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Abstract 

 Traffic accidents are incidents caused by collisions between road vehicles or a 

vehicle with road infrastructures or pedestrians. Traffic accidents are a common cause for 

non-recurring traffic bottlenecks that, in turn, cause trip delays, an increase in fuel 

consumption and vehicle usage, and at the worst, loss of life and property. As part of this 

thesis, we were granted access to the Federal Highway Association’s (FHWA) National 

Performance Research Management Data Set (NPRMDS), which provide probe speed, 

average segment speed, reference speed, and travel time per segment, among other 

information. Statistical analysis is applied to the accident occurrence on Oklahoma roads, 

especially the I-35 highway corridor for the duration between 2017 and 2020 to show the 

effect of temporal and spatial factors, such as road segment and its geometry, time of day, 

day of the week, and month of the year. Multiple methodologies involving machine 

learning and deep learning were utilized to model accident detection using traffic speed 

data. Our desired outcome is ensuring a fast reaction time from an emergency response 

team. We produced a deployable model capable of providing a reliable detection of 

accident occurrences as an implementable alert system for the concerning state bodies. 

Using this approach, we were able to train an optimized Random Forest model, which 

detected 89.68 % of accidents with only a 13.92 % false detection rate. These are promising 

results for a real-time data environment. Speed turbulence classification was also 

implemented as a post processing application for classifying samples into free flow, 

congestion, and incident event based on historical data. The LSTM model outperformed 

others, especially when modelling is specified to a specific road segment. Accuracy was 
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measured at above 87% in classification with greater than 75% accuracy in correctly 

classifying congestion and accident events. 

 

1. Introduction 
 

Traffic accidents are a major cause of non-health related fatalities on the global 

stage and are the leading cause of death for children and young adults aged between 2 and 

29 years old. According to World Health Organization, approximately 1.35 million people 

die worldwide each year due to road accidents [1]. In 2018 alone in the United States of 

America, the total number of fatal accidents was 33,654, accounting for 36,560 deaths [2]. 

In Oklahoma alone, the total number of fatal accidents was 603 with 655 deaths (or 16.6 

deaths per 100,000 individuals and 1.44 deaths per million miles. These figures are higher 

than the national average of 11.2 deaths per 100,000people and 1.44 deaths per million 

miles.  

In addition to critical lives lost, traffic accidents also indirectly impact the economic 

health of our country, especially when considering traffic congestion. Traffic accidents lead 

to traffic congestion, with intensity usually dependent on the severity of the accidents, as 

well as the geometry and condition of the road. Congestion resulting from accidents could 

cause a bottleneck effect that drain fuel, causes increased wear and tear on vehicles, and 

leads to a decrease in road user’s productivity and increase in wasted time.  

Obviously, the detection and prevention of accidents could lead to much-needed 

improvements in road building strategies, as well as decreased fiscal spending by 

improving identification of road sections that are historically prone to accidents. In a more 
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ambitious effort, real-time accident detection could result in faster response time with 

increased chance of survival for accident victims.   

1.1 Traffic Congestion 

Traffic congestion occurs for any number of reasons. Congestion often times causes 

bottlenecked traffic flow, resulting in slow-downs and stops when compared to the natural 

flow of traffic. Causes for traffic congestion can be divided into three main categories: 1) 

recurring events, 2) non-recurring events, and 3) continuous events, which can be further 

subdivided into seven primary reasons [3]. Recurring events include: 

1. Demand fluctuations when road usage changes due depending on day and hour. 

Because road capacity remains fixed at all times, spontaneous demand can lead to 

unexpected traffic congestion. 

2. Repetitive events resulting from social events (e.g., concerts, Black Friday shopping). 

Such recurring events are known to cause high traffic volumes that far exceed standard 

road capacity. 

Non-recurring events include: 

1. Traffic Incidents (or accidents) arising from vehicle-to-vehicle, vehicle-to-

infrastructure, or vehicle-to-pedestrian incidents. 

2. Work Zones – are characterized as roadway construction areas affecting road 

infrastructure or roadside buildings; these areas force motorists to use either part or an 

alternate roadway to continue their travels. 

3. Weather – changes due to precipitation, dim light/bright sunlight, or slippery roads 

cause hazardous roadways and/or visibility and resulting in decreased traffic speeds. 
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These weather conditions usually arise from precipitations, low light or bright light 

from sun, and slippery roads from accumulation of precipitations. 

The last category is known as Continuous causes include: 

1. Traffic road infrastructure used as traffic control devices (e.g., traffic lights, 

railroad crossings, and others) occasionally fail or function inefficiently, causing 

traffic flow disruption and/or congestion. 

2. Inadequate base capacity resulting from a poorly built roadway system with 

inadequate amount of physical capacity (i.e., limited width, number of lanes, 

merge connections, and/or alignment and condition of the road). Such factors 

limit traffic volume. 

 

1.2 National Performance Management Research Data Set (NPMRDS)  

The Federal Highway Administration (FHWA) has long sought to quantify related 

metrics to traffic management and road operations, including travel time reliability and 

traffic congestion. As part of FHWA’s initiative to encourage state departments, especially 

the departments of transportation (DOTs), to adapt these traffic performance metrics, the 

FHWA offered the National Performance Management Research Data Set (NPMRDS) that 

gives details of travel time measures. The NPMRDS, together with data collected by 

Oklahoma DOT, serves as the main focus for analysis for this thesis. 

1.2.1 Background and details of NPMRDS 

In 2013, the U.S. Federal government initiated a strategy to obtain a nationwide-based 

dataset composed of average travel time and performance measures for inclusion in the 

Freight Performance Measures (FPM) and Urban Congestion Report (UCR) [4]. For 



4 

optimal utilization of data for the UCR, the acquisition of NPMRDS was done by the 

FHWA’s Office of Operations at which the dataset covers the entire National Highway 

System (NHS). The implementation of UCR was aimed at improving travel time reliability 

measures, supporting local state DOT decisions and developments, and demonstrating uses 

for the NPMRDS [5].  

As such, the probe data providing the information for NPMRDS’s dataset was initially 

contracted to HERE and later given to INRIX [6], NPMRDS’s probe data is a spatial-

temporal dataset with 5-minute granularity, which then transmits information to a central 

server. Unfortunately, traffic volume data is not collected. The NHS is segmented using a 

Geographic Information System (GIS), where time-based data are binned for every 5-

minute interval per segment. Tabular information representing each road segment is also 

included as a separate file when traffic speed data is downloaded locally. NPMRDS’s data 

obtained based on moving vehicle probes. Notably, the consistency and count number of 

data per segment per epoch is not constant with influence from traffic flow, date/time 

information, or location. 

 

1.3 Thesis Objective 

This thesis is written with the objective of furthering the utilization of the NPMRDS, 

especially when taking into consideration previous work related to congestion analysis 

reported in [7]. In this thesis, the focus is limited to the analysis of accidents, which are 

divided into two major categories for a) near real-time detection and the classification 

thereof, and b) accident, congestion and free-flow classification of change in speed 

observations using historical traffic speed data. This thesis explores data acquisition from 
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NPMRDS sources; various user interface-based data summaries through the NPMRDS 

web interface; exploratory data analysis for accident observations; multiple methodologies 

for preparing and modelling data; and validating such models. One objective was preparing 

data for supervised learning algorithms and further modifying the data for Recurrent Neural 

Network applications for both real-time and post-processed classification. The thesis also 

describes a filtering method to obtain speed turbulent observations resulting from a 

recurrent and non-current traffic congestion.  

The main contributions of this thesis are summarized below: 

• Describing the importance of utilizing data features as accident predictors, 

especially related to the effect of modelling using only speed features for 

comparison, including multifeatured modelling.  

• Determining the optimal method for preparing the NPMRDS to allow for 

appropriate sample observations for various supervised learning algorithms) (e.g., 

data cleaning, pre-processing techniques, and feature engineering). 

• Training multiple models for various supervised learning and recurrent neural 

network algorithms and comparing model performance using model validation to 

develop an optimal model for real-time accident detection that can be deployed in 

the future. 

• Discussing the methodology for preparing and filtering data that shows obvious 

speed turbulence in a post-processing setting with a goal of producing a viable 

model training method to determine the difference between recurring traffic 

congestion and traffic accidents. This includes methods for preparing varying 
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lengths of data for machine learning applications using Dynamic Time Warping 

and Zero-padding. 

As per the aforementioned stated objectives, this thesis is divided into multiple 

sections. Section 1 contains an introduction and background information about the 

NPMRDS, as well as thesis objectives. Section 2 summarizes various works that have 

investigated and analyzed traffic speed and accidents, including the predictive 

capabilities of various machine learning and deep learning frameworks for estimating 

various traffic parameters. Also, this section discusses the feature importance of traffic 

accidents, including how data has previously been handled before any analysis. Section 

3 explains the exploratory data analysis performed on acquired data from NPMRDS 

and showcases various distribution plots that provide features relevant to the traffic 

accidents which, in turn, could be beneficial in establishing an approach for preparing 

data for modelling. Section 4 highlights information related to primary objectives of 

this thesis (e.g., utilize the NPMRDS to create a near real-time traffic accident detection 

model via a machine learning algorithm application. Section 5 focuses on data 

preparation for long sliding window duration in a post-processing setting aimed at 

distinguishing speed turbulence occurrences in historical data, and then classifying the 

cause of speed turbulence as a consequence of either recurring traffic congestion or 

non-recurring traffic accidents.    
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2. Related Work 

 
As part of successful idea generation for this thesis, a specified literature research was 

completed on related topics, especially accident detection/prediction, congestion-based 

traffic analysis, and feature usage for various traffic application and parameter estimation. 

The resulting review was narrowed to only include works directly related to the research 

conducted for this thesis. It is important to note that not much attention has been granted 

to real-time accident prediction using real-time traffic data. Instead, most research has 

focused on simulation-based modelling or discovering various associations with the broad 

number of features and variables surrounding traffic parameters before, during or after an 

accident.  

The first focus of this literature review is acquisition and utilization of data and 

features used for predicting and analyzing accidents. The authors in [8], identified four 

major data categories for identifying possible traffic accidents:1) human actions, 2) human 

conditions, 3) environmental conditions, and 4) vehicle conditions. Researchers in [9] 

validated these data features, dividing them into four different categories: 1) driver factors, 

2) environmental factors, 3) road factors, and 4) vehicle factors. Many of these attributed 

factors consist of additional characterizations, including: 

- Driver factors—sex, age, driving experience, collision history, physical, and mental 

conditions. 

- Environmental factors—weather, visibility, rain/fog/precipitations, and date/time 

- Road factors—road type, location, geometry, surface condition, traffic control, 

maximum traffic speed, and traffic volumes. 
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- Vehicle factors—vehicle type, condition, and maintenance history; speed, location, 

maneuver type/direction. 

Researchers in an Ottawa Case Study [10] collected weather, driver, vehicle, road, and 

event data, adding more granularity through feature engineering (e.g., datetime, solar 

positions, road and event features. A case study focused on Seoul City, South Korea [11] 

used weather variables correlation to accident severity, hypothesizing that rain was a major 

factor for accidents due to poor visibility and slippery road conditions. Hence, the research 

was focused on rainfall intensity and water level depth of rain collected. Data was collected 

from a nine-year period with reiteration of literature support from [12] where it was stated 

that rainfall may result in driving hazards. Results in [13] show the effect of rain and fog 

on traffic parameters. Research showed that rain has a much higher impact on the traffic 

than the fog. Data in [14] was acquired via a loop detector installed on the roads and 

analyzed against historical crash data in which features were collected and aggregated for 

incidents with similarities that were captured 5 minutes before the accident. Results in [15] 

demonstrate the importance of features like number of lanes and average speed at the 

intersection for predicting traffic accidents.  A simulation study in [16] demonstrated best 

practices for using standard deviation of traffic volume, standard deviation of speed, 

standard deviation of occupancy, and standard deviation of travel time as accident 

predictors. 

The second focus of this review is data processing. Regarding accident prediction 

reported in the Ottawa case study [10], it is important to note that data used for collision 

samples typically involves both real-time and historical data, although analysis for non-
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collision class observations were provided through synthetic data generation. This process 

can be understood through the use of the following algorithm. 

1. Randomly select one sample from the collision dataset (Sample1) 

2. Randomly select a change to either road segment or hour of the day/day of the 

year. 

3. Select sample with different value from collision dataset (Sample2) 

4. Create non-collision dataset by combining Sample1 (i.e., change feature) with 

balance of features from Sample2. 

5. Retain non-collision data if there is none in the collision dataset. 

 [16] described prediction of traffic accident based on multiple standard deviations of 

various traffic parameters using a simulation with both modelling and validation. Notably, 

this approach does not involve model validation using actual traffic speed data. Duration 

of a traffic accident prediction in [11] was determined using human observations by either 

a passerby or a traffic patrolman. Data processing in [14] leveraged real-time and historical 

data, which proved the best approach to modelling and validating the model.  [16] based 

accident prediction using simulation data rather than real-world data. 

The final focus of this review is various modelling approaches for predicting accident 

or other traffic parameters. Several academic papers describe an accident prediction 

framework using multiple machine learning approaches— the most recent case study 

shown in Ottawa, Canada [10]..Researchers trained a model  using gradient boosted tree, 

which is an ensemble-type machine learning algorithm that strengthens the usually weaker 

prediction model (e.g., a decision tree with a accuracy of 79% and precision of 71%). 

However, as previously mentioned, non-collision samples were generated via simulation, 
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not obtained from actual observations. Researchers in [17] used a backpropagation neural 

network to train a model for identifying collision type, not collision occurrence. Prediction 

output was divided among single, rear-end, front, side, and scratch-based collisions. 

Accuracy was 89 %. Regarding neural networks, in [18] probabilistic neural networks were 

used with video data to achieve 92% accuracy and only 0.77% false rate for accident 

prediction. In [19], wavelet neural networks were used to predict road accident loss. While 

hybrid neural networks based on adaptive neuro-fuzzy technique (ANFIS) were used to 

predict traffic accidents [20] with 55.06% accuracy. Researchers in [21] developed a road 

risk index as part of a vehicle-to-vehicle (V2V) framework. The use of unsupervised 

learning through KNN in [22] reported 80% accident prediction accuracy using simulation.  
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3. NPMRDS Data Acquisition and EDA 

 
NPMRDS is available for download in .csv format from the FWHA website [23]. Note 

that the URL will redirect you to a login page (See Figure 3-1) that requires authorized 

credentials granted to either ODOT personnel or ODOT affiliated organizations, such as 

the Wireless and Electromagnetic Compliance and Design (WECAD) Center at the 

University of Oklahoma. The website also provides visualizations and performance 

measure functionalities.  

 

Figure 3-1. NPMRDS Data Acquisition Web Login. 

 

  

Because part of the NPMRDS collection system was tendered to a third part contractor, the 

dataset has two versions. Information gathered between 2013 to 2016 were acquired by 

HERE, and since 2017 by INRIX (See Figure 3-2 for a screenshot of the FWHA website). 

Data for this paper was collected from the more recent dataset.  
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Figure 3-2. Database selection page 

 

 

3.1 Utilizing the NPMRDS Webserver 

3.1.1 Traffic Speed data and Incident data acquisition 

The FHWA database will provide access to a number of functions designed for 

filtering speed data, analyzing route, congestion, and incident, measuring traffic 

performances; and evaluating Snowplow truck deployment. The main page (i.e., user 

dashboard) functions as the NPMRDS downloader (See Figure 3-3). From here, one can 

select the date, specific days, desired segments/highways, data source, and data averaging 

for a select time period. Data collection for this thesis centered on detecting an incident as 

close to real time as possible. Data averaging was selected and downloaded at a granularity 

of 5 minutes. The goal was obtaining a more granular dataset for machine learning or deep 

learning to characterize turbulence in speed and leverage other features to successfully 
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detect the incidents. The primary data source was used to train and validate models. Data 

was restricted to 2017 for Oklahoma highway I-35. Data was not restricted to vehicle type. 

Instead, each data point was considered acceptable, as traffic congestion significantly 

affects any localized vehicle, regardless of classification. The downloaded .csv file was 

stored as the primary data frame (See various features in Figure 3-4). A second .csv file 

containing road segment information is also included with the download (See Figure 3-5). 

 

Figure 3-3. NPMRDS dashboard. 
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Figure 3-4. Traffic speed dataset 

 

 

Figure 3-5. Road segment information. 

 

Incident data (i.e., accident information stored digitally after hand processing) was 

typically based on police information. To access the data, a user must navigate to the 

Incident Analysis button located on the left sidebar (See Figure 3-2). As per the traffic 

speed downloading, date range and segment can be selected, while distance and time are 

minimized. These two later variables correlate to secondary incident detection. This 

phenomenon is beyond the scope of this thesis (See Figure 3-6).  The acquired incident 

dataset is based on fulfilled filtering requirements and provides extensive temporal and 

spatial information directly related to the accident. Columns include incident ID, datetime, 

the severity (i.e., scale ranging from 1 to 5, with 5 indicating worst case), negative and 

positive road segment identification; type of collision; and geographical location (See 

Figure 3-7).  
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Figure 3-6. Incident analysis generator webpage. 

 

 

Figure 3-7. Generated incident dataset. 

 

3.1.2 Other features of NPMRDS Webserver 

The NPMRDS webserver [23] has additional features that may contribute towards this 

thesis’s future works such as route, congestion, and performance measures of road segment 

and weather analyses. The route analysis webpage provides users the opportunity to filter 

date range, segment, averaging period, data source, and threshold filtering (See Figure 3-

8). Route analysis offers speed distribution for selected road section per hour of the day, 

signifying distribution with maximum, minimum, and average speed (See Figure 3-9); 
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there is also an alternative distribution graph where travel time is reported instead of speed 

(See Figure 3-10). 

 

Figure 3-8. NPMRDS route analysis. 

 

 

Figure 3-9. Speed distribution for selected segments. 
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Figure 3-10. Travel time distribution for selected segments. 

 

Congestion analysis (See Figure 3-11) gives users access to multiple analyses tools and 

outcomes to aid them in determining congestion. A heatmap plot (See Figure 3-12) assists 

users in finding the longest spanning congestion occurrence in a selected date range (See 

Figure 3-13); producing bar plots of the top 10 segments experiencing congested by 

frequency of hours congested (See Figure 3-14); and segment ranking based on occurrence 

count and average duration of congestion (See Figure 3-15). 

.  

Figure 3-11. Congestion analysis layout. 
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Figure 3-12. Heatmap showing distribution of traffic congestion by traffic speed across 

Oklahoma Highway I-35. 

 

 

Figure 3-13. The distribution of speed per segment across Oklahoma Highway I-35 for 

the longest occurring congestion by distance. 

 

 

Figure 3-14. Bar plot of segment based on frequency of congestion by hour. 
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Figure 3-15. Frequency plot of segment ranking. 

 

The NPMRDS webserver also provides a performance measure analysis (See Figure 3-16) 

for selected date ranges, segments, and other performance measures related parameters, 

including a derivative of the FHWA guideline used to determine efficiency and usage of 

selected road sections (See Figure 3-17). The website also offers users weather analysis, in 

particular data regarding snowplow truck deployment with datetime and location (See 

Figure 3-18). 

 

Figure 3-16. Performance measures parameter filter. 
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Figure 3-17. Road performance measures and freight movement information. 

 

 

Figure 3-18. Deployment of snowplow trucks and collected data. 
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3.2 Exploratory Data Analysis 

Like any data analysis, the acquired data for this thesis were first processed and 

scripted to generate Exploratory Data Analysis (EDA) output for further understanding of 

the dataset. The first step is reviewing the incident dataset to understand and analyze road 

accident occurrences. The distribution of accidents by hour-of-the-day (note hour is 

detailed in military format: 0 -23) from 2017 to 2019 is visualized as a frequency bar plot 

per each year (See Figure 3-19). As the figure shows, the plot shows the occurrence of 

peaking or a binomial pattern centered at hour 7 (i.e., 7:00 am) and at hour 17 (i.e., 5:00 

pm). This exhibited pattern corresponds closely to the estimated traffic rush hours which 

are 6:00 to 10:00 am and 3:00 to 7:00 pm. To determine if this distribution is not only 

confined to our case study of Oklahoma Highway I-35, the same distribution plot was 

created for Oklahoma Highways I-40 and I-44 (See Figure 3-20 and Figure 3-21) and, as 

expected, their respective plots closely resemble the distribution plot for Oklahoma 

Highway I-35, suggesting the hourly distribution of accident is not largely influenced by 

spatial factors. Instead, traffic flow plays a major role in the cause for an accident. Even 

more, we can infer that the greater traffic flow during the two traffic rush hour periods is 

cause for the higher potential in accident occurrence. The increased risk is not only due to 

greater number of vehicles but also the human behavior tied to the rush hour period when 

it is more likely for a person to drive recklessly. 
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Figure 3-19. Accident distribution by hour of the day for Oklahoma highway I-35. 
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Figure 3-20. Accident distribution by hour of the day for Oklahoma highway I-40. 
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Figure 3-21. Accident distribution by hour of the day for Oklahoma highway I-44. 

 

To investigate the effect of day of the week in accident distribution, the frequency 

bar plot of accidents based of this criterion is plotted for Oklahoma highway I-35 (See 

Figure 3-22). This figure demonstrates that traffic is not heavier one day over others, with 

the exception of Fridays, which has slightly heavier traffic. From this information, one can 

surmise that heavier traffic on Friday could be because it is the day before the weekend. 

Increased traffic flow might be indicative of drivers anticipating the small break from work 
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or travel to social events. This distribution is corroborated by the distribution for Oklahoma 

highway I-40 (See Figure 3-23), as well as the distribution for Oklahoma highway I-44 for 

2018 and 2019. In the latter case, the mode of the distribution falls on Wednesday (See 

Figure 3-24). 

 

 

Figure 3-22. Accident distribution by day of the week for Oklahoma highway I-35. 
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Figure 3-23. Accident distribution by day of the week for Oklahoma highway I-40. 
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Figure 3-24. Accident distribution by day of the week for Oklahoma highway I-44. 

 

The previous temporal distribution was also analyzed according to months in a year. 

Oklahoma highway I -35 showed no sign of deviation or skewness to the distribution that 

would provide conclusive inference for cause and effect. The month during which the 

observation occurred was not considered to have a primary effect on the possibility of an 

accident occurring (See Figure 3-25). Similarly, an analysis of Oklahoma highways I-40 

and I-44 yielded similar output with no discernible distribution pattern (See Figure 3-26 
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and Figure 3-27). Prior to the distribution analysis, a hypothesis was formulated, suggesting 

that an increase in accidents from October to January was due to worsening weather 

conditions in Oklahoma with the arrival of winter. However, data analysis did not suggest 

such a causation. 

 

Figure 3-25. Accident distribution by month for Oklahoma highway I-35. 
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Figure 3-26. Accident distribution by month for Oklahoma highway I-40. 
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Figure 3-27. Accident distribution by month for Oklahoma highway I-44. 
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Visualizations of data to this point showed the temporal aspect of accident 

occurrences. Accident distribution could also be determined spatially based on road 

segment where accidents occurred. Clearly, the top 10 road segment that are prone to 

accidents can be determined through filtering based on highest frequency of accidents. 

Number of accidents per segment is plotted in this paper with different color bars to denote 

the year of accident occurrence, where road segment 111N04912 had the highest incident 

rate on southbound Oklahoma highway I-35, and segment 111P04912 had the highest 

incident rate on the northbound direction of the same highway(See Figure 3-28 and Figure 

3-29). 

 

Figure 3-28. Plot of most frequent accident occurring road segments (southbound). 
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Figure 3-29. Plot of most frequent accident occurring road segments (northbound). 

 

A graph of hourly distribution for these particular segments was plotted (See Figure 3-30 

and Figure 3-31) to analyze accident occurrence for hour of day, as reported in Figure 3-

25 and Figure 3-26. Figure 3-16 shows that vehicle distribution mostly fit the expected 

pattern, with the exception of certain segments where mode was more concentrated 

between 11 am and 2 pm. 



33 

 

Figure 3-30. Temporal distribution by hour for accident prone segment (southbound). 

 

 

Figure 3-31. Temporal distribution by hour for accident prone segment (northbound). 

 

To observe the change in speed after an accident, change in speed was plotted in relation 

to the accident event. The first plot shows change in speed with no known event occurring 
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during the specified time period for 100 randomized samples (See Figure 3-32). The second 

plot shows change in speed for 100 randomized samples after an accident occurred (See 

Figure 3-33). 

 

Figure 3-32. Plot change in speed when no accidents occurred. 

 

 

Figure 3-33. Plot change in speed when an accident occurred. 
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4. Real Time Accident Detection 

 

4.1 Datetime Parsing for Traffic Speed Data 

The traffic speed dataset must be matched with incident data to be suitable for feature and 

label creation for machine learning or deep learning purposes. To ensure accuracy, both 

datasets must be matched with the correct corresponding temporal and spatial information. 

For temporal matching, date and time information should be in the same format. However, 

data in the traffic speed dataset can be represented in two columns (i.e., date and epoch), 

where date is represented by unformatted numbers (e.g., the first one or two digits represent 

the day, the next two the month, and the last four the year and epoch values range from 0 

to 287 in increments representing an addition of 5 minutes to the start time of each day, 

(e.g., 12:00 am) (See Table 4-1).  

 

  

  

Table 4-1. Datetime parsing for the traffic speed dataset. 

 

 

4.2 Feature Extraction 

Before feature engineering can be applied, data must be processed for uniformity in robust 

time series analysis. Missing timestamps were generated with NaN values in feature data 

Date Time
Parsing

Date Epoch 

6012017 0 

6012017 0 

6012017 0 

6012017 0 

Datetime 

06/01/2017 00:00 

06/01/2017 00:00 

06/01/2017 00:00 

06/01/2017 00:00 
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(See Table 4-2 and Table 4-3). Traffic speed data and road segment data indicate speed, 

average speed, reference speed, date, time, longitude, latitude, travel time, and segment 

length in miles. [10] explains that some features (e.g., position of the sun that could be 

extracted from already available temporal and spatial data). Utilizing the pytz [24] and 

pysolar library [25], the solar azimuth and solar altitude can be generated from input of 

road segment location and observation time. To apply the supervised machine learning 

algorithm, necessary features for input include speed, hour, day, month, longitude, latitude, 

travel time, solar azimuth, and solar altitude. Features such as reference speed, average 

speed, and segment length were not included, as they did not demonstrate variation or 

correlation with the occurrence of a road traffic event. 

 

 

 

 

 

 

 

 

Datetime Speed Longitude Latitude Travel Time 

06/01/2017 00:00 x x x X 

06/01/2017 00:05 x x x X 

06/01/2017 00:25 x x x X 

06/01/2017 00:30 x x x X 

Table 4-2. Original dataset with missing timestamp. 

Datetime Speed Longitude Latitude Travel Time 

06/01/2017 00:00 x x x X 

06/01/2017 00:05 x x x X 

06/01/2017 00:10 NaN NaN NaN NaN 

06/01/2017 00:15 NaN NaN NaN NaN 
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4.2.1 Incident event matching to traffic speed data observation 

An observation formed using traffic speed data was matched with the incident dataset using 

datetime and location as the inner join key. Observations without a successful match were 

classified as a non-accident occurring observation, while matched observations were 

classified as accident occurring (See Table 4-4). Appendix B-1 reports snippets of the 

matched data. 

 

 

 

 

 

  

 

06/01/2017 00:20 NaN NaN NaN NaN 

06/01/2017 00:25 x x x X 

06/01/2017 00:30 x x x X 

Table 4-3. Generating missing timestamp observations. 

Datetime Segment Speed Hours Day Month Travel Time 

01/01/2017 00:00 0 60.0 0 6 1 191.0345 

01/01/2017 00:05 0 67.0 0 6 1 171.0752 

01/01/2017 00:10 0 64.0 0 6 1 179.0943 

Longitude Latitude altitude azimuth Incident 

-97.43 35.10 -31.51 97.38 0 

-97.43 35.10 -30.50 98.01 0 

-97.43 35.10 -29.49 98.65 0 

Table 4-4. Dataset completed after matching traffic feature with incident. 
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4.2.2 Supervised Machine Learning Input/Output Generation                     

This thesis introduces two methodologies, namely machine learning and deep learning, for:  

introduced with the first one being the accident occurrence detection in near real time. The 

two approach for the near real-time detection. This section details speed feature shifting 

(sliding window) to create a 20-minute window observation, where speed (t-2), (t-1), (t), 

(t+1), and (t+2) in time represents a five-minute shift. This was accomplished using a 

simple algorithm (See Appendix B-2) to generate the supervised learning dataset (See 

Figure 4-2). After the shift was completed  and appended to the original observation, rows 

with NaN values were dropped, ensuring all observations have correct time shift 

information; hence, the importance of the earlier timestamp generation with NaN values. 

 

Figure 4-1. Dataset pre-processing for supervised learning 

Parse date 
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Figure 4-2. Final dataset after incident matching. 
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4.3 Supervised Machine Learning Classification Models  

As part of modeling to capture the correct feature information that leads us to the 

best fit a model to predict a possible occurrence of an accident at near real time with live 

data streaming.  Modelling and implementation explained in this thesis serve as a prototype 

version for demonstrating possible methods to correct modelling implementation that will 

eventually lead to successful real time model deployment, Higher probability of possible 

accident detection requires that accident labelling will be reported in a ten minute window 

(e.g., time t, t+1 and t+2) with the feature inclusive of speed (t-2) to speed (t+2). Thus, 

modelling will not be exactly real time, as the possibility of detecting an accident occurring 

at time t will require the future time input at t+2 (i.e., corresponds to 10-minute delay), as 

shown in Figure 4-3. In summary, the model will detect accidents ranging from real time 

to a 10-minute delay of the accident occurrences.  

 

 

 

 

 

 

Model performance was mainly attributed by accident detection rate (See eqn. 1) and 

false detection rate (See eqn. 2) with inclusion of accuracy (See eqn. 3) and specificity 

(See eqn. 4) scoring measure. Accuracy provides the overall correct classification of the 

model, while the specificity provides the misclassification rate. 

𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (%) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +𝐹 𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  𝑥  100   (1) 

Speed (t-2) Speed(t-1) Speed(t) Speed(t+1) Speed(t+2) 

60.0 67.0 64.0 65.0 67.0 

Figure 4-3. Timestep at label creation. 

Label Creation 
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𝐹𝑎𝑙𝑠𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (%) =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  𝑥  100         (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 𝑥 100                                (3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (%) =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 𝑥 100                           (4) 

 

4.3.1 Logistic Regression 

The first model implemented was the Logistic Regression statistical model, which 

uses a linear combination of parameterized feature weight to create a binary output—in 

this case with 0 indicating no accident and 1 indicating an accident occurred Logistic 

Regression application is visualized in Figure 4-4). Two process are required before model 

training to normalize the data by minimizing biased feature weights and to resample a 

balanced label as in our case where observations for non-accident far outnumber those for 

accident. To normalize the training feature, the MinMaxScaler library was used with a 

range of 0 to 1. The fitted scaler was retained as well, to apply normalization on the test 

data. Logistic regression was trained using k cross-validation to obtain the best penalty and 

cost, C values using the Grid Search algorithm. From the Grid Search, the optimal 

parameters for Logistic Regression were penalty= ‘l2’ and C=1.7575106248547894. The 

‘liblinear’ algorithm served as the solver—one of few that supports training with L2 

penalty. Results are summarized in a confusion matrix (See Figure 4-5) and Table 4-5, 

which indicates accuracy of correct prediction coupled with false prediction rate.  Detection 

rate indicates the model’s ability to accurately classify accidents; false detection rate 

indicates the percentage of non-accident observations classified as accidents. The model 

indicates an accuracy of 96.49 % and specificity of 3.51 %. 
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Figure 4-4. An example of logistic regression application [26]. 

 

 

 



43 

 

Figure 4-5. Logistic regression test confusion matrix. 

 

 

Table 4-5. Detection and False Detection Rate for Logistic Regression. 

 

Accident Detection Rate False Detection Rate 

65.92 % 35.08 % 

 

4.3.2 Logistic Regression + Multi Adaptive Regression Spline (MARS) 

To improve the logistic regression model, processes reported in this thesis 

included using a pipeline to train the model by adding a MARS model before forwarding 

output to the logistic regression model for classification output. MARS is a modelling 

technique that has traditionally been used for regression problems. Logistic regression 
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models primarily introduce a linear function, while MARS creates hinges at various knot 

values to produce a non-linear function that is actually a combination of linear functions 

that changes according to determined feature values. (e.g., how MARS produces the 

statistical fitting [See Figure 4-5]). The pipeline was trained with k cross-validation of 5 

with grid search to obtain optimal parameters:  penalty= ‘l1’ and C=3237.45754281764 

for the logistic regression model and max_degree=4 for the MARS model. The confusion 

matrix showed a slight improvement in the accident detection rate and a decrease in the 

false detection rate, although these results are far from desirable (See Figure 4-7 and 

Table 4-6). The MARS model delivered accuracy of 73.15 % and specificity of 26.85 

%. 

 

Figure 4-6. An example of MARS classification application. 
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Figure 4-7. MARS + logistic regression test confusion matrix. 

 

Table 4-6. Detection and False Detection Rate for MARS + Logistic Regression 

Accident Detection Rate False Detection Rate 

70.14 % 26.85 % 

 

 

4.3.3 Support Vector Machine (SVM) 

Support Vector Machine (SVM) classifier is an algorithm that defines decision 

boundary between features by attempting to widen the gap between labels. Points that are 

nearest the lines are support vectors. The goal of the algorithm is maximizing the gap (i.e., 

margin) between the support vectors and decision boundaries (See Figure 4-8).  As part of 

hyperparameter optimizations, the grid search algorithm with k cross-over validation of 5 

was used to determine optimal regularization parameter (C), gamma value for kernel, and 
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kernel type for the algorithm application. The best performing hyperparameter from the 

optimization function was kernel=’rbf’, C=500, and gamma =1. Results for SVM based 

classification can be found in Figure 4-9 and Table 4-7).  Model accuracy was 94.08 %, 

and specificity was 5.92 %. Model accuracy was high primarily because the model is 

biased in classifying more non-accidents as the non-balanced test set, favoring non-

accident data. Hence, an accident detection rate and false detection rate that are more 

reliable to evaluate model performance. 

 

 

Figure 4-8. An example of SVM classification algorithm [27]. 

 



47 

 

Figure 4-9. SVC’s test confusion matrix. 

 

 

Table 4-7. Detection and False Detection Rate for SVC 

 

Accident Detection Rate False Detection Rate 

37.52 % 5.87 % 

 

 

4.3.4 Random Forest 

Random Forest is an algorithm that combines multiple outputs from a weak 

classifier—typically decision trees—and determines final classification based on the 

majority vote of classification from the individual decision trees. Decision tree is an 

algorithm that can be represented as a flowchart, with an internal node representing the test 
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of an attribute with an outgoing branch from the node representing test outcome on the 

attribute.  See Figure 4-10 for an example of decision tree generation. The random forest 

algorithm uses several uncorrelated decision trees to create a weighted classification 

decision for overcoming an individual decision tree error. The resulting confusion matrix 

for Random Forest, as well as the calculation that summarizes accident detection rate and 

false detection rate, shows significant capability for predicting accidents, as reported in 

[10]. The research in that paper also used a similar ensemble algorithm through a gradient 

boosting tree algorithm (See Figure 4-11 and Table 4-8). Random Forest accuracy was 

86.09 %, and specificity was 13.91 %. 

 

Figure 4-10. An example of the way in which a decision tree works [28]. 
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Figure 4-11. Random Forest’s test confusion matrix. 

 

 

Table 4-8. Detection and False Detection Rate for Random Forest 

 

Accident Detection Rate False Detection Rate 

89.68 % 13.92 % 

 

4.3.5 Recurrent Neural Network (RNN) 

One of the best ways to predict a time series dataset into a classification model is 

leveraging a recurrent neural network (RNN).  RNN is recognized as an optimal neural 

network method for classification, as it functions well with sequential data (e.g., time series 

data). This feedback mechanism ensures that current output is dependent upon previous 

information and its order [29]. On the contrary, a normal neural network is unable to do 
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perform this basic training, as the system accepts only the decision of the outcome based 

on current information—regardless of dependency on past information.  An RNN is merely 

an extension of regular neural network, where the self-loop function permits the equivalent 

of multiple copies of the same network (See Figure 4-12). Because RNN depends on 

backpropagation through time, either vanishing or an exploding gradient becomes an issue. 

Hence, RNN architecture will depend on using long short-term memory (LSTM) and 

gated-resistance unit (GRU) for handling the gradient problem by enforcing a constant 

error flow. This process has proved its ability to handle a complex, long time-lag based 

problem [30]. 

 

Figure 4-12.. An unrolled depiction of a single RNN. 

  

 

4.3.5.1  RNN Data Preprocessing 

While data preprocessing for RNN is quite similar to that for supervised machine 

learning described in Section 4.1, shifting must be applied to all features rather than speed 

alone. Regarding the supervised learning method, features were not shifted, as change in 

features are either negligible or primarily constant. Notably, for RNN training, data input 

requires a 3D shape, representing samples, features and timesteps. An example of such 

transformation is where average speed, speed, travel time, and others are shifted to produce 

var1(t-2), var2(t-2), var3(t-2), …., var1(t-1), var2(t-1), var3(t-1), … var1(t+2), var2(t+2), 
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var3(t+2) (See Figure 4-13 and Figure 4-14). Lastly, data must be normalized, as neural 

networks are sensitive to bias in feature weights.  

 

Figure 4-13. Example of data before suitable transformed for RNN. 

 

 

Figure 4-14. Example of data after transformation for RNN. 

 

Figure 4-15. Dataset pre-processing for RNN. 
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4.3.5.2  RNN Architecture 

Similar to any neural network architecture, RNN architecture depends on a multi-

layer of connecting neurons. The architecture shown in Figure 4-16 was discovered through 

trial and error by comparing scoring metrics (i.e., accuracy and precision between training 

and validation data) for determining whether adding layers and neurons would significantly 

improve model performance. After input, the data passes through four layers of neurons, 

the first three consisting of different numbered RNN neurons and the last being a dense 

neuron layer with a ‘relu’ activation function. Additionally, two dropout layers exist 

between the first two RNN layers, which prevent overfitting by randomly setting input 

units to zero with a default rate during model training. Training criteria is also set to 1000 

epochs via the early monitoring function, which stops the training when performance does 

not increase more than the established threshold of 5 × 10−4 for the chosen scoring metric. 

For this model training, the preferable scoring metric is precision rather than accuracy. The 

latter is a metric that defines percent of correct classification from total prediction for 

optimizing the model for a real-life application, whereas occurrence of accidents is far 

outnumbered by non-events. Instead it is preferable to approach optimization through 

precision scoring. Precision is defined as the ratio of correct positive identification, which, 

in the work for this thesis, was the ratio of all correctly classified accident samples over all 

samples classified as accidents. This approach prevents the model from bias in classifying 

positive class to achieve highly accurate results, where the chance for false positive occurs 

higher than usual. Model training for each epoch is based on precision scoring of the model 

for non-balanced validation data. 
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Figure 4-16. RNN model architecture. 

 

4.3.5.3  Long Short-Term Memory 

LSTM networks were introduced by [31] to overcome long term dependencies in 

RNN. LSTM is the most popular deep learning method in time series analysis and used 

even for text and memory analysis. Unlike RNN, LSTM remembers information for an 

extended period of time as default behavior without altering parameters. The difference in 

the regular RNN and LSTM is the internal gate system of the LSTM, where three gates 

determine the weight and importance of each previous time step values for information 
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flow. Gates keep past information relevant for current analysis. On the contrary, RNN 

information flow merely a pointwise addition that passes through tanh function. As such, 

RNN cannot efficiently retain prior information, especially the increasing lag values (See 

Figure 4-17 and See Figure 4-18).  The Forget gate determines information importance. 

The input gate advances the hidden state and current input gates through a sigmoid 

function. The output gate determines the next hidden state, which will also be used to make 

the predictions. Results for near real-time accident detection were predicted to be superior 

when using LSTM architecture; (See Figure 4-19 and Table 4-9). The model’s accuracy 

was 80 %, and specificity was 20 %. 

 

Figure 4-17. Regular RNN internal structure. 

 

 

Figure 4-18. LSTM internal structure. 
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Figure 4-19. LSTM’s test confusion matrix. 

 

Table 4-9. Detection and False Detection Rate for LSTM. 

Accident Detection Rate False Detection Rate 

68.58 % 19.99 % 

 

4.3.5.4  Gated Recurrent Unit (GRU) 

Another popular variant of LSTM is known as GRU, which was first introduced 

in [32]. In summary, GRU is a simpler version of the LSTM model, where the forget and 

input are combined as the update gate; also, other changes facilitated simple internal state 

processes (See Figure 4-20 and Figure 4-21). The resulting confusion matrix and 

tabulation of the accident and false detection rates delivered a slightly worsening 
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performance when compared to original LSTM (See Figure 4-22 and Table 4-10). The 

GRU model had an accuracy of 76.5 %, and specificity of 23.5 %. 

 

Figure 4-20. GRU internal structure. 

 

 

 

Figure 4-21. LSTM vs. GRU gates. 
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Figure 4-22. GRU’s test confusion matrix. 

 

Table 4-10. Detection and False Detection Rate for GRU. 

Accident Detection Rate False Detection Rate 

65.01 % 23.49 % 

 

4.3.6 Summary of Classification Modelling Results 

Because the test dataset is a subset of a real-world dataset, therefore a representative 

of it without any resampling, the non-accident samples far outnumber accident samples. 

Depending purely on accuracy scoring metric as the norm, the classification problem will 

be not a true representative of the model performance. Given that a model is biased to 

predict a sample as non-accident, the accuracy metric of that model will increase. This is 
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true for most actual accident samples, as shown when using the SVM classifier, as 

demonstrated in Section 4.2.3. Even so, the correct accident detection rate—when coupled 

with false detection rate—can be used to evaluate model performance. Optimal 

performance will be characterized with a high accident detection rate and low false 

detection rate. When comparing the performance of all the models, Random Forest model 

was superior, followed by LSTM, GRU, MARS + Logistic Regression, Logistic 

Regression, and SVC (See Figure 4-23). Although expected results were not conformed, 

LSTM was shown to be outperformed, yet at acceptable levels. It is acceptable to say at 

this specific test set, the Random Forest outperformed all other model but without a 

balanced sample of Negative and Positive class, our model performance metric can not be 

the final verdict as metrics such as ROC and AUC are more all composing in describing 

the model performance at various threshold values instead of just the optimized values as 

shown in this thesis.  

 

Figure 4-23. Classification model accuracies. 
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4.3.7 Feature Importance 

In validating aforementioned previous work, this section shows the importance of 

certain features for predicting accident occurrences. The analysis of feature importance 

was performed on the Random Forest model. Feature importance is a built in-functionality 

on its sklearn-based modelling which shows the most important features are altitude of the 

sun, azimuth of the sun, speed features, travel time, and temporal information proved to be 

the most important features (See Figure 4-24). Longitude and Latitude of the road segment, 

segment length, and segment ID features were of minimal importance in the model. 

 
Figure 4-24. Random Forest feature importance. 

 

 

 



60 

5. Post Processing Classification Modelling 

 
This section explains the preferable methodology for analyzing speed data in a post-

processing setting. The objective is analyzing and classifying occurrences of speed drop, 

which are filtered according to a pre-determined speed percentage drop. The goal is 

differentiating between events causing traffic speed drop between regular rush hour 

congestion and traffic accidents. Free flow observations serve as our control class and is 

based on observations that demonstrate no prominent drop in speed. Validation of the 

correct methodology for distinguishing traffic events from historical traffic speed data will 

provide insights into speed turbulence occurrences that if modeled could become a valuable 

tool for researchers and state entities for correctly identifying and developing road 

maintenance plans, especially for cases where road incident data are not available.  

5.1 Comparison between Dynamic Time Wrapping and Zero Padding 

The first step in an effort to prepare and filter data observations for speed turbulence 

occurrence is to first extract the speed observations between initial time of observations to 

the occurrence of speed returning back close to the initial observance after the set 

percentage drop. One challenge to this approach is filtered observations produce data with 

varying time periods that cannot be solved using a regular machine learning or deep 

learning approach for model training. As such, several methods were investigated, 

including LSTM, which accepts varying data length, given as long as the batch training 

includes similar data length. This, however, will present another challenge, as a varying 

length sample doesn’t necessarily produce a similar amount of data samples for each time 

varying length data (i.e., variance in data length is completely random). Two solutions to 

overcome this problem were 1) zero padding the data to create data samples of equal length 
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or 2) applying Dynamic Time Warping (DTW) to each data with a reference observation 

sample set at constant speed of 60 mph and set length. Dynamic time warping in this 

application will stretch observation samples to the required observation length without 

greatly distorting original observations. While the zero padding is the most convenient and 

often applied method in the literature for such problems, DTW was explored in this thesis 

as an alternative and perhaps more reliable data processing method for varying length 

samples. 

DTW is a similarity measure algorithm that works like a Euclidean distance 

algorithm, although it was developed to measure the similarity between two observations 

of different lengths. Unlike Euclidean distance, which calculates the distance between 

observations using one on one matching, DTW first generates one-on-many or many-on-

one matching between two observations to determine the distance between the two 

observations [33]. Implementation of the DTAIDistance library for python-based 

application [34] enabled the discovery of an optimum warping path between two varying 

length observations. Further application of the warp path as a function converted the 

originally shorter observation to a reference observation. For this thesis, the determined 

reference observation sample was one of constant speed 60 for a 3-hour 30-minute window. 

Multiple constant values were considered as reference sample. A high-valued constant, 

rather than a low-, outperformed others for optimally stretching the original sample without 

significant distortion (See Figure 5-1 and Figure 5-2). 
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After DTW. 

 

Figure 5-1. DTW observation stretching with high-constant sample. 
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After DTW. 

 

Figure 5-2. DTW observation stretching with low-constant sample. 
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5.1.1 Data Shifting to obtain 3-hour 30-minute observation 

Data for LSTM modelling were prepared as detailed in section 4.2.6.1. The only 

exception was shifting data to data(t-2), data(t-1), …. data(t+2). Post processing required 

the shift to create a three-and-a-half-hour window instead of the more typical 20-minute 

windows, such that data(t-12), data(t-11), … data(t+30) were created. Difference in the 

window is due to the goal of the modelling where instead of real-time prediction, post-

processing which does not have time limitations. Results are shown (See Figure 5-3). 

 

Figure 5-3. Data shifting to produce 3-hour and 30-minute window. 
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5.1.2 Filter Congestion and Accident speed observation 

There are several steps required before suitable data can be generated for LSTM model 

training. The first data to be gathered is in regard to observations that shows speed 

turbulence in the observations. For the purpose to show the validity of this methodology, 

the required observed speed change considered for turbulence was set to - 15 percent. Zero 

padding (or DTW) was required for algorithm processing (See Appendix B-3). The process 

was as follows. 

1. Extract only speed variable observations for the entire dataset. 

2. Separate the dataset for accident and non-accident observations. 

3. Separate non-accident data between rush hour and non-rush hour periods [Creating 

Congestion and Free Flow observations]. 

4. Create a dataset of percent change in speed from initial speed for each step-in time 

[Percent Change dataset]. 

5. Determine which observations to retain from the Percent Change Dataset based on 

the percent decrease in minimum required speed. Use filtered Percent Change 

Dataset index to filter the accident dataset and retain only observations with 

significant speed drop. 

6. Note that for each sample wherein a column represents an increment of speed per 

time step (e.g., 5-minutes), observations from the initial column (t-12) are 

compared with a column showing an allowance of two time steps from the point at 

which the Percent Change Dataset reports percent drop is returning to zero is 

retained.  
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7. Remining columns are padded with zero (or undergo DTW) to ensure that each 

observation has 33 columns [(t-12) to (t+30)]. 

8. Step 4 thru Step 7 are repeated for the congestion dataset. 

9. Three classes of observation were prepared to solve the classification problem.  

LSTM model training was performed for a classification problem predicting three classes 

that were created according to the algorithm described above.  Only the speed feature was 

considered for model performance comparison between zero padding and DTW processing 

methods. 

 

5.1.3 Results 

The LSTM model training architecture and parameters are identical to the one 

shown and described in Section 4.2.5.2. Data collection was limited to Oklahoma Highway 

I-35, like described in Chapter 4. The zero-padding data processing in the first model 

reported model accuracy of 75.5 % and specificity of 24.5 % (See Figure 5-4 and Table 

5-1). The model trained using data warped with DTW indicated model accuracy of 68.7 

% and specificity of 31.3 % (See Figure 5-5 and Table 5-2). The zero-padding based 

model had an overall improved performance and lower false prediction for most classes; 

the DTW model showed only a slight improvement in detecting accident class (e.g., 

increase of 0.9 %). DTW, therefore, is not an ideal candidate for solving the problem of 

varying length of data. 
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Figure 5-4. LSTM zero-padding test confusion matrix. 

 

Table 5-1. LSTM Zero-Padding Per Class Accuracy Rate 

Predicted Class Accident Prediction Rate and False Prediction Rate 

Free Flow Congestion Accident 

Free Flow 99.97 % 0.00 % 0.00 % 

Congestion 0.01 % 68.12 % 39.94 % 

Accident 0.01 % 31.88 % 60.06 % 
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Figure 5-5. LSTM DTW’s test confusion matrix. 

 

Table 5-2. LSTM Zero-Padding Per Class Accuracy Rate. 

  

Predicted Class Accident Prediction Rate and False Prediction Rate 

Free Flow Congestion Accident 

Free Flow 92.69 % 3.31 % 1.63 % 

Congestion 6.19 % 61.34 % 37.42 % 

Accident 1.12 % 35.35 % 60.95 % 
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5.2 LSTM modelling  

Based on Section 5.1 results, the model comparison between DTW and zero 

padding demonstrated that the zero-padding method performs slightly better. Model 

improvement enables classification between free flow, congestion, and accident 

observation. These will be continued on the zero padding-based data processing, as this 

method is the norm for handling varying length data for a deep learning approach. 

However, this thesis showed DTW is able to process varying length data, especially for a 

traffic speed classification application. To improve classification, features like travel time, 

temporal data (i.e., month, day, hour), spatial data i.e., longitude, latitude) and solar 

position (i.e., azimuth and altitude) were included the model training. An early model was 

developed using the aforementioned features gathered from all road segments on 

Oklahoma Highway I-35. Results show a slight improvement when compared to initial 

model results reported in Figure 5-5, which only used the speed feature. Model accuracy 

was 91.27 % and specificity was 8.73 %, which is a near 15 percent improvement of the 

initial model for scoring accuracy and congestion classification, even though accident 

detection rate worsened (See Figure 5-6 and Table 5-3). 
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Figure 5-6. LSTM Oklahoma Highway I-35 test confusion matrix. 

 

Table 5-3. LSTM Oklahoma Highway I-35 Per Class Accuracy Rate. 

 

Predicted Class Accident Prediction Rate and False Prediction Rate 

Free Flow Congestion Accident 

Free Flow 99.97 % 0.00 % 0.00 % 

Congestion 0.00 % 87.98 % 50.80 % 

Accident 0.03 % 12.02 % 49.20 % 
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To validate that a localized spatial modelling would yield improved classification 

results, two datasets were prepared using two sections of Oklahoma Highway I-35. The 

first section contained road segments 04910 to 04914; the second section contained 04914 

to 04918. The first localized model for the first segment yielded an accuracy of 88.46 % 

with specificity of 11.54 % (See Figure 5-7 and Table 5-4); the second localized model for 

the second section yielded an accuracy of 87.81 % and specificity of 12.13 % (See Figure 

5-8 and Table 5-5). Overall, the localized model reported significant performance 

improvement over models that considered utilizing the entire Oklahoma Highway I-35. 

This can be explained by considering the difficulty of processing location information. For 

example, label encoding does not correctly encode data based on occurrences of 

classification. LSTM was initially created to capture changes in temporal data. Hence the 

reason for the localized model reporting better results. The localized model can be 

validated for its ability to correctly classifying speed turbulence as based on either traffic 

accident or congestion. 
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Figure 5-7. LSTM Segment 1 test confusion matrix. 

 

Table 5-4. LSTM Segment 1 Per Class Accuracy Rate. 

Predicted Class Accident Prediction Rate and False Prediction Rate 

Free Flow Congestion Accident 

Free Flow 100.00 % 0.00 % 0.14 % 

Congestion 0.00 % 77.02 % 1.06 % 

Accident 0.00 % 22.98 % 98.8 % 
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Figure 5-8. LSTM Segment 2 test confusion matrix. 

 

Table 5-5. LSTM Segment 2’s Per Class Accuracy Rate. 

Predicted Class Accident Prediction Rate and False Prediction Rate 

Free Flow Congestion Accident 

Free Flow 99.99 % 0.01 % 0.01 % 

Congestion 0.00 % 86.88 % 24.88 % 

Accident 0.00 % 13.11 % 75.11 % 
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6. Conclusion and Future Work 

 
The work presented in this thesis covers several traffic accident-based analyses, 

methodology of analyses, model training, and model validation. The work herein 

demonstrates the best possible approach for acquiring and preparing necessary data from 

NPMRDS for use with supervised learning and RNN model training to execute near real-

time accident detection. Research showed that the ensemble-based Random Forest 

algorithm was the best performing model with an accident detection rate of 89.68 % and 

false detection rate of 13.92 %. The LSTM model delivered 68.58 % accident detection 

and 19.99 % rate of false detection. Most others reported in the literature did not achieve 

this level of performance. Of those that did, results were achieved only through 

implementation of simulation or synthetic data usage for model training and validation. 

Results reported in this thesis showed that NPMRDS offered reliable real-world data with 

the possibility of real-time implementation. With regard to classification of historical 

traffic data for identifying speed turbulent occurrences  resulting from either traffic 

accidents or regular traffic congestion, the best process included localized modelling, 

where accident detection accuracy ranged from 87 % to 88 % and congestion detection rate 

was well above the 75 %.  

NPMRDS has tremendous undiscovered potential, especially for traffic accident analysis 

and traffic parameter detection problems, where additional features and modelling methods 

can be implemented. It is recommended that in order to improve and resolve current 

methodologies, researchers should implement data collection abilities that can always be 

able to collect the necessary traffic data per epoch per segment instead of relying on 

unreliable speed probe-based data collection. Features like road geometry can also be 
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collected via test drives on a roadway under investigation using a road geometry analysis 

tool. Likewise, NOAA weather stations could be utilized to include weather information 

and analyze effects of weather and road condition on traffic accidents and congestion. 

ODOT and WECAD are contributing to this advancement by deploying multiple Road 

Weather Information System (RWIS) across Oklahoma highways in an effort to provide 

real-time weather information. LSTM is a well-suited approach for capturing temporal 

aspects; however, this model was not intended to capture spatial aspects. Hence, new 

techniques, such as CNN-LSTM, 3D-based LSTM and others, should be considered. 
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Appendix 
 

Appendix A: 

 

Figure A-1. Density plot of standard deviations of speed change observations 
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Appendix B:

 



82 

 

Figure B-1. Example of Data being prepared for Supervised Learning 

 

 

Figure B-2. Data Shifting function to convert time series data to supervised learning 
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Figure B-3. Algorithm function to apply data filtering for zero padding/DTW 


