 65-70] categorized three methods of constructing typical farms. These were: the average resource method, the most limiting resource method and the resource ratio method. Carter [2, p. 2454] pointed out that the method of selection should be tied closely to the purpose for which the representative farms are selected.

Delineation of Representative Farm Resource Situations

The role of representative farms, or resource situations, in this study is to provide guides for individual farm decision-making. The selection criteria relate to the efficient dissemination of information. Each representative farm resource situation should be similar to as many individual resource situations as possible. If this is accome plished, information gained from and techniques used on representative farms may be generalized to a large number of actual farms. Unlike the "type of farming" studies, farm organization was not a prominent crim terion in the selection of representative farms for this study. Instead, primary emphasis was placed on obtaining representative resource. situations. Since most of the feasible alternatives for the north central Oklahoma area are land based, land could be classed as a
"most limiting resource" and becomes a prime factor in the selection of representative resource situations in this area.

Three representative farm resource situations were developed for this area in an earlier study []0]. These resource situations were evaluated by extension agricultural economics personnel who were familIar with the area, for use as representatyve farms in a farm management education program. The extension personnel felt that these farms were representative of the resource situations on many individual farms. They expressed the thought that a second group of farms, similar in resource mix, but larger in size may be desirable. As a result of this suggestion, variable resource programs were run on each of the three resource situations in an effort to determine the effect of increased amounts of land on farm organization. Dssentially, no change in farm organization was noted as the soil resource base was varied from its existing size to twice its existine size. From these results, it was concluded that one size group would be sufficient and that proportional changes In optimum plans for farms in this group could be manually computed in order to achieve optimum plans for larger farms.

Acreage bases for crops involved in government farm programs were established from agricultural stabilization and conservation service (ASCS) data for counties in the area. Proportions of base acreage to total crop acreage in each county were computed and applied to the representative soil resource situations. Acreages of clay $-\mathbb{E}$ and loam E are included in the native pasture acreages on the representative farms.

In the computation of projected yields for the representative farms, as in the establishment of acreage bases, it was necessary to
consider the cropping plans which have been typical in the area. This was necessary because the ASCS data used in the decision-making process is based on the farm organization and crop productivity over some specified period in the past. Usually, it is a period of $3-4$ years prior to the year for which plans are being made. To establish estimated projected ylelds of barley, grain sorghum, and wheat, for the representative farms, it was assumed that wheat had been planted on the best land. Grain sorghum and barley were given second and third priorities for land, respectively. Due to the small size of grain sorghum bases on farms in the area, grain sorghum and barley received essentially the same quality of land. Individual farm projected yields were then computed from the yields given for the varlous soll classes as reported in Processed Series P-550 [5].

Previous linear programming results in this area [19] and partial budgets show that alfalfa is profitable in relation to other crops in the area. But, due to moisture limitations and labor acquisition problems during hay harvest periods, alfalfa acreage is absolutely limited to 20 per cent of the cropland on the representative farms.

The representative farm situations selected for this study are shown in Table II. As noted earlier, they are not stored in the data bank. Instead, they are punched on cards and submitted in each computer run in the same manner as actual farms.

Production activities and government program related functions have been discussed in this chapter. Other activities and constraints which serve accounting inventory, transfer or buy-sell functions will not be discussed. The linear programming model as developed in this study is presented in Appendix Table XVI. Explanations of activity

TABLE II
REPRESENTATIVE FARM RESOURCE SITUATIONS SELECTED FOR NORTH CENTRAL OKLAHOMA

	Unit	Resource Situation		
		Clay	Loam	Clay and Loam
Land - Total	Acre	520	560	560
Clay - B	Acre	114.5		43.6
Clay - C	Acre	183.8		69.8
Clay - D	Acre	74.3		28.2
Glay - Native Pasture	Acre	147.4		122.4
Loam - A	Acre		201.1	85.2
Loam - B	Acre		142.1	60.2
Loam - C	Acre		73.1	31.0
Loam - D	Acre		15.3	6.5
Loam - Native Pasture	Acre		128.4	113.1
Labor - Total	Hour	1858	1858	1727
Jan - April	Hour	538	538	495
May - July	Hour	506	506	473
Aug - Sept	Hour	352	352	330
Oct - Dec	Hour	462	462	429
Alfalfa Acreage Limit	Acre	74.5	86.3	64.9
Government Program Information				
Allotments or Bases				
Barley	Acre	47.9	55.8	41.9
Grain Sorghum	Acre	32.1	377.2	27.9
Wheat	Acre	211.9	246.4	184.9
Conserving	Acre	24.0	27.9	20.9
Projected Yields				
Barley	Bu / A	25.0	30.0	25.4
Grain Sorghum	Cwt/A	12.3	15.7	13.8
Wheat	Bu / A	24.8	27.4	27.1

and constraint abbreviations are presented in Appendix Tables XIV and XV. No B vectors are shown with the model. They are partially read from cards and partially computed as a part of the operating system which is developed in Chapter III.

DEVELOPMENT OF AN OPERATING SYSTEM

This chapter describes the development and operation of the computer programs which make up the operating system of the area farm management information model. The operating system provides the link between the linear programming model of Chapter II and the potential farm management education program discussed in Chapter IV.

The objectives of this study required a system which would not only solve the linear programming problem developed in Chapter II, but which would also perform the following functions with a minimum of professional and/or clerical staff time:

1. Print the linear programing results for direct consumption by a lay audience.
2. Allow actual or representative farm resource situations to be entered into the rightmhand side.
3. Allow revisions to production costs and product prices.
4. Allow revisions to input-output coefficients.
5. Allow crop yields to be adjusted, using coefficients of variation。
6. Allow constraints to be added.
7. Allow activities to be added or deleted.
8. Make revisions in the objective function and right-hand side resulting from inter farm differences in government
program related data.
9. Make revisions in the objective function and right-hand side to reflect different government program participation alternatives.

Alternative Approaches in Design

The alternatives which will be discussed in this section deal. with: (1) methods of addressing activities and constraints in core storage of the computer; (2) methods of attaching verbal descriptions when developing output formatis and (3) the amount and nature of interpretation and report printing which shonld be done by computer.

Two methods of addressing activities and constraints were consideried in this study: (1) addressing by location, i.e., the row and/or column numbers of an array; and (2) addressing by a numeric or alphanumeric code associated with each activity or constraint. The first method is relatively rigid, as an activity or constraint added to the body of the linear programming model would displace all of the activia ties to the right of it, or all of the constraints below it. Conse quently, the former addresses of those columns or rows would no longer be correct. The second method is very flexible, as activities and constraints are identified by code, and their location in an array is immaterial. Thus, structural changes may be made in the model without changing the addresses of existing activities or constraints.

Most standard Iibrary Innear programs use some version of the more flexible alternative。 But when the whole area system is considered, additional factors become involved in the ease of adding activities and constraints and, consequently, in the selection of an addressing system.

A conflict develops between the desire for a highly flexible addressing system and the desire for a model which will perform extensive presolution revisions and post-solution report printing. Semi-automatic pre-solution revisions and output format procedures discourage the addition of activities and constraints.

There are several reasons why all feasible activities should be Included in an area system at the outset, in an effort to minimize the need for making later additions. As noted in Chapter II, the necessity of inventory rows and buy-sell activities associated with production activities makes the addition of activities a cumbersome process. The inclusion of automatic revision procedures, such as an automatic adJustment in harvesting costs as a result of yield revisions, facilitates the revision of existing activitles but complicates the process of adding new activities.

If the programming results are to be presented in a form which is easy to interpret, desirable output formats may vary for different types of enterprises. For example, with a stocker steer enterprise, the dates, welghts, and propes of purchase and sale, as well as the feeding ration should be grouped in one section of an output summary. However, if a dairy enterprise were to be added, a different output format would be desired to provide a partial summary of that enterprise. It might include annual milk production per cow, butterfat percentage, and milk price, as well as the dairy ration. As a result, it would be extremely desirable to fuclude a dairy enterprĭse and provisions for Its output format in the development of the system. Otherwise, programming revisions would be necessary in the system。

Other examples exist. Thus, the structure of the model,
premsolution revisions and postosolution report printing discourage the addition of new activities. Either system of addressing could be used, but the addressing system which uses codes would require more extensive and complex programming. Also, the main advantage of a flexible system, the ease of adding new activities and constraints, is diminished by in cluding virtually all feasible activities.

Two methods of attaching verbal descriptions when printing reports were considered: (1) read in each description on a header card or as a card image on magnetic tape, whol also contains the location or code of the Item in the solution which is to be printed; and (2) store activity and constraint descriptions an core, portions or all of which may be used in the verbal portion of a report. The output sequence may be controlled by header cards or instructions on magnetic tape. The amount of verbal description desired and the amount of core storage available may conflict if the latter method is chosen. Multiple usage of a given ftem in a solution makes the use of activity descriptions dificult. If a mere listing of activity levels were desired, no difficulty would arise. But, for example, a crop activity level may be used in a summary section of a peport where all production activities of that crop are grouped, in a detarled section where crop production is analyzed by soil type and crop yleld and it also may be used in a section which analyzes that crop's role in government program partictpation. Thus, a fairly fntricate system of activity and constraint descriptions must be devised to satisfy their multiple uses. The first method allows descriptions to be tailored to each section of the report, but the deck of header cards or the tape must be revised if activities or constraints are changed.

The degree of interpretation and refinement in report printing has been touched upon, as it is a factor in the choice of methods of addressing activities and constraints and of methods for attaching verbal descriptions. The desired function of the area system becomes important here: If individual farm linear programming were the prime purpose of the system, and all programing results were interpreted and explained to farmers by an area or state extension specialist, a highly flexible system with little interpretation could be used. But, additional computerized interpretation and report printing would allow the personnel to operate more efficiently and allow farmers to reread the results in the absence of the specialist. Conversely, if it is desired to make repetitive runs of representative farms which may be photographically reproduced for ditect consumption by a lay audience, as much interpretation and report printing as possible should be done by computer.

The above are alternatives in technique which may be considered. The purpose of the system, the characterostics of an individual system and the computer which is avaliable are important determinants in choosing among the alternatives.

Design Characterustics of the Operating System

The system desired would allow efficient, repeated runs of reprem sentative farms and produce an output that could be read and interpreted by a lay audience. Individual farm linear programming capabilities were also desired.

The location method of addressing activities and constraints was chosen. In an actempt to make thas method more flexible, dummy
activities were placed at intervals in the linear programming model (see Appendix Table XVI). The dummy activities allow a limited number of activities to be added without causing the existing activities to be relocated. The dummy activities also allow added activities to be placed adjacent to activities of a similar type to expedite summing of activity levels. For example, all crop activities are located in one portion of the model. Total cropland used may be computed by summing all activity levels in that portion.

Dumm constraints would cause infeasible solutions in the simplex subroutine. Thus, row additions must be made at the bottom of the matrix. Activities and constraints dealing with government programs were placed in the right-hand and lower portions of the linear programming model, respectively. They would be the most probable ones to be deleted or added. An additional alternative for adding activities exists. An activity or a set of existing activities may be deleted and replaced with a new activity or set of activities.

The header card method was chosen for attaching verbal descriptions to items in the optimal solution. Each header card contains the verbal description for one line of a computer-printed report and a code which identifies an activity or constraint and any calculations which must be made prior to printing. A minor modification would allow these descriptions to be read from tape in card image form.

The method of building verbal descriptions in the computer-printed reports from activity descriptions was not selected, as it would not have been possible to store the activity descriptions in core storage of the computer. Further, a direct access peripheral storage unit was not available for use in storing activity descriptions.

The guiding philosophy in designing the reports generated by the system was to ignore programming problems and to develop a report format which the author and extension farm management personnel felt that farmers could understand. This was an attempt to write the report for the audience and not let the customary order or characteristics of computer output influence the order or format of the report. Emphasis was placed on simplicity. Only selected information is chosen from the linear programing results for use in the report which is intended for consumption by farmers. The detailed solution, shadow prices, cost ranges and the A, B, and C arrays all may be printed out in addition to the simplified report. This additional information enables qualified persons to glean more detail from a solution than appears in the simplified reports.

> Selection of an Optimizing Program

A standard linear programming routine [15] was utilized in developing the linear programming model presented in Chapter II. This routine became limiting, nowever, when an attempt was made to develop output format procedures and it did not allow the computation of interw nal revisions to the matrix. The printing of simplified reports with this routine was possible, but it was tedious in comparison to an alternative method. Also, the standard linear programming routine did not enable cost ranges to be used in simplified report formats or the results of parametric price of resource programs to be placed in a simplified format. As a result of these inadequacies and the avallability of an alternative routine, the standard programming routine was not used further, except as a pexiodic check on solutions computed by
the alternative routine.
A FORTRAN subroutine which employs the revised simplex method was selected as the optimizing program for use in this study [3] [6, p. 2l0]. The selection of this subroutine allowed matrix revisions to be computed and the output to be printed in a readily readable form, using the FORTRAN - IV computer language. Cost ranges were not readily avalable from the subroutine, but they could be computed in the main FORTRAN program using arrays generated by the subroutine.

The computer used for this study is an IBM 7040/44 with 32,768 words of core storage. The peripheral equipment consists of a printer, a reader-punch and seven magnetic tape units.

Prior to discussing the finctions of the programs in the operating system, it is necessary to define certain arrays which are referred to repeatedly. The arrays, their dimensions and contents are given below.

Array Dimension Contents
A 65×170 Inputwoutput coefficients
B $65 \times 1 \quad$ B Vector or rightohand side $-\infty$ contains constraint values.

ALTB $\quad 65 \times 1$ An alternate B Vector from which B Vectors for individual runs are constructed.

C $170 \times 1 \quad \mathrm{C}$ Vector or objective function - contains costs for each activity.

ALTC 170×3 An alternate C, or cost, vector from which C vectors for individual runs are constructed.

COST 80×14 Itemized costs for production activities.
YIELD $65 \times 9 \quad$ Coefficients of variation for yields in crop activities.

The Information Loading Program (INFOLD)

The INFOLD program (Appendix Table XVIII) builds the A, ALTC, COST, and YIELD arrays from card Input. These arrays plus arrays and variables containing alphanumeric descriptions of constraints and activities, constraint type identifications and the dimensions of the linear programming model are written on a magnetic tape. The remaining programs all use this type to input the above data. After an initial run, the Information loading program as subsequently used only when it is desired to revise the arrays on magnetic tape.

The General Purpose Subroutine (FMPLAN)

The FMPLAN subroutine (Appendix Table XIX) satisfies several of the requirements listed at the beginning of this chapter and is used in each of the main programs. A generalized flow chart of this subroutine is presented in Figure 2。 Numbered steps in the flow chart are referred to periodically in the descryption of the subroutine operation.

Prior to calling this subroutine, a card is read in the main program (Step 2) which determines the objective function (IOBJ) and nature of the rightonand side (IRHS) or B vector which are to be used for the run. The allowable values of these variables and their interpretation by the subroutine are as follows:

IOBJ=1. Use the objective function which includes only variable production costs.

IOBJ $=2$ Use the objective function which includes variable production costs and fuxed machinery costs.

IRHS $=1$ Non-participation in government programs.

Figure 2. A Generalized Flow Chart of the General Purpose Subroutine

IRHS $=2$ Participate in the wheat program only.
IRHS $=3$ Participate in the wheat and feed grain programs. Also, the values of four variables, IREV, IBVC, ISUB, and IPARAM are set before calling the subroutine (Step 2). The interpretation of these variables becomes evident in the description of the subroutine operation.

The Data Revision Routine

If IREV equals zero, the steps desoribed in this section are bypassed. This feature Is necessary, as the subroutine may be called repeatedly in a main program such as the parametric price program where matrix revisions are not desired at each solution point. Thus, IREV is set equal to one for the origunal call and set equal to zero for subse quent calls in the same main program.

If IREV=I, A, $A L T C, ~ C O S T, ~ Y I E L D ~ a n d ~ o t h e r ~ a r r a y s ~ a n d ~ v a r i a b l e s ~_{\text {a }}$ containing alphanumeric descriptions of constraints and activities, constraint type identifications and the dimensions of the Inear programming model are read from magnetuc tape (Step 4).

If additional revisions are desired after an inltial solution, setting IREV $=2$ will cause the tape reading step (Step 4) to be bypassed. Thus, the revisions made for the $i n y t u a l$ solution would not have to be repeated.

A series of cards is then read (Step 5) which revises the A_{9} ALTC, and COST arrays, builds the ALTB vector and provides necessary Information relating to government programs (Step 6) . The varabales read on each card are: IVA, $I_{9} J_{8} K$, VALUE (1), VALUE (2), and VALUE (3). Variable IVA is used as an zndicator to determine the use of the
other variables on the card. The last 40 columns of each card are used for an optional verbal description of the revision. The various types of revisions which are possible, the varlables necessary to execute them and the card format are summarized in Table III. The title of the run, the revision cards and the optionai descriptions are listed at the beginning of each run so that the revisions may be verified easily on the printed output (Tabie IV). The revisions should be made in order, by the IVA code, as certain revisions destroy information needed in order to make other revisions, override previous revisions, or require information furnished in prior revisions.

Certain of the revision cards must appear in each run, as the B Vector is built from data fed into the subroutine at this point. These cards are indicated by a footnote in Table III。 Cards with IVA=9 are also required if participation in government programs is desired (IRHS $=2$ or 3) . Following ts a more detailed description of the reviswon options which are possible in steps filve through fifteen of this subroutine.

Revisions and Inputs to A, ALTB, and ALTC. Individual inputoutput coefficients may be replaced in A and costs may be replaced in ALTC. No B vector or rightwhand side is read from tape. The values for the physical restrictions and certaln government program informac tion must be read from cards on wheh IVA=2.

Production cost Computations. When using the model for individual farm linear programming, or for certain experimental runs with repre sentative farms, revisions in crop and IIvestock production costs are often necessary. Crop yield revisions may cause a change in

THE USER-CONTROLLED FUNCTIONS OF THE GENERAL PURPOSE SUBROUTINE, THE VARIABLES NECESSARY TO EXECUTE THEM AND THE CARD FORMAT

Col. 1-2 IVA	Col. $3-4$	Col. $5-7$	$\text { Col. } 8-10$	$\begin{gathered} \text { Col. 11-20 } \\ \text { VALUE(1) } \end{gathered}$	$\begin{gathered} \text { Col. 21-30 } \\ \text { VALUE(2) } \end{gathered}$	Col. 31-40 VALUEX 3)	Function
1	$x^{\text {a }}$	x		x			Place VALUE(1) in row I and Col. J of 'A'
$2^{\text {b }}$	x			x			Place VALUE (1) in row 1 of 'ALTB'
3	\mathbf{x}	x	$\mathrm{x}^{\text {c }}$	x			Place VALUE(1) in row J and Col. I of 'ALTC' If $K \neq 0$, place VALUE(I) in row J and Col. K of 'ALTC'
4	\mathbf{x}	x	- $x^{\text {c }}$	$\mathrm{x}^{\text {d }}$	x^{d}		If VALUE(1) $\neq 0$, place it in row J and the Col. of 'COST' corresponding to the ti code ${ }^{e}$ in I. If VALUE(2) $\neq 0$, the corresponding elements of 'COST' are scaled by a factor of VALUE(2) If $K \neq 0$, rows J through K are adjusted in the above manner, instead of row J only
$5^{\text {f }}$				x	x	x	Place $\operatorname{VALUE}(1)$ in $\operatorname{COMB}(1)$, where $1=1,2,3$. This is the custom combine rate; VALUE(1)/acre + VALUE(2)/bu. over VALUE(3) bu./acre.
6^{8}				X			Place VALUE(1) in COMB(4). This is the custom grain hauling rate per bushel
$7^{\text {h }}$				x	x		Place VALUE (1) in BALE(1), where $1=1,2$. This is the custom rate for baling and hauling hay per ton
8	x	x	x	x			AdJust the crop yield in inventory row I of 'A', from columns J through K the number of standard deviations and the direction specified in VALUE(1)
9		x		x	x	x	Place $\operatorname{VALUE}(1)$ in $\operatorname{GOV}(1, J)$, where $1=1,2,3$ $J=1$ implies projected yields for barley, gr. sorg. and wheat $J=2$ implies Co. loan rates for barley, gr. sorg. and wheat

x^{c}
\mathbf{x}
x^{c}
\mathbf{x}

Delete columns (activities) J through K of ' A ' - If $K=0$, only delete Col. J

Add a row (constraint). The name of this row is in Col. 41-44 of this card
$I=t h e ~ n e w ~ n u m b e r ~ o f ~ r o w s ~ i n ~ ' A ', ~ ' A L I B ' ~ a n d ~ ' ~ B ' ~$
Add a column (activity): The name of this column is in Col. 41-44 of this card

If this column is to be added to the right side of ' A ', set $K \neq 0$, then $J=$ the new number of columns in ' A '
Move rows I through K and columns 1-65 of ' A ' to 'YIELD', starting in Col. J, after zeroing 'YIEID'
Convert yields in Col. I of 'YIELD' from cwt. to bu. Eind of deck
$a_{x ' s}$ indicate non-zero fields.
$\mathrm{b}_{\text {These }}$ cards must be included in each run.
${ }^{\text {coptional. }}$
${ }^{d}$ The card should contain only one of these elements.
$e_{\text {The }}$ ti code is a portion of the coding system used in the Computerized Oklahoma State Farm Income and Detailed Enterprise Record System, Ag. Econ. Dept., Oklahoma State University.
${ }^{\prime}$ If this card is not included, a custom combine rate of $\$ 3.50$ per acre plus $\$.05$ per bushel over 20 bu./acre is assumed.
${ }^{\text {g If }}$ this card is not included, a custom grain hauling rate of $\$.05$ per bushel is assumed.
${ }^{h}$ If this card is not included, custom hay baling and hauling rates of $\$ 4.80$ and $\$ 2.70$ per ton, respectively, are assumed.

TABLE IV

A SAMPLE LISTING OF INPUT INFORMATION FOR THE GENERAL PURPOSE SUBROUTINE

560 ACRE NORTH CENTRAL OKLAHOMA CLAY AND LOAM FARM

RHS ELEMENTS. COST REVISIONS AND®A'MATRIX REVISIONS

harvesting costs. Machinery, fertilizer, or seed costs may also rem quire revision. In the linear programming model, these and certain other costs are usually summed and placed in the objective function. If one individual cost item is changed, the adjustment is typically made by adjusting the total figure in the objective function.

This subroutine reads in an array (COST) in which the variable costs for each production activity are listed in nine categories. These expense categories have been assigned TI codes from the computerized farm record system at Oklahoma State University. Cost revision may be made by TI code number and activity when IVA $=4$.

As indicated in Table III, a revised cost may be placed directly in the array for a specified activity or set of activities. Also, a given cost may be adjusted by a constant factor for an activity, or set of activities. The latter feature is useful when it is desired to adjust all costs of a certain category by a constant factor. An example would be a five per cent increase in machinery operating costs. This could be accomplished for all or part of the production activities by inserting one card in the revision deck.

The array COST is fourteen columns wide and eighty rows long (Table V). The columns correspond to cost categories while the rows correspond to production activities. The first ten columns are occum pied by the cost categories previously mentioned. Machine hire occum pies two columns, one for gratin crops and the other for hay crops. The eleventh column is blank and may be used for additional costs which may not fall into one of the nine categories. It may also be useful in cases where it is desired to add some constant to the cost of an activm ity or set of activities. A TI code of 00 corresponds to this column.

DETAILED PRODUCTION ACTIVITY COSTS AS PRINTED BY THE GENERAL PURPOSE SUBROUTINE

34	800CBA	-0.00	2.25	7.49	0.00	0.00	-0.00	-0.00	2.75	-0.00	-0.00	0.00	12.49	2.48	14.97
35	B00CCA	-0.00	2.25	7.49	0.00	0.00	-0.00	-0.00	2.75	-0.00	-0.00	0.00	12.49	2.48	14.97
36	BOOCDA	-0.00	2.25	7.49	0.00	0.00	-0.00	-0.00	2.75	-0.00	-0.00	0.00	12.49	2.48	14.97
37	800LAA	-0.00	2.25	7.49	0.00	0.00	-0.00	-0.00	2.75	-0.00	-0.00	0.00	12.49	2.48	14.97
38	BOOL BA	-0.00	2.25	7.49	0.00	0.00	-0.00	-0.00	2.75	-0.00	-0.00	0.00	12.49	2.48	14.97
39	800LCA	-0.00	2.25	7.49	0.00	0.00	-0.00	-0.00	2.75	-0.00	-0.00	0.00	12.49	2.48	14.97
40	800LDA	-0.00	2.25	7.49	0.00	0.00	-0.00	-0.00	2.75	-0.00	-0.00	0.00	12.49	2.48	14.97
41	85.CBA	-0.00	5.00	4.78	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.88	1.91	13.79
42	85.CCA	-0.00	5.00	4.78	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.88	1.91	13.79
43	85.CDA	-0.00	5.00	4.78	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.88	1.91	13.79
44	85.LAA	-0.00	5.00	3.96	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.06	1.91	12.97
45	85.LBA	-0.00	5.00	3.96	0.00	0.00	-0.00.	-0.00	2.10	-0.00	-0.00	0.00	11.08	1.91	12.97
46	85.LCA	-0.00	5.00	3.96	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.06	1.91	12.97
47	85.LDA	-0.00	5.00	3.96	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.06	1.91	12.97
48	85WCBA	-0.00	5.00	4.78	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.88	1.91	13.79
49	85WCCA	-0.00	5.00	4.78	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.88	1.91	13.79
50	85 WCDA	-0.00	5.00	4.78	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.88	1.91	13.79
51	85HLAA	-0.00	5.00	3.96	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.06	1.91	12.97
52	85WLBA	-0.00	5.00	3.96	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.06	1.91	12.97
53	85WLCA	-0.00	5.00	3.96	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.06	1.91	12.97
54	85WLDA	-0.00	5.00	3.96	0.00	0.00	-0.00	-0.00	2.10	-0.00	-0.00	0.00	11.06	1.91	12.97
55	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
56	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
57	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
58	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
59	5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
60	δ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
61	7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
62	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
63	60FALL	-0.00	-0.00	-0.00	0.00	0.00	-0.00	-0.00	2.00	-0.00	-0.00	0.00	2.00	-0.00	2.00
64	86.C14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
65	86.11A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
66	111RTA	9.91	-0.00	-0.00	0.00	0.00	1.40	3.36	-0.00	2.09	1.84	0.00	18.60	-0.00	18.60
67	112RTA	9.91	-0.00	-0.00	0.00	0.00	1.40	3.36	-0.00	2.09	1.84	0.00	18.60	-0.00	18.60
68	113RTA	5.11	-0.00	-0.00	0.00	0.00	1.40	3.36	-0.00	2.09	1.84	0.00	13.80	-0.00	13.80
69	111 VLA	5.11	-0.00	-0.00	0.00	0.00	1.40	3.36	-0.00	2.56	1.79	0.00	14.22	-0.00	14.22
70	1417 TA	8.71	-0.00	-0.00	0.00	0.00	-0.00	2.20	-0.00	1.74	4.90	0.00	17.55	-0.00	17.55
71	142 TTA	8.71	-0.00	-0.00	0.00	0.00	-0.00	2.20	-0.00	1.74	4.90	0.00	17.55	-0.00	17.55
72	143 TtA	8.71	-0.00	-0.00	0.00	0.00	-0.00	2.20	-0.00	1.74	4.90	0.00	17.55	-0.00	17.55
73	144 TYA	1.53	-0.00	-0.00	0.00	0.00	-0.00	1.45	-0.00	1.81	4.66	0.00	9.45	-0.00	9.45
74	145 TYA	1.53	-0.00	-0.00	0.00	0.00	-0.00	1.45	-0.00	1.81	4.66	0.00	9.45	-0.00	9.45
75	146TRA	0.98	-0.00	-0.00	0.00	0.00	-0.00	1.25	-0.00	1.78	4.20	0.00	8.21	-0.00	8.21
76	147 TRA	7.67	-0.00	-0.00	0.00	0.00	-0.00	1.25	-0.00	1.78	4.20	0.00	14.90	-0.00	14.90
77	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
78	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
79	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
80	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

When COST is read from tape, It contains the production costs as derived from circulars $P-550$ and $P-459$ [5] [11], with the exception of machine hire expenses. If no revisions are specified, the costs will be used as read from the tape.

Machine hire, or custom rates, are read from cards with IVA equal to 5, 6, or 7. The combine rate is given in terms of a rate per acre plus a rate per bushel, over some minlmum yield per acre. Grain haulIng, hay baling, and hay hauling rates may also be specified. If custom rates are not specified in the revision deck, rates which are Indicated in circular P-550 [5] are used. The custom rates are then applied to crop yields, which may or may not have been revised. Machine hire expenses are computed and placed in the appropriate columns of COST. This feature allows harvest costs to be adjusted automatically if crop yields are revised. The first eleven columns of COST are summed and these sums are placed in column twelve. Column twelve now contains the variable production costs per unit of activity. These costs are then moved to the corresponding activity locations in column 1 of ALTC. Fixed machinery costs are located in column 13 of COST and are also read from the input tape. These fixed costs may also be revised by letting I equal Iz a a COST revision card. The fixed machinery costs are added to the variable costs in column 12 and this total is placed in column 14. The total costs in this column are moved to column 2 of ALTC.

The above computations are made after the last revision card is read (Step 8). Thus, the computed costs for production activities would override any earlier attempt to dsectly revise production activo Ity costs in ALPC. As will be noted later, an opportunity for final
revisions will occur.

Crop Yield Variation. Crop yield variation is a prominent consideration when determining farm plans in north central Oklahoma. Consequently, the ability to revise yields easily was a prominent consideration when designing the system. Yield revisions may be desired in order to reflect moisture outlook for a given season or they may be made for experimental purposes in order to determine the effect of yield changes on farm organization and income. Such experimentation could yield an estimate of the cost of a wrong decision. One might estimate the loss in income due to organization which could result if a farm plan were made on the basis of average yields and below average yields actually occurred. Two methods of adjusting crop yields are possible in this subroutine. First, individual yields may be set at specified levels by making revisions to A on cards with IVA=1. Second, yields may be adjusted any number of standard deviations by using a revision card with IVA=8. The inventory row that contains yields which are to be adjusted, the begimning and ending activity and the sign and number of standard deviations are specified on the revision card. A separate card is necessary for each inventory row. The coefficients of variation used in this routine and the suggested grouping of crops whose yields should be varied together were presented in Chapter II.

Government Program Related Computations. Barley and grain sorghum bases, the wheat allotment and conserving base are entered into ALIB on cards with IVA=2. Frojected yields and loan rates are entered on cards with IVA $=9$. After the last card of the revision deck has been read, several computations relating to government programs are made (Step 8).

In ALTB, the minimum acreage diversion and additional acreage diversion limits are computed. Limits on the amount of production of given crops whichare eligible for price support or certificate paymentsare also computed. In ALTC, the amounts for additional diversion, price support and certificate payments are computed. As with production costs, these computed amounts override previous revisions to ALTC for these activities.

Addition or Deletion of Activities and Constraints. A card in which IVA=10 indicates an activity or group of activities to be deleted.

A card in which IVA=11 adds a constraint by adjusting the dimensions of $A, A L T B$, and B and assigns a name to the added row. Coefficients in this row must be added separately as revisions to A (IVA=1) and ALTB (IVA=2). Up to five rows may be added. More than five may be added by redimensioning the FORTRAN source program.

Similarly, activities may be added using a card on which IVA=12. But, since several blank columns exist in A, activities may be added Without adjusting the dimensions of A, ALTC, and C. If, however, it becomes necessary to add activities to the right side of A, K is set at some positive number, and the new columnar dimension of A must be given in J. Twenty-two activities may be added without changing the dimensions of A. Three activities may be added to the right side of A. Again, more may be added by redimensioning the FORTRAN source program. As indicated in an earlier section of this chapter, activities to be added should be placed adjacent to similar activities. Crop production activities should be contained in columns 1 through 65 of A and livestock production activities should be contained in columns 66 through 80. These restrictions are necessary if the production costs are to be
computed as described earlier.

Miscellaneous Functions. A card In which IVA equals 13 causes YIELD to be zeroed. This array formerly contained the coefficients of variation for crop yields. Crop yields from specified rows of A are moved into YIELD for later use in machine hire computations. Since grain sorghum ylelds, or ylelds of other crops, may be hundredweight, a card with IVA equal to 14 names a column of YIELD in which the yields must be converted to bushels prior to machine hire computations. Custom combining and hauling rates are in terms of bushels only.

Finally, a card with IVA equal to 99 signals the end of the revialon deck, and the various computations mentioned above are executed.

Final Revisions (Steps 9-10). The user of the system is given an opportunity to make final revisions to A, ALTB, and ALTC before the optimizing routine is executed. These revisions override any previous revisions or computed values in these arrays. This feature is desirable for experimental purposes and for individual farm runs. For example, the additional wheat diversion limit is automatically computed as fiffy per cent of the wheat allotment. But, in some cases the user may wish to explore the result of limiting the amount of additional divergion to thirty per cent of the wheat allotment. In this case, the desired numeric limit would be computed by the usor and plaoed in the appropratate row of ALMB. In other instances, the usor may wish to place cogts on ocrtain activitios which would be different from the omputed ones.

A card with IVA equal to 98 or 99 signals the end of this second poesible ravigion deck (Step 11). This card is neoessary even if no
final revisions are destred. If IVA equals 99, the A and ALTC arrays are printed (Steps 12-13). If IVA equals 98, the arrays are not printed.

Subsequently, the costs in the column of ALTC corresponding to the value of IOBJ specified by the user are transferred to C (Step 15).

Construction of a Right-Hand Side

As stated at the beginning of the discussion of the FMPLAN subroutine, if IREV $=0$, no revisions will be made. Thus, the subroutine operations described up to this point would be bypassed. The option of bypassing the revisions is used when repeated solutions are required, but only right-hand side changes or a single price change is made after the initial solution is reached.

When execution of the FMPLAN subroutine reaches this point (Step 16), either after making revisions or after bypassing them, the value of ISUB is checked. If ISUB $=1$, this indicates that the B vector, or rightwhand side, was altered by substitutions between the feed grain and wheat bases on a previous rum, and that the B vector must be reconstructed (Steps 18-23) as it was originally, before the substitutions.

Alternatively, if ISUB=0, IBVC is then checked (Step 17). If IBVC=1, this indreates an initial x un and it is necessary to construct a B vector. $I B V O=0$ indicates a repetitive run and it is not necessary to construct a B vector.

If construction of a B vector is required, it is built from ALTB in accordance with the government farm program participation
alternative specified by the user in his choice of a value for IRHS (Steps 18-23).

After the B vector construction is completed or bypassed, IPARAM is checked (Step 24)。 If IPARAM=1, a parametric price program is indicated and no B vectors are printed. If IPARAM $=0$, a B vector is printed (Step 25) each time one is constructed or changed to accommodate substitutions.

Execution of the Optimizing Subroutine and

Subsequent Checks on the Solution

The optimizing subroutine is executed (Step 27). When an optimal solution is determined, the FMPLAN subroutine checks the solution for Infeasibility (Step 28). If the solution is infeasible, remedial measures are applied automatically (Step 29) and the optimizing subroutine Is executed again (Step 27). If the solution remains infeasible after three such cycles the FMPLAN subroutine is terminated. Infeasible solutions occur rather mfrequently, thus this remedial process is not usually activated.

When a feasible solution results from the optimizing routine, and If IRHS $=1$ or 2 (Step 30), the subroutine 1 s terminated (Step 33). IRHS=3 (Step 30), indicatos participation in the government wheat and feed grain programs and a check must be made to determine if substitution between bases is profitable (Step 31). If any type of substitum tion is profitable, revisions are made to B, and ISUB is set equal to I (Step 32). The optimizing rautine is then executed again (Step 27). The resulting solution is again checked for mfeasibility and the profitability of other substitutions. When a feasible optimum solution
lis achieved and no further substitutions are profitable, the subroutine is terminated (Step 33). Upon termination of the subroutine, control returns to the main program which uses the optimum solution in developing a report.

The Individual Farm Data Form

The individual farm data form prowides a systematic guide for gathering the data required to linear program an actual or representative farm. These data are, of course, the data required for the FMPLAN subroutine. The data form, as presented in Table VI, has been precoded on pages 1 through 3. The revision deok for the FMPLAN subroutine is punched durectly onto cards from the form.

This form may be thought of as hav'ng four "stages". Page I comprises the first "stage" of the form. This page, with the exception of the interest rate and wage rates must be completed. But, this is the extent of the menatory Items on the form. A farm can be linearly programmed with only the information presented on page l.

The completion of further atens or "stages", on the form is optional. They allow the data bank fnformation to be revised to fit an individual situation more olosely. Page 2, "Stage" two, lists the crop and livestock enterprises in the data bank, with reference to their data sources. Pinterprises why are to be deleted are merely crossed out. Page 3, "Stage" three, allows the user to specify crop and live stock prices and custom rates if those in the data bank do not fit an individual situation.

Page 4 of the form, "Stage" roux, provides space for the user to list additional revisions. in order to make these additional revisions,

TABLE VI
THE INDIVIDUAL FARM DATA FORM

TABLE VI (Continued)
LIVESTOCK ENTERPRISES (CROSS OUT THOSE NOT TO BE CONSIDERED)

		REFERENCE?	CODE	
	$\text { RATION }^{1}$	(Page of P-459)	IVA	I J K
COW-CAIF, SPRING CALVING	1	32	10	66
COW-CALF, SPRING CALVING	1,2	34	10	67
COW-CALF, SPRING CALVING	1,2,3	35	10	68
COW-CALF, FALL CALVING	1,2,3,5	36	10	69
STOCKERS, BUY OCT-SELL OCT	1	24	10	70
STOCKERS, BUY OCT-SELL OCT	1,2	25	10	71
STOCKERS, BUY OCT-SELL OCT	1,5	26	10	72
STOCKERS, BUY OCT-SELI MAY	1,2,3,4	28	10	73
STOCKERS, BUY OCT-SELL MAY	1,2,3,4,5	29	10	74
STOCKERS, BUY OCT-SELL MAR	1,2,3	30	10	75
STOCKERS, BUY OCT-SELL MAR	1,2,5	31	10	76

$I_{\text {Native Pasturem, }}$ forage sorghum or prairie hay-2; Small grain pasture Oct-Mar 3; Small grain pasture Mar-May 4; Sorghum or alfalfa stabble-5.
${ }^{2}$ OkJahoma State University Processed Series Pa459, July, 1963. GROP ENTERPRISES (CROSS OUT THOSE NOT TO BE CONSIDERED)

	REFERENCEI	CODE	
	(Page of P-550)	IVA	J K
BARLEY	6,25	10	17
GRAIN SORGHUM	9,18	10	814
WHEAT	5,14	10	1521
FORAGE SORGHUM	10,19	10	22.28
ALFALFA	8,17	10	2933
WHEAT PASTURE-GRAZE OUT BY MAY I	11,20	10	3440
sudan Pasture	13,22	10	4147
SUdAn FOR WINTER GRAZING	13,22	10	4854

ALLOW "WHEAT-GRAZE OUT BY MAY $1 "$ TO SATISFY DIVERTED ACRES
REQUIREMENT? Yes \square No (10 \square l21 0)

[^0]TABLE VI (Continued)
PRICES TO BE USED ${ }^{\text {I }}$

CROPS TRAN	SACTION	TIME	UNIT				
BARLEY	SELL		BU		31812	2 1	\cdots
GRAIN SORGHUM	SELL		CWT	3	31822	2. 1	--
WHEAT	SELL		BU		31832	21	--
WHEAT PASTURE	SELL	OCTmAR	AUM		31852	1	
WHEAT PASture	SELL	OCT-MAY	AUM		31842	2. 1	-
ALFALFA HAY	SELL		TON		31862	21	-
PRAIRIE HAY	BUY		TON		31872	2.1	-
LIVESTOCK							
COW-CALF SISTEMS							
SPRING CALVING							
STEERS-485 1bs	SELL	OCT	CWT		31902	21	-
HEIFERS-460 lbs	SELI	OCT	CWT		31912	21	-_-
CUL COWS	SELL		CWT		3922	1	-
FALL GALVING							
STEERS-5001bs	SELL	JUL	CWT		3. 1932	2. 1	--
Hetrers-460 Ibs	SELL	JUL	CWI.		31942	1	-
CUL COWIS	SkLL		CWT	3	31952	21	-
STOCKER SYSTEMS							
STMERS ${ }^{4} 40 \mathrm{Ibs}$	BUY	00s	CWT	3	31962	1	$\square{ }^{\circ}$
STEERS 600 llos	SELL	MAR	CWT	3	1972	1	-
STEERS -715 Ibs	SELIL	MAY	CWT	3	3.1982	1	-
STEERS-775 Ibs	SELL	OCT	CWIT	3	2992	1	--

CUSTOM HIRE RATES

[^1]
TABLE VI (Contrnued)

OTHER REVISIONS

the user must be familiar with the activity and constraint locations in A and the TI cost codes in CoST. Any of the revisions insted in Table III which are desired and which are not provided for on pages 1 through 3 of thas form are to be Indicated on page 4. Thus, as one moves from "stage" 1 to "stage" 4, the amount of information available for an individual farm and the sophistication of the user with respect to the system must increase. It is expected that "stage four" revisions would be coded and/or checked by a professional staff member. It would be possible, however, for the desired revisions to be indicated in the comment portion of a line for later coding by someone who was familiar with the system:

The Govermment Program Comparison Report (GOVPRO)

As noted in Chapter II, gowexment farm programs have been an important factor in faxm planning decisions for several years. Changes In pragran provisions have been melatively frequent. On occaston these changes have been announced only a short time before the crops involved were to be planted. The problems involved with choosing among governe ment program particupation altormatives were deemed significant enough to merit a separate output repont format from the system. This report aids the user in selecting a government program participation alternative. Once an alternative is selected, the detaled report, which is discussed in the next section, may be run.

Part I

The report format is shown $1 n$ Table VII. The clay and loam repreo sentative farm was used in this llustration. Part I lists the

TABLE VII (Continued)

PART II--SUMMARY OF OPTIMUM FARM PLANS FOR THREE
GOVERNMENT PROGRAM PARTICIPATION ALTERNATIYES

		PARTICIPATION ALTERNATIVES	
		NON-	WHEAT
		WHEAT AND	
	UNIT	PARTICIPATION	ONLY
FEED GRAIN			

resources and restrictions used in the programming problem. This part displays the information utilized from page 1 of the individual farm data form shown in Table VI. This part of the report enables the reader to verify that the resource base was correctly entered into the system. In the case of representative farms, the reader may use Part I to determine the similarities and differences between an actual farm and a programmed representative farm.

Part II

A summary of three optimal farm plans is presented in Part II of the report. These three optimal plans result from three different participation alternatives. They are the alternatives which are generally feasible for north central Oklahoma.

The non-participation alternative may not appear feasible from a financial point of view, but it is included as an alternative and as a benchmark for use in evaluating other alternatives. More than three alternatives may be feasible in other areas of Oklahoma. If so, the number of optimal plans included In the comparison could be increased. The participation alternatives include only combinations of commodity programs. Optimal levels of participation in and substitutions between programs are determined within each major alternative.

If an integer ox mixed integer linear programming routine were available for "trouble free" use at the field level, an optimum participation alternative could be selected by running only one optimal solution. The comparison-type report being discussed here has some advantages over a single optimal solution, however. In some cases the income difference is so small between two alternatives that a farmer
would be indifferent between the two, from the standpoint of net return. This would not be apparent if the integer programming approach were used. Also, the latter approach would not enable a comparison of the selected alternative with the nonmparticipation alternative, if it were not selected. From the standpoint of computer time, it is likely that the alternative optimal solutions may be computed as rapidly as a single integer solution. The computation of additional solutions, after the initial one, utilizes data already in core storage of the computer and the optimal basis of the previous solution. Thus, additional solutions require relatively little computer time.

The comparison of alternatives in Part II includes only information which would be of interest to most farmers. As aid to brevity of the report, only non-zero Ines are printed. "Net return to fixed resources" allows a financial comparison of the alternatives. Crop acreages, summed over soil types, are presented next. Livestock types and numbers, hired labor required and capital required are then insted. Levels of minimum diversion, adaitional diversion and substitutions are IIsted in the government program informatuon section. Finally, the sources of gross income are presented. These sources allow a farmer to determine what enterprises will contribute most to gross income, given that farm plan. Also, the sources of income which relate to government programs allow him to determine how much of his net returns Will be likely to come from govermment program payments. The receipt of government payments considered here is contingent on planting the Indicated acreages only. Thus, the gotemment payments do have a "crop insurance" feature which should be considered in an evaluation of the relative levels of risk associated with each participation alternative.

Part III

The prices used in determining the optimal plans are presented in Part III. This part may be used to verify that the prices specified on page 3 of the individual farm data form (Table VI) were correctly entered into the system. Also, this section aids in the generalization of representative farm results.

Other Information

In addition to the report described above, a detailed list of activity levels and shadow prices for each of the three solutions is printed (Table VIII). The output from the FMPLAN subroutine also appears on the output from each run. This additional, detailed information may be used by qualified personnel in gleaning additional information from the run and in answering questions which may arise after studying the government program comparison report. As an example, only total wheat acreage is given in Part II of the report. If wheat acreage by soil type is desired, it may be obtaned from the detailed solution.

Mechanics

The report in Table VII is printed by using a deck of header, or format, cards (Appendix Table XXI). The functions performed by each type of card and the card format are presented in Table IX. If desired, these instructions could be read from magnetic tape instead of cards.

Execution time for this program on an IBM 7040 computer is approximately nine minutes per farm. A source listing of this program appears in Appendix Table $\mathrm{XX}^{\text {. }}$

A PARTIAL LISTING OF THE DETAILED SOLUTIONS AND SHADOW PRICES AS PRINTED WITH THE GOVERNMENT PROGRAM
 COMPARISON REPORT

SOLUTIONS					SHADOW PRICES				
ACT	IVIIY	tRHS $=1$	IRHS $=2$	LRHS $=3$	con	StRAINT	IRHS $=1$	1 RHS $=2$	IRHS $=3$
1	$71 . C B A$	0.0000	0.0000	0.0000	1	970..	7.6727	6.5031	14.3059
2	71.CCA	0.0000	0.0000	0.0000	2	9 CB.	11.3029	12.3162	10.1785
3	$71 . C D A$	0.0000	0.0000	0.0000	3	9CC..	2.1157	4.0054	3.2593
4	71.LAA	0.0000	36.3496	20.9500	4	9C0.	-0.0000	2.2182	2.0136
5.	71.LBA	0.0000	0.0000	0.0000	5	9CP.*.	5.2494	5.2499	5.2489
6	$71 . L C A$	0.0000	0.0000	0.0000	6	9LA..	11.7018	12.7151	10.5774
7	71.15	0.0000	0.0000	0.0000	7	9LB.0	7.8597	8.1839	7.2814
8	73.CBA	0.0000	0.0000	0.0000	8	9LC..	4.8597	5.1839	4.2814
9	73.CCA	0.0000	0.0000	0.0000	9	9LD..	2.7441	3.0592	2.8545
10	73.CDA	0.0000	0.0000	0.0000	10	9LP..	6.2993	6.2999	6.2987
11	73.LAA	0.0000	0.0000	5.93 .05	11	81HLIM	6.1014	6.9231	0.0000
12	73.LAA	0.0000	6.2723	8.01 .95	12	11LJA.	-0.0000	-0.0000	-0.0000
13	73.LCA	0.0000 .	0.0000	0.0000	13	11LMJ.	1.5525	1.5525	1. 5525
14	73.LDA	0.0000	0.0000	0.0000	14	11LAS.	-0.0000	-0.0000	-0.0000
15	76.C8A	43.5999	43.6000	43.6001	15	11100.	-0.0000	-0.0000	-0.0000
16	76.CCA	37.6357	0.0000	0.0000	16	3 CO.	0.0000	0.0000	-0.0000
17	76.CDA	0.0000	0.0000	0.0000	17	$3 C D A$.	0.0700	0.0700	C. 0700
18	$76.14 A$	71.9811	48.8512	58.3195	18	7.1 BAP.	. 0.8500	0.8500	0. 8500
19	76.LRA	0.0000	0.0000	0.0000	19	73 SSP .	1.7024	1.6500	1.6500
20	76.LCA	0.0000	0.0000	0.0000	20	76 WHP .	1.2000	1.2000	1. 2000
21	76.LDA	0.0000	0.0000	0.0000	21	BOHAY.	17.3347	17.0540	17.5950
22	803C8A	0,0000	0.0000	0.0000	22	glhayo.	22.5000	22.5000	22.5000
23	803CCA	0.0000	0.0000	0.0000	23	73STB.	7.3673	7.2480	7.1342
24	803 CDA	0.0000	0.0090	0.0000	24	gomar.	7.4363	15.3543	16.2082
25	803LAA	13.2193	0.0000	0.0000	25	80 MAY .	13.7203	5.8924.	5.1103
26	803LBA	0.0000	4.3432	0.0000	26	8GNP..	5.2494	5.2499	5.2489
27	803 LCA	0.0000	0.0000	0.0000	27	11CSI.	27.0000	27.0000	27.0000
28	803LDA	0.0000	0.0000	0.0000°	28	11CHI.	25.0000	25.0000	25.0000
29	81.CBA	0.0000	0.0000	0.0000	29	11CCl.	13.0000	13.0000	13.0000
30	B1.CCA	0.00000	0.0000	0.0000	30	11CS2.	28.3000	28.3000	28.3000
31	81.LAA	0.0000	0.0000	0.0000	31	11CH2.	26.3000	26.3000	26.3000
32	81.LBA	60.2000	49.5845	52.1802	32	11CC2.	22.8855	14.0000	14.0000
33	81.LCA	4.7001	15.3154	10.8245	33	14S8..	27.0000	27.0000	27.0000
34.	H00CBA.	0.0000	0. 0000	0.0000	34.	14551.	26.7185	25,0000	25.0000
35	800CCA	32.1643	69.8000	69.8000	35	14SS2.	25.0000	25.0000	25.0000
36	800C0A	28.2001	0.0000	0.0000	36	14553.	24.1158	24.0000	24.0000
37	800LAA	0.0000	0.0000	0.0000	37	618...	-0.0000	-0.0000	0.0000
38	800LBA	. 0.0000	0.0000	0.0000	38	635...	-0.0000	-0.0000	Q. 0000
37	boolca	26.3000	15.6846	13.5073	39	66W...	-0.0000	5.6989	0.6316
40	b00Lla	6. 5000	1.2818	0.0900	40	60CA.-	-0.0000	-0.0000	-0.0000
42	85.CBA	0.0000	0.0000	0.0000	41	61 DMB.	-0.0000	-8. 5031	-16.3059
42.	85.CCA	0.0000	0.0000	0.0000	42	63 DMS .	-0.0000	-8.5031	-16.3059
43	85.CDA	0.0000	0.0000	0.0090	43	660 MW.	-0.0000	-8.5031	-16.3059
44	85.LAA	0.0000	0.0000	0.0000	44	610AB.	11.4210	2.9179	0.0000
45	85.LBA	0.0000	0.0000	0.0000	45.	630 AS .	13.2894	4.7863	-0.0000
40	85.LCA	0.0000	0.0000	0.0000	45	660AH.	16.9375	2.7355	-0.0000
47	85.1 DA	0.0000	0.0000	0.0000	47	61 BP..	4.3500	0.0000	5.0673
48	85WCBA	0.0000	0.0000	0.0000	49	618 PL .	0.7260	5.0760	0.0087
49	85WCCA	0.0000	0.0000	0.0000	49	63SP..	-0.0000	0.0000	6.9231
50	85WCDA	0.0000	28.2000	28.2000	50	63 SPL .	7.3140	7.3140	0.3909
51	85wiAa	0.0000	0.0000	0.0000	51	66 WC ..	. 0.0000	-0.0000	0.0000
52	85 WLBA	0.0000	. 0.0000	. 0.0000	52	66 WCL .	36.8560	36.8560	36.8560
53	85WLCA	0.0000	0.0000	S.6683	53	60FAL.	-0.0000	-8.5031	-16.3059
54	85WLDA	0.0000	5.2182	6.4999	54	600LM.	0.0000	8.5030	16.3058
55	1	0.0000	0.0000	0.0000	55	608FSL	-0.0000	0.0000	0.0000
56	2	0.0000	0.0000	0.0000	56	60BFWL	-0,0000	0.1000	0.0000
57	3	0.0000	0.0000	0.0000	57	60SFBL	-0.0000	0.0000	0.0000
58	4	0.0000	0.0000	0.0000	58	60SFWL	-0.0000	0.0000	0.0000
59	5	0.0000	0.0000	0.0000	59	60 WFBL	-0.0000	5.6988	0.6315
60	6	0.0000	0.0000	0.0000	60	60 WFSL	-0.0000	5.6988	0.6315
61	7	0.0000	0.0000	0.0000					
62	8	0.0000	0.0000	0.0000					
63	60FALL	0.0000	0.0004	0.0000					
64	86.C.la	122.4000	122.4000	122.4000					
65	86.L1A	113.1000	113.1000	113.1000					
66	lilrta	15.4557	15.7069	15.8602					
67	112RTA	0.0000	0.0000	0.0000					
68	113RTA	0.0000	0.0000	0.0000					
69	111VLA	0.0000	0.0000	0.0000					
70	1411 TA	0.0000	0.0000	0.0000					
71	142 TTA	0.0000	0.0000	0.0000					
72	143 TTA	0.0000	0.0000	0.0000					
73	144 TYA	86.4022	20.0404	0.0000					
74	145 TYA	15.6239	75.2558	91.1874					
75	146 TRA	0.0000	0.0000	0.0000					
76	147 TRA	0.0000	. 0.0000	0.0000					
77	1	0.0000	0.0000	0.0000					
78	2	0.0000	0.0000	0.0000					
79	3	0.0000	0.0000	0.0000					
80	4	0.0000	0.0000	0.0000					

TABLE VIII (Continued)

solutions				
	tivity	[R H S =	IRHS $=2$	IRHS $=3$
81	7105BA	0.0000	1235.8853	712.2999
82	730SSA	0.0000	98.3493	232.0203
83	760Sha	4026.6080	2588.5998.	2853.7471
84	800wP5	0.0000	0.0000	0.0000
85	800 HPW	0.0000	0.0000	0.0000
86	810SHA	154.8200	152.6969	149.0470
87	bolbma	0.0000	0.0000	2.6762
88	1.	0.0000	0.0 .000	0.0000
89	2	0.0000	0.0000	0.0000
90	llosia	32.9826	33.5184	33.8456
91	110hla	19.9070	20.2304	20.4279
92	110cla	18.2687	18.5655	18.7467
93	110S2A	0.0000	0.0000	-0.0000
94	110 Hza	0.0000	0.0000	-0.0000
$\begin{aligned} & 95 \\ & 96 \end{aligned}$	$110 C 2 A$ $1415 T A$	0.0000 49.1172	0.0000 428.8330	-0.0000 410.3431
97	140 SIA	0.0000	0.0000	-0.0000
98	140 S 2 A	722.3444	674.6973	645.6064
99	140S3A	0.0000	0.0000	-0.0000
100	1	O.0000	0.0000	0.0000
101	2	0.0000	0.0000	0.0000
102	3	0.0000	0.0000	0.0000
103	111 JAA	0.0000	0.0000	0.0000
104	111MJA	61.8501	38.0611	27.3512
105	l11asa	0.0000	0.0000	0.0000
106	11100 A	0.0000	0.0000	0,0000
107	1	0.0000	0.0000	0.0000
108	2	0.0000 .	0.0000	0.0000
109	331 BCA	0577.9597	1961.3.0706	19085.7969
110	321 BCAI	1792.3502	11326.8473	11081.0260
111	61m0ba	0.0000	0.0000	8.3800.
112	63MOSA	0.0000	0.0000	5.5800
113.	$66 . \mathrm{MDWA}$	0.0000	27.7350	27.7350
114	6180Ca	0.0000	0.0000	0.0000
115	63sDCA	0.0000	0.0000	0.0000
116	66HDCA	0.0000	92.4500	82.9804
117	610bCa	0.0000	0.0000	20.9500
113	6305CA	0.0000	0.0000	13.9500
119	660WCA	0.0000	79.5070	79.5070
120	gotca.	0.0000	86.7664	83.3072
121 122	GOTCA 608FS.	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000
123	GOBFW.	0.0000	0.0000	0.0000
124	60SF8.	0.0000	0.0000	0.0000
125	60Sfw.	0.0000	0.0000	0.0000
128	GOWFB.	0.0000	0.0000	-0.0000
127	604F5.	0.0000	0.0000	$-0,0000$
128	000000	0.0000	0.0000	0.0000
129	000000	0.0000	0.0000	0.0000
130	000000	0.0000	0.0000	0.0300
131	$9 \mathrm{CB} .$.	0.0000	0.0000	0.0000
132	9CC..	0.0000	0.0000	0.0000
133	$9 \mathrm{CE} .$.	0.0000	0.00090	0.0000
134	9LA..	0.0000	0.0000	0.0000
135	9LA. -	0.0000	0.0000	0.0000
136	9LC.	0.0000	0.0000	0.0000
137	9L0..	0.0000	0.0000	0.0000
138	BlHLIf:	0.0000	0.0000	1.8950
139	I1LJA.	172.6380	170.0742	170.676 .2
140	1.11.M.).	0.0000	0.0000	0.0000
141	11LAS.	87.4301	104.4595	118.6765
14 ?	11 LOD .	229.620 .9	259.0573	271.9942
143	73 ¢T8.	0.0000	0.0000	0.0000
144	BOMAR.	0.0000	0.0000	0.0000
145	Bomay.	0.0000	0.0000	0.0000
146	B6NP..	0.0000	0.0000 9962.6499	060000
147	618...	9950.9495	9962.6499	12.5790
148	$635 .$. $6 ¢ 4 .$.	9999.0000 9845.7833	9992.7272 0.0000	8.3700 0.0 .000
149	6GH...	9845.7833 171.2836	6.0000 48.3431	0.0000 42.1049
151	GIDAB.	0.0000	0.0000	12.5700
153	630as.	0.0000	0.0000	8.3700
153	66DAW.	0.0000	0.0000	9.4695
154	6l8P..	c.0000	36.3496	0.0000
155.	618PL.	0.0000	0.0009	0.0000
155	63 SP . .	0.0000	6.2723	0.0000
157	63 SPL .	0.0000	0.0000	0.0000
158	664C..	153.2163	12.9430	22.4125
159	66WCL.	0.0000	0.0000	0.0000
160	60FAL.	0.0000	0.0000	0.0000
161	6002 M .	93.1643	0.0000	0.0000
162	608FSL	0.0000	0.0000	-0.0000
163	60RFWL	0.0000	0.0000	-0.0000
164	60SFBL	0.0000	0,0000	-0.0000
165	60SfWL	0.0000	0.0000	-0.0000
166	60WF8L	0.0000	- 0.0000	0.0000
167	60 WFSL	0.0000	0.0000	0.0000

TABLE IX

THE USER-CONTROLTED FUNCTIONS OF THE GOVERNMENT PROGRAM COMPARISON REPORT, THE VARIABLES NECESSARY TO EXECUTE THEM AND THE CARD FORMAT

$\begin{gathered} \text { Col. } 1-72 \\ \text { Verbal } \\ \text { Description } \end{gathered}$	$\begin{aligned} & 1.7 \\ & \text { IVA } \end{aligned}$	1.76 IWA	$\begin{aligned} & 1.79 \\ & \text { IXA } \end{aligned}$	Function
			0	Print verbal description only
			1	Not used in this program
			2	Turn to new page
	x^{2}	x^{3}	3	Print row IVA of AITB (Rows IVA through IWA if IWA $\neq 0$)
	x		4	Print interest rate
	X	x	5	```Print government program information IWA=l for projected ylelds 2 for Co. Ioan rates IVA=1 for barley 2 for grain sorghum 3 for wheat```
			6	Print heading for Part II of the report
	X	X	7	Sum activity levels IVA through IWA. If sum $=0$, print the verbal description on this card. If sum $\neq 0$, pass to next card
	x	x^{b}	8	Print activity level IVA with no decimal places (IVA through IWA if IWA $\neq 0$)
	x	$\mathrm{x}^{\text {b }}$	9	Print activity level IVA with one decimal place (IVA through IWA if IWA $\neq 0$)

TABLE IX (Continued)

Col. l-72 Verbal Description	Col. $73-75$	Col. $76-78$	Col. 79-80	IWA	IKA

$x_{x}{ }^{\prime}$ indicate non-zero fields.
${ }^{b}$ optional.

The Individual Farm Detailed Report (DETREP)

The detailed report contains an analysis of a single linear programming solution for an actual or representative farm. An attempt was made to present the elements of the linear programming problem and the solution in a manner which would enable an individual farmer to read them. The report appears in three parts (Table X). Part I lists the resources and restrictions used in the problem. Part II presents a brief summary of the optimal solution. Part III contains a detailed analysis of the optimal solution. The clay and loam representative farm is used to illustrate the report in Table X.

The farm title appears at the beginaing of the report, exactly as indicated on the individual farm data form and as read from the title card which preceded the revision cards fox the farm (these were discussed in the FMPLAN subroutine section). Next, the government program participation alternative specified for this run is printed.

Part I

The resources and restrictions employed in the programming problem are shown in Part I。 This pant of the report is identical to Part I of the government program comparison report (Table VII) and displays the information which was utilized from page 1 of the individual farm data form (Table VI). Thls part of the report enables the reader to verify that the resource base was correctiy entered into the system. In the case of representative farms, the reader can use Part I to establish the relationship between an actual farm and a programmed representative farm。

TABLE X

THE INDIVIDUAL FARM DETAILED REPPORT

560 ACRE NORTH CENTRAL OKLAHOMA CLAY AND LOAM FARM PARTICIPATE IN WHEAT AND FEED GRAIN PROGRAMS		
PART I--RESOURCES AND RESTRICTIQNS	UNIT	AMOUNT
LAND - TOTAL	ACRE	560.0
CLAY-B	ACRE	43.6
Clay-c	ACRE	69.8
CLAY-D	ACRE	28.2
Clay-NATIVE PASTURE	ACRE	122.4
LOAM-A	ACRE	85.2.
LOAM-B	ACRE	60.2
LOAM-C	ACRE	31.0
LOAM-D	ACRE	6.5
LOAM-NATIVE PASTURE	ACRE	113.1
LABDR - TOTAL	HOUR	1727.0
$J A N-A P R$	HOUR	495.0
MAY-JUL	HOUR	473.0
AUG-SEP	HOUR	330.0
OCT-DEC	HOUR	429.0
C.AP ITAL		
INTEREST-FREE CAPITAL	DOLLAR	0.
SHORT-TERM INTEREST RATE	PERCENT	7.0
GOVERNMENT PROGRAM INFORMATIION		
BARLEY BASE	ACRE	41.9
GRAIN SORGHUM BASE	ACRE	27.9
WHEAT ALLOTMENT	ACRE	184.9
CONSERVING BASE	ACRE	20.9
PROJECTED YIELDS		
BARLEY	BU/A	25.4
GRAIN SORGHUM	CWT/A	13.8
WHEAT	BU/A	27.1
LOAN RATES		
BARLEY	\$/BU	0.80
GRAIN SORGHUM	\$/CWT	1.61
WHEAT	\$/8U	1.25
Alfalfa acreage limit	ACRE	64.9

TABLE X (Continued)

PART II-DETAILED OPTIMUM FARM PLAN

A. LAND USE CROP	SOIL				
			PERCENT USED.	UNIT	AMOUNT
BARLEY	20.9	LA	24.6	BU	34.0
GRAIN SORGHUM	5.9	LA	7.0	CWT	17.9
GRAIN SORGHUM	8.0	LB	13.3	CWT	15.7
WHEAT	43.6	CB	100.0	BU	28.0
WHEAT	58.3	LA	68.5	BU	28.0
ALFALFA	52.2	LB	86.7	TON	2.4
ALFALFA	10.8	LC	34.9	TON	2.2
WHEAT PAST-GRAZE OUT-MAY	69.8	CC	100.0	AUM	2.0
WHEAT PAST-GRAZE OUT-MAY	13.5	1.6	43.6	AUM	2.2
SUDAN PAST--WINTER GRAZE	28.2	CD	100.0	AUM	1.8
SUDAN PAST--WINTER GRAZE	6.7	LC	21.5	AUM	2.0
SUDAN PAST--WINTER GRAZE	6.5	LD	100.0	AUM	1.8
native pasture	122.4	c	100.0	AUM	1.0
NATIVE PASture	113.1	L	100.0	AUM	1.2
total land	560.0				

TABLEX (Continued)

Part II

This part of the report contains a summary of the optimal solution which is somewhat similar in format to Part II of the government program comparison report (Table VII). The summary appearing here does not contain government program information or sources of gross income, however. These two types of information appear in Part III, the detailed section of this report. Part II was included in the report to give the reader a quick, "thumbnail", sketch of the optimal plan. Thus, an over-all View of the optimal farm plan may be made before studying the details associated with it. In some cases, after reviewing the summary, the reader may not wish to pursue the details associated with a given farm plan。

Part III

Part III of the individual farm detalled report is divided into six sub-parts. A discussion of each follows.
A. Land Use. Crop and native pasture acreages are listed by soil productivity class in this part of the report. The percentage of a soil productivity class winch is utilized by each crop is also listed. Thus, the reader may determine which crops are to be planted on each soil productivity class and arrive at general conclusions such as which crops are planted on the best land, the poorest, etc.

Crop yields, by soil productivity class, are also listed. They, of course, reflect any yleld revisions made for the farm which is being programmed.

Bo Livestock. The activity levels for individual livestock
activities are listed in this section. A key to the general type of ration used is also listed. For cow-calf activities, the calving date and the selling date, weight, and price for steer and heifer calves are presented. For stocker activities, the buying and selling dates, weights, and prices are listed.
C. Labor. Hired labor and unused operator and family labor are Insted by time periods in this section of the report.
D. Gapital. Total operating capital required is shown in this section. In addition, the operating capital adjusted to an annual basis is listed. For an example of the adjustment, capital required for steers which are held for only six months is divided by two. Interest is quaged on the latter amount at the annual rate specified in Part I of the report.
E. Government Programs. This section shows the role that each crop plays in government program participation. It also indicates the manner in which the diverted acres requirement and the conserving base are satisfied. Substitutions between bases are indicated in two ways. For an example of a substitulon, asswe that wheat is being substituted for barley. In this case, 100 per cent of the wheat allotment is utilized. In addition, the pericentage of the barley base which is planted to wheat will appear on the wheat row and in the column corresponding to the barley base. Second, the substitution would be listed in acres immediately below this table.

The row entitled "total" glves total cropland, a total of the "diverted acre check" column and totals for each of the percentage columns. The diverted acre check should be zero or positive, indicating
that the diverted acre requirement is satisfied. The totals of the percentage colums for the barley, grain sorghum, and wheat bases indicate the percentage which the respective bases are utilized through cropping, substitution, minimum diversion, and additional diversion. The total of the conserving base percentage column must be equal to or greater than 100 per cent, indicating that the conserving base requirement has been met.

The manner in which each of the crop enterprises is considered in terms of government program provisions was discussed in the "government program considerations" section of Chapter II. The government program section of the individual farm detailed report is printed even when the non-participation alternative is specified. In the case of nonparticipation, the reader may still interpret the solution in terms of the various bases for the farm.
F. Financial Summary. This section of the report provides a detailed breakdown of income and expenses associated with the optimum farm plan. The total dollars of income or expense, by source, the unit In which the item is bought or sold, the unit price used in the problem and a price range are giver for categories in which no aggregation is Involved. Where aggregation is involved, only the total dollars are given. An example of an aggregated item is hired labor expense. Only a total labor expense figure is desired in the report format, while each time period has a wage rate. Thus, a meaningful unit price and price range cannot be listed with the aggregated total.
"Net return to fixed resources" is the resuit of subtracting total variable production costs from gross income and it agrees with the similarly titled amount in Part II of this report. An estimate of
fixed machinery costs is then deducted and the result is shown as "Net return to land, family labor, and management".

Other Information

The information printed during the execution of the FMPLAN subroutine appears as a part of each run of the individual farm detailed report. In addition, the detailed solution and shadow prices are printed, in a similar manner to those in the government program comparison report which appear in Table VIII. A listing of the activities, the price or cost used in the problem for each activity, the price ranges for basis activities and incoming prices for non-basis activities Is also listed (Table XI). Again, this additional information allows qualified personnel to provide additional Interpretation of the results and answer questions which may be raised when studying the report.

Mechantics

A source listing of the DEPREP program appears in Appendix Table XXII. The format of the report 1 s governed by a header, or formatting, deck (Appendix Table XXIII). The card fomat and an explanation of the general functions of each type of card are given in Table XII。

Execution time required for this program on an IBM 7040 computer is approximately twelve minutes.

The Parametric Price Report (PARAMP)

This report is intended as a supplementary or optional report. It is not intended that farmers be able to interpret it without prior instruction。

TABLE XI

A PARTIAL LISTING OF THE PRICE RANGES, INCOMING PRICES AND PRICES USED FOR THE LTNEAR PROGRAMMING PROBLEM, AS PRINTED WITH TIE INDIVIDUAL FARM DETAILED REPORT

	ACIIVITY	LOWER EMMIT	PRICE USED	UPPER LIMIT
	71.CBA	17.0889	18.1900	0.0000
	71.CCA	14.8164	17.4900	0.0000
	71.CDA	10.1914	16.9900	0.0000
*	$71.14 A$	13.3227	18.3900	18.3987
	71.LBA	16.6652	17.9900	0.0000
	$71.15 A$	14.6444	17.5900	0.0000
	71.LDA	11.0504	17.1900	0.0000
	73.CBA	9.7587	14.6300	0.0000
	73.CCA	9.2859	13.8300	0.0000
	73.CDA	4.9877	13.4300	0.0000
*	73.LAA	11.2912	11.3100	11.6060
*	73.LBA	10.6140	10.9100	10.9288
	73.LCA	10.2140	10.5100	0.0000
	73.1DA	7.0208	10.0600	0.0000
*	76.CBA	-9981. 2100	17.7900	18.8911
	76.CCA	13.0675	17.0900	0.0000
	76.CDA	6.6925	16.7900	0.0000
*	76.LAA	17.3937	17.4100	18.7695
	$76.1 B A$	15.4852	17.1100	0.0000
	76.14 CA	13.2644	16.8100	0.0000
	76.LDA	8.2704	16.5100	0.0000
	803 CBA	21.2434	33.2800	0.0000
	803 CCA	17.6056	28.7800	0.0000
	803 CDA	11.8134	25.7800	0.0000
	803LAA	27.9854	32.7600	0.0000
	803LBA	24.2434	29.7600	0.0000
	803 LCA	20.2054	26.7600	0.0000
	803 LDA	14.5943	23.7600	0.0000
	$81 . C B A$	28.8077	32.0100	0.0000
	81.CCA	24.4769	28.2600	0.0000
	81. 1 AA	30.7540	31.0500	0.0000
*	81.LBA	29.5312	29.5500	29.8460
*	81.lCa	28.0337	28.0500	28.3460
	800CBA	9.8345	12.4900	0.0000
*	800CCA	-9986.5099	12.4900	13.0224
	800CDA	11.6039	12.4900	0.0000
	800 L AA	10.4577	12.4900	0.0000
	80018A	11.6219	12.4900	0.0000
*	800LCA	11.8833	12.4900	12.5222
	8001 DA	12.7850	12.4900	0.0000
	85.CBA	0.0000	11.8800	-14.4098
	85.CCA	0.0000	11.8800	-8.5404
	85.CDA	0.0000	11.8800	-7.8195
	85.LAA	0.0000	11.0600	-13.2130
	85.LBA	0.0000	11.0600	-10.9668
	85.LCA	0.0000	11.0600	-9.0166
	85.LDA	0.0000	11.0600	-8.6395
	85 WCBA	5.8553	11.8800	0.0000
	85WCCA	11.3476	11.8800	0.0000

TABLEXI (Continued)

*	85 WCDA	-9987.1200	11.8800	12.7661
	85WLAA	7.6177	11.0600	0.0000
	85 WLBA	9.4868	11.0600	0.0000
*	85WLCA	10.2670	11.0600	11.0929
*	85WLDA	-9987.9399	11.0600	11.7650
	1	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000
	3	0.0000	0.0000	0.0000
	4	0.0000	0.0000	0.0000
	5	0.0000	0.0000	0.0000
	6	0.0000	0.0000	0.0000
	7	0.0000	0.0000	0.0000
	8	0.0000	0.0000	0.0000
+	60FALL	-0.0135	2.0000	10001.0000
*	86.Cla	-9999.0000	0.0000	9999.0000
*	86.Lla	-9999.0000	0.0000	9999.0000
*	111RTA	17.8903	18.6000	20.3824
	ll2RTA	16.3415	18.6000	0.0000
	113 RTA	0.0000	13.8000	-18.4218
*	lilvia	-20.5530	14.2200	10013.2200
*	141 TTA	16.6588	17.5500	20.9436
	142 TTA	13.3619	17.5500	0.0000
	1431 TA	14.1564	17.5500	0.0000
	144 TYA	9.1064	9.4500	0.0000
*	145 TYA	2.1696	9.4500	9.4765
	146TRA	0.0000	8.2100	-7.1606
*	147 TRA	-1.0756	14.9000	30.2706
	1	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000
	3	0.0000	0.0000	0.0000
	4	0.0000	0.0000	0.0000
*	710 SbA	-0.9990	-0.8500	-0.8497
*	7305 SA	-1.6584	-1.6500	-1.6251
*	760 WAA	-1.2006	-1.2000	-1.1514
	800WPS	0.0000	-7.0000	-10.6593
	800 WPW	0.0000	-7.0000	-16.2082
*	810SHA	-22.5038	-22.5000	-21.4553
*	801BHA	16.1997	17.0000	18.1003
	1	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000
*	110S1A	-27.3326	-27.0000	-26.1648
*	110h1A	-25.5510	-25.0000	-23.6162
*	110C1A	-13.6004	-13.0000	-11.4921
*	110 S2A	-45.6885	-28.3000	9970.7000
	110H2A	0.0000	-26. 3000	-53.2977
*	110C2A	-43.4188	-14.0000	9985.0000
*	1415 SA	26.8020	27.0000	27.0059
	140 S1A	0.0000	-25.0000	-27.6895
*	140 S 2 A	-25.2655	-25.0000	-24.9963
	14053 A	0.0000	-24.0000	-24.1162
	1	0.0000	0.0000	C. 0000
	2	0.0000	0.0000	0.0000
	3	0.0000	0.0000	0.0000
	111JAA	0.0000	1. 5000	-0.0525
$*$	111 mba	1.4942	1.5000	3.0820
	111 ASA	0.0000	1. 5000	-0.0525
	11100A	0.0000	1.5000	-0.0525
	1	0.0000	0.0000	0.0000
	2	0.0000	0.0000	0.0000

TABLE XI (Continued)

TABLE XII
THE USER-CONTROLIED FUNCTIONS OF THE INDIVIDUAL FARM DETAILED REPORT, THE VARIABLES NECESSARY TO EXECUTE THEM AND THE CARD FORMAT

$x^{b} \quad 9$

16 Surtch to alternate read format for Part III-E, Government Program Participation
Prant activity level IVA, one decimal place (IVA through IWA if IWA $\neq 0$)

Not used in this program
Switch to alternate read format for Part III-A, Land Use. Total land computation
Switch to alternate read format for Part III-B, Livestock Print hired labor from activity IVA and unused operator and family labor from activity IWA Print capital required from activity IVA

Switch to alternate read format for Part III-F, Financial Summary
End of deck

[^2]When IInear programming with a large number of closely related acturfies, price ranges as listed in the individuel farm detailed rea port are narrower than ones which would appear in a problem with no closely related activities. In many cases, if a price is used for another programming run which as slightly beyond the range show, only a minor change in the farm organization may occur. For example, a few acres of wheat may be switched to a mope productive land class. In practice, a change such as tinis is not signjizcant to the farm manager. Thus, the practical price ranges whatch a manager may consider are probm ably much wider than those shown in the nnalvidual farm detailed report.

Thus, after viewing the government program comparison and/or individual farm detailed reports for a farm, an area farm management agent may wish to see the farm plens and incomes whick result if the price of one or more major comodities are varied. In this case, one or more parametric price runs may be made to give bin this information. The purpose of the parametric price report, then, is to allow a quick comparison of farm plans which neflect different prices of a commodity. The report format allows ten solutions yer page. The report is shown in Table XIII. The clay and loam representative farm was used in this example. The wheat selling prece was varied from $\$ 3.15$ to $\$ 1.40$ per bushel and participation in both the wheat and feed grain programs was assumed. The activity levels for a given activity may be read across the page as they qppear in each separate solution. Thus, intersolution comparisons for given actevities may be made quickly. In the heading of the report, the name of the activity which is being param metrically priced, the beginnug priee, the ending price, the constant price, and the minimum increment are Insted. The pruce for the named

THE PARAMETRIC PRICE REPORT

activity is varied from the beginning price to the ending price in increments no smaller than the minimum increment specified by the user. At each solution point, the price of the named activity used for that solution, the value of the objective function using that price and the value of the objective function using the constant price are listed. Only activities which come into one or more of the solutions at a nonzero level are listed in this report.

Constant Price Comparisons

The determination of effective price ranges as outlined above is only one of the possible functions of the parametric price program. Parametric price results are sometimes presented showing the relationship between the value of the objective function and the price being varied. The value of the objective function used in a parametric price program, if compared at two solution points, shows the difference in net return due to the change in farm organization and due to the change in the price being varied. If a value of the objective function is computed using a constant price at each solution poirt, a comparison of these values between two solution points will show the change in net return due to the change in farm organization only. This latter comparison can be very important when interpreting linear programming results to farmers. First, if a change in the farm plan results in only a small change in net income (at constant prices) he may be indifferent between the original and a revised plan.

The "cost of a wrong decision" in farm planning: with respect to the price of a major commodity produced on the farm may also be evaluated. For example, if wheat is the commodity in question and the
"constant price is $\$ 1.25$ per bushel, the difference between the net return figured at a constant price, in a solution computed using $\$ 1.25$ wheat and one with $\$ 1.40$ wheat represents the loss in income which would be incurred if the farm orgenization were based on a wheat price of $\$ 1.25$ per bushel, and a price of $\$ 1.40$ per bushel was realized. In Table XIII, one would use the row in which "\$1.25" appears in the left margin (the row which shows net return computed at a constant wheat price of \$1.25) and the colwans headed by "\$1.21" and "\$1.39". By subtracting $\$ 11,467.31$ from $\$ 11,421.71$, it is found that the estimated "cost" of employing a farm plan based on $\$ 7.25$ wheat when a wheat price of $\$ 1.40$ is actually realzed would only be $\$ 45.60$.

A set of solutions may also be treated as a set of alternative plans for a farmer to choose from, if the differences in net return due to farm organization are ball. For example, the farm plans in Table XIII resulting from wheat prices of \$1.15 to \$1. 42 per bushel only produce an eighty-four dollar varlation in net return due to farm organization. This is a selatively smal proportion of the net return. Thus, a farmer may view these nine plane as alternatives which will all produce about the same net peturn. given a wheat price of $\$ 1.25$ per bushel.

Mechanics

This program requires one card in addrition to that input required for the FMPLAN subroutine. On this caxd, the actuvty whose price is to be varied is named (see acturity abbreviations iri Appendix Table XIV). The beginning price, enaing price, constant price, and the minimum increment are also spectited.

The source listing of the parametric price program appears in Appendix Table XXIV. In this program, the irput tape is read in the main program rather than in the FMPLAN subroutine. This is necessary In order to locate the activity and place the beginning price on it before calling the subroutine. When the subroutine is executed, all revisions are made as usual, except for the price of the activity being parametrically priced. It remains at the beginning price. If the activity to be parametrically priced does not appear in the basis of the initial solution, its incoming price is computed for use during the next execution of the optimizing routine.

Execution speed of this program on an IBM 7040 computer is approximately one solution per minute.

Sumaxy

The above programs comprise the operating system. The report formats present information which was thought to be of most interest to farmers of north central Oklahoma. The programs were designed to fulfill several of the objectives of this study in an eificient manner. The applications of the reports and other data generated by the system are discussed in the following chapter.

APPLICATIONS OF AN AREA FARM MANAGEMENT INFORMATION SYSTEM

Previous chapters have described the development of the system. The collection and storage of data were discussed in Chapter II. The operating system and reports generated by the system were discussed in Chapter III. The uses of the system, their relevance in a farm management education program and suggestions for administering the system are discussed in this chapter.

The applications of the system are, of course, the methods by which the real objectives of the syster may be achieved. Specific uses of the system involve area farm management agents, county extension directors and staff members of the agricultural economics department. Success depends on using the system as an integral part of an educational program. The reports generated by the systen may be read by farmers. But, if farmers have not been taught how to interpret them, improper use of the system may result. Therefore, an educationai effort must precede or accompany the introduction of such a system to an area. Proper employment of the system could increase the efficiency and effectiveness of educators who work with farmers on problems of management.

Appilcation Techniques

The uses of the system may be dinvided into two separable but
related areas. One area of use involves representative farm resource sitnations. The other area of use involves actual farm resource situations. The two uses will be discussed separately although in some cases one may support the other, or they may be used jointly.

Representative Farms

Representative farm resource situations may be used in various ways through the system. These uses may be broadly grouped as repetitive runs for publication and as experimental runs.

Repetitive Runs. The output formats of the government program comparison report and the individual farm detalled report were designed for direct photographic reproduction in a farm management publication. These reports could be published, reflecting current or expected prices, yields, government program provisions, and other parameters. The frequency of publication could be governed by changes in the parameters. Thus, when a change in prices, for example, made previously pube lished farm plans obsolete, a new set could be run, using revised prices. Price ranges or parametric pricing runs could be used to establish ranges over which a set of plans were valid. Some cost ranges may also be Interpreted as yield ranges [8, pp. 65-73]. This option could further aid in establyshing the stability of a set of plans, or in generalizing results from them.

The optimal plans could be published under their own title, or as a part of the "O.S. U. Fact Sheet" series. A standard explanation of the reports could be printed by computer so that no professional staff time would be required in writing the publication. Emphasis would be placed on timliness. Professional personnel would detect needed
revisions. A new set of reports would be run, checked by a nember of the professional staff, photographlcally reproduced and mailed within a few days.

These published reports would be most effective in answering general questions with which all of the farmers in an area may be faced. Such general questions may be caused by a change in government program provisions, an area-wide drouth or a significant change in the price of a major commodity produced in the area. The area agent or county extension director should find the reports useful as background infora mation and as examples for use in meetings, newspaper articles, radio programs, and television programs.

The published reports could also serve a useful role in the individual consultation with farmers by area agents, as representative farm results may be used to answer questions relating to an individual farmer's situation. Three techniques for accomplishing this are mentioned here. First, if the Individual's situation is somewhat comparable to that of a representative faxm a quack generalization may be possible. Second, the representative farm results may be used as a guide for budgeting an alternative plan for an individual farm. The result may not be an optimal plan for the individual farm, but it mey be near-optimal and it can be found moxe quickly through the use of a representative farm plan as a guide.

The third technique involves the use of simplified programming [14]. This technique may be used when an indivijual farm is not directly comparable to a representative farm, but it is similar to some combination of two or more representative farm resource situations [1, pp. 69-84]. This technique involves the linear interpolation of
optimal representative farm pians. The optimal plans of representative farms are used as activities in the simplified program. The optimal plans are entered on a per unit basis of some basic resource, such as acres of total cropland. Other resource requirements are entered in terms of their relationship to the base resource. The simplified programing computations may be made in the field by an area agent. The resulting composite plan should be cheoked by budgeting to insure that it is an improvement over the present plan. This technique allows representative farm optimal plans to be extremely useful in answering Individual farm planning questions. The technique has not been used extensively at the field level, however. One reason for its limited use is the unavailability of current optimal organizations for representative farms. Thus, as these optimal organizations are made available by the system, use of the simplified programming technique may be expected to Increase.

Experimental Runs. Representative farm resource eituations may also be used in answering specific questions which relate to the rem sponse cr adjustment of farms in an area. Questions may arise in the field use of published reports. For example, an area agent may wish to see the farm plans and incomes whan result from various wheat prices, or varlous cattle prices. In this case, parametric pricing runs may be made, or one of the simplified reports may be rus at seteral alterrative prices. Other persons may wish to explore the capltal requirements associated with various farm plans. Through the matrix revision tech niques described in Chapter III, the analysis may be accomplished by forcing certain activities into the solution and blocking others from entering the solution.

The effect of molsture conditions on farm plans may be evaluated by adjusting the yields of one or more crops upward or downward one or two standard deviations. The effect of alternative government programs or alternative government program payment rates on the organization and income of farms in an area may also be estimated with relative ease.

The above are examples. Many more possible uses exist for optimal representative farm plans produced by the system. The above examples were presented to demonstrate the usefulness of this aspect of the sysm tem and how it may increase the effectiveness of a farm management education program.

Actual Farms

As indicated in Chapter I, actual farm linear programing is expensive in terms of professional stafí time. In states where linear programming is used in extension farm management education, only a limited number of farms have been programmed. The system developed in this study should allow actual farms to be linear programmed at a reasonable cost. This cost may vary with the degree of sophistication desired. As indicated in the discussion of the individual farm data form (Table VI) in Chapter III, a farm may be linear programmed with only the information required for the first page of that form. These data, relating to the resource base, should be readily available for most farms. After approximately twenty-five cards are punched from the pre-coded form, a computer run may be made. The cutput, including the simplified reports could be mailed directly to the area agent who collected the data. The agent, in turn, wolld relate the information to the farmer.

If more precision were desired, additional information may be collected from the farmer, or estimates may be made and used in place of certain data bank coefficients. Even if extensive revisions are made, the system offers many advantages over building individual matrices for each farm.

In the replies received from personnel at state universities who do individual farm linear programing, as noted in Chapter I, individual farm data were used where possible. In most cases, however, standard budgets or estimates by agricultural college personnel were used where individual farm data were not available. The system developed in this study essentially does the same thing. If individual farm data are not available for revising the data bank coefficients, the standard coefficients are used. These standard coefficients have been prepared for a given area and given soll types by agricultural college personnel.

In addition, the system offers a framework which remains the same from one farm to another. In conventional individual farm programing, a large portion of the matrix, relating to government programs, buysell activities and inventories remains the same from farm-to-farm, but it must be rebullt for each farm. This duplication of effort is eliminated or reduced by the system. When a user of the system becomes acquainted with it, he may think only in terms of a few revisions to the system for each farm, rather than starting over for each farm.

As noted earlier, the system is flexible in that it allows as much individual farm information to be used as is available. This information may be entered directly into the system in terms which are familiar to the user, such as fertilizer cost, machine hire rate, etc.

If the user wishes to adjust the activities for a given level of management, he may lower or raise crop yields, production cost items, or other coefficients by a uniform factor.

The manner in which individual farm linear programming may be carried out may vary. Four possible approaches are suggested.

Special Problems. First, certain individual farm planning problems which arise during consultations of farmers with an area farm management agent may best be solved by linear programming. In this case, the area agent may provide the required information and request that a program be run.

Seven such runs were made during August and September, 1968, while testing the system, particularly the government program comparison report. Data was collected by the area agent in north central Oklahoma on a preliminary version of the individual farm data form and mailed to the author. The programs were run, reviewed, and mailed back to the area agent who discussed the results with the farmers. In each case, the agent felt that the farmer viewed the information as relevant and important in his planning decisions relating to the 1969 wheat program.

Workshop Participants. The system may be utilized in various types of farm management worshops. For example, the first workshop session may deal with an evaluation of available resources, and the first page of the individual farm data form may be filled out. Other sessions may deal with crop and livestock budgets, and revisions may be made to data bank coefficients on the basis of an individual's computations. Prices may be studied in another session, and the expected prices may be indicated on the individual farm data form. Basic economic principles may
also be studied, stiowing the methods of choosing enterprises which will tend to maximsze returns to the resource base. When the Inear programming runs are returned, several sessions may be held on the interpretation of the results and rerun requests may be accepted from those participants who wish to explore alternative prices, yields, etc.

Farm Record Project Cooperators. It is possible that individual farm linear programs may be run for individuals participating in a farm record project, using information which is currentiy on file at the records processing center. If this information is not on file, forms and procedures for obtaining information may be revised so that it will be collected in the future. Thus, the system may serve as a guide for the collection of data which is necessary in farm decision making. As input-output data become available from enterprise records on an individual farm, they may be substituted for the standard data. The inform mation system then serves as a backup data source, filling in where necessary until individual farm data becomes available. Farmers may be motivated to keep more detailed production reoords on their various enterprises if they are able to see the manner in which these data may be used in decision making. In summary, the information system could serve as a guide for the collection, classification and storage of farm record data needed for farm decision making.

Fee Service. Individual farms could also be programed on a fee basis. The mechanics would be similar to the "special problem" example discussed above, only the farmer would pay a fee to cover the cost of computer and clerical time. Many farmers participating in farm record projects currently pay such a fee. Due to the need for an accompanying

Abstract

educational effort, an area farm management agent or some other educaa tor with similar knowledge and training should administer the program at the local level.

A "package" could be offered in this type of program. The government program comparison report could be run first and shown to the farmer. He would then select a government program participation alternative on which he desired a more detailed report. The detailed report could then be shown to him. A limited number of parametric price runs could also be offered to answer questions which were raised in his dise cussion of the first two reports with the area agent. A fixed fee might be charged for one run of each of the simplified reports and a given number of parametric price runs.

Administrative Recommendations

The recommendations appearing in this section are based on the assumption that an area farm management information system would be developed for each economic type of farming area of Oklahoma which is served by an area farm management agent. These may be separate systems or they may be combined so that activities common between one or more areas would not be duplicated.

Development

Area farm management agents would be heavily involved in the development and maintenance of a system or series of systems such as the one developed in this study. The operation of the system would make them more effective in their educational efforts which involve farm planning, but in order that they realize a benefit from the fixed
commitment of time necessary for the construction and maintenance of the system, they should probably spend at least one-half of their time working on educational activities related to it. Thus, it is important that their supervisors and extension administrators be committed to an intensive extension program in farm decision making. They should also feel that the area information system approach is the most feasible way in which that program may be executed.

The personnel required in the development of systems for the various areas of the state will depend on the rate at which development is desired. For rapid development, an agricultural economics staff member should spend full time on this project and would require programming and clerical assistance. This person would, of course, work closely With the area agents whose areas were under development. Development would be slowed considerably if crop and livestock budgets were not previously available in each area. Even with a slower rate of development, a point will be reached when the maintenance requirements of previously developed systems will require the services of such a person as mentioned above.

Maintenance

An item of prime importance when anticipating the development of a series of area systems should be maintenance. Efforts spent in developing a system as discussed in this thesis would be spent in vain if budget and personnel allowances were not made for maintenance of the system. The applications of the system discussed earlier in this chapter are based on the assumption that the data bank and operating system are revised immediately when changes occur which make any part
of either obsolete. As mentioned above, it is suggested that a full time staff member in agricultural economics be assigned the responsibility of maintenance and operation of the system or series of systems. The area farm management agents should also play a key role in sensing needed revisions, such as cost revisions in standard budgets, additional activities needed or yield revisions as a result of an improved crop variety. The area agent should be familiar with the linear programming matrix so that he can recognize its potential as well as its limitations.

CHAPTER V

SUMMARY AND CONCLUSIONS

The objective of this study was to develop an afea information system which would produce optimum farm organizations for representative farms, allow rapid evaluation of changes in the farm decision making environment and allow rapid dissemination of these results to farmers and their advisors. In addition, the capability of producing optimal plans for actual farms and an exploration of the use of information generated by the system in a farm management education program were desired.

The foundation of an area farm management information system was presented in Chapter II. An area data bank was developed for north central Oklahoma. The decision making model employed by the system governs the design of the data bank. Linear programming was selected as the decision making model for the system developed in this study. The standard linear programing tableau furnishes a pattern for the efficient organization of a data bank.

Accounting functions, government program provisions and output format procedures are factors which favor the initial inclusion of all feasible activities for an area in the area data bank. For example, a crop which requires specialized treatment in relation to government program provisions could cause numerous revisions in the data bank, if it were to be added to an existing system.

Costs for production activities are itemized in the data bank and may be revised individually. Coefficients of variation for crop yields are also stored in the data bank and may be used to adjust crop yields in the linear programming tableau.

In Chapter III, an operating system was developed to directly fulfill several of the objectives of this study. Alternative techniques were discussed regarding the development and use of an operating system. When developing a system, activities and constraints may be addressed in the computer by location or by alphanumeric description. Verbal descriptions which are used in output formats may be read line-by-line as the report is being printed or they may be constructed from verbal. activity descriptions. The amount of interpretation and the degree of refinement in report formats must also be determined when a system is being developed.

A conflict exists between the desire for a flexıble addressing system and refined output formats. The alphanumeric addressing system allows activities and constraints to be added easily, but in order to. design specialized output formats for each type of enterprise, all feasible enterprises must be anticipated or included in the system when $u t$ is Initially constructed. In addition, features which expedite the revision of existing activities make the addition of new activities more cumbersome. Such features are automatic cost changes when yields are revised, detailed cost revisions for production activities and yield adJustments which use coefficients of variation. Thus, as noted in the above discussion of the data bank, the initial inclusion of all feasible activities in an area data bank is desirable. When all feasible activities are included in the system, the need for a flexible
addressing system is diminished and the location addressing system becomes more efficient.

The intended use of a system should govern its design, however. In a system which is intended for actual farm programming, a flexible addressing system may be chosen so that activities and constraints could be added easily. The detail in the output formats would be sacrificed by such a choice, however. In a system which is intended for repetitive representative farm programming, a location addressing system and refined output formats would be desirable.

Applications of a farm management information system were dism cussed in Chapter IV. The discussion was in terms of potential applioations. A limited field test of the system was conducted, but most. applications involve the inftiation of new educational programs related to farm decision making.

Representative farm plans produced by the system may be published periodically, reflecting the current decision making environment affecting farmers in an area. The plans may be used as examples and as general information, or they may be generalized to actual farms. Budgeting or simplified programming may be employed to generalize a representative farm plan to an actual farm.

Actual farms may be programmed as special problems, as a fee service, as a part of a farm record service, or as an educational aid in a farm management workshop.

An educational program should precede or accompany the use of this system. The implementation of the system in an area, or state, would require a new educational program with supporting budget and personnel. A staff member, with programming assistance, should be able
to maintain and operate the system for several areas of a state．Area farm management agents play a key role in the operation and maintenance of the system，which increases their effectiveness as educators．

Thus，an area farm management information system was developed for north central Oklahoma which could serve as a pattern for the develop－ ment of systems for other areas．However，this study was an experiment， the methods and findings of which are reported in this thesis．The alternatives in design and development discussed in this thesis should be viewed with more importance than the system which was actually developed．

The person who is responsible for the development of a series of area systems or a single statewide farm management information system should set out clearly the purposes of the system and establish prioni－ ties for these purposes．He should then study alternative designs and select the one which will best meet these purposes．As an example，the relative importance of repetitive representative farm programming versus actual farm programing should Influence the data addressing and report printing techniques employed in the system．

The role of linear programing should possibly be mentioned．At the outset，this study was viewed as an application of linear programing－one in which the computer output would be printed in a readily readable form．As the study progressed，however，linear prow gramming assumed the role of an optimizing technique which was used at one stage in the operation of the system．Data storage，classification， and manipulation became a major part of the system＇s operation．This points out the need for computer programs which allow the combination of functions such as data revision and man⿻丷木⿴囗十 pution with models such as

Inear programming. This multiple function ability is important if these models are to be utilized efficiently in research and if they are to benefit individual farmers.

The system developed in this study may also serve as a starting point in the development of a more comprehensive agricultural information system. The framework here could be extended to include many other types of organizational decisions. Crop yields could be carried as unharvested inventories. Alternate harvesting, storage, and marketing methods reflecting different costs, product losses, and nutrient losses could be present in the system. Livestock feeding methods which reflected various labor and capital requirements as well as nutrient losses and various types of purchased feed could all be included as alternatives. Livestock feed requirements could be listed in terms of nutrient elements. The system could then select a cropping plan, a set of machinery, harvesting and storage methods, feeding methods, and livestock rations. Alternate crop aotivities could allow the selection OI an optimum level of fertilizer application as well as a least cost fertillzer mix. The list of such examples can be extended to include virtually every management decision which a farmer makes.

The development of such a system would require the efforts of all disciplines in a college of agriculture. The system could serve as a guide for the coordination and direction of research. Each discipline, in the development of their contribution to the system would be developing material which they could use independently in their educational efforts. The system could serve as a pattern for the organization, coordination, storage and use of information emanating from a college
of agryculture. As the volume of available data for farm dectsion making increases and as farm management decisions become more complex, the need for such a system is increasing.

A SELECTED BIBLIOGRAPHY

［1］Brant，William Lewis．＂Analysis of the Representative Farm Concept as a Tool in Area Supply Response Research and Farm Management Education．＂Unpublished Ph．D．Thesis，Oklahoma State University，Stillwater， 1967.
［2］Carter，Harold 0．＂Representative FarmswGuides for Decision Making．＂Journal of Farm Economics，Vol． 45 （1963）， pp．1448－1455．
［3］Clasen，R．J．Linear Programming Simplex Subroutine．Share General Program Líprary，SDA No．3384，1965．
［4］Conneman，George Joseph Jr．＂A Methodological Study of Representative Farm Groups and Alternative Methods of Analyzing and Projecting Changes in Milk Production．＂ Unpublished Ph．D，Thesis，Pennsylvania State University， University Park，1967．
［5］Connor，Larry J．et al．Alternative Crop Enterprises on Clay and Loam Solls of North Central Oklahoma．Oklahoma State Univer－ sity Processed Series P－550，Stillwater， 1966.
［6］Dantzig，George B．Linear Programming and Extensions． Princeton：Princeton University Press， 1963.
$[77$ Elliott，F。F。，Tapp，Jesse W．，and Willard，Rex E．Types of Farming in North Dakota．U．S．D．A．Tech．Bul．102， Washington， 1928.
［8］Flaskerud，George K，et al．＂Breakeven Prices and Yields For＂ Government Farm Program Alternatives－mA Linear Programming Analysis．＂Oklahoma Current Farm Economics，Vol．40， Sept．，1967，pp．65，73．
［9］Gray，Fenton and Galloway，H．M．Soils of Oklahoma．Oklahoma Ag．Exp．Sta。Mísc．Pub．MP－56，Stillwater，1959．
［10］Great Plains Regional Research Project GP－5．Unpublished data compiled for this regional supply response project． Odell L．Walker，Oklahoma State University，Chm。
［11］Hall，Harry Hoet al．Alternative Crop and Livestock Entexprises； Oklahoma Panhandle．Oklahoma State University Processed Series P m 459 ，Stillwater， 1963.
[12] Harper, Horace J, The Effect of Rainfall and Temperature on Crop Production in Central and Western Oklahoma. Oklahoma State University Processed Series P-407, Stillwater, 1962.
[13] Heady, Earl O. and Candler, Wilfred。 Linear Programming Methods. Ames: Iowa State University Press, 1964.
[14] Huffman, Donald C. Programmed Budgeting-A Tool For Complete Farm Planning. Ag. Econ. Dept., La. S̄tate Univ., AEA Information Series No, 2, Baton Rouge, 1965.
[15] IBM Corporation. 7040/7044 Linear Programming System III (7040-60-12X) Users Manual. Tech. Pub. H20-0195-0, White Plains, 1966.
[16] Lanpher, Buel. Inventory of EDP Programs and Facilities Used an Farm Management Programs. U.S.D.A., Fed. Ext. Ser. Pub. $\overline{\text { AST }}$ and M-175, Washington, 1968.
[17] Leftwich, Richard H. The Price System and Resource Allocation. 3rd ed., New York: Holt, Rinehart and Winston, 1960.
[18] Mighell, R. I. and Black, John D. Interregional Competition in Agriculture. Boston: Harvard Univ. Press, 1951.
[19] Plaxico, James S. and Capstick, Daniel. Optimum Wheat-Beef Farming Systems in North Central Oklahoma. Oklahoma Ag. Exp.Sta. Bul. B-532, Stillwater, 1959.
[20] Tweeten, Luther G. Foundations of Farm Policy. Unpublished manuscript, Oklahoma State University, Stillwater, 1968.
[21] United States Department of Agriculture, Agricultural Stabilization and Conservation Service. 1969 Wheat Program. Circular PA-875, Washington, June, 1968.
[22] United States Department of Agriculture, Economic Research Service. Farrin Income Situation. Washington, July, 1968.
[23] United States Department of Commerce, Bureau of the Census. United States Census of Agriculture, Oklahoma. Vol. I, Part 36, Washington, 1964.

APPENDIX

TABLE XIV

> EXPLANATION OF THE ACTIVITY ABBREVIATIONS USED IN THE LINEAR PROGRAMMING MODEL

```
        CROP ACTIVITIES
71.CBA--GROW 1 ACRE OF BARLEY ON CLAY-B SOILS
71.CAA--GROW 1 ACRE OF BARLEY ON CLAY-C SOILS
71.CDA--GROW 1 ACRE OF BARLEY ON CLAY-D SOILS
71.LAA--GROW 1 ACRE OF BARLEY ON LOAM-A SOILS
71.LBA--GROW 1 ACRE OF BARLEY ON LOAM-B SOILS
71.LCA--GROW 1 ACRF OF BARLEY ON LOAM-C SOILS
71.LDA--GROW 1 ACRE OF BARLEY ON LOAM-D SOILS
73.CBA--GROW 1 ACRE OF GRAIN SORGHUM ON CLAY-B SOILS
73.CCA--GROW 1 ACRE OF GRAIN SORGHUM ON CLAY-C SOILS
73.CDA--GROW 1 ACRE OF GRAIN SORGHUM ON CLAY-D SOILS
73.LAA--GROW 1 ACRE OF GRAIN SORGHUM ON LOAM-A SOILS
73.LBA--GROW 1 ACRE OF GRAIN SORGHUM ON LOAM-B SOILS
73.LCA--GROW 1 ACRE OF GRAIN SORGHUM ON LOAM-C SOILS
73.LDA--GROW 1 ACRE OF GRAIN SORGHUM ON LOAM-D SOILS
76.CBA--GROW 1 ACRE OF WHEAT ON CLAY-B SOILS
76.CCA--GROW 1 ACRE OF WHEAT ON CLAY-C SOILS
76.CDA--GROW 1 ACRE OF WHEAT ON CLAY-D SOILS
76.1 AA--GROW 1 ACRE OF WHEAT ON LOAM-A SOILS
7GLBAA--GROW 1 ACRE OF WHEAT ON LOAM-B SOILS
76.LCA--GROW I ACRE OF WHEAT ON LOAM-C SOILS
76.LDA--GROW I ACRE OF WHEAT ON LOAM-D SOILS
803CBA-GROW 1 ACRE OF FORAGE SORGHUM ON CLAY-B SOILS
803CCA--GROW 1 ACRE OF FORAGE SORGHUM ON CLAY-C SOILS
803CDA--GROW 1 ACRE OF FORAGE SORGHUM ON CLAY-D SOILS
803LAA--GROW 1 ACRE OF FORAGE SORGHUM ON LOAM-A SOILS
803LBA--GROW 1 ACRE OF FORAGE SORGHUM ON LOAM-B SOILS
803LCA--GROW 1 ACRE OF FORAGE SORGHUM ON LOAM-C SOILS
803LDA--GROW 1 ACRE OF FORAGE SORGHUM ON LOAM-D SOILS
81.CBA--GROW 1 ACRE OF ALFALFA ON CLAY-B SOILS
81.CCA--GROW 1 ACRE OF ALFALFA ON CLAY-C SOILS
81.LAA--GROW 1 ACRE OF ALFALFA ON LOAM-A SOILS
81.LBA-GROW I ACRE OF ALFALFA ON LOAM-B SOILS
81.LCA--GROW 1 ACRE OF ALFALFA ON LOAM-C SOILS
800CBA--GROW I ACRE OF SMALL GRAIN PASTURE IGRAZE OUT BY MAY II ON CLAY-B SOILS
8OOCCA--GROW I ACRE OF SMALL GRAIN PASTURE (GRAZE OUT BY MAY l) ON CLAYGC SOILS
8OOCDA--GROW l ACRE OF SMALL GRAIN PASTURE (GRAZE OUT BY MAY 1) ON CLAY-D SOILS
8OOLAA-GGROW I ACRE OF SMALL GRAIN PASTURE (GRAZE OUT BY MAY I) ON LOAM-A SOILS
8OOLBA--GROW I ACRE OF SMALL GRAIN PASTURE (GRAZE OUT BY MAY I) ON LOAM-B SOILS
BOOLCA--GROW I ACRE OF SMALL GRAIN PASTURE IGRAZE OUT BY MAY II ON LOAM-C SOILS
BOOLDA--GROW & ACRF OF SMALI GRAIN PASTURE (GRAZE OUT BY MAY 1) ON LOAM-D SOILS
85.CBA--GROW 1 ACRE OF SUDAN PASTURE ON CLAY-B SOILS
85.CCA--GROW 1 ACRE OF SUDAN PASTURE ON CLAY-C SOILS
85.CDA--GROW 1 ACRE OF SUDAN PASTURE ON CLAY-D SOILS
85.LAA--GROW 1 ACRE OF SUDAN PASTURE ON LOAM-A SOILS
85.LBA--GROW I ACRE OF SUDAN PASTURE ON LOAM-B SOILS
85.LCA--GROW 1 ACRE OF SUDAN PASTURE ON LOAM-C SOILS
85.LDA--GROW 1 ACRE OF SUDAN PASTURE ON LOAM-D SOILS
```


TABLE XIV (Continued)

```
85WCBA~-GROW 1. ACRE OF SUDAN FOR WINTER GRAZING ON CLAY-B SOILS
85WCCA--GROW 1 ACRE OF SUDAN FOR WINTER GRAZING ON CLAY-C SOILS
85WCDA--GROW I ACRE.OF SUDAN FOR WINTER GRAZING ON CLAY-D SOILS
85WLAA--GROW I ACRE OF SUDAN FOR WINTER GRAZING ON LOAN-A SOILS
85WLBA--GROW 1 ACRE OF SUDAN FOR WINTER GRAZING ON LOAM-B SOILS
85WLCA--GROW 1 ACRE OF SUDAN FOR WINTER GRAZING ON LOAM-C SOILS
85WLDA--GRON I ACRE OF SUDAN FOR 'NINTER GRAZING ON LOAM-D SOILS
60FALL--FALLOW IDLE CROPLAND--MAY, OR MAY NOT EE DIVERTED ACRES
86.CIA--GROW 1 ACRE OF NATIVE PASTURE ON CLAY SOILS
86.LIA--GROW I ACRE OF NATIVE PASTURE ON LOAM SOILS
    LIVESTOCK ACTIVITIES
IllRTA--PRODUCE ONE COW-CALF UNIT--CALF BORN MARCH 1, NOT CREEP FED, COWS
    WINTERED ON COTTON SEED CAKE AND NATIVE RANGF. CALF SALABLE OCT. l
    AS A GOOD-CHOICE FFEDER
112RTA--PRODUCE ONE COW-CALF UNIT-CALF BORN MARCH 1, NOT CREEP FED, COWS
        WINTERED ON COTTON SEED CAKE; NATIVE RANGE AND FORAGE SORGHUM, CALF
        SALABLE OCT. 1 AS A GOOD-CHOICE FFEDER
113RTA--PRODUCE ONE COW-CALF UNIT--CALF BORN MARCH 1, NOT CREEP FED, COWS
        WINTERED ON NATIVE RANGE, FORAGE SORGHUM AND SMALL GRAIN PASTURE
        (WINTER ONLY), CALF SALABLE OCT. 1 AS A GOOD-CHOICE FEEDER
IIIVLA--PRODUCE ONE COW-CALF UNIT--CALF BORN NOV, I, NOT CREEP FED, COWS
        WINTERED ON NATIVE RANGE, SMALL GRAIN PASTURE(WINTER ONLY), AND GRAIN
        SORGHUM STUBBLE WITH FORAGE SORGHUM AND COTTON SEED CAKE, CALF SALABLE
        JULY 20 AS A GOOD-CHOICE FFEDER
141TTA--PRODUCE ONE GOOD FEEDER STEER--BOUGHT OCT. I5, WINTERED ON NATIVE RANGE
    AND COTTON SEED CAKE, SALABLF OCT. 15
142TTA--PRODUCE ONE GOOD FEEDER STEER--BOUGHT OCT. 15, WINTERED ON NATIVE RANGE,
    COTTON SEED CAKE AND NATIVE RANGE, SALABLE OCT. 15
143:TA--PRODUCE ONE GOOD FEEDER STFFR-mOUGHT OCT, 15, NINTERED ON NATIVE RANGE,
    GRAIN SORGHUM STUBELE AND COTTON SEED CAKE, SALABLE OCT. 15
144TYA--PRODUCE ONE GOOD FEEDER STEER--BOUGHT OCT, 15, WINTERED ON SMALL GRAIN
        PASTURE WITH FORAGE SORGHUM AND COTTON SEED CAKE WHEN OFF SMALL GRAIN,
        SALABLE MAY 1 FROM GRAZED OUT SMALL GRAIN
145TYA--PRODUCE ONE GOOD FEEDER STEER--BOUGHT OCT. 15, WINTERED ON SMALL GRAIN
        PASTURE AND GRAIN SORGHUM STUBRLE WITH FORAGF SORGHUM AND COTTON SFFD
        CAKE WHEN OFF SMALL GRAIN, SALABLE MAY 1 FROM GRAZED-OUT SMALL GRAIN
146TRA--PRODUCE ONE GOOD FEEDER STEFR--BOUGHT OCT. 15, WINTERFD ON SMALL GRAIN
        PASTURE WITH FORAGE SORGHUM AND COTTON SEED CAKE WHFN OFF SMALL GRAIN,
        SALABLE MARCH 1
147TRA--PRODUCE ONE GOOD FEEDER STEER--BOUGHT OCT. 15: WINTERED ON GRAIN
        SORGHUM STUBBLE AND NATIVE RANGE WITH FORAGE SORGHUM AND COTTON SEED
        CAKE WHEN OFF GRAIN SORGHUM STUBBLE, SALABLE MARCH l
```

```
    BUY-SELL ACTIVITIES
710SBA--SELL 1 BU. BARLEY
730SSA-SELL 1 CWT. GRAIN SORGHUM
760SWA--SELL 1 BU. WHEAT
BOOWPS--SELL 1 AUM SMALL GRAIN PASTURE(WINTER AND GRAZE OUT)
8OOWPW--SELL I AUM SMALL GRAIN PASTURE(WINTER ONLY)
```


PABFE XIV (Continuod)

```
810SHA--SELL I TON ALFALFA HAY
801BHA-mBUY 1 TON PRAIRIE HAY OR FORAGE SORGHUM
110S1A--SELL 1 CWT. OF GOOD-CHOICE FEEDER STEER OCT. 1
110H1A--SELL 1 CWT. OF GOOD-CHOICE FEEDER HEIFER OCT. 1
11OCIA--SELL 1 CWT: OF CULL COW FROM SPRING CALVING ACTIVITY
110:2A--5ELL 1 CWT. OF GOOD-CHOICF FFEDER STEER JULY 20
11OH2A--SELL 1 CWT. OF GOOD-CHOICF FEEDER HEIFFR JULY 20
110C2A--SELL 1 CWT: OF CULL COW FROM FALL CALVING ACTIVITY
141STA--BUY 1 CWT. OF GOOD FEEDER STEER.OCT. 15
140S1A--SELL 1.CWT. OF GOOD FEEDER STEFR MARCH l
140S2A--SELL 1 CWT. OF GOOD FEEDER STEER.MAY l
140S3A--SELL.1 CWT. OF.GOOD FEEDER STEER OCT. 15
111JAA-HIRE 1 HOUR JAN.-APRIL LABOR
111MJA--HIRE l HOUR MAY-JULY LABOR
111ASA-~HIRE 1 HOUR AUG.-SEPT. LABOR
111ODA--HIRE 1 HOUR OCT.-DEC. LABOR
331BCA--COUNT I DOLLAR OF TOTAL CAPITAL
321BCA--BORROW l DOLLAR OF ANNUAL CAPITAL
    GOVERNMENT PROGRAM ACTIVITIES
GIMDBA--DIVERT 1 ACRE OF MINIMUM BARLEY DIVERSION
63MDSA-DIVERT 1 ACRE OF MINIMUM GRAIN SORGHUM DIVERSION
66MDWA--DIVERT l ACRE OF MINIMUM WHEAT DIVERSION
61BDCA--DIVERT 1 ACRE OF ADDITIONAL BARLEY DIVERSION
63SDCA--DIVERT l ACRE OF ADDITIONAL GRAIN SORGHUM DIVERSION
G6WDCA-MDIVERT I ACRF OF ADDITIONAL WHEAT DIVERSION.
610BCA--COLLECT PRICE SUPPORT PAYMENT ON I ACRE OF BARLEY
63OSCA--COLLECT PRICE SUPPORT PAYMENT ON. I ACRE OF GRAIN SORGHUM
660WCA--COLLECT WHEAT CERTIFICATES ON l ACRE OF WHFAT
GOTCA.-ALLOW I ACRE OF SMALL GRAIN.PASTURE TO SATISFY I ACRE OF THE DIVERTED
    ACREAGE REQUIREMENT
GOTCAW--ALLOW WHEAT CERTIFICATES TO BE COLLECTED ON I ACRE OF GRAZED-OUT WHEAT
6OBFS.--SUBSTITUTE 1 ACRE OF BARLEY FOR 1 ACRE OF GRAIN SORGHUM
60BFW.--SUBSTITUTE l ACRE OF BARLEY FOR l ACRE OF WHEAT
60SFB.--5UBSTITUTE 1 ACRE OF GRAIN SORGHUM FOR 1 ACRE OF BARLEY
60SFW.--SUBSTITUTE l ACRE OF GRAIN SORGHUN FOR l ACRE OF WHEAT
6OWFB.--SUBSTITUTE l ACRE OF WHEAT FOR l ACRE OF. BARLEY
6OWI S.--SUBSTITUTF 1 ACRE OF WHEAT FOR 1.ACRE OF GRAIN SORGHUM
```

```
LAND
9TO..--ACRES OF TOTAL CROPLAND
9CB..--ACRES OF CLAY-B LAND
9CC...--ACRES OF CLAY-C ALND
9CD..--ACRES OF CLAY-D LAND
9CP. ---ACRES OF CLAY NATIVE PASTURE
9LA..--ACRES OF LOAM-A LAND
9LB..--ACRES OF LOAM-B LAND
9LC..--ACRFS OF IOAM-C LAND
9LD..--ACRES OF LOAM-D LAND
9LP..--ACRES OF LOAM NATIVE PASTURE
81HLIM-ACRES OF ALFALFA PERMITTED BY THE FARM OPERATOR
LABOR
11LJA. \(-\infty\) HOURS OF JANUARY-APRIL LABOR
11 LMJ. --HOURS OF MAY-JULY LABOR
116AS. - -HOURS OF AUGUST-SEPTEMBER LABOR
11LOD.-HOURS OF OCPOBER-DECEMBER LABOR
CAPITAL
3CO.-DOLLARS OF TOTAL CAPITAL
3COA.--DOLLARS OF CAPITAL ADJUSTED TO AN ANNUAL BASIS
CROP INVENTORIES
71BAP.--BUSHELS OF BARLEY
73GSP. - -CWY. OF GRAIN SORGHUM
76WHP. \(\rightarrow\) BUSHELS OF WHEAT
8OHAY.-TONS OF PRAIRIE HAY OR FORAGE SORGHUM
81HAY.-TONS OF ALFALFA HAY
\(735 T B .-\)-AUMIS OF OF GRAIN SORGHUM STUBBLE
8OMAR.--AUMIS OF OCT-MAR SMALL GRAIN PASTURE
8OMAY--AUMIS OF MAR-MAY SMALL GRAIN PASTURE
86NP..-AUM'S OF NATIVE PASTURE
LIVESTOCK INVENTORIES
11CSI. \(-C W T\). OF GOOD-CHOICE 485 POUND FEEDER STEERS SOLD OCT. 1 11CHI. - CWT. OF GOOD-CHOICE 460 POUND FEEDER HEIFERS SOLD OCT. 1 IICCI.-CWT. OF CULL COWS FROM SPRING CALVING ACTIVITY \(11 C S 2 .-\) CWT. OF GOOD-CHOICE 485 POUND FEEDER STEERS SOLD JULY 20 \(11 C H 2--C W T\). OF GOOD-CHOICE 460 POUND FEEDER HEIFERS SOLD JULY 20 11CC2.--CWT. OF CULL COWS FROM FALL CALVING ACTIVITY
```

```
14SB..--CWT. OF GOOD FEEDER STEERS BOUGHT OCT. 15
```

14SB..--CWT. OF GOOD FEEDER STEERS BOUGHT OCT. 15
145S1.--CWT. OF GOOD FEEDER STEERS SOLD MARCH 1
14SS2.--CWT. OF GOOD FEEDER STEERS SOLD MAY 1
14SS3.--CWT. OF GOOD FEEDFR STEERS SOLD OCT. 15
GOVERNMENT PROGRAMS
618...--AGRES OF BARLEY BASE
635...-ACRES OF GRAIN SORGHUM BASE
$66 \mathrm{~W} . . .-A C R E S$ OF WHEAT ALLOTMENT
60CA.--ACRES OF CONSERVING BASE

```

\section*{TABLE XV (Continued)}
```

610MB.--ACRES OF MINIMUM PARLEY DIVERSION
63DMS.--ACRES OF MINIMUM GRAIN SORGHUM DIVERSION
66DMW.--ACRES OF MINIMUM WHEAT DIVERSION
61DAB.--ACRES OF ADDITIONAL BARLEY DIVERSION
63DAS.--ACRES OF ADDITIONAL GRAIN SORGHUM DIVERSION
66DAW.--ACRES OF ADDITIONAL WHEAT DIVERSION
61BP...-ACRES OF BARLEY GROWN
61BPL.--ACRES OF BARLEY WHICH QUALIFY FOR PRICE SUPPORT PAYMENT
63SP..--ACRES OF GRAIN SORGHUM GROWN
63SPL.--ACRES OF GRAIN SORGHUM WHICH QUALIFY FOR PRICE SUPPORT PAYMENT
66WC..--ACRES OF WHEAT GROWN
66WCL.--ACRES OF WHEAT WHICH QUALIFY FOR WHEAT CERTIFICATES
GOFAL.--ACRES OF IDLE AND/OR DIVERTED LAND
6ODLM.--ACRES OF WHEAT GRAZE-OUT ICAN RE USED AS CONSERVING ACRES,
DIVERTED ACRES OR WHEAT FOR PURPOSES OF COLLECTING CERTIFICATES)
60BFSL--ACRES OF BARLEY WHICH CAN BE SUBSTITUTED FOR GRAIN SORGHUM
60BFWL--ACRES OF BARLEY WHICH CAN BE SUBSTITUTED FOR WHEAT
6OSFBL--ACRES OF GRAIN SORGHUM WHICH CAN BE SUBSTITUTED FOR BARLEY
GOSFWL--ACRES OF GRAIN SORGHUM WHICH CAN BE SUBSTITUTED FOR WHEAT
6OWFBL--ACRES OF WHEATT WHICH CAN BE SUBSTITUTED FOR BARLEY
GOWFSL--ACRES OF WHEAT WHICH CAN BE SURSTITUTED FOR GRAIN SORGHUM

```

TABLE XVI
THE A MATRIX AND THE OBJEGTIVE FUNCTIONS USED IN THE LINEAR PROGRAMMING MODEL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \({ }_{71.6 .1}^{\text {C. }}\) & 71.cca & 71.604 & 71.tAA & 71.18 & 71.15 & 71.10 & \({ }_{73.684}^{8 .}\) & \(73.8{ }^{9}\) & \({ }_{73.604}^{10}\) & \({ }^{11}\) & 73.128 & \({ }^{13.1}\) & \({ }^{174} 7\) & \({ }^{76 . C B A}\) \\
\hline nBj \(=1\) & 18.19 & 17.49 & 16.99 & 18.39 & 17.99 & 17.59 & 17.19 & 14.63 & 13.83 & 13.43 & 11.31 & . 10.91 & 10.51 & 10.06 & 17.79 \\
\hline \(\square \mathrm{BJ}=2\) & 20.67 & 19.97 & 19.47 & 20.87 & 20.47 & 20.07 & 19.69 & 16.99 & 16.19 & 15.79 & 13.67 & 13.27 & 12.87 & 12.42 & 20.27 \\
\hline 1 9т\%.. & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00. & 1.30 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline 2+9CB.. & 1.00 & & & & & & & 1.00 & & & & & & & \(1.0 n\) \\
\hline 3+ 9cc.. & & 1.00 & & & & & & & 1.00 & & & & & & \\
\hline \(4+9 \mathrm{CD.}\). & & & 1.00 & & & & & & & 1.00 & & & & & \\
\hline 5 9CP.. & & & & & & & & & & & & & & & \\
\hline  & & & & 1.00 & 1.00 & & & & & & 1.00 & 1.00 & & & \\
\hline \(8+9 \mathrm{CC}\). . & & & & & & 1.00 & & & & & & & 1.00 & & \\
\hline 9+ 9L0.. & & & & & & & 1.00 & & & & & & & 1.00 & \\
\hline \multicolumn{16}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & & & & & \\
\hline 12+111 JA. & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.72 & 0.72 & 0.72 & 0.72 & 0.72 & 0.72 & 0.72 & 0.12 \\
\hline 13+112MJ. & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 6.95 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.94 & 0.95 \\
\hline 14+1114S. & 0.58 & 0.58 & 0.58 & 0.58 & 0.58 & 0.58 & 0.58 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.58 \\
\hline 15+11100. & 0.18 & 0.18 & 0.18 & 0.18 & 0.18 & 0.18 & 0.18 & & & & & & & & 0.18 \\
\hline 16 3ca.. & 18.19 & 17.49 & 16.99 & 18.39 & 17.99 & 17.59 & 17.19 & 14.65 & 13.83 & 13.43 & 11.31 & 10.91. & 10.51 & 10.06. & 17.77 \\
\hline 17 3c0a. & 8.07 & 8.07 & B. 07 & 8.07 & 8.07 & 8.07 & 8.07 & 5.25 & 5.25 & 5.25 & 3.79 & 3.79 & 3.79 & 3.79 & 8.07 \\
\hline \(187184 P\). & -32.00 & -25.00 & -20.00 & \(-34.00\) & \(-30.00\) & -26.00 & -22.00 & & & & & & & -10.64 & \\
\hline  & & & & & & & & -16.80 & \(-12.32\) & -8.96 & -17.92 & -15.68 & -13.44 & -10.64 & -28.00 \\
\hline 21 80Har. & & & & & & & & & & & & & & & \\
\hline 22 81hay. & & & & & & & & & & & & & & & \\
\hline \(23+73 \mathrm{STB}\). & & & & & & & & -0.20. & -0.20 & -0.20 & -0.20 & -0.20 & -0.20 & -0.20 & \\
\hline \(24+80 \mathrm{MAR}\)
\(\mathrm{is+BOMAY}\) & -0.70 & -0.50 & -0.40 & -0.70 & -0.60 & -0. 50 & -0.40 & & & & & & & & -0.70 \\
\hline \(26+86 \mathrm{NP}\). \({ }^{\text {2 }}\) & & & & & & & & & & & & & & & \\
\hline 27 11CS1. & & & & & & & & & & & & & & \(\cdots\) & \\
\hline \(28 \mathrm{liCh1}\). & & & & & & & & & & & & & & & \\
\hline 29 11cci. & & & & & & & & & & & & & & & \\
\hline \(3011 \mathrm{CS2}\). & & & & . & & & & & & & & & & & \\
\hline 3111 CHz . & & & & & & & & & & & & & & & \\
\hline \multicolumn{16}{|l|}{\multirow{3}{*}{331458.0}} \\
\hline & & & & & & & & & & & & & & & \\
\hline 34 14551. & & & & & & & & & & & & & & & \\
\hline \multicolumn{16}{|l|}{3514552.} \\
\hline 3614553. & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & & & & & & & \\
\hline 38+635... & & & & & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & \\
\hline 39+66\%... & & & & & & & & & & & & & & & 1.00 \\
\hline & & & & & & & & & & & & & & & \\
\hline 42613 DMS . & & & & & & & & & & & & - & & & \\
\hline 43 66DML. & & & & . & & & & & & & & & & & \\
\hline \multicolumn{16}{|l|}{\multirow[t]{2}{*}{44+61308.}} \\
\hline & & & & & & & & & & & & & & & \\
\hline \(46+660 \mathrm{AN}^{\text {. }}\) & & & & & & & & & & & & & & & \\
\hline \(47+618 \mathrm{P}\).. & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & & & & & & & & \\
\hline \(48+618 \mathrm{Pl}\)
\(49+53 \mathrm{SP}\) & & & & & & & & -1.00 & \(-1.00\) & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & \\
\hline \(50+63 \mathrm{SPL}\). & & & & & & & & & & & & & & & \\
\hline \(51+66 \mathrm{HC}\).. & & & & & & & & . & & & & & & & -1.00 \\
\hline \multicolumn{16}{|l|}{\multirow[t]{2}{*}{\({ }_{5}^{52+606 C L C L}\).}} \\
\hline & & & & & & & & & & & & & & & \\
\hline \multicolumn{16}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 54+6001 \mathrm{M} \\
& 55+60 \mathrm{BFS}
\end{aligned}
\]}} \\
\hline & & & & & & & & & & & & & & & \\
\hline \multicolumn{16}{|l|}{\(55+60 \mathrm{BFSI}\)
\(56+50 \mathrm{BFWL}\)} \\
\hline \multicolumn{16}{|l|}{57+60SFBL} \\
\hline \multicolumn{16}{|l|}{\(58+605 \mathrm{FWL}\)} \\
\hline \(59+60 \mathrm{HFRL}\) & & & & & \(\cdots\) & & & & & & & & & & \\
\hline \(60+60 \mathrm{WFSL}\) & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

TABIE XVI (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{gathered}
16 \\
76 . \mathrm{CCA}
\end{gathered}
\] & \[
\begin{gathered}
17 \\
76 . \cos A
\end{gathered}
\] & \[
\begin{gathered}
18 \\
76.1 A A
\end{gathered}
\] & \[
\begin{gathered}
19 \\
76.134
\end{gathered}
\] & \[
\begin{gathered}
20 \\
76.1 \mathrm{LA}
\end{gathered}
\] & \[
\begin{gathered}
21 \\
76 . \operatorname{LDA}
\end{gathered}
\] & \[
\begin{gathered}
22 \\
803 \mathrm{CBA}
\end{gathered}
\] & \[
803 \mathrm{CCA}
\] &  &  & \({ }_{8036}^{26}\) & \({ }_{8031}^{27}\) & \({ }^{28}\) & \({ }^{29}\) & \({ }^{30}\) \\
\hline OB. \(=1\) & 17.09 & 16.79 & 17.41 & 17.11 & 16.81 & 16.51 & 33.28 & 28.78 & 85.78
29 & \({ }^{80} 37.76\) & 803684
29.76 & 8031 ca
25.76 & 803204
23.76 &  & \(81 . C C A\)
28.25 \\
\hline - пВ \(^{\text {a }}=2\) & 19.57 & 19.27 & 19.88 & 19.59 & 19.29 & 18.99 & 36.40 & 31.90 & 28.90 & 35.88 & 32.88 & 29.88 & 26.88 & 36.35 & 32.60 \\
\hline 1 9\%\%.. & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 3.35
1.00 & 32.00
1.00 \\
\hline 2+9CB.. & & & & & & & 1.00 & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline 3+ 9C6. & 1.00 & 1.00 & & & & & & 1.00 & 100 & & & & & 1.00 & 1.00 \\
\hline 5 9PP.. & & & & & & & & & 1.00 & & & & & & \\
\hline ht 9id.. & & & 1.00 & & & & & & & 1.00 & & & & & \\
\hline 7+ 9LB.. & & & & 1.00 & & & & & & & 1.00 & & & & \\
\hline \(8+9 \mathrm{lc}\). \({ }^{\text {¢ }}\) & & & & & 1.00 & & & & & & & 1.00 & & & \\
\hline 9+910.. & & & & & & 1.00 & & & & & & & 1.00 & & \\
\hline litrimlim & & & & & & & & & & & & & & & \\
\hline 12+11134. & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.77 & 0.77 & 0.72 & 0.77 & 0.72 & 0.72 & 0.72 & 0.15 & 0.15 \\
\hline 13+111 M. \({ }^{\text {a }}\). & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.65 & 0.66 & 0.68 & 0.66 & 0.66 & 0.66 & 0.66 & 2.63 & \\
\hline 14+112AS. & 0.58 & 0.58 & 0.58 & 0.58 & 0.59 & 0.58 & & & & & & 0.66 & 0.66 & 1.45 & 1.45 \\
\hline 15+11200. & 0.18 & 0.18 & 0.18 & 0.18 & 0.18 & 0.18 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & 1.20 & & \\
\hline  & 17.09 & 16.79 & 17.41 & 17.11 & 16.81 & 16.51 & 26.26 & 23.38 & 21.46 & 24.86 & 22.74 & 20.82 & 18.93 & 32:01 & 28.26 \\
\hline 18 T18AP. & R.07 & 8.07 & 7.80 & 7.80 & 7.80 & 7.80 & 6.02 & 6.02 & 6.02 & 4.55 & 4.55 & 4.55 & 4.55 & 4.31 & 4.31 \\
\hline 19736 SP . & & & & & & & & & & & & & & & \\
\hline 2076 WHP . & -21.00 & -16.00 & -28.00 & -25.00 & -22.00 & -18.00 & & & & & & & & & \\
\hline 21 80hay. & & & & & & & -2.60 & -2.00 & -1.60 & -3.00 & -2.60 & -2.20 & -1.80 & & \\
\hline \(23+73518\). & & & & & & & -0.20 & -0.20 & -0.20 & -0.20 & -0.20 & & & -2.50 & -2.00 \\
\hline \(24+8 \mathrm{CmAF}\). & -0.50 & -0.40 & -0.70 & -0.60 & -0.50 & -0.4n & & & & & -0.20 & -0.2c & -0.20 & -0.20 & -0.20 \\
\hline \(25+80 \mathrm{MAY}\). & & & & & & & & & & & & & & & \\
\hline 26786NP.: & & & & & & & & & & & & & & & \\
\hline \({ }_{28}^{27} 11651\). & & & & & & & & & & & & & & & \\
\hline 29 11CCl. & & & & & & & & & & & & & & & \\
\hline 30 llcss . & & & & & & & & & & & & & & & \\
\hline 3111 CHz . & & & & & & & & & & & & & & & \\
\hline 32 ilcre. & & & & & & & & & & & & & & & \\
\hline 33145 s . & & & & & & & & & & & & & & & \\
\hline 3414581. & & & & . & & & & & & & & & & & \\
\hline 3514552. & & & & & & & & & & & & & & & \\
\hline 37+618... & & & & & & & & & & & & & & & \\
\hline 38+635... & & & & & & & & & & & & & & & \\
\hline 39+66W... & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & & & & & & & & & \\
\hline \(40-60 C\) a.. & & & & & & & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline 42630 ms . & & & & & & & & & & & & & & & \\
\hline 4366 MMK . & & & & & & & & & & & & & & & \\
\hline 44+610AB. & & & & & & & & & & & & & & & \\
\hline \(45+63045\). & & & & & & & & & & & & & & & \\
\hline \(46+660 \mathrm{AL}\). & & & \(\cdots\) & & & & & & & & & & & & \\
\hline 47+618P.. & & & & & & & - & & & & & & & & \\
\hline 49+63SP.. & & & & & & & & & & & & & & & \\
\hline 50.63 SPL . & & & & & & & & & & & & & & & \\
\hline \(51+6 \mathrm{shC}\). & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & & & & & & & & & \\
\hline 52+68wCL. & & & & & & & & & & & & & & & \\
\hline \(54+60 D C M\). & & & & & & & & & & & & & & & \\
\hline \(55+608 \mathrm{FSL}\) & & . & & & & & & & & & & & & & \\
\hline \(56+6 \mathrm{CBFWL}\) & & & & & & & & & & & & & & & \\
\hline \(57+60\) SFBL & & & & & & & & & & & & & & & \\
\hline 58.60 SFwL & & & & & & & & & & & & & & & \\
\hline \(59+60 \mathrm{WFRL}\) & & & & & & & & & & & & & & & \\
\hline \(60+60 \mathrm{WFSt}\) & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{TABLE XVI (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 \\
\hline & 81.LAA & blaba & 81.LCA & beocba & boncta & ROOCDA & \(809 \mathrm{La4}\) & 8002. 34 & boolca. & 800 0a & 85.CBA & 85.こCA & 85.CDA & 85.las & R5. LAA \\
\hline BRJ= 1 & 31.05 & 29.55 & 28.05 & 12.49 & 12.49 & 12.49 & 12.49 & 12.49 & 12.49 & 12.49 & 11.88 & 11.88 & 11.88 & 11.06 & 11.08 \\
\hline 日8, \(=2\) & 35.39 & 33.89 & 32.39 & 14.97 & 14.97 & 14.97 & 14.97 & 14.97 & 14.97 & 14.97 & 13.79 & 13.79 & 13.79 & 12.97 & 12.97 \\
\hline 1 9ro.. & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.03 \\
\hline 2+9CB.. & & & & 1.00 & & & & & & 1.0 & 1.00 & & & 1.0 & 1.0 \\
\hline 3+ 9CC.. & & & & & 1.00 & & & & & & & -1.00 & & & \\
\hline \(4+9 \mathrm{CD}\). . & & & & & & 1.00 & & & & . & & & 1.00 & & \\
\hline 5 9CP.. & & & & & & & & & & & & & & & \\
\hline 60 9LA.0 & 1.00 & & & & & & 1.00 & & & & . & & & 1.00 & \\
\hline 7+ 9L8.. & & 1.00 & 1.00 & & & & & 1.00 & 1.00 & & & & & & 1.09 \\
\hline \(9+9 \mathrm{LD}\).. & & & & & & & & & & 1.00 & & & & & \\
\hline 10. 9LP.. & & & & & & & & & & & & & & & \\
\hline 11+81HLIM & 1.00 & 1.00 & 1.00 & & & & & & & & & & & & \\
\hline L2, +112JA. & 0.15 & 0.15 & 0.15 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 0.12 & 1.02 & 1.02 & 1.02 & 1.02 & -1.07 \\
\hline 13+11244. & 2.63 & 2.63 & 2.63
1.45 & 0.95 & 0.95 & 0.95 & 0.95 & 0.95 & 0.45 & 0.95 & 0.36 & 0.36 & 0.38 & 0.36 & 0.36 \\
\hline 14+111AS. & 1.45 & 1.45 & 1.45 & 0.58 & 0.58 & 0.58 & 0.58 & 0.58 & 0.58 & 0.53 & & & & & \\
\hline 15+11400. & & & & 0.19 & 0.18 & 0.18 & 0.18 & 0.18 & 0.19 & 0.18 & & & & & \\
\hline 15 3c0.. & 31.05 & 79.55 & 28.05 & 12.49 & r2.49 & 12.49 & 12.49 & 12.49 & 12.49 & 12.49 & 12.93 & 11.08 & 11.88 & 11.06 & 11.06 \\
\hline 17 3CDA. & 2.95 & 2.95 & 2.95 & 7.79 & 7.79 & 7.79 & 7.19 & 7.79 & 7.79 & 7.79 & 5.56 & 5.56 & 5.56 & 5.26 & 5.26 \\
\hline 1 B 718 AP . & & & & & & & & & & & & & & & \\
\hline 20 7SWHP. & & & & & & & & & & & & & & & \\
\hline 2180 har . & & & & & & & & & & & & & & & \\
\hline 22 81har. & -2.60 & -2.40 & -2.20 & & & & & & & & & & & & \\
\hline 23+73STB. & -0.20 & -0.20 & -0.20 & & & & & & & & & & & & \\
\hline P6t bomar. & & & & -0.70 & -0.50 & -0.40 & -0.70 & -0.60 & -0.50 & -0.40 & . & & & & \\
\hline 25+ BOMAY. \(^{\text {a }}\) & & & & -1.70 & -1.50 & -1.40 & -1.90 & -1.80 & -1. 70 & -1.60 & & & & & \\
\hline \(26+8\) GNP.. & & & & & & & & & & & -2. 10 & -1.90. & -1.80 & -2.40 & -2.20 \\
\hline ZS Lichio & & & & & & & & & & & & & & & \\
\hline 29 116C.1. & & & & & & & & & & ; & & & & & \\
\hline 3011 TSS . & & & & & & & & & & : & & & & & \\
\hline \(31 \mathrm{HCH2}\) & & & & & & & & & & & & & & & \\
\hline  & . & & & & & & & & & . & & & & & \\
\hline 3414551. & & & & & & & & & & & & & & & \\
\hline 3514552 \% & & & & & & & & & & & & & & & \\
\hline 36 14553: & & & . & & & & & & & & & & & & \\
\hline 374618... & & & & & & & & & & & & & & & \\
\hline \(38+635 .\).
\(39+65 \mathrm{~N}\). & & & & & & & & & & & & & & & \\
\hline 40-60CA.. & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline 41.81 Mmb. & & & & & & & & & & & & & & & \\
\hline 42 f 3 ms . & & & & & & & & & & & & & & & \\
\hline 43660 MW . & & & & & . & & & & & & & & & & \\
\hline 44661048. & & & & & & & & & & & & & & & \\
\hline \(45+630 \mathrm{AS}\).
\(46+6600 \mathrm{~W}\). & & & & & & & & & & & & & & & \\
\hline \(47+618 \mathrm{P}\). & & & & & & & & & & & & & & & \\
\hline \(48+618 \mathrm{PL}\). & & & & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& 49+63 \mathrm{SP} . \\
& 50+63 \mathrm{SPL} .
\end{aligned}
\] & & & & & & & & & & & . & & & & \\
\hline 51 ¢60wC.: & & & & & & & & & & & & & & & \\
\hline \(52+66 \mathrm{WCL}\). & & & & & & & & & & & & & & & \\
\hline 53-6JFAL. & & & & & & & & & & & & & & & \\
\hline \[
54+6001 \mathrm{M} \text {. }
\] & & & & -1.00 & -1.00 & -1.00 & -1.00 & -1.00 & \(-1.00\) & -1.00 & & & & & \\
\hline
\end{tabular}

TABLE XVI (Continued)


``` \(2+9 \mathrm{CB} . .\).
\(3+9 \mathrm{C}\)
 M+9CC...
 C+ 9CP:.
 $+ 9LA..
 8+9LC.: 1.00 1.00 1.00, 1.00 1.00
 log9LP:O
 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02-1.02
 l
```



```
18. 7184P.
 19 7365P.
 20 76HHP.
```



```
 23+7351/,
l}\begin{array}{l}{24+80MAR.}\\{25+804AY*}\\{26+8NP..}
26+86NP.:
27 11CS1.
29 #1CC1.
30 11CS2.
31 11CH2.
33 1458%.0
34 14551:
3514552.
M% 37+618...
38+635...
39+66+...
40-60CA..
41 510M8.
42 630MS.
43, 46010AB.
45+630A5.
46+660AN.
47+618Pa.
49+63SP.:
l}\begin{array}{l}{50+635\textrm{SL}.}\\{51+66\textrm{WC}}\\{52+66\textrm{WCL}}
52+66NC:
53-60FAL.
```

$54+6002 \mathrm{M}$
$55+608 \mathrm{FSL}$
$55+608 \mathrm{FSL}$
$56+50 \mathrm{FFLL}$
$57+605 \mathrm{FAL}$
$57+605 \mathrm{FAL}$
$58+605 \mathrm{FHL}$
$58+60 \mathrm{FFHL}$
$59+60 \mathrm{FFBL}$
$59+60 \mathrm{WFBL}$
$60+60 \mathrm{WFSL}$

TABLE XVI (Continued)

	61	63	63	64	65	66	67	68	69	78	71	72	73	74	75
	7	8	GOFALL	96.ClA	86.11A	111RTA	l12RTA	11327A	111VLA	141714	142174	143TIA	144 TYA	1451 YA	Stra
O8J=			2.00			18.60	18.60	13.80	14.22	17.55	17.55	17.55	9.45	9.45	8.21
$\mathrm{CBJ}=$			2.00			18.60	18.50	13.80	14.22	17.55	17.55	17.55	9.45	9.45	8.21
1 9то..			1.00												
2+9С8..															
$3+9 \mathrm{CC}$. -															
$4+9 \mathrm{CD} .$.															
5 9CP..				1.00											
or 9La..															
$7+9 \mathrm{CB}$. .															
8+ 9LC..															
9+ 9LD..															
10 9L.p..					1.00										
11+8i+12 12.															
$12+114 \mathrm{JA}$ $13+1 \mathrm{tamJ}$.						8.10 1.12	9.53 1.12	8.10 1.12	4.94 1.04	2.80 1.50	3.60 1.50	2.80 1.50	1.50 1.02	1.20 1.02	1.62
$14+1 \mathrm{LL}$ AS.						0.36	0.36	0.36	1.00	1.00	1.00	1.00			
15+11200.						1.58	1.58	1.58	5.78	2.30	2.40	2.30	1.14	1.04	1.14
16 3c0..						205.27	205.27	200.46	200.46	119.10	118.10	118.10	110.17	110.17	109.42
17 3CDA.						201.00	201.00	197.42	197.42	114.07	114.07	114.07	63.17	63.17	40.08
18 718AP.															
19736 SP .															
20 76WHP.															
21 bnhay.						0.02	0.75	0.28	0.42	0.02	0.80	0.02	0.45	0.02	0.33
2281 HAY .															
23+73STB.									1.70			1.80		1.00	
$24+80 \mathrm{MAR}$.								2.80	2.80				1.40	1.40	2.40
$25+80 \mathrm{MAY}$.													1.40	1.40	
$26+86 \mathrm{NP}$..				-1.00	-1.20	13.40	11.40	11.00	9.00	6.70	4.90	4.90	0.50	0.50	0.50
27 licsi.						-2.13	-2.13	-2.13							
28 11CHI.						-1.29	-1.29	$-1.29$							
2911 CCl .						-1.18.	-1.18	-1.18							
30 3111652.									-2.00 -1.29						
31.									-1.18						
33 14SB..										4.50	4.50	4.50	4.50	4.50	4.50
3414551.															-5.94
3514552. 3614583.										-7.67	-7. 57	-7.67	-7.08	-7.03	
37+618...															
38+635...															
39+666....															
40-60CA..															
42630 ms .															
43660 MW .															
44+610AE.															
45+630AS.															
${ }^{48+6508 H}$.															
47+618P..															
49+63SP.															
$50+63 \mathrm{SPL}$.															
$51+66 \mathrm{HC}$..															
52+66HCL.			1.00												
53-60FAL.			1.00												
$55+6$ CBFSL															
$5^{56+608 F W L}$															,
$57+605 \mathrm{FBL}$ $58+65 \mathrm{FW}$															
$58+605 \mathrm{FWL}$ $59+60 \mathrm{WBL}$															
$59+60 \mathrm{FFBL}$ $60+60 \mathrm{FSI}$															

TABLE XVI (Contanued)


## TABLE XVI (Continued)



TABLE XVI (Continved)

	$\begin{aligned} & 106 \\ & 111004 \end{aligned}$	107	108	2	$\begin{aligned} & 109 \\ & 3318 C A \end{aligned}$	$\begin{gathered} 110 \\ 321 \mathrm{BCA} \end{gathered}$	$111$	$\begin{aligned} & 1122 \\ & 63405 A \end{aligned}$	$\begin{gathered} 113 \\ 6640 \mathrm{WA} \end{gathered}$	$\begin{gathered} 114 \\ 6180 C A \end{gathered}$	$\begin{gathered} 115 \\ 6350 C A \end{gathered}$	$\begin{gathered} 116 \\ \text { KSWDCA } \end{gathered}$	$\begin{aligned} & 117 \\ & 610864 \end{aligned}$	$\begin{aligned} & 118 \\ & 6305 C A \end{aligned}$	$\begin{aligned} & 119 \\ & 660 \mathrm{WCA} \end{aligned}$	$\begin{aligned} & 120 \\ & \text { sorca. } \end{aligned}$
$08 \mathrm{~J}=1$	1.50					0.07				-11.42	-13.91	-16.94	-5.08	-7.31.	-36.86	0.00
O日j $=2$	1.50					0.07				-11.42	-13.91	-16.94	-5.09	-7.31	$-36.86$	
1 9т0..																
2+9С8..																
$3+9 \mathrm{CC}$. .																
$4+9 \mathrm{CD}$. .																
$59 \mathrm{CP} .$.																
${ }^{6+} 914 .$.																
7+ 918.										.						
9+9 9llo..																
10 gLP .																
$1 i+81 \mathrm{HLIM}$																
12+112 JA.																
13+111MJ.																
14+1114S.	-1.00										.					
16 3c0..	1.50				-1.00											
17 3COA.	0.75					-1.00										
18718 AP .																
$197365 P$ 2076 HP .																
21 bohay.								.								
22 R1HAY.																
23+73STR.																
$24+8$ MAR.																
26+86NP..																
27 H1CSI.										.						
28 11CHI.																
29 11CCI.														-		
$30 \mathrm{LCS2}$.																
3111 CHz 32 l 2																
33145 B .																
3474551.																
35 14552.																
36 14553:							1.00			1.00						
38+635...								1.00			1.00					
39+665...												1.00				
40-60CA.:							00									-1.00
42 630ms.								1.00								
436601 Mm $44+610$.									1.00	1.00						
${ }_{4}^{44+613045}$.										1.00	1.00					
$46+660 \mathrm{AW}$.												1.00				
$47+618 \mathrm{~Pa}$.-													1.00			
$48+61 \mathrm{PPL}$ $49+635 \mathrm{P}$.													1.00	1.00		
50+635PL.														1.00		
$51+68 \mathrm{WC}$. ${ }^{\text {. }}$															1.00	
52+66WCL.							-1.00	-1.00	-1.00	-1.00	-1.00				1.00	
$54+600 \mathrm{LM}$.									-1.00	$-1.00$	-1.00	-1.00				1.00
$55+608 \mathrm{FSL}$																

## TABLE XVI (Continued)



TABLE XVI (Continued)


## TABLE (XVI (Continued)



TABLE XVI (Continued)


## TABI刑 XVII

AN EXAMPLE OF THE RIGHT－HAND SIDES COMPUTED FOR THREE GOVERNMENT PROGRAM PARTICIPATION ALTERNATIVES

Constraĭnt Abbreviation	No：－   Particapetion	Wheat   On y	Wheat and Feed Graaln
970．	32.5	324.4	324.5
9CB．	45.6	43.6	43.6
966．	69.8	69.8	69.8
9CD．	29.2	28.2	28.2
9CP．。	1．2\％．4	128．	122.4
9LA．。	85.8	85.2	85.2
913．	60.2	60.2	60.2
916．	31.0	3.0	31.0
9LD．	6.5	6.5	6.5
91P．0	218．7	113．2	113.
81HTTM	64.9	64.9	64.9
11．${ }^{\text {J }}$ A．	495.0	495.0	495.0
IILMJ。	473.0	473．0	473.0
11LAS。	330.0	330.0	330.0
IIIOD．	49.0	429.0	429.0
3 CO \％	0.0	0.0	0.0
300A．	0.0	0.0	0.0
7 7BAP。	0.0	0.0	0.0
73ESP。	0.0	0.0	0.0
76 WHP。	0.0	0.0	0.0
807AY．	0.0	0.0	0.0
8LEAT．	0.0	0.0	0.0
73 TTB．	0.0	0.0	0.0
80 MRR 。	0.0	0.0	0.0
80 MaX ．	0.0	0.0	0.0
86NP：	0.0	0.0	0.0
11031.	0.0	0.0	0.0
11 CHI ．	0.0	0.0	0.0
11001.	0.0	0.0	0.0
116S2．	0.0	0.0	0.0
11612.	0.0	0.0	0.0
1160．	0.0	0.0	0.0
14SE。	0.0	0.0	0.0
146S1．	0.0	0.0	0.0
14582.	0.0	0.0	0.0
14853.	0.0	0.0	0.0
61B。。	9999．0	999\％．0	43.9
$635 \ldots$	9999.0	9999.0	27.9
66\％．．	9999.0	18＋．9	184.9
606A．	0.0	20.9	20.9
61 MB.	0.0	0.0	8.38
63 MIS ．	0.0	0.0	5.58
66 DMW 。	0.0	29.255	27.735
612 B.	0.0	0.0	12.97

TABIE XVII（Continued）

Constraint Abbreviation	Nonm   Pexticipation	Wheat Only	Wheat and Feed Grain
$63 \mathrm{DAS}$.	0.0	0.0	8.37
66DAW．	0.0	92.45	92.45
61 BP ．。	0.0	0.0	0.0
61 BPL 。	0.0	0.0	20.95
63 SP．	0.0	0.0	0.0
63 SPL。	0.0	0.0	13.95
66WC．	0.0	0.0	0.0
66 WCL ．	0.0	79.507	79.507
60FAL．	0.0	0.0	0.0
60 DLM ．	0.0	0.0	0.0
$60 B F S L$	0.0	0.0	0.0
60BFWL	0.0	0.0	0.0
60SFBL	0.0	0.0	0.0
$605 F W L$	0.0	0.0	0.0
60 WFBL	0.0	0.0	0.0
60WFSL	0.0	0.0	0.0

TABLE XVIXI
FORTRAN SOUGG TIGTING TOR WHE IMEOPMAIION LOADING FROGRAM (TMOLD)


## TABIE XVIII (Continued)

```
ISN
sOURCE STATEMENT
500 FORMATIA4,AZ.12F6.27
 IF(COSTIt1).GE.99.0) GO TO 32
 28 I=1+1
 IFILGT.801 GO TO }7
 IFRNM.EO.NFII,1H.AND.NMI.EO.NFI!.21)GO TD 125
 60 T0 28.
 29 cosill,j)=COST1M
 no 30 j=6.10
 M\mp@code{M&J-1}
 30\operatorname{cosit1.J)=cosTl(J1)}
 COST(1,13)=COST1111
 COST(1.13)=C
 31 WRITETS.501
```



```
 14X,5H42+52,5x,2H54,6X,2H58.11
```



```
 (1)
503 FORMAT(IHI.25HCOEFFICIENTS OF VARIATION.f)
WRITE(6,5041 (1ND(I,J),J=1,21,1=18,26)
504 FORHAT(XX,15X, O(2X,A4,22,2X)1, (1, 26)
```



```
WRITE{4} A,ALTC.ND,NF,M,N.SIGNK.CRST.YIELS
WRITE{6,506)
506 FDRMATIIHO.12HIAPE WRITTENI
REWIND 4
STOP
```


## TABLE XIX

FORTRAN BOUROE LISTMNG FOR TUE GENERAL PURPOSE SUBROUTTNE (FMPLAN)

ISN SOURCE STATEMENT		
0 blbftc fmplan nodeck		
1		SUBROUTINE FMPLAN
		faplan general purpose subrcutine
c		
2		COMMON A(65,170), S(65),C(170),K0(6), X(170), P(65), JH(65), XX(65). ZY(65), PE (65), E(4225),II, MoN.IOBJ,IPHS,IREV,IRVC.ISUB,SIGNM(65), 2ALTB165),ALTC(170,3),ND\{65,2),NF1170,21,COST(80, 14), Y(FLD(65,9), 3FMM(18) GOV 3 23 INFS IDO TPARAH VL, $1 P$
3		DIMENSION FMT(15), VaLUE\{31, COMBl4, BALE(2)
4		IND $\mathrm{x}=0$
5		TND $\mathrm{EX}=0$
6		INFS $=0$
- 7		ADD $=0.001$
10		COMB (1) $=3.50$
11		COMB $\{2$ ) $=0.05$
12		COMB (3) $=20.0$
13		COMB14) $=0.05$
14		BALE (1) $=4.80$
15		BALE (2) $=2.70$
	c	If irevo o do not revise the analtbo and c vectors
16		Iflirev.eo.0) GO io 5400
		If irev = 2 revise hithout reading tape
21		Ifitrev.eos 2160 TO 5000
24		
31		REWIND 4
	c	READ AND HRITE FARM TITLE
32	5000	READ(5,5801) (FMMIT:9 $=1,18$ )
37	5801	FORMAT(18A4)
40		HRITE(6.5901) (FMm(1).I=1.18)
45	5901	farmat (1H1.19A4)
46		HPITE(6,5902)
47	5902	
		read and hrite rhs elements, cost and matrix revisions
50	5001	
65	5802	FORMAT $2120213,3 \mathrm{~F} 10.4,10 \mathrm{~A}$ )
66		
77	5903	FDRMATI $1 \mathrm{X}, 414,3 \mathrm{FI} 0.4,2 \mathrm{x}, 10441$
100		IFIIVA.GT. 141 GO TO 5200
103		GO TO $15010,5020,5030,5040,5050,5060,5070,5080,5090,5100,5110,5120$   105130,5140). IVA
104	5010	ali, Ji=Valueil)
105		GO TO 5001
106	5020	ALTB(1)=Value $(1)$
107		GO TO 5001
110	5030	altcljol)=Valuefl)
111		1FiK.EQ.0) GO TO 5001
114		ALTC(J,K)=VALUE(1)
115		GO TO 5001
116	5040	IF(1).E0.44) $1=1$
121		IF (I. E0.45)I $=2$
124		IF (I.EO.46) $1=3$
127		TF(I.E0.50)I=6
132		IFSI.EQ.51) $=7$
135		IFII.EQ.42.OR.I.EQ.52)I=8


15N		Source statement
140		IFII.EQ.54) $1=9$
143		IF (I.EQ.5.8)I=10
146		YF(1.EO.0) $1=11$
151		IF(İGT.14) G0 105001
154		IFIK.NE.01 60 T0 5041
157		
162		
165		GO TO 5001
156	5041	Of $5042 \mathrm{la}=\mathrm{J}, \mathrm{K}$
16.7		
172	5042	
176		GO TO 5001
177	5050	D0 5051 \{ $A=1.3$
200	5051	COmb(IA)=Valuetias
202		GO TO 5001
203	5060	$\operatorname{COMB}(4)=$ Values 11
204		GO TO 5001
205	5070	D9 5071 [ $A=1.2$
206	5072	BALE(IA) = VALUE(IA)
210		90 T0 5001
211	5080	$005081 \mathrm{JA}=\mathrm{J}, \mathrm{K}$
212		SA $=1-17$
213		
214	5081	IFIATIOJAi.GT. $0_{0} 0$ ) $A(I, J A)=0.0$
220		G0 70 5001
	$c$	PROJ Yielids and loan rates
221	5090	DO $5091 \quad 1 A=1,3$
222	5091	GOVIIA, Ji=valuelial
224		GO TO 5001 CIETE ACTIVITES JTHRUK CONLY IS DELETED IE $\mathrm{K}=01$
		DELFTE ACTIVITIES J THRU K VONLY \& is deleyed if $\mathrm{K}=0$ d
225 230	5100	IF(K.NE.O) GO TO 5102
230		JA=J 5104
231		G0 T0 5104
232	5102	D0 $5103 \mathrm{JA}=\mathrm{J} . \mathrm{K}$
. 233	5104	ALTC (JA, 1 ) $=0.0$
234,		ALTC ${ }^{\text {d }}$, $21=0.0$
235		D] 5101 IA $=1.65$
236	5101	$A\left(\left[A_{0} J A\right)=0.0\right.$
240	5103	continue
242		GO TO 5001
	c	ADD a constraint
243	5110	$\mathrm{M}=1$
244		ND(Io1) $=$ FMT(1)
245		GO TO 5001
		ADD AN ACTIVITY, if x IS $\mathrm{NON-ZERO} \mathrm{~N}=\mathrm{J}$
246	5120	IFIK.NE.O) $N=J$
251		NF(J.1)=FMT(1)
252		GO TO 5001
	c	Place yields of machine-harvested crops in vieldi65.5) afyer
	c	ZEROING YIELD(65.9)
	c	Columis l-3 are grain crops
	c	CDLUMNS 4-5 are forage crops
253	5130	DO $5132 \mathrm{Nl}=1.65$
254		D9 $5132 \mathrm{~N} 2=1.9$
255	5132	YIELD $(\mathrm{N} 1, \mathrm{~N} 2)=0.0$

TABIE XIX (Continued)


TABLE XIX (ContInued)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ISN \& \& SOURCE STATEMENT \& ISN \& \& Source statement \& \& <br>
\hline 523 \& \&  \& s7t \& \& D $5414 \mathrm{I}=1 . \mathrm{M}$ \& \& <br>
\hline 530 \& 5912 \&  \& 677 \& \& IFIP(I).GT, 0.00011 G0 105413 \& \& <br>
\hline 531 \& \& $1 A=2$ \& 702 \& \& IFPP(1).LTa(-0.0001) 60 to 5413 \& \& <br>
\hline 532 \& \&  \& 705 \& \& GO T0 5414 \& \& <br>
\hline 537 \& \& D0 $5342 \mathrm{t}=1, \mathrm{M}$ \& 706 \& 5413 \& B(I)=8(I)+ADO \& \& <br>
\hline 540 \& 5342 \&  \& 707 \& \& $A D D=A D D+0.008$ \& \& <br>
\hline 552 \& 5913 \& FPRMAT $11 \times 12,1 \mathrm{X}, A 4, A 2,1 \mathrm{X}, 15 \mathrm{FB}, 31$ \& 710 \& 5414 \& continue \& \& <br>
\hline 553 \& \& IFIPRR.GE.N1 GO TB 5343 \& 712 \& \& GO T0 5410 \& \& <br>
\hline 556 \& \& IPR1-!PR1+15 \& \& \& CHECX WHEAT AND FEED GRAEA SOLUTIOM FOR \& Ailothent \& Limits <br>
\hline 557 \& \& $1 P R 2=1 P R 2+15$ \& 713 \& 5415 \& IFIIRHS.NE.3) RETURN \& \& <br>
\hline 560 \& \& IFIIPR2.GT, N: IPR2=N \& 710 \& \& IF(8137) LT. 0.051 G0. TO 5417 \& \& <br>
\hline 563 \& \& G0 TO 5341 \& 721 \& \& TOT $=0.0$ \& \& <br>
\hline \& \& MOVE ALTCil.IOBJI YO C(1) \& 722 \& \& 90 $5416 \mathrm{~J}=1.7$ \& \& <br>
\hline 564. \& 5343 \& $00.53441=1.170$ \& 723 \& 5416 \& TOT=TOT+X(1) \& \& <br>
\hline 565 \& 5344 \& CIICALTC (I, IOBJ). \& 725 \& \& IFITOT-1T-B(37)-81411-0.5) G0 T0 5417 \& \& <br>
\hline 56 ? \& \& TFIIPARAM.EO.1) C!IP!=VL
BUILD G VECTOR \& 730 \& \& IF(TOT.GT.B(37)-B141)r0.5: ©C 705417 \& \& <br>
\hline \& ${ }^{\text {c }} 5400$ \& BUILD 8 VECTOR
IFIISUS.EO.13 GO TO 5400 \& 733 \& \& \& \& <br>
\hline 575 \& 5400 \& IFIIBVC.EO.O) GO in 5410 \& 734
735 \& \& $8(55)=9999$.
$8(56)=9999$. \& \& <br>
\hline 600 \& 5406 \& 1 SUB=0 \& 736 \& \& INDX $=1$ \& \& <br>
\hline 601 \& \& IFIRrS.EO.3) 69 TO 5434 \& 737 \& \& INDX $\mathrm{I}=1 \mathrm{ND} \times \mathrm{X}+1$ \& \& <br>
\hline 604 \& \& D0 $5401 \quad 1=1.65$ \& 740 \& 5417 \& IFIB(38).LT. 0.051 G0 TO 5420 \& \& <br>
\hline 605 \& 5401 \& BUI $=0.0$ \& 743 \& \& TOT $=0.0$ \& \& <br>
\hline 607 \& \& D0 5402 $1=1,36$ \& 744 \& \& $005419 \mathrm{I}=8.14$ \& \& <br>
\hline 610 \& 5402 \& Bll)=ALTBII \& 745 \& 5419 \& TOT=TOT+X(1) \& \& <br>
\hline 612 \& \& D0 $54031=37.39$ \& 747 \& \& IFITCT. LT. B(3B)-8(42)-0.5) G0 TO 5420 \& \& <br>
\hline 613 \& 5403 \& $8(1)=9999$.

$I M=M+1$ \& | 752 |
| :--- |
| 755 | \& \&  \& \& <br>

\hline 616 \& \& $0054071=1 M_{0} 65$ \& 756 \& \& 8157)=9999. \& \& <br>
\hline 617 \& 5407 \& $\mathrm{B}(\mathrm{I})=\mathrm{ALTE}(1)$ \& 757 \& \& $8(58)=9999$ 。 \& \& <br>
\hline 621 \& \& IFIIRHS.ED.1) GO TO 5412 \& 760 \& \& INDX $=1$ \& \& <br>
\hline 624 \& \& B(39)=ALYB(39) \& 761 \& \& INOXX $=1$ NDXX +1 \& \& <br>
\hline 625 \& \& B(40) $=$ ALTE $(40)$ \& 762 \& 5420 \& IFIB(39).LT.0.053 60 TO 5422 \& \& <br>
\hline 626 \& \& B(43)=ALTB 4431 \& 765 \& \& TOT $=0.0$ \& \& <br>
\hline 627 \& \& $B(46)=A L T E(46)$
$B(52)=A L T E 52)$ \& 766 \& \& $005421 \mathrm{I}=15.21$ \& \& <br>
\hline 630 \& \& $B(52)=A L T B(52)$
G0 TO 5412 \& 767 \& 5421 \& TOTFTOT+X11) \& \& <br>
\hline 632 \& 5404 \& $005405 \mathrm{I}=1.65$ \& 774 \& \& IF (TOT.GT.B(39)+0.5) G0 PO 5422 \& \& <br>
\hline 633 \& 5405 \& B(I) $=$ ALTB(I) \& 777 \& \& $\mathrm{B}(46)=0.0$ \& \& <br>
\hline \& c \& WRITE B VECTOR IF PARAM=0 \& 1000 \& \& $8(59)=9999$. \& \& <br>
\hline 635 \& 5412 \& IFIIPARAM.EQ. 11 GO TO 5410 \& 1001 \& \& $8(50)=9999$. \& \& <br>
\hline 640 \& \& WRITE(6.5915) IRHS \& 1002 \& \& J $\mathrm{NDX}=1$ \& \& <br>
\hline 641 \& 5915 \&  \& 1003 \& \& INOX $=1$ NOX $\mathrm{X}+1$ \& \& <br>
\hline 642 \& \&  \& 1004 \& 5422 \& IFIINDX.EO.0) RETURN \& \& <br>
\hline 653 \& 5916 \& FORMAT(1X, 13.2X,A2, A4, A2, F15,4) \& 1007 \& \& IF(INOXX.GT.3) RETURN \& \& <br>
\hline \& c \& SET II AND CALL SIMPLEX SUBROUTINE \& 1012 \& \& IND $\mathrm{x}=0$ \& \& <br>
\hline 654
657 \& 5410 \& IFIIDQ.GT.0) $11=1$ \& 1013 \& \& 1 SUB $=1$ \& \& <br>
\hline 660 \& \& $1 \mathrm{DD}=1$ \& 1015 \& 5423 \& RETURN \& \& <br>
\hline 661 \& \& HRITE (6.5914) (KO(I) 1 I= 1.6) \& 1016 \& \& End \& \& <br>
\hline 666 \& 5914 \& FORMAT (1HO.616) \& \& \& \& \& <br>
\hline 667 \& \& IF\{KO(1)。EQ.01 GO TO 54I5 \& \& \& \& \& . <br>
\hline 672 \& C \& infeasible solution routine INFS = $\mathrm{INFS} \mathrm{S}_{1}$ \& \& \& \& \& <br>
\hline 673 \& \& IFIINFSOGT.3) RETURN \& \& \& \& \& <br>
\hline
\end{tabular}

## TABLE XX

## FORTRAN SOURCE ITSTING TOR THE COUERNMET PROGRAM COMPARTSON REPORT (GOVPRO)



```
ISN SOURCE STATEMENT
251 184 TOT=TOT & SUM(1)
 IF(TOT.LT.0.05) 60 TO 7
 IF(IXA E0.91 G0 T0 186
 185 WRITE(6.1007) (FMM{N),J=1,12),(SUM(1),1=1,3)
```



```
 GD TO 70
 c IXA=10 PRINT FROM C. (PRICES
 200 CWA=IWA
 HRITE(6,1009) (FMMIN1,j=1,141,ToT
 G0 T0 70 % INT SOURCES of GROSS INCO
 c
 210 D0 211 1=1.3
SUM(1)=0.
320 214 DO 212 I=IVA.
322. 212 sum(J)=Sum(J)+C(1)*xALT(1,a1*1-1.0)
326 IN IXA=8
 C IXA=12 PRINT GOVT PROG PMT RATES AND LIMITS
 220 TOT=C(IVA)*(-1.0)
 NRITE(6.1018) (FMM(J:_S=1,9),B(INA), (FMM(J).J=i2,14),TOT
 OO2 GOTRMAT(1H1)
 004 format1*
 1007 FORMAT{1X,12A4,4X:3{F9,0,2X))
 1008 FORMAT(1X.12A4,4x,3iF10.1,1X)
 1009 FORMAT (}1\times,14A4,F8.2
 1018 FORMAT(1X,944,F7.1,1X,3A4,F8.2)
 2005 FDRMATG18A4.2:3.121
 999 STOP
```

TABLE XXI

HEADER CARD LISTING FOR THE GOVERNMENT PROGRAM COMPARISON REPORT


TABLE XXI (Continued)

GRAIN SORGHUM	ACRE	$8 \quad 14$	9
WHEAT	ACRE	1521	9
FORAGE SORGHUM	ACRE	2228	9
ALFALFA	ACRE	2933	9
WHEAT PASTURE--GRAZE OUT BY MAY 1	ACRE	3440	9
SUDAN PASTURE	ACRE	4147	9
SUDAN PASTURE--FOR WINTER GRAZING	ACRE	4854	9
OTHER CROPS	ACRE	5562	9
IDLE CROPLAND	ACRE	63	9
NATIVE PASTURE	ACRE	6465	9
TOTAL	ACRE	165	9
LIVESTOCK			
COWS--SPRING CALVING	HEAD	6668	8
COWS--FALL CALVING	HEAD	69	8
STEERS--BUY OCT-SELL OCT	HEAD	7072	8
STEERS--BUY OCT-SELE MAY	HEAD	7374	8
STEERS--BUY OCT-SELL MAR	HEAD	7576	8
LABOR (HIRED)			
JANUARY-APRIL	HoUR	103	9
MAY-JULY	HOUR	104	9
AUGUST-SEPTEMBER	HOUR	105	9
OCTOBER-DECEMBER	HOUR	106	9
NO HIRED LABOR REQUIRED		103106	7
CAPITAL			
TOTAL REQUIRED	DOLLAR	109	8
ADJUSTED TO AN ANNUAL BASIS	DOLLAR	110	8
GOVERNMENT PROGRAM INFORMATION MINIMUM DIVERSION			
BARLEY	ACRE	111	9
GRAIN SORGHUM	ACRE	112	9
WHEAT	ACRE	113	9
ADDITIONAL DIVERSION			
BARLEY	ACRE	114	9
GRAIN SORGHUM	ACRE	115	9
WHEAT	ACRE	116	9
NONE		114116	7
SUBSTITUTIONS			
BARLEY FOR SORGHUM	ACRE	122	9
BARLEY FOR WHEAT	ACRE	123	9
SORGHUM FOR BARLEY	ACRE	124	9
SORGHUM FOR WHEAT	ACRE	125	9.
WHEAT FOR BARLEY	ACRE	126	9
WHEAT FOR SORGHUM	ACRE	127	9
NONE		122127	7
SOURCES OF GROSS INCOME CROP SALES			
BARLEY	DOLLAR	8181	
GRAIN SORGHUM	DOLLAR	82821	
WHEAT	DOLLAR	83831	

TABLE XXI (Continued)


TABLE XXI (Continued)

BARLEY GRAIN SORGHUM	(MAXIMUM $=$ (MAXIMUM= (MAXIMUM $=$	A)   A)   A)		$\begin{array}{ll} 114 & 4412 \\ 115 & 4512 \\ 116 & 4612 \\ 999 & \end{array}$	



## TABLE XXII (Continued)



TABLE XXII (ContInued)

ISN		SOURCE STATEMENT	ISN		SOURCE STATEMENT			
557			742		1 Wl=IWA+1			
570		GO TO 230 ( ${ }^{\text {CO }}$	743					
571	233	TGI=CiIWA** -1.0$)$	744					
572		WRITE16,1017) FMM(1), $1=1,31$, X(IVA), (FMM(I), $1=5,10$ ), C(IXA).	745	267				
607		GO TO 230 ,	756	268	60 to 261 (			
	c	IXA=14 PART III--LABOR	762		IFIIXA.EO.71.GO T0 2696			
610	240		765		IF (IXA.EO. 8160 T0 2699			
621		GO T.D. 100	770		IFIXA.EQ. 10$)$ G0 TO 2697			
	c	IXA $=15$ PART III--CAPITAL	773		$\mathrm{T} \mathrm{T}=0.0$			
622	250	WRITE(6,1019)(FMM(I), I= 1.13) - X(IVA)	774		TVI=IVA+6			
627		G0 Tn 100	775		IFIIXA.EO.2) IVI=IVA+4			
	c	IXA=16 PART III--GOVT PROGRAMS	1000		Do $2691 \mathrm{I}=1 \mathrm{va}$, IVI			
630	260	i $\mathrm{ND}=0$	1001	2691	TOT=TOT+x(1)			
. 633		I $N D O=0$ INDE $=0$	1003		IF(TOT.LT, 0.05) GO TO 261			
633		INDX $=0$	1007		PNTIINO.1) IF			
634	261	READ (5,2004)(FMM(1), $1=1.18)$, IVA.IWA,1×A	1012		IFIIXA.ED. 51 GO TO 2694			
644		IFIIVA.EO.999) G0 TO 100	1015		PNT(IND.6) $=6$ TOT/ALTB(I HA) $) * 100.0$			
647		IFIIVA.GT.01 G0 T0 262	1016		G0 267			
652	2611	WRITE(6,1010)(FMM(I),I=1,18)	1017	2693	$I W 1=I W A+1$			
657		G\% TO 261		c	the folluning card must be revised if constraint	locations		CHG
660	262	$\mathrm{IND}=1 \mathrm{NO}+1$	1020		PNTIIND, $51=(X 11$ W11/B139)1*100.0			
661		IF (1XA.LT.301 G0 TO 268	1021		TOT $1=$ TOT-X(IWA)-X1IWI)			
664 665		$I A=I V A+6$ $T O T=0.0$		c	THE FOLLOWING CARD MUST BE REVISED IF CONSTRAINT	locations		CHG
666		DO $263 \mathrm{I}=1 \mathrm{VA}, 1 \mathrm{~A}$	${ }_{1022}^{1023}$					
667	283	TOT=TOT+x(1)	1024					
671		IF(TOT.LT.0.05) 60 T0 261	1025.	2694	PNT(INO.2) $=$ TOT			
674		PNTIIND, $11=$ TOT	1026		G0 10 267			
675		G0 TOP264,265,266),1N0	1027	2695	PNT(IND.1) $=x$ (IVA)			
676 677	264	PNT(IND.3)=(TOT/ALTB(IXAA)*100.0	1030		PNT(IND.2) $=\mathrm{X}(\mathrm{IVA})$			
677		IFTIRMS.NE.31 G0 TO 267	1031		IFixilval.LT.0.05) Go to 261			
702		IF(PNT(IND.31.GT.80.05) PNT(IND.3) $=80.0$	1034		Go ro 267			
705		$1 \times 1=[\times A+1)$	1035	2696	IFIINDE.ED.O.AND.IVA.EO. 11 go rn 2611			
707			1040		IFIIVA.EQ.1) G0 T0 261			
710			1043 1044		INDD INDD +1			
711		PNT(IND, 5 ) $=(\times(1$ W1)/8(IX1) $) * 100.0$	1047					
712		GO TO 267	1050		G] TT (26961,26962,26967,26961,26962,269631. INDD			
713	265	PNT(IND,4) $=$ (TDT/ALTB(IXA) $)$ * 100.0	1051	26961				
714		If(IRHS.NE.31 GO TO 267	1052		Go to 26967 (			
717		IF(PNTIIND,41.GT.80.05) PNT(IND,4) $=80.0$	1053	26962				
722		I $\times 1=1 \times 4-1$	1054		G0 to 26967			
723			1055	26963				
724		$1 \times 1=1 \times A+1$	1056	26967				
725			1087	1025	FRRMAT 1 IX.5A4.6X,5F9.1)			
727		PNTIIND.5) $=(\times(1 \mathrm{~W} 1) / \mathrm{B}(1 \times 1)$ * 100.0 G0 T0 267	1070		$1 \mathrm{NDE}=1$			
730	266		1072	2697	D0 $2698 \quad \mathrm{I}=1.19$			
731		IF (IRHSolT. 21 G0 TO 267	1073		D0 $2698 \mathrm{j}=1.6$			
734		IF(PNT(IND.5).GT. 100.05 ) PYT(IND. 5 ) $=100.0$	1074	2698	PNT(20.J) $=$ PNT( $20 . \mathrm{J}$ ) + PNT(I, J)			
737		IX1=1XA-2	1077		[ $\mathrm{N}=20$			
740		PNTIINO,3)=(X(IWA)/8(IXI) ${ }^{\text {a }}$ (100.0	1100		6 t 10 267			
741		- $\mathrm{XXI}=1 \times 4-1$	1101	2699	IFIIHA.EO.1.AND.INOX.EQ.01 60 TO 2611			

TABLE XXII (Continued)


TABLE XXIII

HEADER CARD LISTING FOR THE INDIVIDUAL FARM DEPAILED REPORT


TABLE XXIII (Continued)

FORAGE SORGHUM	ACRE		2228	9
ALFALFA	ACRE		2933	9
WHEAT PASTURE--GRAZE OUT BY MAY 1	ACRE		3440	9
SUDAN PASTURE	ACRE		4147	9
SUDAN PASTURE--FOR WINTER GRAZING	ACRE		4854	9
OTHER CROPS	ACRE		5562	9
IDLE CROPLAND	ACRE		6363	9
NATIVE PASTURE	ACRE		6465	9
TOTAL	ACRE		165	9
LIVESTOCK				
COWS--SPRING CALVING	HEAD		6668	8
COWS--FALL CALVING	HEAD		6969	8
STEERS--BUY OCT-SELL OCT	HEAD		7072	8
STEERS--BUY OCT-SELL MAY	HEAD		7374	8
STEERS--BUY OCT-SELL MAR	HEAD		7576	8
LABOR (HIRED)				
JANUARY-APRIL	HOUR		103	9
MAY-JULY	HOUR		104	9
AUGUST-SEPTEMBER	HOUR		105	9
OCTOBER-DECEMBER	HOUR		106	9
NO HIRED LABOR PFQUIRED			103106	7
CAPITAL				
TOTAL REQUIRED	DOLLAR		109	8
ADJUSTED TO AN ANNUAL BASIS	DOLLAR.		110	8
	BEGIN	ALT READ		11
PART III--DETAILED OPTIMUM FARM PLAN				
A. LAND USE   CROP   ACRES				
	PRODUCTIVITY CLASS	YIELD/ACRE		
	PERCENT USED	UNIT AMOUNT		
BARLEY	CB	BU	118	2
BARLEY	CC	BU	218	3
BARLEY	CD	BU	318	4
BARLEY	LA	BU	418.	6
BARLEY	LB	BU	518	7
BARLEY	L¢	$B U$	618	8
BARLEY	LD	BU	718	9
				98
GRAIN SORGHUM	CB	CWT	819	2
GRAIN SORGHUM	CC	CWT	919	3
GRAIN SORGHUM	CD	CWT	1019	4
GRAIN SORGHUM	LA	CWT	1119	6
GRAIN SORGHUM	LE	CWT	1219	
GRAIN SORGHUM	LC	CWT	1319	
GRAIN SORGHUM	LD	CWT	1419	9
				98
WHEAT	CB	BU	1520	2
WHEAT	CC	BU	1620.	3

## TABLE XXIII (Continued)



SOLD

TABLE XXIII (Continued)


## TABLE XXIII (Continued)



## TABLE XXIII (Continued)




15 N	squrce statement
242	Iftino-101 81.81,82
243	$81 \mathrm{IPR} 2=1 \mathrm{ND}$
244	63 To 77
245	82 IPR $2=10$
246	77 WRITE16,771) (FMM (1), $1=1,184$
253	771 Formatililio 1 SA4)
254	
255	21
256	
267	73 FORMATIIH A A4, A2, 10F12.21
270	
275.	74 FIRMATIH SGHNET RTIIOF12.2)
276	WRITE(6.75) VA, (UT13,11, $=1$ PR1, IPR2)
303	FDRMAT(1H. F6.2.10F12.2)
304	WRITE (6.76)
305	76 frimatilh
305	D0 86 i=1.N
307	D0 84 IS $=1,1 \mathrm{IND}$
310	84 SUM=SUM+XALT(I.1S)
312	IFiSUM.LT. O.01) 60 T0 80
315	
326	85 Formatilh oatal ${ }^{\text {a }}$ (10FL2.2)
327	${ }^{86}$ SUM $=0$.
331	IFIIND.LE.IPR2) 60 to 87
335	
336	IFIIPR2.GT.INO) TPR2=IND
	if there ts sufficient core spacf xalt to be wider than ten   THEN THE FOLLOWING CARD SHOULD se --- GD TO 77
341	THEN THE FOLLOWING CARD ShOULD Be --- 60 to 77
342	37 trikot $11 . \mathrm{ne} .0)$ tall exit
345	IF(VH) 94.95.95
346	94 IFicilp iclevel call Exit
351	IFICRN.LE.i-9999.011 CALL EXIT
354	G0 TO 17
355	95 If(CIIP).ge.vh) Call exit
363 363	IFICBP.GE.9999.01 CALL EXIT
364	1000 format $1214 \mathrm{x}, 1211$
365	1001 FORMAT(A4.A2 .4F10.41
366   367   10	1003 Format (1H1)
367 370	${ }^{89}$ SNO

Larry Lovern Bitney
Candidate for the Degree of
Doctor of Philosophy

## Thesis: AN APPLICATION OF LINEAR PROGRAMMING TO INDIVIDUAL FARM MANAGEMENT DECISIONS USING AN AREA INFORMATION SYSTEM

Major Field: Agricultural Economics
Biographical:
Personal Data: Born at Neligh, Nebraska, September 19, 1937, the son of Dow L. and Vera M. Bitney.

Education: Graduated from Neligh High School, Neligh, Nebraska, May, 1954; received the Bachelor of Science degree from the University of Nebraska with a major in Agricultural Economics in June, 1958; recelved the Master of Science degree from the University of Nebraska with a major in Agricultural Economics in June, 2965; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1969.

Professional Experience: Labor Market Analyst, Nebraska Division of Employment Securitiy, 1958-59; Gounty Extension Agent, Farm Management, Fremont, Nebraska, 1959-63; Extension Economist, University of Nebraska, 1963-66.

Organizations: Americari Agricultural Economics Association; Gamma Sigma Delta; Nebraska Society of Farm Managers and Rural Appraisers.


[^0]:    ${ }^{1}$ Oklahoma State Unyversity Processed Series P-550, Oct., 1966.

[^1]:    ${ }^{\text {I If }}$ prices are not, spectfied here, those appearing in Oklahoma State University Processed Series Pa550 are used for crops and those appearing in Processed Series Po459 are used for Livestock.

[^2]:    ${ }^{2} x^{i}$ s indicate non-zero fields.
    boptional.

