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PREFACE

Tnis thesis is concerned with‘investigatingvuncertainties assoc~
iated with probabilistic models and developing a procedure for estimat-
ing a measure of that uncertainty. In particular;'the response, PK’ of
a general probabilistic model is assumed to be'ayrandom variable and the
variance of this.randcm variable.is chcsén‘as a measure Qf-the uncer-
tainty of the probabilistic_modei.'bErrors in the forms of,the models
are not considered in this‘thesis sovthat;theﬁvariance of Py is evalua-
ted in terms of thé uncertainties asscciated with'the Basic random var-
iable inputs of the model. - These latter uncertainties are assumed to
be directly dependent upon empirical data used to estimate the parame-
ters associated with these basic random variable‘inputs.

The research for this thesis was accomplished under the general
Joint Munitions Effectiveness Manual contract of Oklahcma State Univer-
sity from the Departﬁent of Defense. The thesis serves as a final
report of the work accomplished under that section of the contract
covering this research. Quite appropriately, the examples presented
are of probabilistic weaponsveffectiveness models‘and reflect the appli-
cability of the thébry developed here to the evaluation_of the uncer-
tainty associated with these models and their tandom vatiable inputs.

I would iike to take this opportunity tc‘expréss my appreciation
to my major thesis advisor, Dr. A, M. Breipohl, for his able guidance
and assistance throughcut the deveiopment of this.thesis. Furthermore,

I would like to thank the other members of my thesis committee,



Dr; B. L. Basore, Dr. D. E. Bee, and Professor Pf A. McCollum, for their
excellent counsel aﬁd encouragement., |

In addition,;I-would iikeltoethenk the staff of the Office of Engi-
neering Research for their assistance; in farticuiar, Dona Davenport,
for her typing excellence and pa;ienee;:vb

Also a special word of graditude is in‘order for the staff of the
Oklahoﬁa State University Field Office at Eglin Air Force Base for their
generous aid to my‘fesearch efferfsg-iﬁ particuler, the_excellent tech-
ﬁieal advice end personal inte:est‘ef Jerxy Worsham.

Finally, I would like to express_apsreciatien_to my wife, Shirley,
and our son,;Andy,‘for their ceaseless understanding, encouragement, and

patience throughout the preparation.of»this‘thesis.'
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CHAPTER 1
INTRODUCTION

1.1 Statement of the Problem. The behavior of a physical system is

usually described‘by a series of equations which relate the system
response to the parameters_of‘the system and exgernal'stimuli. . In today's
complex society a great number,of‘systems exiéééthat are modeled in prob-
abilistic terms; that is, there is a certain &egree.qf randomness inherent
in the system that‘dictates uncertainty in the response. 1If the mathe-
" matical modél chosen to represent the systém includeé provisions to
account for the randomness of the system, one_terﬁs the model probabil-
istic; otherwise, one refers to it as deterministic. The prime purpose
of this thesis, then, is to,investigate the uncertainty associated with
probabilistic models and to develop a,probabilistic sgﬁsitivity measure.
Generally this measure of uﬁcertainty will descpibe,thé accuracy of
a predicted response of a prqbabiiistic quel.v Furthermore, the results
and methods employed in such a basic énalysis can be useful in locating
the principal sourcés of error in the response and thus indicating where
more care‘should bé taken in specifying tHe_pafameters which describe
the random variables to be used as system inputs. Finally, a measure of
uncertainty can aid in the comparison of two or‘mbre\probabilistic models

4

to determine if the models can be used interchangably.

1.2 Relationship between Probabilistic_and Deterministic Models.

Since this thesis proposes to expand the present techniques used in



deterministic models :to. encompass the broader field of probabilistics,
it is advantageous: to compare‘thése two types of models and indeed to

show that a deterministic model can be Qiewed as a special case of a.

probabilistic one,

Suppose one considers the following general notation: .

n = expected output of a system S = : (1.2.1)
X= (X1, X0, « ¢« o Xn) = n-dimensional random vector (1.2.2)
input to system S
x = (x1, %, ..+ 5 X_) = n-dimensional vector of expected (1.2.3)
: values of X
fy = Joint probability density function of X

Define Z to be a functional relationshipvamong the components of X.
Z = q(X19 Xosy o o ny Xn) ’ ) ‘ (1.2.4)

The randomness of X thus implies that Z is also a random variable. Z
might then be termed a description of the behavior of system S for an
input of the randoﬁ vector X. The;fixed'pdint n then would represent
the expected4value or most probable feSponse of the system; i.e., E[Z].

In notation one thus writes

B[z} =/ 7 v 0 f a@fg(eda (1.2.5)
where o = (01, 025 o + .y “ﬁ)
do = day doy . . . . ddn =

Equation 1.2.5 then represents the general form of a probabilistic model

which is considered in thi§ thesis.



Consider now the change in Equation (1.2.5) when X is assumed not
to be a random vector. - The joint probability function of X can now be

rewritten (1)

fzg(xl_, Xos o o oy Xn) = §(X; - X’l) S(Xz - Xz) . e s '5(Xn - Xn)

(1.2.6)

where X is now assumed to be the ndminal value of X and ¢ denotes the
familiar Dirac delta function. If Equation 1.2.5 is evaluated assuming

fX is of the form. of Equation 1.2.6, we obtain

n = q(X1, X2y o o ey Xn) v » . (1.2-7)

Thus one sees that n and x are related deterministically as one would
expect. The idea of a deterministic model being a special case of a
probabilistic one is not intended to be preaented‘here as an original
idea. It is instéad presented to in some way. justify the extension of
deterministic sensitivity»analysis_to that concerned with probabilistic
models. .

One has to admit that the representation of any physical system as
known numbers is an idealization which may only be taken as a first
approximation to reality. The representation of the parameters of a
system as random variables is considered a more exact mathematical model.
However, in many systems where the variation of the parameters seem neg-
ligible or probability distribution functions of the parameters (random
variables) are not easily obtained, a deterministic model is often
selected to describe the system. Even under these conditions it has
become apparent that it is important to evaluate the degree of corres-

pondence between the mathematical model and the real system. . No physical



system can presently by envisioned in which its parameters will abso-
lutely coincide with the parameters of its mathematical model. It thus
becomes important to determine the influence of the variation of the
parameters on the behavior of the system. The ideas of sensitivity anal-
ysis were born out of this need.

1.3 Review of Sensitivity in Deterministic Models. Extensive lit-

erature exists pertaining to the sensitivity of deterministic systems to
variation of parameters. This is especially true in the field of auto-
matic control systems where this sensitivity to the variation of param-
eters plays an important role in the analysis and synthesis of these
systems. Most sensitivity studies presented in the literature depend
heavily on perturbation techniques (2), (3). Basic to these developments
are the computation of sensitivity coefficients (sometimes referred to
as influence coefficients) which are defined as partial derivatives of
the particular response variable with respect to the particular parameter
variable (4), (5), (6), (7), and (8).

Other less widely known approaches to sensitivity include those
associated with tolerance regions, the theory of invariant imbedding,
and the game theory technique (9), (2), (10), and (11). Although these
three approaches are both interesting and useful, it is felt that the
classical perturbation techniques are more readily adaptable to proba-
bilistic models and thus these three ideas will not be discussed further
at this point.

Suppose one then returns to the ideas associated with the first
approach listed, namely that related to perturbation techniques. As
stated previously, the determination of sensitivity coefficients is fun-

damental to a sensitivity analysis. The basic concept of a sensitivity



coefficient can be traced to Bode (12) although the sensitivity coeffi-
cient he presented is the reciprocal of that applied in modern feedback
theory. For an extensive list of classical formulas pertinent to the
calculation of sensitivity coefficients, the reader is referred to ref-
erence (5). In addition, one of the present day leaders in the field
of sensitivity analysis, R. Tomovic of Yugoslavia, gives a brief but
informative discussion of "The Role of Sensitivity Analysis in Engineer-
ing Problems" in which he discusses the state of thg art (6). For a
more detailed survey of sensitivity analysis in control systems, one is
urged to consult Kototovic and Rutman (4). This particular paper pre-
sented an excellent bibliography of no less than one-hundred-and-fifty-
seven (157) entries,

Passing now from the general to the particular, suppose for conven-

ience of notation one lets

n =.q(X1’ Xog o o oy ‘xn) ' (1.3.1)
Axi = incremental variation from the assumed or desired value
of x, (1.3.2)
i

where now q represents a deterministic model of a system linking the

variables x;, X2, . . «» X to the response n. Then define
9
Ty = (_xg_)l
i8x) =8xp=...=0x,=0 (1.3.3)
x4 = desired value for i =1, . . ., n

where Ti equals the sensitivity coefficient associated with X, .
It might be well at this point to mention a slight modification of

the defined sensitivity ¢oefficients in Equation 1.3.3 used particularly

in feedback control theory. The sensitivity of an overall gain g with



respect to a given parameter k is defined by the equation which follows

where d represents the derivative operator

s§ - L2088 | | (1.3.4)
g =8
k= K

ky

which, as mentioned previously, is .the reciprocal of that introduced by
Bode (12), (5), (13). 1In the notation 1,3.4, gy and kN are considered
as the nominal values of g and k respectively. Now Equation 1.3.4 can
be written

g _dg k dg. kN

=gN g:gN

-y ke iy

(1.3.5)

= 09

nhich relates that the sensitivity of g with respect to k is the percent-
age change in g divided by the percentage change in k whicn produces the
changg.in g assuming all changes ére'differentially smsll._ Although

this modification is not applied directly in this paper, it.appears fre-
quently in the literature and is presented here to point out another

form of the standard sensitiﬁity coefficient defined in Equation 1.3.3
(13), (5), and (4).

The reason for introducing sensitivity coefficients as a measure of
sensitivity is justified when it is realized that in a great many cases,
changes in the system behavior due to parameter variation can be approx-
imated (from a first order Taylor Series Expansion of q about the true
value of the x's) as

n R
Aq = L Ti Axi (1.3.6)
i=1 '



If one wishes a more accurate estimate, sensitivity ceefficients can be

determined for the (k + £)th order (7).

k+4
3
Tik,jz Tk 8 | (1.3.7)
. 9X,9dX, -
i77] Axyp =bxp = . . .= 08xy =0
x; = desired values»for i=1, e sy 1
x.j = desired values for j =1, . . ., n

It should be noted that to this point only variation in system
behavior in terms of Ax:.L has been discussed; where Ax; is the difference
between the acfual and the desired values of the system parameters. This
is the classical deterministic measure approach. A second, and to this
author, more accurate approximatioﬁ involves a probabilistic measure and
is based on finding the expected value of the mean square error of out-
put variation.. The idea was first offered by Broome and Young (1l4) and
extended in more general terms to calculating the variance of a system
output in terms of the respective variances of the associated parameters
(random) by Breipohl and Campbell (15) and Evlanov (16).

Fundamental to these latter two presentations is the assumption
that the parameters related to the system are indeed random variables

and that Equation 1.3.1 should be written
Q= q(Xy, X205 « « «5 X)) = qX) (1.3.8)

where Q and all X; are random variables with

E[Xi] x; = expected value of Xj (1.3.9)

1

and X = (X1, Xp, + ¢ o Xp) (1.3.10)



If one. expands Q about x in a first order Taylor series expansion one

obtains

3Q
aXil(xi - x4) | | (1.3.11)
= X

Taking the expected value of Q results in

E[Q] # q(xpy %2, « « 5 X)) (1.3.12)

k .

which corresponds to the deterministic model of Equation 1.3.1 if indeed
the nominal values of the x's are taken as the most probable or expected

value of the X's. Defining the variance of Q as

var(@) = E[Q- E(@)2] | | | (1.3.13)
and the covariange.of Xy and Xj gs

Cov(Xy, Xj) = E[(X; - E(¥;)) (X5 - E&,)] | 31w

one has the familiar result:

Var (Q) 5'; IZI (%%j)(%%jﬂcov(xi, X3) v _ (1.3.15)
i=1 j=1 1 J

Var (Q) is thus a measﬁre of the sensitivity (or uncertainty) of the
system with respect to the variables Xj5 1= 1, 2, .. ., n. It should
be pointed out.that the probabiliétic_measures which have beeﬁ applied
in this section have been, prior to this time; related only to deter-
ministic models and not to probabilistic models as discussed in the
remainder ofvthis thesis.

1.4 Scope of Study. As has been stated previously in this chapter,

- the basic purpose of this thesis is te investigate uncertainty in



probabilistic models. The general approach employed - expands the ideas
presented in the previous section on sensitivity analysis of determinis-
tic models to the more general case of probabilistic models and investi-
gaﬁes the use of the variance of the system output .as a measure of
uncertainty. Chapter Il presents various system probabilistic models,
the first of which is a genéralbmodél used to introduce notation
“employed. Then errors associated with assumed density function param-
eters are investigated for two quels. Finally other sources are con-
sidered including those-related-to random conditional,loss_functions and
stochastic tables. Chapter III is devoted to applying the techniques
developed in Chapter II to two examples from the field of weapons effec-
tiveness. The probabilistic modelsbinVOlved are_essentially those used
for computing the prbbability or, as will Be pointéd éut, the conditional
expected probability of accomplishing a certain degree of damage to a
farget by air delivered weapons. The variance of this conditional prob-
ability is taken as the measure of the uncertainty and is related to. the
variance of the basic randomvvafiable inputs of the model. . Chapter IV
states conclusions drawn from.the first_fhree chapters and relates sug-

gestions for further study in the general areas covered by'this thesis.



" CHAPTER II
DEVELOPMENT OF SYSTEM CONDITIONAL PROBABILISTIC MODELS

2,1 Introduction.  The prime purposepof this chapter is to provide

a working theory for the investigationvqf uncertainties in probabilistic
models. Afterpthe general netetion'pertaiqing,to cendifionalpprobabil—
istic models is presented, a theoretical approach‘te obtaining a‘measure
of this unceftainty is examined. Appfo%imations are then made reletive
to the theofetical medels dictated by’particular‘sitpetiOns, The tech-
niques developed in this cﬁaptef afe theﬁ appliedpin Chepter IIT to
specific examples in the fieldvof weapéns effectiveness. :

Although  there are nﬁmerous types of probabiiisticvmodels which
could, at this point, be discﬁesed, a representative‘model has been
chosen which iS'dften encountered, eepeciaily in the area of weapons
effectiveness from‘which the examples of Chapter III are drawn. The
model'selected iﬁvolves the calculation of the expecﬁed value of‘a func-
tion of a random vector. . Suppose one‘initiallf considers the random
'vector_g = (X1, X9y = + 4, Xﬁ) with joint probability density function

fX' Now let D be a function of X; i.e., D1(X), so that the conventional

form of the probabilistic model specified can be written:

E[D;] = / Di() £, ax | (2.1.1)
%
where d)A = di1, drp, . . ., dAn and fn represents an nth order multiple
: —00
integral.

10
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In general, however, the probability density function fX depends ina

known way on several parameters, say aj, aé, « e ey aq so that in a
broader sense Equation 2.1.1 represents a conditional'expected value and

should be written

E[D1|a1, oy « « e aq] = [, D1 (D fx‘(llal’ a2s + e ey aq)»d& (2.1.2)

It'shouldvﬁe noted that the conditionalvéxﬁecfed value of Equation
2,1.2 does not represent a random Qafiable in the form shown, and thus
to speak of a measure of uncertainty in this value does not seem rele-
vant, ﬁ0wever; although the form bf Equétion 2,1.2 is often assumed to
denote a particular situation, a much more generai form which is usually
a better representation of the actual case, is obtaingd by considering
‘the parameters of fX to be random.variables,_namely Ar, Agy oo oy A

q
For notational convenience these A's are termed random variable param-

eters. One then can write the general form of the probabilistic models

investigated in this thesis as follows:

InD W) £, AlA) dar (2.1.3)

where A = (A}, Ay, . . ., Aq).‘

. One should observe that the notation fX|A

as used in Equation 2.1.3
is slightly different from that usually encountered in texts concerning

conditional density functions. Normélly'the A in the argument of fXI

A

is written in small type as a particular value; however, in this consid-
eration the identity of A as a random vector is retained and the condi-
tional expected value in Equation 2,1.3 is expressed as a function of

the random variables Ay, Ay, . . .y, A, For notational purposes this

a
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conditional expected value is termed a random variable P, and the func-

A
tion it represents, Pj; that is,
P, = P1(A) = E[D;[A] (2.1.4)

A

The remainder of this thesis deals with the investigation of the uncer-

tainty associated with random variables of the general form of P It

Al
should, however, be pointed out that throughout this thesis the forms

of the models used are assumed fixed; that is, errors associated with
the forms of the models are not conéﬁdered in this thésis.

Before proceeding to a particular model, suppose one briefly inves-
tigates the uncertainty associated with the general probabilistic model
of Equation 2.1.3, and in so doing introduces the measure of uncertainty
discussed in this thesis. Recalling Equation 2.1.4 it is apparent that

one is actually concerned with calculating the uncertainty associated

with P,. Taking the expected value of PA from Equation 2.1.3 one obtains:

fq P(a) fé‘g) do (2.1.5)

-C0

E[R,] = E[E(D; |A)] =

where fA is the joint probability density function of the A's and

(G, G9y o o oy G _) (2.1.6a)

o
- q

da

doy dap . . . dqq (2.1.6b)

oo

Pi(a) = J, D1 (V) fXIA

(Alo) da (2.1.6¢)
Now, in general, when speéking of the uncertainty associated with
PA’ one is interested in the expected error between PA and the expected

value of PA; that is, one needs to know how much faith to place in a
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particular sample value of.PA, say PA*, where the asterisk (*) indicates
a particular sample value. Since the variancé of PA gives a measure of

the concentration of PA about the expected value of P,, Var (PA) has been

A’
chosen as the measure of uncertainty associated with P, examined in this

paper. One calculates this variance for the general model as follows:

L]

Var[Py] = E[(Py - E(BA))?] -~ ‘ (2.1.7a)

co

- Var[P,] fq [P1(a) - E(PA)]z £,(0) da : (2.1.7b)

OO0
or in terms of D;

[=] [=]

var(py] = Sol £ DDy, Glo) @

[=] =]

- : 1€ ' 2
_iq[_in Dl(l)fllé (zlg dl]fA (8) dg} fé (@) da (2.1.70)
Although Equation 2.l1.7c relates the basic form of Var(PA) for the
general model, the rest of this chapter presents modifications to this
measure of‘uncertainty which, as is shown in the next section, depends

directly on the particular model of P, investigated.

A

2.2 Model 1 - Theoretical Model. Having introduced in the previous

section the basic .terminology associated with conditional probabilistip
models, the discussion of this section focuses on a particular‘theoreti—
cal model and relates the uncertainty of its conditional random response
to the uncertainties associated with certain basic.random‘variable param-
eters of the system model. An ideal approach to computing uncertainty

is first considered and then approximations are intrdduced which are

necessitated by the mathematical aspects of the models themselves.
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For this theoretical model, consider again the random vector X
described in the previous section and the general form of the probabil-

istic model of Equations 2,1.3 and 2.l1.4.

PA‘= E[D;|A] = _in D1 ()) fXIA

Qo (2.2.1)

where again D; is a function ofpg. Furthermore, for this particular
theoretical model, additional knowledge is assumed, namely that X is a

function G of s random variables Y;, Yo, . . ., Ys:‘
X=601, Yz, « « .5 Y) ‘ o (2.2.2)

where Y;, Y,, ; . ey YS have a joint probability density function (JPDF)
depending upon the random variable paraﬁeters By, B, . . ., By which in

turn have a JPDF of fB‘

- - Now consider the following def-
1s BZ’ o . "vB g : B : &

m
inition for notational convenience: -

Y= (Y1, Y5, « .+« ¥) - - (2.2.3a)

B=(B, By, . . ., B) o (2.2.3b)

m

Since additiomal knowledge is'now_assumed concerning PA’ this knoﬁl
h3uédge needs to be,inéorporatéd into the calculation of the Var(PA) which
L;as introduced in Section 2.1 as the measure of uncertainty associated
with PA. -As a first step, consider the relationship between A and B.
Now one reasons that if X_depends ﬁpon Y, and Y in turn depends upon B,
then the knowledge of X and its parameters A must depehd basically upon

the random vector parameter B. In general then the following assumptien

is made:

A, =8, (B i=1,...,4 (2.2.4)
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that is; Ai is assumed to be a function of B. In vector notation, one

writes Equation 2.2.4 as follbwst
A=g® - 3 | (2.2.5)

Now since each Ai of this theoretical model is assumed to be a
function of B, the éonditional,denSity of X appearing in Equation 2.2.1
could be fundamentally rewritten as a conditional dénsity conditioned

on B; that is,

f

xla” xlg® (2.2.6)

which 1§.termed ?&LE

Thus an alternative way of viewing the conditional expected value of D;

for this theoretical model is:

E[D1[B] =/, D1V £, alp a | | (2.2.7)

X|B

Suppose one now denotes the conditional expected value of Equation 2.2.7

as PB and the function it represents as P, so that

P, = 2,(®) = E[D;|B] - | (2.2.8)

PB then represents a random variable which is the conditional expected
value of D; conditioned upon the basic random vector‘g,v One now proceeds
to calculate Var(PB) by first computing the expected value of P, as

follows:

B[Pl = J / D1 x|B (A|8) £5(8) drdg (2.2.9)
where again the notation 8 = (Bj, B2y + &« ., Bm) and dg = dB; dB; .

dBm is employed. The variance of P, can then be calculated directly:

B
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Var(PB),

E[(P, - E(®p))2] _ (2.2.10a)

Var (P) c.;m{Pz(B) - E(PR) )2 £o(R)dp | (2.2.10b)
Var (PB) as calculated in Equation 2.2.10a is»the measure of uncer-
ﬁainty'in PB of the theoretical model disc@ssed in‘this section. How-
ever, thevform of Equation 2.2.10a is rather complex and assumes that
the forms of fx, fY’ and fB are known. It might be notéd he?e that a
Bayesian approach :; lea:ning these dénéity functions from eﬁpirical
data is presented in section 2.3. For now though, consider a more sim-

plified approach to approximating Var(PB).

Recalling Equations 2.2.7 and 2.2.8 one can write .

P

g = P2(B) = E[D;|B] B . (2.2.11)

Now make the following definition:

(2.2.1éa)

]
o

E[Bi]

Var(s, ] v, , (2.2.12b)

1

If one expands P2(§) about 2 = (b1, by, « . «, bm) in a Taylor

Series Expansion, one acquires

Py = P2(B) = Po(b) +
i

[ B d=]

9B

é-I:—Z-S--B--)l(Bi - bi) + Remainder (2.2.13)
1 i :
B=

Now for the present assume that the remainder is negligible in compari-
son to thé first order terms, an assumption which is investigated more

fully in Appendix A. Suffice it to note at this boint that if the
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‘remainder of Equation 2.2.13 cannot be neglected, a similar approach to
that which follows can be used but will necessarily be more complex due
to the additional terms of Equation 2.2,13.

Taking the expected value of P,(B) from Equation 2.2.13 yields

E[P,] = E[P2(B)] * Po(b) » o (2.2.14)
Defining Var(PB) as

= - 2 '
»Var(PB) E[(PB E(PB)) ] , | _ (2.2.15)

one can calculate directly

m 3P (B)- , : ’
Var(By) = E[{igl-——————l(gi - b, 02 | - (2.2.16)

BBi ' B=b

m m dPp(B) 3P,(B)

Var(P,) = I I |cov(B,, B,) (2.2.17)
B a1 gm0 B 3B, 1]
1 i B
where Cov(Bi, Bj) is the covariance of Bi and Bj'

As a particular example of the calcalation of the measufe of uncer-
tainty associated with the application of the theoretical mpdel discussed
in this section, considar the following form often encountered in phys—-
ical models, particularly in the area covered by the applications of
-Chapter III.

Let X be a random vector with probability density function depend-
ing upon a random vector. M, répreseqtihg the mean, and a random covari-
ancevmatrix E: Further assuma that X is-a function of the random vector
| Y with JPDF fY which is dependent upon the random vector B.. Now M and V

can be evaluated in terms of B as
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M= g (® =,gM(Bl,'Bz,‘. . s B) . (2.2.18a)
(2.2.18b)

!=Ev(_l_3_) =B_V(B1’ B2, D Y Bm)

Equation 2.2.18 then corresponds to Equatioﬂv2.2.4 where (M, V) are
a subset of the Ai's. In particular for X = G(Y) as in Equation 2.2.2 M

.and V are evaluated as follows:

M= gy ® = S @B e T (2.2.192)

[

V= gy® = (G - @) £y (:_lg)ly ar (2.2.19b)

Again consider the conditional expected value of a function of X,

‘namely D(K), conditioned on B.

E[D[B] = / D) fy|p A1B) o (2.2.20)

as representing the random.variable associated with Equation

Defining PD
©2.2.20 and P3 as the functional relationship between PD and B one can
write

P, = E[D[B] = P3(®) | - (2.2.21)

Following the form of Equation 2.2.17 one can write the variance

of PD directly:

o 3P 3P
Var(ep) = X ———0(33;)g= cov(By,B,) | (2.2.22)

Z(
{ 3B

1 4=1 °°1

can be written as a function of M and ¥V, say Py(M,V),

Recall that PD

similar to the form of Equation 2.2.1 where M and V correspond to A's,
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(AlM, ¥) dr

Py = Pu(M, V) = _f D1 fy|y, v (2.2.23)
3By -
Now one can evaluate EE— by the application of the chain rule for
differentiation,
%= (%?*‘%;ig’l o oW
i = 1 = i M = E[M] ' - _
v = E[V]
B=b

which is a shorthand representation of the following:

0
3P, n )2 gm.k n n 9P, ogvy,
== (2 Sik"'a—B“* zl 2213.‘71:—2'33 ) | (2.2.25)
1 k1 1 k=l 2= Yw=EM
Vv = E[V]
B=b

If Equation 2,.2.24 is substituted into Equétion 2.2,22 one obtains

_ (BPD 38y . 9P agv)_
D’ ) g=p. M 9By T 9V 3BT

BPD Bgv _
G 2B, oy aBJ)‘“"(‘]’i» B,) (2.2.26)

Another interesting way of obtaining Equatien 2.2.26 is to consider
initially Py as a function of M and V and expand Py about (E(M), E(V))
in a Taylor Series expansion similar to that of Equation 2.2.13. The

Var(PD) obtained corresponding to Equation 2.2.22 is as follows:
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BP' BP
Var(Pp) * )2| Var [M] + ( )2| Var[v] .
M= E[M] M= E[M]
Vv = E[V] vV =E[V]
' aPD 2P | |
+ 2 aM BV ] cov(M4, V) v EERE (2.2.27)
M = E[M] - ’
Y-kl

Recalling Equations 2.2.18 and 2.2.19 one can expand M and V about

a first order Taylor Series expansion to acquire:

' 2 oy ® (B‘ 5 ) o (2.2.28a)
M=g (b)) + I ;- ). ‘ ‘ .2.28a
- = M i=1 aB:‘L S § i . ‘ | ‘
: —=_1)_ .
oo m 3gv(§)‘ .
vigy® + I —p— | By -byY) | - (2.2.28b)
i=1 i 5 . ‘

Again a higher order expansion could be used but is not at this

point for notational convenience. A criteria for choosing what order

approximation is néeded' for any particular case is given in Appendix A.

From Equation 2.2.28 .one can caluclate the mean and variance of M and V

directly as follows:

EM] = g ® - (2.2.29a)
E[V] * g, (® | | o (2.2.29b)
| ‘m m 3gy(® g® ‘ o |
var{M] = I I () (53 ) |Cov(B,, By g (2.2.29¢)
dg,(B) 9g,(B) ' . '
Var[v] 5 T T () ()| Cov(s,, B (2.2.290)

i=1 3= P10 Py L
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m m 3g,(B) 3g, (B)
CoviM, V1 = I I ( ag ) ( 'aV
i=1 j=1 i oB

Y|Covez, By (2.2.29e)
B=b

——

Finally, if Equation 2.2.29 is.substituted into Equation 2.2.27, one

can calculate Var(PD) as followé:

oP n n 38M ng

~ ¢ _Dyo ; .
Var () = (ay_) | I L g e ]Cov(Bi, Bj)
1=1 J=1 i ] B= -
M= gy(b) ==
V=1g5,®
P n n 9g, og :
D, » v °Sy
* Gy I.‘E Z 35, 35, |Cov(By, B,
Tl T gy
M= gM(Jz) ==
V=g, ®
P n 98 .
(-——)(—)I : o3 BBM 5 |covs,, B, (2.2.30)
i i e
M= gy®) ==
V- gv<l>_)

which reduces directly to Equation 2.2.26.
One sees from Equations 2.2.26 and 2.2.30 that the sensitivity

measure for P_; i.e., Var(PD), can be approximated by a sum of the var-

D’
iances and covariances of the Bi's weighted by two types of sensitivity
coefficiepts: one linking PD to M and/or V and one, in turn, linking
M and/or V to B. |

In this section, then, a theoretical approach tO‘OBtaining a meas~

ure of the uncertainty associated with probabilistic models has been

presented. 1In addition, an approximation to this theoretical approach
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wﬁich was dictated by the complexity of the theoretical model has been
investigated. It is not proposed that this approximatioh is the only

method in which the uncertainty related to P_ can be linked to the uncer-

D
tainties of the basic random variable of the models, nor is it asserted
that this must be the "best" way, however'oﬁe>wishes to define '"best.”

.Qn the other hand, though, a practical approach has been presented which
is similar to the detefﬁinistic measures 6f séngitivity; Furthermore,
this approach proves to be ﬁarticularly simple if no difficulty is
involved in obtaining the éensitivify coefficients (paftial'derivatives)
and if covariance information is easily attained.' In most éituafions,
however, covariance information ié usually_unkﬁown'ahd must be estimated
from empifical data. The modifications.to VAr(Pk) when‘estimators are
employed'are covered in the next sections.

2.3 Estimator Approximations. Oftenfih physical situations either

or both of the density functions fA and fB is unknown and must be learned
or estimated from experimental data, This implies. that if these estimated
densities are used in the theoretical model, then the Var(PB) of Equation

2.2.10b so calculated is now only an estimate of Var(PB); call it Vér(PB).

In this section a Bayesian approach to learning fA and fB is discussed

and the results are applied to calculating Vér(PB).

Furthermore, in the approximation»used to evaluate Var(PD) in the
previous section, the B values available usually correspond to estimators
of the various'parameters of Y. ‘When an actual set of data is taken,

Bi takes on a particular value, say bi*, which is an estimate of the ith
particular parameter of fY given the data available. ' The covariance

terms of Equation 2.2.26 and 2.2.30 then correspond to covariances of

the estimators which must in turn be estimated from the data. If these
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terms are used, and indeed one seldom has a choice, an estimated Var(PD)
results which is termed Vﬁr(PD). The second part of this section dis-
cusses the use of estimators to calculate Vér(Pb).

Bayesian Learning. As mentioned in the previous section, fA and

fB are seldom, if'ever, known in a physical problem and this necessarily

complicates the use of the theoretical model of Section 2.2.-‘Supposeb
as a first simple example, one considers the general theoretical model
of qug;ion 2.1.3; th;t.is;.g_is not assumed at this poiht to be a func-
tion of Y. In order to caiculate E[PA] in Equation 2.1.5 and Var[PA] in
Equation 2.1.7c, ohe is required to know fA‘ Assume thht the fofm pf fX

is known but that the only a&ailable»density function of A is'fOA which
18 based on previous experience with random vectors such as A. Suppose
a Sample value of X is taken, say x;, and Bayes' Theorem is subsequently

applied (17).

f-)-{-IA(El '.‘.‘7..) foA(ﬂ)

fA|Z1(E|51) = — (2.3.1)

ffx |A(?£1 I I')fOA(l) dt

© aeQD e

3

Now fA1x1 is the a posteriori density function of A after the sample

—

- X; is taken and becomes f1 that is the a priori demsity function of A

A
before a.second sample x, is takeh. This process can be repeated for
each independent sample faken, each time using the previously calculated
a posteriori density of A as fhe preéent a pridri density function.
Aftér many Sambles, under rather éenefal conditiohs,‘the_a posteriori
density function of A can be shown to élosely approgimate fA’ a fact

that is discussed by several authors and will not be inveStigated in

further detail at this point (17). 1t should, however, be added that
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after several samples have been taken, the dependence of the learned

or estimated fA upon fOA is usually not great (18).

Assuming that a density function of A was learned from z samples,

say EA’ where E

, one could calculate an estimate
z

of-E[PA] and Var(PA) by substituting EA into Equation 2.1.5 and 2.1.7c¢

= f
A éjxl, KXoy o o oy X

for fA obtaining
B[Pyl = JgPil@) £y (@ dx N (2.3.2a)

Varl®y] = g { IiDi @y, Gladr

o0 oo

- q[_gfonnl(1)f_&’é(_r_lg)dr]EA(@dg}ng(g)dg_ (2.3.25)

QO

Var [PA] now provides a measure of the uncertainty associated with

PA conditioned on the data used to calculate EA'

Consider now the more complex case of Equation 2,2.10b where it is
assumed that fB must be learned from empirical data. If fY is assumed

known and samples of Y are taken, the same procedure as that used for

A

£ can be followed to obtain an estimate of fB’ say f

A However, suppose

B

due to the nature of the variables inﬁolved, samples of X are selected

rather than of Y. If the assumption is made as in Equation 2.2.5 that A

equals g(B), one can calculate EB directly from EA_by observing that

f(T(b)lxl, Xgy o0 oes X)L
% - f(b|x1, Koy o v ey xz) = Alxy, X9, . . e xz) fA
_B_ B X1y X235 « o o _Xz ’J‘ .= l-J—l
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where J represents the Jacobian of the transformation between B and A.

Another approach to calculating EB would be to assure initially an

a priori denéityvfunction of f,, say fg, and apply Bayes' theorem

0

directly. If one selects a sample; say X, one. obtains

£opE1lOE (8
S X|B='=""0B
fplx, @lx1) = ils (2.3.4)

Q0 -

= (x1]|g(B))
where fKLE(xllg) = ?&Ig(&j

The function f representé a posteriori density function of B

B|X;

and if one proceeds with the iterative process, as previously with fA’

a density function of B can be learnéd, say %B' One should note that

—

this EB'should be equivalent to EB of Equation 2.3.3 if the a priori

. density function f_., 1s obtained from f., by a transformation similar

OB "0A

to Equation 2,3.3,

Substitution now of the learned density of §_int§ Equation 2.2.10b
can provide an estimate of Var(PB) as Vaf(PB).b It should be poiﬁted
out at fhis point that some degree of difficulty may be encouﬁtered in
estimating fB due to the nature of the transformation involved; for
example, J might be equal to zero. However, sipce the Bayesian learning
technique is not used in the examples of this thesis and has béen.pre-
sented here oﬁly briefly in intréduction, these difficulties will not
be pursued further at this point.

However, a method for applying Bayes' learning to facilitate the
computation of an estimate of the measure of uncertainty associated

" with the theoretical model of 2.2'has been briefly introduced. This
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method, as has been stated, is not applied in Chapter III due to the
complexity of the problems involved there.:

Estimators of Unknowns. In most practical situations the B values

appearing in Equations 2,2,26 and 2,2.30 correspond to estimators of the
parameters of fY. For the purpose of thié thesis, thesejESfimators are
assumed to be minimum variance unbiased estimators MVUE. When a set of
data has been taken, estimators of'Cov(Bi, Bj) and E[Bi] can be computed
(again assume MVUE) and substituted for the parameters in Eqﬁations
©2.2.26 and 2.2.30. The resulting.eétimate of Var(PD), Véf(PD), is con-

ditioned upon the data used to calculate these particular parameters

estimates. If the following definitions are made

N

Cov*(Bi, Bj) estimate of COV[Bi, Bj] - = . (2.3.5a)

b*

estimate of E[B] ' : (2.3.5b)

one can write a modification of Equation 2.2,25 as

N 3P 9 3P 2
Varp) = § Bl M, D g")(BPD i agV)}Cm’;(B B,)
D .0 VoM 9B 9V 3B,” “3M 0B, | oV 9B, i’ 73
i=1 j=1 i - i - j - j #
. - M=g,(b)
V=g, (5
%V
B=b

(2.3.6)

The form of Equation 2.3;6.represents the general measure of uncer-
tainty in PD applicable to the examples of Chapter III and provides
sensitivity information linking PD to the experimental data used to
estimate the basic parameter associated with the model.

2.4 Estimator Model. 1In previous sections the discussion was

devoted to an ideal theoretical model and presented both an exact and
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an approximation of Var(Pn) where Pn corresponds in general to any prob-
abilistic model discussed. . In section 2.2 the number of random variable
parameters of X considered was reduced to M-and V, the mean vector and
covariance matrix of X respectively, and presented as functions of B. At
that point no restrictions upon the assumed functional relationship
bétween‘ﬂ and/or Vand B were‘made. In some physical models, especially
those considered in Chapter III, characteristics of the specific model
and the néture of the data available dictate a particular representation
for M and V. That is, one is‘forced to give up some of the genérality

of the theoretical model of section 2.2 so that specific problems encoun-
tered in physical examples can be more realistically investigated. In
particular,kmany situétibns exist where it is necessary to model M.ana

V by assuming a set of values for the parameters associated with fY; that
is, these parameters are assumed fixed and the modeis are derived empir-
ically with random variable coefficients. The uncertainty associated
with these random variable coefficients is assumed to include the uncer-
tainty related to random variable parameters of fY' Consider then the

following functional representation for M and V:

M = H(bT, by = « «5 b, J1, Joy « o« J,) = By D (2.4.1a)
V=LY, by, ..., b;‘l, Ki, Koy, « « ., Kt) = L(b% K) (2.4.1b)

where b* corresponds to estimates of the parameters of fY; that is, par-
ticular values of B. The J's and K's of Equation 2.4.1 are random var-
iable coefficients obtained empirically with the assumption that the

uncertainties associated with J and K compensate for the use of b*. 1In

actual application J and K have to be estimated from empirical data. If
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~

J and g are designated as the respective estimator of the expected

values of J and K, eétimator models for M and V can be formed as follows:

M=E0Y, b), ..., 0%, Ty, T, L L T = EGF D (2.4.2a)
T=10f, b3, .. ., bF, Ry, Ry, o 0 L R = LAY B (2.4.2b)

Having introduced the notation concerning M and V for the estimator
models, one can now write directly an expression representing the asso-
ciated probabilistic model, namely that corresponding to the conditional

expected value of D(X):

(M, Dd | (2.4.3)

E[D|M, V1 = /D fx‘ﬁ’

-0 —

<>

If one now defines the conditional expected value of D in Equation
2.4.3 as PE and the function it represents as Pg5, one can then write the

following:

P_ = E[D|M, V] = Ps(M, V) | (2.4.4)

However, one could also write P, in terms of b¥, in and K as a function

E

Pg; that is,
P, = E[D|H = H(b¥ J), ¥ = L(b¥ R)] = Pg(b% I, K) (2.4.5)

Suppose now one proceeds to calculate E[PE] and Var(PE) by applying
the approximation techniques introduced in Section 2,2 to the estimator
model. - As one recalls, there are two approaches to approximating VarG%?:
one method beginning with Py in the form of Equation 2.4.4; the other,
in the form of Equation 2.4.5. Since the examples of Chapter III are
more easily adapted to the fofmer method, .that method has been chosen

‘here to begin this derivation.
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If one expands Pg about E[ﬁ] and E[ﬁ] in a Taylor Series Expansion,

one acquires:

3P

Py = P5[EQ, EQW] + F5|M - E] + —|(V - E@)] + Remainder
. . ’ ~ 3V
3M -
MEQD) M=E ()
V=E(¥) V-E@)

(2.4.6)
Again the assumption is méde that the remainder can be neglected. See
Appendix A for further discussion conéerning fhe truncation of the series
with first order terms. If one now takés the exﬁected.value of P from

Equation 2.4.6, one obtains:
E[Pg] = P5(EQD, EQ@] o @)

and in turn can calculate the following directly as in Equation 2.2.27.

 9Pg . 3P . dPg5 9Pg A
Var(Pp) = (—=)2|Var@) + (=) 2|Var(¥) + (—) (—) |cov(¥, V) (2.4.8)
oM . . v . . M 3V . .

M=E[M] M=E[M] : M=E[M]
V=E[V] V=E[¥] Y=E[V]

Now one must evaluate Var(M), Var(V), and cov(M, V). As has been
implied before in Equation 2.4.2, the following definition is made: i_=
' ) (31, 32, .« . e 3u) and ﬁ,= (K3, K3, « « «, K{). Associated with.i and

and ﬁ are the following parameters (19):

"E[J) = 1 ’ . (2.4.9a3)

n

E[K] = k - (2.4.9b)

P

CovlJ ., J_ ) =07 ] ’ (2.4.9¢)

r s

[4FRPY N
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A a 2
Cov[Kr, KS] =0p g (2.4.9d)
rs
T, K 2. 2.4.9e)
Cov[Jr, K1 = oJrKs (2.4.9e

If one expands M about Jj and V about k in Equation 2.4.2, one
acquires for a first order approximation from a Taylor. Series expansion

(See Appendix A.)

| . )
=He* D+ ¢ B |G, -3 (2.4.10a)
B 5 7y e B F

| J=4

=

* t aL ~
V=1Lkb, k + ¢ =—|(K, - k,) : (2.4.10b)
=S = oy Ak T T Ry :
: i=1 °M1,
' K=k

Again one can calculate the respective expected value and covariance as

in Equation 2.2.29.

B[] = KQ

= H(bY 1) (2.4.11a)
CE[Y) = LY K - . (2.4.11b)
o u u 2
varlyl = 3 ¢ 2B °H o7 ; (2.4.11c)
r=1 s=1 3J 3J R r s
S J=1
A t t oL 3L, 2 .
r=1 g=1 aKr BKS . rs o
K=k
PN u t .
covi,¥1= ¢ © H 2L |°§ﬁ - (2.4.11e) -

~

r=1 s=} 33 3K Yy'g
r S
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Substituting Equation 2.4.11 into Equation 2.4.8 yields

, 3P5 )
2, 4 u 2
Var(Bp) = (—)°| = = 3L loZ 2
= = ~ ~ J J
oM .r=1 s=1 3] 53 ~ £ s
M=H(BSD) “r s J=1
*
Y=L(b k)
5 , t t JL ? 2
+ = o - — log &
sV r=1 s=1 aKr aKs r's
R * -
MH(B) 3) K=k
V=L (b} k)
3P5 3P5 u t 3H oL )
+ ()| o == TR (2.4.12)
M 8Y . r=1 s=1 3J_ K, “r’s

fi=n(b* 1)
V=L(b¥ k)

N [

=1
=k

=

I

Now 1f one could assume fhat the parameters of_i and g_in Equations
2.4.,9 were known, one could calculéte Var(PE). However, unfortunately
these parameters are not usually known and must be estimated from data
concerning i.and‘g (19). If one denotes the estimates of these param-

eters by an asterisk (*), the resulting estimate of the Var(PE) can be

written as follows:

~ 3P5 u u 2%
var(ey) = 2]t @ A 2% o0
oM r=1 s=l oJ 3J Tr s
- A % r s -
HE(b%1%) J=g*

V=L(b¥k*)
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- oPg 2| t t = = | 2%
+ 2l . 5 sk log g
3V ' r=1 s=1 aKr 5 . KrKs
' - * . =k*
M=H(b, 1) ==
V=L(b} k%)
P5. %P5 u t o L, 2%
+ )| ot — = g K (2.4.13)
M 9V r=l s=1 3. BKS rs '
MH(BII®) I=1*
VoL (b3i®) Kek#

Equation 2.4.13 now pfesenté a measure of the uncertainty of the
probabilistic model associated with P;. Observe that for the estimator
model of this section, Vaf(PE) is dependent_upon the estimates of the

parameters of fY and the estimates o0f the expected value and covariances

~ ~

of J and K. Then Vaf(PE) relates the uncertainty of P to the uncer-
tainty associated with‘g,_i, and in turn to é_primarily via the uncer-
tainty associated with empirical data used for the estimates indicated

by asterisks (*) in Equation 2.4.13.

2.5 Other Sources of Error. Throughout the first four sections of
this chaptér, errors primarily associated with the estimation of param-—
eters used in brobability density functions appearing in probabilistic
models has been discussed. In this section two other possible sources
of errors, conditional loss functions énd stochastic tables, are briefly

explained.

Conditional Loss Functions. Thus far, not much has been said con~
‘cerning the function D(X) which has appeared in each of the models pre-
sented. TIn almost évery case of these types of probabilistic models, D

can be considered as a loss function; that is, En, as it has previously
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been defined, is the integral of a conditional density function weighted
by D(X). If D(X) were definea to be +1 over the domain of X, then P would
necessarily equal +1. 1In general, if D is some other function over the
domain of ﬁ’,Pn would be different from 1. 1In particular, if D(X) is
defined

D(X) < 1 over the domain of X (2.5.1)
then P, < 1.
and the reduction or loss of P, from'the norm can be directly related to
the form of D(X). This dependence of Pn upon D(X) necessitates investi-
gating the uncertainties associated with the loss functionm.

Often in practice D, or at least the parameters associated with D,
is found to be derived directly from experimental data. Suppose that D,
besides being a function of X is also a function of anothef set of random
‘variables, FZ;, FZ3, . . ., FZ.. Define FZ = (FZ1, FZo, . . ., FZr).

Upon examination, one observes tﬁatvD can be written directly as a
function of X and FZ, say Dg(X, EZD. Following techniques of the pre-

vious sections, one can expand Dg about the expected values of X and FZ;

where

E[X] = E[EQX|M, V)] = E[M] (2.5.2)
m = E[M] (2.5.3)

r 9Dg

Dg[X, FZ] * Dg(m_, E[FZ]) + I —— |(FZ; - E[FZ;])
' = i=1 3FZ,
FZ=E[FZ]
3Dg

: X=my .
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Again for notational convenience the Taylor Series expansion. is termi-
nated with first order terms, (See Appendix A) -The expected value of

Dg can now be calculated from Equation 2.5.4 as follows:
E[Dg] = Dglm , E[FZ]] | - o o (2.5.5)

Likewise one can compute the variance of Dg using Equation 2.5.4 with .

Equation 2.5.5 and assuming g_and EZ to be independent, obtain the

following:
r dDg dDg 3D
Varpg] = & & —— —— | CovlFz,, 7zl + () 2| Var %(2.5.6)
i=1 j=1 BFZi oFZ
, ' 3 Fz= E[_F__] x=_rgx
where Vér X is calcuiated as
Var X = E[Var(X|M, V] + Var[EX|M, V] (2.5.7a)
Var X = E[V] + Var[M] S - ) (2.5.7b)

'Now if one assumes as in Equation 2.2.18 that M and V are related to the

basic random vector parameter B, ome can recall from Equation 2.2.29 the

following:
E(M)= m gy \ S (2.5.8a)
E[Y] = g, () o o (2.5.8b)
IR : 3g,(B) 2g,(B) .
Var [M] = R ag -) ( ag ) |cov(B,, B,) , (2.5.8c)

s B=b



‘Similarly referring to the notation of Section 2.3, an estimate of
variance of D can be calculated from Equations 2.5.6, 2.5.7, and 2.5.8
as follows:

'r r g 9Dg

n 9Dg
Var(D) = & I =—x— —= |Cov*[FZi-, Fz.]+-,(a—x-)2|(gv(3*)
i=1 j=1 OFZ; OFZ, J A

Fz=fz* X=gy, (b¥*) |
, oo 2 ®, 25, ® |
’ ‘ ' 2.5.9
i=1 j=1 3Bi - )( 3Bj ) lCOV*(Bi, Bj)) (2.5 )

;B_:h*

where

]

f

Cov*[FZi, FZ estimate of Cov[FZi, FZj]

3

Cov*[Bi, Bj] = estimate of Cov[Bi, Bj]
fzx = estimate of E[FZ]
b* = estimate of E[B]

Thus anothér component that contributes to the variance of the
general raﬁdom variable P Has been introduced. Before this component
can be added to any of the models given, it must be multiplied by the
sensitivity coefficient linking D to Ps namely (%;?)2. An intgresting
example of fhe use of these additional sensitivity terms is presented
in the second example of Chapter III.

In this section then, the uncertainty of a probabilistic model has

been extended to include errors inherent to the conditional loss
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function D and associated with experimental data used to estimate the
parameters of D.

Stochastic Tables. Often in the process of obtaining some desired

result by means of a particular probabilistic model, one is required to
use some parameter from an expefimentally determined table of values.

To be more explicit, suppose that in the model being used, one was
required to determine the drag coefficient C of a particular object as

a function of its velocity v. The drag coefficient is usually determined
from measurements made in a wind funnel. Since each measurement is sub-
ject to experimental errors and uncertainties, many measurements of C
are made at each of a number of preselected values‘of v. Then at any
value of v, say v » an average C, say Eg is used as an entry into the
drag coefficient table. Thus for any particular Vo the E; entered into
the tables is an estimate of the expected value of Co given the data
available.

The values of the table then represent 'a stochastic process, not
as a function of time, but as a function of v; that is, from one set of
data one particular table would result; from anothet, a slightly different
table. .

In the terminology of the previous sections then, one necessarily
assumes that each entry into the table corresponds to a random variable
with uncertainty which affects the uncertainty of Pp. The sensitivity

terms then associated with Var(PE) would be of the form

Tz (aci)(acc) COV(Ci, cj) (2.5.10)

i=1 j=1

where a is the number of entries in the table. The form of Equation

2.5.10 assumes that the Ci's are independent of any other random
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variables, say Li's. If this cannot be assumed in a particular case,
Equation 2.5.10 must be supplemented with additional terms expressing
this dependence, such as

w a 9P, 3P
»Z °i (EEEO(SET) Cov(Ci, Lj) (2.5.11)

where w equals the number of random variable dependent on the Ci's.
It might be interesting to examine the Cov(Ci, Cj) of Equation

2.5.10.

COV(Ci, cj) E[(ci - E(Ci))(Cj - E(cj))] (2.5.12)

Cov(Cy, €,) = EL(C(v)) = E[C(W)D (C(vy) = ECrpPD]  (2.5.13)

In stochastic processes normally encounté;ed, the variable t;
(time) replaces vy (velocity). With this observation, one sees that
Cov(Cy, Cj) corresponds to the autocovariance of C(v).

The purpose of this section has been to briefly touch on two
sources of error not covered directly by the previous sections. Condi~
tional loss functions were introduced and the uncertainty associated
with them was used to expand Va%(PE) to include additional sensitivity
terms. Tables used in probabilistic models were considered as stochastic
tables; that is, each entry in any particular table was assumed to be
only an estimate of the expected value of that entry. The uncertainties

related to these tables were in turn related to the uncertainty in PE'



CHAPTER III
PROBABILISTIC MODELS IN WEAPONS EFFECTIVENESS PROBLEMS

3.1 Introduction. This chapter is primarily devoted to investiga-

tion of pafticular applications of the techniques developed in Chapter II
to thé field of wéapons effectivenéss. In particular, two specific
weapop—target probabilistic models are presented and a measure of the
uncertéinty associated with each is calculated. This chapter begins
with:a'brief discussion of a general weapons effectiveness problem, then
the examﬁle models previously.mentioﬁed are examined in detail, including
the computer programs employed ‘and the assumptions made.

Considér initially the following general weapons effectiveness pro-
blem.; One is concerned with finding thé ﬁrobability PK that a desifed
level of damage is accomplished against a particular targe; by using a

specified weapon. Now one can in general define PK as follows:

Pk = i?‘ Da(_r__)fz(.(l)d_r_ (3.1.1)

where the random vector X = (X XD) and represents the actual impact

Aps
point of the weapon with the subscripts R‘and D denoting range and
deflection components of X. |

The function Da Which appears under the integral in Equation 3.1.1
is the damage function associated with a weapon target combination;’that

is, for a target positioned at t = 0, Da(ID) is the level of damage

38
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(desired damage = 1.0) to the target caused by a weapon impacting at 1j.
In this thesis, two types of damage functions are considered depending
upon the specific weapon-target damage mechanism; in particular, (1) a
blast sensitive target damage function and (2) a fragment sensitive damage
function. A blast sensitive target is defined to be one which has asso-
ciated with it a definite geometric figure within which the weapon (or
weapons) must impact in order to achieve a measure of damage. On the
other hand, a fragment sensitive target relates to one in which the major
damage mechanism is due to fragmentation effects rather than to a direct
impact of the weapon. The former type of damage function is assumed in
the example presented in Section 3.2, and the latter in Section 3.3,
where respectively each damage function is described in more detail.

The value Pg as described by Equation 3.1.1 is often referred td as
the expected damage to the target involved, a notation ﬁhich is apparent
from the form of the equation. One can thus write Pg in a manner
corresponding to Equation‘Z.l.l as follows?

[oo]

Py = E[Da] = ~£2 Da(l) fz.(l) dt : (3.1.2)
In general thére are numerous ways of modeling Equatién 3.1.2
depending upon weapon characteristics, target vulnerability, and assump-
tions made concerning the damage function Da’ and the impact point joint
density fX. Due to the complexity of the problem, most of the simulation
and computations are accomplished via the digital computer. In particu-
lar, this thesis considers models (programs) used in. connection with the
Joint Munitions Effectiveness Manual, JMEM. These models are designed to

compute a single value of Py for a given set of system input conditions
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which are, for the most part, obtained from data derived from experi-
mental tests,

Since the systemlinput conditions are at best only estimates of the
mean value of the input parameters based on random experiments, the value
of Pg computed by the system models represents a random variable condi-
tional probability. This implies then, that Equation 3.1.2 should be

rewritten as follows:

(z]I) daz (3.1.3)

Pe = P = ED,|T] =/, DD ¢

X|1

The I which appears in Equation 3.1.3 denotes information derived
from experimental data; that is, PK, which is calculated by a series of
simulation programs is actually a conditional expected damage, conditioned
upon data used to compute the estimates of the mean valué inputé to the
programs. In general terms, I corresponds to the information needed to
estimate such random variable parameters as A, B, and FZ presented in
Chapter II.

The assumption is now made that any uncertainty in PK is directly
associated with the uncertainties in the models themselves and/or with
the uncertaiptieé in the values of the random &ariable parameter used as
inputs into the models. For the purposes.of this thesis, it has been
assumed, as stated in Chapter II, that adequate models are availabie so
that the discussion presented here is concerned with the uncertainties
associated with the model input variables. In general, all variables
for which input wvalues to the system models have been estimated from
experimental data are considered to be random variables. Likewise, it
follows directly that PK’ as a function to these input variables, is a

random variable whose uncertainty should be related to the uncertainty
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associated with the input random variables. In general terﬁs, for ‘the
weapons effectiveness examples of this‘chapter, these syétem input raeaom
variablee.range from weapon releaeeiconditions to weapon fraghentatioh
characteriétics and to target vulnerability parameters.

The measure qf‘uncertainty of PK derived from the analysis in this
chapter can be usefel in dealing with'weapon effectiveness models by
. providing a measure of the confidence one should haﬁe in the partieular
value of PK which results as eutput of the syetem‘models. Furthermore,
the methods develoﬁed-here can,aid_in locating the principal sources of
error in the models of PK’ thus indicating where more data should be
taken in obtaining estimates of the mean‘values of the random variables
vUSed_as.system inputs.

In addition, this measure of uncertainty may well assist in the
comparison of "qpen end" (short—hand,'manually caléelated) solutions and
"closed end" (Computer) solutions, indicating hheeher these twobtypes of
solutions should be used interchangebly.

For example, consider two models for P, corresponding to PKl and

K
PKZ' Let
E[PKl] =y | “ (3.1;43)
E[Py,] = ‘IJ2 | - S | (3.1.4b>1
‘Var[PKl] = d% | (3;1.4c)
Var{p, ] = 6% - (3.1.4d)
COV[PKfPKZ] = 0%2 (3.1.4e)
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Define a new random variable

Pa=Pr1~ Py - (.19
Vhere
E[PA] = - Mo
Var[P,] =:0§ + cg + 20?2
.SD(PA)' = VVvar(e,) - o+ o§+ 20%,

In particular, consider the case where PK1 and PKz'are two independent

models; i.e., o%z = 0. One might make the decision to use the two models

interchangably - then if IE[PA][ §_SD(PA); i.e., I“l - uzl < 02 +‘02f

3.2 Example 1: Blast Sensitive Tafget Model. Consider again the

general weapons effectiveness model of Equation 3.1.3.

P =P(;)=E[Da|x]= f2D()f

2 (T (:r_ll) dt (3.2.;)

>

|

Under certain target-weapon combination situations, one is concerned with

=

-0

only the blast effects of ‘a weapen and cOrrespondingly the associated
‘damage function Da is defiﬁed as a funetion of only the dietance of a
target peint‘from the impact point of the'weapon. This damage function
corresponds to that essociated with thevblastksensitive target introduced
in the previous sectiOn;. For the purpose of the example of this section,
a blast sensitive target with a recfanguiar'yulnerable area RV ie assumed

and Da is defined as follows:

D, = Pp|y Py(@ o (3.2.2)
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where
pDIH = probability of damage given that Rv is hit (3.2.2b)

P(D) = 1if 1 eR (3.2.2¢)

0 otherwise

In other words, Da(T) has a constant value of pD!H over the area descriﬁed
by Rv and is zero elsewhere. It should be noted that damage functions

of the form of Da are often referred to as cookie cutter damage functions
Under the assumptions of Equation 3.2.2, one can now write the model of

PK as presented by this example as

Py = PL(D) = E[D_|I] = If( Ppln f_)gll (11D dr (3.2.3)
v
The computer programs used in the JMEM effort which correspond to
the model of Equation 3.2.3 are the Stick Bomb Program and the Multiple
Round Kill Probability Program (MRKP). These two programs are discussed
in detail in the following subsections.

Weapon Delivery. The Stick Bomb Program is a basic "initial" program
progr

for many weapons effectiveness situations employing air delivered weapons.
This program utilizes release conditions of aircraft and weapon charac-
teristics to predict the intended impact points of a stick of weapons,
where the term "stick" refers to a fapid sequential release of éeveral
weaponé which form a characteristic pattern on the ground. In general,
the program actually simulates the trajectories of the falling weapons
and predicts where they would impact if only the conditions specified as
inputs to the program affected the trajectories and all of these condi-

tions were exactly at their desired values.
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Consider again the random vector X as representing the actual impactk
points of the weapbns. For simplicity of notation, however, consider
for this example the release of only one weapon so that X can be expnxsed;-
as (XR, XD) where the subscripts R and D denote range and deflection
respectively. It should be pointed out that if X bombs were released
from the aircraft, both Xg and Xp would be A dimensional vectors. The
multiple bomb case is a single extension of the single bomb case and is
' discussed further at the end of Section 3.2.

Consider now the following notation used in the example of this

section:
Mx = mgan vector of X = (MR, MD) : ’ (3.2.4)
\Y \Y
V. = ¢ovariance matrix of §.=IIVRR VRD (3.2.5)
DR DD

where again the subscripts-R and D indicate range and deflection compo-
nents respectively. PK can now be written as a conditional expected

damage conditioned on MX and’yx in the manner of Equation 2.2.23

Pp =P (L, V)=ED]|M,V]l= 7 £

K x1—x X RleH glg@x, y.o—=
v : (3.2.6)

Furthermore, the impact point X is now assumed to be a function of the
release conditions of the weapon from the aircraft as well as atmospheric
conditions and ballistic characteristics so that X can be written as

follows:

=611, Yo, « « o, X)) ' (3.2.7)

where the Y's are random variables, each Yi associated with a different

but not necéssarily_independent factor influencing X.
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If the pilot (and/or delivery system) had absolute control over all
factors influencing X; that is, over all Y's and if he had perfect judg-
ment, he could, for a specified set of Y's compute an exact impact point
X. Unfortunately, however, the pilot does not possess this perfect

"real world"

control due to the fact that he is involved with a physical
system; that is, although a particular Yi’ say y., is desired for a
certain weapon delivery condition, there will exist some random error

Gi associated with Yi such that the actual value for a desired Yi is

vy + Gi; Thus, one justifies terming the Y's random variables and
defines fY as the joint density function of the Y's. Furthermore, in

the Stick Bomb Program, which is in general terms a simulation of Gy in
Equation 3.2.7, Ex and yx are modeled as functions of the knowledge or
information available .concerning (Yj, Yo, . . ., Y¢). Both the theoret-
ical models of Section 2.2 and 2.3 and the estimator model of Section 2.4
need to beuexamined in order to see if either of these models corresponds
to that used in the Stick Bomb Program. However, before either of these

models can be examined further, the Stick Bomb Program model is described.

Stick Bomb Delivery Model. Suppose a stick of A bombs is projected

at a target from an aircraft. Associated with the specific release condi-
tions and the types of weapons involved, there will be a characteristic
pattern of impact points. Now, if one chooses one point in the pattern
as a pattern reference point, say the aimpoint of the first weapon, the
position of each weapon in the pattern with respect to that reference
point can be sﬁecified by the designation of two numbers, ARi and ADi'
The notation ARi indicates the range separation between the reference

point and the ith weapon; ADi, the separation in deflection. 1If, as in

the example of this section, only one weapon is released, the pattern
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aimpoint would necessarily correspond to the aimpoint of that one weapon
and ARi and ADi would both equal zero.

Now it is assumed that the pattern as a whole is aimed by attempting
to impact the pattern reference point at a designated point in a range-
deflection (Re - De) plane associated with the target, say at (rg, dg).
The Re - De plane is a horizontal plane passing through the center of
mass of the target. The coordinate system in which (ry, dg) is measured
has as its origin the point in the Re - De.plane below the release point
of the first weapon in the stick. Correspondingly, the range axis asso-
ciated with the pattern is parallel to the horizontal velocity of the
aircraft and the deflection axis is perpendicular to the range axis and
lies in the_Re = De plane. If the pattern were correctly positioned,
the pattern-aimpoint'would correspond to (ry, dg) upon impact. Unfor-‘
tunately, aiming errors are usually present and the pattern reference
point is usually aimed at another point, say (R, D). The aiming errors
involved, i.e., (R - rp) and (D - dg) are assumed to be independent and
normally distributed with means zero and standard deviations Sar and Sad
respectively. Primarily these aiming errors are assumed to be due tq
sight misalignment, wind miscorrection, improper release conditions, and
pilot inexperience.

A similar sitﬁation exists with regard to the ballistic dispersion.
If ballistic errors'were not present, the impact points of the ith weapon
could be predicted given R and D as (R + ARi, D + ADi). However, the
actual impact points are assumed to be normally distributed about (R +

AR,, D + ADi) with ballistic standard deviations of .S and- S Basi-

i? br bd*

cally, these ballistic errors are due to unforeseen mnatural phenomena,

air currents, and drag coefficients.
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One sees then that Sarz’ 2

Sad s Sbrz’ and de2 provide essentially

the same information concerning the deviation of X about the expected or
: intendedbimpact point (ry, dp) as does v . Indeed, these four random
variables a?e but a particular case of yx which applies to the weapon
delivery model of this section. ‘Since the Stick Bomb Program specifi-
Sad’ Sbr,.and de and these particular values are
subsequently used directly by the Multiple Round Kill Probability Pro-- -

cally modgls Sar’

gram to calculate a particular value of PK’ a slight modification in the
form of the conditional expected damage of Equation 3.2.6 has been.made

as follows:

Pe = B, 80 =B, 80 = sy fypy s (i, 8 dx
R DI =% 2x
v : (3.2.8)
"where
§x = (Sar’ Sad’ Sbr’ de)

This modification basically'is mérely a change of notation in
variables as §x simply répresents a particular form for thé general ran-
doh véctor (matrix) yx.. Thus the teéhniqges of the previous chapter can
be applied directly to provide a measure of the uncertainty of PK by
means ofvexaminingkphe uncertainty associated with y&.and §x provided
that the Stick Bomb Delivery Model can be shown to correspond to one of
the models discussed in that chapter. |

Now from‘previous discussion in this section concefﬁing the Stick
Bomb Delivery model, one can observe that the expected impact-point of

X should be related to the intended aimpoint of the pattern reference
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point, 1In particular, for the example of the releasing of only one
weapon, the mean impact point of X should be related to the intended
aimpoint of the pattern reference point. In particular, for the éxample
of the releasing of only one weapon, the mean impact point, call it my,
is equai to the aimpoint of that one weapon, namely (rg, dg). Associated
with ro and dy, the uprange release distance and deflection, are a set of
intended release conditions yji, y2, « + ., y¢ that must be met in order
to release the weapon aimed at rg. Many factors influence the values of
Yis Y235 = o oy y¢ such that on any particular run, errors occur between
the actual valves obtained, call them y %, yo%, . . ., y¢*, and the
intended value of thé y's. Assuming that these errors are neither posi-
tively nor negatively biased, the intended y values yji, yo, « « .+, y¢ can

be treated as merely estimates of the expected values of the basic under-

lying random variables Y;, Yo, . . ., Y Thus, one can write mg in

.

functional notation as

my = (ro, do) = H (y1, y2, - « «» ¥) =H (¥ (3.2.9)

Furthermore, consider the Stick Bomb Delivery models for Sar’ Sad’
Sbr’ and de which also depend upon the intended release conditions

Sar = Sl(yl, Y25 o o oy y¢,vSA1, SA2) - (3.2.10&)

Sad = SZ(YI’V Yos5 ¢ « -y y¢, SAl, SA3) (3.2.10b)

Spr = S3(¥1s ¥2, « + s Y4 SAy) | ' (3.2.10c)

de = Sq(Yl, Yos o o oy y¢, SB1) ‘ (3.2.10d)
or in general notation §x = S(¥1, Y25 + = «» y¢, SAy, SA,;, SAj, SBj)

where SA;, SA;, and SA3 are empirically determined'aiming error



49

coefficients rélating the intended releasé condition to Sar.and Sad and
SA, is’a correspdnding ballistic error coefficient relating the release
-conditions to Sbr and de. Sinée these coefficients ére obtained for
experimental data, they have associated with them a certain degree of
uncertainty related- to the random experiments involved. . This uncer-
taihty is assumed to compensate in-the model for the usé of the estimates
of the expected value of the Y's as well as for the uncertainty assoc—
iated with unknown factors that influence X.

if is obviops from Equations 3.2.9 and 3.2.10 that the Stick Bomb
Delivery Model corresponds to special cases of the estimator models of
Section 2.4 since randoﬁ variable coefficients are assumed. However,
before considering the form of the estimator model involQed, it is inter-
esting to obser&e how the theoretiéal model of Section 2.3 could be
applied to the Stick Bomb.Program if the aiming and ballistic error

coefficients were not available.

Theoretical Model. Consider modeling yk and §x in the modified

~form of the approximate theoretical models of Equation 2.2.18 for X =

G(Y)

It}

H.(B) (3.2.1la)

m

5, =/ Var(x|B) =~/ Var(©(®[B) = LyB1, By, .« + ., B) = L (BX(3.2,11b)

‘M= E[X|B] =E[6(D |B] = Hy(By, Byy « . ., B)

where ﬁi is defined as the MVUE of the ith parameter of fX. Following
the general techniques of Section 2.2 modified by the use of B instead
of B, one can expand Mx and §x about the expected value of B in a first

- order Taylof Series Expansion. See Appendix A for series termination

criterion.
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oH

A m A A .
I =B
M " HIE®] + 'E1 o |[B; - E(B))] (3.2.12a)
. i= i E?E(E)
- m Ly . . :
5,5 Ly[E@®] + & — |(B, - E(B))] (3.2.12b)
i=1 BBi
B=E[B]

It should be noted that since the Bi's have been assumed to be unbiased

estimators of the parameters of fY then E[Bi] represents the true value

of the ith parameter of fY'

Continuing in the manner of Section 2.2, the expected value and

covariances associated with Mx and §x can be obtained as follows:

EM ]~ B [E®)] (3.2.13a)
B[S ] ® L[E(®)] - (3.2.13b)
mn m 9 3H A
Var[M ] *® I I —}AI—B B ICOV[Bi, B.] (3.2.13c)
i=1 j=1 9B, 9B, . ]
3 B=E[B]
m m OLy 9Ly NN .
Var[S 1 * ¥ 1 -—— —= |cov[B,, B,] (3.2.13d)
~X . . i j
i=1 j=1 8B, 9B, . .
J B=E[B]
m w 9lg Olg A
Covﬁgx, §x] I I = - |Cov[Bi, B.] (3.2.13e)
i=1 j=1 8B, 9B, . . ]
| 1 B=E[B

Equations 3.2.13 thus present a measure of the uncertainty of yk
and §x as functions of the MVUE of the parameters of fY and indeed could

provide the needed information corresponding to Equation 2.2.27 for the

‘calculation of Var(PK). Unfortunately, data available for air delivered
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munitions>d6es‘not provide sufficiént information at this time to make
_estimates of the covariance of the ﬁ's. Therefore, the theoreti¢a1
‘model cannot be employed in this example to obtain a méasufe of the
vuncértainty associated with PK.

Estimator Models. Returning now to the Stick Bomb Delivery models

of ‘Equations 3;2;9 and 3.2.10, one can observe the correspondence between
these models and those eétimator models of Section 2.4, 1In particular,
Equation 3,2.9 exprésseé;go as a’specific.case of Equation 2.4.2a where
the randémness of the J coefficients is neglected and the y's cbrreSPCnd
to.a subset of ﬁhe bi*‘sf This implies then that one can write the mean
as the following estimator model.

of X, call it m y
- L -X

ﬁl-x g = HX(YI: Y235 o o oy Y¢) : (3.2.14)

Furthermore, if the following notation is considered:

’ SB]_ K|+ and SB]_ = K|+

(3.2.15a)‘

~ ~ .

SA, =K, - and SA, = K,
i i i i

for i = 1,'2, 3, then the Stick Bomb Delivery model for the standard
deviation of X, call it §x’ can be written as a special case of the

estimator modei of Equation 2.4.2b as

5, = 8071y y25. 0+ +s ¥y K1, Ko, Ky, Ky) (3.2.15b)
where again the yfs are a subset of the bi*'s and the K's are estimators

of the corresponding error coefficients.

Néw that the models used in the Stick Bomb Program have been intro-

A

ducéd; i.e., m and”Sx, one needs to relate these models to PK so that a

measure of the uncertainty of PK can be investigated corresponding to
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that of Equation 2.4,12 or 2.4.13. In particular, the Multiple Round
Kill Probability Program has to be examined.

Multiple Round Kill Probability Program. The MRKP Program combines

the delivery information obtained from the Stick Bomb Program with par-
ticular target vulnerability information and calculates PK. For the pur-~
pose of tﬁis example, the target information is assumed fixed and the
only variable inputiinto the program that are considered random are Sar’

, and S. .. As thée example of Section 3.3 illustrates, the addi-

Sad* Sbr bd

tion of other input random variables is handled in an analogous manner as

for S S, _, and S
a

r* Saa’ Spr bd*

Consider then the following functional relationship representing the

Multiple Round Kill Probability model of PK.

Ly

P (8) = [/ Ppln fEE IS, (TR_|§x) dtg LJ‘ fXD|§X (TD1§X) dr, (3.2.17)
' D

where LR and LD denote range length and deflection width respectively of
the rectaﬁgular vulnerable area Rv' Employing o and ¢, as dummy varia-
" bles for R and D respectively one can write

£y E (tgl8) = J £
—-X

L Xo|R, S (tplogs 8 fR(¢RI§X) do,  (3.2.18a)

and

o«

fy (tpl8) = /£

S D, 8 (1pleps 80 £,(8,18,) do
D —x - D —X

(3.2.18b)

“SUbstituting Equation 3.2.18 into Equation 3,2.17 yieids the resulting

» model foF PK.
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o]

P - Lf d ®pln fXRlR, s (gplogs 8 CNEW dog:
R K
J i fXDID’S (yD|¢D, s) fD(¢D’§x) de, (3.2.19)
D - -X

where under the assumptions of the MRKP model (N denoting normal density

function)
~ 2
fx R, S N(R, Sbr ) (3.2.20a)
_Rl ~X
~ 2
fxDlD’ S N(D, de ) (3.2.20b)
. 2 |
leS N(rg, Sar ) v (3.2.20c)
=
~ 2
fDlS N(dg, Sad ) ’ (3.2.20d)
—x
so that
2 2
%18 ~ N(rg, Sar + Sbr ) (3.2.20e)
—Rf—x
X18 ~ N(dg, S_.%2 + S _.2) (3.2.218)
Ep|2 0 544 bd

To avoid the rather complex notation associated with PK in Equation

3.2.19, only the functional notation
PK = PK(§x) = PK(Sar’ Sad’ Sbr’ de) (3.2.21)

is used in the main body of this thesis and corresponds to Equétion

2.4.4 for a general estimator model.
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Variance. of PK. Now that the appropriate Stick Bomb Deiivery and

MRKP estimator models have been introduced for the example of this sec-
tion, a ﬁeasure of the uncertainty associated with PK must be examined.
In particular, the uncertainty associated with,PK; i.e, Vgr(PK), must

be related to the uncertainties associated with §x and in turn to the
uncertainties related to the error.coefficients estimators ﬁl, ﬁz, £3,
and iq in an analogous manner to that exhibited for the general estimator-
model of Equation 2.4.4. Therefore, following the general techniques of
Section 2.4, PK of Equation 3.2.18 is expanded about E[§x] = (E(Sar)’

E(Sad), E(Sbr)’ E(de)) in a Taylor Series Expansion and yields

9P

v v o K .
P = PLIE(S )] + i-z—-l 5, [{s; - E(S,)] + Remainder (3.2.22)

5,7E(S,)
where §x = (Sar’ Sad’ Sbr’ de) =z (81, S2, S3, Sy). Only first order
terms are assumed significant in the derivation that follows; however,
a cbmplete parallel derivation appears in Appendix C for a second order

approximation to P, in Equation 3.2.22,

K
Taking the expected value of PK'in Equation 3.2.22 as

E[Pp] ~ PLE(S)] " (3.2.23)
the variance of PK can be calculated directly,

Var(P, ] ® E[(Pp - E(P))?]

v Var[PK] =

]
=1
-
-~~~

N ™MFE

55 118, —EG)D?]

)

S
2,
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@k g K
Var[P,] = LTS SET'I Cov(s,, sj) -~ (3.2.24)
i=1 j=1 i |
5,7

The Var[PK] in Equation 3.2.24 thus relates a measure of the uncertainty

associated with P, to that related to §x' Now in order to estimate the

K.

uncertainties associated with §x and relate these uncertainties to the
basic random variables involved, one should recall the estimator model

of Equation 3.2.15

§‘X =.S_(YI’ Y235 « o oy Y¢, Kls K29 K3, Kq) =§_(X, _I_<_) (3.2.25)

-~ ~ ~ ~

There exists for each component of §x; i.e., S S, , and S

ar’ Saq» Spy bd’

a specific functional relationship between the error coefficient estima-
tors and the particular error component corresponding to Equation 3.2.10.
However, for notationél convenience, the general form of Equation 3.2.25
is used af this point fof the derivation of the measure of uncertainties

related to éx' A parallel derivation appears in Appendix B which employs

-~ ~ PN

the exact form of the functional models representing Sa S , and

r’ ad’var

~

deﬂ

In general, the uncertainties associated with §x are estimated by
variances and covariances related to §xa‘ Since the MRKP model assumes

the components of §x are independent, it is necessary only to investigate

~

S, , and S

ad’ °br for the purposes of

the variances associated with S__, S
ar’ bd

this example.
The estimator coefficients of Equation 3.2.25 are assumed to pos-

sess the following parameters which correspond to Equation 2.4.9 in the

general estimator model discussion (19).
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E[f(i] =k, : | ' (3.2.26a)

gov[fci,ij] =02 . o (3.2.26b)
: Kin

Following the general procedure employed in Secfion 2.4, one can .
expand éx about k = (kj, ko, k3, ky) in a first order Taylor Series
Expansioh.‘ A secoﬁd ordér approxiﬁétion derivation of the variance
brelated to éx appears in Appendix C,_whilé a criteria for termination of
the series is related in Appendik A.

98 o

I . ~ '
S = S Y -
S, =58@ k) + L, | Ry = k) (3.2.27)

Again taking the expected value of S, as
E[s, ] =5@, K (3.2.28a)

~

~ one can calculate the variance of St

~ -= ~ _ ~ 2
var(s,] = E[(s, - E(5,))?]
- y y (08 2
Var[s ] = I (afc )l 0% . (3.2.28b)
S 1=1 j=1 °°§ _ K.K,
K=k = 7

where Equation 3.2.28b corresponds to Equation 2.4.11d in the general
estimator model derivation._ |

‘Assuming Var(éx) to be a gobd estimate- of Var(éx) and reéalling
| again that the‘MRKP.model assumes independenée of the components of §x’

one can substitute Equation 3.2.28 into Equation 3.2.24 to obtain

¢
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3Py 2,y 88, 98,
Var By = 32 GGz | & = — | o2, (3.2.29)
= i g=1 =1 0K, 9K, KK :
S_ =8 (y,k) R=k

In general, the parameters of Equations 3.2.26 are not known and must be

estimated from the empirical data pertaining to K. Denoting the estimate
of these parameters by asterisks (%), one can finally write the resulting

estimate of Var(P,) corresponding to Equation 2.4.13.

K
. T 2,y 38, 35,
Var[PK] D ng— T § —= —* ]2, (3.2.30)
i=1 i |3=1 2=1 3, 3K, | KK
5 =S(y, k¥) Ref

Equation 3.2.30 now represents a measure of the uncertainty asso-

ciated with P, in this example. One observes that Var(PK) is dependent

K

upon the estimates of the parameters related to the error coefficients

and the sensitivity coefficients relating K to §x and ﬁx to P A

K
quantitative discussion of the results of implementing Equation 3.2.30

via Program VPK(see Appendix E) follows in the next subsection.



Quantitative Results for Example 1.

As has been stated previously

in this section, this example utilizes models associated with the Joint

Munitions Effectiveness Manual; in particular, the Stick Bomb Delivery

Model and the Multiple Round Kill Probability Model.

Figure 1 illus-

trates the relationship between the two models.

Intended
Release
Conditions

Estimates
of Error

Coefficients

{

AR} ——
AD§ ——n

Multiple
Round
' Kill
ARA———— Proba-
AD bility
X Model

L £ [Py |R=k]

D

pes———

s
V2o 0
. o 0
—ADy | 9§ &
. g
TR
. Stick o Ee A
Bomb Ll
Yy™Ipelivery
K Model
17 AR
K A
27 —=AD
K A -
3 —E[S__|K = k¥]
k¥ as -
4 ——'E[sad|5'= k*]
—E[s, K = k¥]
——+E[de|£ = k¥)
Target
Information
Figure 1
P, Model for Example 1

K

The sensitivity coefficients relating K to S, were obtained di-

rectly from the equation relating K to Sx by computation.of the required
partial derivatives. The sensitivity coefficients relating‘Sx

obtained by varying the values of Sa

r

b Sad’

K

S, , and S

br bd

used as inputs

58

to P, were
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into the MRKP Program, obtaining corresponding fesultant values of PK’
and subsequently employing finite difference techniques to approximate
the required partial derivatives. It might be of intereet to note that
for the calculation of each partial derivative associated with a specific
function, five values of the particular variable involved were chosen,
includinthhe intended value of the variable. In turn, a central differ-
ence. table was formed for the five resulting funcfional values centered
at the.function evaluated at the intended value of the variable. The
partial derivatives were then calculated from the appropriate entries in
‘the eentral difference table,

Theesensitivity coefficients along with estimates of the parameters
associated with.g serve as inputs into a general purpose computer program
developed especially for the research'conﬁected with this thesis. The
program is termed Program.VPK and is used to evaluate V;r(PK) as dis—

cussed in this thesis. A complete documentation of Program VPK appears

in Appendix E. Figure 2 illustrates the use of VPK for this example.

Sensitivity | — [ 1st Order Estimate E[Pg] = E;([Pg]
Coefficients| — . k
Relating . -— 2nd Order Estimate E[P,] = E,[P,]
R 1 { o K K
K to Sx :
. and —— +— Estimate % error associated with E;[Pg]
Sx to Py - :
' vPK [~ 1lst Order Estimate Var[Pg] = Var;[Pg]

K Parameter
Estimates —

——. 2nd Order Estimate Var[Pg] = Var,([Pg]

%2 Program
K.K. T :
. J . — Estimate % error associated with Var,[Pg]
K4 ijuv
K3%:% — . ~
iju L 1% Var[Pg] due to each K parameter
' e Estimate

- Figure 2. Var(PK) Model for Example 1
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* N A~
. , T2 - ; - -
In Flggre‘Z.oKin estimate pf E[(Ki ki)(Kj kj)]
X = 1 " - X - - -
K3 iju estimate of E[(Ki ki)(Kj kj)(Ku ‘ ku)]
% = ; . X - X - (R - X -
K4 ijuv estimate of E[(Ki ki)(Kj k.j)_(Ku ku)(Kv kV)]

The qﬁantitative results pertaining to Exémple 1 are presented in
Tables I tHrough VI. For the most part, the uncertainty_pafameters are
related in terms of standard_deviation.SD father than variances so that
the numbers are more readily intefpreted. It should be pointed out that
due to the nature of this example, the specific names of the weapons and
targets .assumed are noﬁ given so that this thesis can remain unclassfied.
Furthermore,'the valpes of several of the parameters used are not revealed
since they may élso be of a classified nature. The omission of these few
specifics should not‘devalue the wofth of this example since it is not
the numerical results of this thesis that shopld be emphasized, but rather.
the épplication of a straight-forward technique for estimating the uncer-
tainty associated with complei probabilistic models.

Table I presents the assumed estimated inputs to the Stick Bomb
Delivery and MRKP Models whichbinclude the intended release conditions y,
the dimensions of the vulnerable farget area, and the estimated target
height. 'Also included are estimates of the parameters of the error
coefficients; i.e., k¥ and §A ~ » The values of gé K have been strictly

K;Ks iy
assumed for this example and bear no relation to actual data measurement.
However, for_purpo;es of compafison, gA ~ has been chosen so that the

K: K.
% it
ratio 0. . /k* is approximately the same for each i. Furthermore, for

*

K:K:. 1~ .
it CoA
this example, the Ki have been assumed independent,. an assumption that

is removed for Example 2. For an actual physical case, the parameter

*2 ) .
Gﬁiﬁj could be obtained from available empirical data.



TABLE I

Model Inputs for Example 1
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Inputs Symbol Model Estimated Value
Release Altitude of Weapon Vi Stick 3000 feet
Velocity of A/C at Release y2 Stick 450 knots
Dive Angle of A/C at Release v3 Stick 30 degrees
Ejection:Angle of Weapon vy Stick 90 degrees
Ejection Velocity of Weapon y5 Stick CL*
Target Height h Stick/MRKP 6.7 feet
Vulnerable Target Length LR MRKP 155.6 feet
Vulnerable Target Width LD MRKP 143.9 feet
E [Aiming Error Coefficient AAA] ky* Stick CL*
E [Aiming Error Coefficient BBB] ko#* Stick CL*
E [Aiming Error Coefficient DDD] k3* Stick CL*
E [Ballistic Error Coefficient DIS] ky* Stick CL#*
A~ ~ : * 2
Cov(Ki, K1) o2 VPK 1.0 feet
S LK1K1 '
Cov(Kz, Kp) o2 . VPK 4.0 feet?
-~ A KoKo
* 2
Cov(Ksz, K3) o2 VPK 4.0 feet
A LSS
Cov(Ky, Ky) 62 . VPK 0.25 feet?
~ ~ *KqKq
Cov(K,, K.) i # j o2 . VPK 0.0 feet?
0 KK,
E(Sar) REP MRKP 272.7 feet
E(sad) DEP MRKP 155.2 feet
E(S, ) SIGY MRKP 37.2 feet
: E(de) SIGX MRKP 25,0 feet

*CL = Classified Data‘
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~

Tables II and III relate the sensitivity coefficients relating K to
éx and éx to PK respectively. In turn,‘Table IV lists some of the out-
pﬁts of Program VPK for Example 1. Of special interest in Table IV is
the column labeled "Estimate of Percent Efror in First Order Approxima-
tion." Cne sees that under the assumption of Example 1, the first order

approximation employed is assumed sufficiently accurate under the criter-

ion expressed in Appendix A.
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Sensitivity Coefficients
Relating K to S,
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Sensitivity Coefficient for S

Variable K =1 I=2 I = 3 1 4
PSK (I, 1) 2.51 4,42 ;O'O 0.0
PSK (I, 2) 11.91 0.00 0.0 0.0
PSK (I, 3) 0.00 6.51 0.0 0.0
PSK (I, 4) 0.00 0.00 7.5 5.0
CPSK (I, l,‘l) 0.29 0.43 0.0 0.0
CPSK (I, 1, 2) -0.11 0.00 0.0 0.0
CPSK (I, 1, 3) 0.00 -1.26 - 0.0 0.0
CPSK (I, 1, &) 0.00 0.00 0.0 0.0
CPSK (1, 2, 2) 0.04 0.00 0.0 0.0
CPSK (I, 2, 3) 0.00 0.00 0.0 0.0
CPSK (I, 2, 4) 0.00 0.00 0.0 0.0
CPSK (I, 3, 3) 0.00 0.00 0.0 0.0
CBSK (I, 3, 4) 0.00 0.00 0.0 0.0
CPSK (1, 4, 4) 0.00 0.00 0.0 0.0

PSK (I, J)

CPSK (I, J, L) = ——rm

~

BKJ

2
a SI

~

BKJBKL



TABLE III

Sensitivity Coefficients for Example 1

Relating S to

B
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I3

Variable S x Sensitivity Coefficients for PK
\PFS (1) ~0.00025293
PFS (2) -0.00043256
PFS (3) -0.00007654
PFS (4) -0.00006970
CPFS (1, 1) 0.00000167
CPFS (1, 2) 0.00000151
CPFS (l,v3) 0.00000081
_CPFS (1, 4) 0.00000024
"CPFS (2, 2) 0.00000479
CPFS (2, 3) 0.00000045
CPFS (2, 4) 0.00000128
CPFS (3, 3) -0.00000182
CPFS (3, 4) 0.00000007
CPFS (4, 4) -0,00000261
PFS (I) = —2—1;-15

I

8%y
CPFS (I, J) = 3505
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TABLE IV
Uncertainty in PK for Example 1
Estimate of Percent
First Order Second Order | Error in First Order
Item Approximation Approximation Approximation
Var(Sar) 574.054 574.111 0.01
SD(Sar) 23.959 23.960 <0.001
vVar(Sad) 189.215 189.358 <0.001
SD(Sad) 13.756 13.760 <0.001
Var(Sbr) 13.850 13.850 0.00
SD(Sbf) 3.721 3.721 0.00
r
,Var(de) 6.248 6.248 0.00
SD(de) 2,499 2,499 0.00
E(PK) 0.07382 0.07475 1.26
Var(PK) 0.00007224 0.00007311 1.2
SD(PK) 0.008499 0.008550 0.6
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Now as has been alluded to previéusly, one of the main purposes of
this thesis is to relate the uncertainty associated with PK to the uncer~
tainties associated with basic random variable inputs to the model; that
is, V;r<PK) must be related directly to the parameter estimates associated
with ﬁ. Table V lists the percent of the first order approximation of
Var(PK) thch can be attributed directly to the estimates of the para-
meters associated with{é._ One observes from Table V that Var(PK) is
more sensitive for this example to the uncertainties associated with iz
and ia which indicates that more care should be employed in estimating
the parameters‘associated with these two random variables.

As an added observation, consider the ratio of the SD(PK) to E(PK)

which is now termed the uncertainty ratio SDR; that is

SD(PK)

SDR = ===t
E(PK)

Now for Example 1

_ 0.008550

SDR = 5767475

= ,1142

Table VI shows the behavior of SDR as E(PK) is varied for the same para-
meter estimates for{ﬁ. FOné observes that for a change in E(PK) of 66.8
percent, SDR changes»less than 8 percent. Thus, one might choose SDR to
be yet another, and more general, measure 6f the ﬁncertainty associated

with PK.



TABLE V

Variance of P, Components for

Example 1
Variance Components Var(PK) = 0.00007224
*.,
Percent Var(P,) due to 0?2 , 5.57
K
KKy
*
Percent Var(P ) due to 02 50.39
) K K»K
252
*
Percent Var(PK) due to 02 , 43.89
K3K 5
*
Percent Var(P,) due to 62 , 0.15
K
KyKy
TABLE VI
Uncertainty Ratio
E(P,) SD(P,) SDR
0.1399 0.01540 .1100
0.1162 0.01302 .1133
0.0985 0.01120 .1137
0.0847 0.00972 .1149
0.0738 0.00855 .1159
0.0651 0.00759 .1165
0.0579 0.00678 L1171
0.0519 0.00611 L1179
0.0469 0.00554 .1181

67
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In summary, Example 1 has presented a simple probabilistic model
for PKvas a function of four basic independent random variables: Kj, Kj,

K3, and Ky. Both a first and a second order approximation of the uncer-

tainty related to PK; i.e., Var(PK),_has been presented in terms of the

s %
assumed parameters assoclated with K; 02 , . TFurthermore, estimates of
K:K.
it
the errors involved in approximating E(PK) and Var(PK) by first order

approximations have been shown to be less than 5 percent in both cases.

In addition, it has been observed that, under the assumptions of this

example, P, is more sensitive to uncertainties in Ky and K3 than in Kj

K
and K, which suggest that more care should be employed in evaluating the

~ ~

parameter estimates associated with Ky and K3. Finally, the uncertainty
ratio SDR has been introduced as a further, and more general, measure of

the uncertainty of PK.
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Multiple Weapon Delivery, Before proceeding with the second and

more complex example, consider briefly the multiple weapon delivery case
in light of Example 1. As stated previously, the computation of a meas-
ure of the uncertainty of Pg for the delivery of a stick of A weapons is
a simplé extension of the techniqués employed for the single weapon
delivery case. From the discussion concerning the Stick Bomb Delivery
Model, the mean impact point for the ith weapon, say m; is given by

(rg + Ary, dg + Adj) where (rg, dg) represents the intended pattern aim-
point and Ar; and Adi denote range and deflection separation respectively
between the pattern reference péint and the position of the ith weapon.

One could thus write the following
my = (rg + Ari, dg + Adi) . (3.2.35)

Again as in the single bomb case, ry and dy can be calculated from the
intended release conditions. Furthermore, Ari and Adj can also be cal-
culated from these intended release conditions. This is accomplished by
means of the Stick Bomb Delivery Model.

Now the variance associated with aiming in the ith impact point
should be the same as that related to the jth impact poin£ since the aim-
ing error is assumed to be applied to the pattern as a unit. On the
hand, however, the ballistic error for the ith weapon would not necessar-
ily be the same error as that for the jth weapon since the ballistic error
is assumed to affect each bomb independently. Thus one should write the
estimater model for the standard deviation aésociafed with the ith impact
point ‘as

~

S¢i = (Sar’ Sads> Spris dei) (3.2.36)
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wherevSa‘r and Sad are calculated using the release conditions for the
middle (or theoretical middle) weapon in the pattern. Although the MRKP

Model does not consideér multiple values for ballistic errors, consider

A

for now the general case where Sbri and dei are calculated’ for the

release conditions associated with the ith impact point. The specific

application of the MRKP Model is discussed at the end of this section.
The general functional relationship representing the probability of

kill model for the multiple weapon delivery case can then be written as

~ ~ ~

PrM = Prm(my, mp, « o oy m , Sar» Sads Sbri, Sbra, - - . Sbrx?
Sbdis Sbd2s - + »s Sbdr) (3.2.37)

which correspondé to Equation 3.2.16 for the single weapon delivery case
and, in general, to Equation 3.2.3. Following the tecﬁniques of Section
2.4, and aésuming again that aiming and ballistic error are independent,
one canvwrite abfirst orderiapproximation of the measufe of uncertainty

corresponding to that for Py in Equation 2.4.13.

R 9P “ BPIG[ “
Var (P, ) = (—)2 Var(S_ ) + (—)2 var(S )
KM™ - ar ad
BSa 9S
r ‘ ad

~

+ 8 K

o - = Cov(Sy s Sppg)

i=1 j=1 3Spri Bsbrj

A 5 OP 3P “ ~

+ o5 ¢ = K oG L8 ) (3.2.38)

{=1 4=1 38 Y bdi bdj

155070 %%pai “Pbaj
where the sensitivity coefficients associated with Sbri and dei are
calculated for S, . and S, ,. evaluated for the intended release condi-

bri bdi

tions related to the ith weapon. In turn, the sensitivity coefficients



71

are calculated for Sar and Sa ‘evaluated at

associated With S and S
‘ : ar a d

d
the intended release conditions related to the middle weapon of the
pattern. - The covariance terms of Equation 3.2.38 indicate some measure
of dependence amohg the ballistiq.errors. ‘However, if one examines the
model mofe closely, one observes that for a given pattern aimpoint, the
ballistic errors are conditibnally independent given the aiming error.

. In turn, the uncertainty associated with the pattern aimpoint is included

in the aiming error terms so that the covariance terms of Equation 3.2.38

can be omitted. One can then.write the following form for the measure

of uncertainty involved in PKM:
3P : aP ~
Var(P,.) = (92 var(s ) + (—H2 var(s_.)
KM ar ad
3S 3S
ar ad
). 9P, ~
+ X AKM )2 Var(Sb .)
) a8 ri
i=1 bri
. A oP n )
+ 5 (=2 yar(s, ) (3.2.39)
j=1 23S - bd]

3 bdj
Now as was alluded to previously, the MRKP Model does not consider

a separate ballistic error for each impact point. Instead, an average

~

Sbr. and ébd are calculated using the release conditions for the middle

bf and de are used as the ballistic

weapon in the pattern. In turn S
errors associated with the ith impact point. In relation to the MRKP
Model then, Equation 3.2.39 should be written as follows
aP ~ aP ~
Var(P,.) = (—2 yar(s_ ) + (92 var(s_,)
, KM : ar ad
as as
ar _ ad
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oP oP

~ m A
2 ) 2 Var(Sbr) + (3§ )2 Var(de) (3.2.40)

br bd

+ (

where the sensitivity coefficients are evaluated for the intended
release conditions associated with the middle weapon of the pattern. It

should be observed that if S and $

br ba 2¥e literally substituted into

Equation 3.2.39 for each S, . and S then, the last two terms of Equa-

bri bdi
tion 3.2.40 should be multiplied by A. However, the sensitivity coeffi-

cients in Equation 3.2.40 which relate Sbr and de to PKM are obtained

by varying the single value of §br and ébd used as inputs for the model
which in turn varies the respective standard deviations associated with
all the impact points. The sensitivity coefficients calculated in this
manner relate the senmsitivities associated with all the impact points

and thus justify the omission of the A factors. One might observe that
the error in PKM associated with using average ballistic errors in the
MRKP should be negligible due to the relative insensitivity of PKM to

Sbr and de which has been illustrated previously in Example 1.
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3.3 Example 2: Fragment Sensitive Target. A fragment sensitive

target is comnsidered in this section as a second example of the uncer-
tainty associated with a particular weapons effectiveness probébilistic
model. Recall again the general weapons effectiveness model of Equation
3.1.3

P = P(D = EDgLl = J, Dp(D) £

K XII(_T_IL) dr (3.3.1)

For the fragment sensitive target model, the damage function DF is
considerably more complex than that used in the blast sensitive model and
corresponds to the damage function discussed in Section 2.5; thap is, DF
is, in general, a function of the impact‘point and fragmentation charac-
teristics of the particular weapon deployed. For the purpose of this
exaﬁple, the following form is assumed for the damage function and cor-

responds to that used by Snmow (20) in Rand's Simplified Target Coverage

Model.

| - XR X .
D_.(X, Dg, , ) = Doexp{-Dol (572 + (=521} (3.3.2)
vF 0, RMp, R 0 0% R, RM, | |

Dy relates a symmetric damage function with center value Dg and_elliptic
constant damage level contours. Equation 3.2.2 corresponds to an analyti-
cal function which has been fit to an empirical fragmentation damage

"function obtained from fragmentation data. The random variable parameters
Dg, RMR and RMD are acquired from the empirical daﬁage func;ion and thus
relate the'fragmehtation data to the analytical damage function of
Equation 3.2.2, The purpose of this example then, is to relate the v
uncertainty associated witﬁ the empirical fragmentation data, as well as

delivery accuracy uncertainty, to the uncertainty in P In order to do

Ko
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this, each individual model employed must be examined. The empirical
fragmentation function is obtained by means of a Lethal Area Program
which also contains a éubroutine‘that in turn calculates RMR and RMD
directly from the empirical fragmentation function. For this example
Dy is assumed to have the value 1.0 and will not be considered a random
variable. This assumption corresponds to assuming that the probability
of damage to the target at the impact-point is 1.0 which is reasonable
for the weapon and target assumed for this example. Another program,
termed Quiékie, combines the damége function information obtained in
the Lethal Area Program, with target and weapon delivery specifications
to obtain PK’ the conditional expected damage to the target. As in the
blast seﬁsitive exaﬁple, the target is assumed fixed and the weapon
delivery information is derived from the Stick Bomb Delivery Model.

In order to better understand the conditional aspects of PK’

consider the following notation used in this example:

(o]

Py = E[D|RM, RM, S ] = J2 Dy(z, Ry, Rfy) s, (z]8) dr

' (3.3.3a)
where

= FR1(Z1, Zo, « « o, Zw) E FR;(2) (3.3.3b)
RMD = FRz(Zl, Zoy « o oy ZW) = FRz(_Z_) (3.3.3¢)
Zi = ith component associated with fragmentation data ‘ (3.3.3d)
S =(5 ,S8 ., 8 ,8 )= K (3.3.3e)
S, = Supr Sagr Sppo Spg) = 8@ K e
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and éx is equivalent to Equation 3,2.25. The Z values are explained in
detail at a later point. From Equation 3.3.3 one can see that PK is a
conditional expected damage, conditiongd directly on RMR’ RMD and é% and
in turn on Z and ﬁ, Thus the uncertainty associated with PK must be
linked directly to the uncertainty related to Z and ﬁ_by the techniques
of Chapter II. Before considering any particular model for the computa-
tion of a measure of uncertainty for PK’ suppose each individual program
model is examined along with the assumptions made for that model; i.e.,
Stick Bomb Weapon Delivery, Lethal Area, and Quickie Programs.associated

wiﬁh the JMEM effort.

Stick Bomb Weapon Delivery. As for the example of the previous

section, the weapon delivery is assumed to be modeled by the Stick Bomb
Weapon Delivery Program. Thus one can write immediately the estimator
models for the mean and standard deviation of X(the actual impact point)

correspbnding to Equations 3.2.14 and 3.2.15 respectively

ﬁx = Mo = H (y1, y2, - - 5 ¥y) 2 RGP (3.3.4a)

éx = 8(y15 Y25 + = +» Yo 121, 122, 123, 124) = 5(y, l<_) (3.3.4b)
where

.= (5, 8,41 5,5 5,0 = (51, S, S5, 54) (3.3.40)

Again the release of oniy one weapon is considered to reduce the complex-
ity of the problem.

Since the model is iaentical to that used in Examplg 1, one can
also write the expected value of éx and a measure of the uncertainty

associated with §x directly from Equation 3.2.28
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E[Sx] = S(ls _IS) (3-3.58)
~ 4 4 98 98 | o2
Var(S ) = Z 75 = |o :
X ; . K, -
i=1 j=1 %3 K, . (3.3.5b)
~ 173
K=k
where
Ki = estimator of the ith error'coefficient
ki = expected value of the ith error coefficient
02 . = covariance of estimators of the ith and jth error
KiK' :
J coefficients

Lethal Area Model. The Lethal Area‘Model provides.detailed
information about the déstructiVe capability of a weapon on a specified
target. This information is output in the form of an empirical damage
function that éives probability of full damage PFD as a function of
target position relative to the point on the target directly under the
burst point. An analytic damage function is then fit to this empirical
damage function and the pertinent parameters associated with the analyti-
cal damage functions serve as additional outputs of this Lethal Area
Model. Another measure of the weapons effectiveness is computed as
lethal area which corresponds to the integration of the probability of
full damage over the area of effects. In general, lethal area is a dam-
age index which when multiplied by the number of uniformly distributed
targets per unit area, gives the'expected number of targets completely
damaged.

The Lethal Area Model recognizes two distinct and indepen&ent

damage mechanisms: fragmentation and blast. The probability of full



77

damage at a point Tp measured with reference to the impact point of the

weapon, is computed from the formula given in reference (21).
PFD(TP) =1 - [1 - PKb(Tp)][l - PKf(Tp)] (3.3.6)

where PKb is the probability of full damage from blast effects alone

and PKf is the probability of full damage from fragmentation effects
alone. It should be noted that the assumed independence between fragmen-—
tation and Blast effectsvmight prove to be>questionable under certain
situations; however, since the Lethal Area model used assumes this inde-
pendence, the same assumption is made for the example of this section. 1In
the model, PKb is assumed to depend only on the distance Rb which is the
distance from the impact (burst) point to the target point Tp. From the

impact point to a range Rbl’ is assumed to be unity. Beyond Rbl’

Pb

PKb is assumed to decrease linearly to zero at sz. The model thus

requires the entry of particular values of Rbl and sz which are termed
the blast radii.

On the other hand, the computation of P is considerably more

Kf

complex than that of PK . In particular, is calculated directly

b PKf

from extensive empirical fragmentation data. The lethal capability of a
given fragment depends on its mass, its impact velocity, and its shape.
It is not the purpose of this thesis to examine in depth the computation
of PKf but to point out its functional dependence on empirically derived
fragmentation characteristics. These characteristics, which are now
called componeﬁts of fragment data, are obtained from bomb arena tests
and include such items as

(1) fragment shape

(2) spatial distribution of fragments
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(3) fragment mass densities

(4) initial fragment velocities

(5) fragment drag coefficients

(6) weight of unexploded bémb case
A more complete description of the internal structure of the Lethal
Area model is given in reference (21).

Since the values used by the Lethal Area model for‘the componeﬁts
of fragment data are obtained via a feﬁ experiments, these values are at
best only estimates of the means of the basic underlying random variables
involved. Likewiée the blast radii és well as other model inpﬁts coﬁld
also be treated as estimates of the expected values of other random

variables. 1In general one could write

PFD(TP) = FR3(TP, Zl, Zz, « s ey wa) (3.3.7)

:

where

Zi = estimator of the expected value of the ith factor

affecting PFD

The uncertainty associated with the Z éomponents; i.e.,, estimates of
covariances of Zi and Zj’ can now be related to the uncertainty of‘PK
in a manner similar to that of the theoretical models of Sections 2.2 and
2.3. For the purposes of this example, only four Z components were
chosen to illustrate the theory involved. This was primarily due to

lack of sufficient data concerning the other components but is also
convenient, as the complexity of the computations involvediis reduced

accordingly. It should be pointed out that the general program written

to evaluate Var(Px); i.e., Program VPK, which is described in Appendix E,
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considers the uncertainty associated with NZ of the Z components.

The four Z components considered are all components of fragment data
‘and are listed as:

@B number of fragments counted N = Z;

(2) weight of unexploded bomb case CASWGT = Z,

(3) total fragment weight recovered FW = Zj

(4) fragment drag coefficients, CD ='ZM

Now Zj and Zj3, number of fragments counted and fragment weight,
reflect uncertainties due to errors made in methods and équipment used
in the weapons test arena. Quantitative measure of these uncertainties
can be made by relatively simple methods such as equipment calibration;
that is, estimates of the variances and covariances associated with Z;
and Z3 can be estimated directly from the test arena data.

On the other hand, Z,, CASWGT represents a random variable whose
uncertainty cannot be traced to the arena tests., Z; is the weight of the
unexploded weapon case and the uncertainty associated with Z, is related
to the fact that weapon cases are mass produced; i.e., production errors
are inhérent. The uncertainty related to Z, is important in the Lethal
Area Model since the value assumed for Z, is used to compute the total
number of fragments considered by the model; that is, Z, is used to
extrapolate Zj; for the lethal area model. A measure of -the uncertainty
associated with Z, can be obtained by examining the actual production
records of several munition plants and estimating a value for Var(Z,)
from this data.

'The.fourth cémponent Z,, the fragment drag coefficient is determined
from measurements made in a wind tunnel. Recalling the discussion

concerning stochastic drag coefficients tables in Section 2.5, one can
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express the uncertainty associated with each "average" value of the drag
coefficient table as a function of the data used to calculate each entry
into the table; i.e., Cov(Ci, Cj) where Ci and Cj are the ith and jth
entry into. the téble respectively.

The uncertainties associated with the four Z's considered in this
example have beén expréssed and now must in turn be related to the
uncertainty of’PK. Now as one recalls, the Lethal Area model computes an
empirical damage function where each point in this damage function corres-
It has been

ponds to a particular P i.e., a particular value of T

FD’ | P’
shown that Ppp is a function of the Z components which implies that the
empirical damage function then in a larger sense is a function of the Z
components also., Furthermore, the random variable parameters linking the
empirical damage function to the analytical damage function used in the
Quickie Target Covérage.Model, namely RMR and RMD, must also in turn be

functions of the Z components. One thus justifies the previously written

Equations 3.3.3b and 3.3.3c.

FRl(Zl, Z2, Z3, ZL}) = FR].(Z.) (3.3.83)

Bl
R

It
[

FR2(Z1, Zo, Z3, ZL}) FRz(l) (3.3.8b)

Equations 3.3.8 simply relates that the analytical damage function used
is indeed a function of the factors affecting the empirical damage
function as one would expect.

Consider now the uncertainties associated with RM_ and RMD which

R
are related to the uncertainties of the Z's. Denoting RM = (RMR, RMD)

and FR = (FR;, FR,), expand RM about z = E[Z] in a Taylor Series Expansion

dFR

7 |
1 2=z

RM = FR(z) +

1

W 1

. (z; - 2] (3.3.9)
1 =_
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Again a first ordef expansion is employed at this point to reduce the
notational complexity; however, a second order derivation for this example
is analogous to that which appears in Appendix C for Example 1. One is
‘also referred to Appendix A for a diséussion concerning the Taylor Series

termination criteria. Taking the expected value of RM as
E[RM]® FR(2) (3.3.10)

one can calculate the variance of RM directly corresponding for this

example to the variance of V or M calculated in Equation 2.2.29

5 % 3FR FR

Var[RM] = I 1 o= o= | Coviz, Z.] (3.3.11)
i=1 j=1 i °% J

L=z
In particular one can write the following components of Var [RM]

L y JoFR; 9FR;

Var [RM ] I 5 —,ﬁ.—[ Cov[z,, zj] ; (3.3.12a) ‘

=1 3=1 1 %% 4,

124

4 y JFRy 9FR,
Var[RMp] » % I —— =7 [CoviZ,, 2] (3.3.12b)

i=1 j=1

4}

Z=z

L y J0FR; O9FR;p
Cov[RM, RMD] = ¥ I —EZ;— —523— | Cov[Zi, Zj] (3.3.12¢)

i=1 j=1
where it is understood that Cov[Zi, Zj] and z are estimated from
empirical data.
It should be noted at this point that an additional program was
used in order to obtain the required sensitivity coefficients; i.e., the

partial derivatives for Equation 3.3.12. The program called FRAME-1 was
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- developed by the Defense Technology Laboratéry in Santa‘Clara, California
to be used in connection with the Lethal Area program which is used in
this example. FOriginally the program was designed to implement an error
analysis of the random variable parameter Lethal Area, LA, and provide a
level of confidence associated with LA, Although the program was not
initially intended'fo be used to calculate sensitivity coefficients, it
did provide a method of varying the particulaf Z values used by the
Lethal Area Program and ﬁhus was easily modified to provide data suitable
for calculating the sensitivity coefficients by standard finite differ-
ence techniques.

Quickie Target Coverage Model. Assuming the delivery of one weapon

aimed at the center of the target and that the input probability densi-
ties of Equations 3,2.20 again apply, one can write a functional repre-
sentation ofvthe PK_model used in this example; namely, the Quickie

Target Coverage Model:

. - .
s - R,
P, = PFC(RM.R‘ » RMy, Sy) = E[DF|RM.R, RM, Syl= _iz exp[(—.RMR) +

T ‘ . ‘

—Dy2 s S 3.3.13

(RM.D) I fs (e TplS) dTgdry : (3.3.13)
Al

which will be referred to as simply PFC(BM’ éx). The multiple bomb drop

case can again be attained by a simple but rather lengthy extension

similar to that associated with Example 1. A function representation of

the multiple bomb PK’ say PKM’ is written which corresponds to Equation

3.2.37.

Pey = Ppoy(@s RMp, RMp, S (3.3.14)

where PFCM represents the function involved. Due to the notational
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complexity associated with the multiple bomb case, only the delivefy of
a single weapon is considered in this example.

Now suppose one makes the following change of notation

RM, = Wy and E[RM.] = v) ' ‘ (3.3.15a)
RMp) = W, and E[RM)] = v, | (3.3.15b)
§ar = Wy and E[§ar] = v3 (3.3.15¢)
S, =Wy and E[S_j] = vy | | (3.3.15d)
ébr = W5 and E[ébr] = yg (3.3.15e)
ébd = Wg and E[ébd] = yg | (3.3.15f)
so that
W= (W, Wa, o « o, Wg) = (RM,, RM, éx)

where y; and yo are obtained from Equation 3.3.10 and vy3, Yy, Y5, and
vYe are obtained from Equation 3.3.5a. Expanding PK in Equation 3.3.13
about E[EJ>= (Yl, Yy5 + - +5 Ye) = (y) in a first order Taylor Series
Expansion yields

oP

P, =P ()+§ —EC 1w, - v,] (3.3.17)
K - "reL oy W, M Yi e

W=y

See Appendix A for Taylor Series approximation criteria. Take the

expected value of P, from Equation 3.3.17 as

K ,
- - ' 3.3.18)
E(Pp) = Ppo () ¢

then one can directly calculate a measure of the uncertainty associated

with Py corresponding to Equation 3.2.24.



84

6 & OPr. P
Var(Pp) = X I —o= o

| covu,, W) (3.3.19)
i=1 j=1 °"i J

W=y

where from Equation 3.3.12¢c for i = 1, 2; j = 1, 2 one obtains

'y oy OFR, OFR,
Cov(W,, W) = I I — = | Cov(Z_, Z) (3.3.20)
u=] v=l u V 7=y

If i = 3, 4, 5, 6 and j 3, 4, 5,‘6, one has from Equation 3.3.5b

v aﬁi 3s.
Cov(W,, W) = I 1 —= —L]o2, (3.3.21)
J u=1 v=1 9K_ 3K K K
u v u v

Recalling that W) and W, denote the analytic damage function radii and
W3, Wy, W5, and Wg correspond to aiming and ballistic errors, it seems
reasonable to assume that W; and Wy are independent of W3, W,, W5, and

Wg so that
Cov(wi, wj) =0 for 1i=1, 2; j =3, 4, 5, 6 (3.3.22)

Equation (3.2,22) merely relates the assumption thaf the fragmentation
spray from a weapon is not dependent upon the impact point of the weapon.
This is not ﬁo imply that fragmentation is not a function of impaét angle
and impact velocity as surely it is. Impact angle and impact velocity
are two of the Z components affecting RM which were not considered in
this éensitivity study.

Now in general the covariance and expected value terms appearing in
Equations 3.3.20 and 3.3.21 are unknbwn as has been allﬁded to before,

and thus must be estimated from appropriate empirical data. Denoting



85

these estimated values with asterisks (%), Equations 3.3.19, 3.3.20,
and 3.3.21 can be modified to obtain an estimate of the Vaf(PK) corres—

ponding to Equation 2.4.13.

- 2
. FC EC
Var(P,) = I I === 11 I —=-—==| cov*[z,, Z,]
K s R ?
i=1' j=1 awl 3WJ u=] v=] aZu BZv 3
E: =p%
6 6 Pps OPp. u oy 98; 935 _
+ I I === ===z ¥ T |, (3.3.23)
ca AW, W 3K 9K
i=3 j=3 i J  u=1 v=1 u Kin
W=y K=k

Equation 3.3.23 now represents a measure of the uncertainty assoc-
iated with Py for this example. One can observe that Vér(PK) is depend- -
ent upon estimates of parameters related to the fragmentation data

components and to the error coéfficients. Furthermore, Var(PK) is a

A

function of the sensitivity coefficients relating K to §x’ Z to RM, éx

to Py, and RM to Pr. A quantitative discussion of the results pertaining

to this example follow.
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Quantitative Results for Example 2. The following JMEM programs are

employed
(1)
(2)
3
(4)

Figure 3

Intended
Release
Conditions

Estimates
of Error
Coefficients

Estimated
Fragment
Component
Data

in Example 2:

Lethal Area Model

Stick Bomb Delivery Model

Quickie Target Coverage Model

-
Y1

Y2 —

Stick
Bomb
i Delivery

Model

illustrates the relationship among these models.

Frame Model - (sets up inputs for Lethal Area Program)

g
dg

AR

AR .~
AD

Target Information{

,r - g))
—~do | 42
L AR} g 3
D1
" | 99
g g
. g 0
(]
. <
aR, | A
,_.A-D)‘J )
- E[8ar |R=k#]
-+ E[S, q|R=k*]
-5 (S | R-k*]
~E[S 4 |K=k*]

Px

Z* ~E [RM I
. Frame Lethal »E[RMZI
Area
Z*——b
L ww
Figure 3

A

D ———

_Z_=_Z_*]‘>

_Z_:z*]—i-

Quickie
Target
Coverage

Model

~E[By [k z*]

Model for Example 2
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Now the sensitivity coefficieﬁfs relating g_fo éx'are the same as
those used in Example 1 which are calculated directly from the functional
relationships between ﬁx and.g.> The sensifivity coefficients relating Z
to RM were calcﬁlated using finite difference techniques as has been
related pre&iously in this section. In particular, it shéuld be pointed
out again that the Program FRAME aided greatly in the calculation of the
partial derivatives required as it could be set to automatidélly vary the
respective Z values in a sequential manner. Finally the sensitivity
coefficilents relating éx and RM to PK_Were obtained by computing Py for
various values of éx and:BM_énd calculating the required partial deriva-
tive again by means of finite difference techniques..

The sensifivity coefficients as well as estimates of the parameters‘
associlated with_g and Z serve as inputs into the VPK Prégram which, in
turn, calculates first and second order approximations for Var(Pk) and
gives an_estimate éf the percent efror associated with thé first order
approximati§n of Var(Pg).

The quantitative resuits associated with Example 2 are summarized in
Tables VII through XI in much the same ﬁanner as Tables I'through VI
related the quantitative results of Examéle 1. Table VII lists the
estimated values which are used as inputs into the varioué models em-
ployed. Tables VIII and IX list the sensitiﬁity coefficients relating
Z to RM and éx and RM to Pgy. The sensitivity coefficients pertaining to
g and éx were given previously in Table II.

Table X relates the uncertainty_parameters obtained from the VPK
Program. One Shoula note that the components of éx are not assumed‘inde—

pendent for this example. Table XI then lists the percent of the first
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- Model Inpﬁts for Example 2
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Inputs Symbo]l Model Estimated Value
Release Altitude of Weapon ¥y Stick 3,000 feet
Velocity of A/C at Release yo Stick 450 knots
Dive Angle of A/C at Release y3 Stick 30 degrees
Ejection Angle of Weapon Yy Stick' 90 degrees
Ejection Velocity of Weapon Vs Stick - CL*
Target Height h | Stick/Quickie 0.125 feet
Vulnerable Target Length Ly Quickie 100 feet
Vulnerable Target Width LD Quickie 50 feet
" E[Aiming Error Coefficient AAA] kq* Stick CL*
E[Aiming Error Coefficient BBB] ko* Stick CL*
E[Aiming Error Coefficient DDD] kg* Stick CL*
E[Ballistic Error Coefficient DIS}| k,* Stick CL*
Number of Fragments Recovered N=Z; | Lethal Area 388
From Arena Test
Weight of Bomb Case CA=Z, Lethal Area |[124,953.5 grams
Total Fragment Weight Recovered [FW=Z3 | Lethal Area 1,230.97 grams
Average Drag Coefficient CD=Z, | Lethal Area 0.55
. A ' *, : 2
Cov(K;, Kjp) g% & VPK 1.0 feet
A A RILS! ,
Cov(Ky, Kj5) o? . VPK 4.0 feet?
. *K2K2
Cov(K3, K3) 0?2 . VEK 4.0 feet?
N - *K3K3 ,
Cov(Ky, Ky) o2 . VPK 0,25 feet?
_ a KKy
Cov(Ky, Kj) 02 VPK 1.0 feet?
v KiKy

%*CL = Classified Data



TABLE VII (Continued)
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Inputs Symbol Model Estimated Value
Cov(Ky, K3) o2 . VPK 1.0 feet?
KiK3
A a % ‘
Cov(K,, Kj3) o2 - VPK 2.0 feet?
KoK3 o
E[(K; - kl)'*] Kéq1111 VPK 3.0 feet"
E[(K2 —-kz)q] K42222 VPK 48 feet“
E[(K3 - k3)"] Kb3333 VPK 48 feet"
E[(Ky - ky)¥] Kb iisy VPK ©.187 feet"
*
2 ,
Cov(Zy, Z1) | : 02121 VPK 400
*2 ' rams2
Cov(Z,, Z5) .OZZZZ VPK 5,020,000 grams
*
2 2
Cov(Z3, Z3) 02323 VPK 576 grams
* .
2
Cov(Zy, Zq) OZqu VPK 0.0001
*
2
Cov(Zy, Z3) 02123 VPK 200 grams
. * .
COV(ZZ{ Z3) . '0§ZZ3 VPK 40,000 grams?
*
<2
Cov(Zjy, Zy) OZ3ZHv VPK 0.10 grams
E[(Z; - z])"] Z41111 VPK 480,000
E[(Z, ~ Zz)q] Zhoooo VPK 0.785 x 10"
‘ : grams™
E[(Z3 - Z3)L_*] Z43333 VPK 31,200 grams“
E[(Zy - zy)"] Zhy 1 VPK 0.300 x 108
All other estimates of - VPK 0.0
parameters of K and Z ‘




TABLE VIII

Sensitivity Coefficients for Example 2
Relating Z to RM

Sensitivity Coefficients for RMI
Item
RM]_ RMZ
PRZ (I, 1) 0.112 x 107 0.372 x 107}
-4 -
PRZ (I, 2) 0.405 x 10 0.173 x 107°
-2 -
PRZ (I, 3) ~0.487 x 10 ~0.100 x 10™"
PRZ (I, 4) -0.775 -0.243 x 102
-3 -
CPRZ (I, 1, 1) ~0.188 x 10 0.521 x 10
CPRZ (I, 1, 2) 0.365 x 1077 0.116 x 107°
~4 _y
CPRZ (I, 1, 3) 0.305 x 10 -0.721 x 10
-1 1
CPRZ (I, 1, &) ~0.296 x 10 ~0.904 x 10
-7 -7
CPRZ (I, 2, 2) ~0.147 x 10 0.379 x 10
CPRZ (I, 2, 3) 0.233 x 10°° ~0.690 x 107°
CPRZ (I, 2, 4) : ~0.378 x 107° ~0.753 x 107"
CPRZ (I, 3, 3) ~0.177 x 10°° 0.602 x 10~ °
CPRZ (I, 3, 4) ~0.219 x 107° ~0.333 x 1072
CPRZ (I, 4, &) -0.695 x 103 0.114 x 10%
DRM,
PRZ (I, J) = 5=
J
2
22RM

CPRZ (I, J, L) = ———
BZJBZL



Sensitivity Coefficients for Example 2

TABLE IX

Relating S and RM to Py

Sensitivity Sensitivity
Variable S Coefficient of PK Variable RM Coefficient of PK
-4 ~3
PRS (1). ~0.426 x 10 PFR (1) 0.574 x 10
-4 -3
PFS (2) -0.710 x 10 PFR (2) 0.207 x 10
PFS (3) -0.575 x 10 CPFR (1, 1) -0.749 x 10
‘ " , _5
PFS (&) -0.118 x 107 CPFR (1, 2) 0.988 x 10
-6 -6
CPFS (1, 1) '0.293 x 10 CPFR (2, 2) -0.698 x 10
» -6 Sensitivity
CPFs (1, 2) . 0.251 x 10 Variable RM & Coefficients of PK
-6
CPFS (1, 3) -0.460 x 10
’ -6 -
CPFS (1, 4) 0.400 x 10~ CPFRS (1, 1) -0.202 x 10
. L, )
CPFS (2, 2) 0.801 x 10 CPFRS. (1, 2) -0.340 x 10
- b6 : -
CPFS (2, 3) 0.333 x 10 CPFRS (L, 3) -0.250 x 10
-6 ) -
CPFS (2, 4) 0.222 x 10 CPFRS (1, 4) -0.584 x 10
-6 —
CPFS (3, 3) -0.291 x 10 CPFRS (2, 1) -0.703 x 10
CPFS (3, 4) 0.00 CPFRS (2, 2) .| -0.108 x 10~
-6 , -
CPFS (4, 4) ~0.441 x 10 CPFRS (2, 3) -0.938 x 10
CPFRS (2, 4) -0.988 x 10
3P 3P
K K
P S = — R
F‘ (1) asI PFR (I) BRMI
32PK . aZPK
CPFS (I, J) = 55557 CPFR (I, J) = SRismi
1°°7 I
4 3%P,
CPFRS (I, J) = ———
9RM_ 35 |
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TABLE X

Uncertainty in PK for Example 2

Estimate of
: Percent Error
First Order Second Order in First Order
Item Approximation Approximation Approximation
Cov(S 1, S1) ' 642.66 642.72 <.01
cOv(él, éz)  237.86 238,05 | <.01
Cov(Sy, S3) 0.00 0.00 0.00
Cov(S, §,) 0.00 - 0.00 ~0.00
Cov(S,, §,) 249.04 248.47 0.23
Cov(S,, 85 0.00 0.00 0.00
Cov(S,, §,) 0.00 0.00 0.00
Cov(S3, S3) 14.04 14.04 0.00
Cov(S3, S,) 9.41 9.41 0.00
Cov(S,, 8,) 6.31 6.31 0.00
Cov(RMp, RM.) . 0.35 0.23 20.00
Cov(RMD, RMD) 0.14 0.17 21.20
Cov(RMp, RMp) 0.58 0.50 13.80
E(Py) 0.012588 0.012084 4,16
Var (P,) 0.3879 x 107° 0.3854 x 107> 0.64
SD(P, ) 0.001969 0.001963 0.305
SDR 0.1565 0.1625 3.85




TABLE XIL

Variance of PK for Example 2

Variance Component Source

Percent Contribution

- Cov(Ky, Ky)
COV(Kl s Kz)

Cov(K;, Kj3)

Cov(K,, Ky)

Cov(ﬁz, K3)
Cov(ﬁ3, K3)
Cov(ﬁq, ﬁu)
EL(1, 1, 1,
E1(2, 2, 2,
E1(3, 3, 3,
VE1(4, 4, 4,
Cov(Zy, Z;)
Cov{(Zy, Z3)
Cov(Zy, Z,)
Cov(Z,, Z3)
Cov(Zgy, Z3)
Cov(Zy, Zy)
Cov(Zy,, Z,)
E2(1, L, 1,
E2(2, 2, 2,
E2(3, 3, 3,

E2(4, 4, 4,

i)

2)

3).

4)

1)
2)
3)

4)

4.4k
10.86
9.76
26.58
23.89
21.48
0.07
0.04
0.55
0.37
<0.01
2.03
-.70
1.42
-.61
.96
.27
.07
<.01
<.01
<.01

<.01
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order approximation of Var(PK)‘that can be atfributed directly to.the
particular parameter estimates aeeociated with.é andFZ.'

Consider the results of Example 2 as presented in Tables VII through
XI. One observes the increase in complexity of Example 2 in comparison
with Example i due to the consideration of addition Qariables. Further-
more,.again as in Example 1, the values given for the parameters are
strictly assumed and bear no relation to actual estimates derived from

»actuel empirical data.

One should ﬁote that most of the sensitivity coefficients presented
in Tables VIII through IX follow a simple pattern that each sensitivity
coefficient decreases in magnitude as the order increases. This is not
the case for the senéitivity coefficient related to Z,; i.e., CD, the
drag coefficient, which due to its small nominal value, has a large sen~
sitivity coefficient. On the other hand, fortdnately, the large sensitiv
ity is balanced by a very small variance of Z,. However, the higher
order sensitivity coefficient of Z, affects the Cov(RMi, RMj) as‘seen in
Table X; so that the second order approximation of Cov(RMi, RMj) is used
in botb the first and second order approximations of Var(PK) (see
Equation 3.2.24).

Table X relates the first order approximation of E(PK) and Var(PK)
as meeting the criterion developed in-Appendix A. One notes that the
estimated error isteven smaller for this example than that of Example 1.
Of particular interest ie the dncertainty ratio listed as 0.1565 which
indicates that to some extent this model has associated‘witb‘it a higher
degree of uncertainty than that of the model of Example 1. This, of
course, is a rather broad general statement based partially on intuition.

A much better comparison could be made if both models were considered for
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the same target-weapon combination. One would, however, expect é higher
degree of uncertainty associated with Example 2 than with Example 1 due
to the incréaséd number of sources to provide uncertainty for Example 2,

As a final observation, consider the percent contribution to Var(PK)
as presented in Table XI. Again as in Example 1, the primary source of
uncertainty lies in parameters associated with ﬁz and ﬁg. Although the
percent contribﬁtion of the Z parameter estimates are small in comparison
with those of ﬁ, the relative contribution within the Z component groups
is informative. In particular, Var(PK) is m&sﬁ sensitive to Zj, the nmﬂxmv
of fragments counted, for the parameter estimétes used in thié example.
This would in turn indicate a need’toiprovide for more care in the recov-
ery of fragments from the arena tésts.

The minus signs of two of the contributions indicate that the assoc—
iated sensitivity coefficients were such that the sums of the terms assoc-
iated with these parameters estimates were negative. This indicafes‘that
if thg t&o random variables are positively correlated, the net contribu-
tion due to the associated variances is not as great as would be expected
if the covariance terms were neglected.

In summary, thé uncertainty associated with a complex probabilisfic
model has been investigated ahd first and second order approximations of
a measure of that uncertainty have been evaluated. Furthermore, the
uncertainty measure has been linked directly to parameter estimates of
the basic model random variable iﬁpgts and in turn partitionedvaccording
to uncertainty cbntributions, thus indicating the méjor sburces of

uncertainty associated with Var(PK).



CHAPTER IV

SUMMARY AND CONCLUSIONS

4.1 Summary. The objective of this thesis has been to investigate
the uncertainty associated with probabilistic models and to develop a
procedure for estimating a measure of that uncertainty. Denoting the

response of a general probabilistic model as P,, the variance of PK [that

K’
is, Var(PK)] was éhosen as this measure of uncertainty. In particular,

PK hés been assumed to be a fpnction of several basic random variables
corresponding specifically in this thesis to model inputs. Var(PK) is

in turn estimated in terms of the estimated parameters obtained from
-empirical data associated with these basic random varigbles.

Basically this thesis has been developed as an extension of
sensitivity analysis of deterministic models to encompass probabilistic
models. Chapfer I thus reviews deterministic model sensitivity theory
and lays the foundation from which the rest of the thesis is developed.

Chapter II presents various system probabilistic models and
investigates errors assdciated with assumed density functions of param-
eters as weli as errors related to conditional loss functions. Initially'
a theoretical model is introduced and an exact representation of Var(PK)
ié developed. .Several difficulties associated with the theoretical
model are discussed and subsequently an approximation of-Var(PK) is
develéped through the use of Taylor's Series Approximations. The

estimator model is then introduced as an alternmative to the theoretical

model for use in more specialized situations. An estimate of Var(PK) for

96
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the estimator model is developed with aid of Taylor's Series
Approximation.

Chapter III presents two examples in which the techniques developed
in Chapter II are used. Both examples are éaken from the field of

weapons effectiveness where P, represents the conditional eXpectéd

K
damage to a target .attacked by a group of specified weépons. Example 1
is concerned with an area target vulnerable to blast effects only, and
is modeled By the Stick Bomb Delivery Model and the Multiple Round Kill
Probability Model. Example 2 .considers é much more complex pfoblem:A
an area target vulnerablé to both blast and fragmentation effects. Model
used from the JMEM inélude the Stick Bomb Delivery Model, the Quickie
Target Coverage Model, the Frame Model, and thé Lethal Area Model. In
both examples, firét and second order approximations of E(PK) and Var(PK)
are calculated along with estimates of the percent error associated with
the first order approximation. Furthermore, the estimates of Var(PK)
are partitioned into percent contributions due to parameter estimétes of
the basic random variables associated with the models. '
The Taylor Series Approximation and the assumptions associated with
the series termination criterion are discussed in Appendix A. Also
included in Appendix A is the development of an estimate of the error
associated with using the Nth order approximation of PK to estimate E(PK)
and Vér(PK). In addition, a brief décumentation appears in Appendix‘E

of the VPK Program which was developed to caléulate estimates of E(PK)

and Var(PK).

4.2 Observations and Conclusions. An approximation has been
developed that estimates the uncertainty associated with probabilistic

modeis; i.e., Var (PK). As was alluded to previously, it is not proposed
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that ﬁhis estimate must be the best estimate, however one wishes to
define "best," but it does present a practical approach to estimating
the probabilistic model uncertainty similar to that used with determin-
istic models. |

Examples 1 and 2 are assumed to present models that are fairly
representative of general probabilistic models. One observes that lpwer
order approximations of Var(PK) are quite acceptable in the examples
if one accepts the estimated error criterion presented in Appendix A.
These assumptions are based primarily upon the fact that the errors
associated with the Nth order approximation of E(PK) and Var(PK) are
greater than the efrors associated with any higher order approximations.,
In general, this is intuitively the case for most probabilistic models
encountered; however, models may exist in which the criterion of Appendix
A is not wvalid. For this reason, higher order approximationsvof PK than
that chosen to estimate Var(PK) should be investigated before the error
criterion of Appendix A is applied.

One further observes that the uncertainﬁy ratio introduced in
Example l‘can provide even a more general measure of the uncertainty
associated with a given probabilistic model than V;r(PK). In particular,
it has been shown that SDR provides a relatively constant uncertainty
measure over a wide spectrum .of intended model inputs values for a givén
set of parameter estimates associated with the basic random variables of
the model.

As was pointed out in Chapters I and III, the unceftainty measures
developed in this thesis should aid in the comparison of two or more
models. In particular, as'presented in Section 3.2, the respeétive

uncertainty measures of the various models under investigation can be
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used to determine if particular models should be used interchangeably;
that is, one can set up decision criterion based upon the uncertaiﬁty
measures assoclated with each model.

Finally, one should observe that the partitioning of the estimate
of Var(PK) into percent components related to the parameter estimates
should indicate where major sources of uncertainty lie and thus specify
where more data should be taken and where more money should be spent on
research and testing.

4.3 Recommendations for Further Study. As indicated at a previous

point in this thesis,‘errors associated with the form of the models
themselves are not considered in this thesis. It ié recommended that
these errors be investigated in light of the discussion of this thesis.
For example, one might consider each approximation made in a particular
model to correspond to a random variable with uncertainty associated with
the order of the error involved in that particular approximation. Infor-
mation of this type could be combined to produce a measure of the uncer-
tainty associated with the model form. This measure of uncertainty

could then be used to supplement the measure of uncertainty developed

in this thesis related to the model inputs. A measure of the model form
uncertainty would be useful in determining whe;e better approximations
should be made in the model.

As a further recommendation, it is suggested that the sensitivity
coefficients be investigated in more detail than was provided by this
thesis. Since many of the sensitivity coefficients were computed using
finite difference techniques, they are essentially dependent upon the
particular values chosen from which the partial derivatives were

calculated. There is, therefore, some degree of uncertainty that can
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be linkéd to  the sensitivity coefficients. This suggests thevtreating
of the sensitivity coefficients as random variables and in»tﬁrn relating
their uncertéinty to Var(PK).

Futthermdre, it would be advantageous to investigafe further the
estimated error aséociated with the Nth order approximation of the

functional representation of P Since the error is directly related to

K
tﬁe point a (see Appendix A), a bettef estimate of a wou;d be desirable.
In addition, one might investigate the possibility of evaluating an |
:upper bound on the error associated with a given approximation, in
particular, the evaluation of RN for o equal to B as mentioned in
Appendix A. |

Finally, the Bayesian learning techniques presented briefly in
Section 2.3 shoﬁld be.investigated in more detail as a possible alterna-
. tive procedure in the calculation ovaar(PK). Furthermore, in turn, the
éffects of the addition of more data concerning a particular random
Qariable f@r the Bayesian learning technique should be compared with the

corresponding effects for the Téylor's Series Approximation method as

preéented in this thesis.
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APPENDIX A
TAYLOR'S SERIES EXPANSION

A.l Introduction. The purpose of this Appendix is to discuss in

general the Taylor's Series approximations employed.throughout this
thesis. Taylor's Formula with Remainder is discqssed for functions of
several non-random variables and then is extended for functions of random
vectors. The remainder term is examined in light of the models involved
in this thesis and a criterion is given for estimating the error associ-

ated with a given Nth order approximation.

A.2 Taylor's Formula with Remainder. Consider initially a non-
random vector x = (xl,‘x2, « + «s Xp) and let g(x) be defined and contin-
uous and have continuous differentiais up to the (N + 1)st order for
a-~r, <x<a+zx,, wvhere a = (a;, ap, « . ., ap) and r, = (ry; ry, . .

«» ¥p). For a function of n variables the kth order differential at a =

(a1, ap, . « ., ap) is defined by Williamson, Crowell, and Trotter (22)
to be the following polynomial in x = (X1, X2, « .« ., xn):
k ~ ) , 5 .k
éﬂ g(x) = (x3 5;;-+ . e+ Xy 5§;9a g
or
k
d g(x) : Gk oyt 22
gx) = X] see Xn sl
=t Ky +..ot k =k K1 Kn 3%, 1 axnkn
. n
k|
where ( k :
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In terms of differentials, Taylor's Formula with Remainder can be

expressed for each x in the region about a defined by r, as

- L gl - Loeg2 -
g(x) =ga) +77 (4, &d(x - a) + 5T (47 &) (x ~ a)
S

+...+NJ déo(_z(_wé_)+RN (A.2.2)

where
1 N+1
N =T 4. 8-

and ¢ = (c , ¢, « .« ., cn) is some point in the region defined by I,

about a. The error associated with approximating g(x) by the first N + 1
terms of Equation A.2.2; that is, terms up to and including ﬁ%-dg g(x-a),
is precisely the remainder Rn' An upper bound on this error would be
calculated if the point b where the absolute value of the (N + 1)th

differential is maximum

| = dgﬂ g(x - a)| (4.2.3)

(N+1) !

IRyl <

It should be pointed out that except for simple functions with n
small the calculation of an upper bound on RN is a tedious job.

A.3 Extension of Taylor's Formula with Remainder to Random Vectors.

Now suppose one considers a random vector X = (X3, X5, . . . Xn) and a
functioﬁ G(X) which is defined and continuous and has continuous differ-
entials up to the (N + 1)th order over the range of X denoted by Sy.
Define py = E[X] =[E(Xy), E(X2), . . . E(Xn)]° Then Taylor's Formula

with Remainder can be written for the random function G(X) as
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l

C® = 6w + 37 Tl e - g7 (EOE -

t o Hgr 4G - W+ R, | O

where

(Ryl§ (N+1)l d Yo - w

where o is a particular value of X belonging to Sp. Now the expected
error associated with approximating G(X) by the first (N + 1) terms of

Equation A.3.1 is given by

EIRyl, = topT Eldy | O = »)] (A.3.2)

or letting k = N+ 1

k k : k
E[R] == El ( MKy = Hp) oo (X - w)m
Wa T Kyt . k=l <1 Kn noon
K,
3_G() ] (A.3.3)
Bxlkle,.BXnkn
or

k k k
S G 0 ELOG = m) L - u)
* kyt..otkgsk Clttm

(A.3.4)

Now E[RN] could be found if the value of o were known or an upper bound -

could be estimated for BE(RN)I if the point B belonging to Sy could be
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evaluated such that
[EIRy] | < | EIRG]| , | (A.3.5)

As would Be expected, evaluating B is a very difficult process except
for very simple functions and small n. However, one needs to estimate
E[RN] so that some simple measure of the approximate error involved in a
given Taylor Series Approximation can be given. Now a is a particular
value of X, and so for the estimation of E[RN]a suppose one evaluates
E[RN]a at a equal to the gxpected value of X; i.e., Q = u. Tﬁérefore,
one obtains E[RN] as an estimate of the error associated withvapproxi—
mating G(x) by the first (N + 1) terms of its Taylor's Series expansion

where
E[RN] = E[RN]& for o = u ] (A.3.6)

Consider for example expanding G(X) about g_iﬁ a first order Taylor

series expansion as is used predominately throughout this thesis

6 =6 + 2 L |x. - w) (A.3.7)
— — . oX, i i
1=1 i .
X=p

Now the estimate of the expected error involved in approximating E[G(X)]

by taking the expected value of Equation A.3.7 can be evaluated as

E e | (A.3.8)
ElR] = 2 I 3% | cov(x,, xj) .3.
i=1 j=1 °%1°%y

which is simply the expected value of the next term in the series.
Now suppose one considers the error associated with approximating

Var (G(X)) using the Nth order approximation of G(X). For notational
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convenience, let GN denote the first (N + 1) terms of G(X) in Equation
A.3.1; that is, GN equals the Nth order approximation of G(X). Then one

can write

Var G(X) E([Gy + [Ry], - E(G + [R.] )12} (A.3.9a)

or

Var G(X)

B{IGy - E(G) + (IR - E[R] )%} (A.3.9b)
which in turn can be evaluated as

Var G(X) = Var(Gy) + Var[R(] + 2Covic [Rry] ] (A.3.10)
which is denoted now as

Var G(X) = Var (GN) +V (A.3.11)

Ny

Now Var(GN) denotes the approximation of Var G(X) by assuming the
Nth order approkimation of G(X). The remaining term on the right hand
side of Equation A.3.11, namely vNa’ represents the error associated with
approximating Var(GX) by Var(GN), where the sensitivity coefficients

associated with RN and thus with V, are evaluated at the point o belong-

Ng
ing to Sy. If a point B belonging to Sy could be found where

v (A.3.12)

v

an upper bound on !VN I could be calculated. However, the evaluation of
o .
Bo is a very difficult process except for simple functions and small n.

However, one does need to estimate V_  so that some simple measure of the

Ng

approximate error associated'with employing Var(GN) for Var G(X) can be

given. As with E[RN]a suppose one evaluates VN at a equal to the
o
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expected value of X; i.e., o = u. Thus one obtains VN* as an estimate

of V where

V. %=V for o = ﬁ » (A.3.13)

One should note that for a = y, RN is simply the next term in the series
approximation of G(X) and VN* is the sum of the terms added to Var(GN) by

assuming the next higher order approximation of G(X); i.e.,

[vy*l = |var(e

) " Var(GN)l : (A.3.14)

In order to illustrate the validity of Equation A.3.14, consider

the following: Let the (N+1)th order approximation of G(X) be denoted by

GN+l = GN + TN+l (A.3.15)

where from Equation A.3.1

1 N+ _
Tyl = D) | du GX - w (A.3.16)
Now Ty, is precisely [RN]E?E. (A.3.17)

Therefore the (N+1)th order approximation of Var(G(X)) can be

written as

_ i i -
Var(Gy, ) = E[(Gy,; = E(Gy,1))?%] = E[(Gy +-[RNi=; By E[RNiiu]
(A.3.18)
or
o - 2
Var(GN+l) = E{[(6 - E(GN)) + ([RNi=u E[RNili } (A.3.19)



Var (G )

]

wer) = EL(Gy - E(G)H?] + E[([RN(]F— E[R,1)?]

o=H O=R

+ 2E[(Gy - E(G)) ([Ry] - E[RGD)]

a=p  gs
or

Var(GN+l) = Var GN + Var[RNi=: 2 Covl[G,,, [RNil

U

However, from Equations A.3.10 and A.3,13

VN* = Var[RN] + 2 Cov|[G_, [RN]]
a=u oL

"so that Equation A.3.21 can be written as follows

Var(G. .) = Var(Gy) + Vy*

N+1 N
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(A.3.20)

(A.3.21)

(A.3.22)

(A.3.23)

Equation A.3.14 now follbws directly from Equation A.3.23. Thus VN')'< is

an estimate of the error associated with Var(G(X)) due to using the Nth

order approximation of G(X). For the purpose of this thesis, the follow-

ing criterion on N was chosen

Choose N such that lVN*I < .05

(A.3.24)

For the examples of Section 3.2 and 3.3, first order approximations were

employed as suitable approximations with reference to the above criterion

on N,



APPENDIX B
VARIANCE OF S
S,

B.1 Introduction. In this Appendix a detailed derivation of the

covariance associated with §x is presented, where §x is defined in Chap-
ter III to be the standard deviation vector associated with X, the weapon
impact point. Since the variance related to the range components of §x;

namely, Sar and Sbr are derived in an analogous manner as those related

to deflection components Sad_and de, a description of the calculations

of the estimates of Var(Sar) and Var(Sbr) is made and then the results
are appropriately modified to provide_Var(Sad) and Var(de). It should
Sad’ Sbr’ and de which

are used in this Appendix have been empirically derived from actual

be pointed out that the equations modeling Sar’

weapon delivery tests and correspond to the models assumed in the Stick
Bomb Delivery Model.

B.2 Range Impact Point Model. Consider for now the range component

of impact point. Assume: (Capital Letters = Random Variables, small

letters = parameters).

Xr = Range Impact Point = R.V. (B.2.1)
~ 2

X N(R, Sbr) (B.2.2)

R = Actual Aimpoint = R.V. (B.2.3)

R ~ N(rg, S°.) (B.2.4)

ar
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where

rp = intended aimpoint distance from release (in range).
no specific distribution will be assumed for Szr and Sir; but,
assume the following:

E[Sir] G%r = unknown parameter; ballistic variance

V[Sir] = aﬁr = unknown parameter; variance of Sir

E[Szr] = Oir = unknown parameter; aiming variance

V[Szr] = agr = unknown parameter; variance df Sir
thus

E[X ]= E[E[X_|R, sgr]] = E[R] = rp

Var(X ) = Var[E[Xr[R, 52,11 + E[Var[X_|R, SZ 1]

Var(Xr) = Var[R] + E[Sgr]

Var(x ) = Var[E[R|s§r]] + E[Var[Rtsgr]] + E[s2 ]

Var(Xr) =0 + Gir + agr
In summary then

E[Xr] = 1y

Var[X ] = czr + O%r
SD[Xr] = Ggr + G%r = standard deviation of Xr

111

At present

we will

(B.2.5a)

(B.2.5b)
.6a)
(B.2.6b)
(B.2.7a)
(B.2.7b)
(B.2.9¢)
(B.2.7d)
(B.2.7e)
(B.

2.8)

(B.2.9)
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Assume a model for Sar of the form which corresponds to that used in the

Stick Bomb Program and denoted by the function S; of Equation 3.2.10a.

sr02

2 2
S = [Kitp? + K, (B.2.10)

ar 2

hag
where
tp = calculated time of fall corresponding to intended release
conditions associated with hitting rg.
srg = calculated slant_range for intended release conditions.
hag = calculated harp angle for intended release conditions.
ky; = random variable whose uncertainty is assumed to partially
compensate for error between actual release conditions and
intended release conditions; in particular, to compensate
for errors in velocity due to miscalculation of wind
"velocity.
ky = random variable whose uncertainty is assumed to compensate
(along with K;) for errors between actual release conditions
and intended release conditions.
NOTE: A model for Sbr will be discussed later in this appendix.
Consider the model of Equation B.2.10 further. Suppose a pilot
desires to drop a weapon or a stick of weapons on a particular target.
From the physics of fhe trajectory problem, his uprange release dis-
tance can be calculated and corresponds to his intended range aimpoint
distance r3. Now, associated with ry are a set of intended release con-
ditions yi, Vo, « « ., y¢ that must be met in order to release the weapon
actually aimed at rp. Many factors influence the values of yj, y2, . .

. y¢ such that on any particular run errors occur between the actual

values obtained, call them yji*, yo%, . . ., y¢*, and the intended values
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of the y's. If we assume (which we do at this point) that these errors

are neither positively nor negatively biased, we can treat the intended

y values v1, V2, +» + .5 yd> as merely the expected values of the basic
underlying random variables Y;, Y,, . . ., Y¢. Thus we see that y;%,
Vo¥k, o . ., y¢*) is simply a sample point or an outcome in the space
defined by Y1, Yo, . . ., Y¢.

Now suppose one defines the following random variables as functions

of Y1, Yo, . . ., Y .
‘ ¢
T=g7(Y1, Yo, « « ., Y¢) = time of fall of weapon (B.2.11a)
SR = go(Yy, Yo, . . ., Y¢) = glant range at weapon release (B.2.,11b)
Ha = g3(Y1, Yy, . . ., Y¢) = sine of angle between slant range
at release and horizontal (Harp
angle) . (B.2.11c)
For a set of intended release conditions yi1, y2, . « .; y¢, the following
is obtained
E[T[Y; = y1, Y2 = y2, . . -va¢ = Y¢] =ty = g1(y1, Y2, « - > Y¢)
(B.2.12a)
E[SRlYl = Y1, Y2 = Y25 - o ey Y¢ = Y¢] = srg = 82(¥15 Y2, « « > Y¢)
(B.2.12b)
E[Ha[Yl RRATIR 2l FFEENENETIR P y¢] = hag = g3(y1, Y25 + -+ «» y¢)
(B.2.12c)

One sees then that tg, srp, and hap are related directly to the
intended release conditions. Again referring to the model of Equation

B.2.10
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Sro2

s _ = K12 to? + Ki

ar (B.2.13)

hag?

one recalls from Chapter II that the random variables K; and K, are
assumed to account for errors in the release conditions due to errors in
aiming.

If one assumes for a series of test runs for set values of ty, srg,
hag, that is, for a series of sets of intended release conditions v's,

can be observed and K; and K; can be esti-

that particular values of Sar

mated from this data, say as ﬁl and ﬁz respectively, then the following

estimator model is obtained

‘ 2
R sTr
~ _ / 2 2 no 0

S, [ Kt + K (B.2.14)

hag?

Another way of looking at our estimator model is to let Iar<k5ignate
the information obtained from the data in order to compute ﬁl and ﬁz,
The designation Iar would necessarily represent a random variable whose
uncertainty is tied to that of the uncertainty of the data involved.

Thus, one can rewrite Sar as

2
A~ STy
= = 2 2 2

S, = El arl ar) E[KI[Iar] to? + E[Klear] — (B.2.15)

ap
Where E[SarlIar], E[KllIar]’ and E[KZIIar] are random variables; i.e.,
functions of the random variable I__. For example, if 1 = i rep-

ar ar arl

resents information from one particular set of data, then
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srp?
= g = . 2 2 - 3 2 0
E[SarlIar = igpl = E[Klllar ISR LT E[KZIIar = iapil 5
hag
(B.2.16)
where E[Sar]Iar = lar1]’ E[Klilar = larl]’ and E[KZ’Iar = larl] are

numbers computed with Iar = 1 .

Now assuming that E[KlfIa = K, and E[Klear] = Ky, are estimators

N

for K; and K, derived from the data, the following unknown parameters

can be associated with these estimators

k, = E[K;] = E(E[K [T 1] (B.2.17a)
ko = E[Ky] = E[E[Kp[T_ 11 (B.2.17b)
62 . = Var[K,] (B.2.17¢)
KK,
62 . = Var[Ks] (B.2.17d)
KoK,
o =,cov[ﬁ1, ﬁz] (B.2.17e)
KK,

Recall the estimator model

N ~ R sr02
S _=E[s |1 1= K2 tg2 + Ko— (B.2.18)
ar ar'ar / 1 2ha02

Expanding E[Sar]Iar] about k; and k; in a first order Taylor series

expansion, we have
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n k; t02 . ko SrOZ(K2 - k2)
Sar = SQAR + —gazi— (R} - k) +

kgsro2
where SQAR = k?ty? + —=———
1 ha 2
ap

so that if we take the expected value of Equation B.2.15 we have

(B.2.19)
hag? SQAR

: 2
~ 5To
- z 2, 2 2
E[E(Sar|Iar)] E{Sar} “J/ ki{to® + k5 ; (B.2.20)
hag
Furthermore. defining
= — 2
var{E(s_ [T )} = EI{s, |I ) - E(E(S_ [T ))}°] (B.2.21)
we have
N k%btoz R kg SI‘OL+ .
Var{E(S__|I_)} = Var(s_ ) = Var(K;) + ———— Var(Ky)
ar. ar T sQaR? hag¥SQAR?2
2t02sr02k1k2 . .
+ Cov(X;, Ky) (B.2.22)
hag? SQAR?
where
5 k%sro2
SQAR = k1t02 o
hao2
or
2. 4 2 L 2 2
~ kltO kz ST 2tp¢ srp“ ki ko
Var{Sar} = 62 , + ——— o2 + 02 . (B.2.23)

SQAR? K;K; hap' SQAR? KyK, hag? SQAR? KiKy
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As has been pointed out before, the parameters ki, ko, o2 ., 0% .
KKy KoKy
and 062 . are not known and cannot be calculated exactly. However, for
K1Ky
any given set of data corresponding, for example, to Iar = iarj’ one

could calculate a particular value of k; and k, for that set of data;

say,
X = X = 1
klj E[Ky [T, Lars] (B.2.24a)
* . .
k2j = E[Klear = 1arj] (B.2.24b)
. 2
One could also calculate particular values for o. . and ¢2 . respec—
K1Ky KK
tively as,
2* - -~ o 1
0% . var(KllIar larj) (B.2.25a)
K1Ki 3
2:‘: _ ~ - s
0% . = var(Klear larj) (B.2.25b)
KoKoj
2* = " - = i
os” . cov(K;, Ky Iar larj) (B.2.25¢c)
KKy

For example, one might employ standard regression techniques to

*

calculate ki and k, as estimates of regression coefficients associated

la
J J
with the Sar model of Equation B.2.10. Weapons could be dropped for

varying intended values of ty, srg, and hag and sample values of Sar

: *
could be obtained for the calculation of k; and kg_. Furthermore, from
J 3

the regression analysis of the data obtained, covariances of the estima-

- ) 2
tor K's could be estimated corresponding to or,

Kin
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sets of data corresponding to I i s, I
ar arl’ Tar

iarz’ NN Iar = iarn one could form average estimates by averaging
over j, namely,
¥ = B[R-1T = 1 ; U
1 [Kq] ar = tar; U i, U ui_
= K = i
B[Ry [T, =1 ] (B.2.26a)
K =E[K,|I =1 Ui .U Ui
2 21 ar arl ar2 ’ ' “Tarn
= E[Kzixar =i (B.2.26b)
%2 -
. o =vVar[Ky|T =i Ui __U...Ui ]
ar arl ar2 arn
K1Kq
= Var[KllIar =i (B.2.26¢)
2 A
X =Var[Re|I._ =i _ Ui _ U...Ul ]
ar ar ar “Tarn
KoKy
= Var[K,|T__ = i 2.
gr[ 5] ar lar] (B.2.264)
2 ~ ~
¥, =covlkKy, Ky|I._ =41 _ Ui __U...,Ui__ ]
- ar arl ar?2 arn
K1Kp
= cov[Kj, K2]Iar =i ] (B.2.26e)

where iar represents the total information obtained from the n sets of

* b n

data. Thus, kj, ks, Of
2 .

parameters ki, ko, Ok ;K

Suffice it to say that

2

*2 %2 .
A R n2 th timat h
1Rys KKy and OK1K2 are the estimates of the
2 2
05 ¢ and ox ~ iven all the available data.
17 TKyKy? RiKy ©

if one had one set of data or twenty sets of

2

data, the final resulting estimates are termed k;, ko, Oﬁlﬁl’ Gﬁlﬁz SO

that the notation will be consistent. The estimate of E[Sar] can now

be calculated as



119

k2s19?

=3 oy

2

I _=1i 1= K} ?t2 + ——— (B.2.27)
1 ~0

E[éarl ar ar
hag?

This value, Equation B.2.27, is assumed to be the actual output of the

Stick Bomb Program for (—=57) with kl and kz as normally given. k? and

6745
kg are assumed to have been calculated from a set or sets of data corres-
ponding ta Iar = iar’ Since we assume that the Stick Bomb Output corres-
- ponding to Equation 2.2.7 is a conditional expected value of éar’

conditioned on all available data, a measure of the uncertainty associated

with Sar is needed which is related to the data; that is, one needs to

calculate an estimate of gar based on the data that is available. If

Gélﬁl ﬁ ﬁ , and Oéiﬁz were known, they could be substituted into Equa-
tipn B,2.23 and var(Sgr) calculated directly. Unfortunately, these

parameters are not knownj; but, as has been pointed out. previously, these
parameters can be estimated from the available data. If fhese estimates

are substituted into Equation B.2.23 for the parameters which they esti-

mate, an estimate of the var(Sar) results

PR . k12t0 & k2 sro
Var{Sar} = Var(Sarl ar = iar) = — o2 , + ————
SQAT?  KiK;  hag2SQAT?
2t02s192kTk; 4,
+ - O, . (B.2.28)
ha(SQAT? KK,
where
- ,
. k228r02
SQAT = k7%tp? +
2

hao
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Equation B.2.28 is chosen to be the measure of the uncertainty

associated with Sar and, as one can observe, it is directly related to

the estimates of the variances and covariance associated with K; and K,.

To be more specific; suppose one relates the results of this derivation

to the Stick Bomb Program.

K, = E[Klllar] = estimator
given set

to I .

ar
K2 = E[Kzllar] = estimator

given set

I .
ar

=
il
|

H

b
il

E[Klllar T Tar

of aiming

(or sets)

of aiming

(or sets)

errar coefficient (AAA)

of data corresponding

error coefficient (BBB)

of data corresponding to

particular value of K; for set of data

corresponding to I__ =1 . This is

ar ar

particular value of AAA, say a.

o
N
[

ar ar

= E[K2]I =1 1 = particular value of ﬁz for set of data

corresponding to I = i ., This is

ar ar

particular value of BBB, say b.

PN

E[S _|I
ar' ar ar

a * %
= i ] = particular value of Sar using ki and k; as

particular values of K; and K, respectively.

As a computer output, this corresponds to

the variable (

REP
6745

) .

|T =1 ] = measure of uncertainty of Sar given data

corresponding to Ia = iar' This obtained

r

as output of VPK programn.
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Thus fér only errors due to aiming have been considered. However,
even if one coﬁld aim without error; i.e., R # R.V., one Would still
encounter‘error in the range impact point Xr due to ballistic dispersion.
Assqme a model of the form which corresponds to that used by the Stick

Bomb Delivery Model and is denoted by Equation 3.2.10c as Sj.

sTrQ |
Sbr = K“B;E (B.2.29)
where K, = random variable whose uncertainty is assumed to account for

errors between actual aimpoint and actual impact point.

Since the exact slant range and harp angle are unknown for any par-
ticulaf WeépOn release, the model for the ballistic variance is assumed
to be a function of sro'and hay which, as desired values of SR and Ha,
are assumed to represent average slant range and harp angle involved.

Again one assumes that particular values of S can be observed for

br

a series of test runs for sef values of sry and hapy and K, can be esti-

mated, say ﬁu. Thus the following estimator ballistic model is obtained

R N STy

Spp = Ky hag (B.2.30)
or letting Ibr represent the information from the data mow involved,

A STo

Spp = E[sbrlxbr] = E[KL,|Ibr]B—;6- (8.2.31)

Following the same procedure as was followed for the aiming error model,

one acquires

ST * Sry

—_— (B.2.32)

El |Ibr =il = E[K“IIbr = i, hag ky hag

Sbr
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and
~ : sr02 %2
Var[Sbr]Ibr = 1br] > 95 n (B.2.33)
: hao KL,KL}
where
* 4 . _ . -
k, = E[qulbr = 1br] = particular value of K, for set of data
corresponding to Ibr =i This is
particular value of (DIS).
&2 .~ = Var[K,|I, =1, ] = estimate of the variance of ﬁq given
br br
KKy,
Ibr = brt
A . _ . - , % )
E[SbrlIbr = 1br] = particular value of Sbr using kqvas particular
value of K,,. As a computer output, this
corresponds to the variable (SIGY).
Var[-Sbr|Ibr = 1br] = measure of uncertainty of Sbr given data
corresponding to Ibr =1 - This obtained

as output of VPK Programn.

B.3 Deflection Impact Point Model. Now that estimates have been

derived for the variance associated with Sar and Sbr in Equation B.2.28
and B.2,33 respectively, the associated derivation must be extended to
provide estimates of the variances associated with Sad and de. The

estimator model related to Sad corresponding to that of Equation B.2.14

for S is as follows:
ar

~

Sad ; /\/KlztOZ + K328r02 (Bc3-l)
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Equation B.3,1 corresponds to the functional notation of Equation

3.2.10b. If the form of éa is compared with that of Sar’ one can

d
observe that K3 replaces K, and the term ha02 is absent in the estimator

model Sa The hag? term was necessary in the range computations since

a
the error components are originally calculated in a plane perpendicular
to slant range and must be divided by the sine of the harp angle (hagp)
in order to express the associated error in the Re - De plane. Follow-
ing parallel notation to that used in Section B.2 with only subscripts

changed to correspond to deflection components, a representation for

Var(Sad) can be written corresponding to Equation B.2.28 as

*2, b *2 gyt | 2apn 211

A ~ » - kl to *2 k3 Sro *2 2to Sro klk3 *2

Vo) =——F o5 . t———0o5 . + A (B.3.2)
SQAD? - K1Kj SQAD?  K3Kj SQAD? KiKj3

where

% % -
SQAD = \/k’12t02 + k32 sry?

Finally the estimator model related to S corresponding to Equa-

bd

tion B.2.30 for Sbr is given as

ébd = ﬁq S o) ) » (B°3.3)

where again the absence of the hao2 term is noted. Equation B.3.3
represents the functional form of Equation 3.2.10d. Following the deriv-
ation leading to Equation B.2.33, one can write a representation for
Var(de) directly as

. . *
Var(S, ) = srg? 0% ' (B.3.4)
KyKy
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Now relating the models of Equation B.3.2 and B.3.4 to the Stick

Bomb Delivery Model directly as was done for the range components of

Section B.2, one obtains

A

bd

E[K3IIad] = estimator of aiming error coefficient (DDD)

data corresponding to

error coefficient (DIS)

data corresponding to

of K3 for set of data
Iad =14 ThlSlls

of DDD, say d.

of ﬁq for set of data

Ibd = ibd' This is

of (DIS). It should

=1

since only one
br y

coefficient needs to be determined.

Ky =
given set (or sets) of
Iad'
ﬁq = E[K“[Ibd] = estimator of ballistic
given set (or sets) of
Tha
Ky = E[Ks|I_, = 1 .] = particul 1
3 = 3114 = 1,4] = particular value
corresponding to
particular value
ki = E[Ry|T, , = 1. .] = icular val
y = E[Ky bd = Ipg] = particular value
corresponding to
particular value
be noted that I
52 . = Ry | T i ] = i £
o4 . = Var[Kj ad = Lagd = estimate o

K3K3

E[SadlIad - iad] =

given Iad =

particular value of Sa
% *
particular values of K; and K; respectively.

As a computer output,

DEP

the variable (—=—).

.6745

A

the variance of Kj
lad.

d using k? and kg as

this corresponds to
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Ef = particular value of S_. using ki as particular

SpalTha = bd
value of Ky. As a computer output, this

corresponds to the variable (SIGX).

Var[Sad]Iad = 1ad],= measure of uncertainty of Sad given data
corresponding to Iad = iad' This is
obtained as outpyt of VPK Program.

Var[delIbd = 1bd] = measure of uncertainty of.Sbd given data
corresponding to Ibd = iﬁd‘ This obtained

as output of VPK Program.

Since aiming and ballistic errors are assumed to be independent in
both range and deflection for the model associated with the examples of
this thesis, it is not necessary to calculate the associated covariance
terms. If this assumption had not been made concerning independence,
straight forward calculations of covariance terms could have been made
by following the techniques leading to Equation 2.4.11 with i_replaced

~

b 5,
Equations B.2.28, B.2.33, B.3.2, and B.3.4 have thus presented
estimates of Var(Sar), Var(Sad), Var(Sbr), and Var(de) respectively and

linked then to the uncertainties associated with the estimation of the

aiming and ballistic error coefficients obtained from empirical data.



APPENDIX C
SECOND ORDER DERIVATION FOR EXAMPLE 1

C.1 Introduction. The purpose of this appendix is to present a

parallel derivation of the v;r (PK) for the example of Section 3.2 assum-
ing that second order terms are required for the Taylor Series Expansion
used. In order that the first order and second order approximations can
be compared equation for equation, the equation numbers in Section 3.2

are listed directly below their corresponding equations of this appendix.

C.2 Variance of PK. Suppose one begins with the MRKP model of PK

as given in Equation 3.2.21.

P =P (8)=P, (S ,8 ., S8 , S ) (C.2.1)
K K= K* ar ad br bd (3.2.21)

Expanding PK about E[§x] in a second order Taylor Series expansion

" BPK
Py = PIEGS)T + 2 == |[si - E(S,)]
i= i
§X = E(8)
1 0% ok 32PK
TR e e e
a S, = E(8)
Taking the expected value of PK as
1 & h 32PK |
E[P,] = P [E(S )] + % % I === |Cov(S,, S.) (€c.2.3)
K K= 2 g1 j=1 951954 o (3.2.23)
S = E(8)
X —X

126
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% 4
varlbl © EURg ) + P g 165 - B65;)
5.7 B(8)
3P
1 & 4 jid . )
¥ 121 '51 35,98 |8y - E(S))(s; - E(5,))
J Js =E(@GS)
RS —X
2
P (E(5.)) T . S |Cov(s 2)
REG) -5 L L g5as, 100V, Sy (C.2.4)
i=1 j=1 i ]

L
N K
Var (P) z I 33, 75, |cov(s,, sj)

. . 1
i=) j=1 1 73 |
S _=E(@S)
L L BZPK QZPK
+% I £ I I asiasj 35,35 |E[(si - E(Si))(Sj - E(Sj))

1"—'-'»1 J=1 u=1l v=1 v g = E(S )
-X X

(5, = EG)(S, = E(5))]

2 2
L L y B‘PK 3P

Y
.Z .Z L L 395,95, 35 9S
i=1 j=1 u=1 v=1 i ] u v

1
+ Z ICov(Si, Sj) Cov(Su, Sv)

s =E()

) L
tIo X roggT 353
] u

E[(S, -~ E(5,))(S, ~ E(S,))(S_ - E(S ))
i=1 j=1 u=l el 1 + J J u u))]

5. = E(8)

N y y BPK BZPK

T T R Y
1=1 =1 u=1 %55 25435

|E(si - E(S))) cOv(sj, s,)

5, =BG
y y N n 82PK BZPK
-5 I I r I Cov(S,, S.) Cov(S , S
2 4=1 §=1 u=1 v=1 28,35, asuasvl A w 59
' 4 S, = E(Sy) - (C.2.5)
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Combining and eliminating the fifth sum since E(Si - E(Si)) = 0, one

obtains the following results:

Var(Pp) = I I == 3= [Cov(s,, 5,)

‘35, 78

i=1 =1 %°% :
J Y Jds =E@GB)

S, S,

, 1 ; ; T 32Py 82P, |

= Iz E[(S, - E(S.))

442, 521 wmp vel asiasj 35,98, ! i i
E(S )

S
- X

It

(8, - E(5,) (5, = E(S))(S, = E(S))]

1 4% & 4oy %Py 32Py !
- = % z % X : Cov(S., S.) Cov(S S )
4 =1 =1 u=] v=1 BSiBS, BSUBS i’ 7j u’ v
S = E(S)
=x =x

: 2
N L y BPk 0°P

k
+ T D -—*———-!E[(S. - E(S.))
{=1 j=1 u=q 051 35,35, i i

8, = E(S)

(8, - E(8.))(S_ - E(S. )N] (C.2.6)
J J u ¢ (3.2.24)

It should be noted that Equation C.2.6 has been derived with no
assumption made concerning the form or the distribution of any of the
random variable components of Ex' Furthermore, Equation C.2.6 represents
a general model in the sense that the §x components have not been assumed
to be independent in this derivation.

Under the assumption pertaining to the MRKP model; namely, (1) the

independence of the components of §x and (2) the normality relationships
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of Equation 3.2.20, one can reduce Equation C.2.6 for use in the Examples

of Section 3.2. Consider

E[(S; - E(S)(8; -~ E(S5)) (5, - E(5)) (S, - E(5))] (C.2.7)
For i=j=u=yv

E[(s; - E(si))”] = 3 Cov? (5.5 8;) (C.2.8)

Fori=j=u#v

E[(S, - E(S))%(, - E(S )] = 0 | (c.2.9)

For i =j#u=v
E[(S; - E(S,)%(S, - E(S )?] = Cov(S;, ;) Cov(S,, §,) (C.2.10)
For i = j#u#v

BL(S, - B(S,)2(5, - E(S))(S, = E(S,N1 =0~ (C.2.11)
For i # j #u #v-
E[(S; - E(8)) (S5 ~ E(S0)(5, - E(5,) (5, - E(§))] =0 (€C.2.12)

Next consider

’E[(Si - E(Si))(sj - E(Sj))(Su - E(Su))] _ (C.2.13)

For i = j =u
E[(S; - E(5))%] =0 (C.2.14)

For i = j #u
CEL(S; - E(S)2(S - E(S))] =0 | (C.2.15)

For i #3j#u

E[(S1 - E(51))(S§ - E(51))(Su = E(Su))]= 0 (C.2.16)
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Thus Equation C.2.6 can be reduced under the assumption of the MRKP

model to obtain

y 8Py
= —\2
Var (Py) iil (asi) ICov(Si, sj)
S = E(S8)
—X —X
2
y  9%Py
+ % ¢ ) |Cov2(s., 5,
i=1 asi2 1
5, = B8
2 2
+1 3 ; E—EE " |cov(s,, S,) Cov(s,, S,)
4 ov i, i ov j, j

i=1 j=1 23S,2 38,2
i h|

143 8, = EGB

L y 32P
z P>
i:l j=1

+
|

X )2|Cov(S

(sgzggg Si) COV(Sj, Sj)

i!

i3 5, = E(S)

T 3%Py
- ——) 2 €.2.17
i % ( ICOV(Si, ) COV(Sj, sj) ( )

3
i=1 j=1 2%1%%;

]

5, 7 B

which reduces to

Y 3PK
) 2
i (G 2 lcov(s,, 8))

Var(PK) = 3
S = E(S8)
X —X

i=} i

2 2
y 9P %Py
T ( ) (—) |cOv(si, 5;) Cov(s., S.)
1 j=1 88,2 asj2 3

1
*ty

i

It

s = E(§x)
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T 32PK
) 2
i T ( ) ]COV(Si, 5;) COV(Sj, sj) (C.2.18)

1
+ 4 . 35,35,
1 j=1 i ]

i

5, = B

Equation C.2.18 now corresponds to the second order approximation of
Var(PK) under the assumptions of the example of Section 3.2.

C.3 Variance of Sx' The Var(PK) in Equation C.2.18 relates a measure

of the uncertainty associated with P, to that related to §x; i.e.,

K
Cov(Si, Si)' Now the uncertainties associated with the error coefficients

need to be related to Cov(Si, Si)' Recalling the estimator model of

Equation 3.2.25

5 B | (C.3.1)

S
= (3.2.25)

where

~ ~

S, = s S0 Sbr’ Spq) = (81, S2, 83, Sy)

one can obtain a second order estimate of Var(St), for t = 1, 2, 3, 4,

in a manner analogous to that used to obtain Var(PK) in Equation C.2.18.

Defining
% " -
02 . = estimate of Cov(Ki, Kj) (C.3.1a)
K.K,
1]
% _ . - 5 . -k
1juv estimate of E[(Ki ki)(Kj kj)(Ku ku)( v V)]
(C.3.1b)
N ‘ . . .
= H - - -k .3.1
KBiju estimate of E[(Ki ki)(Kj kj)(Ku u)] (C.3.1c)

one can write
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~ L L aSs as %2
_Var(St) S N "TE —Lt15c
o i=1 j=1 93K, 8K, KK,
1 N i
K=k
o4 4y stt aZSt
+ = E E E E - = — » K4?.juv
i=1 4= =] yv= K -
i j=1 u v=1 BKiaKj aKua v K=k
2 2
L L N I 94S 948 )
e L ey U S
i=1 j..—..l u=1 v=13K,9K. 3K 3K K.K. K K
i7j u v 1] uv
Rek
oy oy oy 98 32s _
+ I 3 5 == st i,
3R, oKR,9R iju {(C.3.2)
1=1 j=1 u=1 1 j u ﬁﬁk .

Now V;r(St) can be substituted for Cov(St, St) in Equation C.2.18
to provide an estimate of Var &Pk), say V;r(Pk). Thus a sécond order
estimate of Var(Pl) is obtained which depends on estimates.of the third
and fourth multiple moments of'g_as well as the covariance terms.

Equations C.2.18 and C.3.2 have been implemented by Program VPK
which is discussed further in Appendix E. Suffice it to point out here
that the inputs to VPK include all sensitivity coefficients related to

the model as well as 02 . , K4%. , and K3,, for i, j, u, v equal to
ijuv iju - ‘ "

K.K.
1, 2, 3, and 4. .



APPENDIX D
DERIVATION OF MULTIPLE ROUND KILL PROBABILITY MODEL

D.1 Introduction. The purpose of this Appendix is to present the

Multiple Round Kill Probability Model as used in Section 3.2 for Example
1 corresponding to the functional representation PKM(§X) of Equation
3.2.25. The single weapon delivery model, i.e., PK(§x) of Equation

3.2.16 represents a special case of P for which ARi'and ADi are zero.

KM

D.2 Basic Assumptions. Basic to the MRKP model are several assump-

tions, In particular, a pattern of A weapons delivered is described by
specifying a pattern feference'point and a set of values (ARi, ADi) for
i=1, .. ., A which specify the relative‘positidns of the A weapons

to the reference point. It is assumed that the pattern reference point
of the released weapons is actually aimed at a point (R, D) although the
intended aimpoint is (rp, dp). Further it is assumed that the aiming
errors (R - rg) and (D - dg) are independent normal random variables

.with means zero and variances Sir and Si respectively. The actual

d

impact point of the ith weapon is specified by (X XD,) and the asso-

R;’ i
ciated ballistic errors [XR° - (R + ARi)] and [Xp, - (D + D;j)] are
i i

assumed to be conditionally independent (given R and D) normal random

2 2
variables with means zero and variances § and S, , respectively. Thus

br bd
one can summarize the assumption concerning R, D, Xp, 6, and Xy, as
1 1

follows:

133
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R v N(rg, ssr) (D.2.1a)
D v N(dg, S2,) (D.2.1b)
Xg, v NR + R;, S;) (D.2.1c)
Xp; ~ N(D + 4Dy, sid) (D.2.1d)

where Xp and Xp are assumed conditionally independent.
: i i

Since the MRKP model evaluates PKM as a function of particular

values of §x’ AR; and ADi, for i =1, . . ., A, the following derivation

is presented for
s =0 | (D.2.2a)
Sad = cac’1 (D.2.2b)
Sbr = %br (D.2.2¢c)
Shd = b | | (D.2.2d)
OR; = ap, 1=l .. ) (D.2.2e)
ADy =g, i=1, .. .4 | (D.2.2f)

In addition, the MRKP model mékes one strong assumption about the
manner in which the weapons are delivered. In particular, the model
assumes that the weapons are delivered along the range axis, which in
turn lies parallel to one side of the rectangular vulnerable area RV.
Furthermore, the weapons are assumed to be traveling in approximately
the same direction when they reach the target. When traveling in the

direction of the flight of the weapons, one denotes the leading edge of
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RV as ARl;

A

the far edge, A the left side ADl’ and the right side,

R2’
D2; that is ARl and ARz are measured in the range direction and ADl and

ADZ’ the deflection direction. ¢

D.3 Mpdel Derivation. Basically the MRKP model is designed to
compute the prebability of accomplishing a desired degree of damage to
a target by the attack of A weapons. The probability is usually referred

to as the probability of kill and corresponds to P of Equation 3.2,25.

KM
For the MRKP model the following basic equation is employed.

PKM = Prob(at least 1 killing hitlA weapons released) Prob(x

weapons delivered) (D.3.1)

where Prob() weapons delivered) corresponds to the system reliability
RLBTY, which is the probability that A weapons are delivered. It is
assumed that either A or zero weapons are delivered. One can thus write

Equation D.3.1 as

PKM = Prob(at least 1 killing hit|) weapons

released) *RLBTY ' (D.3.2)
Now denote the following
PKW = Prob(at least 1 killing hit]A weapons released) (D.3.3)

which can be evaluated recalling the pattern depepdence on (R, D) as

oo

PKW = [, Prob(at least 1 killing hit](R, D) = (Wr, Wd))

-—C0O

D.3.4
fR,D(Wr’ Wd) dwr dwd ( )
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Now denoting
PKRD = Prob(at least 1 killing hit|R, D) (D.3.5)

one can write

PKRD = 1 - Prob(no killing hit|R, D) (D.3.6)
or
A .
PKRD = 1 - NIProb(ith weapon not killing hit|R, D) (D.3.7)
i=1
and
A
PRRD = 1 - T (1 - Prob(ith weapon is killing hit|R, D)) (D.3.8)
i=1

But

Prob(ith weapon kills|R, D) = PC * Prob(ith weapon hit RV[R, D)

(D.3.9)
where PC = Prob(ifh weapon is killing hit]R, D and ith weapon hits Rv)
Let

PX, (R, D) = Prob(ith weapon hits vaR, D) (D.3.10)

so that recalling the assumption of independence for Xp, and X one
1 i

can write

PXi(RM D) = [ i)

(TrilR)fXD, 5 (TdilD) dr, dry,  (D.3.11)
An. Ap
Ry 1

o

f
XRiIR i i i
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From Equations D.3.6 through D.3.11 one can write Equation D.3.4 as

» A
3 A AR, D, v : !
PKW = fo (1-T1 (L=-PC [ [ fg (r_ . |w )£ (g, lw))
. LR it Ry D ;1°d
-0 i=1 ARl ADl Rll i Dll i
. . .3.12
dTri dwdi)) fR,D(wr’ wy) dw dw, - (D.3.12)

Recall from Equations D.2.1 and D.2.2

. - + .
) = —1 exp - [Trl (wr arl)]Z (D.3.l3a)

f (r_ |w
Xpg R “Tr, Yy Vor o S o
. r

w. - T

1
fo(w ) = : exp - [-
R¥r 4/2m oy 6—_6ar

12 (D.3.13b)

Td4” (wq - O‘di)

' ! 2 (D.3.13¢)
fxp, p (talva) = exp - [ - 1
PP A/2% Opd. V2 opg
~Wg = dg
£y = 7= exp - [—=—1? | (D.3.13d)

2w dad ‘ ~/2 044
Consider the following change of variable

Wy = T
Let t L0 (D.3.14a)
Oar

ft

Wd -~ d (D.B.lll-b)

0ad

fry - (ro t Qart) " %ry ] , | (D.3.14¢)




so that

dt
ds
o
dvi
and define

F1(i,

F1(i,

where

Ay (1)

As(t)

]

Tdi ~ (dg + oadt) ‘v‘vcdi

[
2 %bd

9 Az (t) ;
1, t) =———_ S exp - (u) du
Afr Ay () -
) Ay (s)
2, 8) = —— S exp - (v2) dv
~fr Ag(s)
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(D.3.14d)

(D.3.14e)
(D.3.14f)

(D.3.14g)

(D.3.14h)

(D.3.15)

(D.3.16)
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ADlv' (dQ + adi) = 0,48

V2 g
AD2 - (do + OLdi) - O’ad S

V2 o,

d

Aj(s) =

Ay(s) =

One can now write Equation D.3.12 simply as

co [o2] >\
PRW = S [ (1-7 (1-PC*EFLE, 1, £) F2(1, 2, 5)))
00 -0 i=1

2 a2
et2 782 s (D.3.17)

Finally, using Equation D.3.2, D.3.3, and D.3.17, one can write the MRKP

model representation for PKM as

o o]

* A
Pgg = MBTY % [ [ (-1 (1-FCH é; FL(i, 1, t) F2(i, 2, 5)))

1

1

-0 -

_+2 2
et 2785124 45 (D.3.18)



APPENDIX E
VPK PROGRAM DOCUMENTATION

E.1 Introduction. The VPK Program was developed to.evaluate

estimates of the uncertainty associated with a probabilistic model. 1In
particular, it calculates both a first and a second order approximation

of Var(PG), where P, refers to a geheral probabilistic model, and com-

G
putes an estimate of the error associatedeith thg first order approxima-
tion. The program was initially written fof use with weapons effectiveness
models where PG represented a conditional expected damage to a target,
conditioned on.several random variable parameters which serve as inputs
to the pafticular model under study. The VPK Program inputs include
éensitivity coefficients and'estimates bf expected moments of the random
variable parameters. As an added output, the program lists the percent-
age variance associated with each random variable parameter.

E.2 Model. In particular, VPK‘was developed to'investigate the

uncertainty associated with a probabllistic model with response PG

depending upon two random vectors §.andlg as

P, =:GP(§J R | | | (E.2.1)
where

S = (81, 825+« +» Syg) . NS < 8 (E.2.2a)

R= (Ry, Ryy « « RﬁR) NR < 8 | | (E.2.2b)

140



141

In Example 1 and 2 of Chapter III, S corresponds to §x and R to RM.
Now each component of S is considered to be a function of another
random vector K. Likewise, each component of R is assumed to be a

function of a random vector_E; that is,

S;= G (© (8.2.32)

Rp = Gpr(2) | | (E.2.3b)
where

K= (K, Ko, . . ., Kped NK <8

Z= (21, Zay « « .y Zy,) | NZ < 8

K corresponds to K in Examples 1 and 2 of Chapter III and Z is represented

by Z in Example 2 for NZ equal to four. Figure 4 illustrates the general

model assumed for PG.

Kl — — Sl -
j> S —
K2 =721 ¢ . e
. S L] »
KNK“_’> [~ SNS —
GP > PG
Z; — —~ Ry T
Zy —> > Ry -
1 G : :
Zyz ™ Rep ™
Figure 4

General Probabilistic Model PG
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The VPK Program investigates uncertainty associated with P, in terms

G
of uncertainties related to K and Z. Letting
k; = E[KI] ' : (E.Z.Sa)
zy = E[ZI] | ‘ (E.2.5b)

one can write the uncertéinty parameters associated with K and Z aé
E1[1,_J, U, VI = B[R} - kp) By = k) (K = k) (K, - k)] (E.2.6a)
E2[I, J, U, V] = E[(2; - zI) @, - va)(zU ) 2 (Zy = 2] (E.2.6)

where a zero’subsc?ipt indicatés ommission of thatvfactor. For examplé
Cov(K}? K») = E1(0, 6, 1, 2) = E[(K; - k) (Ky - kz)]b - (E.2.7)

Now define the following sensitivity coefficients needed for a

second order approximation of Var(PC)'

. 3P
PFS (I) = — (E.2.8a)
3s
1
‘ 3P : .
PFR(I) = —— (E.2.8b)
3R
1
82PG
CPFS(I, J) = (E.2.8¢c)
, 3S.3S
1°°7
32PG
= . L2,
CPFR(I, J) = 535 (E.2.8d)
. 1°%g
3%P, :
CPFRS = (E.2.8e)
A 3R3S
' - 38, :
PSK(I, J) = K (E.2.8f)
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PRZ(I, J) Ry ‘ _ (E.2.8g)

———

BZJ

2

d SI
3KJ3KL

2

d RI
BZJBZL

CPSK(I, J, L) = (E.2.8h)

CPRZ(I, J, L)

(E.2.81)

Having defined the basic probabilistic model and the random variables
and parameters associated with it, suppose one now proceeds to describe

. Program VPK in terms of input-output information.

E.3 Program.Inputs. All inputs to VPK are punched onto cards. The
format for each card and a brief description of the inputs are given in
Table XII. The input data cards for a single probabiliétic'model analysis
are of five types and are assembled in the following order:

(1) fype 1 Card: Title Card: wused to identify particular ﬁodel

| (2) Type 2 Card: Control Card: specifies option codes

(3) Type 3 Cardsﬁ Data Information Cards: bspecifies data pertain-
iﬁg to model. .This information is not used by program but is transferreéd
directly to oﬁtput list (optional).

(4) Type 4 Cards: Sensitivity Coefficients: input list of sensi-
tivity coefficients corresponding to Equation E.2.8.

(5) Type 5 Cards: Parameter Estimates: input list of parameters
associated with K and_g corresponding ‘to Equation E.2.8.

One should no;é that the number of inputs has been limited: eight
for each variable. This is due to the storage reﬁuirements of the program
which as presented here requires approximately 200K bytes. Should more
inputs be needed and sufficient core storage is available, the program
can be extended by merely increasing the dimensions of the arfays

employed by the program.
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TABLE XII

VPK INPUT DATA CARDS

Card Fortran |Parameter
Card Column Format Symbol Description
1. Title Card 1-80 20A4 Title Alphanumeric information
(1 card) to identify model
2. Control Card 1 I1 NK No. of K's considered;
(1 card) NK < 8
: 4 Il NZ No. of Z's considered;
_ . NZ < 8 .
7 11 NS No. of S's considered;
NS < 8
10 I1 NR No. of R's considered;
' "NR < 8
11-20 F10.0 EPK lst order approximation
: : of E(P,) (Response of
model for K and Z at
intended values)
23 Il NDATA No. of data information
cards L
26 I1 - INDS S Dependency Code

= 0, All S's dependent

: = 1, All S's independent
29 I1 INDR R Dependency Code

' = 0, All R's dependent

= 1, A1l R's independent

3. Data infor- 1-80 1 20A4 DAT1 Information desired in
mation cardsg . : ' output list
(no. limit) '

4. Sensitivity

Coefficientg
A. 1 card 1-10 E10.4 PFS(1) 1st order Sens. Coef.
(omit if . . . relating S to PG;
NS = 0) : . o , 3P

71-80 | E10.4 | FFS(8) PES(D) = 35,
B. 1 card 1-10 E10.4 “PFR(1) 1st order Sens. Coef.
(omit if . . . relating R to Pg;
NR = 0) ' ' ' PR = oG

71-80 | E10.4 | PFR(8) R

I




TABLE XII (continued)
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Card Fortran Parameter
Card Column | Format Symbol Description
C. NS Cards 1-10 E10.4 CPFS(I, 1) | 2nd Order Sens Coef.
(omit if . . relating S to P ;
NS = 0) : ¢
I = 1, 2, 32P
.o+ NS 71-80 ElO.4» CPFS(I, 8) CPFS (1,3)= G
9S_3S
I J
D. NR Cards 1-10 E10.4 CPFR (I, 1)! 2nd Order Sens. Coef.
(omit if . . . relating R to PG;
NR = 0) . .
I = ]., 2, ' 32P
., NR 71-80 E10.4 CPFR(I, 8) CPFR(T,J)= G
: dR_OR
B N |
E. NS Cards 1-10 E10.4 CPFRS(I, 1)| 2nd Order Sens. Coef.
(omit if NR . . . relating both R and
or NS = 0) . . . S to PG;
I =1, 2, ,
ceey NS - 71-80 E10.4 CPFRS(I, 8) aZPG
: : CPFRS(I,J)= ———=
BRIBSJ
F. NS Cards 1-10 E10.4 PSK (I, 1) | 1lst Order Sens. Coef.
(omit if . . . relating K to 513
NS = 0) : :
I =1, 2, 58
.., NS 71-80 E10.4 PSK (I, 8) PSK(I,J) = I
’ 3K
J
G. NR Cards :1-10 E10.4 PRZ (I, 1) | 1st Order Sens. Coef.
(omit if . . relating Z to RI;
NR = 0) .
I =1, 2, : SR
«e.y NR 71-80 E10.4 PRZ (I, 8) PRZ(I,J) = I
’ . 02
J
H. NS sets 1-10 E10.4 CPSK(I,J,l) 2nd Order Sens. Coef.
of NK cards . . . relating K to S.;
each (omit , 38
if NS = 0) 71-80 E10.4 CPSK(I,J,8) CPSK(I,J L)=‘ I
I=1, 2,...NS > K 3K
J=1, 2




TABLE XII (continued)

146

Parameter

Card Fortran
Card Column | Format Symbol Description
I. NR sets 1~10 E10.4 |CPRZ(I,J,1) | 2nd Order. Sens Coef.
of NZ cards relating Z to RI;
each (omit '
if NR = 0) 71-80 E10.4 CPRZ(I,J,8) BRI
CPRZ(I,J,L)=
I=1,2,,..,NR | 02502,
J=1,2,...,NZ
5. Parameter
Estimate
Cards.
A. For K 1 Il KI
(use as many 2 I1 KJ Designates particular
cards as 3 I1 KU parameter estimate
needed; 6 4 ‘11 Ky (see Equation E.2.5a)
estimates 5-13 E9.4 |E1[1,J7,U,V] | Parameter Estimate
per card) . . R
(omit if . .
NS = 0) . . .
65 I1 Ky
66 Il K7 |/DPesignates particular
67. I1 Ky parameter estimate
68 I1 Ky (see Equation E.2.5a)
69-78 E9.4 E1[I,J,U,V] | Parameter Estimate
80 I1 IS | = 1 if last K parameter
card
= (0 otherwise
B. For Z 1 I1 Z1
(use as many 2 11 Zy |tDesignates particular
cards as 3 I1 Zy parameter estimate
needed; 6 4 I1 Zy (see Equation E.2.5b)
estimates 5-13 E9.4 E2[1,J,U,V] | Parameter Estimate
per card) .
(omit if .
NR =-0) . . .
65 I1 A
66 11 Z7 |Designates particular
67 I1 Zy parameter estimate
68 11 ZV (see Equation E.2.5b)
69-78 E9.4 E2[1,J,U,V] | Parameter Estimate
80 Il IS | = 1 if last Z parameter

card
= (0 otherwise
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E.4 Program Qutput, Each output of the VPK Program is clearly
labeled so that it can easily be interpreted.l In general, the output
list consists of the following parts. |

(1) Title: taken directly from Title card

(2) Data Information: card by card listing of Data Information

cards |

(3) Sensitivity Coefficients: complete list of sensitivity

| coeffiéients
(4) Uncertainty of PG

A, First Order estimate of E[PG]

B. Second Order estimate of E[PG]

' C. Estimate of percent error in first order estimate of E[PK]

D. First order estimate of Var(PG)

E. Second order estimate of Var(PG)

F. Estimate of percent error in first order estimate of Var[PG]

d. Ratio of SD(PG) to E(PG)

(5) Variance Components

A, List estimates assumed for each parameter associated with

K_ahd Z
- B. List variance components contributed to eéch parameter

estimate |

C. List percentage of Var(PK) due to each assumed parameter

estimate
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