THE EFFECT OF SIMULATED HAIL DAMGE DURING VARIOUS STAGES OF GRONTH ON THE YIELD OF WINTER WHEAT
 IN OKLAHOMA

ERIC GORDON STONE
"
Bachelor of Science
Oklahoma State University
1955

Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfullment of the requirements for the degree of MASTER OF SCIENCE

August 1964

Thesis Approved:

Dean of the Graduate Shock

ACKIOWLEDGMENTS

The author would like to express his sincere appreciation to his major advisor, Dr. A.M. Schlehuber, for his valuable suggestions and guidance during the course of the study, especially for his constructm ive criticism and correction in preparing the thesis.

The author is indebted to Dr. Robert D. Morrison and the staff of the computing center for assistance in the statistical analysis, also to Dr. Billy B. Tucker and Mr. Ben R. Jackson for their assistance in preparing the manuscript.

Grateful acknowledgment is expressed to Mr. Raymond A. Peck, Panhandle A. and M., for assistance in conducting the study. Also to the Small Grains Section of the Department of Agronomy for assistance in the planting, treating, harvesting, and threshing of the material used in this study.

Thanks is given particularly to the Oklahoma State University Agronomy Department and the Hail Insurance Adjustment and Research Association for the funds and material that made this study possible,

Special thanks is expressed to my wife, Creasta, for typing the manuscript and for her loving patience, understanding, and encouragement during the course of the study.

TABLE OF CONTENTS

Page
INTRODUCTION 1
REVIEN OF LITERATURE 2
MATERIALS AND METHODS 6
RESULTS AND DISCUSSION 9
Yield and Yield Components. 9
Test Weight 18
Number of Heads Harvested Per Plot. 19
Percentage of Fallen Heads Per Plot. 22
Number of Kernels Per Head. 23
Weight Per 1,000 Kernels. 24
Percentage of Trapped Heads 26
Replications 26
Precipitation 26
SUMMARY 29
LITERATURE CITED 31

LIST OF TABLES

Table Page
I. Summary of Effect of Treatments on Yield Components Statistically Significant at the Boot Stage 10
II. Summary of Effect of Treatments on Yield and Test Weight For the Flowering to Hard Dough Stages 10
III. Analysis of Variance For Yield and Yield Components at the Bloom Through Hard Dough Stages of Growth With Five Treatments at Each Stage 11
IV. The Loss in Yield by Components as Compared to Controls 12
V. Analysis of Variance For Yield and Yield Components at the Boot Stage of Growth With Five Treatments. 14
VI. Grain Losses Compared to Additive Losses of Yield
Components Based on Relative Values of Controls 16
VII. Summary of Number of Heads Harvested Per Plot and Percentage of Fallen Heads For the Flowering to Hard Dough Stages 20
VIII. Summary of Kernels Per Head and Weight Per 1,000 Kernels For the Flowering to Hard Dough Stages. 20
IX. A Summary of the Average Values For Components by Replications. 27
X. Summary of the Monthly Precipitation For the Period June 1,1962-May 31,1963 Rainfall (inches) 28

INTRODUCTION
Hail is an important souree of damage to winter wheat causing large annual losses in Oklahoma and other states. Wheat is the main oash orop in Oklahoma and the possible damage by hail is of real concerm to tho wheat producer. A comsiderable amount of the wheat crop is covered by insurance which makes up a large portion of the total crop hail insurance written in the state.

Experiments on the nature and extent of hail damage to growing crops have been conducted and reported by a number of investigators for a wide variety of crops.

The purpose of this experiment was to obtain additional information concerning the effect on yield by various treatments which simulate hail damage during various stages of growth. The information obtained will supplement the present information used by crop insurance companies for adjustment of losses.

REVIEW OF LITERATURE

Annual national losses to all crops caused by hail storms have been estimated above two hundred million dollars (14) $/$. Eight to ten per cent of the crops in the westem half of Oklahoma, especially the extrene west, is hailed out each year. Most of the hailstorms in Oklaw homa occur in April, May, and June with nearly half ocouring in May when the wheat is most susceptible to hail damage A considerable amount of the loss by hail is covered by insurance. The average crop hail insurance rate for the state is about six dollars per one hundred dollars coverage and increases to about twelve dollars for the western part of the state (6).

As has been stated by Laude and Pauli (1才), and certainly true, the determination of the crop loss is difficult; partially because undamaged areas of the crop growing under the same conditions of enw vironment are not available for direct comparison. Some effects can be readily observed and evaluated, such as the number of stems cut off and the number of heads on the ground or hanging below the cutting line of the harvester. Other effects, such as loss of meght of grens in the head or loss in yield when leaves are destroyed, are not so readily observable.

1/ Numbers in parentheses refers to "Literature Cited" Page 31.

Snyder and Michelson (14) state that each croo has its own peculiarm ities of response to hail damage or simulated hail damage. Crops of different kinds differ in many respects, so the direct and possible indirect effects of hail damage for the various crops will also be different. Each crop must be studied individually.

In soybeans Camery and Weber (1) found that the loss of foliage rew duces the yield more than stem breakage. In wheat Laude and Pauli (11) found that stem breakage reduces the yield more than loss of leaves: and Knowles (10) attributed a greater loss in yield to broken and bent stems than to bruised stems in wheat and other grain crops. Klages (9) found that injury to stems of flax caused a greater loss in yield than injury to leaves or loss of leaves.

Dungan's (2) four year study with hailstorm damage in corn showed differences in yield and quality of com that were associated with several kinds of defoliation damage. Further studies (3) showed that the greatest losses occurred when damaged between the tasseling and fresh milk stages of growth.

The weather before and after the hail damage nay play an important part in the recovery of the plants. This has been reported by a number of researchers and summarized by Snyder and Michelsoa (i4). Since weather is an important factor, experiments in hail damage should be continued over a period of years.

Studies in simulated hail damage in small grains were conduoted by Eldredge (5) at the Iowa Agricultural Experiment Station from 1930 to 1932, at a time when little information wis awailable as to hom diferent types of injury at the various stages of growth affected the yiald.

Eldredge found that oreaking the stems over as the heads begin to emerge reduced the yield about fifty per cent. There was a decrease in the injury at succeeding weekly internals until just before ripening when there was a reduction in yield of about ten per cent.

In an experiment on hail resistance among varieties of winter wheat at the Kansas Agricultural Experiment Station in 1939, Reitz (12) found that varieties differed significantly in reaction to hailstones as well as differing in reaction to cold, lodging, shattering, diseases, and various insects. There were a number of factors that appeared to cause variation in varieties: natural tendency to shatter, character of straw, stages of growth, recovery of plants, salvage of damaged crop, and size of hailstones and angle of impact. This experiment showed that varieties differed, but it also illustrated that more work was needed to show why they differed in reaction of hailstones. No references were found on further work on hail resistance since that time.

The most extensive research on simulated hail damage to winter wheat is a study at the Kansas Agricultural Experiment Station from 1949 to 1956 as reported by Laude and Pauli in 1959 (11). The results of this experiment showed that destruction of leaves more than six weeks before heading had no effect on grain yield. The loss of leaves in the boot stage reduced the yield 30 per cent. Smaller losses in yield resulted from the removal of leaves after heading. The loss in yield was associated with a decrease in the number of heads and the size of heads when the destruction of leaves occurred before the full boot stage. The destruction of leaves in the booting, heading, and later stages decreased the yield mainly by decreasing the size of kernels.

Twenty per cent loss in yield occurred when the lower part of the stem was broken in the booting stage. Yield losses increased to about 35 per cent for stem injury near the middle of the fruiting period. The loss in yield was less after this period with no reduction in yield when damaged just before harvest. Injury to the stems at the boot stage rew duced number of kernels per head more than the size of kernels (11). Eldredge (5) obtained 50 per cent reduction in yield for stem breakage in the booting stage and a 10 per cent reduction in yield when damaged just before ripening.

The yields were not reduced as much by stem injuries above the flag leaf as by those lower on the plant. Injury in the boot stage above the head, including the flag leaf, caused a loss of about 25 per cent in yield. The amount of head trapping was not reported for this study (11).

As Laude and Pauli (11) state, the part of the wheat plant injured by hail and the extent of resulting damage depends much upon the stage of growth as well as upon the character and intensity of the hailstorm. This is true of many or perhaps most of the other crops. The critical stage of growth for hail damage to most crops that have been studied is the bloom stage and the period shortly after bloom (3, 4, 7, 8, 11, 13. 14, 16, 17). In flax the critical period is between bud formation and anthesis (9). In wheat the critical period is the boot and bloom stages ($5,11,17$), as indicated by the greatest loss of yield at these stages.

MATERIALS AND METHODS

The study was conducted on the Agronomy Research Station, Stillwater, Oklahoma. The variety of wheat used was Triumph (0. I. 12132)2. The specific objectives of the study were to determine: (1) The effect of breaking the upper portion of the culms during the various stages of growth on the yield of winter wheat in Oklahoma. (2) The number of spikes on treated culms that drop off by combine xipe stage as coxpared with the number of spikes that remain on the treated culms. (3) The defe erences in kernel weight of grain produced on treated culms as sompared with grain produced on untreated culms. (4) The difference in the number of kernels per head on treated culms as compared with the number on un treated culms.

The experimental design used was a randomized complete block with a factorial of treatments and replicated four times. Each plot consisted of four rows ten feet long with twelve inch row spacing.

At ach of the five stages of growth, five treatments were applied. Boot stage only: (a) Check, (b) Break over one third of the culms below the spike. (c) Break over three thirds of the culms below the spike. (d) Break over ono-third of the flag leaves above the spike. (e) Break over threeathirds of the flag leaves above the spike. When breaking over the flag leaf above the spike a paper clip was placed on the doubled-

2/ C. I. Number refers to the accession number of the Field Crops Research Branch, ARS, USDA (fomerly Cereal Investigations).
over flag leaf. This procedure was used to get an mavy trapped heads as possible. The trapping of heads in the boot stage as a vezy typleally occurring result of hail damage. The hail breaks owez the flag leaf above the spike trapping the awns in the break. The spike is then forced to emerge from the side of the sheath with the tap trapped and causing a curled, distorted spike.

Treatments at the bloom, milk, soft dough, and hard dougl stages were: (a) Check, (b) Break over onewthird of the culms below the flag leaf, (c) Break over three-thirds of the culms below the flag lisas. (d) Break over one-third of the culms above the flag lear. (e) Breais over threemthirds of the culms above the flag leaf.

The dates that the wheat was considered to be in each of the stages were: (a) boot, April 15, (b) bloom, April 22, (c) milk, May 4, (d) sofe dough, May 16, (e) hard dough, May 21. (f) harrest, June \&

Eight feet from each of the two center rows of each plot were har vested for yield. To determine the percentage of fallen heads for each plot, the fertile tillers from which the heads had dropped were counted in each harvested area and divided by the total fertile tillers in each harvested area. To determine the weight per 1,000 kernels, sufficient spikes were collected from the treated culms of the border rows of each plot to obtain 1,000 kernels per plot. To determine the numbs of kernels per spike, ten spikes were collected from the treated culns of the border rows of each plot.

In the analysis of the data the boot stage was analyzed separately because the treatments were slightly different from the later stages. At the boot stage the break was below and above the spike, while ant
the later stages the break was below and mbore the tiag laat. The boct stage was analyzed as five treatments in a randomised block with four replications. The other four stages were analyzed as a split plot in a randomized block with four replications. The main plots were stages and the subplots were treatments. The collected data were punched on IBM cards and processed through the IBM 650 type magnetic Drum Data Processing Machine. The L.S.D. was computed according to Steel and Torrie (15).

RESULTS AND DISCUSSION

Yield and Yield Components

Abstract

Stages The average grain yield ranged from 34.1 bushels per acrefes all treatments applied at the boot stage (table I) to 44.8 bushels per acre for all treatments applied at the soft dough stage (tabia IT) The greatest loss in grain yield occurred to wheat planks treated at the book stage with the loss becoming less as the wheat reached maturity. Thas agrees with previous investigations ($5,11,17$) that wheat is very sus= ceptible to hail damage in the boot and bloom stages. The durference among stages was significant at the 1% level of confidence (Table III). The yield at the bloom and milk stages were significantly different from the yield at the soft dough and hard dough stages. As shown ins Table IV. the major portion of the total loss in grain yield at the boot stage was by the loss of heads. Also considerable loss in yield was caused by the loss in number of kernels per head. The major portion of the totel loss in grain yield at the bloom and milk stages was by the loss in wefght per 1,000 kernels. The major portion of the loss in grain yield at the hard dough stage was by the loss in number of heads per plot. The no joz pors tion of the loss in grain yield at the soft dough stage deperded upow the treatment applied.

SUMMARY OF EFFECT OF TRERETENSS ON YIELD AMD HEED COAFOMENTS STATISTICALLY STGMETHCATE AT TEE BOGR STAGE.

Sroatmonts	Yield	Test Weight	Marvested Heads Pex plot	Parcentrge of Fallon Heads	Parcentage of Trapped Hegds
3/3 below spike	25.9	59.0	563	13.0	9.0
1/3 below spike	36.2	60.0	706	03.1	0.0
3/3 trapped	34.8	59.9	724	00.1	91.4
1/3 trapped	39.4	59.2	735	00.1	31.9
Average	34.1	59.7	682	04.1	31.3
Check	46.9	60.8	839	00.5	0.0
L.S.D. at 5\%	6.7	0.9	140.8	3.6	3.4
L.S.D. at 1%	9.4	1.2	897.6	5.0	4.7

TABLE II
SUMMAR OF EFFECT OF TREATMENTS ON YIEED AKD TEST WEIGHT FOR THE FLOWERING TO HARD DOUGH STAGES.

Treatments	Stages						
	B100m	Milk		Soft Dough		Hard Lough	
	Yield T.W. bu./A 1b/bu	$\begin{aligned} & \text { Yield } \\ & \text { bu/h } \end{aligned}$	T.W. $1 b / b u$	$\begin{aligned} & \text { Yield } \\ & \text { bu/a } \end{aligned}$	$\begin{aligned} & \mathrm{T} . \mathrm{W} \\ & \mathrm{lb} / \mathrm{bu} \end{aligned}$		$\begin{aligned} & \text { Tomo } \\ & \mathrm{lb/bu} \end{aligned}$
Break $3 / 3$ above flag leaf	28.260 .5	32.8	59.1	42.6	61.1	43.7	61.4
Break $1 / 3$ above flag leaf	35.760 .4	37.4	59.9	45.7	60.8	42.0	61.0
Break $3 / 3$ below flag leaf	37.361 .1	37.2	60.8	43.8	61.3	44.9	61.4
Break 1/3 below flag leaf	41.460 .9	41.4	60.6	45.9	60.9	44.3	61.0
Average	$\overline{35.7} 60.7$	37.2	60.1	44.8	61.0	43.7	61.0
Check	46.261 .0	46.6	60.8	45.6	60.8	45.8	60.5
Yield:	L.S.D. at 58 level		at 18				
Treatment	- 6.0		8.0				
Stage	2.5		3.6				
Test Weight:							
Treatment	0.6		0.8				
Stage	0.2		0.4				

TABLE III

ANALYSIS OF VARIANCE FOR YIELD AND YIELD COMPONENTS AT THE BLOOM THROUGH HARD DOUGH STAGES OF GROWTH WITH FIVE TREATMENTS AT EACH STAGE.

Mean Square							
Source of Variation	df	Yield	Test Weight	No. of Heads Per Plot	Percentage of Fallen Heads	Average Kernels Per Head	Weight Per 1,000 Kernels
Replication	3	689.25**	2.23**	234,323.00**	7.49	13.30**	2\%.73**
Stages	3	266.35**	2.71**	29,355.33*	94.99**	5.80*	229.86**
Errorad	9	12.64	0.11	5,375.22	2.70	0.85	1.92
- Treatments	4	198.50**	1.04**	12,046.00	64.42**	5.15	60.65**
Stage x Treatment	12	37.29*	0.72**	6,194.92	28.20**	2.66	23.19**
Error-b	48	17.70	0.17	6,664.31	1.26	2.19	0.92
Total	79						

[^0]PABLE IV
THE LOSS IN IIELD BY COMPONENTS AS COMPARED TO COMYROLS

Treatments

The average grain yield per plot for the boot stage treatments ranged from 25.9 bushels per aere for breaking all of the culms below the spike to 46.9 bushels per acre for the check plot (Table I). Breaking of the culms below the spike was the nore critical treatment at the boot stage for yield and all the components. When compared with the cheok, the loss of 45 per cent in yield by breaking all of the culms below the spike at the boot stage agrees reasonably well with the results of Eldredge (5), but does not agree with the pesults of Laude and Pauli (11) who reported a loss of about 20 per cent in yield when stems are damaged below the spike. Breaking the flag leat above the spike at the boot stage reduced the yield about 25 per cent and agrees with that reported by Laude and Pauli (11).

The analysis of variance (Table V) shows that yield differences among treatments at the boot stage were significant at the $\|$ The L.S.D. values in Table I indicate that breaking all of the culms below the spike yielded significantly less than the other three treato ments and the check.

The average yield per plot for the treatments used at the bloon through hard dough stages ranged from 28.2 bushels per acre for breaking all of the culms above the flag leaf at the bloom stage to 46.7 buskels per acre for breaking one third of the culns above the flag lear at the soft dough stage (Table II). The breaking of the culms above the flag leaf was more detrimental and caused a greater loss in yield than the breaking of the culms below the flag leafo The analysis of variance (Table III) shows that differences among treatments at bloon through

table V

ANALYSIS OF VARIANCE FOR YIELD AND YIELD COMPONENTS AT the boot stage of growth with five treatments.

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 statistically different fron the others at the 1% level was breaking all of the culms above the flag leaf at the bloom stage (Table IX). The stage x treatment interaction was significant at the 5% lerel, which indicates that the treatments did not respond in the samemaner at all stages.

Just as a plant is made up of componeat parts such as leaves, stems. roots, etc. grain yield is made up of "yield conponents. In wheat, the number of tillers with ferthle spikes, the number of seeds per spike, and the average weight of kernels per unit of area aro the three grain yiela components generally considered in bhe literature as companang the chist factors. In Table VI, the data from table IV have been reoxganaed to show the relative (on a percentage basis) gains and losses of the yield components to total grain loss as compared to the controls for each stage and treatment. In the upper portion of the table, the nine stages and treatments in which the total yield components exceeded the actual grain loss are listed. In the lower pertion of the table the treato ments in which the grain loss exgeeded the total of the yield components are listed. For example, the grain yield of the treatnent of breaking onecthird of the culms below the spike in the boot stage yielded mly 36.2 bushels, (77.2\%) of the control, a loss of 22.8% The yieid component losses were: 15.8% in loss of heads: 9.4% number of kero nels per head; and 5.5% in weight per, 4.000 kernels. 8 botal of 30.7% o The difference: 7.9 , constitutes the discrepancy bewnen the losses in total yield components as compared to the observed yield loss.

GRAIN LOSSES COMPARED TO ADDTRIUK LOSSES OS TLEDD COMPONENIS BASED ON REIATIVE VALUES OF CONTROLS

No. Treatment	$\begin{aligned} & \text { Component } \\ & \text { Total } \end{aligned}$		$\begin{aligned} & \text { Grain } \\ & \text { Loss } \end{aligned}$	Difierence
1. Boot-1/3 cuims below spike	30.7	\cdots	22.8=	7.9
2. Bootw1/3 flag leaves above spiks	22.3	\sim	$16.0=$	5.3
5. Bloom-1/3 culms belowflag leas	24.5	-	10.4 $4=$	14.1
6. Bloom-1/3 culms above flag leaf	48.6	$=$	$22.7=$	24.9
8. Bloom-3/3 culms above flag leaf	45.0	-	$39.0=$	4.0
9. Milk-1/3 culms below flag leaf	29.7	\cdots	$11.2=$	18:5
10. Milkol/ 3 culms above flag leaf	35.3	-	$89.7=$	15.6
17. Milk-3/3 culms above flag leaf	24.5	-	$20.2=$	4.3
77. H. Doughal/3 culms below flag leaf	4.2	-	$3.3=$	0.9
	$\begin{aligned} & \text { Crain } \\ & \text { Loss } \end{aligned}$		Component Total	Difference
3. Boot-3/3 culms below spike	44.8	-	44.4 $4=$	0.4
4. Boot-3/3 flag leaves above sprike	25.8	-	21.9=	3.9
7. Bloom-3/3 culms below flag leaf	19.3	-	$13.6=$	5.7
12. Milk-3/3 culms above flag leat	29.6	-	$29.3=$	0.3
13. S. Doughal/3 culms below flag leaf	8.5	t	$0.8=$	2.3
14. S. Dough $=1 / 3$ culms above flag leaf	+0.2	\cdots	$5.3=$	5.1
95. S. Dougho3/3 culms below flag leaf	6.0	+	8.00	7.0
96. S. Dough -3/3 culmis above flag leaf	8.6	$+$	5.400	44.0
18. H. Doughof/3 cuims above flag leaf	8.3	$=$	$7.4=$	0.9
19. H. Dough-3/3 culms below flag leaf	2.0	+	$8.5=$	3.5
20. H. Dougho $3 / 3$ culms above flag leaf	4.6	+	$5.5=$	10.8

 loss greater than the total of the yield componewts and the other half had a greater total component loss than the grain loss. At the boot stage there was a greater total loss in yield components than in the loss of grain yield for the one third breakage treatnents (Nos. 1 and 2). These was a greater loss in grain yield than in the total loss in yield components at the boot stage when all of the culas or flag leaves were broken (NOS. 3 and 4). At the bloom and mik stages three of the four breakage treatments at each stage, oneothrt of the oulns belor and above the flag leaf, and all of the wans above the flag leaf. had a greater loss in yield components than in the Loss of grain gield. At the soft dough stage all of the breakage treatments had a greatar logs in grain yield than in the total loss in components. At the herd dough stage three of the four breakage treatments, oneothird of the culsus above the flag leaf and all of the calms below and above the flag leaf, had a greater loss in grain yield than in total loss of yield components. The treatment (NO. 6) with the greatest difference between loss in grais yield and yield componerts is breaking oneothird of the culms above the flag leaf at the bloom stage. The loss by the compersentig was 25 per cent higher than the grain loss. the treatnent with the least differco ence between grain loss and loss in components was breaking all of the culms above the flag leaf at the mille stage (Mo. fote The grain loss was only 0.3 per cent higher than the mponent total. 亶t the soft dough and hard dough stages many of the components actually had a gain over the check rather than a loss. The bloom and mik stages had the greatest differences between grain loss and loss by components

In 8 of the 20 treatments the relabive difercrces boubeen the observed grain losses and yield component losses was under sha in 44 out of 20 the discrepancy was under 10% and in only 3 oat of 20 the difference was over 45% (15.6% fer $10.12,18.5 \%$ sor 10.9 and $2 \% .9 \%$ for No.6). The reasons for the larges difforunces are not apparent at this time, unless it is due to sampling exror. Theoretisally, the "input" (yield components) should aqual the "output" (yleld),

As show in Tables IV and Vi, the greates losses 3 y yield oceurwed at the boot stage with breaking all os the culms below the spike and at the bloom stage with breaking all of the oulus above the flag leafo The breaking of the culms above the flag leaf was rare detrimertal and caused a greater loss in yield than breaking of the culms below the flag leaf at the bloom through hard dough stages. Thas is the opposite of the results as reported by Laude and Pauli (11). They reported that stem injuries below the flag leaf redued yield more than stem injuries above the flag leafo

Test Wexcht

Stages

The arerage test welght for stages ranged firom 59.7 pouncs per bushel for the boot stage (Table I) to (0) powncs per bushel for the soft dough and hard dough stages (mable IX). The differexce ameng stages for test weight was highy sigxiferatt (Table III). The L.S.D. indicates that the milk stage was sigwiticnay duferent from the other stages.

Treatments

The average test weight for treatnents ranged rom 39.0 pounds per bushel for breaking all of the culms below the spake at the boot stage (Table I) to 61.4 pounds per bushel for breaking all of the culms below as well as above the flag leaf at the haxd dough stage (Tabla II). Test weight which would be expected to eorresponc wo korgel weight, was highly significant among treatments for the bloom through hard eough stages, but was sigmificant at the 5% level at the beot stage. The stage x treatment interaction for test weight was significast at the i\% Ievel (Table III) which indicates that the treatments did not respond in the same ramer at all stages.

Number of Hinads Harvested yex Flot

Stages

The average number of heads harested per plot ranged from 682 for the boot stage to 826 for the soft dough stage (Tabies I and VII). The boot and bloom stages had the lowest namber of heads per plot in the harvest area. The number of heads per plot is alnost linear with the yield at each stage. As the number of heads increase that yield increases. The axalysis of variance for number of heads per plog. (Cable III) shows that the difference among stages was significant athe 5\% level. the mit and seft dough stages were significanty different from the other stages.

Preatments

The average number of heads hamested per plot for the boot stage treatments ranged from 563 for breaking all of the culms below the spike

PRESTM

Treatments	Bloom		M12k		Soft Dough		Haxd Dough	
	$\begin{aligned} & \text { No. } \\ & \text { Heads } \end{aligned}$	6Fallon Heads	Mo. Heads	Stallon Haads	No. Meads	$8 \mathrm{Fec}$	\%̌o. Keads	QFallea Boads
Ereak $3 / 3$ above flag leaf	626	14.8	828	3.3	793	4.1	787	8.8
Break1/3 above flag leaf	708	7.0	786	2.3	843	0.6	765	0.7
Break $3 / 3$ below flag leaf	782	3.3	839	0.4	813	0.8	789	1.0
Break1/3 below flag leaf	775	1.0	797	0.8	844	0.5	355	0.4
Averago	723	6.5	811	1.7	826	0.8	773	1.0
Check	803	0.3	824	0.5	834	0.3	83\%	0.0
No. of Heads: L.S.	L.S.D.at S\% lerel at atege							
Treatments	116.0		3to?					
Stages	52.4		75.3					
\$Fallon Heads:								
Treatment	1.6		2.8					
Stages	1.2		8.9					

TABLE VITI
SUMMARY OF KERNELS PER HEAD AND WETGHT PER 4,000 KERNELS FOR THE FLOWERING TO HARD DOUGH STAGES.

to 839 for the check plot (Table I). The aralyst of vaxiamee for number of heads per plot (Table Vi) phows that the difference among treatments was significant at the 5\% level. The oniy treatment sige nificantly different from the other four at the boot stage was breaking all of the culms below the spike (Table I). The breaking of the culms below the spike was more detrimental than breaking the flag leaf above the spike. The breaking of the culms below the spike caused consider. able sterility which resulted in a much smaller number of fertile heads per plot. The breaking of the culms below the spike alse caused a large number of fallen heads which contributed to the snoller number of heads harwested per plot.

There was some recovery of the plants by a turning up at the node above the break. Many of the spikes did not completely emerge from the sheath.

The average number of heads harvested per plot for the treatments used at the bloom through hard dough stages ranged from 626 for the treatment breaking all of the culms above the flag leaves at the bloom stage to 854 for the check at the hard dough stage (Table VII). The difference in treatments for these four stages was not significant. The treatments breaking all of the culms below the flag leaves at the milk stage; breaking onemthird of the culms above, and breaking onso third of the culms below the flag leaf at the soft dough stage exceeds the check plots.

Stages

The average percentage of fingar heads per plot ranged from 0.8 for the soft dough stage to 6.5 for the bloosi stage (Table VII). The analysis of variance for the perentage of fallen heads (Tables III and V) shows that the difference momeg gides was signifuant at the 1% level. The bloom stage was shan cantly diferent from the mik, soft dough. and hard dough stages. mhe boot and bloon stages were the rost critical from the standpoint of parcentege of fallen beads. ghe loss of heads accounts for the mar porthon or the total loss in field at the boot stage (Table IV), but not for the bloom stage. The percentage of fallen heads is an important loss at the bloom stage, but the greatest loss in yield at this stage 1s caused by loss ia weight per 1,000 kernels.

Treatments

The average percentage of fallen heeds per olot at the boot stage ranged from 0.1 for the trapped heads treatnent to 13.0 for breaking all of the culms below the spike (Table TD. The analysis of variance for percentage of fallen heads (table V) bhews that the cifference among treatments at the boot stage was signtricant at the 1% level.
 from the other four treatmerts as akom by the L.S.D. $2 \times$ Table I. The breaking of the culms below the spike carsed considerably greater loss of heads than breaking the flag leares dbove the spike.

The average percentage of fallen heads per plot for the breatments used at the bloom through hard dough stages sanged from 0.0 for the check at the hard dough stage to 14.8 fors the treatment breaking all of the culms above the flag leaf at the bloom stage (Table VII). The analysis of varo iance (Table III) shows that differoxce among treatments was significant at the 1% level. Breaking onewhird and threethirds of the culms above the flag leaf were significantly different from the cheok, breaking onea third, and threecthirds below the flag leat at the bloom and milk stages (Table VII). There was mo signifluant diference in treatments at the soft dough and hard dough stages.

The breaking of the culms abore the flag leal caused a greater loss of heads than breaking the culms below the flag leaf. The decrease in yield was linear with the increase in maber of fallen heads. The intero action of stages and treatments was highly signixicant (Table III) e The treatments with the higher per cent of fialler heads were at the boot and bloom stages, which had the highex percentage of fizllen heads.

Number of Kernels Fer Head

Stages

The average number of kemels per head feanged from 22.7 for the bloom stage to 24.9 fors the soft dough and hared dough stages (Table VIII). The boot stage, with 22.1 kernels per head (data not whows), was slightly less than the bloom stage. The greatest loss in manber of kemels per head occurred at the boot stage and caused a greater loss in yield at the boot stage than at the other stages of gewtiv (table IV). There was a Eain in kernels per head at the soft dough and hard dough stages which
helped to ofset the loss by other eompenemt The analysta of variance (Table III) shows that the diffrence among atages was significant at the 5\% level. The bloom stage was significantly different from the milk, soft dough. and haxd dough stages.

ryestments

The number of kernels per head for the treatnents used at the boot stage, (data not shown), ranged from 2. 3 for the treatment of breaking one-third of the culms below the soike tho 23.5 sos the oneck treatment. The number of kernels per head for the treatmerts at the bloon through hard dough stages ranged from 21.2 for the treatnent of breaking oneco third of the culms abore the flag leas athe bloom stage to 25.0 for breaking all of the cuims above the flag leaf at the hard dough stage Table VII. The analysis of variances (Tables III and W) shows that differences among treatments for number of kernels per head was not sigxifficant。

Weight Pes 1,000 Kemmls

Stages

The arewage weight per 1,000 kervels reaged frem 27.8 grams for the milk stage to 36.5 grams for the hard dough stage (cible VIII). The bloom and milk stages had the lowst meght per l, 000 kem mels and was the principal less in yield at these stages (fable TV)。 The kemel meight was little affected at the boot, soft dough, and hard dough stages. The analysis of pariange (table III) shems that the difo exence among stages for weight per 1.000 karnels was significant at

from the other stages. Tha graze loss ot hernel weyth ay the bloma stage agrees with the results of leade and Paul (10) for stem injury.

mequments

The analysis of variance (Tabls V) shows that the difference among treatments for weight per 1.000 keryels at the boot stage was
 kernels for the treatments used at the bloon through hard dough stages ranged from 26.2 grams for the trestnert breakig thriswhards of the culus above the flag leaf at the milu stage ba 37.3 grems for the treabo ment breaking three-thirds of the cuins below tho glag leat of the hard dough stage (Table VIII). The analysis of vemance (rable III) shows that the difference among treatments ior weight per 0.000 kemels was significant at the 1% level。 The check plot was signifeantly different from the other treatments at the bloon and mik stages: and the freabments Of breaking above the flag leat was signd 1 andly different from the other treatments at the bloom and milk stages (Table VII). The interaction of stage x treatment was significant at the 1% Level (Table III) indicating that the treatments did not respend the same at all suges. the treato ments which produced the highest weight pex 4,000 kannele, breaking all of the culms below the flag leaf and all of the culus abowe the flag leafo were at the soft dough and hard deugh stages. the trestments which produced the lowest weight per 4,000 kernels, breaking the cums above the flag leaf, were at the mik stage.

Percentage of mapper Heads

The analysis of vasiance (Table V) shers that the difference among treatments for percentage of trapped heads at the boot stage was significant at the 1% level as would be expected with only two of the five treatments having trapped heads. Fully onesthird of the spikes were trapped for the treatment breaking oneothird of the fiag leares above the spike. Ninetyone per cent of the spikes were trapped for the treatment breaking all of the flag leaves above the spike.

Replications

The difference mong replications was signdicant at the g\% level at the boot stage for yield and the average number of heads per plot (Table V). The difference anong replications was significant at the O level of confidene in the later stages for yield, the average number of heads per plot, average kernels per head, weight per 1,000 kernels: and test weight (fable III). The third replication was lower for every factor except the percentage of falles heads and weight per 1.000 kernels (Table IX)。

Precipitation

According to Table X the raniall was above nomal for the year. The August rainfall was below normal, but by the time the wheat was planted in October the total rainfall to the time was 5.42 inches above normal. The November, December, January, February and May raina falls were also below normal, but during November through February the wheat was not so actively growing. The remainder of the growing season was near nomal and caused no visible moistrure stress the the erop.

TABLE IX

A SUMMARY OF TEE AVERAGE VALUES FOR COMPONERTS BY REPLTCATIONS

Repltations	No. of Hears Per Plot	Fercentage of Eallen Heade	Kernels Per Hend	Weight Per 1,000 Kerne?s	Field	Iest Weight
4	822.1	1.6	24.4	33.1	44.5	60.8
2	810.4	2.8	23.2	33.1	42.5	60.8
3	623.0	2.2	22.7	35.1	32.3	69.8
4	848.4	2.7	23.0	33.0	42.9	60.5

TABLE K

SUMMARY OF THE MOMWHA FEDOIETETION FOR THE PERTOD WUNE \&. 1962 MAD 37.4963. RASNEAL (mabes)

Monts	Recetved	Arexace	Devietion
iune	6.20	48.24	1.96
301%	4.99	7.53	1.46
August	1.36	3.24	-1.85
Septermer	7.23	3.38	3.85
October	4.76	2.78	1.98
November	1.24	8.35	-0.61
Deceraber	1.18	1.34	0.16
January	0.44	$\therefore 16$	-0.72
Fobruary	0.06	4.35	-8.29
March	2.91	4.85	1.05
Apmi	3.18	2.86	0.32
May	3.78	4.65	-0.84
	32.33	32.8	5.15

Total for the year 37.330
Total Oct oway 31 17.55.

SUMMARY

An experiment was initiated to determme the sffects on yield and yield components of winter wheat by breaning the upper portion of the culms during the various stages of growta hro treatments were used at each of the five stages of growth. One \%axteby, Thrunph, was used in the axperiment.

The highest yield obtained was 46.9 buchals pex acye for the check which was used for compaxing the bxeatrents in the boot stage. The lowest yleld obtained was 25.9 bushels per agre for the treatment of breaking three-thirds of the culns below the spike at the boot stage. The next lowest yleid was 28.2 bushels per acre for the treatment of breaking three-thirds of the culms above the flag leaf at the bloon stage. In general, the greater losses were in the enrilier stages and in the more severe treatments of breaking three.ther wods of the culm. As the wheat reached raturity the losses teaded to be less. At the boot stage the loss was greater with treatwent below the spike than above the spike. At the bloom threugh kerd doegh steges the loss was greater with treatment above the flag lew than balow the flag leax with the exception of breaking one third of the chims aboge the flag leas at the soft dough stage which was giso bighes than the checin this was probably due to the greater nware of terext tillers and the greater nuber of kernels per head than in whe checko

At the boot stage the greater 20 ss in fred was caused by loss of heads and stamile spikes when the gulms were brokeri belon the spike. At the bloom stage the greater logs in yield was eaused by Loss of heads and loss An welght per $0,000 \mathrm{kemoelse}$ At the mik and soft dough stages the greatest loss in yneld yas caused by the loss In weight per 8,000 kernels. A范 the hard doug stage the greatest loss in yield was caused by loss in zumber of beads per plot. The bype of loss varied considerably dapendixg upon the stage of growth when the treatment was appisgo

The preciptation was above nomal at stillwater for the exop year and the distribution was relatively gocd. There mas mo wisible moisture stress during the active growing season.

The experment should be conturued to detemme the offect that duferent years have upon the 'ydeld and extert of clamage by the warions treatments at the vaxiows stages. Since nwiromment plays an important part in the extent oi damage and in the awow or racorery. there could be considerable difference botweor years. il climatic difo - cences are great.

LITERKNHE GTTED

1. Camery. Mo Po and Weber. CoR. Eetects on certin momponents of simulated hail inguxy on sogboans and corra. Towa Agri. Exp. Stwo Res. Bul. 400. 1953.
2. Dungan. GoH. Artifichal hailing shers damage to com by storns. 111. Agxii. Exp. Stz. Axw. Rpt. 43: 49-50. 1929.
3. \quad Hail damages corm worse whea the plants are tasseling.

 the development of the corr plaxiw. Tera Agric Exp. Sta. Res. BuI. 485. 1935.
S. ._. The effect of in juxy in mitation of hail damage on the development of small grain. Iowa Agri. Exp. Sta. Res. Bul. 219. 1937.
4. Flora, S.D. Hail storms in the uruted States. Dniversity of Oklam homa Press. Norman. Oklahona. 1936.
 simulating hail damage to soybeans. Iowa Agmi. Exp Sta. Res. Bu1. 359. 4949。
5. Riesselbach. ToA. and Lyness. W.E. Simuated has injury to corn. Nebro Agri. Exp. Sta. Bra. 377 . 9943.
6. Klages, K.H. The effects of simulated hail ixyextes on flax. dour. Aner. Soc. Agron. 25: 534-540. 1933.
7. Knowles. D.B. The effects on heill hingry wheat and other grain crops. Univ. of Saskatahewan Age. Res. But. 102. 194.
8. Lavde, HoHo, and Paul. Aowo. Simuated hail injury to winter wheato Kanas. Agxi. Expo Sta. Aril. 402. 6939.
9. Reitw L.P. Indications ot hail resistance among qamietsos of minter wheat. Trans. Kans. Agad. Sci. 458129 M 9701942.
10. Snyder, GoBop and Mehelson, Lo Po The effect of shulated hail damage on field beans. Mass. Agxil. Expo Sta. Bua. 506. 1958.

940 damage on potatoes. Hise. Agxi Exp. Sta. Bul. 506a. 1959.
45. Steel. $R_{0} G_{0} D_{0}$, and Tomie. JoH. Principles axd proedures of statistios. McGraw Hill Beok Corpany New York. 1960.
16. Takatomi, $F_{0} H_{0}$, Spariss $W_{0} Q_{0,}$ and woodbury, Gow. A study of sime ulated hail injury on potatoes. Idaho Agrih. Exp. Sta. Res. Bu2. 22. 1952.
17. White. R.M. Preliminary observatione on some effects of artilecial defoliation of wheat plants. Sck. Agxi. 26: 225-229. 1946.

```
    VTM
    B%m! Gerdimistone
Canduatg for the Degrea of
    M2Sber wif 5ulerge
Thesis: THE EFHECT OF STMULAMED HATL DAMACE DURTNC VARTOUS SMAGSS OR
        GROWTH ON THE YTELD OF WTNTER WHEAG TN ORTAHOMA
```

Mayor Feld: Agronomy (xald orops)
Biographical:
 the son of Philp and Elsie Store Mixmed Cxeasta Germany dxmany 24, 1954。

Education: Attenced alementary sohool mear Blackwell and graca
 1949. Undercraduet stury at Oklahom State Uriversmtyo

 Craduate study at Oxlanome Stere Trimersity, $1964=1964$.

Experwience: Borm and reared on fermo Ofrices in U.S.Ay
 Seed Stocks Ime. Oklahom State Universty 196104963. Gradratecasistantor the Agronomy Departmento Oklahone State Univessity, 1963.1964.

Organiwetons: merican Soclety ox Agroxomy and Crop Scence Society of maxicg

[^0]: * Significantly different at the 5% level.
 ** Significantly different at the 1% level.

