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PREFACE 

This thesis is concerned with investigating uncertainties assoc­

iated with probabilistic models and developing a procedure for estimat­

ing a measure of that uncertainty. ln particular, the response, PK, of 

a general probabilistic model i$ assumed to he a random variable and the 

variance of this random variable is chosen as a measure of .the uncer­

tainty of the probabilistic model. Errors in the forms of the models 

are not considered in this thesis so that·the.variance of PK is evalua­

ted in terms of tJ::>,e uncertainties associ.ated with the basic random var­

iable inputs of the model. These latter uncertainties are assumed to 

be directly dependent upon empirical data used to estimate the parame­

ters associated with these basic random variable.inputs. 

The research for·this thesis was accomplished under the general 

Joint Munitions Effectiveness Manual contract of Oklahoma State Univer­

sity from the Department of Defense. The thesis serves as' a final 

report of the work accomplished under that section of the contract 

covering this research. Quite appropriately, the examples presented 

are of probabilistic weapons effectiveness models and reflect the appli­

cability of the theory developed here to the evaluation of the uncer­

tainty associated with these models and their random variable inputs. 

I would like to take this opportunity to express my appreciation 

to my major th.esis advisor, Dr. A. M. Breipohl, for his able guidance 

and assistance throughout the development of this thesis. Furthermore, 

I would like to thank the other members of my thesis committee, 
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Dr. B. L. Basore, Dr. D. E. Bee, and Professor P.A. Mc<:;ollum, for their 

excellent counsel arid ertcour~gement. 
. . . . . . . 

In addition, I would like. to ):hank .the staff of the O:e{ice of Engi-

neeri-qg Research for their assistance; in particular., Dana Davenport, 
. . . .· . . . . 

for her typing excellenc.e and patience~ ' 

Also a special word of graditude i~ in order for the staff of the 

Oklaho111a State University Field Office at Eglin Air Force Base for their 
. . . ~ 

generous aid to. my research efforti;;.; i~ particulat, the excellent tech-

nical advice and personal i:J;1terest of Jer:ry ~orsham. 

Finally, I would like to express appreciation tomy wife, Shirley, 

and oqr.son, ,Andy, for their ceaseless understanding, encouragement, and 

patience throt1ghout the preparation of this tlle~ia. 
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CHAPTER 1 

INTRODUCTION . 

1.1 Statement of the Problem. The behavior of a physical system is 

usually described by a series of equations which relate the system 

response to the parameters of the system and e~ternal stimuli. . In today's 

complex society a great number. of systems e~ist that are modeled in prob­

abilistic terms; that is, there is a certain degre~ of randomness inherent 

in the system that dictates uncertainty in the response. If the mathe­

matical model chosen to.represent the system inc;.ludes provisions to 

ac~ount for the randomness of the system, oneterms the model probabil­

istic; otherwise, one refers to it as deterministiG. The prime purpose 

of this thesis, then, is to investigate the uncertainty associated with 

probaqilistic models and to develop a probabilistic sensitivity measure. 

Generally this measure of un~ertainty w:(.11 describe the accuracy of 

a predicted response of a probabi,listic model. Furthermore, the results 

and methods employed in such a basic analysis can be useful in locating 

the principal sources of error in the response and thus indicating where 

more care should be taken in specifying th'e parameters which describe 

the random variables to be used as system inputs. Finally, a measure of 

uncertainty can aid in the comparison of two or more probabilistic models 

to determine if the models can be used interchangably. 

1. 2 Relationship between Probabilistic and Deterministic Models. 

Since this thesis proposes to expand the present techn:(.ques used in 
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deterministic m,odels ·to encompass the broader field of probabilistics, 

it is advantageous to compare these two types of models and indeed to 

show that·. a deterministic model can be viewed as a special case of a. 

probabilistic one, 

Suppose,one considers.the follow:l.ng general notation:, 

2 

n:;: expected output ·of a system S 

., X) = n-dimensional rand01D..vector . n 

(1.2.1) 

(l.2.2) 
input to system S . 

x = (x1, x2, •....• , xn) = n-dimerisi(!nal vector of expected . (1. 2 .3) 
values of X . ·~ 

fx = Joint probability density function of X 

Define Z to .. be a functional relationship among the components of K· 

(1.2.4) 

The randomness of X .. thul:! implies that Z .is also a. random variable. Z 

might then be terme4 a description of.the behavior of system S for an 

input of .the random vector X, Tlle· :fb;ed po:l,nt n then would t;"eprel,!ent 

the expected value or mos:t probable response of the syl:!tem; i.e., E[Z]. 

In notation one.thus writes 

E[Zl =ff· • • .f q(g)fx(g.)da (1.2.5) 

Equation 1. 2. 5 then represents the general form. of a probabilistic model 

which is considered. in this'i'-1:liesis· .. 



3 

Cons:l.der now.the change in Equation (J,..2.5) when! is assumed not. 

to be a random vector. The joint probability function of X can now be 

rewritten (1) 

fX(X1,X2,··. ,,Xn) = o(X1 -x1) oCX2 :--x2) •.•• o(Xn -xn) 

(1.2.6) 

wher.e · x is now assumed to be, the nominal value of ! and · o denotes the 

familiar Dirac delta function •. , If Equation 1.2.5 is evaluated assuming 

fx is of the form. of Equation 1.2.6, we .obtain 

(1.2.7) 

Thus one sees that n and .!_.are related determinist:i,.cally as one would 

expect. The idea of a.deterministic.model being a.special case of a 

probabilistic one is .not ;i.ntended to be presented here as an.original 

idea.· It is instead.presented to in some way just:i,.:fy the extension of 

determinist:lc sensitivity analysis to that concerned with probabilistic 

models •. 

One has to admit that. the represenbition of. any physical system as 

known.numbers is an igealization which may on,ly be taken as a first 

approximation to reality. The representation of.the parameters of .a 

system as random variables is considered a more exact mathematical model. 

However, in many systems where the variat;i.on of the parameters seem neg-

ligible or probability d:Lstribution functions of the parameters (random 

variables) are not easily obtained, a deterministic model is often 

selected to de~cribe the system. Even under these conditions.it has 

become apparent that. it is important to evaluate the degree of corres-

pondence .between the mathemEJ.tical model and the real system •.. No physical 
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system can presentl.y by envisioned in which its parameters will abso­

lutely coincide with the parameters of its mathematical model. It thus 

becomes important to determine the influence of the variation of the 

parameters on the behavior of the system. The ideas of sensitivity anal­

ysis were born out of this need. 

1.3 Review of Sensitivity in Deterministic Models. Extensive lit­

erature exists pertaining to the sensitivity of deterministic systems to 

variation of parameters. This is especially true in the field of auto­

matic control systems where this sensitivity to the variation of param­

eters plays an important role in the analysis and synthesis of these 

systems. Most sensitivity studies presented in the literature depend 

heavily on perturbation t~chniques (2), (3). Basic to these developments 

are the computation of sensitivity coefficients (sometimes referred to 

as influence coefficients) which are defined as partial derivatives of 

the particular response variable with respect to the particular parameter 

variable (4), (5), (6), (7), and (8). 

Other less widely known approaches to sensitivity include those 

associated with tolerance regions, the theory of invariant imbedding, 

and the game theory technique (9), (2), (10), and (11). Although these 

three approaches are both interesting and useful, it is {elt that the 

classical perturbation techniques are more readil.y adaptable to proba­

bilistic models and thus these three ideas will not be discussed further 

at this point. 

Suppose one then returns to the ideas associated with the first 

approach listed, namely that related to perturbation techniques. As 

stated previously, the determination of sensitivity coefficients is f un­

damental to a sensitivity analysis. The basic concept of a sensitivi ty 
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coefficient can be traced to_Bode.(12) although the sensitivity coeffi-

cient he pi;:esented is the reciprocal of that applied in modern feedback 

theory. For an extensive list of classical formulas pertinent to the 

calculation of.sensitivity coefficients, the reader is referred to ref-

erence (5). In addition, one of the present day leaders in the field 

of sensitivity analysis, R. Tomovic of Yugoslavia; gives a brief but 

informative discussion of "The Role of Sensitivity Analysis in Engineer-

ing Problems" in which he discusses the state·of the art (6). For a 

more detailed survey of sensit:i,.vity analysis in control systems, one is 

urged to consult Kototovic and Rutman (4). 'l'his particular paper pre-

sented an excellent bibliography of no less than one-hundred-and-fifty-

seven (157) entries. 

Passing now from the general to the particular, suppose for conven-

ience of notation one lets 

Axi = incremental variation from the assumed or desired value 

of x. 
l. 

(1.3.1) 

(1.3.2) 

where now q represents a deterministic model of a system linking the 

variables x1, x2, •.• , xn. to the response n. Then define 

T. 
1 

<..lSL...> I ax, A A A . 0 
l. uX1 = u;x:2 = • • •. = uXn = 

xi = desired value for i = 1, . • • , _n 

where T. equals the sensitivity coefficient associated with x .. 
1 · . ' . 1 

(1.3.3) 

It might be well at this point to mention a slight modi{ication of 

the defined sensitivity coefficients in Equation 1.3.3 used particularly 

in feedback control theory. The sensitivity of an overall gain g with 
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respect to a given parameter .k is defined by the.equation which follows 

where d represents the derivative operator 

sS d ln s, = 
.k d ln k 

(1.3.4) 
g = gN 
k = ~ 

which, as mentioned previously, .is the reciprocal of tha.t introduced by 

Bode (12), (5), (13). In the notation 1.3.4, gN and~ are considered 

as the nomii;tal values of g and k respectively. Now Equation 1.3.4 can 

be written 

sg = .as. .!... I = 
k g dk (1.3.5) 

which relates that the sensitivity of g with respect to k is the percent­

age change in g divided by the percentage .change ink which produces the 

chang$:!- in g assuming aJ,.1 changes are differentially small. Although 

this modification is not applied diiectly in this paper,. it appears fre-

quently in the literature and is presented here to point.out another 

form of the standard sensitivity coefficient defined. in Equation 1. ~. 3 

(13), (5), and (4). 

The reason for introducing sensitivity coe:l;ficients as a.measure of 

sensitivity is.justified when it is realized that in a great many cases, 

cllanges in. the system behavior d.ue to parameter var:i.ation can be approx-

imated (from a.first order Taylor Ser:i,es Expansion of q about the true 

value of the x's) as 

n 
Aq = E T. Ax. 

i= 1 l. 1. , 
(1.3.6) 
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If one wishes a more accurate estimate; sensitivity coefficients can be 

determined for the (k + R.)th order (7). 

k+R. 

Tik '.Q. = ag I (1.3.7) k . R, . ,J . 
axiaxj L\x1 = llxi = . . . = Axn = 0 

:x;i desired. values for i = 1' . ' n 

xj = desired value's for j = J' . ' n 

It should be noted that to this point only variation in system 

behavior in terms.of Axi has been discussed; where llxi is the difference 

between the actual.and the desired values of the system parameters. This 

is the classical deterministic measure approach. A second, and to this 

author, more accurate approx:f,mattc;m involves a probabilistic measure and. 

is based on finding the expected value of the mean square error of out-

put variation., The idea was first offered by Broome and Young (14) and 

extended in more general terms to calculating the variance of a system 

output in terms of the irespective variances of the associated parameters 

(random) by Breipohl and Campbell (15) and Evl.anov (16). 

Fundamental to t~ese latter two presentations is the assumption 

that the.parameters related to the system are indeed ranc:lom variables 

and that Equation 1.3.1 should be written 

(1.3.8) 

where Q and all Xi are random variables with 

(1.3.9) 

and (1.3.10) 
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If one.expands Q about.!. in a first order Taylor series expansion one 

obt~ins 

n 
Q = q(x) + E ~. I (Xi - xi) (1. 3 .11) 

i=l ]. x = x - -
Taking the. exp.ected value of Q results in 

E[Q] ~ q(:ie 1 , x2 , ••• ,. xri.) 
'( 

(1.3.12) 

which corresponds to the .dete~inistic model of Equation 1.3.~ if indeed 

the nominal values of tlle xis are taken as the most probable or expected 

va].ue of the X's. Defining the variance of Q as 

Var(Q) = E[(Q-- E(Q))2] 

and tlle covariance.of Xi and Xj as 

n 
Var(Q) -· E 

i;;=l 

(1.3.13) 

(1.3.14) 

(1. 3 .15) 

Var·. (Q) is thu~ a measure of the sensitivity (or uncertainty) of tlle 

system with respect .to the .variables Xi; i = 1, 2, •• , , n. It should 

be pointed out.that .the probabilistic measures which have been. applied 

in this section have been, prior tq this time, related only to deter-

ministic models and not to probabilistic .models as discussed in the 

remainder of this thesi,s. 

1.4 Scope of Study. As has been stated previo1,Jsly in this chapter, 

the basic purpose of this thesis is to investigate uncertainty in 
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probabilistic models. The.general approach employed-expands the ideas 

presented .in the previous sectj,on o.n sensitivity analysis of determinis-

tic models to tbe more.general case of probabilistic models and investi-

gates the use of the variance of the system output.as a measure of 

uncertainty. Chapter Il presents various system probabilistic models,. 

the first of which is a geIJ.eral model.used to.introduc~ notation 

employe<J. Then errors.associated with assumed density function param-

eters are investigated for two models. Finally other sources are con-

sidered including those·. related to random condit:f,.onal loss, functions and 

stocbastic tables. Chapter III is devoted to /!pplying the techn:i,.ques· 

develol)e4 in Chapter II to two e:ic:amples from: the field of weapons e:l;fec­

tiveness. The probabilistic models involved are essent:i.ally those used 

for computing the probability or, as will be pointed out, the conditional 

expected probability of accompl:!,.shing a cert~in degree of damage to a 

target by a;i.r delivered weapon.s. The variance Of. this cc;mditional prob-
. . 

ability is taken as . the measui:e of .. the up.certainty and is related to.· the 

vari.ance o:I; the basic random variable inputs of the model •.. Chapter IV 

states conc'.l,:usiqns drawn.from the tirst.three chapters and relates sug-

gestions for further study in the general areas cQvered by this thesis. 



CHAPTER II 

DEVEI,.OPMENT OF SYSTEM _coimt·rroNAL PROBABILIS'l'IC:: .·MODELS 

2.1 Introduction. '.rhe prime purpose of _this chapter is to provide 

a wor~ing theory for th,e inviastigationof un~ertainties in probabilistic 

models. After the general notatioiipertaiqing. to con.ditional probabil-
.' 

istic models. is presented, a theoreticala.pptoac:,h to obtaining a measure 

of this uncertainty is examined. Approximations are tl;ien_made relative 
. . ' . . . 

t,;, the theoretical models _dictated by particular situations. The tech-

·· niques developec;l in this chapter are then appiied in Cha,pter III to 

specific examples in the field of wea.pOnf; effectiveness~· 

Although there are numerous types of probabilistic tnodels which 

could, at this point, he discussed, a ):'epresentat;i.ve model has been 
. . 

chose'Q. which is often encountered, especialiy :Ln the area of weapons 

effectiveness from which the examples_. of Chapter. III are drawn .. The 
. - . . . 

models~lected involves the calculation of the expected value of a func-

tion of a random vector .. Suppose one initially considers the random 

vector!= (X1, X2, ..• , Xn) with joint probability density function 

fx. Now let D1 be a function of !; i.e., D1 (X), so that the conventional 

form of the probabilistic model spec:Lfied can be written: 

"° 
· E [D1] ;::: ... :On D1 (1) f!(l) d,1_ (2~Ll) 

I"' 

where dl_ = d:>q, d>-2, ••. , d>. and f - represents an nth order multiple n n 
-Ill> 

integral. 

10 
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In general, however, the probability density function fX depends ina 

known way on several parameters,. say a1, az, •.• , aq so that in a 

broader senf?e Equation 2 .1.1 represents a conditional expected value and 

should be written 

00 

E[D1 la1, a2, ••• , aq] - In D1(~) fx (o..la~, a2, .•• , aq). dl_ (2.1.2) 
-co 

It·should be noted that the conditional expecteq. val1.1.e of Equation 

2,1.2 does not represent a random variable in the form shown, and thus 

to speak of a measure of uncertainty in this value does not seem rele-

vant .. However, although the form of Equation 2 .1. 2 is often assumed to 

denote.a particular situation, a much more general form which is usually 

a better representation of the actual case, is obtained by considering 

the parameters of fX to be random .yal,"iables,. namely A 1, A2, ..• •' A • q 

For notational.convenience these A's are termed random variable param-

eters. One then can wr.ite the general form· of· the probabilistic models 

investigated in this thesia as follows: 

00 

E[D 1 IAJ = lnD Cl) fxlA Cl.IA) dA 
-co 

(2.1.3) 

where !, = (A 1 , A2, . . . , Aq) .. 

One should observe that the notation fXIA as used in Equation 2.1.3 

is slightly different from that usually encountered in texts concerning 

conditional density functions. Normally the A in the argument of fXI! 

is written in small type as a particular value; however, in this consid-

eration the identity of! asa randoin vector is retaine~ and the condi-

tioni;il expected value in Eqt,1ation 2,1.3 is expressed as a function of 

the random variables A1, A1, • • • , Aq, For· notational· purposes this 
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conditional expected value is termed a random variable PA and the func""'. 

ti.on it represents, P1; that is, 

(2.1.4) 

The remainder of this thesis deab with the investigation of the uncer-

tainty assoc;i.ated with random variables of the general form of PA. It 

should, however, be pointed out thatthroughout this thesis the forms 

of the models used are assumed fixed; that is, errors associated with 

the forms of the .models are not cons)idered in this thesis. 

Before proceeding to a particular model, suppose one briefly inves-

tigates the uncertainty associated with the general probabilistic model 

of Equation 2.1.3, and·in.so doing introduces the measure of uncertainty 

discussed in this thesis. Recalling Equation 2.1.4 :f,t is apparent that 

one,is actually concerned with calculat:i,.ng the uncertainty associated. 

with PA. Taking the expected value of PA from Equation 2 .1. 3 one obtains: 

E[PA] (2.1.5) 

where fA is the joint probability density function of the A's and 

ct= (ct1, CL2, • • •, ct) q 

OQ 

P1(g) = -~n D1(~) fXI.! (.il,g) d~ 

(2.L6a) 

(2.1. 6b) 

(2 .1. 6c) 

Now, in general, when speaking of the ,,mcertainty associated with 

PA' one is interested in the expected error between PA and the expected 

value of PA; that is, one needs to know how much faith to place in a 
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particular sample value of PA' say PA*' where the asterisk(*) indicates 

a particular sample value. Since the variance Qf PA gives a measuJ;"e of 

the cc,ncent:i::ation of PA about the expected value 9f PA' Var.CPA) has been 

chosen as the measu~e of uncertainty aseoc:;f.ated with :PA exB.II!,ined in this 

pape'):'. One calcu,1-a.tes this variance for the gen~ral model as follows:. 

(2.1.7a) 

ca 

(2 .1.7b) 

or in terms of.Di. 

ca ca 

00 00 

Although.Equation 2.1.7c relates ·the.basic form of Var(PA) for the 

general model, the rest of this chapter presents modifications to this 

measure of uncertainty which, .as is shown in the next section, depends 

directly on.tl:ie particular model of PA investigated, 

2.2 Model 1 - Theoretical Model. Having introduced :;f.n the previous 

section the basic.terminology associate4 with conditional probabilistic 

models, the discussion of .this section focµses on a. part:;f.culat theoreti-

cal model and relates the uncertainty of its conditional random response 

to the 1,mcertairities associated with certain basic random variable param-

eters of the system model. An ideal approach to computing uncertainty 

is first considered and then approximations are introduced which are 

necessitated by the mathematical aspects of the models themselves. 
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For this theoretical model, consider again the random vector_! 

described in the previous secUon and tbe general form of the probabil­

istic _model of Jj:quat:i,.ons 2,1.3 and.2.1.4. 

co 

(2.2.1) 

where again D1 is a function of X. ·Furthermore, for th:i,s partic~lar . 

theoretical model, addi,tional knowledge is ass1;1med, nainelythat Xis a 

function G of s random variables Yi. Y2, • • • , Ys: 

(2.2.2) 

where Yi, Y2, ••• , Y have a.joint pt:obability density function (JPDF) .. s . 

depending upon the random variable parameters B1, B2, • ,. Bm which in 

turn.have a JPDF of fB. Now consider the following def~ 
. -l, B 2' • • • '· Bm • 

inition for notational convenience= 

. . . '· y ) 
s 

(2.2 .• 3a) 

(2.2.3b) 

Since addit;i..onal knowledge is now_ass~ed concerning PA' this knowl­

.. edge needs __ to be. incorporated into the calculation of . the Var (PA) which 

was introduced.in Section 2.].·as the measure of uncertainty associated 

with PA. A.s a first step, consider.the relationship between A and_!. 

Now one reasons·. that if X depends upon Y, and •Y in turn depends upon ~' 

then the knowledge of X and its parameters A must depend basically upon 

the random vector parameter B. In general then the following assumption 

is made: 

i = 1., • • .• , ·q (2.2.4) 
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that is; Ai is assumed to be a fuQ.ction of .!!_. In vector notation, . one 

writes Equation 2.2.4 as follows: 

A= g(B) (2.2.5) 

Now since each A. of this theoretical model is assumed to be a 
]. . 

function of,!!, the conditional d.ensity of X appearing in Equation 2.2.1 

could be fundamentally rewritten as a conditional. density conditioned 

on!; that is, 

which is termed (2.2.6) 

Thus an alternative way of viewing the condit:i,.onal expected value of n1 

for this theoretical.model is: 

(2.2.7) 

Suppose one now denotes the conditional expected value of Equation 2.2.7 

as PB and the function it represents as P2 so that 

(2.2.8) 

PB then represents a random vat'iable which is the conditional expected 

value of D1 conditioned upon the bas;i.c random vector.!!.·· One now proceeds 

to calculate Var(PB) by first computing the expected value of PB as 

follows: 

00 00 

(2.2.9) 

where again the notation~= (f31, S2, ••• , f3 ) and d~. = df31 df32 .. m 

df3m is employed. The variance of PB can then be calculated directly: 
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(2.2.lOa) 

00 

Var(PB) = -~m{P2(f3) - E(PB)} 2 fB(f3)df3 (2.2.lOb) 

Var (PB) as calculated in F;quation 2.2.lOa is the measure of uncer­

tainty in PB of the theoretical model discuss.ed in this section. How­

ever, the form of Equation 2.2.lOa. is rather complex and ai;sumes that 

the forms of fX, fy, and fB are known. It might be noted here that a 

Bayesian approach to learning these density functions from empirical 

data is presented in section 2.3. For now tho~gh, consider a more sim-

plified approach to approximating Var(PB). 

Recalling Equations 2 .• 2. 7 and 2.2.8 one can write 

(2.2.11) 

Now make the following definition: 

(2.2.12a) 

(2. 2.12b) 

If one expands P 2 @ about !?.. = (b 1, b2, • • • , bm) in a· Taylor 

Series Expansion, one acquires 

= p (b) + ~ apz(B).ICB - b) + R.emainder 
2 - · aB i i 

i=l . i . 
B=b 

(2.2.13) 

Now for the present assume that the remainder is negligible'in compari-

· son to .the first order terms, an as.sumption which is investigated more 

fully ;in Appendix A. Suffice it to note at this point that if the 



_remainder of Equation 2,2.13 cannot be neglected, a similar· approach_to 

that which follows can be used but will necessarily be more complex due 

to the additional terms of Equation 2.2.13. 

Taking the·expected value of P2 (B) from Equation 2,2.13 yields 

Defining Var.(PB) as 

. ~ . . 

_ Var(l>B) = E[(PB - E(PB))2] 

one can calculate d~rectly 

-m m 
Var(PB)· = t t 

i=l j=l 

aP2 (B) · 
--.- jcov(Bi, 

clBj !=b 

B )· 
J 

where Cov(Bi, Bj) is the covariance of Bi and Bj. 

(2.2.14) 

(2.2.15) 

(2.2.16) 

(2.2.17) 
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As a particular example of th_e calculation of the measure of uncer-

tainty associated with the application of the theoreUcal model discussed 

in this section, consider the following form often encountered in phys­

ical models, particularly :in the area covered by the applications of 

·Chapter III. 

Let! ·be a random vector with probability density function depend-

ing upon a random vector.!!,, represe~ting the.lllean, and a random covari-

ance matrix .Y~ Further assume that! is a function of the random vector 

! with JPDF f! which is dependent upon the random vector]!. Now !1 and Y.. 

can be evaluated in terms of! as 
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(2,2.lBa) 

(2.2.lBb) 

Equation 2. 2. l8 then corresponds to Equation. 2. 2. 4 where (.tl, Y) are 

a.subset of the A.'s. In particular for.!= Q.(:0 as in Equat;i.on 2.2.2 .tl 
]. 

. and V are evaluated as follows: 

(2.2.19a) 

(2.2.19b) 

Again consider the conditional expected value of a·function .of.!, 

·namely D{,!), conditioned on]!_ • 

. OC> 

E[Dl!l =_:nD(~) f.!I! {~I!) d). {2.2.20) 

Defining PD as representing the-random-variable associated with Equation 

.· 2.2.20 and P3 as the functional relationship between PD and.! one can 

write 

{2.2.21) 

Following the form of Equ,ation 2.2.17 one can write the variance 

of PD directly: 

{2.2.22) 

Recall that PD can be written as a function of !!, and :!, say P4(_tl,.Y), 

similar t6 the form of Equation 2.2.1 where Mand! correspond to A's. 



(2.2.23) 

apD 
Now one can evaluate aB. by.the appli~ation of the chaip. rule for 

1 

differentiation. 

which is a shorthand representation of the following: 

ag 
ap D n aP D mk n · n ap D 
-aa· = < E aM.. ~ +. E "=El avk" i k=l -K i k=l ,., ,., 

agvk.e. 
aB >I 

i M = E[M] 
V= E[V] 
i = !>.. -

(2. 2. 24) 

(2.2.25) 

If Equation 2.2.24 is substituted into Equation 2.2.22 one obtains 

(2.2.26) 
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Another interesting way of obtaining Equation 2.2.26 is to consider 

initially PD as a function of M. and Y. and expand P0 about (E(M,), E(Y,)) 

in a Taylor Series expansion similar to that of Equation 2.2.13. The 

Var,(PD) obtained corresponding to Equation 2.2.22 is as follows: 



a~ ~ ... 
"' ( aM )21 Var[,tl] + ( a:) 21 Var£.¥]· 

- . M .,. E[M) .. - . M = E[M] 

! = E[V] y :;:., E(YJ 

· aP aP ·· · 

+ 2 ( a: av0> I cov(f!, !) 
. - - ,tl = E[M] 

·! = E[yJ 
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(2.2.27) 

R~calling Equations 2. 2 .18 and 2. 2 .1.9 one can expan(\ !:f and ! about 

la in a first order Taylor Series expansion to acqutre 

m agM(.!!) 
I !! ::: gM@ + I: (B . - ~i).· ,' 

oB i 
i=l i !t=h. 

(2,2.28a) 

m agv<JU ·. . 

.Y. :;: gv<hl + I: a B I (Bi - b:1,) 
i=l ;i ']}_=]?_ 

(2.2.28b) 

Again a higher order expansion.could be used but is not at this 

point for notational convenience. A criteria for clwosiz,.g what .order 

approximation is needed for any particu.lar ca1;1e is given in Appendix A. 

From Equation 2.2.28 ·one can caluclate the mean and variance of ,tl and y 

directly.as follows: 

(2.2.29a) 

(2.2.29b) 

Var[M] (2.2.29c) 

Var(Y.] :: (2.2.29d) 



m 
Cov[tl,, y] ::: r 

i=l 
(2.2.29e) 

Final,.ly, if Equation 2,2.29 is substituted into Equation 2.2.27, one 

can calculate Var(PD) as follows: 

ap 

::: < a:l>2 I 

(2.2.30) 

which reduces directly to Equation 2.2.26, 

One sees from Equations 2.2.26 and 2.2.30 that the sensitivity 

measure for PD; i.e., Var(PD)' can be approximated by a sum of the var­

iances and covariances of the Bi's weighted by two types of sensitivity 

coefficients: one linking PD to]:! and/or Y.. and· one, in turn, linking 

Mand/or y to B. 

In this section, then, a theoretical approach to· obtaiRing a meas-

ure of the uncertainty associated with probabilistic models has been 

presented. In addition, an approximation to this theoretical approach 

21 
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which was dictated by the complexity of the theoretical model has been 

investigated. It is not proposed that this appro:l!;imation is the only 

method in which the uncertainty related to PD can be linked to the uncer~ 

tainties of the basic random variable of the models, nor is it asserted 

that this must be the "best" way, however one wishes to define "best." 

On the other hand, though, a practical approach has been presented which 

is similar to the determ;i.nistic measures of sensitivity. Furthermore, 

this approach proves to be particularly simple if no difficulty is 

involved in obtaining the sensitivity coefficients (partial·derivatives) 

and if covariance information is easily attained, In most (:l:i,tuations, 

however, covariance information is usually unknown, l;ind must be estimated 

from empirical data. The modifica'!::ions to Var(Pk) when est:Lmators are 

employed are covered in the next sections. 

2.3 Estimator Approximations. Often in physical situations either 

or both of the density functions f! and fB is unknown and must be learned 

or estimated from experimental data, This implies.that if these estimated 

densities are used in the theoretical model, then the Var(PB) of Equation 

2.2.lOb so calculated is now only an estimate of Var(PB); call it Var(PB). 

In this section a Bayesian approach to learning fA and f~ is discussed 

and the results are applied to calculating Vir(PB). 

Furthermore, in the approximation used to evaluate Var(PD) in the 

prev:Lous section, the~ values available usually correspond to estimators 

of the various.parameters of Y. When an actual set of data is taken, 

Bi takes on a particular value, say bi*, which is an estimate of the ith 

particular parameter of fy given the data available. The covariance 

terms of Equation 2.2.26 and 2.2.30 then correspond to covariances of 

the estimators which must i1;1 turn be estimated from the data. If these 
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. terms are used, and indeed one seldom has a choice, an estimated Var(P0) 

results which is termed Var(P0). The second part of this section dis­

cusses the use of estimators to calculate Var(P0). 

Bayesian Learning. As mentioned in the pr~vious section, fA and 

fB are seldom, if ever, known ::i,.n a physical.problem and this necessarily 

complicates the use of the theoretical model of Section 2.2. Suppose 

as a first simple example, one considers the general theoretical model 

of Eq~ation 2.1.~; that is, Xis not assumed at this point to be a func-

tion of!.· In order to calculate E[PA] inEquation2.l.5 and Var[PA] in 

Equation 2.1.7c, one is required to know fA. Aasume that the form off.! 

is known but that the only ayailable density function of Ai~ f 0A which 

is based on previous experience with random vectors such as A. Suppose 

a sample value of_! is taken, say !.1, and Bayes' Theorem is subsequently 

applied (17). 

(2.3.1) 

~ow fAl.!.l is the a posteriori density function of A after the sample 

.!.l is taken and becomes f1 A that is the a priori density function of A 

before a second sample 15.2 is taken. This process can be repeated for 

each independent sample taken, each time using the previously calculated 

a pol;!teriori density of A as the present a priori density function. 

After many samples, under rather general conditions, the a posteriori 

density function of A can be shown to closely appro~imate fA, a fact 

that is discussed by several authors and will not. be investigated in 

furthe.r detail at this point (17). It should, however, be added that 
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after several samples have been taken, the dependence of the learned 

or estimated fA upon fOA is usually not great (18). 

Assuming that a density function of! was learned from z samples, 
A A 

say f!' where. fA = fA .. I , one cduld calculate an estimate 
_xl, X2i i • •, Xz 

of E[PA] and Var(PA) by substituting fA into Equation 2.1.5 and 2.1.7c 

for f! obtaining 

co 

E [PA] = _: q Pl (,!!_) f A (g) da (2.3.2a) 

A CO CO 

Var[P A] = -~ q f_: nD1 Q.)f.!I! (~l.!!_)d~ 

00 00 ,' 

- _::qr_:: nD1 C.! .. )fxl! <.!.I~ dT] f A (.@_)d.@_} 2£ _A (.!!,}d,!!_ (2.3.2b) 

Var [PA] now provides a measure of the uncertainty associated with 
... 

PA conditioned on the data used to calculate fA. 

Consider now the more complex case of Equation 2.2.lOb where it is 

assumed that f8 must be learned from empirical data. Iffy is assumed 

known and samples of! are taken, the same procedure as that used for 
A 

fA can be followed to obtain.an estimate off!, say f!. However, suppose 

due to the nature of the variables involved, samples of.! are selected 

rather than of Y. If the assumption is made as in Equation 2.2.5 that! 
A A 

equals g@), one can calculate f 8 directly .from f ! by observing that 

f Cb Ix 1t x2 , • • • , xz > = 
Blx1, x2, ., xz 

f(j(b) lx1, 
A x1, x2, 

(2.3.3) 



where J represents the Jacobian of the transformation between! and!· 
A 

Another approach to calculating fB would be to assure initially an 

a priori density function of fB' say fOB' and apply Bayes' theorem 

directly. If one selects a sample, say x1, one. obtains 

= . fx I B <.!.1 H.> foB (.V 
CD . 

-~f!l!(x1 l.r.) fOB (.!)d..1 

where fKl!(x 1. j_e) - f (xii g(f)) 
- Kl g(l!) 

(2.3.4) 

The function fBIX. represents a posteriori density function of B 
- _1 

and if one proceeds with the iterative process, as previously with fA' 
A 

a density function of B can be learned, say fB. One should note that 
,-

A A 

this f! should be equivalent to fl! of Equation 2.3.3 if the a priori 

density function fOB is obtained from fOA by a transformation similar 

to Equation 2.3.3. 

Substitution now of the learned density of! into Equation 2.2.lOb 

can provide an estimate of Var(PB) as Var(PB). It should be pointed 

out at this point that some degree of difficulty may be encountered in 
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estimating fB due to the nature of the transformation involved; for 

example, J might be equal to zero. However, since the Bayesian learning 

technique is not used in the examples of this thesis and has been pre-

sented here only briefly in introduction, these difficulties will not 

be pursued further at this point. 

However, a method for applying Bayes' learning to facilitate the 

computation of an estimate of the measure of uncertainty associated 

with the theoretical model of 2.2 has been briefly introduced. This 
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method, as has been stated, is not applied in Chapter III due to the 

complexity of the problems involved there. 

Estimators of Unknowns. In most p~actical situations the]! values 

appearing in Equations 2.2.26 and 2.2.30 correspond to estimators of the 

parameters of f,c For the purpose of this thesis, these :estimators are 

assumed to be minimum variance unbiased estimators MVUE. When a set of 

data has ~een taken, estimators of Cov(Bi' Bj) and E[Bi] can b~ computed 

(again assume MVUE) and substituted for the parameters in Equations 

2.2.26 and. 2.2.30. The resulting.estimate of Var(PD), Var(P0), is con­

ditioned upon the data used to calculate these particular parameters 

estimates. If the following def:f.niti,ons are made 

(2.3.5~) 

= estimate of E[!l (2.3.Sb) 

one can write a modification of Equation 2.2.25 as 

"' m 
Var(PD) = I: 

i=l 

(2.3.6) 

The form of Equation 2.3.6. represents the general measure of uncer-

tainty in PD applicable to the examples of Chapter III and provides 

sensitivity information linking PD to the. experimental data used to 

estimate the basic parameter associated with the model. 

2.4 Estimator Model. In previous sections the discussion was 

devoted to an ideal theoretical model and presented both an exact and 
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an approximation of Var(Pn) where Pn corresponds in general'to any prob­

abilistic model discussed. In section 2~2 the number of random variable 

parameters of_! considered was reduced to N and Y.., the mean vector and 

covariance matrix of_! respectively, and presented as functions of]!. At 

that point no restrictions upon the assumed functional relationship 

between Mand/or V and]! were made. In some physical models, especially 

those considered in Chapter iII, characteristics of the specific model 

and the nature of the data available dictate a particular representation 

for N and y_. That is, one is forced to give up some of the generality 

of the theoretical model of section 2.2 so that specific problems encoun~ 

tered in physical examples can be more realistically investigated. In 

particular, many situations exist where it is necessary to model Mand 

V by assuming a set of values for the parameters associated with fy; that 

is, these parameters are assumed fixed and the models are derived empir­

ically with random variable coefficients. The uncertainty associated 

with these random variable coefficients is assumed to include the uncer­

tainty related to random variable parameters of fy. Consider then the 

following functional representation for Mand Y._: 

(2.4.la) 

(2.4.lb) 

where l* corresponds to estimates of the parameters of fy; that is, par­

ticular values of B. The J's and K's of Equation 2.4.1 are random var­

iable coefficients obtained empirically w:i.th the assumption that the 

uncertainties associated with.::!.. and! compensate for the use of b*. In 

actual application.::!.. and!_ have to be estimated from empirical data. If 
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1. and!_ are designated as the respective estimator of the expected 

values of .::!. and K, estimator models for !!_ and. V can be formed as follows: 

. ' . ' b* 
m' (2.4.2a) 

(2.4.2b) 

Having introduced the notation concerning Mand V for the estimator 

models, one can now write directly an expression representing the asso-

ciated probabilistic model, namely that corresponding to the conditional 

expected value of D(X): 

00 

E [D If!, V] -~n D(l) fxli, y_<"IM, y)dl (2.4.3) 

If one now defines the conditional expected value of Din Equation 

2.4.3 as PE and the function it represents as P5 , one can then write the 

following: 

A A 

= p 5 (!!,, y_) (2.4.4) 

However, one could also write PE in terms of b* - ' .I, and K as a function 

P5; that is, 

PE = E [DI:& = !i<.e.~ 1,)' v = L(b* K)] = P5 (!?_~ 1_, K) (2.4.5) - __ , -
Suppose now one proceeds to calculate E[rE] and Var(PE) by applying 

the app~oximation techniques introduced in Section 2.2 to the estimator 

model. As one recalls, there are two approaches to approximating Var(PE): 

one method beginning with PE in the form of Equation 2.4.4; the other, 

in the form of Equation 2.4.5. Since the examples of Chapter III are 

more easily adapted to the former method, .that method has been chosen 

here to begin this derivation. 
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If one expands P5 about E[M] and E[.Y.] in a Taylor Series Expansion, 

one acquires: 

... ,.. clP ... ,.. clP5 
PE = P s [E (M) , E (Y)] + 5 [M - E (M)] + -... l.Y. - E (Y) ] + Remainder 

... av 
clM 

... ... 
1!=E (tl) 

... ... 
_Y.=E (_Y.) _Y.=E (Y) 

(2.4.6) 

Again the assumption is made that the remainder can be neglected. See 

Appendix A for further discussion concerning the truncation of the series 

with first order terms. If one now takes the expected value of PE from 

Equation 2.4.6, one obtains: 

,.. ... 
E[PE] = P5[E(M), E(_Y.)] (2.4.7) 

and in turn can calculate the following directly as in Equation 2.2.27. 

clPs ... clP5 ... clP5 clPs ... ... 
Var(PE) = (-,.) 2 lvar(tl) + (-... ) 2 lvar(Y) + (-,.-)(-... ) lcov(M, y) (2.4.8) 

clM ... ay ... clM_ ay ... 
M=E[tl] !'.!_=E [M] M=E [tl] 
" ... ... ... ... " 

.Y.=E [.Y.] .Y_=E [_Y.] _Y.=E LY.] 

.,... A A ,,.._ 

Now one must evaluate Var(M_), Var(Y), and cov(M_, y). As has been 

" implied before. in Equation 2.4.2, the following definition is made: 1. = 
... 

Associated with 1. and 
... 

and! are the following parameters. (19): 

E[l,] = i (2.4.9a) 

... 
E[!] = k (2.4.9b) 

(2.4.9c) 
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2 
Cov[Kr' K ] = a"' ,.. 

s KK (2.4.9d) 
r s 

,. ,. 2 
Cov[J, r Ks] ci.,.., """ 

J K (2.4.9e) 
· r s 

,. ,. 

If one expands .M. about i and y about 1 in Equation 2.4.2, one 

acquires for a first order approximation from a Taylor.Series expansion 

(See Appendix A.) 

,. * t 
Y = 1<.!?., 1) + E 

i=l 

(2.4.lOa) 

(2.4.lOb) 

Again one can calculate the respective expected value and covariance as 

in Equation 2.2.29. 

E [fil = .!!(!~-~ i) 

VarlM] = ¥ E . cl.!! cl!!. joi ,. 
-,- r=l s=l -,.- --;:-- J J aJ aJ ,. rs 

r s .J.=i 

,. 
Var[V] = 

u 
Cov [tl,.Y] = E 

t 
E cl]! cl..L. 2 

-,.-.·. jo.J K 
r=r s=l clJ 

r 
clKs,. rs 

.J.=i 
A 

K=k 

.(2.4.lia) 

(2.4.llb) 

(2.4.llc) 

(2.4.lld) 

(2.4.lle) 
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Substituting Equation 2.4.11 into Equation 2.4.8 yields 

aPs 2 t t a i. aL 2 
+ (---::-) I r r ~ · :- loi K 

ay r=l s=l aK aK r s 
A * r s A 

. ~=!!(.!2., j) !=Ji 

V=L (]?_~ Ji) 

0P5 aP5 
+ (-;:-) (-A ) I 

a~ ay 

u t aH a1 · 2 
r r ·;:- :--la.ii (2.4.12) 

r=l s=l oJ oK rs r s 
· M=!!<E.! 1> J=1 

A * . A . 

.Y,=1.(E., Ji} K=k 

A A 

Now if one could ass11111e that the pa"rameters of.:! and Kin Equations 

2.4.9 were known, one could calculate Var(PE). However, unfortunately 

these parameters are not usually known and must be estimated from data 
A A 

concerning.:! and K (19). lf one denotes the estimates of these param-

eters by an asterisk(*), .the resulting estimate of the Var(PE) can be 

written as follows: 

/' 

oP5 u u 
= (-A) 2 1 r t 

a~ r=l s=l 

i=H(E.~i*) 

i=.1<.1?.~Ji*) 

oH a H I ~*A 
~ ~ OJ J 
aJ · aJ r s 

r s A 

.:!=i* 



3P5 t t 
+ (-A) 2 1 L E 3K 

r 

+ 

a,y r=l s=I 

.M=H(b*. ·*) - _, .J. 
V=L(b* k*) __ , -

3Ps 3P5 
(--::--)(-A) I u 

E 
3N, ay_ r=l 

t 
E 

s=l 

!!=!i.(!l!i*) . 

i=~ (!!_!!.*) 

a~ :~, 2* 
(J A A (2.4.13) A J K aJ 3K r s 

r SA 

J.=i* A 
!=1* 

Equation 2.4.13 now presents a measure of the uncertainty of the 

probabilistic model associated with PE. Observe that for the estimator 

model of this section, Var(PE) is dependent_upon the estimates of the 
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parameters of fy and the estimates of the expected value and covariances 

of J. and!_. Then Var(PE) relates the uncertainty of PE to the uncer-
A A A 

tainty ass~ciated with!,:.!., and in turn to.!!. primarily via the uncer-

tainty associated with empirical data used for the estimates indicated 

by asterisks(*) in Equation 2.4.13. 

2.5 Other Sources of Error. Throughout the first four sections of 

this chapter, errors primarily associated with the estimation of param-

eters used in probability density functions appearing in probabilistic 

models has been discussed. In this section two other possible sources 

of errors, conditional loss functions and stochastic tables, are briefly 

explained. 

Conditional Loss Functj.ons. 'l'hus far, not much has been said con-

cerning the function D(!) which has appeared in each of the models pre-

sented. In almost every case of these types of probabilistic models, D 

can be considered as a loss function; that is, Pn, as it has previously 
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been defined, is the integral of a conditional.density function weighted 

by D(X). If D(J) were defined to be +lover the domain of X, then P would 

necessarily equal +l, In general, if Dis some other function over the 

domain of.!,· Pn would be different from 1. In particular, if D(X) is 

defined 

D(!,) < 1 over the domain of X (2.5.1) 

then Pn < 1 

and the reduction or loss of Pn from the norm can be directly related to 

the form of D(!,), This dependence of Pn upon D(!,) necessitates investi-

gating the uncertainties assoc:;.iated with the loss function. 

Often in practice D, or at least the parameters associated with D, 

is found to be derived directly from experimental data. Suppose that D, 

besides being a function of.! is also a function of another set of random 

variables, FZ1, FZ2, ... , FZr. Define FZ = (FZ1, FZ2, 

Upon examination, one observes that D can be written directly as a 

function of.! and]]_, say D6(X, FZ). Following techniques of the pre-

vious sections, one can expand D6 about the expected values of X and FZ; 

where 

E[X] E[E(.!lk!., y_)] = E[k!.] (2.5.2) 

.!!!.x - E [k!.] (2.5.3) 

clD5 
A I (FZi - E[FZi]) 

clFZ. 
1 FZ=E[FZ] 

clD5 
+ - I (X - m__) ax - .;;..--x 

(2.5.4) 

!:=!!lx 
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Again for notational convenience the Taylor Series expansion is termi-

nated with first order terms. (See Appendix A) ·The expected value of 

D6 can now be calculated from Equation 2.5.4 as follows: 

(2.5.5) 

Likewise one can compute the variance of n6 using Equation 2.5.4 with . 
A 

Equation·2.5.5 and assuming Kand FZ to be independent, obtain the 

following: 

r r 3D6 306 
I 

3D6. 2 . 
Var[DG] ::: }: }: Cov[FZ1 , FZj] + <ax> I Var ! (2. 5. 6) 

i=l j=l 3FZ, 3FZ. 
l. J FZ = E (,EZ.] X=m -x 

where Var Xis calculated as 

Var X = E[VadKlk!., Y)] + Var[E(KIM, y_)] (2.5.7a) 

Var K = ELY.] + Var [tl.J (2.5.7b) 

Now if one assumes as in Equation 2.2.18 that k!. andY. are related to the 

basic r:andom vector parameter]!; on.e can recall from Equation 2.2.29 the 

following: 

ELYJ ::: g (b) v-

ril 
Var [tl] ::: E 

i=l 
B .) 

J 

(2. 5. 8a) 

(2.5.8b) 

(2.5.8c) 



Similarly referring to the notation of Section 2.3, an estimate of 

variance of D can be calculated from Equations 2.5.6, 2.5.7, and 2.5.8 

as follows: 

r r an6 an6 an6 
Var(D) = E E A -A-I Cov*[FZ., FZj] + (a~~ 21 (gv <E_*) 

i=l j=l aFZ. aFZ 1 
1. j 

X=g (b*) FZ=.u.* ~ M -

m m agM(B) agM(~) 
+ E E ( aB )( aB )jcov*(B., B.)) 

i=l j=l i j 1. J 
(2.5.9) 

!!.=!?.* 

where 

Cov*[FZi, FZj] = estimate of Cov[FZ., FZj] 1. 

Cov*[Bi, Bj] = estimate of Cov[Bi, Bj] 

fz* = estimate of E[FZ] 

b* = estimate of E[~] 

Thus another component that contributes to the variance of the 

general random variable Pn has beep. introduced, Before this component 

can be added to any of the models given, it must be multiplied by the 

apn 2 
sensitivity coe~ficient linking D to Pn' namely (""ai:)) • An interesting 

example of the use of these additional sensitivity terms is presented 

in the second example of Chapter III. 

In this section then, the uncertainty of a probab:l.lfstic model has 

been extended to include errors inherent to the conditional loss 

35 
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function D and associated with experimental data used to-estimate the 

parameters of D. 

Stochastic Tables. Often in the process of obtaining some desired 

result by means of a particular probabilistic model, one is required to 

use some parameter from an experimentally determined table of values. 

To be more explicit, suppose that in the model being used, one was 

required to determine the drag coefficient C of a particular' object as 

a function of its velocity v. The drag coefficient is usually determined 

from measurements made in a wind tunnel. Since each measurement is sub-

ject to experimental errors and uncertainties, many measurements of C 

are made at each of a number of preselected values of v. Then at any 

value of v, say v0 , an average C, say C0 is used as an entry into the 

drag coefficient table. Thus for any particular v, the C entered into 
0 0 

the tables is an estimate of the expected value of C0 giyen the data 

available. 

The values of the table then represent a stochastic process, not 

as a function of time, but as a function of v; that is, from one set of 

data one particular table would result; from another, a slightly different 

table. 

In the terminology of the previous sections then, one necessarily 

assumes that each entry into the table corresponds to a random variable 

with uncertainty which affects the uncertainty of PE. The sensitivity 

terms then associated with Var(PE) would be of the form 

a a clPE clPE 
E E <ac.><ac.> Cov(c., c.) (2.5.10) 

i= 1 j = 1 l. J l. J 

where a is the number of entries in the table. The form of Equation 

2.5.10 assumes that the C. 's are independent of any other random 
l. 



variables, say L. 's. If this cannot be assumed in a particular case, 
1 ' 

Equation 2.5.10 must be supplemented with additional terms expressing 

this dependence, such as 

37 

(2.5.11) 

where w equals the number of random variable dependent on the Ci's. 

It might be interesting to examine the Cov(C., C.) of Equation 
1 J 

2.5.10. 

E[(C. - E(C.))(C. - E(C.))] 
1 1 J J 

(2.5.12) 

(2.5.13) 

In stochastic processes normally encountered, the variable ti 

(time) replaces v. (velocity). With this observation, one sees that 
1 

Cov(Ci, Cj) corresponds to the autocovariance of C(y). 

The purpose of this section has been to briefly touch on two 

sources of error not covered directly by the previous sections. Condi-

tional loss functions were introduced and the uncertainty associated 

with them was used to expand Va~(PE) to include additional sensitivity 

terms. Tables used in probabilistic models were considered as stochastic 

tables; that is, each entry in any particular table was assumed to be 

only an estimate of the expected value of that entry. The uncertainties 

related to these tables were in turn related to the uncertainty in PE, 



CHAPTER III 

PROBABILISTIC MODELS IN WEAPONS EFFECTIVENESS PROBLEMS 

3.1 Introduction, This chapter is primarily devoted to investiga-

tion·of particular applications of the techniques developed in Chapter II 

.to the field of weapons effectiveness. In particull:!-r, two specific 

weapon-target probabilistic models are presented and a measure of the 

U:ncertainty.associat!:!d with each is calculated. This chapter begins 

with a brief discussion of a general weapons effectiveness problem,.then 

the example mod.els previously mentioned are examined in detail, including 

the computer programs employed and. the assumptions made, 

Consider initially the.following general weapons effectiveness pro~ 

blem. One is concerned with finding the probability PK that a desired 

level of damage.is accomplished against a particular target by using a. 

specified weapon. Now one can. in general define PK as follows: 

00 

PK= /2 Da(.!)f:l(:(.:Ud.!.. (3.1.1) 
-co -

where. the random vector ! = (XR,' Xn) and re.presents the actual impact 

point of the weapon with the subscripts Rand D denoting range and 

deflection comp'onents of !· 

The function Da which appears under.the integral in Equation 3.1.1 

is the damage function associated with a weapon target combination; that 

is, fo:i;- a target positioned at..!.= O, Da(.1.0) is the level of damage 

38 
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(desired damage= 1.0) to the target caused by a weapon impacting at .l.O• 

In this thesis, two types of damage functions are considered depending 

upon the specific weapon-target damage mechanism; in particular, (1) a 

blast sensitive target damage function and (2) a fragment sensitive damage 

function. A blast sensitive target is defined to be one which has asso-

ciated with it a definite geometric figure within which the weapon (or 

weapons) must impact in order to achieve a measure of damage. On the 

other hand, a fra&ment sensitive target relates to one in which the major 

damage mechanism is due to fragmentation effects rather than to a direct 

impact of the weapon. The former type of damage function is assumed in 

the example presented in Section 3.2, and the latter in Section 3.3, 

where respectively each damage function is described in more detail. 

The value pK as described by Equation 3.1.1 is often referred to as 

the expected damage to the target involved, a notation which is apparent 

from the form of the equation. One can thus write pK in a manner 

corresponding to Equation 2.1.1 as follows: 

00 

= E[D] = a f 2 D /_:0 f X (_:0 d T 
-oo 

In general there are numerous ways of modeling Equation 3.1.2 

(3 .1. 2) 

depending upon weapon characteristics, target vulnerability, and assump-

tions made concerning the damage function D, and the impact point joint 
a 

density fX. Due to the complexity of the problem, most of the simulation 

and computations are accomplished via the digital computer. In particu-

lar, this thesis considers models (programs) used in. connection with the 

Joint Munitions Effectiveness Manual, JMEM. These models are designed to 

compute a single value of PK for a given set of system input conditions 
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which are, for the most part, obtained from data derived from:experi-

mental tests. 

Since the system input conditions are at best only estimates of the 

mean value of the input parameters based on random experiments, the value 

of PK computed by the system models represents a random variable condi­

tional probability. This implies then, that Equation 3.1.2 should be 

rewritten as follows: 

co 

(3.1.3) 

The!. which appears in Equation 3.1.3 denotes information derived 

from experimental data; that is, PK, w~ich is calculated by a series of 

simulation programs is actually a conditional expected damage, conditioned 

upon data used to compute the estimates of the mean value inputs to the 

programs. In general terms,!. corresponds to the information needed to 

estimate such random variable parameters as!,.!!., and FZ presented in 

Chapter II. 

The assumption is now made that any uncertainty in PK is directly 

associated with the uncertainties in the models themselves and/or with 

the uncertainties in the values of the random variable parameter used as 

inputs into the models. For the purposes of this thesis, it has been 

assumed, as stated in Chapter II, that adequate models are available so 

that the discussion presented here is concerned with the uncert'aiilties 

associated with the model input variables.. Iri general, all variables 

for which input values to .the system models have been.estimc:!ted from 

experimental data are considered to be random variables. Likewise, it 

follows directly that PK' as a function to these input variables, is a 

random variable whose uncertainty should be related to the uncertainty 
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. . .. 
. - . .· . 

associated with the input random variables. In general terms, for the 

weapons eff~ctiveness examples of this chapter, these system input random 

variables range from weapon release conditions to weapon fragmentation ·.. .· . 

characteristics and to target vulnerability parameters. 

The measure of uncertainty of PK derived from the analysis in this · 

chapter can be usef~l in d~aling withweapon effectiveness models by 

providing a measure of the confidence one should have in the particular 

value of PK which results as output of the systemmodels. Furthermore, 

the methods developed here can.aid in locating the principal sources of 

. error in the models of PK' thus indicating where more data should be 

taken in obtaining .estimates of the mean values of the rand~m variables 

used as system inputs. 

In addition, this measure of uncertainty may we.11 assist in the 

comparison of "open end" (short-hand, manually calcuiated) sol.utions and 
. . . 

"closed end'' (computer) ·solutions, indicating whether these two. types of 

solutions.should be used interchangably • 

. For example, consider two mddels for PK corresponding to PK 1 and 

PK2 , · Let. 

E[PKi] = µl (3.1.4a) 

E[PK2] = l.l2 (3.l.4b) 

Var[PK1J = 2 al (3.1.4c) 

Var[PK2] = 0'2 (3 .1. 41l) 
2 

Cov[PKl'pl<2] = 2 
o: 12 (3.1.4e) 
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Define a·rietv random vad.ahle 

(3.1.$) 

··where 

In particular, consider the case where PKl and PK2 are two independent 

models; Le. , of 2 = O. One might .make the decision to use the two mod.els 

interchangably ·then.if . IE[P 6] I ~ SD(P 6); i.e.,. I µl - µ2 I ~ ~ 

3.2 Example 1: Blast Sensitive Target Model. Consider again the 

general weapons effectiveness lllodelof Equation 3.1.3. 

co 

PK = PK(!) = E[Dal!l = _!2 Da(T) f.!I.!. <ii!.> d.!_ (3.2.1) 

Under certain.tat:get"'."weapon combination situations, one is concerned with 

only tlie blast effects of ·a weapon and correspondingly the associated 

damage function Dais defined as a function of only the distance of a 

target point_from the impact point of the weapon. This damage function 

cortesponds to tha.t associated with the blast sensitive target introduced 

·in the previous section~ For the purpose of t;he example of this section, 

a blast sensitive target with a rectangular vulnerable area R is assumed ,, 
and Dais defined as follows: 

(3.2.2) 
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where 

PnlH = probability of damage given that Rv is hit (3.2.2b) 

lif.!,ER v 

= 0 otherwise 

(3. 2. 2c) 

In other words, Da(T) h~s a constant value of pDIH over the area described 

by R and is zero elsewhere. It should be noted that damage functions v 

of the form of D are often referred to as cookie cutter damage functions a 

Under the assumptions of Equation 3.2.2, one can now write the model of 

PK as presented by this example as 

J 
R 

v 

(3.2.3) 

The computer programs used in the JMEM effort which correspond to 

the model of Equation 3.2.3 are the Stick Bomb Program and the Multiple 

Round Kill Probability Program (MR.KP). These two programs are discussed 

in detail in the following subsections. 

Weapon Delivery. The Stick Bomb Program is a basic "initial" program 

for many weapons effectiveness situations employing air delivered weapons. 

This program utilizes release conditions of aircraft and weapon charac-

teristics to predict the intended impact points of a stick of weapons, 

where the term "stick".refers to a rapid sequential release of several 

weapons which form a characteristic pattern on the ground. In general, 

the program actually simulates the trajectories of the falling weapons 

and predicts where they would impact if only the conditions specified as 

inputs to the program affected the trajectories and all of these condi-

tions were exactly at their desired values. 
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Consider again the random vector.! as representing the actual impact 

points of the weapons. For simplicity of notation, however, consider 

for this example the release of only one weapon so that.! can be express~d; · 

as(~,~) where the subscripts Rand D denote range and deflection 

respectively. It should be pointed out that if A bombs were released 

from the aircraft, both XR and x0 would be A dimensional vectors. The 

multiple bomb case is.a single extension of the single bomb case and is 

discussed further at the end of Section 3.2. 

Consider now ·the following notation used in the example of this 

section: 

M 
-x = mean vector of.!=(~,~) 

Of .! __ · ,VRR VRDI V = covariance matrix 
--x VDR VDD 

(3.2.4) 

(3.2.5) 

where again the subscripts·R and D indicate range and deflection compo-

nents respectively. PK can now be written as a conditional expected 

damage conditioned on M and V in the manner of Equation 2.2.23 
-x -x 

PK = P l (M , ·. V ) = E[D IM , V ] = x -x ·--X · a -x -x J fXIM V (IJ.Mx• .Y.x) di 
PolH - --x' --x 

R ----·---v (3.2.6) 

Furthermore, the impact point.! is now assumed to be a function of the 

release conditions of the weapon from the aircraft as well as atmospheric 

conditions and ballistic characteristics so that! can be written as 

follows: 

(3.2.7) 

where the Y's are random variables, each Yi associated with a different 

but riot necessarily independent factor influencing!,, 
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If the pilot (and/or delivery system) had absolute control over all 

factors influencing!_; that is, over all Y's and if he had perfect judg-

ment, he could, for a specified set of Y's compute an exact impact point 

!· Unfortunately, however, the pilot does not possess this perfect 

control due to the fact that he is involved with a physical "real world" 

system; that is, although a particular Y., say y., is desired for a 
1. 1. 

certain weapon delivery condition, there will exist some random error 

o. associated with Y. such that the actual value for a desired Y. is 
1. 1. 1. 

Yi± oi. Thus, one justifies terming the Y's random variables and 

defines fy as the joint density function of the Y's. Furthermore, in 

the Stick Bomb Program, which is in general terms a simulation of fx in 

Equation 3.2.7, M and V are modeled as functions of the knowledge or 
-x: -x: 

information available -concerning (Y1, Y2 , , •• , Y~). Both the theoret­

ical models of Section 2.2 and 2.3 and the estimator model of Section 2.4 

need to be examined in order to see if either of these models corresponds 

to that used in the Stick Bomb Program. However, before either of these 

models can be examined further, the Stick .Bomb Program model is described. 

Stick Bomb Delivery Model. Suppose a stick of A bombs is projected 

at a target from an aircraft. Associated with the specific release condi-

tions and the types of weapons involved, there will be a characteristic 

pattern of impact points. Now, if one chooses one point in the pattern 

as a pattern reference point, say the aimpoint of the first weapon, the 

position of each weapon in the pattern with respect to that reference 

point can be specified by the designation of two numbers, ~R. and ~D., 
1. 1. 

The notation ~R. indicates the range separation between the reference 
1. 

point and the ith weapon; ~D., the separation in deflection. If, as in 
1. 

the example of this section, only one weapon is released, the pattern 
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aimpoint would necessarily correspond to the aimpoint of that one weap:on· 

and 6Ri and 6Di would both equal zero. 

Now it is assumed that the pattern as a whole is aimed by attempting 

to impact the pattern reference point at a designated point in a range-

deflection (R - D) plane associated with the target, say at (ro, do), 
e e 

The R - D plane is a horizontal plane passing through the center of e e 

mass of the target. The coordinate system in which (r0, d0) is measured 

has as its origin the point in the Re - De plane below the release point 

of the first weapon in the stick. Correspondingly, the range axis asso-

ciated with the pattern is parallel to the horizontal velocity of the 

aircraft and the deflection axis is perpendicular to the range axis and 

lies in the. Re - De plane. If the pattern were correctly positioned, 

the pattern aimpoint would correspond to (ro, do) upon impact. Unfor-

tunately, aiming errors are usually present and the pattern reference 

point is usually aimed at another point, say (R, D). The aiming errors 

involved, i.e., (R - ro) and (D - do) are assumed to be independent and 

normally distributed with means zero and standard deviations S and S d ar a 

respectively. Primarily these aiming errors are assumed to be due to 

sight misalignment, wind miscorrection, improper release conditions, and 

pilot inexperience. 

A similar situation exists with regard to the ballistic dispersion. 

If ballistic errors'.were not present, the impact points of the ith weapon 

could be predicted given Rand Das (R + 6Ri, D + 6Di), However, the 

actual :i,mpact points are assumed to be normally distributed about (R + 

6Ri, D + 6Di) with ballistic standard deviations of Sbr and- Sbd'· Basi­

cally, these ballistic errors are due to unforeseen natural phenomena, 

air currents, and drag coefficients. 
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One sees then that Sa/, Sa/, Sb/, and sb/ provide essentially 

the same information concerning the deviation of! about the expected or 

intended impact point (ro, do) as does V. Indeed, these four random 
-x 

variables are but a particular case of V which applies to the weapon 
-x 

delivery model of this section. Since the Stick Bomb Program specif!-

cally models Sar' Sad' Sbr' and Sbd and these particular values are 

subsequently used directly by the Multiple Round Kill Probability Pro-

gram to calculate a particular value of PK, a slight modification in the 

form of the conditional expected damage of Equation 3.2.6 has been made 

as follows: 

(3.2.8) 

· where 

This modification basically is merely a change of notation in 

variabl~s as S simply represents a particular form for the general ran­
-x 

dom vector (matrix) V •. Thus the techniques of the previous chapter can 
-x 

be applied directly to provide a measure of the uncertainty of PK by 

means of examining.the uncertainty associated with M and S provided 
-x. -x 

that the Stick Bomb Delivery Model can be shown to correspond to one of 

the models dis~ussed in that chapter. 

Now from previous discussion in this section concernit\g the Stick 

Bomb Delivery model, one can observe that the expected impact··point of 

! should be related to the intended aimpoint of the pattern reference 
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point. In particular, for the example of the releasing of only one 

weapon, the mean impact point of! should be related to the intended 

aimpoint of the pattern reference point. In particular, for the example 

of the releasing of only one weapon, the mean impact point, call it !!!.o, 

is equal to the aimpoint of that one weapon, namely (ro, do), Associated 

with ro and do, the uprange release distance and deflection, are a set of 

intended release conditions Y1, y2 , • , ., y$ that must be met in order 

to release the weapon aime~ at ro. Many factors influence the values of 

Y1, Y2, , , ., y$ such that on any particular run, errors occur between 

the actual valves obtained, call them Y1*, y2*, ••• , y$*' and the 

intended value of the y's. Assuming that these errors are neither posi-

tively nor negatively biased, the intended y values y 1, y2 , ••• , y$ ~an 

be treated as merely estimates of the expected values of the basic under-

lying random variables Y1, Y2, ••• , Y$. Thus, one can write m0 in 

functional notation as 

mo. (ro, do)= H <Y1, Y2, , , ., y~) = H (y) - . -:x 'I' -:x 
(3.2.9) 

Furthermore, consider the Stick Bomb Delivery models for S , S d' ar a 

Sbr' and Sbd which also depend upon the intended release conditions 

s = ar S1{Y1, Y2, . . . . ' y$, SA1, SA2) (3.2.lOa) 

sad = S2(Y1, Y2, . . . ' y$, SA1, SA3) (3.2.lOb) 

sbr = S3(Y1' Y2, . . . ' y$, SA1) (3.2.lOc) 

sbd = S4(Y1, Y2, . ., y$, SB1) (3.2.lOd) 

or in general notation~= .[(y1, Y2, , , ., y$, SA1, SA2; SA3, SB1) 

where SA1, SA2, and SA3 are empirically determined aiming error 
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coefficients relating the. intended· relea.se condition to Sar· and Sad and 

SA4 is a corresponding ballistic error coefficient relating the release 

conditions to Sbr and Sbd" Since these coefficients are obtained for 

experimental data, they have associated with them a certain degree of 

uncertainty relat.ed· to the random experiments involved. This uncer-

tainty is assumed to compensate in the model for the use of the estimates 

of the expected value of the Y's as well as for the uncertainty assoc-

iated with unknown factors that influence!· 

It is obvious from Equations 3.2.9 and 3.2.10 that the Stick Bomb 

Delivery ~del corresponds to special cases of the estimator models of 

Section 2.4 since:random variable coefficients are assumed. However; 

before considering the form ~f the estimator model involved, it is inter­

esting to observe how the theoretical model of.section 2.3 could be 

applied t_o the Stick Bomb Program if the aiming and ballistic error 

coefficients were not available. 

Theoretical Mo<lel. Consider modeling~ and~ in the modified 

· form of the approximate theoretical models of Equation 2. 2 .18 for ! = 

G(X) 

,.. 

• • • ' Bm) = !!i3 (~) (3.2.Ua) 

S =~Var(!li> =./Var(G(X)IB) = 1,,(Bi, B2, -x --,, 

,.. 

• • •, Bm) = ~(!!)(3.2.llb) 

where Bi is defined as the MVUE of the ith parameter of fy. Following 
"' 

the general techniques of Section 2.2 modified by the use of.!! instead 

of B, one can expand~ and~ about the expected value of.!! in a first 

order Taylor Series Expansion. See Appendix A for series termination 

criterion. 
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.. 
M '" !!B[E(.!!)] + -x (3.2.12a) 

(3.2.12b) 

... 
It should be noted that since the Bi's have been assumed to be unbiased 

estimators of the parameters of fy then E[B.] represents the true value 
- l.. 

of the ith parameter of fx: 
Continuing in the manner of Section 2.2, the expected value and 

covariances associated with M and S can be obtained as follows: -x -x 

EfMx]::: !!B[E(B)] (3.2.13a) 

.. 
E[~] :::1_B[E(B)] 

. Var[M ] 
-x 

m m a~ 
:: I: I: A 

Var[S ] ::: 
-x 

i=l j=l aBi 

m m a1B 
I: E -;::-

i=1 j=l aBi 

Covllix, ~] 

.. 
B.] 

J 

.. 
B.-] 

J 

(3.2.13b) 

(3. 2 .13c) 

(3.2.13d) 

(3.2.13e) 

Equations 3.2.13 thus present a measure of the uncertainty of M -x 

and~ as functions of the MVUE of the parameters of fy and indeed could 

provide the needed information corresponding to Equation 2.2.27 for the 

calculation of Var(PK). Unfortunately, data.available for air delivered 
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munitions does not provide sufficient information at this time to make 

estimates of the covariance of the B's. Therefore, the theoretical 

model cannot be employed in this example to obtain a measure of the 

uncertainty associated with PK, 

Estimator Models. Returning now to the Stick Bomb Delivery models 

of·Equations 3.2.9 and 3.2.10, one can observe the correspondence between 

these models and those estimator models of Section 2.4. In particular, 

Equation 3.2.9 expresses . .!!!o as a specific case of Equation 2.4.2a where 

the randomness of the J coefficients is neglected and the y's correspond 

to a subset of the b.*'s. This implies then that one can write the mean . l. 

of!., call.it !!x,as the following estimator model. 

(3. 2 .14) 

Furthermore, if the following notation is considered: 

· SB1 = K4 and 

(3.2.lSa) 
SA.= K. 

l. l. 
and 

for i = 1, 2, 3, then the Stick Bomb Delivery model for the standard 

deviation of!., call it S , can be written as a special case of the 
~ 

estimator model of Equation 2.4.2b as 

(3.2.15b) 

where again the y's are a subset of the bi*'s and the K's are estimators 

of the corresponding error coefficients~ 

Now that the models used in the Stick Bomb Program have b.een intro-
,.. 

duced; i.e., mx and Sx' one needs to relate these models to PK so that a 

measure of the uncertainty of PK can be investigated corresponding to 
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that.of Equation 2.4.12 or 2.4.13. In particular, the Multiple Round 

Kill Probability Program has to be examined. 

Multiple Round Kill Probability Program. The MRKP Program combines 

the delivery information obtained from the Stick Bomb Program with par-

ticular target vulnerability information and calculates PK. For the pur­

pose of this example, the target information is assumed fixed and the 

only variable inputs into the program that are considered random are S , , ar 

Sa9' Sbr' and Sbd" As the example of Section 3.3 illustrates, the addi­

tion of other input random variables is handled in an analogous manner as 

for Sar' Sad' Sbr' and Sbd" 

Consider then the following functional relationship representing the 

~ultiple Round Kill Probability model of PK. 

PK(~) (3.2.17) 

.where LR and LD denote range length and deflection width respectively of 

the rectangular vulnerable area Rv. Employing ~Rand ~Das dummy varia­

bles for Rand D respectively one can write 

co 

(3.2.18a) 

and 

co 

I fx 10 s <·ol@D' ~) fD(~ol-2.x> d~D 
-co D ' -x (3.2.18b) 

Substituting Equation 3.2.18 into Equation 3.2.17 yields the resulting 

model fo~ PK. 
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00 

00 

(3.2.19) 

where under the assumptions of the MRKP model (N denoting normal density 

function) 

f jD S - N(D, Sbd2) 
XD ' -x 

so that 

f 
~RI~ 

f 
~DI~ 

- N(r0 s 2) ' ar 

- N(do S 2 ) ' ad 

- N(r0, S 2 + S 2) ar hr 

(3. 2. 20a) 

(3.2.20b) 

(3.2.20c) 

(3.2.20d) 

(3.2.20e) 

(3.2.21£) 

To avoid the rather complex notation associated with PK in Equation 

3,2.19, only the functional notation 

(3.2.21) 

is used in the main body of this thesis and corresponds to Equation 

2.4.4 for a general estimator model. 
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Variance-of PK. Now that the appropriate Stick Bomb Delivery and 

MRKP estimator models have been introduced for the example of this sec-

tion, a tneasure of the uncertainty associated with PK must be examined. 

In particular, the uncertainty associated 'with.PK; i.e. Var(PK)' must 

be related to the uncertainties associated with S and in turn to the 
--x 

uncertainties related to the error coefficients estimators K1, K2 , K3, 

and K4 :f:.n an analogous manner to that exhibited for the general estimator-

model of Equation 2.4.4. Therefore, following the general techniques of 

Section 2.4, PK. of Equation 3.2.18 is expanded about E[S ] = (E(S ) , . -x ar 

E(Sad), E(Sbr)' E(Sbd)) in a Taylor Series Expansion and yields 

. 4 oPK 
PK.= PK_[E(--xs ) 1 + I: -;--s I cs. - E(S.) 1 

i=l (} i 1 1 
+ Remainder (3.2.22) 

S =E(S) -x x 

where~= (Sar' Sad' Sbr' Sbd) = (Si, S2, S3, s4). Only first or~er 

terms are assumed significant in the derivation that follows; however; 

a complete parallel derivation appears in Appendix C for a second order 

approximation to PK in Equation 3.2.22. 

Taking the expected value of PK in Equation 3.2.22 as 

(3.2.23) 

the variance of PK can be calculated directly, 

·· oP 
4 K I . 2 = E[( I: ~ [Si - E(Si)]) ] 

i=l i . 

S =E(S) -x --x 
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4 ~ aPK apK I 
I: j"' as. as. Cov(si, s .) 

i=l =l 1 J J 
(3.2.24) 

S =E(S) 
~ -x 

The Var[PK] in Equatiop 3.2.24 thus relates a measure of the uncertainty 

a~sociated with PK to that related to E..x• Now in order to estimate the 

uncertainties associated with S and relate these uncertainties to the 
-x 

basic random variables involved, one should recall the estimator model 

of Equation 3.2.15 

(3. 2. 25) 

There exists for each component of E..x; i.e., Sar' Sad' Sbr' and Sbd' 

a specific functional relationship between the error coefficient estima-

tors and the particular error component corresponding to Equation 3.2.10. 

However, for notational convenience, the general form of Equation 3.2.25 

is used at this point for the derivation of the measure of uncertainties 

" related to S. A parallel derivation appears in Appendix B which employs 
-x 

the exact form of the functional models representing Sar' Sad' Sbr' and 

" .In general; the uncertainties associated with E..x are estimated by 

. " 
vari~nces and covariances related to .2.x, . Since the MRKP model assumes 

the components of S are ;i.ndependent, it is necessary only to investigate 
-x 

" " " 
the variances associated with Sar' Sad' Sbr' and Sbd for the purposes of 

this example. 

The estimator coefficients of Equation 3.2.2~ are assumed to pos-

sess the following parameters which correspond to Equation 2.4.9 iri the 

general estimator model discussion (19), 
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.. 
E[~il = ki (3. 2. 26a) 

~ . """ 

c;ov[Ki, Kj] = (3.2.26b) 

Following the general procedU're employed in Section 2.4, one can 
.. 

expand ~ about .1 = (k1, k2 , k3, k4} in a first order Taylor Series 

Expansion. A second order approximation derivation of the variance 

related to S appears in Appendix C,_wp.ile a criteria for termination of -x 

the series is related irt Appendix A. 

K=k 

Again taking the expected value·of S as 
~ 

.. 
E ~] = .§.(y_, 19 

one can calculate the variance of S 
~ 

,, 
Var[S~] = 

(3.2.27) 

o.2.28a) 

(3.2.28b) 

where Equation 3.2.28b corresponds to Equation 2,4.lld in the general 

estii,na.tor model derivation. 
.. .. 

Asstiming Var~) to be a good estimate-of Var(~) and recalling 

again that the· MRKP model assumes indei>endence of the comp'onents of E.x, 
one can substitute Equation 3.2.28 into Equation 3.2.24 to obtain 
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4 apK 2 
4 4 as. as. 

Var PK ::: I: <as.> I E E ...:3. ...:3. I o~ (3.2.29) A A A 

i=l ]. j=l Jl.=1 aK. aK K,KJI. 
A J JI. . J 
S =S(~,k) x- - K.=k 

In general, the parameters of Equations 3.2.26 are not known and must be 

estimated from the empirical data pertaining to!· Denoting the estimate 

of these parameters by asterisks(*), one can finally write the resulting 

estimate of Var(PK) corresponding to Equation 2.4.13. 

A 

4 4 as. 
E E ~ 

j=l Jl.=l aKj 

S =S 10 , k*) --x \L. -

~~i I ~2 . 

aiJI. K/<JI. 
A 

K=k* ---
(3.2.30) 

Equation 3,2,30 now represents a measure of the uncertainty asso-
A 

ciated with Pl<. in this example~ One observes that Var(PK) is dependent 

upon the estimates of the parameters related to the error coefficients 

and the sensitivity coefficients relating K to ~ and ,5x to PK, A 

quantitative discussion of the results of implementing Equation 3.2.30 

via ProgramVPK(see Appendix E) follows in t;he next subsection. 



Quantitative Results for Example 1, As has been stated previously 

in this section, this example utilizes models associated with the Joint 

Munitions Effectiveness Manual; in particular, the Stick Bomb Delivery 

Model and the Multiple Round Kill Probability Model. Figure 1 illus-

trates the relationship between the two models. 

Yl 
ro ro 

Intended Y2 
do do 

Release t.D1 6R1 
Condition~ "Cl CJl 

-6D1 Q) .µ t.D1 "Cl ~ 
~ •r-1 
Q) 0 

Stick .µ i:i.. 

.=l -~ Bomb < y'l' Delivery 

k* Model 
1 t.R t.RA Estimates k* A 

of Error 2 t.DA t.D 
k* A 

Coefficients 3 E[S IK = k*] 
k* ar - -

4 E [Sad IR = k*] 

--E [Sbr I!. = k~] 

-E[sbdlR = k*1 r Target 1R 
Information D 

Figure 1 

PK Model for Example 1 

A A 

Multiple 
Round 
Kill 

Proba­
bility 
Model 

The sensitivity coefficients relating K to Sx were obtained di-
A 
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rectly .from the equation relating K to Sx by computation.of t11e requi7ed 
A 

partial derivatives. The sensitivity coefficients relating·S to PK were . x 

obtained by varying the values of S , S d' Sb , and Sbd used as inputs . · · ar a r 
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into the MRKP 1;1rogram, obtaining corresponding resultant values of PK' 

and subsequently employing finite difference t;echniques to approximate 

the required partial derivatives. It might be of interest to note that 

for the calculation of each partial derivative associated with a specific 

function, five values of the particular variable involved were chosen, 

including"the intended va.lue of the variable. In turn, a central differ-

ence table was formed for the five resulting functional values centered 

at the function evaluated at the intended value of the variable. The 

partial derivatives were then calculated from the appropriate entries in 

the ceritral difference table. 

The· sensitivity coefficients along with estimates of the parameters 

associated with!. serve a$ inputs ipto a general purpose computer program 

developed especially for the research connected with this thesis. The 

program is tel;'llled Program VPK and is used to evaluate Var(PK) as dis­

cussed in this thesis. A complete documentation of Program VPK appears 

in Appendix E. 

Sensitivity 
Coefficients 
Relating 
i< to sx 
,.. and 
Sx t~ PK 
,.. 
K Parameter 
Estimates 
~2 
K.Kj 

K4lijuv 
K3*iju 

.. 
·' 

Figure 2 illustrates the use of VPK for this example. 

lst Order Estimate E(PK] = E1 [PK] 

2nd Order Estimate E[PK] = E2 [PK] 

Estimate% error associated with E1[PKJ 

VPK 1st Order Estimate Var[PK] = Var 1 (PK] 

Program 2nd Order Estimate Var[PK] = Var2[PK] 

Estimate% error associated with Var 1[PK] 

}
% Var[PK] due to each K parameter 

Estimate '----~-~ 
Vigure .2. Var(PK) Model for Example 1 
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In Figure 2 *2 = estimate of E [ (K. k.)(K, k.)] .crK K 
i j 1 1 J J 

" 
K3* .. = estimate of E[ (K. k.)(K, k. )(K - k ) ] 

1JU 1 1 J .J u. u 

K4* .. = estimate of E[ (K. - k.)(K. k,)(K k )(K - k )] 
1JUV 1 1 J J. u u v v 

The quantitative results pertaining to Example 1 are presented in 

Tables I through VI, For the most part, the uncertainty parameters are 

related in terms of standard deviation SD rather than variances so that 

the numbers are more readily interpreted. It should be pointed out that 

due to the nature of this example, the specific names of the weapons and 

targets ,assumed are not given so that this thesis can remain unclassfied. 

Furthermore, the values of several of the· parameters used are not revealed 

since they may also be of a classified nature. The omission of these few 

specifics shoul<l not devalue the worth of this example since it is not 

the numerical results of this thesis that should be emphasized, but rather 

the application of a straight-forward technique for estimating the uncer-

tainty_associated with complex probabilistic models. 

Table I presents the assumed estimated inputs to the Stick Bomb 

Delivery and MR.KP Models which include the intended release conditions y_, 

the dimensions of the vulnerable target area, and the estimated target 

height. Also included are estimates of the parameters of the error 

* coefficients; i.e. , k* and cr,.. ,.. • The values of 
KiKj 

assumed for this example and bear no relation to 

~2 have been strictly 
K.K. 

1 J 
actual data measurement. 

* However, for purposes of comparison, cr,..,.. has been·chosen so that the 

* ratio cr,..,.. /k* is 
KiKi i 

this example, the 

Ki Ki 
approximately the same for each i. Furthermore, for 

Ki have been assumed independent, an assumption that 

is removed for Example 2. For an actual physical case, the parameter 
*2 
crKiKj could be obtained from available empirical data. 
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TABLE I 

Model Inputs for Example 1 

Inputs 

Release Altitude of Weapon 

Velocity of A/Cat Release 

Dive Angle of A/Cat Release 

Ejection Angle of Weapon 

Ejection Velocity of·Weapon 

Target lleight 

Vulnerable Target Length 

Vulnerable Target Width 

E(Aiming Error Coefficient AAA] 

E[Aiming Error Coefficient BBB] 

E[Aiming Error Coefficient DDD] 

E [Ballistic Error Coefficient DIS] 

Cov(K1, K1) 

Cov(Ki, Kj) i I j 

E(S ) ar 

E(Sad) 

E(Sbr) 

E(Sbd) 

*CL~ Classified Data 

Symbol 

Yl 

Y2 

Y3 

Y4 

YS 

h 

DEP 

SIGY 

SIGX 

Model Estimated Value 

Stick 3000 feet 

Stick 450 knots 

Stick 30 degrees 

Stick 90 degrees 

Stick CL* 

Stick/MRKP 6.7 feet 

MRKP 155.6 feet 

MRKP 143.9 feet 

Stick CL* 

Stick CL* 

Stick CL* 

Stick· CL* 

VPK 1.0 feet 2 

VPK 4.0 feet2 

VPK · 4.0 feet 2 

VPK 0.25 feet 2 

VPK 0.0 feet 2 

MRKP 272. 7 feet 

MRKP 155.2 feet 

MRKP 37.2 feet 

MRKP 25 .o feet 
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Tables II and III relate the sensitivity.coefficients relating K to 

~and~ to PK respectively. In turn, Table !V lists some of the out­

puts of J?rogram VPK for Example 1. Of special interest irt Table IV is 

the column labeled IIEstimate of Percent Error in First Order Approxima­

tion." One sees that under the assumption of Example 1, the first order 

approximation employed is assumed sufficiently accurate under the criter-

ion expressed in Appendix A. 



Variable K 

PSK (I, 1) 

PSK (I, 2) 

PSK (I, 3) 

PSK (I, 4) 

CPSK (I, 1, 1) 

CPSK (I, 1, 2) 

CPSK (I, 1, 3) 

CPSK (l:, 1, 4) 

CPSK (I, 2, 2) 

CPSK (I, 2, 3) 

CPSK (I, 2, 4) 

CPSK (I, 3, 3) 

CPSK (I, 3, 4) 

CPSK (I, 4, 4) 

PSK (I, J) 

CPSK (I, J, 1) 
a2s 

I 

TABLE II 

Sensitivity Coefficients 
Relating R to ix 

Sensitivity Coefficient for 

r = 1 I = 2 I = 3 

2.51 4.42 o.o 

11.91 0.00 o.o 

o.oo 6.51 0.0 

o.oo o.oo 7.5 

0.29 0.43 0.0 

-0.11 0.00 o.o 

0.00 -1.26 o.o 

0.00 o.oo 0.0 

0.04 0.00 o.o 

0.00 0.00 0.0 

o.oo o.oo o.o 

o.oo 0.00 o.o 

0.00 o.oo o.o 

o.oo 0.00 o.o 
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SI 

I = 4 

o.o 

o.o 

0.0 

5.0 

0.0 

0.0 

o.o 

0.0 

0.0 

o.o 

o.o 

0.0 

0.0 

0.0 



TABLE III 

Sensitivity Coefficients for Example 1 
Relating~ to !;z 

Variable s Sensitivity Coefficients 

PFS (1) -0.00025293 

PFS (2) -0.00043256 

PFS (3) -0.00007654 

PFS (4) -0.00006970 

CPFS (1, 1) 0.00000167 

CPFS (1, 2) 0.00000151 

CPFS (1, 3) 0.00000081 

CPFS (1, 4) 0.00000024 

CPFS (2, 2) 0.00000479 

CPFS (2, 3) 0.00000045 

CPFS (2, 4) 0.00000128 

CPFS (3' 3) -0.00000182 

CPFS (3, 4) 0.00000007 

CPFS (4, 4) -0.00000261 

PFS (I) 
3PK 

=-as1 

a2p 
CPFS (I, J) K 

as1asJ 
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for PK 
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TABLE IV 

Uncertainty in PK for Example 1 

Estimate of Percent 
First Order Second Order Error in First Order 

Item Approximation Approximation Approximation 

Var(Sar) 574.054 574.111 0.01 

SD(S ) ar 23.9.59 23.960 <0,001 

.Var(Sad) 189.215 189.358 <0,001 

SD(Sad) 13.756 13.760 <0.001 

Var(Sbr) 13.850 13.850 0.00 

SD(Sbr) 3. 721 3. 721 o.oo 

Var(Sbd) 6.248 6.248 0.00 

SD(Sbd) 2.499 2.499 0.00 

E(PK) 0.07382 0.07475 1.26 

Var(PK) 0.00007224 0.00007311 1.2 

SD(PK) 0.008499 0.008550 0.6 
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Now as has been alluded to previously, one of the main purposes of 

this thesis is to relate the uncertainty associated with PK to the uncer­

tainties associated with basic random variable inputs to the model; that 
,. 

is, Var(PK) must be related directly to the parameter estimates associated 

with K. Table V lists the percent of the first order approximation of 

Var(PK) which can be attributed directly to the estimates of the para­

meters associated.with!_. One observes from Table V that Var(PK) is 

more sensitive for this example to the uncertainties associated with K2 

and K3 which indicates that more care should be employed in estimating 

the parameters associated with these two random variables. 

As an added observation, consider the ratio of the SD(PK) to E(PK) 

which is now termed.the uncertainty ratio SDR; that is 

SDR = 

Now for Example 1 

SDR = 0.008550 = 1142 
0.07475 • 

Table VI shows the behavior .of SDR as E(PK) is varied for the same para-

meter estimates for!_. One observes that for a change in E(PK) of 66.8 

percent, SDR changes less than 8 percent. Thus, one might choose SDR to 

be yet another, and more general, measure of the uncertainty associated 



TABLE V 

Variance of PK Components for 
Example 1 

Variance Components Var(PK) 

Percent Var(PK) due to *2 
OA A 

K1K1 

Percent Vai(PK) due to *2 
OA 

KzK2 

Percent Var(PK) due to *2 
(J.A A 

K3K3 

Percent Var(PK) due to *2 
OA A 

K4K4 

TABLE VI 

Uncertainty Ratio 

E(PK) SD(PK) 

O.l399 0.01540 

0.1162 0.01302 

0.0985 0.01120 

0.0847 0.00972 

0,0738 0,00855 

0.0651 0.00759 

0.0579 0.00678 

0.0519 0.00611 

0.0469 0.00554 
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= 0.00007224 

5.57 

50.39 

43.89 

0.15 

SDR 

.1100 

.1133 

.1137 

.1149 

.1159 

.1165 

.1171 

.1179 

.1181 
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In summary, Example .1 has presented a simple probabilistic model 

for PK as a function of four basic independent random variables: K1, K2, 

K3, and K4. Both a first and a second order approximation of the uncer-

tainty related to PK; i.e., Var(PK), has been presented in terms of the 

" * assumed parameters associated with !_; o3 ,.. . Furthermore, estimates of 
Ki Ki 

the errors. involved in approximating E(PK) a.nd Var(PK) by first order 

approximations have been shown to be less than 5 percent in both cases. 

In addition, it has been observed that, under the assumptions of this 

example, PK is more sensitive to uncertainties in K2 and K3 than in Kr 

and K4 which suggest that more care should be employed in evaluating the 

parameter estimates associated with K2 and K3. Finally, the uncertainty 

ratio SDR has been introduced as a further, and more general, measure of 

the uncertainty of PK. 
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Multiple Weapon Delivery. Before proceeding with the second and 

more co~plex example, consider briefly the multiple weapon delivery case 

in light of Example 1. As stated previously, the computation of a meas-

ure of the uncertainty of PK for the delivery of a stick of A weapons is 

a simple extension of the techniques employed for the single weapon 

delivery case. From the discussion concerning the Stick Bomb Delivery 

Model, the mean impact point for the ith weapon, say m., is given by 
1 

(ro + 6ri, do+ 6di) where (r0 , d0 ) represents the intended pattern aim-

point and 6ri and 6di denote range and deflection separation respectively 

between the pattern reference point and the position of the ith weapon. 

One could thus write the following 

(3.2.35) 

Again as in the single bomb case, ro and do can be calculated from the 

intended release conditions. Furthermore, 6ri and 6di can also he cal­

culated from these intended release conditions. This is accomplished by 

means of the Stick Bomb Delivery Model. 

Now the variance associated with aiming in the ith impact point 

should be the same as that related to the jth impact point since the aim-

ing error is a~sumed to be applied to the pattern as a unit, On the 

hand, however, the ballistic error for the ith weapon would not necessar-

ily be the same error as that for the jth weap.on since the ballistic error 

is assumed to affect each bomb independently. Thus one should write the 

estimater model for the standard deviation associat.ed with the ith impact 

point 'as 

(3.2 . .36) 
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where Sar and Sad are calculated using the release conditions for the 

middle (or theoretical middle) weapon in the pattern. Although the MRKP 

Model do·es not consider multiple values for ballistic errors, consider 

for now the general case where Sbri and Sbdi are calculated' for the 

release conditions associated with the ith impact point. The specific 

application of the MRKP Model is discussed at tqe end of this section. 

The general functional relationship representing the probability of 

kill model for the multiple weapon delivery case can then be written as 

. . . ' (3.2.37) 

which corresponds to Equation 3.2.16 for the single wea.pon delivery case 

and, in general, to Equation 3.2.3. Following the techniques of Section 

2,4, and assuming again that aiming and 'ballistic error are independent, 

one can write a first order approximation of the measur·e of uncertainty' 

corresponding to that for PE in Equation 2.4.13. 

aPKM A aP 
Var (PKM) = (-"-) 2 Var(S ) + ( A KM) 2 Var(Sad) 

asar 
ar 

a sad 

t t .apKM aPKM 
+ Cov(Sbri, Sb .) 

i=l j=l asbri asbrj 
rJ 

(3.2.38) 

where the sensitivity coefficients associated with Sbri and Sbdi are 

calculated for Sbri and Sbdi evaluated for the intended release condi-

tions related to the ith weapon, In turn, the sensitivity coefficients 
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A A A 

associated with Sar and Sad are calculated for Sar and Sad evaluated at 

the intended release conditions related to the middle weapon of the 

pattern. The covariance terms of Equation 3.2.38 indicate some measure 

of dependence among the ballistic errors. However, if one examines the 

model more closely, one observes that for a given pattern aimpoint, the 

ballistic errors are conditionally independent given the aiming error • 

. · In turn, the uncertainty associated with the pattern aimpoint is included 

in the aiming error terms so that the covariance terms of Equa_tion 3. 2. 38 

can be omitted. One can then write the following form for the measure 

of uncertainty involved in PKM: 

clP 
= ( AKM) 2 

as ar 

Var(S ) + ar 

:>i. clP 
~ ( AKM ) 2 V (S ) 1., · ar b . ri + 

i=l asbri 

>.. +. E 
j=l 

(3. 2. 39) 

Now as was alluded to previously, the MRKP Model does not consider 

a separate ballistic error for each impact point. Instead, an average 

" Sbr a~d Sbd are calculated using the release conditions for the middle 

weapon in the pattern. In turn Sbr and Sbd are us?d as the ballistic 

errors associated with the ith impact point. In relation to the MRKP 

Model then, Equation J.2.39 should be written as follows 

ap 
= ( AKM) 2 Var(S ) + 

ar 

ap 
( . KM) 2 V (S ) " ar ad 
a sad 
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(3.2.40) 

where the sensitivity coefficients are evaluated for the intended 

release conditions associated with the 'middle weapon of the pattern. It 
A A 

should be observed that if Sbr and Sbd are literally substituted into 
A 

Equation 3.2.39 for each Sbri and Sbdi then, the last two terms of Equa-

tion 3.2.40 should be multiplied by A· However, the sensitivity coeffi-

cients in Equation 3.2.40 which relate Sbr and Sbd to PKM are obtained 
A 

by varying the single value of Sbr and Sbd used as inputs for the model 

which in turn varies the respective standard deviations associated with 

all the impact points. The sensitivity coefficients calculated in this 

manner relate the sensitivities associated with all the impact points 

and thus justify the omission of the A factors. One might observe that 

the error in PKM associated with using average ballistic errors in the 

MRKP should be negligible due to the relative insensitivity of PKM to 

Sbr and Sbd which has been illustrated previously in Example 1. 
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3.3 Example 2: Fragment Sensitive Target. A fragment sensitive 

target is considered in this section as a second example of the uncer-

tainty associated with a particular weapons effectiveness probabilistic 

model. Recall again the general weapons effectiveness model of Equation 

3.1. 3 
00 

(3.3.1) 

For the fragment sensitive target model, the damage function DF is 

considerably more complex than that used in the blast sensitive model and 

corresponds to the damage function discussed in Section 2.5; that is, DF 

is, in general, a function of the impact point and fragmentation charac-

teristics of the particular weapon deployed. For the purpose of this 

example, the following form is assumed for the damage function and cor-

responds to that used by Snow (20) in Rand's Simplified Target Coverage 

Model. 

= D0exp{-D0 [(~ ) 2 + (~ ) 2 ]} 

RI\ Rl-1n 
(3.3.2) 

DF relates a symmetric damage function with center value Do and elliptic 

constant damage level contours. Equation 3. 2. 2 corresponds to an analyti-

cal function which has been fit to an empirical fragmentation damage 

function obtained from fragmentation data. The random variable parameters 

Do,~ and Rl-1n are acquired from the empirical damage function and thus 

relate the fragmentation data to the analytical damage function of 

Equation 3.2.2. The purpose of this example then, is to relate the 

uncertainty associated with the empirical fragmentation data, as well as 

delivery accuracy uncertainty, to the uncertainty in PK. In order to do 



this, each individual model employed must be examined. The empirical 

fragmentation function is obtained by means of a Lethal Area Program 

which also contains a subroutine that in turn calculates~ and~ 

directly from the empirical fragmentation function. For this example 
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Do is assumed to have the value 1.0 and will not be considered a random 

variable. This assumption corresponds to assuming that the probability 

of damage to the target at the impact point is 1.0 which is reasonable 

for the weapon and target assumed for this example. Another program, 

termed Quickie, combines the damage function information obtained in 

the Lethal Area Program, with target and weapon delivery specifications 

to obtain PK' the conditional expected damage to the target. As in the 

blast sen_sitive example, the target is assumed fixed and the weapon 

delivery information is derived from the Stick Bomb Delivery Model. 

In order to better understand the conditional aspects of PK' 

consider the foilowing notation used in this example: 

co 

PK :;: E[DFI ~' ~' Sx] = _;.,2 DF(1., ~' 1%) f!.I; <1.I~) d1. 

(3. 3. 3a) 

where 

- FR1 (1) (3.3.3b) 

(3.3.3c) 

Zi = ith component associated with fragmentation data (3.3.3d) 



and 2x is equivalent to Equation 3.2.25. The Zvalues are explained in 

detail at a later point. From Equation 3.3.3, one can see that PK is a 
A 

conditional expected damage, conditioned directly on~·~ and~ and 

in turn on! and!_; Thus the uncertainty associated with PK must be 

linked directly to the uncertainty related to! and!. by the techniques 

of Chapter II. Be.fore considering any particular model for the computa-

tion of a measure of uncertainty for PK' suppose each individual program 

model is examined along with the assµmptions made for that model; i.e., 

Stick Bomb Weapon Delivery, Lethal Area, and Quickie Programs associated 

with the JMEM effort. 

Stick Bomb Weapon Delivery. As for the example of the previous 

section, the weapon delivery is assumed to be modeled by the Stick Bomb 

Weapon Delivery Program •. Thus one can write immediately the estimator 

models for the mean and standard deviation of X(the actual impact point) 

corresponding to Equations 3.2.14 and 3.2.15 respectively 

m =;: .M.o -x 

s = .§.(Y1, -x 

where 

" s = (Sar' --x 

Y2, . . . ' 

8ad' 8br' 

H (y) x 

y cp' Ki, K2, K3' K4) = .[(y, !.) 

8bd) - (S 1' 82, 83, S4) 

(3.3.4a) 

(3.3.4b) 

(3.3.4c) 
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Again the release of only one weapon is considered to reduce the complex-

ity of the problem. 

Since the model is identical to that used in Example 1, one can 
/I 

also write the expected value of~ and a measure of the uncertainty 
A 

associated with S directly from Equation 3.2.28 --x 



E[S] = s <.x., .!s) (3.3.Sa) x 

A 4 4 as as 
Var(S) = I: I: A --;;"""" cr~ x aK. aKj 

A 

i=1 j=l 1 
KiKj 

(3.3.5b) 

K=k 

where 

estimator of the ith error coefficient 

expected value of the ith error coefficient 

= covariance of estimators of the ith and jth error 

coefficients 

Lethal Area Model. The Lethal Area Model provides detailed 

information about the destructive capability of a weapon on a specified 

target. This information is output in the form of an empirical damage 

function that gives probability of full damage PFD as a function of 

target position relative to the point on the target directly under the 

burst point. An analytic damage function is then fit to this empirical 
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damage function and the pertinent parameters associated with the analyti-

cal damage functions serve as additional outputs of this Lethal Area 

Model. Another measure of the weapons effectiveness is computed as 

lethal area which corresponds to the integration of the probability of 

full damage over the area of effects. In general, lethal area is a dam-

age index which when multiplied by the number of uniformly distributed 

targets per unit area, gives the expected number of targets completely 

damaged. 

The Lethal Area Model recognizes two distinct and independent 

damage mechanisms: fragmentation and blast. The probability of full 



damage at a point Tp measured with reference to the impact point of the 

weapon, is computed from the formula given in reference (21). 

(3.3.6) 

where PKb is the probability of full damage from blast effects alone 
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and PKf is the probability of full damage from fragmentation effects 

alone. It should be noted that the assumed independence between fragmen-

tation and blast effects might prove to be questionable under certain 

situations; however, since the Lethal Area model used assumes this inde-

pendence, the same assumption is made for the example of this section. In 

the model, PKb is assumed to depend only on the distance~ which is the 

distance from the impact (burst) point to the target point T. From the 
p 

impact point to a range ~ 1 , PKb is assumed to be unity. Beyond ~ 1 , 

PKb is assumed to decrease linearly to zero at ~ 2 • The model thus 

requires the entry of particular values of ~ 1 and ~ 2 which are termed 

the blast radii. 

On the other hand, the computation of PKf is considerably more 

complex than that of PKb" In particular, PKf is calculated directly 

from extensive empirical fragmentation data. The lethal capability of a 

given fragment depends on its mass, its impact velocity, and its shape. 

It is not the purpose of this thesis to examine in depth the computation 

of PKf but to point out its functional dependence on empirically derived 

fragmentation characteristics. These characteristics, which are now 

called components of fragment data, are obtained from bomb arena tests 

and include such items as 

(1) fragment shape 

(2) spatial distribution of fragments 
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(3) fragment mass densities 

(4) initial fragment velocities 

(5) fragment drag coefficients 

(6) weight of unexploded bomb case 

A more complete description of the internal structure of the Lethal 

Area model is given in reference (21). 

Since the values used by the Lethal Area model for the components 

of fragment data are obtained via a few experiments, these values are at 

best only estimates of the means of the basic underlying random variables 

involved. Likewise the blast radii as well as other model inputs could 

also be treated as estimates of the expected values of other random 

variables. In general one could write 

where 

Zi = estimator of the expected value of the ith factor 

affecting PFD 

(3.3.7) 

The uncertainty associated with the Z components; i.e., estimates of 

covariances of Z. and Z., can now be related to the uncertainty of PK 
i J . 

in a manner similar to that of the theoretical models of Sections 2.2 and 

2.3. For the purposes of this example, only four Z components were 

chosen to illustrate the theory involved. This was primarily due to 

lack of sufficient data concerning the other components but is also 

convenient, as the complexity of the computations involved is reduced 

accordingly. It should be pointed out that the general program written 

to evaluate Var(P ) ; i.e .• , Program VPK, which is described in Appendix E, 
x . 
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considers the uncertainty associated with NZ of the f components. 

The four Z components considered are all components of fragment data 

and are listed as: 

(1) number of fragments counted N = Z1 

(2) weight of unexploded bomb case CASWGT = Z2 

(3) total fragment weight recovered FW = Z3 

(4) fragment drag coefficients, CD = Z4 

Now Z1 and Z3, number of fragments counted and fragment weight, 

reflect uncertainties due to errors made in methods and equipment used 

in the weapons test arena •. Quantitative measure of these uncertainties 

can be made by relatively simple methods such as equipment calibration; 

that is, estimates of the variances and covariances associated with z1 

and Z3 can be estimated directly from the test arena data. 

On the other hand, z2 , CASWGT represents a random variable whose 

uncertainty cannot be traced to the arena tests. z2 is the weight of the 

unexploded weapon case and the uncertainty associated with z2 is related 

to the fact that weapon cases are mass produc~d; i.e.,production errors 

are inherent. The uncertainty related to z2 is important in the Lethal 

Area Model since the value assumed for Z2 is used to compute the total 

number of fragments considered by the model; that is, Z2 is used to 

extrapolate Z1 for the lethal area model. A measure of the uncertainty 

associated with z2 can be obtained by examining the actual production 

records of several munition plants and estimating a value for Var(Z 2) 

from this data. 

·The fourth component Z4, the fragment drag coefficient is determined 

from measurements made in a wind tunnel. Recalling the discussion 

concerning stochastic drag coefficients tables in Section 2.5, one can 
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express the uncertainty associated with each "average" value of the drag 

coefficient table as a function of the data used to calculate each entry 

into the table; i.e., Cov(C., C.) where C1. and CJ. are the ith and jth 
]. J . 

entry into the table respectively. 

The uncertainties associated with the four Z's considered in this 

example have been expressed and now must in turn be related to the 

uncertainty of PK, Now as one recalls, the Lethal Area model computes an 

empirical damage function where each point in this damage function corres-

ponds to a particular PFD; i.e., a particular value of Tp. It has been 

shown that PFD is a function of the Z components which implies that the 

empirical damage function then in a larger sense is a function of the Z 

components also. Furthermore, the random variable parameters linking the 

empirical damage function to the analytical damage function used in the 

Quickie Target Coverage Model, namely RMR and~' must also in turn be 

functions of the Z components. On~ thus justifies the previously written 

Equations 3.3.3b and 3.3.3c. 

(3.3.8a) 

(3.3.Bb) 

Equations 3.3.8 simply relates that the analytical damage function used 

is indeed a function of the factors affecting the empirical damage 

function as one would expect. 

Consider now the uncertainties associated with~ and~ which 

are related to the uncertainties of the Z's. Denoting RM=(~,~) 

and FR = (FRi, FR2), expand RM about z = E [Z] in a Taylor Series Expansion 

4 
RM = FR~) + I; 

i=l 

a FR 
az. l[Z - z.] ]. i ]. 

Z=z 
(3.3.9) 
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Again a first order expansion is employed at this point to reduce the 

notational complexity; however, a second order derivation for this example 

is analogous to that which appears in Appendix C for Example I •. One is 

also referred to Appendix A for a discussion concerning the Taylor Series 

termination criteria. Taking the expected value of RM as 

E(RM] 111 FR(~ (3.3.10) 

one can calculate the variance of RM directly corresponding for this 

. example to the variance of y or M. calculated in Equation 2.2.29 

4 4 
Var [.fil!] ., E E 

i=l j=l 

aFR aFR I az"" Cov[Zi, Zj] 
azi j 

Z=z 

In particular one can write the following components of Var[~] 

4 4 clFR1 clFR1 
Var[~] .. E E ~ az." I Cov[Zi, zj l 

i=l j=l i J Z=z . 

4 4 clFR2 clFR2 
Var[~] ::: E :_ 1 ~ ~ lcov[Zi, z.] 

i=l J 
j- l J Z=z 

4 4 clFR1 
cov[~, ~] ~ E E az 

i=l j=l i 

clFR2 az;- I Cov[z1 , Zj] 

Z=z 

where it i1;1 understood that Cov[Z., Z.] and z are estimated from 
1 J 

. empirical data. 

(3, 3.11) 

(3.3.12a) 

(3.3.12b) 

(3.3,12c) 

It should be noted at this point that an additional program was 

used in order to obtain the required sensitivity coefficients; i.e., the 

partial derivatives for Equation 3.3.12. The program called FRAME-I was 
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· developed by the Defense Technology Laboratory in Santa Clara, California 

to be used in connection with the Lethal Area program which is used in 

this example. Originally the program was designed to implement an error 

analysis of the random variable parameter Lethal Area, LA, and provide a 

level of confidence associated with LA. Although the program was not 

initially intended to be used to calculate sensitivity coefficients, it 

did provide a method of varying the particular Z values used by the 

Lethal Area Program and thus was easily modified to provide data suitable 

for calculating the sensitivity coefficients by standard finite differ-

ence techniques. 

Quickie Target Coverage Model. Assuming the delivery of one weapon 

aimed at the center of the target and that the input probability densi-

ties of Equations 3,2.20 again apply, one can write a functional repre-

sentation of the PKmodel used in this example; namely, the Quickie 

Target Coverage Model: 

which will be referred to as simply PFC(RM, ~). The multiple bomb drop 

case can again be attained by a simple but rather lengthy extension 

similar to that associated with Example 1. A function representation of 

the multiple bomb PK' say PKM' is written which corresponds to Equation 

3.2.37. 

A 

PKM = PFCM(.!!!, ~' ~' ~) (3. 3 .14) 

where PFCM represents the function involved. Due to the notational 
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complexity associated with the multiplE,? bomb case, only the delivery of 

a single weapon is considered in this example. 

Now suppose one makes the following change of notation 

~ = W1 and E[RMR] = n (3.3.15a) 

~ = W2 and . E[~] = Y2 (3.3.15b) 

s = W3 and E[S ] = Y3 (3.3.15c) ar ar 

" " 
sad = w,.. and E[Sad] = Yr+ (3.3.15d) 

" " 
sbr = Ws and E [Sbr] = Ys (3.3.15e) 

sbd = wG and E[Sbd] = YG (3.3.15f) 

so that 

" w = (W1, W2, . . • , W6) = (~, ~' ~) 

where YI and Y2 are obtained from Equation 3.3.10 and y3, y4 , Ys, and 

YG are obtained from Equation 3.3.Sa. Expanding PK in Equation 3.3.13 

about E[.!{] = (y 1 , y 2 , ••• , YG) = (x) in a first order Taylor Series 

Expansion yields 

6 i)pFC 
PK = PFC(r.) + E I [W. - y.] 

i=l aw. . 1 1 
1 

(3.3.17) 

R_=y_ 

See Appendix A for Taylor Series approximation criteria. Take the 

expected value of PK from Equation 3.3.17 as 

(3.3.18) 

then orie can directly calculate a measure of the uncertainty associated 

with PK corresponding to Equation 3.2.24. 



where from Equation 3.3.12c for i = 1, 2; j 

4 4 
Cov (W. , W. ) ~ 

]. J 
E E 

u=1 v=l 

a FR. 
]. 

az 
u 

w .) 
J 

1, 2 one obtains 

(3.3.19) 

(3.3.20) 

If i = 3, 4, 5, 6 and j = 3, 4, 5, 6, one has from Equation ).3.5b 

4 4 as as. 
Cov(W1 , Wj) E E 

-1 -=1 I a~ (3. 3. 21) "' --
A A 

A 

u=l v=l aK aK K K 
u v A 

u v 
K=k 

Recalling that W1 and W2 denote the analytic damage function radii and 

W3, W4, W5, and W6 correspond to aiming and ballistic errors, it seems 

reasonable to assume that W1 and W2 are independent of W3, W4, W5, and 

w6 so that 

Cov (W . , W . ) = 0 
]. J 

for i 1, 2; j = 3, 4, 5, 6 (3.3.22) 

Equation (3.2.22) merely relates the assumption that the fragmentation 
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spray from a weapon is not dependent upon the impact point of the weapon. 

This is not to imply that fragmentation is not a function of impact angle 

and impact velocity as surely it is. Impact angle and impact velocity 

are two of th~ f components affecting RM which were not considered in 

this sensitivity study. 

Now in general the covariance and expected value terms appearing in 

Equations 3.3.20 and 3.3.21 are unknown as has been alluded to before, 

and thus must be estimated from appropriate empirical data. Denoting 



these estimated values with asterisks(*), Equations 3.3.19, 3.3.20, 

and 3.3.21 can be modified to obtain an estimate of the Var(PK) corres­

ponding to Equation 2.4.13. 

2 2 apFC apFC . 4 4 aFRi aFRj 
Var(PK) ::: I: I: aw IL I: azazl Cov*[Zi, zj l 

i=l' j=l awi j u=I v=l u v 

R=.r. Z=z* --
6 6 apFC apFC 4 4 a§_i a§_j 

*2 + I: I: 
,awi "'aw"' I L I: ai ai. I 0" (3.3.23) 

i= 3 j= 3 j u=1 v=l u v KiKj 

.R=.r. !=l* 

Equation 3.3.23 now represents a measure of the uncertainty assoc-
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iated with PK for this 'example. One can observe that Var(PK) is depend­

ent upon estimates of parameters related to the fragmentation data 

components and to the error coefficients. Furthermore, Var(PK) is a 
A A A 

function of the sensitivity coefficients relating K to~'~ to RM,~ 

to PK, and RM to PK' A quantitative discussion of the results pertaining 

to this example follow. 
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Quantitative Results for Example 2. The following JMEM programs are 

employed in Example 2: 

(1) Stick Bomb Delivery Model 

(2) Lethal Area Model 

(3) Frame Model - (sets up inputs for Lethal Area Program) 

(4) Quickie Target Coverage Model 

Figure 3 illustrates the relationship among the$e models. 

Intended Yl 
Release y2 
Conditions 

Y4 

Estimates {kf 
of Error k~ _ . 
Coefficients k~ 

k* 
cp 

Estimated 
Fragment 
Component 
Data 

zf 
z* 

2 

z* 
WW 

ro-
do-
l'.R1-

Stick l'.D1-. 
Bomb . 

. 
Delivery 

Model 

l'.R-
t.D" r-

Target Information { 

Frame 

f=~*J-.. E[RM1I 

Lethal .... E[RM2 lr=z*r 

Area 

Figure 3 

PK Model for Example 2 

Quickie 

Target 

Coverage 

Model 

-r-E[P lk* z*] 
K ' -
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Now the sensitivity coefficients relating K to 1x are the same as 

those used in Example 1 which are calculated directly from the functional 

relationships between ix and!_. The sensitivity coefficients relating f 

to RM were calculated using finite difference techniques as has been 

related previously in this section. In particular, it should be pointed 

out again that the Program FRAME aided greatly in the calculation of the 

partial derivatives required as it could be set to automatically vary the 

respective Z values in a sequential manner. Finally the sensitivity 
A 

coefficients relating~ and RM to PK were obtained by computing PK for 
A 

various values of §x and RM and calculating the required partial deriva-

tive again by means of finite difference techniques. 

The sensitivity coefficients as well as estimates .-of the parameters 

associated with!. and f serve as inputs into the VPK Program which, in 

turn, calculates first and second order ~pproximations for Var(PK) and 

gives an estimate of the percent error associated with the first order 

approximation of Var(PK), 

The quantitative results associated with Example 2 are summarized in 

Tables VII through XI in much the same manner as Tables I through VI 

related the quantitative results of Example 1. Table VII lists the 

estimated values which are used as inputs into the various models em-

ployed. Tables VIII and IX list the sensitivity coefficients relating 
A 

f to RM and .§.x and RM to PK. The sensitivity coefficients pertaining to 
A 

!. and 1x were given previously in Table II. 

Table X relates the uncertainty parameters obtained from the VPK 

Program. One should note that the components of S are not assumed inde­-x 

pendent for this example. Table XI then lists the percent of the first 



TABLE VII 

. Model Inputs for Example 2 

Inputs 

Release Altitude of Weapon 

Velocity of A/Cat Release 

Dive Angle of A/Cat Release 

Ejection Angle of Weapon 

Ejection Velocity of Weapon 

Target Height 

Vulnerable Target Length 

Vulnerable Target Width 

E[Aiming Error Coefficient AAA] 

E[Aiming Error Coefficient BBB] 

E[Aiming Error Coefficient DDD] 

Symbo Model Estimated Value 

Yl Stitk 3,000 feet 

Y2 Stick 450 knots 

Y3 Stick 30 degrees 

Y4 Stick 90 degrees 

Ys Stick CL* 

h Stick/Quickie 0.125 feet 

LR Quickie 100 feet 

LD Quickie 50 feet 

k1* Stick CL* 

k3* Stick CL* 

E[Ballistic Error Coefficient DIS] k4* Stick CL* 

Number of Fragments Recovered 
FromArena Test 

Weight of Bomb Case 

Total Fragment Weight_Recovered 

Average Drag.Coefficient 

Cov(K1, Kz) 

*CL= Classified Data 

Lethal Area 388 

Lethal Area 124,953.5 grams 

Lethal Area 1,230.97 grams 

Lethal Area 0.55 

VPK 1.0 feet 2 

VPK 4.0 feet2 

VPK 4. 0 feet2 

VPK 0,25 feet2 

VPK 1.0 feet 2 
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E [ (K 1 - k 1 ) 4 J 

E [ (K2 - k2) t+] 

E[(K3 - k3)'+.] 

E:[ (K4 - k~) '+] 

Cov(Z1, Zl) 

Cov(Z2, Z2) 

Cov(Z3, Z3) 

Cov(Zt+, Zt+) 

Cov(Z1, Z3) 

Cov(Z2, Z3) 

E[ (Z1 - z1) '+] 

E[(Z2 - z2)'+] 

E[(Z3 - z3)'+] 

E[(Zt+ - Zt+)'+] 

Inputs 

All other estimates of 
·parameters of Kand Z 
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TABLE VII (Continued) 

. Symbol 

*2 cr,. ,. 
K1K3 

* (1~ ,. . 

K2K3 
K41111 

I<:42222 

Z4t+t+t+t+ 

Model Estimated Value 

VPK 1.0 feet 2 

VPK 2.0 feet2 

VPK 3.0 feet'+ 

VPK 48 feet'+ 

VPK 48 feet'+ 

VPK · .187 feet'+ 

VPK 400 ' 

VPK 5,020;000 grams2 

VPK 576 grams2 

VPK 0.0001 

VPK 200 grams 

VPK 40,000 grams2 

VPK 0.10 grams 

VPK 480,000 

VPK 0.785 x 101'+ 
grams'+ 

VPK 31,200 grams'+ 

VPK 0.300 x 10-a 

VPK 0,0 



PRZ 

PRZ 

PRZ 

PRZ 

CPRZ 

CPRZ 

CPRZ 

CPRZ 

CPRZ 

CPRZ 

CPRZ 

CPRZ 

CPRZ 

CPRZ 

Item 

(I' 1) 

(I, 2) 

(I, 3) 

(I, 4) 

(I, 1, 1) 

(I, 1, 2) 

(I, 1, 3) 

(I,- 1, 4) 

(I, 2, 2) 

(I, 2, 3) 

(I, 2, 4) 

(I, 3, 3) 

(I, 3, 4) 

(I, 4, 4) 

PRZ (I, J) 

TABLE VIII 

Sensitivity Coefficients for Example 2 
Relating~ to RM 

Sensitivity Coefficients for Rl\ 

RM1 RM2 

0.112 x 10-1 0.372 x 

0.405 x 10 
-4 

0.173 x 

-0.487 x 10 
-2 

-0.100 x 

-0. 775 -0.243 x 

-0.188 x 10 
-3 

0.521 x 

0.365 x 10-7 0.116 x 

-4 
0.305 x 10 -0. 721 x 

-1 
-0.296 x 10 -0.904 x 

_7 
-0.147 x 10 0.379 x 

0.233 x 10-G -0.690 x 

-0.378 x 10-s -0. 753 x 

-0.177 x 10-3 0.602 x 

-0.219 x 10-2 -0.333 x 

-0.695 x 103 0.114 x 

CPRZ (I, J, L) 

90 

10-1 

10 
-3 . 

10 
-1 

102 

-10 

10-6 

_4 
10 

-1 
10 

_7 
10 

10-6 

10-4 

10-3 

10-2 
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Variable S 

PRS (1) 

PFS (2) 

PFS (3) 

PFS (4) 

CPFS (1, 1) 

CPFS (1, 2) 

CPFS (1, 3) 

CPFS (1, 4) 

CPFS (2, 2) 

CPFS (2, 3) 

CPFS (2, 4) 

CPFS (3, 3) 

CPFS (3, 4) 

CPFS (4, 4) 

TABLE IX 

Sensitivity Coef~icients for Example 2 
Relating ix and RM to PK 

Sensitivity Sensitivity 
Coefficient of PK Variable RM Coefficient of PK 

-0.426 x 10-4 

-0. 710 x 10- 4 

-0.575 x 10 
-5 

-0.118 x 10 
-4 

0.293 x 10 
-6 

0,251 x 10 
-6 

-0.460 x 10- 6 

0.400 x 10 
-6 

- 7 
0.801 x 10 

0.333 x 10 
- 6 

-6 
0.222 x 10 

- 6 -0.291 x 10 

0.00 

-0.441 x 10 
- 6 

CPFRS (I, J) 

PFR (1) 0.574 x 
_3 

10 

PFR (2) 0.207 x 
_3 

10 

CPFR (1, 1) 
_6 

-0.749 x 10 

CPFR (1, 2) 0.988 x 10 
_s 

CPFR {2, 21_ 
-6 

-=.Q.~9 8 x_!Q__ 

Sensitivity 
Variable RM & S Coefficients of 

CPFRS 

CPFRS 

CPFRS 

CPFRS 

CPFRS 

CPFRS 

CPFRS 

CPFRS 

(1, 1) -0.202 x 

(1, 2) -0.340 x 

(L, 3) -0.250 x 

(1, 4) -0.584 x 

(2, 1) -0. 703 x 

(2' 2) -0.108 x 

(2, 3) -0.938 x 

(2, 4) -0.988 x 

clPK 
PFR (I) - -­- clRM1 

10 

10 

10 

10 

10 

10 

10 

10 

CPFR (I, J) 
a2p 

K 

a2p 
K 

_s 

- 5 

- 6 

- 6 

- 6 

- 5 

- 7 

- 6 

PK 
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TABLE X 

Uncertainty in PK for Example 2 

Estimate of 
Percent Error 

First Order Second Order in First Order 
Item Approximation Approximation Approximation 

" " Cov(S i, s 1) 642.66 642. 72 <,01 
" " 

Cov(S1, S2) 237.86 238.05 <,01 
A 

Cov(S 1, s 3) 0.00 o.oo 0.00 
" A 

Cov(S 1, S4) 0.00 o.oo o.oo 
A " Cov(S 2, S2) 249.04 248.47 0.23 
A " Cov(S 2, s 3) o.oo o.oo o.oo 
" " Cov(S 2, S4) 0.00 0.00 o.oo 

Cov(S 3, s 3) 14.04 14.04 o.oo 

Cov(S 3, S4) 9.41 9.41 o.oo 

Cov(S 4, S4) 6.3l. 6.31 0.00 

Cov(RMR' fil\) 0.35 0.23 20.00 

Cov(RM0 , RMD) 0.14 0.17 21.20 

Cov(RMR, ~) 0.58 0.50 13.80 

E(PK) 0.012588 0.012084 4.16 

Var(PK) 0.3879 x 10- 5 o. 3854 x 10 -5 0.64 

SD(PK) 0.001969 0.001963 0.305 

SDR 0.1565 0.1625 3.85 



TABLE XI .. · 

·. Variance of PK for ~xample 2 

Variance Component Source 

,. ,. 
Cov(K1, K1) 

,. ,. 
Cov(K1 , K2) 

A " 
Cov(K1 , K3) 

" " 
Cov(K2 , K2) 

A A 

Cov(l<2 , K3) 

" A 

Cov(K3, K3) 
A " Cov(K4 ; K4) 

El(l, 1, 1, 1) 

El(2, 2 
. ' 2, 2) 

E1(3, 3, 3, 3) 

El(4, 4, 4, 4) 

Cov(Z 1 , Z1) 

Cov(Z1, Z3) 

Cov(Z2 , Z2) 

Cov(Z 2 , · z3) 

Cov(Z 3, Z3) 

Cov(Z 3, Z4) 

Cov(Z~i, Z4) 

E2(1, 1, 1, 1) 

E2(2, 2, 2, 2) 

E2(3, 3, 3, 3) 

E2(4, 4, 4, 4) 

Percent Contribution 

4.44 

10.86 

9.76 

26.58 

23.89 

21.48 

· 0.07 

0.04 

0.55 

0.37 

<0.01 

2.03 

-.70 

1.42 

-,61 

.96 

.27 

.07 

<.01 

<,01 

<.01 

<.01 
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order approximation of Var(PK) that can be attributed directly to the 

particular parameter estimates associated with.! and z. 

Consider the results of Example 2 as presented in Tables VII through 

XI. One observes the increase in complexity of Example 2 in comparison 

with Example 1 due to the consideration of addition variables. Further-

more, again as in Example 1, the values given for the parameters are 

strictly assumed and bear no rela.tion to actual estimates derived from 

actualempirical data. 

One should note that most of the sensitivity coefficients presented 

in Tables VIII through IX .follow a simple pattern that each sensitivity 

coefficient decreases in magnitude as the order increases. This is not 

the case .for the sensitivity coefficient related to Z4; i.e., CD, the 

drag coefficient, which due to its small nominal value, has a large sen-

sitivity coefficient. On .the other hand, fortunately, the large sensitiv-

· ity is balanced. by a very small variance of z4 , However, the highe.r 

order sensitivity coefficient of Z4.affects the Cov(RM1 , RMj) as seen irt 

Table X, so that the second order approximation of Cov(RMi, RMj) is used 

in both the first and second order approximations of Var(PK) (see 

Equation 3,2,24). 

Table X relates the first order approximation of E(PK) and Var(PK) 

as meeting the criterion developed in Appendix A. One notes that the 
·, 

estimated error is ·even smaller for this example than that of Examp_le 1. 

Of particular interest is the uncertainty ratio listed as 0.1565 which 

indicates that to some extent this model has associated·with it a higher 

degree of· uncertainty than that of the model of Example 1. .. Th,is, of 

course, is a rather broad general statement based partially on intuition. 

A much better comparison could be made if both models were considered for 
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the same target-weapon combination. One would, however, expect a higher 

degree of uncertainty associated with Example 2 than with Example 1 due 

to the increased number of sources to provide uncertainty for Example 2. 

As a final observation, consider the percent contribution to Var(PK) 

as presented in Table XI. Again as in Example 1, the primary source of 

uncertainty lies in parameters associated with K2 and K3. Although the 

percent contribution of the~ parameter estimates are small in comparison 

with those of!, the relative contribution within the Z component groups 

is informative.. In particular, Var(PK) is most sensitive to Zi, the ntnnber. 

of fragments counted, for the parameter estimates used in this example. 

This would in turn indicate a need to provide for more care in the recov­

ery of fragments from the arena tests • 

. The minus signs of two of the contributions indicate that the assoc;:­

iated sensitivity coefficients were such that the sums of the terms assoc­

iated with these parameters estimates were negative. This indicates that 

if the two random variables are positively correlated, the net contribu­

tion due to the associated variances is not as great as would be expected 

ff the covariance terms were neglected. 

In summary, the uncertainty associated with a complex probabilistic 

model has been investigated and first and second order approximations of 

a measure of that uncertainty have been evaluated. Furthermore, the 

uncertainty measure has been linked directly to parameter estimates of 

the basic model random variable inputs and in tu·rn partitioned according 

to uncertainty contributions, thus indicating the major sources of 

uncertainty·associated with Var(PK), 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

4.1 Summary. The objective. of this thesis has been to investigate 

the uncertainty associated with probabilistic models and to develop a 

procedure for estimating a measure of that uncertainty. Denoting the 

response of a general probabilistic model as PK' the variance of P~ (that 

is, Var(PK)] was chosen as this measure of uncertainty. In particular, 

PK has been assumed to be a function of several basic random variables 

corresponding specifically in this thesis to model inputs. Var(PK) is 

in turn estimated in terms of the estimated parameters obtained from 

·empirical data associated with these basic random variables. 

Basically this thesis has been developed as an extension of 

sensitivity analysis of deterministic models to encompass probabilistic 

models. Chapter I thus reviews deterministic model sensitivity theory 

and lays the foundation from which the rest of.the thesis is developed. 

Chapter II presents various system probabilistic models and 

investigates errors associated with assumed density functions of param­

eters as well as errors related to conditional loss functions. Initially 

a theoretical model is introduced and an exact rep.resentation of Var(PK) 

is developed. ,Several difficulties.associated with the theoretical 

model are discussed and subsequently an approximation of Var(PK) is 

developed through the use of Taylor's Series Appr.oximations. The 

estimator model is then introduced as an alternative to the theoretical 

model for use in more specialized situations •. An estimate of Var(PK) for 
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the estimator model is developed with aid of Taylor's Series 

Approximation. 
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Chapter III presents two examples in which the techniques developed 

in Chapter II are used. Both examples are taken from the field of 

weapons effectiveness where PK represents the conditional expected 

damage to a target attacked by a group of specified weapons. Example 1 

is concerned with an area target vulnerable to blast effects only, and 

is modeled by the Stick Bomb Delivery Model and the Multiple Round Kill 

Probability Model. Example 2 considers a much more complex problem: 

an area target vulnerable to both blast and fragmentation effects. Model 

used from the JMEM include the Stick Bomb Delivery Model, the Quickie 

Target Coverage Model, the Frame Model, and the Lethal Area Model. In 

both examples, first and second ord~r approximations of E(PK) and Var(PK) 

are calculated along with estimates of the percent error associated with 

the first order approximation. Furthermore, the estimates of Var(PK) 

are partitioned into percent contributions due to parameter estimates of 

the basic random variables associated with the models. 

The Taylor Series Approximation and the assumptions associated with 

the series termination criterion are discussed in Appendix A. Also 

included in Appendix A is the development of an estimate of the error 

associated with using the Nth order approximation of PK to estimate E(PK) 

and Var(PK). In addition, a brief documentation appears in Appendix E 

of the VPK Program which was developed to calculate estimates of E(PK) 

and Var(PK), 

4.2 Observations and Conclusions. An approxi~ation has been 

aeveloped that estimates the uncertainty associated with probabilistic 

models; i.e., Var (PK), As was alluded to previously, it is not proposed 



that this estimate must be the best estimate, however one wishes to 

define "best," but it does present a practical approach to estimating 

the probabilistic model uncertainty similar to that used with determin­

istic models. 
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Examples land 2 are assumed to present models that are fairly 

representative of general probabilistic models. One observes that lower 

order approximations of Var(PK) are quite acceptable in the examples 

if one accepts the estimated error criterion presented in Appendix A. 

These assumptions are based primarily upon the fact that the errors 

associated with the Nth order approximation of E(PK) and Var(PK) are 

greater than the errors associated with any higher order approximations. 

In general, this is intuitively the case for most probabilistic models 

encountered; however, models may exist in which the criterion of Appendix 

A is not valid. For this reason, higher order approximations of PK than 

that chosen to estimate Var(PK) should be investigated before the error 

criterion of Appendix A is applied. 

One further observes that the uncertainty ratio introduced in 

Example 1 can provide even a more general measure of the uncertainty 

associated with a given probabilistic model than Var(PK). In particular, 

it has been shown that SDR provides a relatively constant uncertainty 

measure over a wide spectrum of intended model inputs values for a given 

set of parameter estimates associated with the basic random variables of 

the model. 

As was pointed out in Chapters I and III, the uncertainty measures 

developed in this thesis should aid in the comparison of two or more 

models. In particular, as presented in Section 3.2, the respective 

uncertainty measures of the various models under investigation can be 



used to determine if particular models should be used interchangeably; 

that is, one can set up decision criterion based upon the uncertainty 

measures associated with each model. 

Finally, one should observe that the partitioning of the' estimate 

of Var(PK) into percent components related to the parameter estimates 

should indicate where major sources of uncertainty lie and thus specify 

where more data should be taken and where more money should be spent on 

research and testing. 
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4.3 Reconnnendations for Futther Study. As indicated at a previous 

point in this thesis, errors associated with the form of the models 

themselves are not considered in this thesis. It is reconunended that 

these errors be investigated in light of the discussion of this thesis. 

For example, one might consider each approximation made in a particular 

model to correspond to a random variable with uncertainty associated with 

the order of the error involved in that particular approximation. Infor­

mation of this type could be combined to produce a measure of the uncer­

tainty associated with the model form. This measure of uncertainty 

could then be used to supplement the measure of uncertainty developed 

in this thesis related to the model inputs. A measure of the model form 

uncertainty would be useful in determining where better approximations 

should be made in the model. 

As a further reconunendation, it is suggested that the sensitivity 

coefficients be investigated in more detail than was provided by this 

thesis. Since many of the sensitivity coefficients were computed using 

finite difference techniques, they are essentially dependent upon the 

particular values chosen from which the partial derivatives were 

calculated. There is, therefore, some degree of uncertainty that can 
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be linked to the sensitivity coefficients. This suggests the treating 

of the sensitivity coefficients as random variables and in .turn relating 

their uncertainty to Var(PK). 

Furthermore, it would be advantageous to investigate further the 

estimated error associated with the Nth order approximation of th.e 

functional representation of PK. Since the error is directly related to 

the point a. (see Appendix A), a better estimate of a. would be desirable. 

In addition, one might investigate the possibility of evaluating an 

upper bound on the error associated with a given approximation, in 

particular, the.evaluation of~ for a. equal toe as mentioned in 

Appendix A. 

Finally, the Bayesian learning techniques presented briefly in 

Section 2.3 should be investigated in more detail as a possible alterna­

tive procedure in the calculation of Var(PK). Furthermore, in turn, the 

effects of.the addition of more data concerning a particular random 

variable for the Bayesian learning technique should be compared with the 

corresponding effects for the Taylor's Series Approximation method as 

presented in this thesis. 
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APPENDIX A 

TAYLOR'S SERIES EXPANSION 

A.l Introduction. The purpose of this Appendix is to discuss in 

general the Taylor's Series approximations employed througho~t this 

thesis. Taylor's Formula with Remainder is discussed for functions of 

several non-random variables and then is extended for functions of random 

vectors. The remainder term is examined in light of the models involved 

in this thesis and a criterion is given for estimating the error associ-

ated with a given Nth order approximation. 

A.2 Taylor's Formula with Remainder. Consider initially a non-

random vector x = (x1, xz, ••• , xn) and let g(~) be defined and contin-

uous and have continuous differentials up to the (N + l)st order for 

..2. - .!.a<~< ..2. + .Ea, where ..2. = (a1, az, , •• , an) and .!.a= (r1, r2, 

., rn>· For a function of n variables the kth order differential at a= 

(a1, a2, ., an) is defined by Williamson, Crowell, and Trotter (22) 

to be the following polynomial in x = (x1, xz, •.• , xn): 

k 
(x1 _a_+ a k 

da g(~) = + Xn -d -) g 
3x1 xn a 

or 

k k k1 kn akg (..2,) 
da g(~) = E (k1 k ) x1 ... Xn 

ax/~ .•. ax ku 
(A,2.1) 

_, 
k1 + ••• + k =k n 

n n 

where (k1 
k 

k ) 
kJ 

= 
n kq •.. kn! 
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In terms of differentials, Taylor's Formula with Remainder can be 

expressed for each x in the region about.§!.. defined by .Ea as 

1 1 1 2 
g(a) + TT (da g)(.?.f. - .§!..) + .2! (da g)(~ - .§!..) 

(A.2.2) 

where 

1 
~ = (N+l)J 

and c = (c, c, . ., c) is some point in the region defined by r 
n -a 

about a. The error associated with approximating g(~) by the first N + 1 

terms of Equation A. 2. 2; that is, terms up to and including ·N~ d: g (~_-.§!_), 

is precisely the remainder R. An upper bound on this error would be 
n 

calculated if the point l where the absolute value of the (N + l)th 

differential is maximum 

,~, < 1 dN+l ( ) j 
(N+l)J b g ~ - i!. (A, 2, 3) 

It should be pointed out that except for simple functions with n 

small the calculation of an upper bound on~ is a tedious job. 

A.3 Extension of Taylor's Formula with Remainder to Random Vectors. 

Now suppose one considers a random vector ~ = (X1, X2, . . . X ) and a 
n 

function GQO which is defined and continuous and has continuous differ-

entials up to the (N + l)th order over the range of_! denoted by So, 

E(X )]. Then Taylor's Formula 
n 

with Remainder can be written for the random function G(~) as 
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+ ~ ... 1 N . 
+ Nt d.l:!. G(! - J!.) + [~]a (A.3.1) 

where 

[R._] - l d~+l G(_X - ll' 
-N a (N+l) ! .,. tu 

where~ is a particular value of! belonging to So. Now the expected 

error associated with approximating G(~ by the first (N + 1) terms of 

Equation A.3.1 is given by 

(A.3.2) 

or letting k = N + 1 

1 k k · kn 
E[~] = -kl E[E (k k )(X1 - µ1) 1 ••• (Xn - µ) 

a • k + +·k -k 1 • • • n n 
l · · • n-

(A.3.3) 

or 

E[R._] 1 E ( k ) E[(X µ1· )k1 ••• (X - µ )kn], 
-N a = kl k1 •• ·kn 1 - n n 

• k1+, •• +kn=k 

(A.3.4) 

Now E [~] could be found if the· value of ~ were known or an upper bound -­

could be estimated for IE(~)I if the point f3 belonging to So could be 
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evaluated such that 

(A.3.5) 

As would be expected, evaluating f3 is a very difficult process except 

for very simple functions and small n. However, one needs to estimate 

E[~] so that some simple measure of the approximate error involved in a 

given Taylor Series Approximation ca'n be given. Now a is a particular 

value of!, and so for the estimation of E[~]a suppose one evaluates 

E[~]a at~ equal to the expected value of K.; i.e., ~ = l!.· Therefore, 

* one obtains E[~] as an estimate of the error associated with approxi-

mating G(x) by the first (N + 1) terms of its Taylor's Series expansion 

where 

* E[~] = E[~]~ for£=..!! (A. 3. 6) 

Consider for example expanding G(!) about 1:!_in a first order Taylor 

series expansion as is used predominately throughout this thesis 

n ac I 
G(!) = G(~) + i~l axi (Xi - µi) (A. 3. 7) 

K_= .!:!. 

Now the estimate of the expected error involved in approximating E[G(X)] 

by taking the expected value of Equation A.3.7 can be evaluated as 

(A.3.8) 

whtch i~ simply the expected value of the next term in the series. 

Now suppose one considers the error associated with approximating 

Var(G(X)) using the Nth order approximation of G(_!). For notational 
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convenience, let GN denote the first (N + l) terms of G(X) in Equation 

A.3.1; that is, GN equals the Nth order approximation of G(~). Then one 

can write 

or 

which in turn can be evaluated as 

which is denoted now as 

Var G(!) ~ Var (GN) + VN 
ct 

(A.3.9a) 

(A. 3. 9b) 

(A.3.10) 

(A.3.11) 

Now Var(GN) denotes the approximation of Var G(X) by assuming the 

Nth order approximation of G(X). The remaining term on the right hand 

side of Equation A.3.11, namely VN, represents the error associated with 
ct 

approximating Var(GX) by Var(GN)' where the sensitivity coefficients 

associated with~ and thus with VN are evaluated at the point£ belong­
ct 

ing to s 0• If a point s2 belonging to s0 could be found where 

(A.3.12) 

an upper bound on IVN I could be calculated. However, the evaluation of 
ct 

s2 is a very difficult process except for simple functions and small n. 

However, one does need to estimate VN so that some simple measure of the 
ct 

approximate error associated-'with employing Var(GN) for Var G(X) can be 

given. As with E[~]ct suppose one evaluates VNct at.£_ equal to the 



expected value of!_; i.e.,~= Jl· Thus one obtains VN* as an estimate 

of VN where 
a 

v *·= v 
N Na 

for ~ = H_ (A.3.13) 
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One should note that for~= H_, ~ is simply the next term in the series 

approximation of G(!,) and VN* is the sum of the terms added to Var(GN) by 

assuming the next higher order approximation of G(!); i.e., 

(A.3.14) 

In order to illustrate the validity of Equation A.3.14, consider 

the following: Let the (N+l)th order approximation of G(X) be denoted by 

(A.3.15) 

where from Equation A.3.1 

T l dNµ+l G(_X - ,.\ 
N+l = (N+l) ! v (A.3.16) 

Now TN+l is precisely (l\J]~=H_ (A.3.17) 

Therefore the (N+l)th order approximation of Var(G(K)) can be 

written as 

= E [ ( GN + [~] ~ E ( GN) - E [~]) 2] 
~=H. .!=..=H. 

(A.3.18) 

or 

(A.3.19) 



Var(GN+l) = E[(GN - E(GN))2] + E[([RN] - E[~])2] 
£_=!:!_ £_=!:!_ 

+ 2E[(GN - E(GN))([~] - E[~])] 

£_=!:!_ £_=!:!_ 

or 

Var(GN+l) = Var GN +Var[~]+ 2 Cov[GN' [~]] 
a=µ £_=!!, 

However, from Equations A.3.10 and A.3.13 

VN* =Var[~]+ 2 Cov[GN' [~]] 
g_ = 1!. g:= 1!. 

so that Equation A.3.21 can be written as follows 

Equation A.3.14 now follows directly from Equation A.3.23. 
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(A.3.20) 

(A.3.21) 

(A.3.22) 

(A.3.23) 

Thus V * is 
N 

an estimate of the error associated with Var(G(X)) due to using the Nth 

order approximation of G(X). For the purpose of this thesis, the follow-

ing criterion on N was chosen 

Choose N such that IVN*I < .05 (A.3.24) 

For the examples of Section 3.2 and 3.3, first order approximations were 

employed as suitable approximations with reference to the above criterion 

on N. 



APPENDIX B 

VARIANCE OF S 
-x 

B.l Introduction. In this Appendix a detailed derivation of the 

covariance associated with S is presented, where S is defined in Chap-
-x -x 

ter III to be the standard deviation vector associated with!_, the weapon 

impact point. Since the variance related to the range components of S ; -x 

namely, S and Sb are derived in an analogous manner as those related ar r 

to deflection components Sad and Sbd' a description of the calculations 

of the estimates of Var(Sar) and Var(Sbr) is made and then the results 

are appropriately modified to provide Var(Sad) and Var(Sbd). It should 

be pointed out that the equations modeling Sar' Sad' Sbr' and Sbd which 

are used in this Appendi~ have been empirically derived from actual 

weapon delivery tests and correspond to the models assumed in the Stick 

Bomb Delivery Model. 

B.2 Range Impact Point Model. Consider for now the range component 

of impact point. Assume: (Capital Letters= Random Variables, small 

letters= parameters). 

x Range Impact Point R.V. (B.2.1) r 

x - N(R, s2) (B.2.2) r hr 

R = Actual Aimpoint = R.V. (B.2.3) 

R - N(ro, s2) 
ar (B.2.4) 
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where 

ro = intended aimpoint distance from release (in range). At present 

2 2 
no specific distribution will be assumed for Sar and Sbr; but, we will 

assume the following: 

E [S~r] cr2 = unknown parameter; hr 

V[S~r] = a2 = unknown parameter; hr 

E[S2 ] = cr2 = unknown parameter; ar ar 

V[S2 ] = ct2 = unknown parameter; ar ar 

thus 

E[x J= E[E[x IR, sh2 JJ = E[RJ r r r ro 

Var(X) = 0 + cr2 + a2 r ar hr 

In summary then 

E[X] 
r 

Var[X] 
r 

cr2 + cr2 
ar hr 

ballistic variance 

variance of s2 
hr 

aiming variance 

variance of s2 
ar 

SD[X] = la 2 + a2 = standard deviation of X r '\/ ar hr r 

(B.2.5a) 

(B.2.5b) 

(B.2.6a) 

(B.2.6b) 

(B.2.7a) 

(B.2.7b) 

(B. 2. 9c) 

(B.2.7d) 

(B.2.7e) 

(B.2.8) 

(B. 2. 9) 
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Assume a model for S of the form which corresponds to that used in the ar 

Stick Bomp Program and denoted by the function s 1 of Equation 3.2.lOa. 

where 

s ar (B.2.10) 

to calculated time of fall corresponding to intended release 

conditions associated with hitting ro· 

sro calculated slant range for intended release conditions. 

hao calculated harp angle for intended release conditions. 

k1 = random variable whose uncertainty is assumed to partially 

compensate for error between actual release conditions and 

intended release conditions; in particular, to compensate 

for errors in velocity due to miscalculation of wind 

velocity. 

k2 random variable whose uncertainty is assumed to compensate 

(along with K1) for errors between actual release conditions 

and intended release conditions. 

NOTE: A model for Sbr will be discussed later in this appendix. 

Consider the model of Equation B.2.10 further. Suppose a pilot 

desires to drop a weapon or a stick of weapons on a particular target. 

From the physics of the trajectory problem, his uprange release dis-

tance can be calculated and corresponds to his intended range aimpoint 

distance ro, Now, associated with r 0 are a set of intended release con-

ditions Y1~ y 2 , ••• , y¢ that must be met in order to release the weapon 

actually aimed at ro. Many factors influence the values of YI, Y2, . 

. , y¢ such that on any particular run errors occur between the actual 

values obtained, call them y 1 *, Y2 'I<, • • • , Y ¢ *, and the intended values 
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of the y's, If we assume (which we do at this point) that these errors 

are neither positively nor negatively biased, we can treat the intended 

y values Y1, y2 , •.• , y¢ as merely the expected values of the basic 

underlying random variables Y1, Y2, ... , Y¢. Thus we see that Yr*, 

* *) ' ' l 1 . t t . th Y2 , ... , y¢ is simp ya samp e pain or an ou come in e space 

defined by Y1, Y2, ... , Y¢. 

Now suppose one defines the following random variables as functions 

time of fall of weapon (B, 2. lla) 

SR g2 (Y 1 • y 2, • • • , y ¢) slant range at weapon release (B.2.llb) 

Ha sine of angle between slant range 

at release and horizontal (Harp 

angle) (B.2.llc) 

For a set of intended release conditions Yl, Y2, ... , y¢, the following 

is obtained 

E(T!Y1 Y2 y¢ y¢] 
- g 1 (YI, y ¢) ::; y 1' Y2, . . . , to = Y2, . . ' 

(B.2.12a) 

E[SRJY 1 Yl, Y2 Y2, . . . ' y 4i y¢] sr 0 ~ gz(YI, Y2, . . ' y rp) 

(B.2.12b) 

E [H I y l Yl, Y2 Y2, . .,Yrp=y¢] ha 0 = g3 (y1, Y2, . . . ' y 4i) a 

(B. 2 .12c) 

One sees then that to, sr 0 , and hao are related directly to the 

intended release conµitions. Again referring to the model of Equation 

B.2.10 



s 
ar 
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(B.2.13) 

one recalls from Chapter II that the random variables K1 and K2 are 

assumed to account for errors in the release conditions due to errors in 

aiming. 

If one assumes for a series of test runs for set values of to, sro, 

hao, that is, for a series of sets of intended release conditions y's, 

that particular values of Sar can be observed and K1 and K2 can be esti-
A 

mated from this data, say as K1 and K2 respectively, then the following 

estimator model is obtained 

A 

s 
ar 

(B.2.14) 

Another way of looking at our estimator model is to let I designate 
ar 

A 

the information obtained from the data in order to compute K1 and K2 . 

The designation I would necessarily represent a random variable whose 
ar 

uncertainty is tied to that of the uncertainty of the data involved, 

Thus, one can rewrite S as 
ar 

s 
ar 

(B.2.15) 

Where E[S II ], E[K1II ], and E[K2JI ] are random variables; i.e,, 
ar ar ar ar 

functions of the random variable I ar 
For example, if I 

ar 

resents information from one particular set of data, then 

i rep­
arl 



where E[S Ir = i ], E[K1II ar ar arl ar 

numbers computed with I = i 1 • ar ar 
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sro2 
:::;: i ]2 -­

arl h 2 ao 

(B.2.16) 

i ], and E[Kz!I = i 1 ] are arl ar ar 

Now assuming that E[K1II ] = K1 and E[KzlI ] = K2 are estimators ar ar 

for K1 and Kz derived from the data, the following unknown parameters 

can be associated with these estimators 

A 

k1 E [K1] E [E [K1 I I ]) ar 
(B. 2 .17a) 

k2 = E[K2] = E [E [K2 I I ]) ar (B.2.17b) 

er~ A Var[Ki] (B.2.17c) 
K1K1 

er~ A Var[K2] (B. 2 .17d) 
K2!<2 

er~ A 

A A 

cov [K1, Kz] (B.2.17e) 
K1K2 

Recall the estimator model 

(B.2.18) 

Expanding E[S Ir ] about k 1 and k2 in a first order Taylor series ar ar 

expansion, we have 



s ar "'SQAR + 

where SQAR 

k1 to2 

SQAR 

A k2 sro 2(K2 - k2) 
(K1 - k1) + ------­

hao2 SQAR 
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(B.2.19) 

so that if we take the expected value of Equation B.2.15 we have 

E[E(S Ir )J = E{s } ar ar ar J sro 2 
- kft 02 + k~--

hao2 
(B.2.20) 

Furthermore defining 

var{E(S Ir )} = E[{S jr ) - E(E(S Ir ))} 2 ] ar ar ar ar ar ar (B. 2. 21) 

we have 

Var{E(S I I ) } ar ar 

A 

Var(S ) ar 

kf to2 A 

- Var(K 1) 
k~ sr 0 4 

+ Var(K2) 

where 

SQAR2 ha 0 4SQAR2 

A A 

+ ------ Cov(K1, K2) 
hao 2 SQAR2 

(B.2.22) 

. k~sr 02 F ---
SQAR = 2 + ---

hao2 

or 

k2t 4 
2 

sro4 2t 02 sr 02 k1 A 1 0 kz k2 
Var{S } cr~ A + cr~ A + cr~ A (B.2.23) 

ar SQAR2 K1K1 hao4 SQAR2 K2K2 ha 02 SQAR2 K1K2 
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As has been pointed out before, the parameters k 1, k2 , cr~ A , cr~ .A , 
K1K1 K2K2 

and cr~ A are not known and cannot be calculated exactly. However, for 

any given set of data corresponding, for example, to I :::: i ., one 
ar arJ 

could calculate a particular value of k1 and k2 for that set of data; 

say, 

k* - E [K1 I I ;;:: iarj] lj ar 

k* :::; E[K2II = iarj] 2. 
J ar 

2 
One could also calculate particular values for crA A 

tively as, 

= var(K1!I = i ) ar arj 

2* :::; var(K2II = iarj) (JA A 

K2K2j 
ar 

A 

a~*A = cov(K1, K2II = l.arj) 
K1K2j 

ar 

(B.2.24a) 

(B.2.24b) 

and cr~ A respec­
K1K2 

(B.2.25a) 

(B.2,25b) 

(B, 2. 25c) 

For example, one might employ standard regression techniques to 

calculate k*l· and k* as estimates of regression coefficients associated 
. J 2j 

with the S model of Equation B.2.10. Weapons could be dropped for 
ar 

varying intended values of to, sro, and hao and sample values of S ar 
. * could be obtained for the calculation of k1 

j 
* and k2 . 
j 

Furthermore, from 

the regression analysis of the data obtained, covariances of the estima-

A *2 
tor K's could be estimated corresponding to aA 

KiKj 
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Now, if one had n sets of data corresponding to Iar = iarl' Iar 

. . ' I = i one could form average estimates by averaging ar arn 

over j, namely, 

kf = E [K1 I I = i u i u . . . u· J ar ar1 ar2 l.arn 

E [K1 I I = iar] ar (B,2.26a) 

k~ 
A 

E [K2 I I = i u i u . . . u· J ar arl ar2 1 arn 

= E[K2II = iar] .. qr (B.2.26b) 

*2 
= Var[K1JI i U iar2 U u· J OA A = . . . 

K1K1 
ar arl 1 arn 

= Var[K1 JI iar] ar (B.2.26c) 

*2 Var [1<2 JI i u i u u· J O A A ;:;:: . . 0 

· 1 arn 
K2K2 

ar ar ar 

= Var[K2JI = i ] ar ar (B.2.26d) 

*2. cov[K1, i2l r· i u i u U' ] O A A = . . . 1 arn 
K1K2 

ar ari ar2 

A 
K2II = cov [K1, = i ] ar ar (B,2.26e) 

where i represents the total information obtained from then sets of ar 

* * data, Thus, k1, k2, 
*2 *2 *2 

oK 1K1 , oK2K2, and oK 1K2 are the estimates of the 

2 2 2 
oKiK, oKA KA , and oA KA given all the available data. 

1 2 2 K1 2 

Suffice it to say that if one had one set of data or twenty sets of 

d k k A2A A2A 
data, the final resulting estimates are terme 1, 2 oK K oK K so 

' 1 1' 1 2 

that the notqtion will be consistent. 

be calculated as 

The estimate of E[S ] can now ar 
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E [S I I ar ·ar (B.2.27) 

This value, Equation B.2.27, is assumed to be the actual output of the 

Stick Bomb Program for c.!~!5) with kf and k~ as normally given. * k1 and 

* k2 are assumed to have been calculated from a set or sets of data corres-

ponding to I = i Since we assume that the Stick Bomb Output corres-ar ar· 
A 

ponding to Equation 2.2.7 is a conditional expected value of S , ar 

conditioned on all available data, a measure of the uncertainty associated 

with S is needed which is related to the data; that is, one needs to ar 

calculate an estimate of§ based on the data that is available. If ar 
2 i A i . 

OJ_ K , crK K , and crKA ·KA were known, they could be substitqted into Equa-
l l 2 2 1 2 

tion B.2.23 and var(S 2 ) calcul.;ited directly. UnfortunateJ,.y, these ar 

parameters are not known; but, as has been pointed out previously, these 

parameters can be estimated from the available data. If these estimates 

are substituted into Equation B.2.23 for the parameters which they esti-

mate, an estimate of the var(S ) results ar 

where 

Var{S } 
ar 

SQAT 

+ 

Var(S jr 
ar ar 

2 2 * * 2t 0 sr 0 k 1k2 

ha 0SQAT2 

kf2to2 + 

*2 
cr A A 

K1K2 

* k2 2sro 2 

hao2 

+----

(B.2,28) 
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Equation B.2.28 is chosen to be the measure of th.e uncertainty 
A 

associated with S and, as one can observe, it is directly related to ar · 

the estimates of the variance~ and covariance associated with K1 and K2 . 

To be more specific, suppose one relates the results of this derivation 

to the Stick Bomb Program. 

A 

E[K1II ] Kl = = ar 

:R2 E[K2 II ] = . ar 

k* = E [Kl I I = 
1 ar 

k* 
A 

= E[K2II = 2 ar 

E [S I I ar ar 

Var[S Ir ar ar 

estimator of aiming error coefficient (AAA) 

given set (or sets) of data corresponding 

to I 
ar 

estimator of aiming error coefficient (BBB) 

given set (or sets) of data corresponding to 

I ar 

iar] = particular value of K1 for set of data 

correspo~ding to I = i This is ar ar 

particular value of AAA, say a. 

iar] = particular value of K2 for set of data 

corresponding to I i This is ar ar 

particular valtie of BBB, say b. 

= particular value of S using k~ and k~ as ar 
A A 

particular values of K1 and K2 respectively. 

As a computer output, this corresponds to 

REP the variable (_ 6745). 

measure of uncertainty of S given data ar 

corresponding to I ar i ar 

as output of VPK program. 

This obtained 



121 

Thus far only e~rors due to aiming have been considered. However, 

even if one could aim without.error; i.e., R ,/:, R.V., one would still 

encounter error in the range impact point Xr due to ballistic dispersion. 

Assume a model of the form whic;:h corresponds tq that .used by the Stick 

Bomb Delivery Model and is denoted by Equation 3.2.lOc as s 3 • 

sr0 . 

8br =K4hao (B.2.29) 

where K4 = random variable whose uncertainty is assumed to account for 

errors between actual aimpoint and actual impact point. 

Since the exact slant range and harp angle are unknown for any par-

ticular weapo~ release, the model for the ballistic variance is assumed 

to be a function of sr0 and hao which, as desired values of SR and Ha, 

are assumed to repr~sent average slant range and harp angle·involved. 

Again one assumes that partic;:ular values of Sbr can be observed for 

a series of test runs for set values of sro and hao and K4 can be esti-

" mated, say K4 •. Thus the following estimator ballistic model is obtained 

(B.2.30) 

or letting Ibr represent the information from the data ·now involved, 

(B. 2. 31) 

Following the same procedure as was followed for the aiming error model, 

one acquires 

(B.2.32) 



and 

where 
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(B.2.33) 

ibr] = particular value of K4 for set of data 

corresponding to Ibr = ibr' This is 

particular value of (DIS). 

A 

= estimate of the variance of K4 given 

A * particular value of Sbr using k 4 as particular 

value of K4 • As a computer output, this 

corresponds to the variable (SIGY). 

A 

= measure of uncertainty of Sbr given data 

corresponding to Ibr = ibr' This obtained 

as output of VPK Program. 

B.3 Deflection Impact Point Model. Now that estimates have been 

derived for the variance assoqiated with S and Sb in Equation B.2.28 ar r 

and B.2.33 respectively, the associated derivation m~st be extended to 

provide estimates of the variances associated with Sad and Sbd' The 

estimator model related to S d corresponding to that of Equation B.2.14 a . 

for S is as follows: ar 

(B. 3 .1) 
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Equation B.3.1 corresponds to the functional notation of Equation 

3.2.lOb. If the form of Sad is compared with that of S one can ar' 
A 

observe that K3 replaces K2 and the term hao 2 is absent in the estimator 

model Sad' The ha02 term wa~ necessary in the range computations since 

the error components are originally calculated in a plane perpendicular 

to slant range and must be divided by the sine of the harp angle (hao) 

in order to express the associated error in the R - D plane. Follow­e e 

ing parallel notation to that used in Section B.2 with only subscripts 

changed to correspopd to deflection components, a representation for 
A 

Var(Sad) can be written corresponding to Equation B.2.28 as 

A A 

V (S ). 
ar ad 

where 

k*2 4 
1 to *2 

OA 
SQAD2 K1K1 

+ 
2t 0 2 sra2k7k~ *2 

+ OA 
SQAD2 K1K3 

(B.3.2) 

Finally the estimator model related to Sbd corresponding to Equa­

tion B.2.30 for Sbr is given as 

(B,3.3) 

where again the absence of the ha02 term is noted. Equation B.3.3 

represents the functional form of Equation 3.2.lOd. Following the deriv-

ation leading to Equation B.2.33, one can write a representation for 

Var(Sbd) directly as 
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Now relating the models of Equation B.3.2 and B.3.4 to the Stick 

Bomb Delivery Model directly as was done for the range components of 

Section B.2, one obtains 

K3 = E[K3jlad] = estimator of aiming error coefficient (DDD) 

given !;let (or sets) of data corresponding to 

K4 = E[K4jlbd] = estimator of ballistic error coefficient (DIS) 

given set (or sets) of data corresponding to 

* E [l<.3 j lad 
" 

k3 = id] ::;: particular value of K3 for set of data a . 

corresponding to I ad - iad" This is 

particular value of DDD, say d. 

* A A 

k4 = E[K4IIbd = ibd] - particular value of K4 for set of data 

corresponding to Ibd = ibd" 

particular value of (DIS). 

This is 

It should 

be noted that Ibd = ibr since only one 

coefficient needs to be determined. 

~~ = Var[K31Iad = iad] = estimate of the variance of K3 
K3K3 

] k* d k*3 iad = particular value of Sad using 1 an as 

particular values of K1 and K~ respectively. 

As a computer output, this corresponds to 

DEP 
the variable <. 6745). 
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* particular value of Sbd using k 4 as particular 

value of K4. As a computer output, this 

corresponds to the variable (SIGX). 

A 

iad] = measure of uncertainty of Sad given data 

cQrresponding to lad= iad' This is 

obtained as outp1Jt of VPK Program. 

Var[Sbdlrbd = ibd] = measure of uncertainty of Sbd given data 

corresponding to Ibd = ibd' This obtained 

as output of VPK Program. 

Since aiming and ballistic errors are assumed to be independent in 

both range and deflect:i,.on for the model associated with the examples of 

this thesis, it is not necessary to caLculate the associated covariance 

terms. If this assumption had not been made concerning independence; 

straight forward calculations of covariance terms could have been made 

by following the techniques leadtng to Equation 2.4.11 with Y. replaced 

qy s . 
-x 

Equations B.2.28, B.2.33, B.3.2, and B.3.4 have thus presented 
A A A 

estimates of Var(S 8 r)' Var(Sad), Var(Sbr), and Var(Sbd) respectively and 

linked then to the uncertainties associated with the estimation of the 

aiming and ballistic error coefficients obtained from empirical data. 



APPENDIX C 

SECOND ORDER DERIVATION FOR EXAMPLE 1 

C.l Introduction. The purpose of this appendix is to present a 

parallel derivation of the Var (PK) for the example of Section 3.2 assum-

ing that.second order terms are required for the Taylor Series Expansion 

used. In order that the first order and second order approximations can 

be compared equatton for equation, the equation numbers in Section 3.2 

are listed directly below their corresponding equations of this appendix. 

C.2 Variance of BK. Suppose one begins with the MRKP model of PK 

as given in Equation 3.2.21. 

(C.2.1) 
(3.2.21) 

Expanding PK about E[~] in a second order Taylor Series expansion 

S E (S ) 
-x ---x 

a2p +1 4 Li- K 
2 r r as as / [s. - E(s.)J [s. - E(s.)J 
.. i'j]. ]. J J 1=1 J=l 

~ E(fx) 

Taking the expected value of PK as 

+1 
4 4 a2p 

E[PK] PK [E(~)] E E 
K 

/ Cov(S., s.) - as.as. 2 i=l j=l 
]. J ]. J 

S = E(S) 
--x ---x 
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(C.2.2) 
(3.2.22) 

(C.2.3) 
(3.2.23) 



4 3PK 
L ~s l(s. - E(S.)) 

i=l O i 1 1 
S = E(S ) 
--x --x 

4 4 aPK aPK 
::: L E as as lcov(S., S.) 

i=1 j=1 i j -:,.. J 
S = E(S ) 
-x -x 

4 4 4 4 a2P 
+ 1 L L L E K 

4 . . as.as. 
1=1 3=1 u=l v=l 1 ~ 

(S - E(S ))(S - E(S ))] 
u u v v 

+1 4 4 4 4 a2p a2p 
K K 

E E E E as.as. asuasv 4 i=1 j=1 u=l v=l 1 J 

- E(S,)) 
J 

lcov(S., 
1 

sj) 

S = E(S) 
-x -x 

(C.2.4) 

- E(S.)) 
J 

Cov(Su, s ) v 
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4 
+ E 

i=l 

4 4 aPK a2pK 
E E ~ as.as IE [ ( s . - E ( s . ) ) ( s . - E ( s . ) ) (S - E ( s ) ) ] 

1 1 J J U U j=l u=l i J u 

4 4 4 a PK 
E E E - as. i=l j=l u=l 1 

1 4 4 4 4 
- - E I: E L 

2 i=l j=l u=l v=l 

S = E(S) -x -x 

a2p 
K 

IE(S. - E(S.)) as. asu 1 1 
J 

S = E(S) 
-x -x 

32p a2p 
K K lcov(S., as.as. as as . 1 

1 J u v 

Cov(S., 
J 

s ) u 

sj) Cov(S , u 

S = E(~) -x 

s ) v 

(C.2.5) 



Combining and elimi-q.ating the fifth sum since E(Si - E(Si)) = O, one 

obtains the following results: 

4 4 clPK 

= 1:1 j:1 · 381 

+ .! i 4 4 4 a2p a2p 
K K 

E E E IE[(Si - E(Si)) 4 i=l j=l u=1 v=l as1asj asuasv 

s = E(S) -x -x 

(Sj - E(S.))(S - E(S ))(S - E(S )] 
J u u v v 

4 4 4 
+ E E E 

i=l j=1 u=1 

32pK 
as as !Cov(S1 , S.) Cov(S , S) 

u v J u v 
S = E(S) 
-x -x 

a2p 

as~a: jE[(Si - E(Si)) 
J u 

S = E(S) 
-x -x 

(C.2.6) 
(3.2.24) 

It should be noted that Equation C.2.6 has been derived with no 

assumption made concerning the form or the distribution of any of the 
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random variable components of S. Furthermore, Equation C.2.6 represents -x 

a general model i~ the sense that the S components have not been assumed -x 

to be independent in th:;i.s derivation. 

Under the qssmnption pertaining to the MRKP model; namely, (1) the 

independence of the components of S and (2) the normality relationships -x 
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of Equation 3.2.20, one can reduce Equation C.2.6 for use in the Examples 

of Section 3.2. Consider 

For i = j = u = v 

E[(S. - E(S.)) 4] = 3 Cov2 (S., S,) 
1 1 · l l 

For i = j = u 'f v 

E[(S. - E(S.)) 3 (S - E(S ))) 0 
1 1 V V 

For i = j,;. u ·= v 

E[(Si - E(S1))2(su - E(S)) 2) = Cov(S1 , Si) Cov(Su, S) 

For i = j 'f u 'f v 

For i ,;. j ,;. u ,;. v 

E[(S. - E(S.)(S. - E(S.))(S - E(S )(S - E(S ))) - 0 
l 1 · J J U U V V 

Next consider 

E[(S. - E(S.))(S. - E(S.))(S - E(S ))] 
1 1 J J U U 

For i = j = u 

E[(S. - E(S.)) 3 ) 0 
1 1 

For i = j ,;. u 

E[(S. - E(Si)) 2 (S - E(S ))) = 0 
1 U U 

For i ,;. j 'f u 

E[(Si - E(Si))(Sj - E(Sj))(Su - E(Su))]= 0 

(C.2.7) 

(C.2.8) 

(C.2,9) 

(C.2.10) 

(C.2.11) 

(C.2.12) 

(C.2.13) 

(C.2.14) 

(C.2.15) 

(C.2.16) 
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Thus Equation C.2.6 can be reduced under the assumption of the MRKP 

model to obtain 

4 
L 

i=l 

cl PK 
(-::;--8 ) 2 !cov(S., s.) 

a • 1 J 

+ l i 
4 i=l 

1 S = E(S) -x -x 

a2p 
K (--) I Cov 2 (S., 

as.2 i 

1 S = E(S) 
-x -x 

a2pK 

s.) 
1 

+ l i 
4 i=l 

4 
L 

j=l 
lcov(S., s.) Cov(S., s.) 

as 2 i i J J 
j 

Nj 

- l i i 
4 i=l j=l 

which reduc~s to 

4 
L 

i=1 

a PK 
(-;-8 -) 2 1 Cov(S., S.) 

a • 1 1 
1 S = E(S) 

--x --x 

+ l i i 
4 i=l j=l 

S = E(S) --x --x 

Cov(S., S.) 
J J 

lcov(S., S.) Cov(S., S.) 
1 1 J J 

S = E(S) -x -x 

(C.2.17) 



4 
E + l 4 

4 E 
i=l j=l 

Cov(S., S,) 
J J 
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(C.2.18) 

Equation C.2.18 now corresponds to the second order approximation of 

Var(PK) under the assumptions of the example of Section 3.2. 

C,3 Variance of Sx. The Var(PK) in Equation C.2.18 relates a measure 

of the uncertainty associated with PK to that related to~; i.e., 

Cov(S., S.). Now the uncertainties associated with the error coefficients 
l l 

need to be .related to Cov(S., S.). Recalling the estimator model of 
l l 

Equation 3.2.25 

~ = .§.(y, .!9 

where 

A 

(C.3.1) 
(3. 2. 25) 

one can obtain a second order e~timate of Var(St), fort= 1, 2, 3, 4, 

in a manner analogous to that used to obtain Var(PK) in Equation C.2.18. 

Defining 

= estimate of Cov(K., K.) 
l J 

A A A 

(C.3.la) 

K4~. ~ estimate of 
lJUV 

E[(K. - k.)(K. - k.)(K - k )(K - k )] 
l l J J u u v v 

(C.3.lb) 

K3~. 
lJU 

A A 

estimate of E[(K. - k.)(K. - k.)(K - k )] 
l l J J u u 

(C.3.lc) 

one can write 



" 4 4 ~st ast 
1*2 . Var(St) :: 1: 1: ___, 0,.. " " " 

i=l j=l aK aK. K.K. i J " 1 J 
!=1 

+ 1 i 4 4 4 a2s a2s 
1: 1: 1: 

t t IK4* 
4 i=l " " " " "· ijuv j=l u=.l v=l aKiaKj aK aK 

u v K=k 

1 4 4 4 4 a2s a2s 
1*2 *2 t t -4 E E E 1: 

" " 
0,.. 

" 
0,.. 

" " i=l j=l u=l v=l aK.aK. ai< aK KiKj KUKV 
1: J u v 

!.=l 

4 4 4 
+ 1: 1: E (C.3.2) 

i=l j=l u=l 

" Now Var(St) can be substituted for Cov(St, St) in Equation C.2.18 

" .to provide an estimate of Var (Pk)' say Var(Pk). Thus a second order 

estimate of Var(P1) is obtained which depends on estimates of the third 

and fourth multiple moments of·i, as well as the covariance terms. 

Equations C.2.18 and C.3.2 have been implemented by Program VPK 

which is discussed further in Appendix E. Suffice it to point out here 

that the inputs to VPK include all sensitivity coefficients related to 

*2 * * the model as well as o,.. ,.. , K4ij , and K3iJ"u f. or i, j, u, v equal to 
K K . UV 

i j 1, 2, 3, and 4. 
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APPENDIX D 

DERIVATION OF MULTIPLE ROUND KILL PROBABILITY MODEL 

D.l Introduction. The purpose of this Appendix is to present the 

M~ltiple Round Kill Probability Model as used in Section 3.2 for Example 

1 corresponding to the functional representation PKM(.~1c) of Equation 

3.2.25. The single weapon delivery model, i.e., PK(~) of Equation 

3.2.16 represents a special case of PKM for which LiR. and Lil). are zero. 
i i 

D.2 Basic Assumptions. Basic to the MRKP model are several assump-

tions, In particular, a pattern of A weapons delivered is described by 

specifying a pattern reference point and a set of valves (LiR., LiD.) for 
i i 

i = 1, ., A which specify the relative posit;ions of the A weapons 

to the reference point. It is assumed that the pattern reference point 

of the released weapons is actually aimed at a point (R, D) although the 

intended aimpoint is (r0, d0). Further it is assumed that the aiming 

errors (R - ro) and (D - do) are independent normal random variables 

· h d · s2 d s2 · 1 wit means ze~o an variances ar an ad respective y. 

impact point of the ith weapon is specified by (XR·, XD) 
i i 

ciated ballistic errors [XRi - (R + LiRi)] and [XDi - (D + 

The actual 

and the asso-

assumed to be conditionally independent (given Rand D) normal random 

2 2 
variables with means zero and variances Sbr and Sbd respectively. Thus 

one can summarize the assumption concerning R, D, XR., and XD. as 
i i 

follows: 
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R ,.., N(r 0, s2 ) 
<;1.r 

(D. 2. la) 

D "' N(do, s2 ) 
ad (D.2.lb) 

XR, "'N(R + 6R. , 
l. l. 

s2) 
hr (D. 2. le) 

"'N(D + 6Di, 
2 

(D.2.ld) Xn, 8bd) ], 

where XR. and Xn. are assumed conditionally independent. 
l. l. 

Since the MRKP model evaluates PKM as a function of particular 

values of~' 6Ri and 6Di' for i = 1, . 

is presented for 

s = (J 
ar ar 

sad - (J 

a9-

8br = 0 br 

8bd = 0 bd 

6Ri ar. i = 1, . . . ' \ 
l. 

6Di = ad, i :;::: 1, . . . ' \ 
l. 

" . ' \, the following derivation 

(D. 2. 2a) 

(D. 2. 2b) 

(D.2.2c) 

(D.2.2d) 

(D.2.2e) 

(D.2.2f) 

In addition, the MRKP model makes one strong assumption about the 

manner in which the weapons are delivered. In particular, the model 

assumes that the weapons are delivered along the range axis, which in 

turn lies parallel to one side of the rectangular vulnerable area R. 
v 

Furthermore, the weapons are assumed to be traveling in approximately 

the same direction when they reach the target. When traveling in the 

direction of the flight of the weapons, one denotes the leading edge of 
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Rv as AR1 ; the far edge, ~ 2 ; the left side ~l' and the right side, 

AD2; that is ~land AR4 are measured in the range direction and ~land 

ADZ' the deflection direction. 

D.3 Model Derivation. Basically the MRKP model is designed to 

compute the prpbability of accomplishing a desired degree of damage to 

a target by the attack of\ weapons. The probability is usually referred 

to as the probability of kill and corresponds to PKM of Equation 3.2.25. 

For the MRKP model the following basic equation is employed. 

PKM ~ Prob(at least 1 killing hitl\ weapons released) Prob(\ 

weapons delivered) (D. 3 .1) 

where Prob(\ weapons delivered) corresponds to the system reliability 

RLBTY, which is the probability that\ weapons are delivered. It is 

assumed that either\ or zero weapons are delivered. One can thus write 

Equation D.3.1 as 

P~ Prob(&t least 1 killing hitJ\ weapons 

released)*RLBTY 

Now denote the following 

PKW = Prob(at least 1 killing hitJ\ weapons released) 

(D.3.2) 

(D. 3. 3) 

which can be evaluated recalling the pattern dependence on (R, D) as 

00 

PKW = !2 Prob(at least 1 killing hit I (R, D) 
-oo 

(D.3.4) 



Now denoting 

PKRD = Prob(at least 1 killing hitJR, D) 

one can write 

or 

and 

PKRD = 1 - Prob(no killing hitJR, D) 

A 
PKRD 1 TIProb(ith weapon not killing hitJR, D) 

i=l 

A 
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(D.3.5) 

(D.3 .6) 

(D.3.7) 

PKRD = 1 - TI (1 - Prob(ith weapon is killing hitJR, D)) (D.3.8) 
i=l 

But 

Prob(ith weapon kills JR, D) =PC'~ Prob(ith weapon hit RvjR, D) 

(D.3.9) 

where PC= Prob(ith weapon is killing hitjR, D and ith weapon hits R) 
v 

Let 

PX.(R, D) = Prob(ith weapon hits R JR, D) 
l v 

(D.3.10) 

so that recalling the assumption of independence for XR. and Xn. one 
l l 

can write 

PX. (RM D) 
l 

(D. 3 .11) 
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Fr:om Equations D.3.6 through D.3.11 one can write Equation D.3.4 as 

"" A 
PKW = 12 (1 - ;ll. (1 - PC 

"""" i=l 

Recall from Equations D.2.1 and D.2.2 

1 Tr· - (wr + ar.) 
-~...,;;;....,- [ l. . . 1.. ] 2 = - , exp -

vr;-- 0 b.r ~ ,V 2 Obr 

1 w - ro 
= exp - [ .. r ]2 
~ 0 ar ·~2 "V~ · 0 ar 

exp·"." 

Consid~r the following change of variable 

Wr - :i::'0 
Lett=--·-"'" 

· 0 ar 

wd - d 
s = 0 

0 ad 

T - (ro + 6 t) [ ri . ar - Ct r· 

(D, 3, 12) 

(D. 3 .13a) 

(D, 3.13b) 

(D.3,13c) 

(D .3 .13d) 

(D.3.14a) 

(D.3.14b) 

(D.3.14c) 



so that 

V,:;:: 
1 

dw 
dt = .,_..!. 

0 ar 

du.= ---
1 ~ 

~ 2 0 br 

and define 

A1t(s) 
2 Fl(i, 2, s) = - J exp - (v2) dv 

,J;° A3 (s) 

where 

A2 (t) 
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(D. 3 .14d) 

(D.3.14e) 

(D,3.14f) 

(D.3.14g) 

(D.3,14h) 

(0.3.15) 

(D.3.16) 
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1iJ1 - (do+ adi) - CJ s 
A3 (s) ad = 

-y'2 CJbd 

1iJ2 - (do+ adi) - CJ s ad 
A4(s) = 

~ CJbd 

. 
One can now write Equation D.3.12 simply as 

00 oo A 
J (1 - TI (1 - PC *s\ Fl(i, 1, t) F2(i, 2, 5))) 

- 00 i=l 
PKW = f 

-00 

-t 2 /2 -s 2 /2 e e dtds (D. 3 .17) 

Finally, using Equatio1;1. D.3.2, D.3.3, and D.3.17, one can write the MR.KP 

model representation for PKM as 

P = RLBTY * 
10:1 

00 

f 
00 

J (1 - ~ (1 - PC* tn Fl(i, 1, t) F2(i, 2, 5))) 
- 00 i=l -oo 

-t 2 /2 -s 2 /2 e e dtds (D.3.18) 



APPENDIX E 

VPK PROGRAM DOCUMENTATION 

E,l Introduction. The VPK Program was developed to evaluate 

estimate~ of the uncertainty associated with a probabilistic model. In 

particular, it calculates both a first and a second order approximation 

of Var(PG), where PG refers to a general probabilistic model, and com­

putes an estimate of the error associated with the first order approxima­

tion. The program was initially written for use with weapons effectiveness 

models where PG represented a conditional expected damage to a target, 

conditioned on several random variable parameters which serve as inputs 

to the particular model under study, The VPK Program inputs include 

sensitivity coefficients and estimates of expected moments of the random 

variable parameters. As an added output, the program lists the percent­

age variance associated with each random variable parameter. 

E.2 Model. In particular, VPK was developed to investigate the 

uncertainty associated with a probabilistic model with response PG 

depending upon two random vectors 1 and .B. as 

where 

S = (81, 82, , , ., SNS) 

.B_ = (R1, R2, , .. , ~R) 
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NS< 8 

NR < 8 

(E, 2.1) 

(E.2.2a) 

(E. 2. 2b) 



In Example 1 and 2 of Chapter III,.§. corresponds to~ and _B. to RM, 

Now each component of.§. is considered to be a function of another 

random vector!_. Likewise, each component of£ is assumed to be a 

function of a random vector;; that is, 
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(E.2.3a) 

(E. 2. 3b) 

where 

K = (K 1 ' K2, . • • ' ~K) NK < 8 

NZ< 8 

! corresponds to ! in Examples 1 and 2 of Chapter III. ~nd 1 is represented 

by! in Example 2 for NZ equal to four. Figure 4 illustrates the general 

model assumed for PG. 

K1 - - S1 --+ 

K2 --+ S2 -GS 

~K- SNS -
Gp __.pG 

Z1 --+ R1 -
Z2 - R2 --+ 

GR 

2Nz- ~R -
Figure 4 

General Probabilistic Model PG 
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The VP~ Program investigates uncertainty associated with PG in terms 

of uncertainties related to!. and~· Letting 

· k1 ~. E [K1 J (E. 2. Sa) 

one can write the uncertainty parameters associated with!. and l. as 

(E. 2. 6a) 

(E,2.6b) 

where a zero.subscript indicates omm.ission of that factor. For example 

Now define the following sensitivity coefficients needed for a 

second order approximatiqn of Var (PG) · 

a.p 
PFS(I) 

. G 
= ......--

as1 
(E.2.8a) 

PFR(I) 
apG 

= -.-aR1 
(E.2.8b) 

a2p 
CPFS(I, J) G 

= 
as1asJ 

(E.2.8c) 

a2p 
CPFR(I, J) G = 

aR1aRJ 
(E,2,8d) 

a2p 
CPFRS . G = . aR1asJ 

(E.2.8e) 

PSK(I, J) = 
as1 

aKJ 
(E. 2. Sf) 
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PRZ(I, J) = (E.2.8g) 

CPSK(I, J, L) (E.2.8h) 

(E.2.8i) 

Uaving defined the basic probabilistic model and the random variables 

and parameters associated with it, suppose one now proceeds to describe 

Program VPK in terms of input-output information. 

E.3 Program Inputs. All inputs to VPK are punched onto cards. The 

format for each card and a brief description of the inputs are given in 

Table XII. The input data cards for a $ingle probabilistic model analysis 

are of five types and are assembled in the following order: 

(1) Type 1 Card: Title Card: used to identify particular model 

(2) Type 2 Card: Control Card: specifies option codes 

(3) Type 3 Cards: Data Information Cards: specifies data pertain-

ing to model. This information is not used by program but is transferred 

directly to output list (optional). 

(4) Type 4 Cards: Sensitivity Coefficients: input list of sensi-

tivity coefficients corresponding to Equation E.2.~; 

(5) Type 5 Cards: Parameter Estimates: input list of parameters 

associated with! and f corresponding to Equation E.2.8. 

One should note that the number of inputs has been limited: eight 

for each variable, This is due to the storage requirements of the program 

which as presented here requires approximately 200K bytes. Shot,tld more 

inputs be.needed and sufficient core storage is available, th~ program 

can be extended by merely increasing the dimensions of the arrays 

employed by the program. 



Card 

1. Title Card 
(1 card) 

2. Control Care 
(1 .card) 

3. Data infor­
mation cards 
(no,. limit) 

4. Sensitivity 
Coefficient:; 

1~m~t c~~d { 
NS= O) 

B. 1 card ·{ 
(omit if 
NR = 0) 

Card 
Column 

1-80 

1 

4 

7 

10 

11-20 

23 

26 

29 

1-80 

1-10 

71-80 

1-10 

n-80 

TABLE XII 

VPK INPUT DATA CARDS 

Fortran .Parameter 
Format Symbol 

20A4 

I1 

I1 

I1 

Il 

FlO.O 

Il 

u 

20A4 

El0.4 

El0.4 

El0.4 . 
; . 

El0.4 

. Title 

NK 

NZ 

NS 

NR 

EPK 

NDATA 

INDS 

INDR 

DAT! 

PFS (1) 

FFS(8) 

PFR(l) . . . 
PFR(8) 

Description 

Alphanumeric information 
to identify model 

No, of K's considered; 
NK < 8 

No, of Z's considered; 
NZ< 8 

No. of S.'s considered; 
NS< 8 

No·. of R's considered; 
NR < 8 

1st order approximation 
of E(PG) (Response of 
model tor Kand Z at 
intended v°ilues)-

No. of data information 
cards 

S Dependency Code 
= O, All S's dependent 
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= 1, All S's independent 
R Dependency Code 

= 0, All R's dependent 
= l, All R's independent 

Information desired in 
output list 

1st order Sens. Coef. 
relating§. to PG; 

clPG 
PFS(I) = as 

I 

1st order Sens. Coef. 
relating R to PG; 

clP -
PFR = clRG 

. . I 
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TABLE XII (continued) 

Card Fortran Parameter 
Card Column Format Symbol Description 

c, NS Cards{ 1-10 El0.4 CPFS(I, 1) 2nd Order Sens Coef. 
(omit if . . . relating§_ to p 

c' NS= O) . . . . . 
I = 1, 2, a2p 
.• ; , NS 71-80 El0.4 CPFS(I, 8) G 

CPFS(I,J)=as as 
I J 

D. NR Cards! 1-10 El0.4 CPFR (I, 1) 2nd Order Sens. Coef. 
(omit if . . relating B,, to PG; 
NR = O) . . . . . . 
I= 1, 2, 32p 
••. , NR 71-80 El0.4 CPFR(I, 8) 

CPFR(I,J)=aR a~ 
I J 

E, NS C•rd"[ 1-10 El0.4 CPFRS(I, 1) 2nd Order Sens. Coef. 
(om;lt if NR . . . relating both .B:. and 
or NS= O) . . . 

§_ to PG; . . . 
I = 1, ,2, 
..• , NS 71-80 El0.4 CPFRS(I, 8) a2p 

K::PFRS(I,J)= G 
cJR1a SJ 

F. NS Cards{ 1-10 El0.4 PSK (I, 1) 1st Order Sens. Coef. 
(omit if . . relating .K to SI; 
NS= Q) . . . . 
I = 1, 2, 

as I •.• , NS 71-80 El0.4 PSK (I, 8) PSK(I,J) = --
cJKJ 

G, NR Card"! : 1-10 El0.4 PRZ (I, 1) 1st Order Sens. Coef. 
(omit ii; . . . relating f to RI; 
NR = 0) . . . . . 
I= 1, 2, 

3RI • , . , NR 71-80 El0.4 PRZ (I, 8) PRZ(I,J) = --az J 

H. NS sets { 1-10 El0.4 CPSK(I ,J ,1) 2nd Order Sens. Coef. 
of NK cards . . relating .K to SI; . . . 
each (omit . . . 
if NS= 0) 71-80 El0.4 CPSK(I,J,8) CPSK(I,J,L)= 

as I 

I=l, 2, ... NS cl Kil\ 
J=l, 2, ••. NK 

' 
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TABLE XII (continued) 

--· 
Card Fortran Parameter 

Card Column Format Symbol Description 
---------· 

I. NR sets { 1-10 El0.4 CPRZ (I ,J, 1) 2nd Order Sens Coef. 
of NZ cards relating f to RI; 
each (omit 
if NR = O) 71-80 El0.4 CPRZ(I,J,8) 3R1 

CPRZ(I,J,L)= 
3ZJ3z1 I=l,2,, •• ,NR 

J=l,2, •.. ,NZ 

s. Parameter 
Estimate 
Cards 
A. For K 1 Il Kr 
(use as many 2 Il KJ Designates particular 
cards as 3 Il Ku parameter estimate 
needed; 6 4 Il Kv (see Equation E.2.Sa) 
estimates 5-13 E9.4 El[I,J,U,V] Parameter Estimate 
per card) . . . 
(omit if . . . 
NS= O) . . . 

65 Il Kr 
66 Il KJ Designates particular 
67 :n Ku parameter estimate 
68 Il. Kv (see Equation E.2.Sa) 

69-78 E9.4 El[I,J,U,V] Parameter Estimate 
80 ri IS = 1 if last K parameter 

card 
= O otherwise 

B. For Z 1 Il Zr 
(use as many 2 Il Z3 Designates particular 
cards as 3 Il Zu parameter estimate 
needed; 6 4 Il Zv (see Equation E.2.5b) 
estimates 5-13 E9,4 EZ[I,J,U,V] Parameter Estimate 
per card) . . . 
(omit if . . . 
NR = 0) . . . 

65 n Zr 
66 Il ZJ Designates particular 
67 Il Zu parameter estimate 
68 Il Zv (see Equation E.2.Sb) 

69-78 E9.4 E2[I,J,U,V] Parameter Estimate 
80 Il IS = 1 if last Z parameter 

card 
= O otherwise 



E.4 Program Output. Each output of the VPK Program is clearly 

labeled so that it can easily be interpreted. In'general, the output 

list consists of the following parts. 

(1) Title: taken directly from Title card 

(2) Data Information: card by card listing of Data Information 

cards 

(3) Sensitivity Coefficients: complete list of sensitivity 

coefficients 

(4) Uncertainty of PG 

A. First Order estimate of E[PG] 

B. Second Order estimate of E[PG] 

C. Estimate of percent error in first order estimate of E[PK] 

D. First order estimate of Var(PG) 

E. Second order estimate of Var(PG) 
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F. Estimate of percent error in first order estimate of Var[PG] 

G. Ratio of SD(PG) to E(PG) 

(5) Variance Components 

A. List estimates assumed for each parameter associated with 

.! and ,& 

B. List variance components contributed to each parameter 

estimate 

C. List percentage of Var(PK) due to each asswned parameter 

estimate 
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