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ABSTRACT 

Laboratory rock testing procedures are used to study the 

effect of confining pressure on the mechanical behavior and 

deformation mechanisms for the Oil Creek Sandstone: a lightly 

cemented (quartz), high porosity (~35%) quartz sandstone. 

Triaxial compression tests are run on room dry samples, at 

and a constant strain rate of 1. 34 x -5 - 1 10 sec , at 

confining pressures of 5, 20, 40, 60, 80, 100, 120, and 135 

MPa. stress-strain curves for the sandstone are derived from 

triaxial test data. Indention tests are run on room dry 

0 -4 samples, at 25 C, an approximate displacement rate of 1.76X10 

-1 mm(sec) , and at confining pressures of 44.8 MPa (low) and 

124.1 MPa (high). Indention test samples are utilized to study 

mechanisms by which this sandstone deforms. 

Triaxial compression tests illustrate that: 1) the 

confining pressure at which the boundaries between brittle, 

transitional, and ductile behavior occurs is higher than for 

the lower porosity samples tested by Scott and Nielsen (1991), 

2) the entire yield surface for Oil Creek Sandstone is 

delineated over confining pressures encountered in the shallow 

crust, and 3) porosity is a dominant factor control ling the 

xiv 



yield strength of sandstones. 

Microscopic observations of both triaxial and indention 

test samples reflect several types of grain fracturing. 

Brittle behavior is characterized by grain-contact 

microfractures that parallel the load axis. Slip along a shear 

fracture plane is required to produce an extreme reduction in 

grain size. Transitional behavior is divided into two 

categories. Category 1, associated with the lower boundary of 

transitional behavior, is similar to brittle behavior (an 

abundance of grain-contact microfractures parallel to the load 

axis with only a small percentage of fine particles). In 

category 2, associated with the upper boundary of transitional 

behavior, grain-contact microfractures parallel to the load 

axis are present, but fewer in number and there is a 

substantial increase in the percentage of fine particles. The 

increase in fine particles, however, is not a function of slip 

as is the case in the brittle domain. Ductile behavior is 

characterized by grain contact microfractures that do not show 

a preferred orientation. 

Indention tests illustrate two modes of grain fracturing. 

Mode 1 is simply grain-contact microfractures. Mode 2, on the 

other hand, is another type of grain fracturing that 

polygonizes the grain into randomly oriented, small fragments. 

In low confining pressure tests, there is a spatial 

relationship between the indenter, the amount of indention, 

xv 



and growth and development of a zone of mode 2 grain 

fracturing. 

Some of the textures 

textures, in triaxial and 

natural deformation bands. 

developed, and genesis of the 

indention tests are similar to 

The texture associated with the 

brittle domain, after visible slip along a shear fracture 

occurs, is somewhat similar to natural deformation bands. 

However, in natural deformation bands, this same texture is 

produced with only minuscule displacement. The texture of 

category 2 in transitional behavior is also similar to natural 

deformation bands and, like natural deformation bands, extreme 

granulation occurs without visible slip. In low pressure 

indention tests, the texture and development of mode 2 grain 

fracturing is also similar to natural deformation bands. 

xvi 



THE EFFECTS OF CONFINING PRESSURE ON THE MECHANICAL BEHAVIOR 

AND DEFORMATION MECHANISMS FOR THE OIL CREEK SANDSTONE 

IN LABORATORY TESTS 

CHAPTER I 

INTRODUCTION AND PREVIOUS WORK 

In an effort to further understand the manner in which 

high porosity (>25%) sandstones deform, in terms of their 

mechanical properties as well as the mechanisms by which they 

deform, laboratory rock deformation tests were performed on 

Oil Creek Sandstone. The tests are run over a suite of 

confining pressures to determine its effect on the behavior of 

this sandstone. 

In the shallow crust (< 20 km), the predominate 

deformation mechanism in structurally deformed sedimentary 

rocks is cataclastic flow {Stearns, 1968). This deformation 

mechanism involves one or more of the following processes at 

the micro-, meso-, and macroscopic scales: fracture, rigid­

body rotation, and rigid-body translation. The dominant meso­

and macroscopic mechanisms, in sandstones deformed by 
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cataclastic flow are fractures (Stearns, 1967 and 1968), 

deformation bands (Aydin, 1978; Pittman, 1981; Jamison and 

Stearns, 1982; Underhill and Woodcock, 1987), or a combination 

of both (Cook and Stearns, 1975; Stearns and Jamison, 1977; 

Young, 1982; Hillman, 1986). A fracture represents at least a 

momentary loss of cohesion across a somewhat planar surface 

(Griggs and Handin, 1960). The term "deformation band", first 

coined by Aydin (1978), is a quasi-planar zone composed of 

comminuted grains of the host sandstone across which there has 

been discernible (milli- to centimeters) shear offset (Aydin, 

1978; Jamison and Stearns, 1982). Because there is shear 

offset, these features are also termed "microfaults" (Jamison 

and Stearns, 1982). Aydin (1978) notes that there is not a 

discrete surface of discontinuity associated with deformation 

bands. This classification is not a matter of semantics. There 

are several very fundamental differences between these two 

mechanisms of cataclastic flow. Microscopically, there is a 

sharp contrast between shear fractures and deformation bands. 

Grain fracturing occurs within several grain diameters away 

from both natural shear fractures (Friedman, 1969; Engelder, 

1974) and those created in the laboratory (Handin and Hager, 

1957; Borg et al.,1960; Friedman, 1963; Dunn et al., 1973). 

With deformation bands, on the other hand, there is virtually 

no increase in the amount of microfracturing bordering the 

band (Aydin, 1978; Pittman, 1981; Jamison and Stearns, 1987; 
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Young, 1982; Hillman, 1986; Freeman, 1991). In addition, Aydin 

(1978), Jamison (1979), Underhill and Woodcock (1987), and 

Freeman (1991) all observe a two part division to a 

deformation band; an inner and an outer zone. The studies by 

Aydin (1978) and Underhill and Woodcock (1987) document that 

the inner zone is comprised of conuninuted sand grains and the 

outer zone is a region of host porosity reduction without 

grain comminution (i.e., rigid body rotation and translation 

of grains). These workers delineated the outer zone utilizing 

SEM analysis. Jamison (1979) and Freeman (1991), on the other 

hand, define their outer zone, using standard optical 

microscopy, as a region of porosity reduction but it can 

contain a few comminuted sand grains. Their inner zone is 

essentially the same as other workers. Mechanical destruction 

of most grains within the deformation band is so extensive 

that the original grain boundaries are indiscernible (Aydin, 

1978; Jamison, 1979; Pittman, 1981; Underhill and Woodcock, 

1987; Freeman, 1991). 

Another difference between shear fractures and 

deformation bands is in their outcrop pattern related to local 

structure. Fractures associated with faulted and/or folded 

sandstones form distinct patterns that can be related to local 

structures by the typical geometry of two shear fractures and 

the associated extension fracture. The fracture pattern is 

fixed with respect to the local maximum, intermediate, and 
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least principal stresses following a Coulomb geometry 

(Stearns, 1967 and 1968; Stearns and Friedman, 1972). 

Deformation bands, however, do not usually follow these 

ordered patterns. Only in areas of low, plane strain, do 

deformation bands seem to follow a Coulomb geometry (Stearns, 

1972; Engelder, 197 4) . In areas of low, three-dimensional 

strain, deformation bands form in an orthorhombic pattern 

(Aydin, 1978; Aydin and Reches, 1982) characteristic of three­

dimensional strain in many materials (Reches, 1978; Reches and 

Dietrich, 1983). In areas of high, three-dimensional strain, 

on the other hand, there is no apparent band pattern (Jamison, 

1979; Jamison and Stearns, 1982; Young, 1982) . At times, 

deformation bands, unlike fractures, follow sedimentary 

structures such as cross bedding and at others, the bands cut 

across sedimentary structures as do fractures. Occasionally, 

deformation bands will form in a distinct main shear-Riedel 

shear pattern (Jamison, 1979). 

While there is no universal theory tha~ explains the 

formation of meso- and macroscopic fractures, there is a 

wealth of experimental (Handin and Hager, 1957; Borg et al., 

1960; Handin et al., 1963) and field data (Stearns, 1967 and 

1968) that empirically supports the Coulomb shear fracture 

criterion (Stearns et al., 1981). At the microscopic scale in 

sandstones, the formation of a through going fracture is 

always preceded by microfracturing of indivi dual grains (Borg 
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et al., 1960; Friedman, 1963; Scholtz, 1968). Gallagher et al. 

(1974) document that these microfractures form as a result of 

stress concentrations developed at grain contacts and are 

extension (or tension) fractures that follow local maximum 

principal stress trajectories, with high stress differences, 

within grains. 

The mechanical genesis of deformation bands is understood 

to a lesser degree than that of fractures. Studies by Aydin 

(1978), Jamison (1979), and Underhill and Woodcock (1987) 

suggest that deformation band genesis obeys a work-hardening 

flow law. The evidence supporting this hypothesis comes from 

their microscopic observations of deformation bands. The outer 

zone of porosity reduction is the first stage in band 

development. This is followed by the onset of grain 

comminution which requires more energy to produce the 

comminuted grains within the inner zone. The last stage of 

band genesis is continued slip by cataclastic flow within the 

band. During the last phase, the resistance to slip (r/a) 

increases because of the increase in surface area caused by 

the comminution process which reduces a while r remains 

constant. This eventually leads to the abandonment of the 

deformation band. This is the reason why band displacement 

rarely exceeds a few centimeters and why new bands form 

adjacent to the old bands producing an anastomosing texture 

(Aydin, 1978; Jamison, 1979; Underhill and Woodcock, 1987). 
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One of the more perplexing aspects of deformation band 

formation is the manner in which individual sand grains 

breakdown. Studies that incorporate microscopic observations 

of deformation bands all document that the mechanical 

destruction of grains within a band is so pervasive that the 

original grain outlines are indiscernible (Aydin, 1978; 

Jamison, 1979; Young, 1982; Underhill and Woodcock, 1987; 

Freeman, 1991). Aydin (1978), based on his microscopic 

observations, generates a hypothesis regarding the manner in 

which grains breakdown. The first stage involves the 

development of grain-contact microfractures which creates 

angular fragments of the original grain. During the next 

stage, corners of these fragments are broken off as they are 

rotated and translated to produce a further reduction in grain 

size and sorting. Underhill and Woodcock (1987) also document 

a similar process of grain breakdown. This hypothesis however, 

is not all inclusive. Jamison (1978) and Freeman (1991) both 

document several cases where the displacement along a 

deformation band is minuscule, yet, there is extensive grain 

comminution. Therefore, all grain comminution within a band 

cannot be explained by the fracturing of fragments as they are 

rotated and translated. 

Jamison (1979) does not mention any significant evidence 

of point-contact microfractures in deformation bands in the 

Wingate sandstone. He does, however, observe a slight increase 
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in the amount and degree of undulose extinction in grains that 

comprise the boundary of the comminuted zone. This may 

indicate that crystal plastic mechanisms are operating during 

deformation band genesis. Jamison also observes that there is 

no change in the amount of undulose extinction in the center 

of the deformation bands which may indicate that the grains 

separate along boundaries of differential crystal plastic flow 

within grains. 

The overall purpose of this research is to study, through 

laboratory testing, the mechanical behavior of Oil Creek 

Sandstone as a function of confining pressure. In particular, 

one of the main objectives is to study the manner in which 

individual grains, under confining pressure, breakdown when 

subjected to differential stress. 

Numerous triaxial compression test studies on sedimentary 

rocks delineate three domains of deformation: brittle, 

transitional, and ductile (Handin and Hager, 1957; Griggs and 

Handin, 1960; Handin et al., 1963; Byerlee, 1968; Bernabe and 

Brace, 1990; Scott and Nielsen, 1991). Some of these studies 

are devoted to details of cataclastic flow as a deformation 

mechanism at the microscopic scale (Borg et al., 1960; 

Friedman, 1963; Dunn et al., 1973; Gallagher et al., 1974). 

Fewer studies, however, make systematic microscopic 

observations of sandstones deformed in triaxial compression 

tests (Scott, 1989; Bernabe and Brace, 1990). The majority of 
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published microscopic observations pertain to the brittle 

domain (Handin and Hager, 1957; Hoshino and Koide, 1970; Dunn 

et al., 1973). Some studies cover brittle and ductile domains 

(Borg et al., 1960; Friedman, 1963) but not the transitional 

domain. Several recent studies pertain to mechanisms 

associated with hydrostatic compaction tests (Zhang et al., 

1990a and 1990b) . In triaxial deformation tests in brittle and 

transitional domains, microscopic observations document a 

relationship between microfractures 

fractures that is identical to 

and mesoscopic shear 

shear fractures and 

microfractures in nature. That is, near the fracture there is 

an increase in the frequency of microfractures and the 

statistical orientation of the microfractures is consistent 

with the local maximum principal stress trajectory that 

produced the shear fracture. 

Therefore, there is considerable evidence from both field 

and laboratory studies that shear fractures and deformation 

bands are distinctly different features. Further study of 

these differences and the mechanical genesis of deformation 

bands is another purpose of this study. This will be 

accomplished by performing rock deformation tests on Oil Creek 

Sandstone: a porous sandstone known to contain deformation 

bands where naturally deformed. 

There are three types of testing procedures employed in 

this study. All three procedures involve subjecting a test 
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sample, at least initially, to a uniform, confining pressure. 

Because this is the only step in one of the procedures, it is 

called a hydrostatic compression test. In the other two 

testing procedures, samples, after reaching a uniform 

confining pressure, are then subsequently subjected to 

differential loads by advancing a piston onto the sample. The 

difference between these two procedures is the amount of test 

sample that is being loaded. When the test sample and the 

loading piston are the same diameter, the test procedure is 

known as a triaxial compression test. When the diameter of the 

sample exceeds the diameter of the loading piston, the test 

procedure is known as an indention test. This term is derived 

from the loading conditions. That is, since the diameter of 

the piston is smaller than the sample diameter, the piston 

must indent the sample surface as it is advanced. In addition, 

this loading condition produces deformation that is restricted 

to only a small region of the sample underneath the piston. 

9 



CHAPTER II 

TESTING PROGRAM 

As pointed out by Stearns and Friedman ( 1972) , rock 

deformed in nature is always constrained laterally, and in 

some instances vertically, by undeformed rock. This is not the 

case in triaxial tests where the deformed rock is only 

constrained laterally by a weak jacketing material and a 

compressible confining fluid. In a triaxial test taken to 

shear failure, a fracture (i.e. , a loss of cohesion or a 

discontinuity) rapidly propagates across the entire sample and 

further displacement along the fracture is relatively 

unconstrained. In an indention test, on the other hand, the 

area of the sample being loaded is always less than the total 

area of sample. Any deformation produced during the 

experiment, therefore, is constrained laterally by undeformed 

rock. The indention test does not represent a very 

geologically meaningful boundary condition, but because the 

deformation is constrained, certain aspects regarding the 

mechanics of this system might be more geologically meaningful 

than in triaxial compression tests. Lawn and Wilshaw (1975) 
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provide a comprehensive review of principles involved in, and 

applications of, indention tests. 

The purpose of triaxial compression tests is to study 

mechanical properties of Oil Creek Sandstone as a function of 

confining pressure. The purpose of indention tests is to study 

mechanisms by which Oil Creek Sandstone deforms. 

Equipment 

Equipment dictates that indention tests be performed dry. 

Therefore, triaxial compression tests are also performed dry 

in order to compare results from the two systems. Triaxial 

compression tests are carried out in a commercial, model 

#315.02, MTss pressure vessel and load frame {Figure 1). 

Indention tests are carried out in a one-of-a-kind pressure 

vessel and load frame designed by Logan and Stearns {Figure 2) 

and described in detail by Linscott (1985). In addition to 

slight design differences, there are also differences between 

the systems used for triaxial tests and indention tests in 

specifications, controls, and data acquisition systems {Table 

1) • 

Testing Material 

The sandstone used in this study is Oil Creek Sandstone, 

the basal member of the Oil Creek Formation, {Middle 

Ordovician Simpson Group) which is a high porosity, friable 

quartz sandstone. The samples are from U.S. Silica's Plant #39 

just north of Mill Creek, Oklahoma. 
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Figure 1. Photograph of the model #315.02 MTS® pressure vessel 
and load frame used in this study. 
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Strip Chart 
Recorder 

Jacketed 
Sample 

Pressure 
Vessel 

Displacement 
Transducer 

r-------------t---lLoad Cell 

Ram 

confining 
Fluid 

Ram 
Pump 

Figure 2. Schematic drawing of the Logan and Stearns pressure 
vessel and load frame (modified from Linscott 
(1985)). 
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MTS l Lo51an and Stearns 

2666.7 kN Maximum Load 888.8 kN 
l600,000 lbs.l J.200,000 lbs.1 

servo Hydraulic Control manually 
controlled _EUm_E_ controlled _E_Um_E 

137.9 MPa Maximum 206.9 MPa 
(20L 000 _ESil Conf inif!g_ Pressure l30..LOOO _ESil 

computer and xy Data acquisition strip chart 
plotter s_ystem recorder 

I internal I Load cell I external I 
internal dis_Elacement external DCDT 

I yes I axial strain I no I 
yes circumferential no 

displacement 

Table 1. Comparison of testing systems used in this study. 
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A water immersion technique (T.E. Scott, personal 

communication) is used to determine the effective porosity of 

Oil Creek Sandstone samples (Appendix B contains a description 

of this method). Effective porosity of samples used ranges 

from 33% to 35%. Samples for triaxial tests are taken from the 

same block and bedding plane horizon in order to minimize 

variations in composition and porosity. The nominal sample 

dimensions are 3.91 cm (1.5") in diameter and 8.255 cm (3.25") 

in length. 

Because of the larger size and large number of samples 

used in indention testing for this study, samples can not come 

from the same block of sandstone. Blocks are selected on the 

basis of their visual similarities in order to minimize 

variations in composition and porosity. The nominal sample 

dimensions are 10.16 cm (4.0") in diameter and 8.89 cm (3.5") 

in length. Sample preparation procedures for both the triaxial 

and indention tests are reported in Appendix c. 

Triaxial Test Design 

Triaxial compression tests are run on room dry samples, 
0 -5 -1 at 25 c, a constant strain rate of 1.34 X 10 sec , and under 

confining pressures of 5, 20, 40, 60, 80, 100, 120, and 135 

MPa. Test samples are jacketed to steel end plugs before being 

aligned with the piston in the pressure vessel (Figure 3). 

step by step procedures used in triaxial testing appear in 

Appendix D. 
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Figure 3. Photograph of the unassembled components, sample 
end plugs, for a triaxial compression test. 
either side of the components are pieces 
polyolefin shrink tubing. 
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An internal load cell and axial and circumferential 

extensometers are employed in triaxial testing (Figure 4). The 

internal loadcell permits a direct measurement of load being 

applied to the sample column. The axial extensometer measures 

the axial shortening, or strain (eA), during an experiment. The 

circumferential extensometer, on the other hand, measures 

changes in the circumference which are used to calculate 

radial strain (eR). 

Indention Test Design 

Indention tests are run on room dry samples, at 25°C, an 

-4 -1 
approximate displacement rate of 1. 76 X 10 mm(sec) , and under 

confining pressures of 44.8 MPa (low) and 124.1 MPa (high). 

The indenter is a right-circular cylinder of high strength, 

steel 2.54 cm (1.0 11 ) in diameter. Because the sample diameter 

greatly exceeds the diameter of the indenter, the deformation 

is restricted to a small region beneath the indenter and is, 

therefore, constrained by undeformed sandstone. 

The sample is sealed from the confining fluid using two 

layers of polyolef in shrink tubing and a neoprene rubber 

patch. The outside neoprene rubber patch (Figure 5) is sealed 

both to the indenter and to the inside polyolefin jacket. The 

inside jacket is also sealed at the steel base plate (Figure 

6). The outer polyolefin jacket prevents confining fluid from 

puncturing the inside jacket at the contact between the sample 

and steel base plate. The inside rubber patch rests on top of 
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Figure 4. Photograph of an assembled sample column for a 
triaxial compression test with the axial (A) and 
radial (B) extensometers and the internal loadcell 
(C) attached. The entire assembly goes inside of the 
MTS~ pressure vessel. 
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A 

E 

Figure 5. Photograph of the unassembled components of an 
indention test: A) indenter, B) outside rubber seal, 
C) inside rubber seal, D) sample, E) lead shim, and 
F) base plate. 

19 



Gland 

.-4 

.-4 
IU 
3: 

.-4 
Q) 
!Jl 
Ul 
Q) 

> O" 
Q) i:: 
)..i 

...... 
'O ::i 'O !Jl 

!Jl IU 

Q) 0.. 
)..i 

= 0.. IU 
0 
ti.. 

Piston 

Indenter 

Sample 

Base Plate 

Gland 

O" 
c: . ..... 
'O 
'O 
IU 
0.. 

= IU 
0 
ti.. 

E 
() 

Figure 6. Scaled drawing of an assembled sample column for an 
indention test inside the Logan and Stearns pressure 
vessel. 
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the sample (Figures 5 and 6) and prohibits the outside 

neoprene seal from being forced underneath the indenter as the 

confining pressure is raised which, if allowed, would cause a 

jacket leak during the test. There is a lead shim between the 

sample and base plate (Figures 5 and 6) that permits the 

sample to be easily separated from the base plate after it is 

impregnated with epoxy for thin sectioning. Step by step 

procedures used in indention testing appear in Appendix E. 
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CHAPTER III 

TEST RESULTS 

Triaxial Compression Tests 

All rocks undergo a change from brittle to ductile 

behavior at some confining pressure. This change is usually 

determined by studying stress-strain curve shapes as a 

function of confining pressure. However, in this study the 

method of Scott and Nielsen (1991) is followed where the mode 

oi deformation (brittle, transitional, and ductile) is 

determined by the macroscopic appearance of the core and not 

the characteristics of the stress-strain curve (Figure 7). 

Brittle behavior is characterized by through going shear 

fracture(s) that offsets the core boundary. Transitional 

behavior (between brittle and ductile behavior) is 

characterized by cataclastic zones that do not offset the core 

boundary and are wider, in general, than those accompanying 

shear fracture(s). Purely ductile behavior is characterized by 

axial shortening accomplished by crushed zones approximately 

perpendicular to the long axis of the sample. Scott and 

Nielsen (1991) report significant barreling of samples 
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Figure 7. Illustration of deformation modes based on the 
macroscopic core appearance as a function of 
confining pressure. The symbols are defined as 
B=brittle behavior, T=transitional behavior, 
D=ductile behavior. 
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associated with transitional and ductile behavior taken to 7% 

and 8% axial shortening. This characteristic is not observed 

in cores in this study that were shortened only 3% to 4%. Some 

deformed samples display characteristics of both transitional 

and ductile behavior (Figure 7). 

Plotting the behavior mode of Oil Creek Sandstone on a 

confining pressure versus porosity (initial) graph, an 

expanded version of the method used by Scott and Nielsen 

(1991), indicates that results here do not exactly agree with 

their predictions (Figure 8). The confining pressures at which 

the lower boundary (boundary between brittle and transitional 

behavior) and upper boundary (boundary between transitional 

and ductile behavior) of transitional behavior occur is much 

higher for Oil Creek Sandstone than are the same boundaries 

for the lower porosity sandstones used by Scott and Nielsen 

(1991). 

This discrepancy could be explained by differences in 

test conditions and/or mineral composition. The tests reported 

here are run under room dry conditions. Even though a thorough 

rnineralogic analysis was not performed, microscopic 

observations indicate that the predominate cement type is 

quartz which is in agreement with the petrographic analysis of 

Pittman (1981). Tests in Scott and Nielsen (1991), on the 

other hand, are run under drained conditions (i.e., constant 

pore pressure). The mineral composition of the specific 

24 



140 

D 

120 D 

100 D 

0 80 D 
CL 
:::::IE 

.s 
u 

CL 
60 T & D 

40 T 

20 B 

B 
0 

0 5 10 15 20 25 30 35 40 

Percent Porosity 

Figure 8. Deformation modes of sandstones in confining 
pressure-porosity space. The dashed line represents 
the upper boundary of brittle behavior the solid 
line represents the lower boundary of ductile 
behavior from Scott and Nielsen (1991). The symbols 
on the right are from this study (defined in Figure 
7) • 

25 



sandstones discussed in Scott and Nielsen (1991) are actually 

reported in Scott (1989). The two high porosity sandstones 

(22.2% and 27.6%) used in their study have relatively high 

clay contents (6% and 10%, respectively). If this clay is 

water-bound, then the confining pressure at which the lower 

and upper boundaries of transitional behavior occurs, for 

these sandstones deformed under drained conditions, is 

understandably lower than would be expected for a quartz 

sandstone of the same porosity deformed dry. 

Data reduction for triaxial tests utilizes a spreadsheet 

program that generates a stress-strain curve. Calculations 

critical to generating the stress-strain curves are 1) stress 

difference which is calculated using the inte~nal load cell 

that measures differential force and 2) axial strain which is 

calculated using displacement of the internal piston corrected 

for elastic distortion. 

The initial stage of deformation in most materials is 

elastic. With continued deformation, the material eventually, 

in most cases, behaves inelastically (i.e., accumulate 

permanent strain) . The onset of inelastic behavior is known as 

the "yield point". A yield surface is defined by determining 

the yield points over a suite of confining pressures. 

For most sedimentary rocks over the range of confining 

pressures encountered in the shallow crust, brittle and 

occasionally transitional behavior are the dominate behavior 
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modes and ductile behavior is rarely observed. In 

unconsolidated sediments, or soils, however, this is not the 

case; the entire yield surface can be defined over this range 

of confining pressures. Researchers in soil mechanics have 

defined the yield surface for soils as a function of porosity, 

mean pressure, and differential stress and there are three 

distinct segments to this yield surface (Figure 9) . The 

"tension" segment is defined by conditions that produce 

tensile failure. The "Hvorslev" segment is defined by 

conditions that produce dilatant behavior (i.e., increase 

porosity). This segment is associated with brittle and 

transitional behavior. For most sedimentary rocks, this 

segment corresponds to the Mohr fracture envelope. The 

"Roscoe" segment of the yield surface in soil mechanics is 

defined by conditions that produce compactive behavior (i.e., 

decrease porosity). This segment is also referred to as the 

"end cap" to the yield surface and is associated with ductile 

behavior. This yield surface nomenclature will be utilized in 

this study because at high confining pressures, lightly 

cemented, high porosity sandstones are closer in mechanical 

behavior to soils than they are to normally consolidated 

rocks. 

In this study, the stress-strain curves for samples which 

exhibit brittle behavior (Figures lOa and lOb) are 

characterized by stress drops, on the order of 20 MPa, 
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Figure 9. Diagrammatic yield surface for soils. See text for 
an explanation (modified from Jones and Addis 
((1986)). 
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followed by stable sliding (i.e., a relatively flat stress­

strain curve) along the fracture plane. In both tests after 

the initial stress drop there is actually a slight increase in 

the stress difference (2 to 4 MPa) due to end effects that are 

created when fractured sample begins to impinge on the end 

plugs which, in turn, inhibits totally free slip along the 

fracture plane. 

In transitional behavior, the stress-strain curve is 

characterized by a sharp stress drop (10-15 MPa) followed by 

successive stick-slip events (Figures lOc and lOd) . In other 

words, the sample is still capable of storing, and 

subsequently releasing, elastic strain energy. After 2% 

strain, the stress-strain curve for sample number 14 (Figure 

lOc) starts to exhibit stable sliding characteristics, similar 

to the stress-strain curves for brittle behavior. At the 

macroscopic scale, this sample has a single, wide cataclastic 

zone that transects the sample. Apparently, the entire axial 

shortening was taken up within this zone. Sample number 17 

(Figure lOd) is only taken to 1% to 1.5% axial strain and does 

not exhibit stable sliding characteristics. At the macroscopic 

scale, this sample has several narrow, cross-cutting 

cataclastic zones across which the axial shortening was being 

distributed. 

The stress-strain curve at a confining pressure that 

produces both transitional and ductile behavior (Figure lOe) 
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Figure 10. Stress-strain curves for Oil Creek Sandstone 
deformed in a triaxial compression test at a 
confining pressure of a) 5 MPa, b) 20 MPa, c) 
40 MPa, d) 40 MPa. 
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Figure 10. Stress-strain curves for Oil Creek Sandstone 
deformed in a triaxial compression test at a 
confining pressure of e) 60 MPa, f) 80 MPa, g) 
100 MPa, h) 120 MPa. 
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deformed in a triaxial compression test at a 
confining pressure of i) 135 MPa. 
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has a stress drop of 2 to 4 MPa followed by successive stick­

slip events. Taking the general, average trend of the stress­

strain curve, the overall shape is similar to those of Scott 

(1989: Figures 1.11 through 1.13). 

The stress-strain curves for those samples that exhibit 

ductile behavior (Figures lOf through lOi) all have a stress 

drop (magnitude becoming less with increasing confining 

pressure) followed by successive stick-slip events of varying 

magnitude. Again, even though there are numerous stick-slip 

events, general trends of these stress-strain curves are 

similar to those of Scott (1989). Within the do~ain of ductile 

behavior, as confining pressure increases, the stress 

difference at which inelastic behavior occurs is reduced 

(compare Figures lOf through lOi). This is an indication that 

these tests are well into the cap portion of the yield surface 

for this sandstone. In an effort to completely define the cap, 

a hydrostatic compression test to 137.9 MPa (20,000 psi) was 

performed. This test, however, did not indicate any inelastic 

deformation at the macroscopic scale (Figure 11). That is, 

neither the sample nor the electronic instrumentation 

indicated any permanent strain. Therefore, it is concluded 

that hydrostatic compaction of Oil Creek Sandstone occurs 

above 138 MPa. Below 40 MPa confining pressure (Figure 11), 

radial strain values are incorrect because the jacket, and 

hence circumferential extensometer, is being forced into pores 
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on the wall of the sample. Therefore, radial strain values at, 

and beyond, 40 MPa confining pressure are adjusted to provide 

a more accurate assessment. Because the axial and radial 

strain curves do not coincide, we conclude that this material 

is not isotropic. 

The overall shape of the yield surface for Oil creek 

Sandstone is consistent with available data (Figure 12) . 

Specifically, in the brittle and transitional domains, overall 

shape and trend of the Hvorslev segment is concave downward 

and is below the Hvorlsev segments for lower porosity 

sandstones as reported by Scott and Nielsen (1991). Such 

results are in agreement with the hypothesis put forth by Dunn 

et al. (1973) that porosity is a dominant factor controlling 

the fracture strength of sandstones. In brittle behavior, 

fracture strength is usually synonymous with stress difference 

at the onset of inelastic deformation. In the ductile domain, 

the overall shape and trend of the Roscoe segment is also 

concave downward and below the Roscoe segment for Berea 

Sandstone as reported by Zhang et al. (1990c). 

There are several other observations regarding the tests 

here and those in previous studies. Transitional behavior in 

the test rock is exhibited over a range of confining pressures 

that is broader than that for lower porosity sandstones, which 

follows the trend observed by Scott and Nielsen (1991). One 

difference between tests in this study and those of previous 
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workers is that tests here are run at confining pressures 

which put the test rock into the end cap region. 

Stick-slip behavior for samples in the transitional and 

ductile domains (Figures lOc through lOi) is very unusual in 

triaxial tests on whole core samples. Stick-slip behavior is 

more characteristic in triaxial tests on samples that contain 

a pre-cut. Stick-slip behavior in whole cores has not been 

described elsewhere. Therefore, the results here could be the 

result of the equipment storing and releasing elastic strain. 

To check this possibility, a triaxial compression test was run 

on a different high porosity (~ 37%) sandstone (Cretaceous 

Antlers Sandstone) at 100 MPa confining pressure. The stress­

strain curve for this experiment does not exhibit stick-slip 

behavior. Therefore, the stick-slip behavior in Oil Creek 

Sandstone must be an intrinsic property of this particular 

sandstone. The difference in behavior may arise from basic 

differences in textural fabrics. Pores in Oil Creek Sandstone 

are larger and more irregularly spaced than are pores in 

Antlers Sandstone (Figures 13a and 13b) . The stick-slip 

behavior in the transitional and ductile domains of the Oil 

Creek Sandstone could be attributed to inhomogeneous size and 

distribution of pores that, in turn, produce: heterogeneous 

pore collapse (T.E. Scott, personal communication). An 

alternative explanation for this stick-slip behavior involves 

grain shape. Oil Creek Sandstone is composed of well rounded 
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Figure 13. Photomicrographs of undeformed a) Oil Creek 
Sandstone and b) Antlers Sandstone. The dark 
colored portions are epoxy filled pore spaces. 
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sand grains while the sand grains in Antlers Sandstone are 

angular (Figure 13a and 13b). Angular grains tend to have long 

grain contacts that when loaded will create a uniform stress 

distribution throughout the sample. Well rounded grains, on 

the other hand, tend to have point contacts that when loaded 

produce localized stress concentrations in sample. These 

localized stress concentrations create heterogeneous grain 

breakdown which produces the stick-slip behavior in the 

stress-strain curves (G. Wong, personal communication). 

Microscopic Observations of Triaxial Tests 

Systematic microscopic observations regarding the three 

modes of behavior have not been previously reported in the 

literature. Neither were disciplined microscopic studies of 

the deformation modes a major emphasis in this study. However, 

a cursory microscopic investigation was performed and these 

observations suggest certain conclusions. 

In the brittle domain, breakdown of in:lividual sand 

grains seems to be a two-stage process. Stage one is 

characterized by grain-contact microfracturing that produces 

large, angular fragments of original grains. Microfractures 

are related to high stress concentrations developed at grain 

contacts and they follow maximum principal stress trajectories 

due to point contact loading as illustrated by Gallagher et 

al. ( 197 4) . These micro fractures have a statistically 

preferred orientation parallel to the loading direction 
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(Figure 14a). Microfractures are all within two to three grain 

diameters of the shear fracture and are developed before much 

slip has accumulated on the shear fracture. The second stage 

of the breakdown process occurs as slip along the shear 

fracture increases. Here, grain breakdown is related to the 

spalling off of corners as fragments are rotated and 

translated. In turn, this produces an increase in the 

percentage of small particles thus eventually creating a gouge 

along the shear fracture (Figure 14b). 

Because transitional behavior in Oil Creek Sandstone is 

exhibited over a broad range of confining pressures, it is 

divided into two categories for microscopic study: category 1) 

transitional behavior associated with the boundary between 

brittle and transitional behavior and category 2) transitional 

behavior associated with the boundary between transitional and 

ductile behavior. Microscopic observations in category 1 

samples (Figure 15) are similar to those in the brittle 

domain. The cataclastic zones contain a high percentage of 

grain-contact microfractures that, in general, have a 

preferred orientation parallel to the loading direction. The 

main difference from brittle behavior is that in category 1 

the cataclastic zones have variable widths and can display 

cross-cutting relationships at both the micro- and macroscopic 

scales. Microscopic observations from category 2 samples 

(Figure 16) are quite different from those in category 1. 
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A. 

B. 

Figure 14. Photomicrograph of Oil Creek Sandstone deformed 
in a triaxial compression test in the brittle 
domain a) prior to and b) after slip along the 
fracture plane. The scale bar is parallel to 
the load axis. 
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A. 

B. 

Figure 15. 

. 
' Photomicrograph of Oil Creek Sandstone deformed 

in a triaxial compression test at the lower 
boundary of the transitional domain. a) narrow 
shear zone and b) broad shear zone. The scale 
bar is parallel to the load axis. 
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Oriented grain-contact microfractures still exist but the 

number of grain-contact microfractures is much lower in 

category 2 (compare Figure 15 to Figure 16) . In addition, 

there is a significant increase in the percentage of small 

particles (compare Figure 15 to Figure 16). This increase in 

the percentage of small particles is not an artifact of 

displacement along the cataclastic zone. Original grain 

outlines are preserved in grains containing grain-contact 

microfractures, i.e., fragments have not been rotated (Figure 

16) . 

Microscopic observations in the ductile domain (Figure 

17) are consistent with those of Bernabe and Brace (1990: Fig. 

7), where deformation is characterized by grain-contact 

microfractures but they no longer have a statistically 

preferred orientation. This could be attributed to the loss of 

pore space, thereby increasing the number of high-stress­

difference, grain contacts in and out of the plane of the thin 

section. In addition, there is a relatively low percentage of 

small particles, or gouge, in the ductile domain when compared 

to category 2 in the transitional domain (compare Figure 16 to 

Figure 17). 

Microscopic Observations of Hydrostatic Compression Test 

The sample deformed in the hydrostatic compression test 

does not exhibit any inelastic deformation at the macroscopic 

scale. studies by Zhang et al. ( 199 Oa, 199 Ob) indicate that 
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Figure 16. Photomicrographs of Oil Creek Sandstone 
deformed in a triaxial compression test at the 
upper boundary of the transitional domain. The 
scale bar is parallel to the load axis. 
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Figure 17. Photomicrograph of Oil Creek Sandstone deformed 
in a triaxial compression test in the ductile 
domain. The scale bar is parallel to the load 
axis. 
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the onset of pure hydrostatic compaction is accompanied by 

pervasive grain crushing (1990a: Figure 4). Microscopic 

observations of the hydrostatic compression test on Oil Creek 

Sandstone do not indicate total grain crushing. The sample 

does, however, contain isolated grain-contact microfractures 

that appear to be related to the hydrostatic compression test. 

That is, they are not inherited. The presence of these 

microfractures may indicate that the sample is close to the 

onset of hydrostatic compaction. Zhang et al. (1990b), using 

acoustic emission, delineate two stages in hydrostatic 

compaction. In stage 1, the grains rotate and translate. Grain 

crushing, on the other hand, is associated with stage 2. It 

may be, then, that grain-contact fracturing can actually occur 

in stage 1. Assuming this to be the case, results here are 

interpreted to indicated that pure hydrostatic compaction of 

Oil Creek Sandstone should occur at a confining pressure 

between 137.9 MPa and 145 MPa. 

Indention Tests 

Because mechanical behavior as a function of confining 

pressure for Oil Creek Sandstone is delineated in triaxial 

compression tests, indention tests are performed at only two 

confining pressures; 44.8 MPa (low) and 124.1 MPa (high). At 

each confining pressure, tests are run to varying amounts of 

indention: 1.59 mm, 3.28 mm, and 4.76 mm. S~mple indention 
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begins at the first force drop, or inflection point, on the 

force-displacement record (prior to this point most of the 

distortion is elastic). Therefore, the amount of indention is 

measured from this point. 

In indention tests, stress-strain curves cannot be 

calculated from force displacement records because the entire 

sample is not being loaded. Therefore, observations of, and 

interpretations from, indention tests are related to force­

displacement records, not stress-strain curves. Data for each 

experiment is recorded on a conventional strip-chart recorder 

then digitized to generate force-displacement records (Figures 

18 through 23). 

There are several similarities between all force­

displacement relationships that are independent of confining 

pressure. First, the overall trend of the records indicates 

that each increment of indention requires an increase in 

applied load (compare Figures 18 through 23). This should be 

expected because deformation in these tests is constrained. 

Such is also the case in indention tests reported by Suarez­

Ri vera et al. (1990). Another similarity is that with force 

drop magnitudes greater than 5 kN, there is al~ays an audible 

grinding or crushing sound outside the pressure vessel. 

The inflection point on the force-displacement records 

for low confining pressure tests (Figures 18 through 20) 

occurs at an applied load between 60 and 80 kN. In addition, 
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the initial portion of the record up to 1. 5 mm to 2. O mm 

indention is characterized by frequent force drops with 

intermittent periods where force drops are severely reduced or 

non-existent. The periodic, larger force drops are interpreted 

as sudden, discrete slip along the edge of the indenter. The 

intervening periods between large force drops are interpreted 

as a change in the deformation mechanism from sudden, discrete 

slip to increased compaction. Beyond 2 mm, the force­

displacement records become relatively smooth which indicates 

a consistent change in force. This consistent change in force 

may indicate uniform compaction. 

The inflection point on force-displacement records for 

high confining pressure tests (Figures 21 through 23) occurs 

at an applied load between 40 and 50 kN. In addition, the 

entire force-displacement record contains significant force 

drops. In general, the magnitude of these force drops is 

greater in high confining pressure tests than in low confining 

pressure tests. This could be accounted for by an increase in 

resistance to slip (i.e., mostly friction) between grains at 

the higher confining pressure. Beyond 2 mm indention, large 

force drops with intervening periods of reducP.d force drops 

become less frequent. Again, the intervening periods are 

interpreted as a change in deformation mechanism, possibly a 

more uniform compaction. 

stress-strain curves for tests at 40 and 120 MPa (Figures 
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lOc, lOd, and lOh) are also characterized by frequent stress 

drops. The primary difference between triaxial compression and 

corresponding indention tests is that in indention tests there 

is an audible grinding or crushing sound associated with force 

drops that do not occur in triaxial compression tests. In 

addition, the stress-strain curve at 120 MPa (Figure lOh) does 

not have portions where stress drops are suppressed to the 

same extent as are force drops in the indention tests. These 

observations lead to the possible conclusion that stress drops 

in triaxial compression tests and force drops in the indention 

tests are due to different processes. This conclusion is 

further indicated by microscopic observations reported later. 

Deformation in low confining pressure indention tests is 

restricted to the region directly underneath the indenter 

(Figure 24) . This pattern is consistent with the pattern 

reported by Suarez-Rivera et al. (1990). The deformed region 

under the indenter contains two sub-regions. There is a 

central, somewhat triangular region (shaded region in Figure 

24) that develops between 1.59 and 3.18 mm of indention. At 

the microscopic scale, this region is characterized by a 

nearly complete loss of porosity and sand grains are severely 

broken and crushed. In the damaged region outside the 

triangle, the sandstone is also compacted and crushed but to 

a lesser extent than within the triangle. 

In high pressure indention tests, macroscopic deformation 
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A. 

B. 

Figure 24. Macroscopic appearance of Oil Creek Sandstone 
deformed in an indention test at a confining 
pressure of 44.8 MPa a) photograph of an actual 
sample and b) schematic drawing ·of the deformed 
region. Arcuate lineations are saw marks. 
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initially extends beyond the region directly underneath the 

indenter (Figure 25) which indicates that indenter 

displacement is being distributed over a broader region than 

in low confining pressure tests. The deformed region expands 

laterally, away from the indenter, with increasing amounts of 

indention up to approximately 4.50 mm. At this stage, indenter 

displacement again becomes distributed over a narrow region as 

in low confining pressure, indention tests. Why this happens 

is a matter of conjecture. The expanded deformation region 

contains features, here called "tendrils", that extend from 

underneath the indenter toward the top of the sample. When a 

tendril reaches the top free surface slip can occur along the 

tendril. Force drops that are accompanied by grinding or 

crushing sounds and occur throughout the force-displacement 

records (Figures 21 through 2 3) are interpreted as 

displacement occurring along tendril (s). At high confining 

pressure, the triangular region of severe compaction and grain 

crushing is also present (Figure 25). This region again 

develops between indentions of 1.59 mm and 3.18 mm. 

Microscopic Observations of Indention Tests 

Cursory microscopic observations indicate that two modes 

of grain fracturing occur in these indention tests. Mode 1 

grain fracturing is by simple grain-contact microfractures. 

Mode 2 grain fracturing, however, is grain crushing where the 

fractures do not emanate solely from grain contacts, but 
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A. 

B. 

Figure 25. Macroscopic appearance of Oil Creek Sandstone 
deformed in an indention test at a confining 
pressure of 124 .1 MPa a) photograph of an 
actual sample and b) schematic drawing of the 
deformed region. Arcuate lineations are saw 
marks. 
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rather polygonize the grain into randomly oriented, small 

segments. It is also noted that the rate of change between 

mode 1 and mode 2 grain fracturing is greatest within 2 mm of 

either side of the indenter edge. This observation prompted 

the use of a grid pattern to make systematic microscopic 

observations. Within 2 mm of the indenter edge, grid spacing 

is 0.5 mm on a side and extends 8 mm below the bottom of the 

indenter. Grid spacing for the rest of the thin section is 1 

mm on a side. Within smaller grids, the area analyzed is a 

circle 0.25 mm in diameter while within larger grids, 

observations are made in 0.5 mm diameter circles. Because the 

indention test is axially symmetric, microscopic analysis is 

only performed over one-half of the deformed region. The 

analysis entails assigning a number at each location that 

characterizes the deformation of all grains inside of, and in 

contact with, the circle. The characterization number is based 

on presence, amount, and types of grain fracturing observed as 

follows: 

o = grains contain no microfractures. 

1 = unfractured grains exceed mode 1 fractured grains and 

no mode 2 grain fracturing. 

2 = mode 1 fractured grains exceed unfractured grains and 

no mode 2 grain fracturing. 

3 = only mode 1 grain fractures are present. 

4 = mode 1 grain fractures exceed mode 2 grain fractures 
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but some unfractured grains are present. 

5 = all grains are fractured and mode 1 grain fractures 

exceed mode 2 grain fractures. 

6 = mode 2 grain fractures exceed mode 1 grain fractures 

but some unfractured grains are present. 

7 = all grains are fractured and mode 2 grain fractures 

exceed mode 1 grain fractures. 

Even though this system is subjective, there is a certain 

level of consistency since analysis is done by the same 

operator. After analyzing each thin section, observation 

circle numbers are contoured by hand to generate damage 

contour maps. 

Damage contour maps for low confining pressure tests 

(Figures 26, 28, and 30) illustrate the change in grain scale 

deformation with increasing amounts of indention. At 1.59 mm 

of indention (Figures 26 and 27), a change from mode 1 to mode 

2 grain fracturing occurs as the indenter edge is approached. 

Mode 2 grain fracturing appears to initiate at the edge of the 

indenter and extends vertically into the deformed region. With 

increasing indention to 3.18 mm and 4.76 mm the zone of mode 

2 grain fracturing continuously widens, extends deeper into 

the sample, and the trend of the zone diverges from vertical 

(Figures 28 through 31) . Two other features seem to accompany 

increasing indention: 1) unfractured, or sligh~ly fractured, 

grains begin to be incorporated into the zone of mode 2 grain 
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Photomicrograph mosaic of the region underneath 
the edge of the indenter in figure 26. 
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Figure 29. Photomicrograph mosaic of the region underneath 
the edge of the indenter in figure 28. 
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Figure 30. 
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deformed in an indention ( 4. 7 6 mm) test at a 
confining pressure of 44.8 MPa. See text for 
explanation of contour values. The boundary 
between damaged and undamaged regions is 
denoted by the letter B. The hatchured region 
is not analyzed. 
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Figure 31. Photomicrograph mosaic of the region underneath 
the edge of the indenter in figure 30. 
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fracturing and 2} the region of mode 1 grain fracturing 

surrounding the zone of mode 2 grain fracturing grows 

asymmetrically (compare Figures 26 through 31) . 

A complete and thorough analysis of the highly compacted, 

triangular region beneath the indenter, is not possible 

because of grain plucking during the thin sectioning process. 

However, examination of the unplucked grains in this region 

indicates that porosity is nearly eliminated (compare Figures 

13a and 32a) . Grains within this region exhibit both modes of 

grain fracturing (Figure 32b), but mode 2 appears to dominate. 

As the highly compacted region is approached from above or 

below, there is a gradual change from predominantly mode 1 to 

predominantly mode 2 grain fracturing (Figure 33). 

Additionally, there is a gradual reduction in porosity and an 

increase in the percentage of small particles. 

Several other microscopic observations regarding the low 

confining pressure tests are: 

1) a sharp boundary exists between deformed and 

undeformed regions (Figures 27, 29, and 31). 

2) mapping grain-contact microfractures provides a method 

for mapping maximum principal stress trajectories underneath 

the indenter. In the test to 3.18 mm of indention, 

microfracture histograms of frequency versus orientation 

(located in Appendix F) indicate that microfra~tures follow 

the maximum principal stress trajectories expected for an 
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A. 

B. 

Figure 32. Photomicrograph of the highly compacted, 
triangular region in figure 24: a) plane light 
b) polarized light. 
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A. 

B. 

Figure 33. Photomicrograph of the border of the compacted 
region in figure 25: a) above and b) below this 
region. 
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See text for explanation of their significance. 
The solid lines are interpreted maximum 
principal stress trajectories. 
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elastic solution (Figure 34). The microfracture orientations 

(Figure 34) are selected on the dominance of the given 

micro fractures. That is, any orientation cell whose 

microfracture frequency is three times the mean frequency is 

considered significant. Usually underneath the center of the 

indenter, there is not a strong preferred orientation to 

microfractures. This could be attributed to: 1) post­

fracturing rotation and translation of fragments from their 

original position and/or 2) microfractures developing in 

several orientations due to large stress differences at 

numerous grain contacts. These data, however, do not preclude 

stress fields associated with rheologies, other than elastic, 

if such stress fields are similar in response. 

3) Though not quantitatively measured, there seems to be 

an increase in the amount of undulose extinction when 

comparing the undeformed region to the highly compacted 

region. 

As indicated earlier, in high confining pressure tests, 

indenter displacement is distributed over a broad region up to 

approximately 4.5 mm of indention. Microscopically, there is 

no sharp boundary between mode 1 and mode 2 grain fractures at 

indentions less than 4.5 mm. Because of this, and the grid 

arrangement, damage contour maps for tests to 1.59 mm and 3.18 

nun of indention do not realistically illustrate the grain 

scale damage. In the 1.59 mm indention test, mode 1 is the 
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dominate mode of grain fracturing. Near the edge o f the 

indenter, there is a small increase in the amount of mode 2 

grain fracturing, but it is not concentrated (Figure 35). 

Increasing indention to 3.18 mm, indicates a small increase in 

amount, and aerial extent, of mode 2 grain fracturing but mode 

1 still dominates {Figure 36). At 4.76 mm indention, a well 

defined zone of mode 2 grain fracturing develops adjacent to 

the edge of the indenter {Figures 37 and 38). The trend of 

this zone is near vertical. Unbroken, or slightly broken, 

grains seem to have been incorporated into the zone of mode 2 

grain fracturing (compare Figures 35, 36, and 38). 

The highly compacted region in high confining pressure 

tests has virtually identical characteristics to this same 

region in low confining pressure tests. Here too, there 

appears to be an increase in undulose extinction when 

comparing the undeformed region and highly compacted regions. 

The last microscopic observation regarding these 

indention tests is independent of confining pressure. This 

observation is that strain within the deformed region is 

heterogeneously distributed over small domains (Figure 39). 

Because of this, the exact positioning of a small sampling 

circle within the deformed region great ly effect s t he 

numerical value assigned to it. Because of rapid, but random, 

changes in damage, contour maps in some areas may be difficult 

to understand (Figures 26, 28, 30, and 37). 
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Figure 35. Photomicrograph mosaic of the region underneath 
the edge of the indenter (same position as in 
Figure 28) in Oil Creek Sandstone deformed in 
an indention ( 1. 59 mm) test at a confining 
pressure of 124.1 MPa. 
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Figure 36. Photomicrograph mosaic of the region underneath 
the edge of the indenter (same position as in 
Figure 30) in Oil Creek Sandstone deformed in 
an indention ( 3 .18 mm) test at a confining 
pressure of 124.1 MPa. 
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Damage contour map for Oil Creek Sandstone 
deformed in an indention (4.76 mm) test at a 
confining pressure of 124.1 MPa. See text for 
explanation of contour values. The boundary 
between damaged and undamag~d regions is 
denoted by the letter B. The hatchured region 
is not analyzed. 
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Figure 38. Photomicrograph mosaic of the region underneath 
the edge of the indenter in figure 37. 
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Figure 39. Photomicrograph illustrating heterogeneous 
distribution of strain in an indention test. 
Points A, B, and C are the centers of 0.5 mm 
diameter circles. 
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To gain a better understanding of physical parameters 

(i.e. , mean pressure, shear and normal stress conditions, 

invariants of deviatoric stress and/or strain, etc ... ) that 

control mode 1 and mode 2 grain fracturing, it would be 

desirable to compare these microscopic observations to already 

existing theoretical solutions. Unfortunately, the boundary 

conditions used in most published theoretical solutions are 

either dissimilar to those in this study or unstated. 

Therefore, comparison between microscopic observations and 

theoretical solutions is precluded at this time. However, the 

finite element study by Wang and Lehnhoff (1976) does exhibit 

some similarities with the indention tests at the low 

confining pressure. Unfortunately, their results are reported 

in "degrees of compressive failure" which does not provide a 

physical basis to understand how the material deforms. 

78 



CHAPTER IV 

COMPARISON OF MICROSCOPIC RESULTS 

TO NATURAL DEFORMATION BAND TEXTURES 

There seems to be a similarity between grain scale 

textures in tests done here and textures in naturally formed 

deformation bands. In triaxial compression tests that exhibit 

brittle behavior grain scale deformation at first appears 

similar to that observed in natural deformation bands (compare 

Figure 14 to Figure 40). However, the difference is that the 

experimentally created texture (Figure 14b) is not produced 

until slip has occurred along the shear fracture (compare 

Figures 14a and 14b) . Based on this observation, and the 

definition of a fracture, we conclude that deformation band 

generation is not associated with conditions that produce 

brittle behavior in porous sandstones. This also supports 

Aydin's (1978) hypothesis that deformation bands are not a 

discontinuity. 

Recently, Scott ( 1989) put forth the hypothesis that 

deformation bands are created under conditions similar to 

those that produce transitional behavior in porous sandstones 
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Figure 40. Photomicrographs of deformation bands 
naturally deformed Oil Creek Sandstone. 
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in the laboratory. The evidence supporting his hypothesis 

comes from the macroscopic appearance of triaxial compression 

test samples. Comparing the microscopic texture in Oil Creek 

Sandstone associated with the upper boundary of transitional 

behavior to natural deformation bands (compare Figure 16 to 

Figure 40), indicates that the textures are nearly identical. 

Based on similarities in grain scale deformation, we might 

refine Scott's 1989 hypothesis to: deformation bands are 

created under conditions that place the sandstone at, and/or 

span, the boundary of the transitional and ductile domains. 

Because this hypothesis is based on limited data, further 

testing, and more detailed studies at the microscopic scale, 

of transitional behavior in sandstones is required to accept 

or alter this hypothesis. Grain scale deformation well into 

the ductile domain is definitely not similar to textures in 

deformation bands (compare Figure 17 to Figure 40). 

The only similarities between grain scale deformation in 

indention tests and deformation bands occurs in low confining 

pressure tests (compare Figures 27, 29, and 31 to Figure 40). 

Textures developed at the boundary between deformed and 

undeformed regions, and within the zone of mode 2 grain 

fracturing, are similar to textures in natural deformation 

bands. In addition, the growth and development of this zone of 

mode 2 grain fracturing is similar that of deformation bands. 

That is, with continued displacement, the zone becomes wider, 
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the degree of sorting is reduced, and whole grains, or grains 

containing few microfractures, are incorporated into the zone. 

However, in this study, the zone of mode 2 grain fractur i ng is 

never abandoned as usually is the case with natural 

deformation bands. This could be attributed to an insufficient 

amount of displacement or an artifact of the mechanics of the 

indention test. Because a physically sound, theoretical 

solution, with the appropriate boundary conditions, does not 

exist for indention tests in this study, it would be premature 

to generate a hypothesis regarding the creation of deformation 

bands based of these results. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

Conclusions 

A. Triaxial Compression Tests 

1) The behavior mode of Oil Creek Sandstone as a 
function of confining pressure does not follow 
the exact path established in other studies 
(Scott and Nielsen (1991)). Brittle behavior 
extends to significantly higher confining 
pressures than in earlier studies. 

2) Stick-slip behavior exhibited in the stress­
strain curves in the transitional and ductile 
domains appears to be related to either 
heterogeneous size and distribution of pores or 
well rounded sand grains within Oil Creek 
Sandstone. 

3) The entire yield surface, including the cap 
portion, for Oil Creek Sandstone could be 
expected at confining pressures encountered in 
the shallow crust. 

a) The Hvorslev segment of the yield surface 
follows the trend established by Dunn et 
al. (1973). That is, porosity is a 
dominate factor controlling fracture 
strength. 

b) Based on microscopic observations, the 
hydrostatic compaction point of Oil creek 
Sandstone probably occurs between 138 MPa 
and 145 MPa. 
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4) In the brittle domain, grain contact 
microfractures dominant and are parallel to the 
load axis. Slip along a fracture plane is 
required to produce an extreme reduction in 
grain size. 

5) In the transitional domain, grain scale damage 
in Oil Creek Sandstone is divided into two 
categories. Category 1, associated with the 
lower boundary of transitional behavior, is 
similar to brittle behavior. That is, grain 
contact microfractures that parallel the load 
axis are dominate and there is very 1 i ttle 
change in grain size. Category 2 is associated 
with the upper boundary of transitional 
behavior. Here there are still grain-contact 
microfractures that are parallel to the load 
axis, but they are fewer in number and there is 
a significant increase in the percentage of 
small particles even in the absence of apparent 
slip along the cataclastic zone. 

6) In the ductile domain, grain-contact 
microfractures again dominate, but there is no 
preferred orientation. In addition, there is 
virtually no increase in the percentage of 
small particles. 

B. Indention Tests 

1) Force-displacement records, at both confining 
pressures, indicate that more force is required 
to produce more indention. This confirms that 
the deformation is, in fact, constrained. 

2) At the macroscopic scale, confining pressures 
used in this portion of the · study produce 
distinctly different deformation patterns. 

3) There are two different modes of grain 
fracturing that operate in all indention tests. 
Mode 1 grain fracturing is simply grain-contact 
microfractures. Mode 2 grain fracturing, on the 
other hand, is grain crushing which polygonizes 
the grain into randomly oriented, small 
segments. 

4) Strain is heterogeneously distributed within 
the damaged region in all indention tests. 
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5) At both confining pressures, there appears to 
be an increase in the amount of undulose 
extinction in the highly compacted region when 
compared to the undeformed region. 

6) In low confining pressure tests, with 
increasing amounts of indention, the zone of 
mode 2 grain fracturing becomes wider, there is 
an increase in the percentage of small 
particles, and unfractured or slightly 
fractured grains become incorporated into the 
zone. 

7) In low confining pressure tests, grain-contact 
microfractures appear to follow the maximum 
principal stress trajectories for an elastic 
solution. 

C. Microscopic Test Results and Natural Deformation Bands 

1) Based on microscopic observations, deformation 
bands are created under conditions that place 
the sandstone at, and/or span, the boundary 
between transitional and ductile behavior. 

2) 

a) The texture associated with category 2 in 
transitional behavior is very similar to 
the texture of natural deformation bands 
in Oil Creek Sandstone. 

b) The texture associated with brittle 
behavior is also somewhat similar to 
natural deformation bands, but it is not 
produced until observable slip along a 
fracture plane has occurr0d. This is not 
the case with natural deformation bands. 

c) The texture associated with ductile 
behavior is not similar to natural 
deformation bands. 

In low confining pressure 
texture associated with, 
of, the zone of mode 2 
similar to features in 
bands. 
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Recommendations for Future Work 

A. More triaxial compression testing on high porosity, 
quartz sandstones is needed to constrain deformation 
mode as a function of confining pressure. 
Specifically, studying the effects of composition, 
grain shape, and sorting on the deformation mode. 

B. Detailed microscopic study across transitional 
domain would 1) enlarge the data base concerning 
transitional behavior, and 2) test the hypothesis of 
where deformation bands are created. 

c. Derivation of an appropriate theoretical solution 
for these indention tests would delineate physical 
parameters that control genesis of the zone of mode 
2 grain fracturing. 
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APPENDIX A 

POROSITY DETERMINATION METHOD 

Effective porosity is determined using a water immersion 

technique suggested by T.E. Scott. A sizeable chip or core of 

rock is tied with a piece of light weight, non-braided thread 

(to reduce wicking) approximately 20 cm long, leaving a 10-15 

cm long tail. The sample is then placed in a beaker of de­

ionized water which, in turn, is placed in a vacuum chamber. 

To ensure full saturation, the sample should be left under 

vacuum for 12 to 24 hours depending on sample permeability. 

Select a beaker that is large enough that the sample can be 

suspended without touching the sides while totally immersed in 

water. After the samples are fully saturated, determine the 

combined mass of the de-ionized water and beaker. Next, pick 

up the saturated sample by the thread tail, remove excess 

water, place the sample on the beaker bottom, and record the 

saturated mass (Msat>. Next, using the tail, suspend the sample 

under water without touching the beaker sides and record the 

suspended mass (Msus>. Next, dry the sample after removing the 

thread (without damaging the sample). To do this place the 
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sample in a 70°C oven for 24 hours. After the sample is dry, 

record the dry mass (Mdry) . By measuring the dry mass last, any 

error in measurement due to loss of sand during the saturation 

process is reduced. Obviously, the more friable the sample is 

then the more care must be taken during the entire procedure. 

The effective porosity is determined using the following 

equations: 

Vpore = (Msat - Mdry) + pfluid 

Vsolid = (Msus + Mdry - Msat) 

Vtotal = Vpore + Vsolid = Msus 

where: 

3 V = volume (cm) 

M = Mass (g) 

P = density (g\cm3
) 

~rif = effective porosity 
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APPENDIX B 

ROCK SAMPLE PREPARATION 

The friable nature of the Oil Creek Sandstone precludes 

right-circular cylindrical samples being prepared in the 

standard manner using diamond core bits. Instead the dry rock 

must be manually cored. This process involves using a thin­

walled PVC, or metal, pipe with an inside diameter equal to 

the desired diameter of the sample. For ease of coring, cut 

saw-tooth like notches into one end of the pipe coring tool. 

An aluminum or plastic cylinder, with an outside diameter 

slightly smaller than the inside diameter of the coring tool 

is used to guide the coring tool as it penetrates the rock. 

The guide is chuck mounted in a drill press and the coring 

tool is slid over the guide. Once the rock to be cored is in 

place and securely fastened, a cylindrical test sample is 

manually produced by gently rotating the coring tool back and 

forth while applying a slight downward pressure. The ends of 

the test cylinder are polished using 400 grit emery paper and 

a V-block to produce right-circular cylinders. The emery paper 

is mounted on a smooth surface using rubber cement. Set the V-
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block on the emery paper and hold with one hand. Using the 

other hand, hold the sample against the V-block and begin to 

gently move the sample and V-block together in a circular 

motion. After one sample end is squared to the cylinder wall, 

turn the sample over and finish the other end in a similar 

fashion, grinding down to the appropriate sample length. 
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APPENDIX C 

SAMPLE COLUMN AND SAMPLE TESTING PROCEDURES 

FOR TRIAXIAL TESTS 

Sample Column Assembly Procedures 

Step #1: Prepare the following items: 

1- Right-circular cylindrical rock sample 3.91 cm (1.5") 

in diameter and 8.255 cm (3.25") in length. 

2- 3.81 cm (1.5") diameter pieces of polyolefin shrink 

tubing 17.78 cm (7.0") in length. 

Step #2: Clean the end plugs with a degreasing agent (e.g., 

Acetone). 

Step #3: Place a continuous bead of Thermogrip® hot melt glue 

around the circumference in the middle of each end plug. 

Step #4: Place the bottom end plug on a solid right-circular 

cylinder of metal 2. 54 cm ( 1. O") in diameter and 5. 08 cm 

( 2. O") long. Next, assemble the rest of the sample column 

(i.e., rock sample-end plug). 

step #5: Slide one piece of shrink tubing over the sample 

column. Next, place a solid, right-circular cylinder of metal 

2.54 cm (1.0") in diameter and 5.08 cm (2.0") long on top of 
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the sample column. Then place a weight of about 4.5 kg on top 

of the metal cylinder. Note: From this point on, keep the 

weight on top of the sample column. 

Step #6: Shrink the tubing with a heat gun making sure to get 

a good bond between the jacket and the hot melt glue. Let cool 

10-15 minutes and repeat Step #3. 

Step #7: Once the hot melt glue is set, repeat Step #5 with 

the other piece of shrink tubing. 

Step #8: Let cool 15-20 minutes, remove the weight and trim 

off excess polyolefin with a razor blade. 

Testing Procedures 

Step #1: assemble the sample column (see Figure 3 in text). 

Step #2: attach the axial and circumferential extensometer to 

sample making sure both devices are centered. 

Step #3: insert sample column into pressure vessel on top of 

the load cell (see Figure 4 in text) and wire in the 

instrumentation. 

Step #4: seal pressure vessel and carefully raise confining 

pressure to the desired level. 

Step #5: after reaching the desired confining pressure, let 

the loadcell equilibrate for 5 minutes. 

step #6: start the data acquisition system and then the test. 

step #7: terminate the test at 2%-3% axial shortening and 

then carefully remove the axial load and slowly bleed the 

confining pressure. 
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Step #8: open the pressure vessel, unhook instrumentation, 

remove sample column from pressure vessel, and remove the 

instrumentation. 

Step #9: the last step is to impregnate the sample with epoxy 

for thin-sectioning purposes. Appendix E contains a 

description of the epoxy and impregnation technique. 
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APPENDIX D 

SAMPLE COLUMN ASSEMBLY AND TESTING PROCEDURES 

FOR INDENTION TESTS 

Sample Column Assembly Procedures 

Step #1: Prepare the following items: 

1- Right-circular cylindrical rock sample 10.16 cm 

(4.0") in diameter and 8.89 cm (3.5") in length. 

2- 10.16 cm (4.0") diameter pieces of polyolefin shrink 

tubing 13.97 cm (5.5") in length. 

1- 0.16 cm (0.063") thick neoprene rubber patch with an 

outside diameter of 10.16 cm (4.0") and an inside diameter of 

1.59 cm (0.625"). Scuff one face of the rubber patch. 

1- 0.16 cm (0.063") thick neoprene rubber patch with an 

outside diameter of 8.89 cm (3.5") and an inside diameter of 

3 cm (1.18"). This rubber patch can be reused in other tests. 

1- 0.04 cm (0.016") thick lead patch with an outside 

diameter of 10.16 cm (4.0"). 

1- #22 gage wire 20 cm (7.87") in length. 

step #2: Clean the indenter and base plate with a degreasing 

agent (e.g., Acetone). 
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Step #3: Place indenter on a countertop with the indenting 

face up. Slide rubber patch with larger outside diameter, 

scuffed face down, over indenter. Adjust rubber patch such 

that 2-3 mm are above the groove in the indenter. 

Step #4: Seal the rubber patch at the groove in the indenter 

using the #22 gage wire. 

Step #5: Place a continuous bead of Thermogrip® hot melt glue 

at the following areas: 

a) the contact of the rubber and indenter (cover the 

wire) 

b) the outside diameter of the rubber patch 

c) the circumference of the base plate. 

Step #6: Place a thin film of molykote® (MoS2 ) on upper 

surf ace of base plate and then place lead shim on top of base 

plate. Trim the shim around the base plate with a razor blade. 

Step #7: Slide one piece of polyolefin shrink tubing over a 

solid, right-circular cylinder of aluminum 10.16 cm (4.0") in 

diameter and 12.7 cm (5.0") long. Place the indenter-rubber 

patch assembly on top of the cylinder. Hold the rubber patch 

down on top of the cylinder with a thin-walled PVC pipe with 

an inside diameter of 7.62 cm (3.0"). Using a heat gun, shrink 

only the polyolef in that extends above the aluminum cylinder 

until it contacts the rubber patch. Quickly apply pressure 

around the outside edge of the rubber patch, using a thick­

walled PVC pipe with an outside diameter of 10.16 cm (4.0"), 

100 



to bond the polyolefin and the hot melt glue. 

Step #8: Let cool 1-2 minutes then remove assembly from the 

cylinder. Hold the jacket assembly with the indenter in your 

palm and place the second rubber patch around the indenter and 

carefully slide the sample into the jacket assembly. Note: The 

sample should contact the indenter first and remain in contact 

with the indenter. 

Step #9: Slide the lead shim-base plate assembly into the 

jacket assembly until it contacts the sample. 

Step #10: Place the entire sample assembly, with base plate 

down, on a solid, right-circular cylinder of steel 5.08 cm 

(2.0 11 ) in diameter and length. Using the thick-walled PVC pipe 

from Step #7, hold the jacket assembly down on the rock sample 

with one hand while shrinking the polyolefin around the base 

plate. 

step #11: Remove the PVC pipe and place an approximately 4.5 

kg weight on the indenter. Finish shrinking jacket with the 

heat gun making sure to get a good bond between the polyolef in 

and the hot melt glue. Note: From this point on, always keep 

the weight on the indenter. 

step #12: Let cool for 10-15 minutes and then place a 

continuous bead of hot melt glue around the circumference, at 

the sample top and bottom. 

step #13: Once the glue is set, slide the second piece of 

pol yolefin over the sample and shrink it with the heat gun 
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making sure to get a good bond between the polyolef in and hot 

melt glue. 

Step #14: Let cool for 15-20 minutes. Remove the weight from 

the indenter and trim the excess polyolef in tubing off the 

bottom of the base plate with a razor blade. Wrap foam padding 

around the sample to keep it centered inside ·the pressure 

vessel. 

Testing Procedures 

Step #1: assemble sample column (see Figure 6 in text). 

Step #2: insert assembled sample column (see Figure 7 in 

text) into pressure vessel. 

Step #3: seal pressure vessel and carefully raise confining 

pressure to desired level and let the fluid equilibrate. At 

this stage of the test, the entire sample feels a uniform 

confining pressure. 

Step #4: start the data acquisition system and then the test. 

As the piston-indenter assembly is advanced, the sample, 

underneath the indenter, is differentially loaded. 

Step #5: terminate the test at the desired amount of 

indention and carefully remove axial load. At this point, the 

deformed sample is again under a uniform confining pressure. 

step #6: slowly bleed confining pressure and remove sample 

column from pressure vessel. 

step #7: the last step is to impregnate the sample with epoxy 

for thin sectioning purposes (see Appendix E) . 
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APPENDIX E 

EPOXY AND SAMPLE IMPREGNATION TECHNIQUE 

Because of the large sample size and the possibility of 

local regions of reduced permeability due to the deformation, 

a low viscosity epoxy is required. Spurr (1969) developed a 

low viscosity epoxy whose components are available separately, 

or as a kit, from Ernest F. Fullam, Inc., 900 Albany Shaker 

Rd., Latham, N.Y., 12100. Different combinations of the four 

components allow for variations in viscosity, final hardness, 

curing time, and pot-life. In this study a low viscosity, long 

pot-life epoxy with an average final hardness are used. Spurr 

(1969) recommends using medicine dropper pipettes for 

dispensing the components, but Swartz and Lindsley-Griffin 

(1990) found that syringes are just as effective and easier to 

clean. They also recommend that the prepared epoxy be stored 

in an air-tight container to prevent the epoxy from absorbing 

moisture. By storing the container in a freezer, the pot-life 

can be extended for several months. 

Even though the impregnation technique is fairly 

straightforward, the procedural steps for each test type are 
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different. 

Prepare the following items: 

Triaxial compression tests: 

two, 0.04 cm (0.016") thick lead shims 3.91 cm 

(1.5") in diameter with numerous small .159 cm (0.063") 

diameter holes drilled in the shim 

heavy duty aluminum foil 

epoxy. 

Indention Tests: 

one piece of 10.16 cm (4.0 11 ) diameter polyolefin 

shrink tubing 10 cm (3.937") in length 

modeling clay 

epoxy. 

Procedures for Triaxial Tests 

Step #1: Clean the jacketed sample column to remove any 

excess confining fluid. 

Step #2: Very carefully remove one end plug leaving 

approximately 0.343 cm (0.135") of the jacket remaining above 

the sample. 

Step #3: Place one shim on top of the sample (i.e., in place 

of the plug) . Using a heat gun, carefully heat the jacket 

above the sample until it curls over the lead shim. Note: This 

will reduce sample loss during the vacuum impregnation stage. 

step #4: Repeat steps 2 and 3 on the other end .of. the sample. 

step #5: Using the aluminum foil, make an epoxy reservoir, 
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around the sample. 

Procedures for Indention Tests 

Step #1: Clean the jacketed sample to remove any excess 

confining fluid. 

Step #2: Very carefully remove the indenter-rubber seal 

assembly by cutting the rubber seal just above the polyolefin 

jacket. 

Step #3: Remove inside rubber patch being very careful not to 

disturb the deformed region. 

Step #4: Place polyolefin shrink tubing over the sample 

leaving 5-8 cm above the top. Using a heat gun, carefully 

shrink the polyolefin around the sample until it curls over 

the top of the sample. Note: This will restrict the amount of 

epoxy that can go between the sample and the reservoir. 

Step #5: Use modeling clay to seal the epoxy reservoir at the 

bottom where it contacts the outside jacket. 

Procedures for Triaxial and Indention Tests 

Step #1: Place the sample-reservoir assembly in a vacuum 

chamber (preferably one with a transparent top) and carefully 

fill half the reservoir with epoxy. Seal the vacuum chamber 

and draw a vacuum. The next steps are dependent on the 

permeability of the sample and the type of vacuum pump. Even 

though this epoxy has a low viscosity, it still has a tendency 

to boil in high permeability samples depending on the rate at 

which the vacuum pump removes air from the chamber. Therefore, 
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air must be periodically let back into the vacuum chamber to 

prevent boiling. Usually after three or four cycles of drawing 

a vacuum and letting air back into the chamber, the vacuum 

pump can be left on. To ensure complete impregnation 

(dependent on the permeability), the sample should be under 

vacuum for about 12 hours. 

Step #2: Remove sample-reservoir assembly from vacuum chamber 

and decant any excess epoxy leaving a thin layer of epoxy on 

top of the sample. 

Step #3: Cure the epoxy by placing the sample-reservoir 

assembly in a 7o0c oven for 24 hours. 

Step #4: In high porosity sandstones, the cut slab selected 

for thin sectioning is again impregnated prior to thin 

sectioning. 
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APPENDIX F 

MICROFRACTURE HISTOGRAM DATA 

Microscopic analysis of grain-contact microfractures was 

performed on the low confining pressure indention test 

indented to 3.18 mm. Microfracture histograms (located after 

this section) representing the frequency (vertical axis) and 

orientation (horizontal axis) of grain-contact microfractures 

in a 2.5 mm by 2 mm area of the thin section were prepared. 

Histograms that do not contain data either occur within the 

highly compacted region or do not contain any microfractures 

(i.e., undeformed region). Histogram locations are given by 

the abscissa-ordinate coordinates (in mm) above and to the 

left of each histogram. The abscissa is parallel to the bottom 

of the indenter and the ordinate is parallel to the axis of 

symmetry. The origin of this coordinate system (i.e., O,O) is 

at the bottom of the indenter on the axis of symmetry. That 

is, the abscissa values increase towards the edge of the 

indenter and the ordinate values increase towards the bottom 

of the sample away from indenter bottom. The orientation cells 

are divided into positive and negative values where a negative 
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(positive) value indicates a counterclockwise (clockwise) 

measurement from the axis of symmetry. 
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-90 .JS -«> ~ ·30 · 15 0 15 30 4S 80 75 90 

7.5,4 

20 

15 

10 

: .l.l111ll 1lll11 I 1ll1 •• 11 11 
-90 ·JS -«> ~ -JO · 15 0 HI 30 45 80 75 90 

7.5,6 

20 

15 

10 

' 1l1 II Ill I I 
-90 .JS -«> ~ -JO ·1 5 0 15 30 4S 80 75 90 



5,8 

10 

' I I I. 
5,10 

20 

15 

10 

: 1111111 l11llll1ll1 111 I 11 
-90 -75 -8) -e -30 ·1 5 0 15 30 "' 80 75 90 

5,12 

20 

15 

10 

: I I Iii.I. 11.11.I. ..I I I 
-90 ·75 -8) -e -30 -15 0 15 30 "' 80 75 90 
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7.5,8 
20 

15 

10 

0 
-90 -75 -8) ~ -30 · 15 0 15 30 "' 80 75 90 

7.5,10 

20 

15 

10 

: I .11.111 •• ,,, I ,11 •• 11. I 1 •• I 
-90 -75 -«> ~ -30 -15 0 15 30 "' 80 75 90 

7.5,12 

20 

15 

10 

: I 11111 I 1111 1.1 •• 111 I II 
-90 -75 -«> ~ -30 ·15 0 15 30 "' llO 75 90 



5,14 7.5,14 
20 

15 15 

10 10 

: I I 1 •• 111111.I 11. ..l.11 •• I 
-90 ·75 -«> ~ ..JO -15 o 15 30 4l! eo 75 90 

: I 11 1111 I I I I.I I II I 
-QO ·75 «> ~ -30 -15 o 15 30 4l! eo 75 90 

5,16 7.5,16 

20 20 

15 15 

10 10 

: 1 ••••• 1111111 111 11 1111111.1 •• 1. 
-90 .75 -«> ~ -30 -15 o 15 30 4l! eo 75 90 

5 

' I 11111 I I I II... I I II 
-QO ·75 -«> ~ -30 · 15 o 15 30 e eo 75 90 

5,18 7.5,18 

20 20 

15 15 

10 10 

: 111.11.1111111 111111.1.1.1.1 .11, 
-90 · 75 -«> ~ ..JO -15 o 15 30 4l! eo 75 eo 

: 11111 111111111, I I 111 11 1 
-QO -75 «> ~ -30 -1s o 15 30 e eo 75 90 
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5 , 20 7.5,20 

20 20 

15 

10 10 

1111 I 111111111 II l11 I I 11 

5 

111 I l1lll1l111ll I l11 I I I 0 0 -90 -~ -«> -<le -30 -15 o 15 30 4ll eo 75 90 -90 -~ -«> -<le -30 · 15 o 15 30 4S eo 75 90 

5,22 7.5,22 

20 20 

15 15 

10 10 

0 II 111111111 l11 11111 II 0 I I 11 h1 1111 I 
-90 -~ -«> -<1e -30 -15 o 15 30 4l! eo ~ 90 -90 -~ -«> -<le -30 · 15 0 HI 30 4S 80 75 90 

5,24 7.5,24 

20 20 

15 15 

10 10 

I I I 11 I Ill I II 11 
-90 -~ -«> -<1e -30 -1 5 o 15 30 4ll eo ~ 90 

0 
I 

.90 -~ -«> -<1e -30 -15 o 15 30 4l! eo ~ 90 
I 

0 

117 

UNIVE S!TY c~ Ol~LAHOMA 
L B ARIES 



5,26 7.5,26 
20 20 

15 

10 10 

0 I I II I I 
-90 ·7!5 -«> -e -30 • 1 !5 0 1 !5 30 4!5 80 7l5 90 

I I I I I 0 
-90 ·7!5 -«> -e -30 ·1!5 0 15 30 ~ 80 7l5 90 

10,0 12.5,0 

20 20 

15 15 

10 10 

I I 
-90 ·7!5 -«> -e -30 ·15 0 15 30 4!5 80 75 90 

10,2 12.5,2 

20 20 

15 1!5 

10 10 
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10,4 
20 

15 

10 

10,6 

20 

15 

10 

: I l1111ll ,,,, 11. I 
-90 -75 -«> -e -30 -15 0 15 30 45 60 75 90 

10,8 

20 

15 

10 

: 1.ll11i I.I I 11 
-90 -75 -«> -e -30 -1 5 o 15 30 45 eo 75 90 

12.5,4 

20 

15 

10 

: I 1 ••• ll.1 Iii 1.I I I 
-90 -75 -«> -e -30 -15 o 15 30 45 eo 75 90 

12.5,6 

20 

15 

10 

: 11.11111 11.11 1111 111 I 
.QC -75 -«> -e -30 -1 5 o 15 30 45 eo 75 90 

12.5,8 

20 

15 

10 

: I 11 ••••••• 1 11.11 I I I I .11 II 
.90 -75 -«> -e -30 -15 o 15 30 45 eo 75 90 
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10,10 12.5,10 
20 20 

15 

10 10 

: lttl.l.lt.ttl. 1.l.1. I I t t 
-90 -75 -«> -.s -30 -15 o is 30 e 80 75 90 

: .II ••• 1111 •• t .l.tt I I .I.I t I 
-90 -75 -«> -.s -30 -1 5 o 15 30 e eo 75 90 

10,12 12.5 1 12 

20 20 

15 15 

10 10 

: 1tl11l llllt,I t 1 11 1 t 
-90 -75 -«> -.s -30 -is o 15 30 e 80 75 90 

: 11.tttllllt 11111 tt. lit •• t. 
-90 -75 -«> -.s -30 -15 o 15 30 e eo 75 oo 

10,14 12.5,14 

20 20 

15 15 

10 10 

: II ti tltll1.l.lltl. I I lt.ttll1 
.QO -75 -«> -.s .30 -15 o 15 :io e 80 75 90 

: I .111l111ltlt1 tl1ll I I I I 
-90 -75 -«> -.s -30 -15 o 15 30 e eo 75 90 
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10,16 12.5,16 
20 

15 115 

10 10 

0 
I I .1l1l1111.1l •••• 11 ,,,,,,, ,, 

-90 -75 -60 -45 -30 -15 0 15 30 45 80 75 90 0 
II .II. I. ,,,, I I .1 

-90 -75 -60 -45 -30 ·15 0 15 30 45 80 75 90 

10,18 12.5,18 

20 20 

15 15 

10 10 

0 I I I 111 •• 11 ••••• 11111 I 
-90 -75 -60 -45 -30 ·15 0 15 30 45 so 75 90 

0 I I I I Ill 
-90 -75 -60 -45 -30 -15 0 15 30 45 so 75 90 

10,20 12.5,20 

20 20 

15 

10 10 

0 .1 •• 1.111111 11 I I I II II 
-90 -75 -60 -45 -30 ·1 5 0 15 30 45 80 75 90 

I 0 
-90 -75 -60 -45 -30 ·1 5 0 HI 30 45 80 75 90 
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