INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and speciific pages you wish reproduced.

University Microfilms

WALTERS, Douglas H., 1939-SHORT-TERM AND LONG-TERM PLANNING OF THE ALLOCATION OF EDUCATIONAL RESOURCES IN A SECONDARY SCHOOL SYSTEM.
The University of Oklahoma, Ph.D., 1972
Engineering, industrial

University Microfilms, A XEROXCompany, Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA

 GRADUATE COLLEGESHORT-TERM AND LONG-TERM PLANNING OF THE ALLOCATION OF EDUCATIONAL RESOURCES IN A SECONDARY SCHOOL SYSTEM

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

SHORT-TERM AND LONG-TERM PLANNING OF THE ALLOCATION

 OF EDUCATIONAL RESOURCES IN A SECONDARY SCHOOL SYSTEM

ACKNOWLEDGMENTS

One receives suggestions and assistance from innumerable persons in an endeavor such as this. The author should like to thank all of these individuals.

I owe a special debt of gratitude to Dr. Raymond P. Lutz for his untiring assistance. He, as a teacher, advisor, and friend, has been a great source of assistance and encouragement. I would also like to thank his wife, Dr. Nancy C. Lutz, for her comments and suggestions.

This work is dedicated to my wife, Glenda. Without her infinite patience and understanding, this work would not have been possible. I know of no words that would adequately express my appreciation.

I would like to thank Dr. Devine for his assistance with the mathomatical developments, and Dr. Hoag, Dr. Kumin, and Dean Ohm for their assistance and for serving on my committee.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENT ii.i
LIST OF TABLES vi
LIST OF ILLUSTRATIONS vii
ABSTRACT viii
Chapter
I. INTRODUCTION 1
The General Problem
Past Research
II. PLANNING INDEX MODEL 11
Introduction
The Study
Development of the Model
Summary
III. SOLUTION TECHNIQUES 23
Introduction
The Nonlinear Problem
Present Level of Operation
Statement of the Problem
Solution Procedure
Summary
IV. THE APPLIED MODEL 50
Introduction
Case 1Case 2Data Collection and Sources
V. SUMMARY AND CONCLUSIONS. 77
SummaryRecommended Future ResearchConclusions

TABLE OF CONTENTS (Cont'd.)

REFERENCES AND BIBLIOGRAPHY. 83
APPENDICES
A. DATA FOR PLANSVILLE HIGH SCHOOL 87
B. THE REORGANIZED BUDGET OF PLANSVILLE HIGH SCHOOL 91
C. COMPUTER PROGRAM OF THE MODEL. 93
D. COMPUTER OUTPUT USED TO CONSTRUCT FIGURES IN
CHAPTER III AND IV. 101
Section 1, Figures 3-1 through 3-4Section 2, Figures 4-1 through 4-13

LIST OF TABLES

TablePage4-1. Comparison of Expected Revenue and Needed Revenue. 57

LIST OF ILLUSTRATIONS

Figure Page
2-1. Diagram of Subjects, Courses, and Sections 13
2-2. Relationships Between the Basic Elements of the School 17
3-1. Teacher and Class Costs Curve. 38
3-2. Teacher and Subject Costs Curve 39
3-3. Teacher and Enrollment Costs Curve 40
3-4. Enrollment and Class Costs Curve 41
4-1. Projection of Expected Average Daily Attendance 52
4-2. Expected Revenue Curves 53
4-3. Projection of Needed Classes 55
4-4. Projection of Needed Teachers. 56
4-5. Projection of Needed Subjects. 58
4-6. Projection of Expected Class Cost 59
4-7. Projection of Expected Teacher Cost 60
4-8. Projection of Expected Subject Cost 61
4-9. Projection of Expected Enrollment Cost 62
4-10. Comparison of Teacher Cost Before and After Raise 65
4-11. Comparison Between Expected and Needed Revenues 66
4-12. Variations in Needed Revenue As the Number of Cl asses. 68
4-13. Variations in Needed Revenues As the Subject Expendi- ture Varied 69

SHORT-TERM AND LONG-TERM PLANNING OF THE ALLOCATION
OF EDUCATIONAL RESOURCES IN A SECONDARY SCHOOL SYSTEM

Abstract

This research deals with the allocation of scarce economic resources in a secondary educational system. It is also concerned with a methodology for the analysis of the effects that resource allocation have on the variables used to measure the operation of a secondary school.

The first portion of the research deals with the similarities and differences of resource allocation in the educational environment and the traditional mercantile environment. This portion of the investigation identifies three basic improvements needed by educational resource management. They are 1) a quantitative process formula relating inputs to outputs, 2) better organization and analysis of existing data, and 3) a resource planning model for the local school.

The review of past research in the area of educational resources indicates that the development of a planning model with these improvements is feasible; however, a critical factor in the development will be the formulation of the weighting coefficients that are used in analyzing individual factors measuring educational operations. The formulation of the weighting coefficients in previous research did not appear to be satisfactory because the techniques involved making subjective judgments by the principal.

A model is then developed that eliminated the arbitrary determination of the weighting coefficients. This is done by assuming that

the present operating policy is optimal. In addition, the weighting coefficients are assumed to be given by ratios of the various costs associated with the problem's variables. This allows the application of certain mathematical techniques to the problem, such that, the weighting coefficients are found analytically without involving any subjective judgment.

The model development in this research would provide the following results to a secondary school: l) enable the secondary school to quantitatively identify program costs for its present resource allocation, 2) furnish the administrator with important information concerning the economic requirements for implementation of future change or to realize future goals, 3) indicate what areas might be strengthened in the present system by identifying the manner in which present resources were allocated and 4) provide the state educational department with additional information to aid them in their allocative decisions.

The feasibility of the model is demonstrated by applying it to hypothetical data for a typical secondary school. The methods to plan quantitatively for future targets andor changes are also described. Finally the thesis discusses procedures for data gathering and the various types of sources that could be utilized to obtain these data. This data collection phase would be critical for the actual application of the planning model.

CHAPTER I

I. INTRODUCTION

Education is the largest industry in the United States and its total expenditures are exceeded only by national defense. Public awareness of the needs for and the opportunities through education has resulted in education receiving a larger share of the available resources each year. Today nearly ten per cent of the gross national product is being spent for education (36). Public secondary schools alone annually spent more than $\$ 11.4$ billion dollars and "employ" more than seven per cent of the population (21). While considering the magnitude of school expenditures, Benson (3, p. 15) raised several profound questions. Why does formal education cost represent ten per cent of the GNP, and how is this money distributed? Benson states that these matters are a topic of great interest to economists and are part of the body of knowledge relevant to the "allocation of resources".

II. The General Problem

The central topic of educational economics concerns the formulation of the most advantageous organization of the traditional scarce resources, which are labor, land, and capital.* In other words, the

[^0]students, teachers, school facilities, curriculum, and time are incorporated into an operational master schedule. The limited school's financial resources are not exceeded, and the educational needs of the social and economic environments are satisfied.

There are a number of problems, however, that prevent the administrator from dealing with resource allocation in the usual manner.

1. The outputs of an educational system are not easily visible or readily measured.
2. The precise formula of the educational process, relating the inputs to the outputs, does not exist.
3. A data base of many of the variables associated with the educational process is lacking.
4. The organizational structure, size, clientele, staff expertise, and fiscal resources, differ for local schools across the nation.

The basic needs for the improvement of educational resource management appear to be:

1. A quantitative process formula that would indicate the effectiveness of various systems of educational resource allocation in satisfying the social and economic educational needs;
2. Improved methods of organizing and making detail analysis of the available data;
3. A model that would be realistic in applicability and feasibility for the local school.

III. Past Research

The absence of an adcquate quantitative learning theory makes it most difficult to devise educational strategies for resource allocation. This, however, does not create an insurmountable barrier. Careful assesments of both the economics and the educational aspects of alternative educational programs are feasible. In recent years considerable progress has been made in estimating school inputs (11, p. 167).

Burkhead (6, p. 27) started with the classic economic definition of economic inputs, land, labor, and capital. These were broken into the following:

1. Student Time
2. Personnel Time
a. administration
b. teaching
c. clerical
d. maintenance and operation
3. Materials and Supplies
a. instructional
b. other
4. Buildings and Equipment.

Various schemes have been formulated that attempted to give an indication of the distribution of resources and then used for comparative purposes. Some of the independent variables used by Burkhead in the Chicago Public lligh Schools study (6, p. 49) were:

Age of school building,

Textbook expenditure per pupil,
Material and supplies expenditure per pupil,
Teacher salary,
Teacher man-years per pupil,
Administration man-years per pupil,
Auxiliary man-years per pupil.
This study indicated that the primary contribution by the school to student performance was the quality of the teacher, which was usually correlated with the teacher salary. Burkhead, ($6, \mathrm{p}, 104$) however, cautions that cost-effectiveness measures should not determine policy. These measures should, however, provide educational policy makers with a knowledge of the probable outcomes.

The findings of a study of the Michigan State Department of Education (37) agreed with the work of Burkhead. This study demonstrated that the independent variables having the strongest correlation with pupil performance were of the non-school nature. These were the variables representing the student's social and economic background. This study also showed that money made a difference only because the teachers' salaries level appeared to be related to the system's expenditure.

The above appears to represent the typical application of in-put-output techniques to education. Cohn commented that,
the techniques could not, as yet, be used due to the inherent flaws in the analysis. This is not to say that such efforts are useless; nothing is farther from the truth. But for our purposes here, such a tool cannot be, as yet, used. (11, p. 167)

The inherent flaws that Cohn referred to are the inability to enumerate and quanitify the following:

1. A comprehensive list of all inputs entering the process; 2. A comprehensive list of all outputs (or outcomes) resulting from the process; and
2. The relationship between inputs and outputs, that is, the manner by which inputs are transferred into outputs. (10, p. 453)

An alternate to the input-output techniques is PPBS (Planning, Programming, and Budgeting System).

PPBS is currently being considered for educational resource allocation and recent attempts appear promising. Sisson and others (39), however, point out a number of difficulties. Two of the most serious ones were relating the planning process to the day-to-day operation and accounting for the interaction between projects. As in the input-output studies, PPBS application has had the difficulty of identifying the factors, called indicators, which will be used to judge the benefits of the educational activities (39, p. 240).

A more general approach, dealing with the allocation of resources, attempts to integrate an educational model into macro-economic growth models. These models are divided into four categories dealing with: 1. student flows; 2. teachers and class-rooms; 3. costs and finances; and 4. educational personnel needed for social development (12, p. 23). Such models have not been applied to individual schools or school districts. The reader interested in the large macro educational models should consult the references mentioned in Correa's paper (12) or Forrester's book (16).*

[^1]Lyle, in a survey, (29) listed the following six classical variables as achievement determinants in an education system:

1. Male teacher starting salary;
2. Number of books in the library:
3. Average number of years of teaching experience;
4. Average class size;
5. Teacher/Student ratio; and
6. Per cent of graduates going to college.

The above determinants do not appear to be independent, however. Obviously average class size and teacher/student ratio would be correlated. Because starting salary, library books, and compensation for teaching experience all require financial resources, there would presumably be some interaction between them.

One report that suggested a mathematical formulation of the interaction between teachers, students, and classrooms was given by Correa (12, p. 52). Referring to a large macro model, dealing with the flow of students and manpower requirements, Correa used the interaction concept to study the equilibrium between the supply and demands of teachers, and the unit cost per student to arrive at the national educational targets.

On a micro level, Stankard and Sisson (42) used interaction formulas in order to model the relationships between student performances and resource allocation. They hypothesized a number of process functions and combined them to arrive at an overall process function. Their primary difficulty was obtaining a reliable estimate of the large number of constants used in the final process
function.* Actual costs were not considered in their model.
0 'Brien (32) constructed a cost model for an urban school. 0'Brien's model included cost of school construction, fixed and variable land cost, salaries and current operating expense, fixed and variable equipment cost, plus transportation cost. He did not relate these to, or incorporate the possibility of, varying teacher work load, teacher quality, or any curriculum variables. O'Brien's cost model would offer some interesting possibilities for finding the desired number and location of schools in a large municipal school district, such that, construction and transportation cost would be minimized.

Cohn (11), an economist at Pennsylvania State University, used the interaction concept to propose the following production function:
(Total product of the educational system) $=f$ [Number of units taught,

Average teacher salary
Number of units per teacher,
Number of different subject
matter assignments per teacher,
Average class size,
Random variation.]
This was similar to Stankard's and Sisson's work (42) except Cohn did not actually attempt to define the production function. Cohn, instead, proposed "barter terms of trade" which were the partial derivatives of one input with respect to another. As the sum of these marginal productions approached zero, the product of the educational

[^2]system increased. As an example, he assumed that all inputs were constant except one, teachers. A larger number of teachers was negatively related to the total product through its effect on the average teacher salary, but positively related through its effect on both the number of subjects per teacher and the number of units per teacher. The amount of change each texm would produce in the production function had to be weighted. By varying the number of teachers, while the other variables were held fixed, a suboptimal point was obtained. Then another variable was varied until another suboptimal was reached. It was required to return to the previous variables, and make readjustments. This was repeated until no change in any variable could improve the product. This procedure did not guarantee a global optimal and the only costs considered were teachers' salaries.

The main difficulty in Cohn's model would appear in trying to establish the various weighting coefficients. In order to explain this difficulty the example given by Cohn will be used. First it is necessary to give Cohn's notation (11, p. 168).
$A=$ Number of subject matter assignments;
$S=$ Number of sections per unit taught;
$T=$ Number of teachers in the school;
$U=$ Number of units taught;
$F=$ Total amount of funds for teachers salaries;
$A / T=$ Number of subject assignments per teacher;
$F / T=$ Average teacher salary;
$S \cdot U / T=$ Number of courses per teacher;
$Q=$ Total product of the educational system.

The example, as given by Cohn (11, Footnote 12, p. 174), is the following:

Suppose we have initially the following $\mathrm{T}=100, \mathrm{~F} / \mathrm{T}=\$ 10,000, \mathrm{~S} \cdot \mathrm{U}=200(\mathrm{~S} \cdot \mathrm{U} / \mathrm{T}=2)$, and $A=50(A / T=0.5)$. All that we require of the principal, at this point, is to weight the possibilities of increasing Q by changing T alone. We might ask him the following question: If F / T were to be reduced to $\$ 9,000$, so that we can now hire 11 more teachers, would the reduction in Q due to the supposedly reduced quality of the average teacher be more or less than compensated for by the reduction in the teaching load (the new S•U/T is now only 1.8) and the increase in specialization (A / T is reduced to only 0.45)? If he is able to provide answers to such questions, marginal changes in T would then be made until a small change in T would result in no appreciable increase in Q.

In the evaluation of applicability of Cohn's model one must examine several of his assumptions caustiously. Although Professor Cohn does not specify the process function, if it is assumed that Q is the summation of each term, an elementary check of the units of each term will show them to be inconsistent. Another difficulty is that costs have not been considered and therefore would appear to leave unanswered the question: How can educational expenditures be allocated more efficiently? Moreover, because of the arbitrariness and personal judgment in the determination of the weighting coefficients, in addition to the lack of common units, it would seem that actual application of this model would be improbable. However, the concept of the existence of an equilibrium appears interesting. If expenditures could be incorporated and the above mentioned difficulties reduced, a school model that would be useful and applicable for a local school would appear feasible.

This study will develop a model that should provide the decision maker with the data and information concerning other alternatives. To provide the educational decision-maker with such a model this study will develop an analytical model which would transform economic data into operational alternatives. These alternatives should lead toward a more effective allocation of the limited educational resources.

CHAPTER II

PLANNING INDEX MODEL

I. Introduction

Cohn's (11) concept of a state of system equilibrium in a school is an interesting adaption of a concept that has been used in some of the large macro educational models (12, p. 52).

Barnard (2, p. 240) states that a successful organization is one that can maintain a state of equilibrium such that its activities satisfy the individual needs sufficiently that they will be induced to continue their corporative activities. In other words, an equilibrium between the benefits and burdens exist. This same type of phenomenon should exist in an educational organization.

II. The Study

An equilibrium model of the secondary school was developed using Cohn's work (11) as an initial point of departure. This model did not attempt, however, to optimize any of the variables.

Our understanding of the underlying structure of most complex systems is incomplete, and we are often unable to understand the interrelationships of all the factors bearing on the decision problem in question. To expect optimization in such a state of knowledge would be utter folly. (8, p. 23)

The model tried to help explain how resources are presently allocated. This type of model should provide four kinds of results:

1. It should enable a secondary school to quantitatively appraise its present program;
2. It should furnish the administrator the necessary information to implement plans to realize future goals or accommodate expected changes;
3. It should provide an indication of what might be done to strengthen the present program;
4. It should provide state education departments with operating standards to aid in allocative decisions.
III. Development of the Model

In order to simulate adequately a secondary school educational system, the following variables were included in the model formulation.

$$
\begin{aligned}
x_{1} & =\text { Number of classes taught; } \\
x_{2} & =\text { Number of teachers in the school; } \\
x_{3} & =\text { Number of different subjects; } \\
x_{4} & =\text { Number of enrollments; } \\
x_{4} / x_{3} & =\text { Average number of enrollments per subject; } \\
x_{1} / x_{2} & =\text { Average number of classes per teacher } ; \\
x_{3} / x_{2} & =\text { Average number of subjects per teacher; } \\
x_{4} / x_{1} & =\text { Average number of enrollments per class. }
\end{aligned}
$$

Classrooms and space variables were not included at this point
in order to simplify the presentation of the proposed model.
Most school systems are considerably more sophisticated in their planning for building programs than they are in planning for operating programs. Both are important, and there are some evident interrelationships between the two. A program-performance approach, together with conventional estimates of
future enrollment, will provide an important part of the data necessary for planning both long range capital and operating programs. (6 , p. 104)

In order to describe the above terms, an example was used. A secondary school that teaches in three areas, English, Math, and Social Studies was employed. There were four levels of English, three levels of Math, and two levels of Social Studies. Each level of English and Social Studies have two identical sections, and each level of Math has one section. A diagram of this is given below:

Figure 2-1. Diagram of Subjects, Courses, and Sections.

Using this basic course structure, one can assign typical values to the variables so that $\mathrm{x}_{1}=15$ classes.

If it is assumed that the courses in each area were similar in content and required approximately the same skill to teach them then,

$$
x_{3}=3 \text { subjects.* }
$$

If there were three teachers in this school and the average student enrolled in four classes, where the average daily attendance is sixty, then,

$$
\begin{aligned}
& x_{2}=3 \text { teachers, and } \\
& x_{4}=240 \text { enrollments. }
\end{aligned}
$$

Also, it would follow that

$$
\begin{aligned}
& x_{4} / x_{3}=80 \text { enrollment per subject } \\
& x_{1} / x_{2}=15 / 3=5 \text { classes per teacher, } \\
& x_{3} / x_{2}=3 / 3=1 \text { subject per teacher, }{ }^{* *} \text { and } \\
& x_{4} / x_{1}=240 / 15=16 \text { enrollments per class. }
\end{aligned}
$$

The above terms couid now be combined to demonstrate the interaction, and to form a planning index function. This function would be given by the following:

$$
\begin{equation*}
f(x)=w_{1} \frac{x_{4}}{x_{3}}+w_{2} \frac{x_{3}}{x_{2}}-w_{3} \frac{x_{1}}{x_{2}}-w_{4} \frac{x_{4}}{x_{1}} \tag{1}
\end{equation*}
$$

where $w_{i}(i=1, \ldots, 4)$ is a weighting coefficient.

[^3]The above function combines the basic elements of the school in such a manner that certain mathematical techniques can be used to improve the analysis of available data. These techniques will be discussed in detail in Chapter III.

The terms used in the above function will now be explained. x_{4} / x_{3} has been used to indicate the curriculum depth. In a study of the Iowa High Schools (9) a significant correlation (.8007) was demonstrated between the average daily attendance and the number of credit-units offered. It would appear then, that a ratio of total enrollment to the number of different subjects would be an indication of the depth of the curriculum. Curriculum depth is contrasted with curriculum breadth. The principal might choose to sacrifice breadth by offering fewer subjects while introducing added depth (11) by offering advanced courses (perhaps equivalent to college freshman courses) in a limited number of subject matters.

This balancing between curriculum breadth and depth is indicated by comparing the first two terms of the above function, x_{4} / x_{3} and x_{3} / x_{2}. Increasing the number of subjects (x_{3}) would decrease the first term and increase the second term. Hence the second term might be used to directly indicate curriculum breadth.

The second term also might be used as an indicator of curriculum continuity. If one wants to assume that a smaller faculty (x_{2}) would be able to do more cooperative planning among themselves, then this planning could organize the curriculum in such a manner that it would enhance the students' understanding of the relationships among different subjects and activities encountered throughout the school
day (34, p. 114). This relationship among subjects and activities would be reflected as a measure of curriculum continuity. Then the larger the ratio x_{3} / x_{2} the greater the continuity. While curriculum continuity would tend to keep the number of teachers $\left(x_{2}\right)$ small, the third term $\left(x_{1} / x_{2}\right)$ would oppose this reduction. x_{1} / x_{2} tends to indicate the teaching load of the average teacher. Decreasing the number of teachers $\left(x_{2}\right)$ would cause an increase in the work load thus opposing the increase in curriculum continuity because of the difference in the signs of the two terms.

Since this second term is a ratio of number of subjects per activity its inverse is an indicator of the degrec in which teachers are assigned to their areas of specialization and training. In an extremely small school, teachers may have to teach outside their area of specialization which would increase the teacher's load (14, p. 79). However, in schools with a graduating class of at least 100 students, practically every teacher should be able to teach in the area of his major specialization (34, p. 204) and hence would not appear to be of as significant a factor as the previously mentioned factor of curriculum continuity.

The last term x_{4} / x_{1} indicates a measure of the class size. Increasing the number of classes (x_{1}) would tend to decrease the average class size but would also tend to increase the teacher work load as indicated by the third term $\left(x_{1} / x_{2}\right)$. Hence there exists a balancing effect between excessive teacher loads and the preference of smaller class sizes to larger class sizes. Decreasing the total enrollment $\left(x_{4}\right)$ would tend to decrease the class size; however, this
would tend to limit the curriculum depth $\left(x_{4} / x_{3}\right)$ which would also tend to influence costs.* Hence the above function appears to relate the basic elements of the school, classes $\left(x_{1}\right)$, teachers $\left(x_{2}\right)$, subjects (x_{3}), and enrollments (x_{4}), in such a manner that the interactions and tradeoffs the principal must contend with are evident.** Figure (2-2) depicts these relationships in a closed loop network.

Figure 2-2. Relationships between the basic clements of the school.

[^4]The directions of flow are determined by the terms in the planning index function. The first term relates the enrollment to subjects (x_{4} / x_{3}). Increasing the enrollment tends to increase $f(x)$; hence the flow direction would be positive from subjects to enrollments. Increasing the enrollments, however, effects the last term $\left(x_{4} / x_{1}\right)$. The flow direction points from the enrollment toward the classes because of the negative sign on $\left(x_{4} / x_{1}\right)$. Changes in any term or terms has a chain reaction on the rest of the system and affects the entire system. Thus changes in teachers will affect class size, curriculum, and work load. Either a new operating level will result from these changes or policy changes will be in order.

While the formulation just described provides interesting insights into interactions of the components in this educational system, it still does not yield much information concerning costs and expenditures. In addition, there is no available information concerning the values of the weighting coefficients ($w_{1}, w_{2}, w_{3}, w_{4}$). If costs could be related to the weighting coefficients then the two above mentioned difficulties would be minimized.

One possibility of relating the cost to the weighting coefficients would be to determine the cost associated with each of the variables ($x_{1}, x_{2}, x_{3}, x_{4}$) and let each weighting coefficient be equal to ratio of the costs of the corresponding variables. The following terms might be used:
$C_{1}=$ Average cost per class,
$C_{2}=$ Average cost per teacher,
$C_{3}=$ Average cost per subject, and
$C_{4}=$ Average cost pe $\%$ inrollment.

The sum of these costs is given by:

$$
C_{t}=C_{1} x_{1}+C_{2} x_{2}+C_{3} x_{3}+C_{4} x_{4},
$$

where C_{t} is the total expenditure of the school less the transportation and building cost.

Then the weighting coefficients would be given by the following:

$$
\begin{aligned}
& w_{1}=C_{4} / C_{3} \\
& w_{2}=C_{3} / C_{2} \\
& w_{3}=C_{1} / C_{2} \\
& w_{4}=C_{4} / C_{1}
\end{aligned}
$$

Substituting the above cost ratios for the weighting coefficients into equation 1 the planning index function would then be given by the following:

$$
f(X)=\frac{C_{4}}{C_{3}} \cdot \frac{x_{4}}{x_{3}}+\frac{C_{3}}{C_{2}} \cdot \frac{x_{3}}{x_{2}}-\frac{C_{1}}{C_{2}} \cdot \frac{x_{1}}{x_{2}}-\frac{C_{3}}{C_{1}} \cdot \frac{x_{4}}{x_{1}}
$$

C_{2} and C_{t} appear to be the only costs that could be determined with~ out a great deal of difficulty. An estimate of C_{2} might be the average teacher salary plus 15 per cent for fringe benefits and overhead costs. C_{t} could probably be determined from the budget.* Unfortunately the accurate cost data required to establish a consistent and complete set of weighting coefficients does not exist and would be

[^5]very difficult to obtain, in actual practice. In fact, since most districts do not budget for the individual schools (3, p. 262). The determination of the weighting coefficients would be a serious problem.

A procedure for determining these unknown costs needed for the model will be developed in the next chapter. These procedures will later be used for planning purposes and will be demonstrated in Chapter IV.

Most states require some minimum number of classes in specified subjects matters; however, these minimum requirements rarely serve as constraints except for perhaps the very small school. In addition to state board of education requirements there are a number of other constraints with which the principal must contend. Some of these other constraints are quite formal while others are informal and difficult to quantify. Teacher contacts, Federal standards, and P.T.A. requests are some of the less visible environmental pressures that influences the principal's choices. A lower constraint on the number of classes might be determined by the requirements in the teacher contracts that class size must be less than thirty. Thus given the enrollment, the number of classes needed could be determined. The enrollment is usually determined by the board of cducation by fixing the school boundaries. A lower constraint on enrollment would be all the pupils that were within the school boundaries that did not seek other forms of education. The minimum nunber of subjects might be the result of a combination of P.T.A. wishes for certain educational emphasis, and requirements for eligibility for federal funds.

Of course there are also financial constraints. Financial constraints result from the competition for public funds. The financial level of economic support for education directly reflects the educational system's ability to compete effectively with other public institutions, such as, welfare, highways, and medical care. These constraints must be included in the planning model if it is to reflect these additional pressures.

IV. Summary

> Summarizing the model presented in this chapter,

$$
\left.\begin{array}{rl}
\text { Planning Index Function }= & \mathrm{f}\left[\begin{array}{l}
\text { Curriculum } \\
\text { Depth },
\end{array} \begin{array}{l}
\text { Curriculum } \\
\text { Continuity }, \\
\text { \& Breadth }
\end{array}\right. \\
& \text { Teacher }, \\
\text { Work Load }, & \text { Sizs }
\end{array}\right]
$$

or

$$
f(x)=\frac{C_{4} x_{4}}{C_{3} x_{3}}+\frac{C_{3} x_{3}}{C_{2} x_{2}}-\frac{C_{1} x_{1}}{C_{2} x_{2}}-\frac{C_{4} x_{4}}{C_{1} x_{1}} .
$$

Subject to:

$$
\begin{aligned}
x_{i} & \geq b_{i} \quad i=1, \ldots, 4 \\
\sum_{i=1}^{4} C_{i} x_{i} & \leq C_{t}
\end{aligned}
$$

and

$$
x_{i} \geq 0, \quad b_{i} \geq 0, \quad c_{i} \geq 0, \quad i=1, \ldots, 4
$$

Where

$$
\begin{aligned}
& x_{1}=\text { Number of classes } \\
& x_{2}=\text { Number of teachers } \\
& x_{3}=\text { Number of subjects } \\
& x_{4}=\text { Number of enrollments }
\end{aligned}
$$

and

$$
\begin{aligned}
& C_{1}=\text { Average cost per class, } \\
& C_{2}=\text { Average cost per teacher, } \\
& C_{3}=\text { Average cost per subject, } \\
& C_{4}=\text { Average cost per enrollment }, \\
& b_{1}=\text { Lower constraint on classes, } \\
& b_{2}=\text { Lower constraint on teachers, } \\
& b_{3}=\text { Lower constraint on subjects, } \\
& b_{4}=\text { Lower constraint on enrollment, and } \\
& C_{t}=\text { Total expenditure of the school less } \\
& \text { transportation and building costs. }
\end{aligned}
$$

CHAPTER III

SOLUTION TECHNIQUES

I. Introduction

It has been asserted by educators and economists alike, that there exists, in education, a serious misallocation of resources. A considerable number of researchers have investigated the problem; however, at the present time their solutions have not been fully implemented so that they have not achieved significant results for education. Many of the problens that have been encountered are traceable to the weaknesses of the traditional budgeting and accounting procedures that limit the amount of data that can be obtained.

Successful model application has been found to be difficult in a number of areas. Formulating the general structure of most models is straightforward, but as Wagner (48) warns "an application may be standard, yet it need not be routine." Wagner also stated that a common element of successful Operations Research (OR) model application has been,
....a willingness on the part of the operations researcher to devise a model that plays down the emphasis on producing rational decisions. The guiding idea has been to devise models that can inform an exccutive as to the likely effects of decision strategies that he himself has formulated. This approach must be contrasted with the usual models that yield their own recommended decisions: in those cases, the proposed solutions are based on a limited amount of data and a restricted internal logic. ...there is a need for OR models that permit a manager to evaluate decisions that satisfy his personalized rationaiity. (p. 1271)

The model developed in this study attempted to provide the manager of an educational system with an $O R$ model that will assist in decision making as described by Wagner.

II. The Nonlinear Problem

It may be recalled that in the development of the objective function for the model in Chapter II and summarized on pages 21-22, that the objective function was composed of selected indicators of the educational operation. These indicators were curriculum depth (x_{4} / x_{3}), curriculum breadth and continuity $\left(x_{3} / x_{2}\right)$, teacher work load (x_{1} / x_{2}), and class size (x_{4} / x_{1}). The need for curriculum breadth was based on two premises: one, the needs of the student, and two, the needs of society. The needs of society require numerous mandatory courses and the needs of the student call for a diversified program. A wide range of elective sourses is basic in meeting the needs of the individual students (34, p.116). In addition to the desire for curriculum breadth is the desire for curriculum depth and continuity. A school should provide sufficient depth in its subjects so that each student has an opportunity to pursue his programs of special interest and develop his full potential (34, p.118). It is also desirable to achieve a curriculum organizational structure that integrates the subject matter into a program that gives each student maximum experiences that facilitate the students' seeing relationships among the different subjects and activities ($34, \mathrm{p} .115$). Hence it would be desirable for the indicators of curriculum depth, breadth, and continuity to show evidence of high levels.

Even the best teacher can not be expected to perform well when his teaching load is excessive (11, p.169). A teacher that has an
excessive work load is placed under a double handicap. He will lack sufficient time for the individual student and will be able to do only minimal preparation for his classes (34, p.204). Therefore excessive work loads should be discouraged. There is a general feeling among educators that class size is also a crucial variable and that education can be improved as class size is reduced (6, p.32). Thus reducing the number of pupils per class should be encouraged.

Using the above rational, the model may be classified as a maximization problem for the normal ranges encountered for the x_{i} 's. The model has been rewritten below in order to put it into the standard Operations Research form as described by Zangwill (51).

$$
\max . f(X)=\frac{C_{4} x_{4}}{C_{3} x_{3}}+\frac{C_{3} x_{3}}{C_{2} x_{2}}-\frac{C_{1} x_{1}}{C_{2} x_{2}}-\frac{C_{4} x_{4}}{C_{1} x_{1}}
$$

Subject to:

$$
\begin{gathered}
x_{1}-b_{1} \geq 0 \\
x_{2}-b_{2} \geq 0 \\
x_{3}-b_{3} \geq 0 \\
x_{4}-b_{4} \geq 0 \\
C_{t}-\left(C_{1} x_{1}+C_{2} x_{2}+C_{3} x_{3}+C_{4} x_{4}\right) \geq 0
\end{gathered}
$$

and

$$
x_{i} \geq 0, \quad b_{i} \geq 0, \quad C_{i} \geq 0, \quad i=1, \ldots, 4 .
$$

III. Present Level of Operation

It was assumed that the present values of the x_{i} 's with a particular secondary school were the optimal operating policy for the initial planning period. This meant that the policy makers for a particular school were reacting to the total environment, both quantified and nonquantified factors. The present level of operation may or may not
have appeared to be rational. This was due to the previously mentioned factors of limited data, incomplete or limited understanding of the process, or internal logic, and a complex personalized rationality.

Hence the assumption that the present level of operations was the optimal policy basically assumed that the particular school was operated by professionals who adapted their decision process to an individual school's environment. The assumption took into account the particular school, the particular policy maker, and the particular forces acting on both. This optimal operating level vector is designated by X°.
IV. Statement of the Problem

The value of the optimal operating level X° is known for the function $f(x)$, subject to the given constraints. While X^{0} is given, the C_{i} 's and b_{i} 's are not known. C_{t} is known. Thus, given X° and C_{t} it is necessary to find the values of the C_{i} 's and test the effects of the b_{i} 's.

V. Solution Procedure

The Kuhn-Tucker conditions are necessarily satisfied if X° is the optimal point for the nonlinear programming problem.* The KuhnTucker ($\mathrm{K}-\mathrm{T}$) conditions are defined in the following:

Consider the NLP (nonlinear programming problem)
max. $\mathrm{f}(\mathrm{x})$
subject to $g_{i}(x) \geq 0 \quad i=1, \ldots, m$
where all functions are differentiable. Let X° be an optimal solution, and assume the constraint qualifications hold. Then the following three conditions also hold:

[^6](1) X° is feasible.
(2) There exist multipliers $\lambda_{i} \geq 0, i=1, \ldots, m$, such that,
$$
\lambda_{i} g_{i}\left(x^{0}\right)=0 \quad i=1, \ldots, m, \text { and }
$$
(3)
$$
\nabla f\left(x^{0}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(x^{0}\right)=0
$$

Conditions 1,2 , and 3 collectively are called the Kuhn-Tucker (K-T) conditions.

First, K-T condition 1 holds trivially because of the assumed nature of the problem. In other words, the values in the model are assumed feasible because they are being used. The optimal values are given by:

$$
\begin{array}{ll}
x_{1}^{\circ}=x_{1} & x_{3}^{\circ}=x_{3} \\
x_{2}^{\circ}=x_{2} & x_{4}^{\circ}=x_{4} .
\end{array}
$$

Next, K-T condition 2 is given by the following:
(4) $\lambda_{1}\left(x_{1}^{o}-b_{1}\right)=0$
(5) $\lambda_{2}\left(\mathrm{x}_{2}^{0}-\mathrm{b}_{2}\right)=0$
(6) $\lambda_{3}\left(x_{3}^{0}-b_{3}\right)=0$
(7) $\lambda_{4}\left(x_{4}^{0}-b_{4}\right)=0$
(8) $\lambda_{5}\left(C_{t}-C_{1} x_{1}^{0}-C_{2} x_{2}^{0}-C_{3} x_{3}^{0}-C_{4} x_{4}^{0}\right)=0$.

Finally, $\mathrm{K}-\mathrm{T}$ condition 3 is given by the following:
(9) $-\frac{C_{1}}{C_{2} x_{2}^{\circ}}+\frac{C_{4} x_{4}^{0}}{C_{1} x_{1}^{o_{2}}}+\lambda_{1}-\lambda_{5} C_{1}=0$
(10) $-\frac{C_{3} x_{3}^{\circ}}{C_{2} x_{2}^{C_{2}^{2}}}+\frac{C_{1} \times{ }_{1}^{\circ}}{C_{2} x_{2}^{\circ}}+\lambda_{2}-\lambda_{5} C_{2}=0$
(11) $-\frac{C_{4} x_{4}^{\circ}}{C_{3} x_{3}^{\circ}}+\frac{C_{3}}{C_{2} x_{2}^{\circ}}+\lambda_{3}-\lambda_{5} C_{3}=0$
(12) $\frac{C_{4}}{C_{3} x_{3}^{o}}-\frac{C_{4}}{C_{1} x_{1}^{o}}+\lambda_{4}-\lambda_{5} C_{4}=0$

The ($\mathrm{K}-\mathrm{T}$) conditions generated nine equations and introduced an additional five unknown variables, the λ_{i} 's. Thus, additional information concerning the λ_{i} 's is desired. The λ_{i} 's, on an intuitive basis, indicate the approximate increase in the objective function of a per unit increase in the b_{i} 's. If $x(b)$ is the optimal point and is expressed as a function of the resource availability b then,

$$
\begin{equation*}
\frac{\partial f[x(b)]}{\partial b_{i}}=\lambda_{i} \tag{51,p.66}
\end{equation*}
$$

This can be rewritten, using the chain rule, as the following:

$$
\begin{equation*}
\frac{\partial f[x(b)]}{\partial b_{k}}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial b_{k}}=\lambda_{k} \quad k=1, \ldots, m \tag{13}
\end{equation*}
$$

For the model, in the case at hand, Equation 13 becomes the following:

$$
\begin{equation*}
\lambda_{1}=\sum_{i=1}^{4} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial b_{1}}=\frac{\partial f}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial b_{1}}+\frac{\partial f}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial b_{1}}+\frac{\partial f}{\partial x_{3}} \cdot \frac{\partial x_{3}}{\partial b_{1}}+\frac{\partial f}{\partial x_{4}} \cdot \frac{\partial x_{4}}{\partial b_{1}} \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{2}=\sum_{i=1}^{4} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial b_{2}}=\frac{\partial f}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial b_{2}}+\frac{\partial f}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial b_{2}}+\frac{\partial f}{\partial x_{3}} \cdot \frac{\partial x_{3}}{\partial b_{2}}+\frac{\partial f}{\partial x_{4}} \cdot \frac{\partial x_{4}}{\partial b_{2}} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{3}=\sum_{i=1}^{4} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial b_{3}}=\frac{\partial f}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial b_{3}}+\frac{\partial f}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial b_{3}}+\frac{\partial f}{\partial x_{3}} \cdot \frac{\partial x_{3}}{\partial b_{3}}+\frac{\partial f}{\partial x_{4}} \cdot \frac{\partial x_{4}}{\partial b_{3}} \tag{16}
\end{equation*}
$$

(17) $\quad \lambda_{4}=\sum_{i=1}^{4} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial b_{4}}=\frac{\partial f}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial b_{4}}+\frac{\partial f}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial b_{4}}+\frac{\partial f}{\partial x_{3}} \cdot \frac{\partial x_{3}}{\partial b_{4}}+\frac{\partial f}{\partial x_{4}} \cdot \frac{\partial x_{4}}{\partial b_{4}}$

$$
\begin{equation*}
\lambda_{5}=\sum_{i=1}^{4} \frac{\partial f}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial C_{t}}=\frac{\partial f}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial C_{t}}+\frac{\partial f}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial C_{t}}+\frac{\partial f}{\partial x_{3}} \cdot \frac{\partial x_{3}}{\partial C_{t}}+\frac{\partial f}{\partial x_{4}} \cdot \frac{\partial x_{4}}{\partial C_{t}} \tag{18}
\end{equation*}
$$

This gives some additional expressions concerning the λ_{i} 's but there has been a number of partial derivatives introduced.

The evaluation of the partial of $f(x)$ with respect to the partial of x_{i} is straightforward. The evaluation of the partial of x_{i} with respect to the partial of b_{i} must be analyzed for two cases. Case 1 is where the constraint j is active so that,

$$
g_{j}[x(b)]=b_{j}
$$

Case 2 is where constraint j is not active so that,

$$
g_{j}[x(b)]>b_{j}
$$

For Case 1, where all the constraints are assumed active, it is assumed that any constraint j will remain active in sone small neighborhood by b_{j} as b_{j} is varied, hence

$$
\begin{equation*}
\frac{\partial g_{j}}{\partial \mathrm{~b}_{\mathrm{k}}}={ }^{\delta}{ }_{j k} \tag{19}
\end{equation*}
$$

where

$$
\delta_{j k}=\left[\begin{array}{l}
0 \text { if } j \neq k \\
1 \text { if } j=k
\end{array} \quad\right. \text { (51, p. 68). }
$$

Rewriting the constraints for Case 1 , the following is obtained.

$$
\begin{aligned}
x_{1} & =b_{1} \\
x_{2} & =b_{2} \\
x_{3} & =b_{3} \\
x_{4} & =b_{4} \\
c_{1} x_{1}+c_{2} x_{2} & +C_{3} x_{3}+C_{4} x_{4}=C_{t}
\end{aligned}
$$

Equation (14) is then given by the following:

$$
\begin{align*}
\lambda_{1} & =\frac{\partial f}{\partial x_{1}} \cdot 1+\frac{\partial f}{\partial x_{2}} \cdot 0+\frac{\partial f}{\partial x_{3}} \cdot 0+\frac{\partial f}{\partial x_{4}} \cdot 0 \tag{20}\\
& =\left(-\frac{C_{1}}{C_{2} x_{2}}+\frac{C_{4} x_{4}}{C_{1} x_{1}^{2}}\right)
\end{align*}
$$

because

$$
\frac{\partial x_{2}}{\partial \mathrm{~b}_{1}}=\frac{\partial \mathrm{x}_{3}}{\partial \mathrm{~b}_{1}}=\frac{\partial \mathrm{x}_{4}}{\partial \mathrm{~b}_{1}}=0
$$

Similarily, Equations 15,16 and 17 become:

$$
\begin{equation*}
\lambda_{2}=\left(-\frac{C_{3} x_{3}}{C_{2} x_{2}^{2}}+\frac{C_{1} x_{1}}{C_{2} x_{2}^{2}}\right) \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{3}=\left(-\frac{C_{4} x_{4}}{C_{3} x_{3}^{2}}+\frac{C_{3}}{C_{2} x_{2}}\right) \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{4}=\left(-\frac{C_{4}}{C_{1} x_{1}}+\frac{C_{4}}{C_{3} x_{3}}\right) \tag{23}
\end{equation*}
$$

From the budget constraint

$$
C_{1} x_{1}+C_{2} x_{2}+C_{3} x_{3}+C_{4} x_{4}=C_{t}
$$

the following are obtained

$$
\begin{aligned}
& \frac{\partial x_{1}}{\partial C_{t}}=1 / C_{1} \\
& \frac{\partial x_{2}}{\partial C_{t}}=1 / C_{2} \\
& \frac{\partial x_{3}}{\partial C_{t}}=1 / C_{3} \\
& \frac{\partial x_{4}}{\partial C_{t}}=1 / C_{4}
\end{aligned}
$$

Here Equation 18 is written as:

$$
\begin{aligned}
\lambda_{5}= & 1 / C_{1}\left(-\frac{C_{1}}{C_{2} x_{2}}+\frac{C_{4} x_{4}}{C_{1} x_{1}^{2}}\right)+1 / C_{2}\left(-\frac{C_{3} x_{3}}{C_{2} x_{2}^{2}}+\frac{C_{1} x_{1}}{C_{2} x_{2}^{2}}\right) \\
& +1 / C_{3}\left(-\frac{C_{4} x_{4}}{C_{3} x_{3}^{2}}+\frac{C_{3}}{C_{2} x_{2}}\right)+1 / C_{4}\left(\frac{C_{4}}{C_{3} x_{3}}-\frac{C_{4}}{C_{1} x_{1}}\right)
\end{aligned}
$$

or
(24) $\lambda_{5}=\left(\frac{C_{1} x_{1}-C_{3} x_{3}}{\left(C_{2} x_{2}\right)^{2}}\right)+C_{4} x_{4}\left(\frac{1}{\left(C_{1} x_{1}\right)^{2}}-\frac{1}{\left(C_{3} x_{3}\right)^{2}}\right)+\left(\frac{1}{C_{3} x_{3}}-\frac{1}{C_{1} x_{1}}\right)$

This gives the additional equations desired for Case 1. Next, Case 2 will be investigated in order to see if an information can be obtained when all the constraints are not active.

For Case 2, where none of the constraints are active, it is assumcd that they will remain inactive $a s b_{i}$ is varied in a sufficiently small neighborhood. Consequently,

$$
\frac{\partial x_{i}}{\partial b_{j}}=\lambda_{j}=0, \quad i=1, \ldots, n .
$$

$$
(51, \text { p. 68). }
$$

This essentially states that if a constraint is not a binding constraint, it can be moved around in a small neighborhood without changing the solution.

Case 2, did not yield new information about the λ_{i} 's; however, perhaps some information can be obtained concerning the C_{i} 's. From Equations 9 through 12, where the constraints were not active (Case 2), the following are obtained:

$$
\begin{equation*}
\frac{C_{4} x_{4}}{C_{1} x_{1}^{2}}=\frac{C_{1}}{C_{2} x_{2}} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\frac{C_{1} x_{1}}{C_{2} x_{2}^{2}}=\frac{C_{3} x_{3}}{C_{2} x_{2}^{2}} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\frac{C_{3}}{C_{2} x_{2}}=\frac{C_{4} x_{4}}{C_{3} x_{3}^{2}} \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\frac{C_{4}}{C_{3} x_{3}}=\frac{C_{4}}{C_{1} x_{1}} \tag{28}
\end{equation*}
$$

From both Equation 26 and 28 the following is obtained:

$$
\begin{equation*}
C_{1} x_{1}=C_{3} x_{3}^{*} \tag{29}
\end{equation*}
$$

This indicated that for Case 2, where the constraints were inactive, the total expenditure for subjects must be equal to the total expenditure for classes. From Equations 25 and 27 the following relationship is indicated.

$$
\begin{equation*}
C_{4} x_{4}=\frac{\left(C_{1} x_{1}\right)^{2}}{C_{2} x_{2}}=\frac{\left(C_{3} x_{3}\right)^{2}}{C_{2} x_{2}} \tag{30}
\end{equation*}
$$

Substituting Equations 29 and 30 into the budget constraint

$$
C_{1} x_{1}+C_{2} x_{2}+C_{3} x_{3}+C_{4} x_{4}<C_{t}
$$

yields,

$$
\left(C_{1} x_{1}\right)^{2}+2 C_{2} x_{2}\left(C_{1} x_{1}\right)+\left(C_{2} x_{2}\right)^{2}<C_{t}\left(C_{2} x_{2}\right)
$$

or

$$
\left(C_{1} x_{1}\right)^{2}+2 C_{2} x_{2}\left(C_{1} x_{1}\right)+\left(C_{2} x_{2}\right)^{2}-C_{t}\left(C_{2} x_{2}\right)<0
$$

*This implied that C_{4} was strictly positive.

Thus for Case 2 only ranges for the costs values, $C_{1} x_{1}, C_{3} x_{3}$, and $C_{4} x_{4}$, can be found.

It is desirable to obtain a unique solution, if possible, for the C_{i} 's in order that the planning periods in the future could be determined with as small a variation as possible. Hence Case l, where the constraints were active, will be investigated in more detail to see if a unique solution for the C_{i} 's can be obtained.

By definition, the K-T multipliers (λ_{i} 's) must be zero or positive. In the original formulation of the problem the x_{i} 's and the C_{i} 's were also required to be zero or positive. This might be expressed as,

$$
\begin{array}{ll}
\lambda_{i} x_{i} \geq 0 & \text { and } \\
C_{i} x_{i} \geq 0 & i=1, \ldots, 4 .
\end{array}
$$

Thus, returning to Case 1, Equations $20,21,22$ and 23 are rewritten by multiplying Equation 20 by x_{1}, Equation 21 by x_{2}, Equation 22 by x_{3}, Equation 23 by x_{4} and transferring the negative term to the other side of the inequality. Hence,

$$
\begin{align*}
& \frac{C_{4} x_{4}}{C_{1} x_{1}} \geq \frac{C_{1} x_{1}}{C_{2} x_{2}} \tag{31}\\
& \frac{C_{1} x_{1}}{C_{2} x_{2}} \geq \frac{C_{3} x_{3}}{C_{2} x_{2}} \tag{32}
\end{align*}
$$

$$
\begin{align*}
& \frac{C_{3} x_{3}}{C_{2} x_{2}} \geq \frac{C_{4} x_{4}}{C_{3} x_{3}} \tag{33}\\
& \frac{C_{4} x_{4}}{C_{3} x_{3}} \geq \frac{C_{4} x_{4}}{C_{1} x_{1}} \tag{34}
\end{align*}
$$

When 31,33 and 34 are added, the following results,

$$
\frac{C_{4} x_{4}}{C_{1} x_{1}}+\frac{C_{3} x_{3}}{C_{2} x_{2}}+\frac{C_{4} x_{4}}{C_{3} x_{3}} \geq \frac{C_{1} x_{1}}{C_{2} x_{2}}+\frac{C_{4} x_{4}}{C_{3} x_{3}}+\frac{C_{4} x_{4}}{C_{1} x_{1}}
$$

When the redundant terms $\mathrm{C}_{4} \mathrm{x}_{4} / \mathrm{C}_{1} \mathrm{x}_{1}$ and $\mathrm{C}_{4} \mathrm{x} / \mathrm{C}_{3} \mathrm{x}_{3}$ are subtracted from each side of the above inequality, then

$$
\begin{equation*}
\frac{C_{3} x_{3}}{C_{2} x_{2}} \geq \frac{C_{1} x_{1}}{C_{2} x_{2}} * \tag{35}
\end{equation*}
$$

In order to satisfy expressions 32 and 35 simultaneously the following equality must hold

$$
\begin{equation*}
\mathrm{C}_{1} \mathrm{x}_{1}=\mathrm{C}_{3} \mathrm{x}_{3}{ }^{* *} \tag{36}
\end{equation*}
$$

This reduces expressions 32,34 and 35 to identities. Now from 31:

$$
\left(C_{4} x_{4}\right)\left(C_{2} x_{2}\right) \geq\left(C_{1} x_{1}\right)^{2}
$$

and from 33

$$
\left(C_{4} x_{4}\right)\left(C_{2} x_{2}\right) \leq\left(C_{3} x_{3}\right)^{2} .
$$

But from $36, C_{1} x_{1}=C_{3} x_{3}$, thus in order to satisfy both 31 and 33 equality must hold. Consequently,

$$
\begin{equation*}
\left(C_{1} x_{1}\right)^{2}=\left(C_{3} x_{3}\right)^{2}=C_{2} x_{2} \cdot C_{4} x_{4} \tag{37}
\end{equation*}
$$

The budget constraint, for Case 1 , requires that

[^7]$$
C_{1} x_{1}+C_{2} x_{2}+C_{3} x_{3}+C_{4} x_{4}=C_{t} . *
$$

Substituting 36 and 37 into the budget constraint

$$
C_{1} x_{1}+C_{2} x_{2}+C_{1} x_{1}+\frac{\left(C_{1} x_{1}\right)^{2}}{C_{2} x_{2}}=c_{t}
$$

or

$$
\begin{equation*}
\left(C_{1} x_{1}\right)^{2}+2 C_{2} x_{2}\left(C_{1} x_{1}\right)+\left(C_{2} x_{2}\right)^{2}-C_{t} C_{2} x_{2}=0 . \tag{38}
\end{equation*}
$$

From the quadratic formula,

$$
\begin{equation*}
C_{1} x_{1}=-C_{2} x_{2}+\sqrt{C_{t} \cdot C_{2} x_{2}} \tag{39}
\end{equation*}
$$

If $C_{2} x_{2}=\phi C_{t}$ where,

$$
0 \leq \phi \leq 1
$$

then

$$
C_{1} x_{1}=\sqrt{\phi} C_{t}-\phi C_{t} \cdot * *
$$

Equation 40 results from substituting Equation 37 into Equation 38 and applying the quadratic formula again,*** and

$$
\begin{equation*}
C_{4} x_{4}=C_{t}+C_{2} x_{2}-2 \sqrt{C_{t} \cdot C_{2} x_{2}} \tag{40}
\end{equation*}
$$

*This assumes that money was one of the limiting scarce resources.
** ϕ is the fraction of the total budget being allocated for teachers ($\phi=C_{2} x_{2} / C_{t}$).
***In both cases the infeasible roots of the quadratic are to be disregarded. The infeasible roots are the ones that cause $C_{i} x_{i}<0, i=1, \ldots, 4$.

If $C_{2} x_{2}=\phi C_{t}$, as before, then Equation 40 can be rewiritten as the following:

$$
\begin{equation*}
C_{4} x_{4}=C_{t}(1+\phi-2 \sqrt{\phi}) \tag{41}
\end{equation*}
$$

The above will now be briefly summarized. The K-T conditions yielded a number of necessary conditions for x° to be an optimal. However they also introduced five additional variables, the λ_{i} 's. Additional information was obtained for the λ_{i} 's by breaking the problem into two cases. Case 1 , where all the constraints were active, yielded five equations for the λ_{i} 's. Case 2 , where no constraint was active, simply yielded that when a constraint is inactive it cannot affect the value of the objective function $f(x)$ as the constraint is moved in a small neighborhood. However, some information was obtained about the C_{i} 's but it was not sufficient to result in a unique solution for the $C_{i} ' s$. When Case 1 was investigated further, using the previously obtained information about the λ_{i} 's, a unique solution was obtained.

Equations 39 and 40 yielded the desired unique solution.* This was obtained for Case 1, where all the constraints were active. It was of interest to note that Equation 29 was the same as Equation 36. In other words, both Case 1 and Case 2 yielded $C_{1} x_{1}=C_{3} x_{3}$. It was also interesting to note that for the value of $\mathrm{C}_{4} \mathrm{x}_{4}$ the difference between the results for Case 1 and Case 2 where none of the constraints were active was an inequality instead of an equaljty as in Equation 40.

[^8]$$
C_{4} x_{4}<C_{t}+C_{2} x_{2}-2 \sqrt{C_{t} \cdot C_{2} x_{2}}
$$

This inequality was due to the budget constraint. Hence $C_{4} x_{4}$ would be given by a range in Case 2 instead of a unique value as in Case 1. The range of $\mathrm{C}_{4} \mathrm{x}_{4}$ was dependent upon the slack in the budget constraint. As the slack in the budget constraint decreased, so did the range of $\mathrm{C}_{4} \mathrm{x}_{4}$ until the constraint became active, in which case, $\mathrm{C}_{4} \mathrm{x}_{4}$ was fixed.

Because of the dependency of $C_{1} x_{1}, C_{3} x_{3}$, and $C_{4} x_{4}$ values upon the value of the fraction of the total budget spent for teachers (ϕ), this relationship was investigated further.

Figure 3-1 shows the variation in the fraction of the budget spent for classes $\left(C_{1} x_{1} / C_{t}\right)$ as the fraction spent for teachers (ϕ) varied from zero to one. It might be noted that the total expenditure for classes cannot exceed twenty-five per cent of the total budget.

Figure 3-2 shows the variation in the fraction of the budget spent for the subjects as varied from zero to one. It might be noted that Fig. 3-2 and Fig. 3-1 are identical. Thus the total expenditure for subjects cannot exceed twenty-five per cent of the total budget. These two curves are identical because of the identity $C_{1} x_{1}=C_{3} x_{3}$.

Figure 3-3 shows the variation in the enrollment expenditure fraction as ϕ is varied for zero to one.

Figure 3-4 demonstrates the variation in the fraction of the budget spent for classes as the expenditure for enrollment was changed. Of course, since $C_{1} x_{1}=C_{3} x_{3}$, the curve for the subject expenditure

Figure 3-1. Teacher and Class Costs Curve.

Figure 3-2. Teacher and Subject Costs Curve.

Figure 3-3. Teacher and Enrollment Costs Curve.

Figure 3-4. Enrollment and Class Costs Curves.
and enrollment expenditure would be the same as Fig. 3-4.*
Returning to the expressions $20,21,22,23$ and 24 , the reader may note that the values of the λ_{i} 's would be zero at the optimal point when the constraints were active because of the equalities for the expressions $25,26,27$ and 28 . A closer inspection of the objective function would show it to be zero also. This was due primarily to Equation 26.

Of significant interest was the value of the objective function and whether it was the maximum value. Optimality was not guarranteed by only satisfying the Kuhn-Tucker conditions. The K-T conditions are by themselves, not sufficient as was illustrated by an example given by Zangwill (51, p. 43).

In Case 1, where all the constraints were active, the solution space was limited to a point; hence, the solution had to be the maximum. It must also be remembered that this point was assumed to be an maximum. When the lower constraints on the x_{i} 's were relaxed, one was able to demonstrate that the solution was in general not the maximum solution.**

For example, when the only active constraint was the budget constraint, increasing x_{3} at the expense of x_{4}, (increasing subjects while decreasing enrollments) increased the value of the objective function when the other values were held constant. Decreasing x_{3} while increasing x_{4} also increased $f(x)$. Also any changes in x_{1}

[^9](classes) caused decreases in $f(x)$. The reason for this was that the solution was located at a saddle point for x_{1} and x_{3}. The point was the maximum for x_{1} (classes) and the minimum for x_{3} (subjects). This solution established a relationship between x_{1} and x_{3}, namely $C_{1} x_{1}=C_{3} x_{3}$. The addition of this relationship to the nonlinear programming problen would now cause the given operating level to be the maximum in the general case

This relationship of $C_{1} x_{1}=C_{3} x_{3}$ was found to have several practical interpretations in the actual case. For example, x_{1} / x_{3} would be the average number of classes per subject. This ratio would normally be constant or at least the average valuc for the ratio for a school would tend to remain the same from one planning period to the next. There are several reasons for this. First, most state school systems are administered by a state department of public instruction which develops courses of study, and provides uniform leadership and general supervision for the various curriculum programs ($20, \mathrm{p} .113$). This tends to result in uniform curriculums. Next, the local boards of education may regulate requirements beyond those prescribed by the state agency. Finally, the National Science Foundation and other groups have developed national curriculum programs that are being made available to state and local education boards. Thus the maximum solution, when the relationship $C_{1} x_{1}=C_{3} x_{3}$ held, was found to be $f(x)=0$. The next part of the problem was to solve for the x_{i} 's given the C_{i} 's. This problem would arise when the model would be used for planning to accomodate certain expected changes, such as increases or decreases in the total enrollment. The factors that werc to be detemined in this case were 1) the level of the economic resurce
input, and 2) the manner in which the economic resources were allocated within the organization.

There were several approaches available to determine these factors. The first approach described below offers some interesting insight into the internal workings of the model. The solution of the model was found to be independent of the values of the b_{i} 's. This was assuming that the values of the b_{i} 's did not result in the x_{i} 's being infeasible (K-T condition l).* It was convenient and reasonable then to assume that $x_{i}=b_{i}$, $i=1, \ldots, 4$. This permitted the λ_{i} 's (i $=1, \ldots, 4$) to be given by Equations 20, 21, 22 and 23,** which are repeated below.

$$
\begin{align*}
& \lambda_{1}=\frac{C_{4} x_{4}}{C_{1} x_{1}^{2}}-\frac{C_{1}}{C_{2} x_{2}} \tag{20}\\
& \lambda_{2}=\frac{1}{C_{2} x_{2}^{2}} \cdot\left(C_{1} x_{1}-C_{3} x_{3}\right) \tag{21}\\
& \lambda_{3}=\frac{C_{3}}{C_{2} x_{2}}-\frac{C_{4} x_{4}}{C_{3} x_{3}^{2}} \tag{22}\\
& \lambda_{4}=C_{4}\left(\frac{1}{C_{3} x_{3}}-\frac{1}{C_{1} x_{1}}\right) \tag{23}\\
& \lambda_{5}=\frac{\left(C_{1} x_{1}-C_{3} x_{3}\right)}{\left(C_{2} x_{2}\right)^{2}}+C_{4} x_{4}\left(\frac{1}{\left(C_{1} x_{1}\right)^{2}}-\frac{1}{\left(C_{3} x_{3}\right)^{2}}\right) \tag{24}\\
& \quad+\left(\frac{1}{C_{3} x_{3}}-\frac{1}{C_{1} x_{1}}\right)
\end{align*}
$$

*It should be pointed out that the b_{i} 's are only for $i=1, \ldots, 4$ and do not include C_{t}.
**The principal difference between the K-T multipliers (λ_{i} 's) for inequality and equality constraints is that the multipliers for the equality constraints are permitted to be negative in addition to positive or zero, while the multipliers for inequality constraints are restricted to be positive or zero.

Prior to considering the interpretation of the $\lambda_{i}{ }^{\prime} s$, it was necessary to examine the effect of possible variations in the values of the costs. It may not be realistic in the applied case to assume that the values of the costs would remain constant over a planning period of approximately five years. If one were to consider variations due to a known inflation rate, then period-by-period variations in the costs could be readily found. The simplest case would bc where the variations in the rate remain constant; i.e., the variations in the inflation rate would be so small between periods as to be considered insignificant (36, p. 373).* The primary effect of a positive inflation rate is to decrease the present worth of future expenditures. This effect becomes more pronounced as the number of planning periods increase.

Once the costs were determined for a particular planning period it was a straightforward task to find the various X_{i} 's required to reestablish the system's equilibrium. For example, if x_{4} (enrollment) was expected to change in some future period then the expected results could be found by examining Equations 20 through 24 . An increase in x_{4} caused λ_{1} to become positive and λ_{3} to become negative. As mentioned earlier, this would indicate that increasing b_{1} (lower bound on classes) would increase $f(x)$ while increasing b_{3} (lower bound on subjects) would decrease $f(x)$. There were several ways of obtaining equilibrium

[^10]in the system. To obtain a value of zero for λ_{1}, for example, one might increase the value of x_{1} (classes) or decrease the value of x_{2} (teachers). Similarly λ_{3} could become zero by increasing x_{3} (subjects) or decreasing x_{2} (teachers). Decreasing the number of teachers however, violates the constraint, $x_{2} \geq b_{2}$. Increasing the number of classes and subjects would result in the budget constraint being violated. Thus, unless C_{t} was increased or the lower limit on the number of teachers was decreased, equilibrium was not possible. Of course there was always the possibility of changing some of the C_{i} 's. In the actual case, C_{t} is usually increased and hence, the number of classes could be increased. This, however, causes λ_{2} and λ_{5} to become positive and λ_{4} to be negative. b_{2} (lower limit on the number of teachers) would normally be increased when the number of classes and the enrollment were increased and this would tend to increase $f(x)$. Increasing b_{2} would also cause λ_{1} to become more positive and λ_{3} to become more negative. In addition to the λ_{i} requirements for optimality it must be remembered that the model will not be optimal unless Equation 36 is satisifed.

The above discussion demonstrates the interaction of the variables and the dynamic nature of the system. This type of exercise would enable a practitioner to gain the seasoning needed for implementation which inherently requires adhering to systematic procedures and paying careful attention to detail (49, p. 927). This type of exercise would eventually lead to the new equilibrium state in a manner similar to that which produces an asymptotically stable condition in
the large for systems based on the Liapunov theory.*
The most straight forward method of finding the new values for the $x_{i}{ }^{\prime} s$, was using the same equations used to compute the $C_{i}{ }^{\prime} s$. **

In Equations 39 and 40, it was noted that C_{t} must be known before the new values for the x_{i} 's can be determined. The projection of the availability of funds to finance an educational plan, $\left(C_{t}\right)$ could be made by studying the characteristics of the sources of the funds in the past (13, p. 205); for a trend, observations in the ten most recent years could probably be justified as could extrapolations for ten years into the future. Rapid changes in economic and social conditions are likely to prevent valid projections beyond the tenyear period (20, p. 327). Such a model may be economically naive since possible discontinuities are rarely considered.***

[^11]Garvue (20, p. 356) pointed out that cost projections for educational budgeting were straight-line in form. Benson (3) indicates the reason for this was that "The comfortable position for a school board is to maintain a habitual pattern of expenditure." In so doing, the school board avoids facing the taxpayers with any sharp increases in tax rate except for those that can be clearly justified in terms of physical growth, i.e., growth in size of pupil population. (3, p. 302)*

Once the long-term total educational expenditure projection was complete, the x_{i} 's were obtained from Equations (39) and (40), which are repeated below.

$$
\begin{equation*}
C_{1} x_{1}=C_{3} x_{3}=\sqrt{C_{t} \cdot C_{2} x_{2}}-C_{2} x_{2} \tag{39}
\end{equation*}
$$

If x_{2} were already known in addition to x_{4},** then the above equations could be used for long-term budgeting such as attempted in planning programming and budgeting systems.

[^12]If estimated values for funds needed and funds available are in harmony or if the difference between them is not too large, it is likely that it will be possible to finance the educational plan as it is. If this is not the case, it will be necessary to study the possibility of reducing expenditures on education while still attaining provisional targets. If this were not possible, the targets themselves might need to be revised. (13, p. 205)
VI. Summary

This chapter described the techniques used to find a solution to the resource allocation model that was developed in Chapter II. Several assumptions were necessary. First, the present level of operation was assumed to be the optimal operating policy. The next assumption was that all costs were greater than zero. This was followed by the assumption that all the constraints were active. Then it was assumed that the total expenditure $\left(C_{t}\right)$ and the cost for teachers (C_{2}) were known. These resulted in unique values for the remainder costs. Once these equations (39) and (40) for the costs were established to give the optimal solution; the next step was to indicate how the model could be used for planning future operating policies. To do this either the total expenditure $\left(C_{t}\right)$ and one variable (x_{i}) or two variables must be known for the future period. Finally, effects of inflation on the values of the costs found in the first part were discussed.

CHAPTER IV

THE APPLIED MODEL
I. Introduction

After developing the resource allocation model and solution techniques, the model's use was then demonstrated with data from a typical school found in Appendix A for two cases. The first case used the expected projection of enrollment and a variation in revenues through a fixed rate of inflation. In the second case a revised set of educational targets of classes and teachers were substituted into the model to determine the resulting projected educational expenditure needs. The two cases were compared to see if the estimated values for funds needed and funds available were in harmony. Where these fund flows were not equal, various revisions were discussed that would make it possible to bring the two variables into harmony. Finally, the data gathering was discussed along with the sources and various types of data needed.
II. Case 1

In Case 1 an expected projection of the future enrollments was assumed along with the expected revenues and a fixed rate in inflation The expected revenue was given by expenditure per pupil plus an increment for inflation. The projection of the enrollment is given in

Fig. 4-1.*
Figure 4-2 shows the expected revenue for the planning period.** This projection was based upon the current expenditure per pupil plus an allowance for inflation. Thus the level of community support for the educational system was not expected to change. Therefore, one would not expect radical change or experimentation within the school system. Also shown in Fig. $4-2$ is a plot of the expected revenue if inflation was ignored. It was interesting to note the amplification in the slope of the revenue curve when an increase in enrollment was coupled with an increasing inflationary environment. This is of particular importance when the long-term educational planning horizon extends past a few years. Thus inflation had to be taken in account in the preparation and utilization of a complete long-term education plan for the school.***

[^13]

Figure 4-1. Projection of Expected Average Daily Attendance.

Figure 4-2. Expected Revenue Curves.

Figure 4-3 indicates the number of courses that would be needed to maintain approximately the same class size for the planning period. This was computed by requiring the enrollments per class (x_{4} / x_{1}) to remain a constant. Small class size is often projected as politically desirable, yet is said to increase system cost. The effect of changing class size was tested later in the chapter.

Figure 4-4 indicated the number of teachers needed to maintain the classes per teacher x_{1} / x_{2} at the same constant ratio as at the beginning of the planning horizon.

After developing the preceeding relationships from the typical school data of Appendix A, it was necessary to determine the value of the time trended variable x_{3} (subjects). In the previous chapter the identity $C_{1} x_{1}=C_{3} x_{3}$ was found. The costs C_{1} and C_{3} were known at the beginning of the planning horizon; however, inflation had to be considered. If it were assumed that the constant rate of inflation were θ, then the amount P at the start of a period would be increased by an amount θP due to the effects of inflation during the period. Hence, the amount P at the beginning of the period to be equivalent to the amount needed at the end of a period was $P+\theta \cdot P$ or $P(l+\theta)$. Substituting in the inflation terms to the above identity yielded $\left(C_{1}+\theta C_{1}\right) \cdot x_{1}=$ $\left(C_{3}+\theta C_{3}\right) \cdot X_{3}$.

Simplifying this equality yielded

$$
\begin{aligned}
C_{1} \cdot x_{1} \cdot(1+\theta) & =C_{3} \cdot x_{3} \cdot(1+\theta) \\
C_{1} x_{1} & =\frac{\left(C_{3} x_{3}\right)(1+\theta)}{(1+\theta)} \\
C_{1} x_{1} & =C_{3} x_{3} .
\end{aligned}
$$

Figure 4-3. Projection of Needed Classes.

Figure 4-4. Projection of Needed Teachers.

Hence, as long as the stated inflation rate applied equally to all sources of prospective revenues and expenses, namely class and subject costs, the original identity held. Thus the projection of x_{3} could be determined and is given in Fig. 4-5.

Next the costs for each of the variables $\left(x_{1}, \ldots, x_{4}\right)$ was projected using a constant inflation rate of 4% per year.

Figure 4-6 and Fig. 4-7 give the projected inflationary increases in the class cost and the teacher cost respectively. Figure 4-8 and Fig. 4-9 give the projected inflationary increases in the subject cost and the enrollment cost respectively.

Hence, the projections of the expected revenues and the changes in the variables x_{1} (classes), x_{2} (teachers), x_{3} (subjects), and x_{4} (enrollment) had been determined. In addition, the cost associated with each of the variables C_{1}, C_{2}, C_{3}, and C_{4} had been projected. Thus, the next step was to check the index model and see if its requirements were still satisfied.

Of principal interest, at this point, was to verify that the expected revenues were sufficient to finance the projected education plan. This was verified as shown in Table 4-l.

Table 4-1. Comparison of Expected Revenue and Needed Revenue.

Year	Expected Revenue	Needed Revenue
0	$\$ 465,285.00$	$\$ 465,284.40$
1	$489,944.90$	$489,944.60$
2	$547,286.40$	$547,286.30$
3	$680,396.30$	$680,396.20$
4	$796,063.50$	$796,063.40$
5	$849,134.40$	$849,133.60$

Figure 4-5. Projection of Needed Subjects

Figure 4-6. Projection of Expected Class Costs.

Figure 4-7. Projection of Expected Teacher Cost.

Figure 4-8. Projection of Expected Subject Cost.

Figure 4-9. Projection of Expected Enrollment Cost.

The equality of expected revenue and needed revenue was anticipated because the only change to the system was due to inflation and enrollmont increase. However, the enrollment increase was compensated for by increasing the number of classes, teachers and subjects. The effects of inflation were compensated for by corresponding increases in the total revenue made available.

The ideal situation as described in Case 1 is seldom encountered in the typical application. In fact, a large percentage of states experience deficiencies in needed revenue. In 1966 twenty states suffered a total expenditure gap of over $\$ 657$ million. (3, p. 195) This figure included operating expenditures only and did not consider capital construction costs.*

III. Case 2

Case 2 considered a "state of nature" where there was a financial deficit. In other words, the projected needed revenue exceeded the expected revenue. One way that this could have occurred was for the teachers to denand salary increases which exceeded the increases given to compensate for an inflationary economy.

Another possibility for the higher rate of increase could have been the desire to increase the overall quality of the teachers. In

[^14]Case 2 an annual increase of 2% per year over the entire planning horjzon of the five years was considered. This was in addition to fixed inflation rate 4% per year.

Case 2 did not assume that a compensating increase was made in the expected revenue; thus C_{t} was expected to be greater than the expected revenue. Hence, in Case $2, \mathrm{C}_{\mathrm{t}}$ became again the projected needed revenue required to finance the proposed educational plan.

Figure 4-10 sumarizes the data for the new teacher's pay schedule and compares it with the old salary schedule. This shows the additional increase over the originally projected teacher cost.

The expected revenue was then compared to the needed revenue in Fig. 4-11. The expected financial deficit was evident. Obviously, there were two pure alternatives available to acconmodate the difference between the expected and needed funds. Either revise the educational plan in a manner that will increase the revenucs or decrease the expenditures. One could also face a combination of the two extreme conditions.

When they were examined in detail, the data indicated that one way to decrease expenditures was to decrease classes which might be followed by a decrease in the subject expenditure because of the identity $C_{1} x_{1}=C_{3} X_{3}$. Several possibilities existed. One could have decreased X_{1}, thereby increasing the class size and decreasing the class load for the teacher $\left(x_{1} / x_{2}\right)$. This would have required a decrease in ejther the subject cost $\left(C_{3}\right)$ or the number of subjects $\left(x_{3}\right)$. Another possjbility might have boen to decrease the class cost $\left(C_{1}\right)$ and the number of subjects $\ddot{i n}_{3}$, and so on. The point is that this one simple

Figure 4-10. Comparison of Teacher Cost Before and After Raise.

Figure 4-11. Comparison Between Expected and Needed Revenues.
identity could have been used to develop a number of different alternatives.

For Case 2 two different alternatives were tested. One of the alternatives tested was decreasing the number of classes (x_{1}) and making the necessary revisions in the number of subjects (x_{3}), while all the C_{i} values remained fixed. Figure $4-12$ shows the variation in the total needed expenditure as the number of classes was decreased for the fifth year. This, of course, tended to increase the class size. Decreasing the number of subjects, of course, decreases the curriculum breadth. It was noted, however, that the class size increased from 20.11 enrollments per class to 21.12 as the needed expenditures decreased from $\$ 861,363.00$ to $\$ 850,973.00$ which was within range of the expected revenue of $\$ 849,133.60$. The number of subjects $\left(x_{3}\right)$ decreased from 67.5 subjects to a little less than 50 subjects. The ratio of classes to teachers (x_{1} / x_{2}) decreased from 5.25 classes per teacher to a little less than 4 classes per teacher. Thus this alternative decreased the needed expenditures to the level of the expected revenues, while teacher salaries were raised by decreasing the number of classes from 315 classes to a little less than 230 classes and decreasing the number of subjects from 67.5 subjects to a little less than 50 subjects.

The next alternative that was tested using the model was that of decreasing the number of classes and decreasing the subject cost. Again the fifth year data were used from the index check as C_{2} was increased (See Appendix D). Figure 4-13 shows the variation in the needed expenditure as the subject cost was varied. The number of

Figure 4-12. Variations in Needed Revenue As The Number of Classes Vary.

Figure 4-13. Variations in Needed Revenues As the Subject Expenditure Varied.
classes also varied; however, the number of subjects remained fixed at 67.50. Again the needed expenditure decreases to within the range of the expected revenue as the number of classes decreased from 315 classes to a little less than 230 classes. This resulted in a decrease in the subject expenditure from $\$ 1,616.20$ to a little less than $\$ 1,200.00$. The class size and classes per teacher were the same as those found in the first alternative tested. Thus, the needed revenue was decreased to the range of the expected revenue by decreasing the number of classes. Instead of decreasing the number of subjects the expenditures per subject was decreased. This would probably mean less equipment and class room aids for the teacher.

The above examples were for the purpose of demonstrating the flexibility of the planning index model. Its use in planning activities were then investigated.

First, with a knowledge of the C_{i} 's, a secondary school can quantitatively appraise its present program and determine the priorities that it has directly or indirectly assigned to the variable x_{1}, x_{2}, x_{3}, or x_{4}. Thomas (46), as well as others, has demonstrated that the manner in which money has been allocated has been more important than the level of expenditures. This model then yields the information to aid in determining the manner in which resources could be allocated by the administrator.

Burkhead stated that,
Given the strong tradition in most school systems of central authority for budget preparation, an authority typically lodged in the hands of the superintendent and his budget officers, it would appear that any major budgetary innovation must
serve the superintendent's needs if it is to be viable. (6, p. 98)

Once the C_{i} 's were determined, information concerning the requirements to realize future goals or expected change could be generated. Such items as the amount of revenue needed, the number of classes, and so on, could be readily obtained.

In addition to quantifying the present program and furnishing the necessary information to implement future plans the model would provide the methodology to test various programs that would strengthen the present program.

One possibility to improve the conditions of teaching in low-income schools would be greatly reducing class size . . . and pay teachers a bonus of $\$ 1,000-\$ 2,000$ annually for their willingness to accept assignments in difficult schools.
(6, p. 93)
Because teacher cost along with enrollment and class costs could be determined by the model, sufficient information would be available to determine the feasibility of such change and the model would indicate alternatives that might be implemented so that certain educational targets could be realized.

Finally, the model could provide the state education departments with additional information to aid them in resource allocation decisions. The traditional educational financial standard has been the measure of expenditure per pupil or average daily attendance. This measure, in reality, only indicates the level of economic support and not the manner in which it is used in the system. Greater amounts of detail information could be generated using the model developed in this paper. Not only would total expenditures be indicated by C_{t} but they would be
distributed in the manner indicated by the individual values of the C_{i} 's.

Unfortunately the above mentioned allocation information is often not utilized in the most effective manner even when it is available. For example, program budgeting has tended to turn budget-making into a routine computational exercise that supports prior determination of programs. In other cases performance budgets are used to help "sell" a program in particular circumstances, and this is not unimportant. However, attractive brochures might be more effective in these cases. In most cases program and performance structures have been ignored by legislatures, as is the case with the United States Congress.

$$
(6, \mathrm{p} .96-97)
$$

In most cases, especially when the decision maker is not familiar with or does not possess detail knowledge about certain programs, there is a strong tendency to select a convenient criterion, such as a single number, upon which to base their decisions.* There would probably be a strong tendency on the part of unitiated managers to misuse the value of the objective function $f(x)$ for the model developed in this paper.

The planning index model is of interest to the educational manager for several reasons. It provides the with a landmark to identify where his system is, has been, or is going with regards to the system's resources. The model also provides the manager with individual indicators of the manner in which the resources are distributed. However, doubling

[^15]the value of $f(x)$ would not necessarily indicate that the system's "goodness" has doubled. Increasing the value of $f(x)$ would indicate that the manner in which resources were allocated had improved. But, intra-school comparisons, based solely on values of their $f(x)$'s, might be misleading. The reason for this is that the optimality of the problem was accepted earlier because of the individuality of the school and its unique environment, which included the nonquantitative variables as well as the quantified variables. In other words, the model is dealing with a particular school, a particular policy maker, and the forces acting on both.

The C_{i} 's, however, might well lend themselves for comparison on a limited basis, as was discussed earlier in the chapter, where they were indicators of the manner in which the resources are distributed. The actual values of the individual C_{i} 's may not be as significant as the comparisons of the values between the C_{i} 's for the school or perhaps intra-school comparisons.*

There are many examples similar to the above example that could be examined. The ones that were discussed were chosen to demonstrate a comprehensive and yet transparent system that would be symbolic of the models flexibility. This next section will discuss an indispensable part of any application endeavor. The following deals with data types

[^16]and sources needed in an actual application of the model.
IV. Data Collection and Sources

In every organization there are people who are responsible for, and have at their fingertips, a great deal of present operations data as well as historical data. Quite often, the information is available and potentially very useful. However, decision makers usually ignore these sources because the data are difficult to "dig out" and even if it were readily available, most managerial personnel are not in a position to analyze the data properly. (35, p. 190)

In order to locate appropriate starting data for a school study, the first step might be to visit the state department of education. The reason for this is that every school district must submit a standard budget in order to receive financial support and these budgets are kept on file for a number of years. In addition each school must submit an application for accreditation which contains the full schedule of classes, details on the teaching staff, particulars on the supporting personnel, and enrollments in each class. Hence, this is a very good starting place to get an overview for any school. Not only is all the information in one report but it is also tallied so that it is fast to retrieve.

The budget, in turn, is usually not adequate for a reliable data source, other than some gross estimate for the following reasons. First most school districts do not budget by schools. If they do construct budgets for the individual schools, they are consolidated into one report for the school district and then sent to the state department of education. Secondly, the information contained in the budget may or
may not represent actual expenditures. Individual entries are merely guideposts and do not indicate the expenditures from the various accounts. Finally, the budgets submitted to the state department of education are projected expenditure needs for the forthcoming year and hence are subject to modification and revision.

As a second step, it is important to plan the data gathering carefully so that efforts are not expended on data that is of little value while other items of prime importance are neglected. It is typically necessary to limit the scope of the data gathering process because of economic tradeoffs. The amount of resources one is willing to expend on an item of information must be weighed against the economic benefits to be realized from such an effort.

The next step is to organize a conference of "in-house" specialists for the school, such as operations and maintenance personnel, teaching staff representatives, perhaps a school board member, and individuals of the administration. It might be advisable to include representatives of the student body.* The number of participants should be kept small, somewhere between five to ten people, for this minimizes the problem of managing such a conference and of analyzing the data. The high cost of utilizing the time of such specialists represents another practical reason for keeping the group small (student time exempted). It would be advisable to communicate to each of the participants before the conference so that each can prepare for the conference

[^17]by doing some homework. This is where careful planning can be utilized by letting each individual know what is expected from him. After a well planned conference, the "state of nature" for the particular school should be predictable or at least limited to just a few of all the possible states which could occur during the period of time under preview.

At this point, one should be ready to test the mathematical model to establish its applicability and its underlying assumptions. If positive results are indicated, one can proceed with the full planning study for the system.

Finally, the results are communicated and explained sufficiently so that the users of the information will feel comfortable applying the results and yet understand the model's limitations.

It is clear that this type of planning study can be very costly. However, if the expenditures are high, the resulting program that will be the result of a good model application will more than compensate the expenses incurred.*

[^18]
CHAPTER V

SUMMARY AND CONCLUSIONS

I. Summary

This research dealt with the allocation of scarce economic resources in a secondary educational system. It also was concerned with a methodology for the analysis of the effects that resource allocation had on the variables used to measure the operation of a secondary school.

The first portion of the research dealt with the similarities and differences of resource allocation in the educational environment and the traditional mercantile environment. This portion of the investigation identified three basic improvements needed by educational resource management. They were, 1) a quantitative process formula relating inputs to outputs, 2) better organization and analysis of existing data, and 3) a resource planning model for the local school.

The review of past research in the area of educational resources indicated that a planning model with these improvements was needed and that the development of such a model would be feasible. While it seemed feasible to develop an overall model for resource allocation, it became evident that a critical factor in the model development would be the formulation of the weighting coefficients used in analyzing individual factors measuring educational operations. The formulation of the
weighting coefficients in previous research did not appear to be satisfactory because the techniques involved making subjective judgments by the principal.

A model was then developed that eliminated the arbitrary determination of the weighting coefficients. This was done by assuming that the present operating policy was optimal. In addition, the weighting coefficients were assumed to be given by ratios of the various costs associated with the problem's variables. This allowed the application of certain mathematical technicues to the problem, such that, the weighting coefficients were found analytically without involving any subjective judgment. Essentially, this procedure could be thought of as a "reverse optimization."

Most often, profit [or cost] improvements stem from executives possessing a deeper understanding of the problem area, and hence developing a keener scnse for taking correct actions and maintaining control in an uncertain and competitive environment. . . . In a p eponderence of successful applications, the applications, the beneficial effects are truly manifest in the altered decision behavior of executives and managers . . .

Second, although an operations research model often uses the mathematics of optimization, the resultant solution should not bc vicwed a necessarily yielding an optimal answer to the real problem. After all, as the text has stressed throughout, a model is inherently an approximation to reality, and therefore an optimal solution to this approximation nced not be the "final" answer to the actual decision problem. The important issue, however, is not whether a proposed solution is optimal, but whether the solution yields a significant enough improvement over the alternatives to make it worthy of acceptance. (49, p. 928)

The model development in this research would provide the following results when applied to a secondary school.

1. It would enable the secondary school to quantitatively identify program costs for its present resource allocation.
2. It would furnish the administrator with important information concerning the economic requirements for implementation of future change or to realize future goals.
3. It would indicate what areas might be strengthened in the present system by identifying the manner in which present resources were allocated.
4. It would provide the state educational department with additional information to aid them in their allocative decisions.

The feasibility of the model was demonstrated by applying it to hypothetical data for a typical secondary school in a typical urban area. The methods to plan quantitatively for future targets and/or changes were also described for a planning horizon of five years.

Finally the thesis discussed procedures for data gathering and the various types of sources that could be utilized to obtain these data. This data collection phase would be critical for the actual application of the planning model.
II. Reconmended Future Research

Continued efforts must be made in program budgeting in education. This model should be helpful in estimating the various costs, especially if the variables were broken up into the general areas of the curriculum, such as, language arts, science, and so on. This would decrease the amount of gross averaging of the costs of teaching in
radically different deciplines. Program budgeting, however, would require that the building cost and space consideration by incorporated into the model. This would involve adding a minimum of one variable, perhaps area per pupil. Adding this variable and its associated cost would require another balancing ratio in order to establish an equilibrium as was shown for the present model in Fig. 2-2.

Another area of potential research that is related to the above mentioned area would be the testing of the validity of the values for the costs found by the reverse optimization (RO) model. The values found for the C_{i} 's should reflect tangible expenditures that could be categorized into a system similar to the proposed organization of the budget given in Appendix B. If the C_{i} 's could be determined by another method, then they could be used in the RO model, where the RO model would become a regular nonlinear programming problem (NLP) and could be solved by applying one of the standard NLP algorithms.

The investigation of the costs might also verify whether or not the costs (C_{i} 's) are linear. The costs were assumed linear in this study for all ranges of x_{i} for simplicity. However, studies concerning the economies of scale indicate that the costs might be nonlinear and that there exists an optimal size that would be the most efficient operating level.*

[^19]Finally continued research is needed to relate economic inputs to quantifiable educational outputs. This will first require development activities such as:

1. A clear and precise statement of educational objectives,
2. Techniques for recognizing and measuring the degree of attainment of the objectives, and
3. Techniques to perform discriminative analysis to see what efforts are good and effective, and what are bad and inefficient.
III. Conclusions

Countless small communities across the U.S. are experiencing wanted tax increases while school administrators are considering dropping courses and putting the schools on double sessions to economize and to cope with defeated bonds or tax increases. It is important then, that the money spent for education be spent wisely.

Resource allocation studies in education are presently needed and that need will grow as inflation raises the cost of education each year. The RO model developed in this study offers not only the methodology for determining the level of program expenditures that can be expected for a given level of operations, but also indicates the manner in which the money will be spent. With additional development, the model could be used to report the effects of different combinations of goods and services upon the school system.

One of the largest obstacles that schools must overcome is their past and present operational mode. Educators must contend for a place in the hierachies of American power and influence. They have become so embeded in an economic and political second-class citizenship
that most educators can, at best, exercise indirect influence in educational policy-making. Garvue termed this the "Greyhound bus theory." "You educators do the teaching and leave the decisions to us." "Us" being the rest of society. Only if they can ennerge as a powerful profession will educators be able to make their political and economic interest understood. This emergence would certainly sharpen up political debate, and would heat up the processes of allocating resources in educational budget-making sessions. However, if educational needs continue to go unmet, the world's greatest social innovation may be destroyed bit by bit. (20, p. 321)

REFERENCES AND BIBLIOGRAPHY

1. "Accreditation Report of Clinton High School, 1971-72," Instruction Division, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma.
2. Barnard, Chester I. The Functions of the Executive, (Cambridge, Mass.: Harvard University Press, Sixteenth Printing, 1964).
3. Benson, Charles S. The Economics of Public Education, Section Edition, (Boston: Houghton Mifflin Company, 1968).
4. Brandl, John E. "Comments on the artical, 'Toward an Educational Production Function' by Samuel Bowels," Education, Income, and Human Capital, edited by W. Lee Hansen. (New York: Columbia University Press, 1967).
5. Bumgarner, Mr. Superintendent of Building and Grounds, private interview held at the offices of the Norman School District, Normna, Oklahoma, December 1, 1971.
6. Burkhead, Jesse. Input and Output in Large City High Schools. (Syracuse: Syracuse University Press, 1967).
7. Cambell, Roald F. and others. Introduction to Educational Administration. (Boston: Allyn and Bacon, Inc., Fourth edition, 1971).
8. Cleland, David I. and William R. King. Systems Analysis and Project Management. (New York: McGraw Hill Book Co., 1968).
9. Cohn, Elchanan. "Economics of Scale in Iowa High School Operations," The Journal of Human Resources, Vol. III, No. 4, p. 422-434.
10. Cohn, Elchanan. 'Methods of Teachers' Remuneration: Some Empirical and Theoretical Considerations," (Reprint from the 1970 Business and Economic Statistics Section Proceedings of the American Statistical Association), pp. 452-457.
11. Cohn, Elchanan. "Economic Rationality in Secondary Schools," Planning and Changing, Vol. 1, No. 4, January 1971, pp. 166-174.
12. Correa, Héctor. "A Survey of Mathematical Models in Educational Planning," (Paris: OECD, 1967) pp. 21-93.
13. Correa, Héctor. Quantitative Methods of Educational Planning, (Scranton, Pa.: International Textbook Company, 1969).
14. Douglas, Harl R. Modern Administration of Secondary Schools (New York: Ginn and Company, 1963).
15. Folks, Cecil, Assistant Director, private interview held at the offices of the Finance Division, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma, November 30, 1971.
16. Forrester, J. W. World Dynomics. (Cambridge, Mass.: Wright-Allen, 1971).
17. Fox, Karl A., Jati K. Sengupta, and Erik Thorbecke. The Theory of Quantitative Economic Policy. (Chicago: Rand McNally \& Co., 1966).
18. Furno, Orlando F. and Paul K. Cureo. "Cost of Education Index, 1970-71," School Management, Vol. 15, No. 1, January 1971, pp. 10-63.
19. Furno, Orlando F. and James E. Doherty. 'Eleventh Annual Cost of Education Index, 1969-70," School Management, Vol. 14, No. 1, January 1970, pp. 35-43.
20. Garvue, Robert J. Modern Public School Finance. (New York: The MacMillan Company, 1969).
21. Golenpaul, Dan. Editor, Information Please almanac: Atlas and Yearbook. Dan Golenpaul Associates, November, 1971.
22. Hadley, G. Nonlinear and Dynamic Progromming. (Reading: AddisionWesley Publishing Company, Inc., 1964).
23. Hansen, Lee W. (editor) Education, Income, and Human Capitol. (New York: Columbia University Press, 1970).
24. Hansen, Nels W. "Economy of Scale as a Cost Factor in Financing Public Schools," National Tax Journal, Vol. 17, No. 1 (March 1964) pp. 92-95.
25. Harris, Bill. Instructional Program Coordinator, private interview held at the offices of the Instructional Division, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma, November 30, 1971.
26. Kneller, George F. Education and Economic Thought. (New York: John Wiley \& Sons, Inc., 1968).
27. Kowitz, Gerald T. and William C. Sayreg, Size, Cost and Educational Opportunity in Secondary Schools. (Albany: New York State Education Department, 1959).
28. LaSalle, Joseph and Solomon Lefschetz, Stability by Liepunov's Direct Method with Applications. (New York: Academic Press, 1961).
29. Lyle, Jerolyn R. "Research on Achievement Determinations in Education Systems--A Survey," (National Center for Educational Statistics, Report No. 56, January 22, 1968).
30. Mangasarian, Olvi L. Nonlinear Programming. (New York: McGraw-Hill Book Co., 1969).
31. 'Master Schedule of Norman High School, 1971-72," Norman High School, Norman, Oklahoma.
32. O'Brien, Richard J. "Cost Model for Large Urban Schools," (National Center for Educational Statistics, Report No. NCES-TN-30, April, 1967).
33. Oklahoma State Department of Education Annual Report, 1960-1970, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma.
34. Ovard, Glen F. Administration of the Changing Secondary School. (New York: The MacMillian Co., 1966).
35. Reisman, Arnold. Managerial and Engineering Economics. (Boston: Allyn and Bacon, Inc., 1971).
36. Reisman, Arnold. Newsletter (Educational Science Section of Operations Research Society of America, March, 1971).
37. "Research into the Correlates of School Performance--A Review and Summary of the Literature," (Michigan State Department of Education, Report No. AR-3, 1970).
38. Shurbik, Martin. 'Modeling on a Grand Scale," Science, Vol. 174, December 3, 1971, pp. 1014-1015.
39. Sisson, Roger L. and others. "The Project Concept in Planning, Programming, and Budgeting," Social-Economic Planning Science, Vol. 4, No. 2, June 1970, pp. 239-261.
40. Smith, Wallace R. Superintendent of Buildings and Grounds, private interview held at the offices of the Oklahoma City School District, Oklahoma City, Oklahoma, November 30, 1971.
41. "Squeeze On A Small Town," Time, Vol. 99, No. 11 (March 13, 1972) p. 68.
42. Stankard, Martin F. and Roger L. Sisson. "On a Modeling of Relationships Between Performance and Resource Management in an Urban School District," (Philadelphia: Pennsylvania University, Management Science Center, May, 1968) ERIC No. ED 025839.
43. "Summary Report of Subjects Offered in Oklahoma Junior and Senior High Schools, 1970-71." Instructional Division, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma.
44. Taha, Hamdy A. Operations Research: An Introduction. (New York: The MacMillian Co., 1971).
45. 'Tenth Annual Cost of Building Index," School Management, Vol. 15, No. 6, June 1971, pp. 12-16.
46. Thomas, J. Alan. "Efficiency in Education: An Empirical Study," Administrator's Notebook, Vol. XI, No. 2 (October 1962).
47. Viner, Jacob. The Long View and the Short, (Glencoe, Ill.: The Free Press, 1958), p. 65.
48. Wagner, Harvey M. 'The ABC's of OR," Operations Research, Vol. 19, No. 6, October, 1971, pp. 1259-1281.
49. Wagner, Harvey M. Principles of Operations Research with Applications to Management Decisions, (Englewood Cliffs, N. J.: PrenticeHall, Inc., 1969).
50. Young, Mr. Assistant Principal, private interview held at the offices of the Norman High School, Norman, Oklahoma.
51. Zangwill, Willard I. Nonlinear Programming: A Unified Approach, (Englewood: Prentice-Hall, Inc., 1969).

APPENDIX A

DATA FOR PLANSVILLE HIGH SCHOOL

Appendix A

The following constructed data was obtained by scaling the basic data for an average daily attendance of 800 . The basic data was obtained from the following sources:
"Accreditation Report of Clinton High School, 1971-72," Instruction Division, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma.

Mr. Bumgarner, Superintendent of Buildings and Grounds, private interview held at the offices of the Norman School District, Norman, Oklahoma, December 1, 1971.

Mr. Cecil Folks, Assistant Director, private interview held at the offices of the Finance Division, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma, November 30, 1971.

Mr. Bill Harris, Instructional Program Coordinator, private interview held at the offices of the Instructional Division, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma, November 30, 1971.

Orlando F. Furno and Paul K. Cureo, "Cost of Education Index, 1970-71," School Management, Vol. 15, No. 1, January 1971, pp. 10-63.

Orlando F. Furno and James E. Doherty, "Eleventh Annual Cost of Education Index, 1969-70," School Management, Vol. 14, No. 1, January 1970, pp. 35-43.
'Master Schedule of Norman High School, 1971-72," Norman High School, Norman, Oklahoma.

Oklahoma State Department of Education Annual Report, 1969-70, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma.

Dr. Wallace R. Smith, Superintendent of Buildings and Grounds, private interview held at the offices of the Oklahoma City School District, Oklahoma City, Oklahoma, November 30, 1971.
"Summary Report of Subjects Offered in Oklahoma Junior and Senior High Schools, 1970-71," Instructional Division, Oklahoma State Department of Education, State Capitol, Oklahoma City, Oklahoma.
"Tenth Annual Cost of Building Index," School Management, Vol. 15, No. 6, June, 1971, pp. 12-16.

Mr. Young, Assistant Principal, private interview held at the offices of the Norman High School, Norman, Oklahoma, December 1, 1971.

Plansville Senior High School

Plansville is an imaginary inid-western town with a population of 16,000 . Most of the population is employed at a nearby metropolitan area. Plansville Senior High School is the only high school in the school district and has had a good relationship with the community; however, its achievements in sports has been the concern of some of the community's fathers. Next year has been promised to be better, especially for the girls' basketball team.

During an interview with Mr. Hope, principal of Plansville Senior High School, the following information was obtained:*

```
Average daily attendance = 800
Number of equivalent full time teachers = 40
Number of different subjects = 45
Total number of classes = 210
Total number of courses = 80
Average number of classes per pupil = 5.28
Average number of sections per course = 2.625
Average teacher salary = $7,284.00.
```

[^20]Therefore,

$$
\begin{aligned}
& x_{1}=210 \\
& x_{2}=40 \\
& x_{3}=45 \\
& x_{4}=4224 .
\end{aligned}
$$

Plansville school district had budgets for each individual
school. The following is the budget for Plansville Senior High School:*

Administration------------Professional Salaries	
	\$8,320
Clerks and Secretaries	5,232
Other Expenditures	4,536
Instruction	
Classroom Teachers	\$291,360
Other Professionals	36,832
Clerks and Secretaries	9,480
Textbooks	4,600
Other Teaching Material	12,528
Other Expenditures	4,584

Healt		\$	2,928.00
Professional Salaries	\$2,568		
Other Expenditures	360		
Operation-		\$	40,728.00
Custodial Salaries	\$22,856		
Heat	5,744		
Utilities Other Than Heat	8,400		
Other Expenditures	3,728		

Maintenance Salaries $\quad \$ 5,160$
Other Expenditures 8,592
Fixed Charges--- \$ 29,133.00
Retirement Fund $\quad \$ 20,245$
Other Expenditures 8,888

TOTAL CURRENT EXPENDITURES $\$ 465,285.00$

Debt Service--. \$ 43,336.00

TOTAL EXPENDITURE**
\$ 518,981.00

[^21]APPENDIX B

REORGANIZED BUDGET OF PLANSVILLE HIGH SCHOOL

Appendix B

This is to demonstrate how the budget given in Appendix A might be organized into different categories. The various divisions of expenditures were subjectively made after consulting the sources in Appendix A.*

Total Cost of Enrollment-------------------------- \$ 41,738.50
Health
Other Services
\$ 3,219.00
80\% Administration
1,272.00
35% Operation
15,286.40
50% Maintenance
14,866.60
7,094.50

[^22]If the above were the actual case, then

$$
\begin{aligned}
& C_{2}=337,172.30 / x_{2}=\$ 8,429.31 \text { per teacher } \\
& C_{4}=41,738.50 / x_{4}=\$ 9.88 \text { per enrollment } \\
& C_{1} x_{1}+C_{3} x_{3}=\$ 81,167.80 \text { per school }
\end{aligned}
$$

and,

$$
C_{\star}=\$ 58,916.60 \text { (Excluding transportation) }
$$

APPENDIX C

COMPUTER PROGRAM LISTING OF THE MODEL

$1 /$ soa ocol


```
// Job T
LOG DRIVE CARY SPEC CART AVAIL PHY DRIVE
    OOOO OCOI OCOI 0000
V2 MOF ACTUAL BK CONFIG BK
// FOR
* EH36030P.DJUGLAS H. WALTERS:RESEARCH.PROGRAM O3572
-EXTENUED PRECISICN
*LIST SQURCE PROGRAM
*ONE MORO INIEGERS
```



```
C
    CS DENOTES CLASS SILE AND TL DENOTES TEAGHER LOAD
C
```



```
        CS = x4 / x/ 
        TL = x1 / x2
```



```
C
C THE ABOVE RESULIS ARE DUTPUTED USING TME FOLLDYING YARIAELE NAMES
C FUNX = THE PLARNING INDEX FUNCTION
    C1X1 = TCTAL CCST OF CLASSES
    C2\times2 = TCTAL CCST OF IEACHERS
    C3\times3 = TCTAL CCST OF SUBJECTS
    CAXA = TCTAL COST OF THE ENROLLMENT
    x1 = NUMBE:R CF CLASSESS
    X2 = NUMPER OF IEACHERS
    x3 = NUMBER CF DIFFERENT SUBJECTS
    x4 = NUMEER CF ENQOLLMENTS
    CT = TOTAL EXPENOITURE LESS BUILDING AND TRANSPORATION COSIS
    C1 = COST PER CLASS
    CZ = AVERAGE CCSTS PER TEACHER
    C3 = COST PER SUNJECT
    CA = COST PER ENROLLMENT
    KLt = LAMEOA t
    XL2 = LAMBDA 2
    XL3 = LANBOA 3
        XL4 = LAMBDA 4
        XLS = LAMBDA 5
        XLIXI = IOTAL EFFECT OF XI
        XL2X2 = IOTAL EFFECY OF X2
        XL 3\times3 = TOTAL EFFECT OF }\times
        XL4X4 = TOTAL EFFECT OF X4
        THE NATRIX IS TME HESSIAN MATRIX OF SECOND PARTIAL DERIVATIVES
        AAI = THE FIRST DRINCIPLE DETERMINANT
        MAZ = THE SECCNE PRINCIDLE DETERMINANT
        AA3 = THE TMIRG ORINCIPLE DETERMINANT
        AA4 = THE FCURTH PRINCIPLE DETERMINANT
        PI = FRACTICN CF CT FOR CIXI
        P2 = FRACTION CF CT FOR C2X2
        P3 = FRACTICN CF CT FOR C3X3
        P* = FRACYICN CF CT FOR C4X4
        TP = SUM OF THE FRACTIONS
C*******************************************************************************
    GRITE(IT, 20)FUNX,CIXI,C2X2,C3X3,C4X4,CI,C2,C3,C4,CT
```



```
        #RIt!(!w.21)x1.x2.x3.x4
```



```
        1=.f10.2//1)
            #RITE(IN.25)CS.TL
    25 FORNATCIX.'CLASS SIZE = .FIO.2.5X."TEACHER LOAD = - FIO.2/1)
        VRITECIW, 22IXLI,XL2.XL3.XL4.XLS.XLIXI,XL2X2,XL 3X3,XL4X4
```



```
        GHITE(I`.23)((H(I,J).J=1.4), I=I.4)
    23 FORNAT(IH .4F15.7)
        VRITE(IW,2A)AAI,AA2.AAB.AA4.PI,P2.PJ.P4.TP
```



```
        2P4 = ..F9.5.5X..TP =..F9.5/)
        RETLRN
        END
FEATURES SUPPOATED
    ONE DORO ITIIEGERS
    EXTENDED PRECISION
CORE REQUIHEMENTS FCR FIGUR
    CONMON SA VARIAILES 224 PROGRAM 1144
RELATIVE GNTRY POINT ADORESS IS OIEF (HEX)
END OF COFPILATION
```


Tibup

```
CART IO OCOI DE ACCR 439C DE CNT 0058
```


$1 /$ FOK

* ER300302. DCUGLAS H. WALIERS. RESEARCH.PROGRAM OJ5TZ
* IOCS(CARC.1433 PRINTER)
- EXTENDED PRECISICN
- ONE VORD ITIEGERS
-LIST SOURCE PRCGRAM

DIMENSION YICE(6),YCI(6),YC2(6),Y(3(6),YCA(6)
DINENSIOR NA(6O)

COMMON CI.C2.C3.C4
$I R=2$
IW = 5

c
C THE NAME OF THE SCHOOL IS READ IN ALONG WITM THE DATA FOR TME
C PARTICULAR SCHCCL -HERE THE VARIABLES NAMES ARE OENOTEO
BY THE FCLLOWING
aUA = AVERAGE DAILY ATTENDANCE
$\times 2$ = NUMUER OF EOUIVALENT FULL TIME TEACHERS
$\times 3$ = NUNOER OF DIFFFRENT SUBJECTS
$x 1=$ TOTAL NUMEER OF CLASSES
$\times 5=$ IOTAL NUNEER CF COURSES
XIAOA = AVERAGE NUMCER CF ENROLLMENTS PER PUPIL
SEC = AVERAGE AUMGER CF SECTION PER COURSE
AC2 $=$ AVERAGE TEACHER*S SALARY
FCZ = ADCITICNAL EXPLNDITURE PER TEACHER EXPRESSEO
AS A PERCEATAGE OF SALARY FOR OVERHEAD COSTS
TCE = TOTAL CURRENT EXPENDITURE
EOP = EXPENOITURE PER PUPIL
AEPC $=$ AVERAGE ENRCLLMENT PER CLASS $x \times 1 \times 1$
ACPT = AVERAGE NUMBER OF CLASSES PER TEACHER
c

REAC(IR. 100)(NA(I). $I=1.60$)
100 FORMAT(GOA1)

101 FORNAI(7F10.4/2F10.4.F15.2)

C
C
c
C TME INITIAL DATA AND INFORNATION IS OUTPUTTEO TO VARIFY THE INTIIAL
C INFCRMAIION ANO STARTING POINT FQR THE PLANNING MORIZON
c

FRITE(IW.104)
104 FORNAT (INI. THIS IS THE INITIAL INFORMATION OETAINED FORO//I
ERITE(Iw.10S)(NA(I). $1=1.60$)
105 FCRMAT(1X.60A1)
VRITIIM.106)ACA. X2.X.3.XI. X5.XIADA.SEC.ACZ.FCZ.TCE

ILENT FULL TIME TVACHERS = -FFIO. $2 / \%^{\circ}$ NUMBER OF OIFFERENT SUOJECTS
$2=1 . F 10.2 /{ }^{\prime \prime}$ TCTAL NUMBER CF CLASSES = .FIO. $2 / 10$ TOTAL MUNBER OF
JCCURSTS $=$ •FIO. $2 / /$ AVERACE NUNAER OF ENROLLMENTS PER PLPIL * *
-FIO.J//" AVERAGE NUNPER UF SECTIONS PEA COURSE $=. . F 10.2 / 14$ aVERAG

*HITEIT..1OTJECZ.TCE
107 FCRNATIIX/バ PEKCENT ADDED TC TEACHERS SALARIES FOR OVERMEAO $\quad * F$
1)0.2/f TOTAL CURRENT EANENDITURE = I.FIO.2/11
EDP = ICE/AUA
x a $=$ xinoa aca
ACPI $=x 1 / x 2$
AEPC $=x 4 / x 1$

$C T=T C E$
PC2×2 $=1 \times 2$ (I ACZ ACZ $1 F C P$, InN. III TCE

```
C
C
        the dlanning incex mocel is apdlied assuming the following
        THE PRESENT GPERATION IS OPTIMAL
        CIXI = C3X3
        ano the buOget constraint is active
C**********************************************************************************
        *HIC(IW.13)PC2x2
    13 FCRNAT(1HI.***********O/O *********"//0 THIS 15 THE INITIAL BASE
        L2INE DAIAM/P PC2XZ = *FIO.4//V ***********/* ***********///S
        C2xz = PC2x2 Cr
        C1x1 = (-PC2x2 * SORT(PC2X2)): CT
        c3x3=c1\times1
        CAXA =Cr * $1.0 + PC2X2 -2. * SORI(PC2X2))
        C1 = Cl M1 / XI
        C2 = C2\times2/\times2
        c3}=c3\times3/\times
        Ca = Cax4/ / X4
        CALL FIGUR
        continue
        WRITE(IW.80)
```



```
        ITHIS PROGRAM*//" *****//" FUNX = TrE PLANNING INDEX FUNCTION*/
        2 - CIXI = TOTAL COST OF CLASSES'% C2X2 = TOTAL COST O
        3F TEACHERS./O CJX3 = TOTAL COST OF SUBJECTS.% CAXA = TOTAL COST O
        AF THF. ENRCLLNENTM/' XI = NUMDER DF CLASSES'/! x2 = NUMBER CF TEACH
        SERS:/' X3 = NUMEER CF SUBSECTS'/' X4 = NUMBER OF ENROLLMENTS':
        URITE(1w.81)
    81 FORMAIIIX.0CT = TCTAL EXPENDITURE LESS buILDING AND TRANSPORATION
        ICOSTS'/' C1 = CCST PER CLASS'/' C2 = COST DER TEACHER'/' C3 = COST
        2 PER SUBJECT*/O CA = COST PER ENROLLMENT"/. XLI = LAMBOA 1%/% XL2
        3= LAMBUA 2.% XL3 = LAMBDA 3.M XL4 = LAMADA 4." XLS = LAMBDA S*
        4/PC2XZ = FRACTION OF CT USED FOR C 2\times2%% XLIXI =TOTAL EFFECT FRO
        SM XI')
        MRITE(Im.82)
    B2 FORNATIIX.'XL2X2 = TOTAL EFFECT FROM X2.% XL 3X3 = TOTAL EFFECTFR
        IOM X3./' XLAX4 = TOTAL EFFECT FROM X4'/' THE MATRIX IS THE HESSIAN
        2 MATRIX'/T AAI = TME FIRST PRINCIPLE DETERMINANTM/" AAZ = THE SECO
        SNO PRINCIPLE CEJIRMINANT./" AAJ = THE THIRO PRINCIPLE DETERMINANTP
        * AA4 = THE FCURTH DRINGIDLE OETERMINANT"% PI = FNICTION OF CT F
        SOR CIXI'/' PZ = FRACTION OF CT FOR (2X2')
        ERITE(Im.83)
    B3 FORNATIIX.' PJ = FRACTION OF CT FOR C 3XJ./P P4 = FRACTION OF CT FO
        1R CAX4'/' TP = SUM OF THE FRACTIONS'I
C**********************************************************************************
C
C THE EXPECIEO CHANGES IN THE ENROLLMENT IS NON READ IN USING PADA AS
C The variable name
c
C*******************************************************************************
        MRITE(Iw.l08)
    108 FORMATIIHI."the folloming planNING model is baseo on inputed Chang
        ies in the average daily attendance*///\
        REAC(IR.109)(PACA(1). I=1.6)
    109 FURNAT(GF10.2)
C**********************************************************************************
c
C the expected rate of inflation is read in using the variable name infla
c
C********************************************************************************
        GEAD(IR,1:0)IAFLA
    110 FORNAT(15)
C********************************************************************************O
C
C the resulis are then printeo out
C
C*********************************************************************************
    YTCE(1)=TCE
    xx\(1) = xi
    x\times2(1)}=\times
    xx3(1)}=x
    xx4(1) = x4
    YCI(1) = CI
    YC2(1) = C2
    rC3(1)=63
    YC4(1) =C4
```

XTCF(1) $=$ TCE
YEPF(1) = EPD
XIN = INFLA
XINF $=$ XIN 100.
DO $200 \mathrm{NH}=1.5$
$N=N N+1$
XXA(N) $=$ PADA(N) * XADA
$\times \times 1(N)=\times \times 4(N) / A F P C$
$\times \times 2(N)=\times \times 1(N) / A C D T$
$\operatorname{YEPP}(N)=\operatorname{YEPP}(N+d)+\operatorname{YEPP}(N N)$) XINF
XTCE(N) $=E D P$ PADA(N)
YTCE (N) $=$ YEPP(N) PADA(N)
$Y C I(N)=Y C I(A N)+Y C I(N N)+X I N F$
$Y C 2(N)=Y C 2(1, N)+Y C 2(N N) * X I N F$ $Y C 3(N)=Y C J(N N)+Y C 3(N N) * X I N F$ $Y C A(N)=Y C \&(N A)+Y C A(N N) \quad X I N F$ $\times \times 3(N)=(C 1 \cdot X \times 1(N)) / C 3$
200 CONTINUF

The follcwing plannifg model is based on inputeo charges in the average dally attencance
THE FCLLCWING IS USED TO OETAIN AND OUTPUT A LISTING OF THE PROJECTED ENRILLMENT ANO THE NEEOED REVENUE IF CT/ADA wOULO REMAIN THE SAME
C
 URITE(1W.125)
115 FOQNAICIH 'THE FCLLQWING IS A LISTING OF THE PROJECTED ENROLLMENT **/' AND THE NEEDED REVENUE IF CT/ADA WOULO REMAIN THE SAME*//• YE 2AR'. SX.'AVERAGE DAILY ATTENDANCE••5X. 'NEEDED REVENUE・ノ)
$00140 \quad N=1.6$
$N \mathbf{N}=\mathbf{N}-\mathbf{I}$
140 MRITE(IW.116)NN.PADA(N), XTCE(N)
116 FOHMAT(1HO.13.13x,FE,2,13x,F10.2)

c
C THE FGLLCEING IS USED TO DETAIN AND OUTPUT A LISTING of the
PROJEGTEO EARCLLMENT ANC NEEDED REVENUE IF CT/ADA REMAINS THE SAME AND AN IMFLATICN RATE IS IMCLUDEO IN THE PROJECTION
 WAIIE(IW.120)IAFLA
120 FORNATIIHO."THE FQLLOWING IS A LISTING OF THE PROJECTEDENROLLMENT I*//' AND NEEDEO REVENUE IF CT/ACA VOULD REHAIN JHE SAME•/ノ" WITH A
 3AILY ATTENDANCE*.SX."NEEDEO REVENUE*/)
DO $141 \mathrm{~N}=1.6$
$N N=N-1$
141 MRITE(IW,I16)AN, DADA(N),YYCE(N)

C
THE FOLLOYING IS USED TO DETAIN AND OUYPUT THE PRDJEGTED VALUES OF KI. XZ, X. ARC XA
C
C

-RIVE(1*.125)
125 FORNATRIMI. 'THE FCLLOWING IS A LISTING OF THE PROJECTEO VALUES OF

$00142 \mathrm{~N}=1.6$
$A N=N-1$

C THE FCLLOWING IS USED TO OETAIN ANO WRITE OUT TME PHOJEGTEO COSTS CI. CZ. CJ. ANC CA UITM AN ANNUAL INFLATION RATE OF INFLA
c

HHIf (1ष.127)INFLA
127 FORMATIIMI. PTHE FCLLDEING IS A LISTING OF THE PROJECTEO COST YALUE

$00143 \mathrm{~N}=1.6$
$A N=N=1$
IA3 HIIETIV.I26)NA.YCI(N).YCZ(N).YCB(NB.YCA(N)

```
C
        IHE VARICUS EFEECTS OF THE EXPECTED CHANGES ARE CHECKEO BY CALLING FIGUR
        AND CHECKIAG THE VARIOUS INDICATORS
C*********************************. *********************************************
        #RIII(JW.131)
    131 FGRNAIII+1."IHE FCLLOWING IS A CHECK ON THE PLANNING INOEX*/PO AND
        I THL PROJECYED INCCNES AND EXPENDITURES*/I
        1J=1
```



```
C
C THE FIRST TIME THROUGH THIS SERIES THE PROGRAM IS USING ONLY TME INETIAL
C PROJECTED VALLES CF THE VARIABLES FOUNO IN TME ABOVE.
C THE SECOND TIME THE PROGRAM GOES THROUGH THIS SERIES IT IS INCREASING
C THE TLAC'HER SALAQIES AT A RATE CF TWO PERGENT PER YEAR :N TERMS
C OF f:ASE YEAH CCLLARS SO THAT AT THE END OF THE PLANNING PERICO THE TEACHER
C SALARY WILL HAVE INCREASEO TEN PERCENT IN TERMS OF GASE YEAR OOLLARS
```



```
    132 CCNTINUE
        DO 150 I=1.6
        11 = 1-1
        GO 10(144.145).J1
    144 WNITE(I|.134)!t
    134 FORNATYIMI. 'IMIS IS THE INITIAL INDEX CMECK FOR YEAR '.I3/I/)
        GO 10 146
    145 HRIJE(IW.128)II
    I2B FORNAY(IMI. IHIS IS THE INDEX CHECK FOR INCREASE IN CZ -//G FOR YE
        1AR'.13//)
    I&G CUNTINUE
        X1 = XXI(I)
        C1 = YCI(I)
        C1\times1 = C1 * XI
        x2 = xx2(1)
        SC2 =C2
        G0 ro(136.135).JJ
    135 1F(t-1)139.139.138
    139C2 = YC2(I)
        GO TO 137
    13BC2=SC2*SC2* 10.02 *INF ?
        GO 10 137
    136 C2 = YC2(1)
    137 CONTINIJE
        C2\times2 = C2 * *2
        x3 = XX3(I)
        C3=YC3(1)
        C3\times3=C3* x3
        x4 = x x4 (1)
        C4 = YC4(I)
        CAX4 = C4 * K4
        CI=C1XI*C2M2 +C3N3+C4X4
        CALl F&GUR
    150 CCNIINUE
        GO 10 (155.160).J」
    155 WRITE\IM.1561JJ
    156 FORHAT(IHI.'JJ = . I3//'* TME.FCLLOWING IS A PROJECTION AND CHECK O
        IN THE PLANNING HODEL WHEN TEACHER SALARIES ARE RAISED ///" TEN PER
        ZCENY IN TERMS CF BASE YEAR DOLLARS'//' AT A RATE OF TMO PEMCNET RE
        3R YEAR*//)
            JJ = JJ + 1
        GO 10 132
    1GO CUNTINUE
C**********************************************************************************
C
C TMIS NEXT SECTICN WILL TRY YO REOUCE TME NEEOEO REVENUE BY INCREASING
C THE CLASS SILE ANO DECREASING THE NUMBER OF SUEJECTS.
C
```



```
        WはIT!(I*.170)
    170 FURMAIIIMI. *THE FOLLUWING IS TO TEST TME EFFECT OF REDUCING */F* I
        IHE EXIENOIILNE HY INCREASING THE CLASS SIZE WHICH MUST EITHER */RO
        ? DECमEASE TME NUMGER CF SURJECTS. SUBJECT COST. OR INCREASE CLASS
```



```
            Sx3=x3
            SC3=C3
```

```
        OO 180 N=1.15
        x1 = x1 - 10.
        C3}=5C
        x3=(C1* X1)/C3
```



```
        #NIIF(1#.175)
    17S FORHAT(IHI.' TME FULLO#ING IS AN ATTEMPT TO BALANCE ///| TME BUDGE
        1T BY INCREASING CLASS SIZE AND*/1' OECREASING NUMBER OF SUGJEGTS*'
        2/1
        CIN1=C1 *1
        C2\times2=C2* K2
        c3\times3=C3* N3
        CAX4 = C4* X4
        CALL FIGUR
        CCNTINUE
```



```
C
C THIS PORTION CF THE PROGhAM TRIES TO REOUCE THE NEEDED REVENUE GY
C REDLCING THE SURJECT EXPENDITURE AND INCREASING IHE CLASS SIZE
C
C*********************************************************************************
    mRITE(Im.176)
    176 FCRNAYTIHI." THE FQLLCYING IS AN ATTEMPT TO BALANCE'//G THE BUDGET
        | GY REDUCING SUEJECT EXPENDITURE AND'//M INCREASING CLASS SIZE'/I/\
        *3 = 5\times3
        C3 = C1X:/ N3
```



```
        C1X1=C1 *1
        C2\times2=C2* K2
        C3\times3=C3* 坊
        C4X4 = C* * XA
        CALL FIGUR
        CONTINUE
    180 CONTINUE*
        CALL EXIT
        END
FEATUHES SUPPORTED
    ONE WORD INTEGERS
    exiended phecision
    1OCS
CORE REOUIRENENTS FCR
    COMMON 4* VARIAELES 340 PROGRAM 2954
ENO OF CONPILATION
1/ XEO
```


APPENDIX D

COMPUTER OUTPUT USED TO CONSTRUCT FIGURES IN CHAPTER III AND IV

C $2 \times 2 / C 1$	0.2000	CIXI／CT	0.2472	C3x3／ct $=$	0.2472	Caxalct	0.3055	total	0.9999
c2x2／ct	0.2100	CIXI／CT	0.2482	c3x3／ct $=$	0.2482	C4X4／CT	0.2934	total	1.0000
C2x2／CT	0.2200	CAXI／Ct	0.2490	c3x3fct $=$	0.2490	C\＆xafct	0.2819	total	1.0000
C2x2ICT	0.2300	CIXI／Ct	0.2495	c $3 \times 3 / \mathrm{CT}=$	0.2495	CAXA／CT	0.2708	total	0.9999
C2x2／CT	0.2400	c1xifer	0.2498	c3x3／ct	0.2490	caxalct	0.2602	tctal	0.9899
C2x2／Cy	0.2500	cixict	0.2500	c3x3／ct $=$	0.2500	C4xa／ct	0.2500	tctal	1.0000
C2x2／Cl	0.2600	Cixi／ct	0.2499	c3x3／ct	0.2499	C4Xa／ct	0.2401	total	0.9999
C2x2／C ${ }^{\text {c }}$	0.2700	C1×1／ct	0.2496	c3x3／ct $=$	0.2496	C4X4／CT	0.2307	total	0.9999
C2x2／C1	0.2800	CIXI／CT	0.2491	C $3 \times 3 / \mathrm{CT}=$	0.2491	Caxa／ct	0.2216	total	1.0000
C2x2ect	0.2900	cixi／ct	0.2485	c3x3／ct $=$	0.2485	Caxa／ct	0.2129	total	0.9999
C2x2／CT	0.3000	C1×1／CT	0.2477	C3X3／CT $=$	0.2477	Caxa／ct	0.2045	TOTAL	0.9999
C2x2／CT	0.3100	cixi／ct	0.2467	c3x3／ct	0.2467	C4X4／CT	0.1964	total	0.9999
C2×2／CT	0.3200	cixi／ct	0.2456	c3x3／ct	0.2456	C4X4／CT	0.1886	total	0.9999
C2x2／c 7	0.3300	Cixifct	0.2444	c3x3／ct $=$	0.2444	CAXA／CT	0.1810	total	0.9999
C2x2／C	0.3400	CIXI／CT	0.2430	C3x3／Ct $=$	0.2430	Caxa／ct	0.1738	TOTAL	1.0000
C2x2／CT	0.3500	Cixilct	0.2416	C3x3／CT $=$	0.2416	Caxa／ct	0.1667	total	0.9999
C2x2／C	0.3600	Cixifer	0.2400	c3x3／ct $=$	0.2400	Caxa／ct	0.1599	total	0.9999
C2x2／GT	0.3700	C1K1／Cr	0.2382	c3x3／Ct $=$	0.2302	Caxa／ct	0.1534	total	0.9999
C2x2IC	0.3800	CIXI／CT	0.2364	C3x3／CT $=$	0.2364	Caxalct	0．1471	total	0.9599
C2x2／CT	0.3900	Cixi／cr	0.2344	C3x3／CT $=$	0.2344	Caxa／ct	0.1410	total	1.0000
C2x2／CT	0.4000	Cixi／ct	0.2324	C3x3／ct $=$	0.2324	caxarct	0.1350	total	0.9999
C2x2／C ${ }^{\text {P }}$	0.4100	C1×1／CT	0.2303	C3x3／CT $=$	0.2303	CAXA／CT	0.1293	tctal	－0．9999
c2×2バ丁	0.4200	cixirct	0.2280	c3x3／cr $=$	0.2280	Caxa／ct	0.1238	total	0.9999
c $2 \times 2 / C 7$	0.4300	CIXI／CT	0.2257	C3x3／CT $=$	0.2237	Caxa／ct	0.1185	total	1.0000
C2x2／CT	0.4400	cixict	0.2233	C3x3／CT $=$	0.2233	Caxalct	0.1133	tctal	1.0000
c2x2バ	0.4500	C1×1／ct	0.2208	C3x3／CT $=$	0.2208	CAXA／CT	0.1083	total	0.9999
C $2 \times 2 \mathrm{Cl}$	0.4600	C1×1／Cr	0.2182	C3x3／CT $=$	0.2182	Caxa／ct	0.1035	total	0.9999

SECTION 2

COMPUTER OUTPUT USED TO CONSTRUCT FIGURES 4-1 through 4-13
the fullouthg is a check un the planning index

and the phojectev incumés and expenditures

ihis is the initial infurmation obiaineo fur

PLANSVILLL SEIJIOI HIGH SCHOOL MR HOPE. PRINCIPAL
avehage datly attladarce $=800.00$
numbeh of eguivalent full time teachers = 40.00
NUMBER OF DIFFERENT SURJECTS = $\quad 45.00$
TOTAL NUMDEH OF CLASSES $=210.00$
TUTAL NUMFER OF CHITRSES $=80.00$
AVEGAGE NUMEER OF EARCLLMENTS PER PUPIL = 5.28
avetage numger of secilins per course $=2.62$
avehage teachers salapy $=7264.00$
aVEhaGt Daily attendance $=15.00$
numueh of equivalemi full time teachers a 463200^{0}
NUMREA OF CIFFENETGT SUEJCTS $=$

PERCENT AODED to TEAChfis SALARIES FOR OVERHEAD = 15.00
TUTAL CURAENT EXPLNDITURE $=465285.00$

CLASS SI2E $=\quad 20.11$
TEAChLA LCAD $=3.25$

the fullgathg ulsciallifs the terms used in this program
-***
funt = the platning iadex function
FUNX $=$ THE PLANNIAG GADER FUN
CIXI $=$ TOTAL CESS GF CLASSES
C2xZ = TCTAL CUSJ LF IEACIIEAS
cax: = tGial cusi cF suguctis
Cax4 = ratal cost cif ihe enrollment
$x 1$ = numgea lf ceasses.
$x_{2}=$ NUMALA UF TEACHEHS
$x_{3}=$ NUNILER UF SURJECTS
Ka = NUMIER OF CPITCLIMENTS
CT = PUTAL FXDETIITUGE LESS BUILOING AND THANSPORATION COSTS
C: = CGST ner Class
C2 = Cust pratiachria

C4 $=$ COSI MLR ENHULLMENT
XLI $=$ LAMHDA:
XLZ $=$ LANIDA 2

XLS $=$ LAMHDA 5
PCIXP F F:IACTICN RH CI USEC FOR C 2×2
XLIXI zTUTAL EFFICT HICM XI
XLZ2R2 = TLIAL EFFFGTHICLM XZ
XL3XS $=$ TLIAL FEFECT FIROM $\times 3$
TME MATRIX IS THE HESEIAAM MATHIX
AAI = THE TIHST DMIICCINLE UETERMINANT
aAz = THE SECOND princirle determinant
AAB = THE THIRO PMINCIMLE UETERMINANT
AAS $=$ THE FCUHTH "HINCJDLE UETEGMINART
PI = FHCTICN OF CTFCH CIXI
P2 = FAACTIION OR CT HCL C2XZ
D3 z FHACIION OF CT FUH C3x3
to : SUM CF THE FIRACTICNS

```
**********
gmis is the livitial dase. line data
C2xz = 0.7201
**********
*0.8******
FUNX = 0.00n0000
C1\times1 = 50778.06 C2\times2 = 335064.00
CSX3 = 59778.06 C4x4 = 10664.07
C1 = 284.65 C2 = 0376.00
Cs = 1328.40 c4 = 2.52
CT = 005285.00
\(x i=210.00 \quad x 2=40.00 \quad x 3=\quad 45.00 \quad x 4=422400\)CLASS SIZE 20.11 TEACHER LOAD = 5.25
XL1 \(=-0.0000000 \quad\) XLL \(=0.0000000\)
XLS \(=0.0000000 \quad \mathrm{XLA}=0.0000000\)
x23 = 0.0000000
XLIN& = -0.0000000 XL2K2 = 0.0000000
KL3XS = C.0000000 KL4K4 = 0.0000000
```


the folloming plafining mudel is baseo on inputed changes in the average daily attendance
the fulloaing is a Listing of the projecteo enrollment
and the neeoed revenue if ct/ada would remain the same
rraf avigage daily attendance needed revenue

0	300.00	405285.00
1	810.00	471101.06
2	870.00	505997.43
1	1040.00	604470.50
0	1170.00	680479.31
3	1200.00	697927.50

the fullowing is a listing uf the projectev enrollment
ano needed hevenui if ct/ada woulo memain the same
-ith an annual imflation mate of * percent
year average uaily attenoance needed revenue

0	300.00	465285.00
1	810.00	489945.10
2	870.00	547286.82
3	1040.00	680397.04
4	1170.00	796064.54
5	1200.00	849135.51

the fulloaing is a listing of the projecteo values of $x 1 \times 2 \times 3$ and $x a$
rata

$x 1$

210.0	40.0	45.0	4224.0
212.0	40.5	45.5	4276.0
228.3	43.5	48.9	4593.6
273.0	52.0	58.5	5491.2
307.1	58.5	65.8	6177.6
315.0	60.0	67.5	6336.0

this is the initial index checx for rear

```
FUNX = 0.0000000
C1\times1 = 59770.06 C2\times2 = 335064.00
C3N3 = 59/78.00 C4x4 = 10664.87
C1 = 2H4.65 C2 = 4370.60
CJ=2328.40 C4 = 2.52
CT = 465284.002
\(x_{1}=210.00 \quad x 2=\quad 40.00 \quad x 3=\quad 45.00 \quad x 4=4224.00\)
CLASS SI2E= 20.11 TEACHER LOAD= 5.2S
XLI = -0.00000000 XLZ = 0.0000000
XL3 = 0.0000000 XLA = 0.0000000
xL5 = 0.0000000
xL2\times2 = 0.0000000
XL1X1 = -0.0000000 XL2K2 = 0.0000000
XL3X3 = 0.0000000 XL4X4 = 0.0000000
```


this is the initial index check for year

```
FUNX = -0.0000000
C1XI = 62946.29 C2\times2 = 352822.39
C3\times3=62946.29 C4×4 = 11230.11
C1 = 296.04 C2 = 0712.66
C3 = 13at.53 C4 = 2.02
CT = 489945.10
\(x_{1}=212.62 \quad \times 2=\quad 40.50 \quad x 3=\quad 45.56 \quad x_{4}=4276080\)
CLASS SILE = 20.1: TEACHERLQAD = 5.25
XL: = -0.0000000 XL2 = -0.00000000
XL3 = 0.0000000 XL4 = -0.0000000
XLS = -0.0000000
XLIXI= -0.0000000 XL2X2 = -0.0000000
XL3\times3=0.0000000 XL4X4 = -0.0000000
    -0.00000078
        0.0000078
        0.0000207
        0.0000000
        0.00000001
AAT = -0.000007B AA2 = -0.0000000 AA3 = -0.0000000 AA4 = 0.00000000
    0.0000207 0.0000000
    0.0000207 rro.0000000
    -0.0000966
    -0.0000000
        -0.0000966
        0.00000001
        0.00000000
                                0.0000000
                                -0.0000009
DI = 0.12847 D2 = 0.72012 P3 = 0.12847 P4 = 0.02292 TP = 1.00000
```

```
THIS IS the INITIAL INDEX CHECK for vear z
FLNX = 0.0000000
C1\times1 = 70313.34 C2N2 = 394115.67
C3\times3 = 20313.34 cax4 = 12544.45
C1 = 307.8B C2 = 9060.13
C3 = 1436.79 C4 = 2.73
Cr = 547286.02
\(x_{1}=228.37 \quad x_{2}=43.50 \quad x_{3}=48.93 \quad x_{4}=4593.60\)
ClASS SILE = 20.1: TEAGMERLOAD = 5.25
XLI = -0.0000000 XLZ = 0.0000000
XL3 = 0.0000000 XL4 = 0.0000000
xLS = 0.0000000 (0,00,
XLIXI = -0.0000G00 YL2X2 = 0.0000000
XL3XS = 0.0000600 XL4X4 = 0.0000000
```


this is the initial inoex check for year 3

Furrx $=0.0000000$

```
C1x1 = 87414.44 C2x2 = 409971.86
C.3x3= 87414.84 C4X4 = 15595.49
C1 = 320.20 C2 = 9422.53
C3 = 1494.27 C4 = 2.04
Cr = 580397.04
\(x_{1}=273.00 \quad x 2=52.00 \quad x 3=58.50 \quad x_{4}=549.20\)
ClASS SIIE = 20.11 TEACHER LOAO = 5.25
XL1 = -0.0000000 XL2 = -0.00000000
XL3= 0.0000000 XL4 = -0.0000000
xLS = -0.0000000
XL4 = -0.0000000
xLS = -0.0000000
XLIXI = -0.0000000 XL2X2 = -0.0000000
XL3\times3 = 0.0000000 XL4X4 = -0.0000000
        -0.0000047
        0.0000125
        0.0000000
        0.0000001
AL = -0.00000AT AAZ = -0.0000000 AAB = -0.0000000 AA4 = -0.00000000
```



```
this is the initial index check for vear
```

FUNX =
0.0000000

$C 1 \times 1=102275.36$	$C 2 \times 2=$	571267.07
$C 3 \times 3$	$=102213.36$	$C 4 \times 4=18246.73$

$C 1=333.00 \quad C 2=9799.4$
$C 3=1534.04 \quad C A=2.95$
$C T=796004.54$
$x 1=307.12 \quad x<\quad 50.50 \quad x 3=65.81 \quad x 4=6177.60$
CLASS SIZE $=$ COO.11 \quad TEACMER LOAD $=\quad 25$

XLI $=-0.0000000 \quad$ XL2 $=0.0000000$
XL3 $=0.0000000$ XL * 0.0000000
xLs = 0.0000000
XLIXI = -0.000000 \quad XL2 $2 \times 2=0.0000000$
XL3X3 $=0.0000000 \quad$ XL4X4 $=0.0000000$

THis is the thitial index check for vear

```
FUNX =
0.0000000
```

$C 1 \times 1=109003.72 \quad C 2 \times 2=611484.8 B$
C3×S $=109093.72 \quad C 4 \times 4=19463.18$
$C 1=34.132 \quad C z=10191.41$
$C_{3}=3616.20 \quad \mathrm{CH}=3.07$
$C T=849135.52$
$x_{1}=315.00 \quad 62=60.00 \quad x 3=67.50 \quad x 4=6336.00$
CLASS SIZE = 20.11 TEACMER LOAD $=\quad 5.25$
XLI = $0.0 .0000000 \quad$ KL2 $=0.0000000$
XL3 = KLA $=0.00000000 .0000000$
XLS $=0.0000000$
XLIXI $=-0.0000000 \quad$ XL2X2 $=0.0000000$
XL3K3 = 0.0000000 KL4X4 $=0.0000000$

-0.0000035	0.0000024	0.0000000		0.0000000		
0.00000034	0.0000000	-0.0000440		0.0000000		
0.0000000	-0.0000440	0.0000783		-0.0000004		
0.0000000	0.0000000	-0.0000004		0.0000000		
AAI = -0.600003'	AA2	-0.0000000	AAS	0.0000000	AA4	0.0000000

د」 $=1$
the rolloaing is a miujection and check on the planning model when teacher salaries are raised
fen percent in teirns cf bast year dollars
at a mate uf tiou dencmet per tear

THIS IS THE INDEX ChECK for increase in C2
for ytar o

FUNX $=0.0000000$

$C 1 \times 1=5477 A .06$	$C 2 \times 2=335064.00$
$C 3 \times 3=59778.06$	$C 4 \times 4$

C3×3 $=59778.06 \quad$ C4×4 $=10064.87$
$C 1=294.05 \quad C 2=0376.60$
$C 3=1328.40 \quad C A=\quad 2.52$
Cr $=465284.97$
$x_{1}=210.00 \quad x 2=\quad 40.00 \quad x 3=\quad 45.00 \quad x 4=4224.00$

Class size $\quad 20.11$ teacherload $=\quad 5.25$


```
TMIS IS THE INDEX ChECK for inCaEASE, IN C?
fur viat 1
FUNX = -0.0001000
C1\times1 = 62946.29 5.2\times2 = 35460%.43
C3N3=62946.24 C4N4 = 11230.11
CI = 236.04 C2 = 4879.19
Cs = 1381.5s CA= 2.62
Ct = 496/30.15
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(\times 1\)} \\
\hline
\end{tabular}
CLASS SIZE = 20.1: JEACHER LOAD = 5.25
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{AL: \(=0.00010150\) XL2 \(=-0.0000000\)} \\
\hline XL3 \(=-0.0000736\) & XLa \(=\) & -0.0000000 & & & \\
\hline \multicolumn{6}{|l|}{xLS \(=-0.0000000\)} \\
\hline XLIXI \(=0.0033601\) & \(\times \mathrm{L} \times \times 2\) & \(=-0.0000000\) & & & \\
\hline \multicolumn{6}{|l|}{XL3x3 \(=-0.0635661 \quad\) XL4X4 \(=-0.0000000\)} \\
\hline -0.0000678 & 0.0000203 & 0.0000000 & 0.0000001 & & \\
\hline 0.0000203 & 0.0000000 & -0.0000948 & 0.0000000 & & \\
\hline 0.0000000 & -0.0000948 & 0.0001718 & -0.0000009 & & \\
\hline 0.0000001 & 0.0000000 & -0.0000009 & 0.0000000 & & \\
\hline AAI \(=-0.0000070\) & AA2 \(=\) & -0.0000000 & - 0.0000000 & AA4 = & 0.0000000 \\
\hline
\end{tabular}
this ls tmi indea check for incitease in cz
FOR Yeall 2
```

FUNX = 0.0000000
C1\times1 = 70313.34 C2x2 = 409419.72
C3x3 = 70343.34 C4x4 = 12544.45
C1 = 307.89 C? = 9411.94
C; = 1436.7% C4 = 2.73
C1 = 562590.87
$x 1=220.17 \times 2=43.50 \quad x 3=4.93 \times 4593.60$CLASS SIZE 20.11 TEACHER LOAD $=$ 5.25

```
HL - 0.0001302 XL4 0.0000000
```xLS \(=0.0000000\)XLIXI \(=0.0066688 \quad\) XL2X2 \(=0.0000000\)XL3X3 \(=-0.0066688 \quad\) XL4X4 \(=0.0000000\)
```

$-0.0000068$ 0.0000112 0.000000 0.0000002

0.0000172
0.0000000
0.0000808
0.0000000
$-0.0000007$

0.0000001
0.0000000

$-0.0000007$
0.00000000.12498
0.0000000 AAA $=0.0000000$ p4 = $0.02229 \quad$ Tp = 0.99999
THIS is the Index check for inciacase in ci
FOH YiAh
Fuvx =
$C B X=A 7414.04$
$C 3 \times 3=07414.04$
$C I=320.20$
$C S=1494.27$
$C T=709211.74$
$C B \times 1=07414.04$
$C 3 \times 3=07414.04$
$C I=320.20$
$C S=1494.27$
$C I=709211.74$
$C B E 1=A 741404 \quad C 2 \times 2=518786.55$
CAX4 = 15595.49
0.0000000
$\times 1=273.00$
Class stze =

$\begin{array}{lr}0.0000047 & 0.0000118 \\ 0.0000118 & 0.0000000 \\ 0.0000000 & -0.0000553\end{array}$
$\begin{array}{rrrr}-0.0000047 & 0.0000118 & 0.0000000 & 0.0000001 \\ 0.0000118 & 0.0000000 & -0.0000553 & 0.0000000\end{array}$
0.0000000
-0.0000005
0.0000000
$-0.000000$
0.0000000
$T P=1.00000$
this is the andex check for inchease in co
FOR YEAR a

```
FUNX = 0.0000000
C1X1 = 102275.36 C2\times2 = 618652.97
CBN3=102275.36 C4XA = 18240.73
\begin{tabular}{ll}
\(C 1=333.00\) & \(C 2=10575.26\) \\
\(C 3=\) & \(C a=\)
\end{tabular}
CT = 841450.04
\(x_{1}=307.12 \quad x_{2}=58.50 \quad x_{3}=65.01 \quad x_{4}=0177.00\)Class sszl = 20.12 TEACHER LOAD = 5.25
\begin{tabular}{rlrl}
XLI \(=0.0000476\) & XLZ & \(=0.0000000\) \\
XLS \(=\) & -0.0001980 & XLA \(=0.0000000\)
\end{tabular}xLS = 0.0000000
KLixi = \(0.013008 \mathrm{XL2} \mathrm{\times 2}=0.0000000\)
```
\(-0.0000037\) 0.0000042 0.0000000 0.0000000
 -C.0000429 0.0000823 \(0.0000000-0.0000004\)
0.0000000
0.000000
\(-0.0000004\)
0.0000000
```

1. -0.0000037 AAZ $=-0.0000000$
```
AA3 = -0.00000000 AAA = 0.0000000
```

```
```

AA3 = -0.00000000 AAA = 0.0000000

```
```

$P_{1}=0.12154 \quad P_{2}=0.71522 \quad P 3=0.12154 \quad P_{4}=0.02108 \quad$ TP $=1.00000$

THE FULLO:ING is tc test the effect of heducing

the exoenditure ir incaeajing the class size mhich must eitmen
decaease the numbr.h cf sunjects. sugject cust. or increase class cost
emich mould not hlourf imf ghoget decause caxi $=$ C3xu
the fcllowing is an attrmpito balance the budget fy theitiasinc. class size and
decheasing numbeh of subsects


```
the fullcming is an artempt to balance
THE BUDGEX GY INCGEASIAG CLASS SIZE AND
decheasing numueh cf subjects
FUNX = 0.0000000
C1\times1 = 90703.84 C2\times2 = 672586.82
C3N3 = 98703.84 C4x4 = 19463.18
C1 = 346.32 C2 = 11209.7A
C3 = 1616.20 Ca m 3.07
CT = 840457.69
x1= 285.00 x2= 60.00 <3= 61.07 x4=6336.00
CLASS SIIt = 22.23 TEACHERLOAD = 4.7S
XL1 = 0.0001709 KL2 * 0.0000000
XLS = -0.0000254 XLA = 0.0000000
XLS = 0.00000000
XL.1N& = 0.0504350 XL2X2 = 0.0000000
XLSX3 = -0.0504190 XL4X4 = 0.0000000
```


the folluwinc is an attempt to dalance
the budget uy incheasing class site and
decheasing rumber cf subjects
FUNX $=0.0000000$
$\mathrm{C} 1 \times 1=91777.26 \quad \mathrm{C} 2 \times 2=672506.02$
$C 3 \times 3=91777.26 \quad C 4 \times 4=19463.10$
$C 1=346.32 \quad C 2=11204.78$
$C 3=1616.20 \quad C 4=\quad 3.07$

CT $=075604.52$

$x_{1}=205.00 \quad x_{i}=60.00 \quad x 3=56.78 \quad x_{4}=6336.00$

CLASS SiLE = $23.90 \quad$ TEACMERLOAD $=41$

| XLI | 0.0002858 | XL2 | 0.0000000 |
| :---: | :---: | :---: | :---: |
| XLJ = | -0.0013115 | ML* $=$ | 0.0000000 |
| xL5 = | 0.0000000 | | |
| XLIX1 | 0.0756155 | XL2x2 | -0.0000000 |
| xL3X3 | -0.0756155 | XL* ${ }^{\text {c }}$ | 0.0000000 |

the fullewing is an attempt to balance
the guoger by incheasing class size and
decheasing numben cf sufidficts
FUNX $=0.0000000$

Cixi = B4R50.07 C2K2 $=672586.02$
C3x3 = 84850.67 C4xa $=19463.18$
$C 1=346.32 \quad C 2=11209.70$
$C 3=1616.20 \quad$ C4 $=3.07$
CI = 861751.35
$x 1=245.00 \quad x 2=00.00 \quad x 3=52.50 \quad x 4=6336.00$

CLASS SI2E 25.06 TEACHER LOAD $=$ A.OB
$X L 1=0.0004213 \quad X L 2=0.0000000$
XLJ $=-0.00140$ Biz \quad XLA $=0.0000000$
xLS $=0.0000000$
XLIX1 = $0.1032258 \quad$ KL2 $2 \times 2=0.0000000$
XL3×3 $=-0.1032250 \quad$ XL4X4 $=0.0000000$


```
THE FCLLCWING IS AN ATTEMPT TO GALANCE
HE, GUOGFT GY INCRFASING CLASS SIZE ANO
DECREASING mumitem CF SULJECES
FUNX = -0.0000000
C1\times1 = 013甘7.3B C2\times2 =672586.82
C3\times3= 61387.30 C.4×4 = 19463.18
Cl = 306.32 CP = 11209.7A
C3 = 1618.?0 CA = 3.07
Cr = 054024.76
x1 = 235.00 x2 = 60.00 x3 m0.35 xa = 6336.00
CLASS SIZE = 26.9C JEACHER LOAD = 3.91
XLI = 0.00050%7 XLF = -0.0000000
XL3 = -0.00234:0% KL4 = -0.0000000
MLS = 0.0000000
XLIXI = 0.116135% XL2X2 = -0.0000000
xL3xS = -0.1181350 xL4x4= -0.0000000
        0.00000H5
        0.0000000
        0.00000005
        0.0000n05
        0.0000000
        0.00000400
        0.0000400
            0.0000000
            0.00000000
            0.0000400
            0.0001886
        0.0000001
        0.0000000
            0.0000000
        -0.0000007
AA1= -0.00000BG AA2 = -0.0000000 AAB = -0.0000000 AAA = 0.00000000
PI=0.09520 P2 = 0.78681 P3 = 0.09520 P4 = 0.02276 TP= 1.00000
```

the folleainj is an atticidit to balance the budget fy incheasing class size and Dicgeasing numbeh cf subjfcts

```
FUnX =
0.00000000
```

$\mathrm{ClXI}=77924.09 \quad \mathrm{C} 2 \times 2=672586.02$
C3×3 = 77924.09 CAXA = 19403.18
$C 1=346.32 \quad C 2=11209.78$
CS $=1616.20 \quad$ C4 $=3.07$
CT $=807898.10$

| | $\times 1$ | 225.00 | $\times 2$ | 60.00 | $\times 3=$ | 48.28 | xa $=$ | 6336.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CLASS Sizt $=28.16$ TEACMER LOAD $=3.75$

KLI $=0.0005951 \quad$ XL2 $=-0.0000000$
KL3 = $\quad-0.0027774 \quad$ XL4 $=-0.0000000$
xLS $=-0.00 \mathrm{q} 0000$
XLIXI = 0.1.3.3.1.37 XL2X2 $=-0.0000000$
XLSXS $=-0.1339137 \quad$ XLAX4 $=-0.0000000$


```
the folleging is an aitempt to dalance
the huOGEI GY INCHLASING CLASS SILE AND
DEChEASING numut:R LF SUGJACTS
FUNX = 0.0000000
CAXI = 70997.50 C2x2 = 672586.82
C3N3 = 10997.50 C4\times4 = 19463.18
Cl = 340.32 C2 = 11209.7B
C3 = 1016.20 C4 = 3.07
Cr = 830045.01
\(x 1=205.00 \quad x 2=60.00 \quad x 3=63.92 \quad x 4=6336.00\)
CLASS SILE \(=30.90 \quad\) PEACMER LOAD \(=\quad 3.4\)
XLI \(=0.0008223 \quad\) KL2 \(=-0.0000000\)
XL4 = -0.00000000
XLIXI = 0.1685800 XL2K2 = -0.00000000
LEX3= -0.1675A00 XL4X4 = -0.00000000
```


thé fclecwshg is an attempt to galance
the budget by inciatasing class size and
decreasingi numben of sudjectis

```
C1XI = 64070.#1 C2\times2 = 6725B6.82
C3x3 = 04070.9: C4x* = 19463.18
Ci = 346.32 C? = 11209.78
C3 = 1616.20 Ca = 3.07
Cr = 820191.84
\(x_{1}=185.00 \quad x_{2}=60.00 \quad \times 3=39.64 \quad x_{4}=6336.00\)CLASS SIZE \(=34.24 \quad\) TEACHER LOAO \(=3.0\)
XLI \(=0.0011271 \quad\) XLZ \(=0.0000000\)
XL3 = -0.005259% XL^ = 0.0000000
xLS = U.0000000
XLIXI = 0.2085151 XL2X2 = 0.0000000
XL3x3 = -0.206sibi xLax4 = 0.0000000
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline -0.0000177 & 0.0000085 & 0.0000000 & & 0.0000002 & & \\
\hline 0.0000045 & 0.0000000 & -0.0000400 & & 0.0000000 & & \\
\hline 0.0000000 & -u.von0400 & 0.0003865 & & 0.0000012 & & \\
\hline 0.0000002 & 0.6000000 & -0.0000012 & & 0.0000000 & & \\
\hline AAI = \(\quad-0.000017 \%\) & AAC & -0.0000000 & A \({ }^{3}=\) & - -0.0000000 & AA4 & 0.0000000 \\
\hline
\end{tabular}
```

the follcwing is an attempt to balance the huoget gr incraising class size and decheasing number lf subjects

```
C8x1 , 57144.33 C2\times2 = 672586.82
C3x3 = 57144.3J C4X4 = 19463.18
Cl = 346.32 C2 = 11209.7a
CS = 1616.20 C4 = 3.07
cr = B003.18.60
\(x_{1}=165.00 \quad x 2=60.00 \quad x 3=35.35 \quad x_{4}=6336.00\)CLASS SIZL \(=30.34\) TEACHER LOAD \(=2.75\)
K21 = 0.0015493 XL2 = 0.0000000
xL3 = -0.0072300 XL4 = 0.0000000
xL5 = 0.0000000
XLIXI = 0.2556340 XL2\times2 * 0.0000000
XL3xs = -0.255634月 XL4X4. 0.0000000
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline -0.0000250 & 0.0000085 & 0.0000000 & & 0.0000003 & & \\
\hline 0.00000 .15 & 0.0000000 & -0.0000400 & & 0.0000000 & & \\
\hline 0.0000000 & -0.0000400 & 0.0005448 & & -0.0000015 & & \\
\hline 0.0c:0600s & 0.0000000 & -0.0000015 & & 0.0000000 & & \\
\hline AA1 \(=-0.0000250\) & A \(12=\) & -0.0000000 & AA3 & - 0.0000000 & AAA \(=\) & -0.0000000 \\
\hline
\end{tabular}
```

the folleuing is an attempt to balance
the buogei dy qeuuciag subject expenditure and
NCMEASING CLASS : IIZF

```
FUNX = 0.0000000
C1\times1 = 10.,630.4J C2\times2 = 672586.82
C3x3 = 105630.43 C4x4 = 19463.18
C1 = 34f.32 C2 = 11209.70
C3 = 1564.89 C4 = 3.07
Cr =903310.87
x: = 305.00 x2= 60.00 x3= 67.50 x4=6336.00
CLASS SIZE = 20.77 TEACHEN LOAD = 5.00
XLI = 0.00008%2 XL2 = 0.0000000
XL3 = -0.0004030 XL4 = 0.0000000
xL5 = 0.00000000
XL1\times1 = 0.027206S XL2X2=0.0000000
XL3xS = -0.0272083 XL4x4 = 0.0000000
\begin{tabular}{|c|c|c|c|c|}
\hline -0.0000039 & 0.0000085 & 0.0000000
-0.0000387 & 0.0000000 & \\
\hline \(0.000003^{3}\) & 0.0000000 & -0.0000387 & 0.0000000 & \\
\hline 0.0000000 & -0.0000187 & 0.0000808 & -0.0000004 & \\
\hline 0.0000000 & 0.0000000 & -0.0000004 & 0.0000000 & \\
\hline AA1 = -0.0000039 & AA2 & -0.0000000 & \(A A 3=-0.0000000\) & AA4 = -0.0000000 \\
\hline
\end{tabular}
```


the following is an atrempt to balance
the buoget uy reducing sugject expenoiture and
INCNCASING CLASS Size

```
FUNX = 0.0000000
C1X1= 98703.84 C2\times2 = 672586.82
C3N3= 98703.84 C4x4 = 19463.18
C1 = 340.32 C2 = 11209.7A
C3 = 1462.27 C4 = 3.07
CT = 089457.60
\(x 1=265.00 \quad x 2=60.00 \quad x 3=67.50 \quad x 4=6336.00\)CLASS SIPE \(=\) 22.23 TEACHERLOAO = ATS
XLI \(=0.0001760 \quad\) XL2 \(=0.0000000\)XL3 \(=-0.0007471 \quad\) XL4 \(=0.0000000\)
KLS = 0.0000060
XLIXI = 0.0504350 XL2X2 = 0.0000000
xL3x3 = -0.0504350 XL4X4 = 0.0000000
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline -0.0000048 & 0.0000085 & 0.0000000 & & 0.0000008 & & \\
\hline 0.0000085 & -0.0000000 & -0.0000362 & & 0.0000000 & & \\
\hline 0.0000000 & -0.0000362 & 0.0000865 & & -0.0000004 & & \\
\hline 0.0000001 & 0.0000000 & -0.0000004 & & 0.0000000 & & \\
\hline AA1 \(=-0.000004 A\) & AA2 \(=\) & -0.0000000 & AA3 & - 0.0000000 & AAA - & 0.0000000 \\
\hline
\end{tabular}
```

the relleging is an attrmpt to balance
the duoget or reducing sumject exnenditure and
incheasinc clas', wite:
FUNX $=0.0000000$

C1M1 $=91777.26 \quad$ C212 $=672586.82$
C3x3 = 91777.26 C4×4 = 19463.10
$C 1=346.32$ C2 $=11209.78$
$C 3=1359.06 \quad C 4=\quad 3.07$
Ct $=075604.52$
$x 1=263.00 \quad x 2=60.00 \quad x 3=67.50 \quad x 4=6336.00$
CLASS SI2t = 23.90 TEACHER LOAD = 4.41
$X L 1=0.0002653 \quad X L 2=0.0000000$
XL3 = -0.001120 PLA $=0.0000000$
XLE = 0.0000000
XLIX1 $=0.0756153 \quad$ XL2 $2 \times 2=0.0000000$
XL3 $\times 3=-0.0756155 \quad$ KL4X4 $=0.0000000$

| -0.0000060 | 0.00000 BS | 0.0000000 | | 0.0000001 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0000036 | 0.0000000 | -0.0000336 | | 0.0000000 | | |
| 0.0000000 | -0.0000 336 | 0.0000930 | | -0.0000004 | | |
| 0.0000001 | 0.0000000 | -0.0000004 | | 0.0000000 | | |
| AAI = -0.0000060 | A42 $=$ | -0.0000000 | AA3 | $=0.0000000$ | An4 | 0.0000000 |

the follewing if an attempt tu balance
the rudget by rediucing sueject txpenditure and
BHCLEASING CLASS SILF
FunX $=$
0.0000000
C1×1 $=84850.67 \quad$ C2×2 $=672586.82$

C3XJ = B4B50.67 CAXA $=19463.18$
$C 1=346.32 \quad C 2=11209.78$
$C 3=1257.04 \quad C 4=\quad 3.07$
$c t=861752.35$
$x_{1}=245.00 \quad x_{2}=60.00 \quad x_{3}=67.50 \quad x_{4}=6336.00$

CLASS SIZE $=25.06$ TEACMER LOAD $=\quad 4.0$

XLI = $0.0004213 \quad$ XL' $=0.0000000$
XL3 $=-0.0015292 \quad$ XL4 $=0.0000000$
XLS $=0.0000000$
XLIXI $=0.1032<58 \quad \times L 2 \times 2=0.0000000$
XL3 $\times 3=-0.1032258 \quad \times$ L4X4 $=0.0000000$

| -0.0000076 | 0.0000085 | 0.0000000 | | 0.0000001 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00000月, | -6.0060000 | -0.0000311 | | 0.0000000 | | |
| 0.0000000 | -11.0000311 | 0.0001008 | | -0.0000005 | | |
| 0.0000001 | 0.0000000 | -0.0000005 | | 0.0000000 | | |
| AAI $=-0.0000076$ | AAS $=$ | -0.0000000 | $A A_{3}=$ | $=0.0000000$ | AA4 = | -0.0000000 |

the follewing is an attempt to balance
the budgey by reducinc sutiject expfnditure ano
INCREASING CLASS :.tr

FUNX $=0.0000000$

```
CIXI= 01387.38 C2\times2 = 672586.82
C3Xs=81387.38 C4\times4 = 19463.18
C1 = 346.32 C% = 11209.78
C3 = 1205.73 C4 = 3.07
CT}=854824.7
\(x_{1}=235.00 \quad x_{2}=60.00 \quad x 3=67.50 \quad x_{4}=6336.00\)
```

CLASS SIZF $=26.90 \quad$ TEACHER LOAD $=3.91$

the fullcwing is an attempt to balance
thf uudget by melucing surdect expenditure and
inctansing class size

FUNX $=0.0000000$

C1×1 $=77924.09 \quad \mathrm{C} 2 \times 2=672506.82$
C $3 \times 3=77924.09 \quad$ Caxa $=19463.18$
$C_{1}=346.32 \quad C 2=11209.78$
$C S=1154.43 \quad C 4=3.07$
$C T=847898.18$
$x 1=225.00 \quad x=60.00 \quad x 3=67.50 \quad x 4=633600$

CLASS SIZE 28.16 TEACHER LGAD $=3.75$

| XLI $=0.0005952$ | xL2 $=$ | 0.0000000 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| XL3 $=-0.00190 .34$ | XL4 $=$ | 0.0000000 | | | |
| XLS $=0.0000000$ | | | | | |
| XLS $81=0.1330137$ | XL2x2 | $=0.0000000$ | | | |
| XL3 3 $3=-0.1339137$ | XL4×4 | $=0.0000000$ | | | |
| -0.0000098 | 0.0000085 | 0.0000000 | 0.0000001 | | |
| 0.0000045 | 6.00c0000 | -0.0000286 | 0.0000000 | | |
| 0.0000000 | -0.0060236 | 0.0001046 | -0.0000005 | | |
| 0.0000001 | 0.0000000 | -0.0000005 | 0.0000000 | | |
| AAI $=-0.0000090$ | AA2 | -0.0000000 | AA3 $=0.0000000$ | AA4 $=$ | 0.0000000 |

the fellowidg is an attempt tu balance

the bloget uy nenlcing suriject expenoiture ano
inchásing class jite.

FUNX = 0.0000000
C1×1 $=70997.50 \quad$ C2×2 $=672586.82$
$\mathrm{C} \times 3=10997.50 \quad \mathrm{CAXA}=19463.18$
$C 1=346.32 \quad C 2=11209.78$
$C 3=1031.81 \quad C 4=\quad 3.07$
$C 5=034045001$
$\times 1=205.00 \times 2=60.00 \times 3=67.50 \quad x=0336.00$
CLASS SIZE $=30.90 \quad$ TEACHER LOAD $=\quad 3.4$

| XLI $=$ | 0.000 H22s | XL2 $=0.0000000$ |
| ---: | :--- | ---: |
| XL3 $=$ | -0.0024974 | XLA $=0.0000000$ |

XL3 $3 \quad-0.00241974 \quad$ xL4 $=0.0000000$
XLS $=0.0000000$
XLIXI = 0.160 SHNO \quad LL2X2 $=0.0000000$
XLSXS $=-0.1635800 \quad$ XL4X4 $=0.0000000$

| -0.0000130 | 0.0000085 | 0.0000000 | | 0.0000002 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0000085 | c.0000000 | -0.0000260 | | 0.0000000 | | |
| 0.0000000 | -0.0000260 | 0.0001203 | | 0.0000006 | | |
| 0.0000002 | 0.0000000 | -0.0000000 | | 0.0000000 | | |
| AAI = -0.000013u | AA2 | -0.0000000 | AA3 3 | 0.0000000 | An4 | 0.0000000 |
| P1 $=0.08512$ | 0.006 | 641 P3 = | 0.08512 | $2 \mathrm{pa}=$ | 333 | = 1.0000 |

```
the follguing is an attempt to halance
the fuduei by rlolcinc sunject expfnditure and
incafasing clasS Sizt
Funx = 0.000v000
C1\times1 = 64070.91 C2\times2 = 672586.82
C3\times3=04070.31 C4\times4 = 19463.18
C1 = 346.32 C2 = 11209.70
C3 = 949.19 C4 = 3.07
CI = 820191.04
\(x_{1}=185.00 \quad x_{2}=60.00 \quad x 3=67.50 \quad x_{4}=6330.00\)
CLASS SIZE \(=34.24 \quad\) TEACHERLOAO \(=3.08\)
XL1 \(=0.0011271 \quad\) XL2 \(=0.000000\)
```



```
XLS = 0.0000000
XL1X1 = 0.20日S151 XL2X2 = 0.0000000
XL3N3 = -0.204515! XL4X4 = 0.0000000
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline -0.0000177 & 0.0000085 & 0.0000000 & & 0.0000002 & & \\
\hline 0.000068 & 0.0000000 & -0.0000235 & & 0.0000000 & & \\
\hline 0.0000000 & -0.0000235 & 0.0001333 & & -0.0000007 & & \\
\hline 0.0000002 & 0.0000000 & -0.0000007 & & 0.0000000 & & \\
\hline AA1 \(=-0.0000171\) & anc & -0.0000000 & AA3 = & - -0.0000000 & AA4 & 0.0000000 \\
\hline \(\mathrm{PL}_{1}=0.07811\) & \(p 2=0.820\) & 003 P3 \(=\) & 0.07811 & \(11 \mathrm{~Pa}=\) & & \(=1.00000\) \\
\hline
\end{tabular}
```

the follceing is an attempt to balance
The undefy or heducing surject expenditure and
increasing class size

FUNX $=0.0000000$

```
\(x 1=165.00 \quad \times 2=60.00 \quad x 3=67.50 \quad x_{4}=6336.00\)
```

ClASS SIZF $=38.39 \quad$ TEAGMER LOAO $=\quad 2.75$

```
KL1 = 0.0015493 XL2 = 0.0000000
XL3 = -0.0017871 XL4 = 0.0000000
xLS = 0.0000000
XLIX1= 0.2556340 NL2X2 = 0.0000000
XL3XS = -0.2556348 XL4X4 = 0.0000000
\begin{tabular}{rrrr}
-0.0000230 & 0.0000085 & 0.0000000 & 0.0000003 \\
0.06000155 & -0.0000000 & -0.0000209 & 0.0000000 \\
0.0000000 & -0.0000209 & 0.0001495 & -0.0000007 \\
0.0000003 & 0.000000 & -0.000007 & 0.0000000
\end{tabular}
AA1 = -0.0000250 AA2 = -0.0000000 AAS = 0.0000000 AA4 = -0.0000000
```


[^0]: *Viner (47) adds a fourth factor of production, technology, to the three traditional ones mentioned. This factor has been severely limited in its application to education and may be considered to be included in the capital component for the purpose of this research.

[^1]: *Forrester argues, though not so much in this book, that econometricians act in an almost anal-compulsive manner, being afraid to try to model anything that they cannot measure with considerable accuracy. He himself adopts the courageous attitude that it is better to guess at the values of important parameters that are hard to measure than to leave them out of the model. (38, p. 1014)

[^2]: *A lack of a sufficient data base has been previously mentioned.

[^3]: *This would probably not be the case in an actual situation.
 **If this were actually true, the English teacher would have 8 classes, the Math teacher 3 classes, and the Social Studies teacher 4 classes.

[^4]: *Several studies (9), (24) have been made to determine the cconomy of scale with regards to average daily attendance. Cohn estimated the optimal to be about 1,500 pupils for the Iowa State Secondary Schools, while Hansen estimated the most efficient size of a school district to be approximately 50,000 students for the Boston area.
 **There are a number of other terms that might be included in the planning index function. A number of these were mentioned in Chapter I. For the purposes of this study, however, the terms that have been defined are sufficient to demonstrate the effects due to interaction and the different choices in rescurce allocation.

[^5]: *See Appendix A for an example of a budget and its typical organizational structure. Appendix B demonstrates how the typical budget might be reorganized into the above proposed categories. This cannot be done in practice however, because the needed cost data does not exist.

[^6]: *Throughout the remainder of the development all functions are assumed differentiable.

[^7]: *It was assumed that $\mathrm{C}_{1} \mathrm{x}_{1}>0$. In the applied case this restriction would be appropriate. The equality conclusion could have also been reached by adding 25,26 and 28 and subtracting out the redundant terms. A similar operation would show the necessity for equality for 25 . This equality in turn, would demonstrate the necessity of $C_{i} x_{i}>0, i=1, \ldots, 4$.
 **This was the same result as obtained for Case 2 and given by Equation 29.

[^8]: *A unique solution was possible when $C_{2} x_{2}$ and C_{t} were known. In practice the fraction of the total budget spent for teachers could be obtained without a great deal of difficulty and the total expenditure $\left(C_{t}\right)$ would be obtained from the budget and would normally be considered a constraining scarce resource ($3, \mathrm{p} .14$).

[^9]: *See Appendix D for the data for Figs. 3-1 through 3-4.
 **This was demonstrated by finding the values for the C_{i} 's and then, while holding the other variables fixed, varying one variable at a time for both increasing and decreasing changes.

[^10]: *Inflation rates rarely, if ever, remain constant. Reisman presents a generalized model for the case where inflation rates are different during different periods (36, p. 379). A considerable simplification of the calculations, however, can be accomplished by finding the mean inflation rate and using this value to determine the variations in the costs (36, p. 390).

[^11]: *See Lasalle and Lefschetz (28) for more detail. Zangwill (51, p. 225) summarizes asymptotic stability with the following comments. "A ... system represented by A is called asymptotically stable in the large if, given any initial point z^{1},

 $$
 \lim _{k \rightarrow \infty} z^{k}=0
 $$

 where

 $$
 z^{k+1}=A\left(z^{k}\right)
 $$

 Asymptotic stability in the large means that, given any initial state of the system, as time progresses the system eventually evolvos to the equilibrium position." (51, p. 225-226)
 **See Equations 39 through 41.
 ***While the projection of these values is an important topic, it is not within the scope of this study for a typical projection methodology, see Garvue (20).

[^12]: *This pattern was not expected to change in the near future. Garvue states, "It is likely, that budgeting will remain on a crisis to crisis, short-term basis, and emphasis will continue to be on determining 'what the traffic will bear' ... Thus, the tail (revenue) will continue to wag the dog (program)." (20, p. 357)
 **This may be due to contractual agreements with the teachers, legal constraints imposed by the State Board of Education, or perhaps educational targets to be strived for.

[^13]: *Planeville expected a 50% increase in the enrollment over the next five years. The reason for this increase was due to a campaign by the local Chember of Commerce to attract new industry. The data for the increase in the enrollment were based upon the schedule that the Chamber of Commerce was working on to attract industry and thus population.
 **The data for the figures and discussion in this chapter are given in Appendix D as computer output. The program listing of the planning index model is given in Appendix C.
 ***Most of the present methodologies proposed for long-term micro educational planning models fail to include inflation in their estimates. Since the inflation rate is an uncertain factor, reliability decreases as one moves further into the future and thus, any assumptions based on the model are more likely to be invalidated as the planning horizon increases. (51, p. 413) However, ignoring inflation only amplifies the problem.

[^14]: *This is, in part, the basis for the arguments in favor of expanded usc of federal funds for support of public education. The 20 states necding equalization aid had only 28.5 per cent of the national average daily attendance in 1966 . Thus the poor states are the less populated states (3, p. 196).

[^15]: *A very common example of this type of phenomenon can be found in most institutions of higher education. Grade point averages are normally used, not only to rank students scholastically, but also are used to judge the total person. This is especially true when other details concerning the individual are not available.

[^16]: *It is interesting to compare the values that were obtained for the C_{i} 's in Appendix B that were subjectively made after consulting the sources in Appendix A and the values of the C_{i} 's obtained from the model which are in Appendix D. Appendix B's values were made completely independently of any knowledge of the values found in Appendix D, and yet there is a surprising similarity between them.

[^17]: *It has been all too commen a practice to completely disregard any consideration of including secondary student comments and ideas. In a typically list of priorities, students have been traditionally placed close to the bottom.

[^18]: *The above discussion was adapted to educational systems section concerning information gathering and organization for rational decisionmaking industry of Reisman's Book (36, section 8.2-1). Correa (13, Chapter 4) presents a detailed description of the main elements in the analysis of an educational system. Although Correa is discussing micro models, his comments could be easily applied to the individual school.

[^19]: *See Nels W. Hanson 'Economy of Scale as a Cost Factor in Financing Public Schools," National Tax Journal, Vol. 17, No. 1 (March 1964), p. 92-95, for an interesting study of economies of scale at the district level. For an exploratory study at the high school level see Gerald T. Kowitz and William C. Sayres, Size, Cost and Educational Opportunity in Secondary Schools (Albany: New York State Education Department, 1959).

[^20]: *Mr. Hope had to consult his records and assistant for some of the information.

[^21]: *The budget is based on a total expenditure of $\$ 648.73$ per average daily attendant (excluding transportation cost).
 **Excludes transportation.

[^22]: *These divisions of expenditures are for demonstration purposes only.
 **The fixed charges were distributed by percentages of salaries in each of the budget categories.

