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Abstract 
The application of three-dimensional (3D) tumor spheroids has been expanding due to their ability 

to closely mimic several features of solid tumors such as their cellular heterogeneity/organization 

and growth kinetics. Optical Coherence Tomography (OCT) system has been utilized to 

characterize 3D morphological and physiological information of multicellular tumor spheroids. In 

order to characterize and analyze the results of 3D OCT spheroid datasets, there is a need to 

develop an automated algorithm with high accuracy that can calculate the volume of a tumor 

spheroid and its necrotic tissues. The developed automated algorithm can automatically detect the 

margin of the 3D tumor spheroids and its necrotic region. The measurements from the automated 

program were then compared with the manual method to assess the accuracy of the developed 

algorithm through calculations of the Dice coefficient, and the results show a Dice number of 

0.9449 and 0.9145 for spheroid and necrotic volume algorithms, respectively. Additionally, curve 

fitting was performed to further study the growth kinetics of the spheroid and its necrotic tissues, 

and measures such as root-mean-square error (RMSE) and corrected Akaike information criterion 

(AICc) were taken for this assessment. According to the RMSE measure, Boltzmann was the best 

fitted model for the overall spheroid volume growth. Logistic model, on the other hand, was best 

fitted in modeling the growth of necrotic core according to both RMSE and AICc values. 

Quantification of the spheroid volume (and its necrotic core) is significant as morphological 

features are often related to tumor activities, and determination of the best model is also vital in 

predicting the behavior of the spheroids. Overall, the algorithm used for this study allows for more 

efficient, in both time and accuracy, studies such as evaluating the growth medium’s effect on 

tumor spheroids, growth characterization of varying cell lines, as well as the efficacy of a certain 

drug.
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1 Introduction 
Cancer occurs when the ordered process of cell division fails, and this results in an uncontrolled 

and abnormal growth of tissues called tumor. This disease has greatly impacted our society as its 

mortality remains high despite all developments in medicine and research. According to the 

National Cancer Institute’s (NCI) estimation, around 1.8 million people in the United States1, 

alone, will be diagnosed with cancer in 2020, and this disease is still the second leading cause of 

death, worldwide.2 In fact, the NCI also approximated that roughly 600,000 deaths due to cancer 

will occur in 2020 in the United States1. Treatments of this disease include surgery, chemotherapy, 

targeted therapy, and immunotherapy, and due to the success and evolution of these therapies, the 

global mortality rate of cancer has decreased, especially in the last twenty years.3 

In order to improve these methods of treatment, it is highly critical to understand how cancer cells 

and tumors behave, and many research studies are currently being conducted in order to explore 

tumor’s properties, characteristics, and interactions with other cells and tissues. The development 

of new anticancer drugs often fails (90%- solid tumors) due to lack of efficacy or presence of 

toxicity during clinical trials, and researchers have suggested that utilization of oversimplistic cell 

cultures during in vitro testing may be the cause of this problem.4 In vitro modeling is the first 

phase of new drug development and it is especially critical as results from this step greatly 

influence the rest of the phases. Two-dimensional (2D) cell cultures are often used in this phase 

due to its advantages—cultured within minutes to hours, cheap and reproducible, and its simplicity 

allows for an easy interpretation of data.5 These models are extremely useful, but the development 

of 3D cultures has evolved drug discovery. Despite its disadvantages (longer culture formation 

time, worse reproducibility than 2D cultures, and cost), 3D cultures’ potential in accurately 

modeling real tumors has been growing interest in the field of biotechnology. Tumor spheroids are 

one type of the 3D models, and these are 3D cellular aggregates (micron-sized) used to model 

different cancer types. They can better mimic real tumors as cell-cell/cell-extracellular matrix 

interactions exist, cellular organization (from necrotic to proliferation layers) is also present, and 

growth kinetics are similar to that of solid tumors.6 Structural changes and potential drug resistance 

(due to 3D organization) of these spheroids further enhances its functionality and effectiveness 

over 2D cultures.  

Another major advantage of 3D spheroid is the presence of three zones that make up the spheroid—

proliferative, quiescent, and necrotic zones—but these sections are more apparent in larger 

spheroids. The proliferative zone is the outermost layer of the spheroid, and this region is the only 

part in which cells proliferate as it receives enough supply of nutrients and oxygen to grow.7 The 

second region, quiescent, can be found between the proliferative and necrotic zones, and its cells 

are still alive but no longer proliferating. Finally, necrotic zone is the innermost layer [core] of the 

tumor spheroid, and this region is especially evident in older cultures as [quiescent] cells die due 

to lack of oxygen and nutrients.8 Quantification of these biological zones in the tumor spheroid is 

significant as scientists can better optimize dose prescription and drug-response prediction. This 

study will, therefore, characterize and analyze the growth volume of one of these zones, necrotic 

region, using the developed automated algorithm. 
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In terms of imaging, bright field microscopy, phase contrast imaging, and fluorescence microscopy 

are often used to image the tumor spheroids but only 2D images can be obtained from these 

modalities, hence, 3D structures of the spheroids cannot be observed. Loss of signal can also occur 

while imaging using these techniques as volumes and depths of the spheroids can sometimes be 

large and the penetration depth for these conventional microscopies are often limited to 50 

microns. Light sheet microscopy (LSM) is another option to image these models, but preparation 

of samples usually involves numerous and time-consuming steps, thus, an imaging modality that 

can overcome these issues is needed.9 Optical coherence tomography (OCT) is an imaging 

modality that applies the principles of low-coherence interferometry to obtain 3D images of the 

specimen. OCT is also a label-free optical imaging modality with micron-sized resolution and 

penetration depth of a few millimeters10 (depth of penetration can be adjusted by using longer 

wavelengths) so this technique overcomes one of the major hurdles of bright-field, phase-contrast 

and fluorescence imaging—imaging depth.  

 

1.1. Purpose of the Study 
Spheroid datasets imaging by OCT often consist of hundreds to a thousand cross-sectional images, 

and there is a need to develop an algorithm to analyze these images time-efficiently while 

maintaining accuracy. Some researchers simply use the diameter of the spheroid for their volume 

calculations, and this method assumes that the spheroid is a perfect sphere but this is not the case 

so this method can result in errors in their calculations. Other researchers also use well-known 

image analysis software, and while these are great and may result in accurate calculation, it may 

be time-consuming to adjust several parameters between batches of images. The objective of this 

study, therefore, was to develop an algorithm to measure the spheroids’ volumes in a short period 

of time while maintaining a high accuracy. This study employed a swept-source OCT system to 

visualize the 3D volume of ovarian cancer cell line (OVCAR-8) spheroids with two different cell 

seeding density (5,000 cells/well and 50,000 cells/well) while implementing image processing 

algorithm to quantify the volume growth over a period of 18 days (5,000 cells/well will be referred 

to as the 5,000 group while 50,000 cells/well will be the 50,000 group for the remainder of the 

paper). Additionally, this study tested different mathematical models to determine the best fitted 

curve for the spheroid’s volumetric growth and demonstrated OCT’s ability to characterize 

necrotic core volume within the spheroids. The developed algorithm is significant as it allows for 

more efficient studies such as evaluating the growth medium’s effect on tumor spheroids, growth 

characterization of various cell lines, as well as the efficacy of a certain drug. The curve fitting of 

mathematical models against the data points can also be crucial in drug-response prediction and 

dose prescription studies. 

 

2 Methodology 

2.1. OCT System 
To determine the 3D volume of the spheroids, a swept-source OCT (SS-OCT) system was 

employed to acquire numerous 2D cross sectional images of the spheroids. The SS-OCT has an 
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imaging depth of 8.0 mm and 6.0 mm for air and water, respectively. The system also has a 

theoretical lateral resolution of 20 µm and axial resolution of 14 µm/10.6 µm for air/water. 

Additionally, the A-scan/Line rate for the system is 200 kHz with a sensitivity of 98 decibels. The 

schematic for the OCT system is shown in Figure 1 where the light source splits into two (through 

an optical coupler, OC)—one for the reference arm and another for the sample arm. The light in 

the sample arm images the spheroids in the well plate and light (from reference and sample) is then 

reflected back to the data acquisition board and computer for the recombination of reflected light 

and interference to eventually yield 2D images of the sample. 

 

Fig. 1. Schematic of a SS-OCT system for 3D imaging of tumor spheroids. SS, swept-source. 

DAQ, data acquisition board. PC, computer. OC, optical coupler. MZI, Mach-Zehnder 

interferometer. C, circulator. PD, photodetector. OL, optical lens. M, mirror. GM, Galvanometer 

scanning mirror.  

 

2.2. Image Acquisition and Processing 
All tumor spheroid (OVCAR-8) samples were fixed then imaged using the OCT system. There 

were a total of two groups (based on cell seeding density) of spheroids used in this study: 5,000 

[cells/well] (low cell seeding density) and 50,000 [cells/well] (high cell seeding density) group. 

For each group, there were 5 samples (spheroids) per day with the exception of day 11 to 18 of 

50,000 group which only had 3 samples per day.  

Cross-sectional images from the OCT software (ThorImageOCT) were exported for volume 

calculation, and these group of images were filtered so that only slices with signals from spheroids 

were acquired. The images were initially cropped to obtain the region-of-interest (ROI), and mid-

section slice of the spheroid was cropped first followed by the rest of the slices. It was critical that 

the dimensions of the mid-section slice were obtained in the first place since these dimensions 

contain all signals of the spheroid for all slices. Some cropped 2D images had some level of noise 
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in the background so a denoising step was performed for all images using a gaussian filter. 

Detection of the boundary of the spheroid was then conducted, and this was accomplished by 

detecting the edges of the image using the Sobel operator and dilating the pixels with a spherical 

structuring element. Through this dilation step, the pixels were connected, and since some parts 

within the spheroids had no signal, filling the holes within the ROI was done to avoid inaccurate 

volume calculations. Finally, smoothing the edges (erosion) of the image was also executed using 

the same structuring element as the dilation step (spherical structuring element: size=3). The pixels 

within the boundary were then added up for an area calculation, and summation of area from all 

slices resulted in the spheroid’s volume. MATLAB was used to perform the algorithms. The 

schematic of this process is shown in Figure 2. 

 

 

Fig. 2.  Schematic diagram of image processing sequence: Data acquisition, ROI selection, edge 

detection, dilation, fill, erosion, area calculation, and volume calculation. ROI Selection, 

interactive cropping tool. Edge Detection, threshold: 0.07. Dilation, sphere-shaped structuring 

element: radius-3, lines. Fill, ‘holes’. Erosion, sphere-shaped structuring element: radius-3. 

 

2.3. 3D Spheroid Volume Calculation 
In order to calculate the total volume for each spheroid, the number of pixels in a slice were initially 

added together, and this resulting value represents the area of the cross-sectional image. Areas 

from all cross-sectional images were then combined to quantify the total volume of the spheroid. 

This volume calculation was done for each spheroid over the duration of the experiment, 18 days, 

and since the volume is in pixels, this number was converted to cubic microns, µm3 (by multiplying 

pixel values with the dimensions of the voxel).  

 

2.4. Mathematical Modeling of the Spheroid Growth Curve 
Four modeling curves were fitted to the volumetric growth data of tumor spheroids to further 

describe tumor’s growth in volume, mathematically. These growth curves include logistics and 

Gompertz models (previously observed to potentially model the growth of tumor spheroids),9 

Boltzmann sigmoidal (used to model avascular tumor growth),11 and exponential-linear model 

(one of the common macroscopic growth models).12 The exponential-linear model is considered 

to be one of the simplest models in modeling tumor growth, and this function can be described by 
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an initial exponential growth followed by a linear phase. Logistics and Gompertz models, on the 

other hand, are known to model organ and organism’s growth, and these models usually have 

sigmoidal shape—a curve with one inflection point which eventually converges to the sample’s 

maximum volume.13 Lastly, the Boltzmann curve is mostly used in fluid flow measurements and 

modeling, but several studies also associated this model with avascular tumor growth, and this 

curve also possess a sigmoidal shape. These four models have been previously studied but not 

compared relative to one another, and this is one innovation of this study.  The best fitted model 

was determined by analyzing goodness-of-fit measures between each nonlinear model: root-mean-

square error (RMSE) and Akaike information criterion with correction for small sizes (AICc) using 

GraphPad Prism. Additional residual plots were also provided, and paired t-tests were performed 

(using GraphPad Prism, as well) to determine if there were significant differences between each 

model. Finally, a p-value of <0.05 was used to indicate significant differences between each 

measurement. 

 

2.5. Necrotic Core Identification 
In its entirety, a spheroid is a 3-layer volume with the outermost layer being the proliferative zone, 

the middle layer constituting the quiescent zone, and the innermost layer making up the necrotic 

region. This necrotic tissue was identified in this study through calculation of tissue extinction 

coefficients (or slope of axial attenuation). Signals from the OCT represents detected back-

scattering of light at various depths, so the OCT intensity function can then be described with the 

Beer-Lambert Law.14 The extinction coefficient, µ, can be estimated by fitting the OCT intensity 

profiles with the Beer-Lambert model: 

𝐼(𝑧) = 𝐼0𝑒
−2µ𝑧 

where µ represents the tissue extinction coefficient and z represents depth. Light attenuation in the 

necrotic regions may be due to the increase in the tissue extinction coefficient, thus, this value, µ, 

will be used to identify the margin of the necrotic tissue within the spheroids.14 
 

ROI Selection, filtering methods, and morphological operation sequences were also used to 

identify the necrotic region of each slice. The images were initially cropped to obtain the ROI, and 

median filtering with a 10-by-10 neighborhood size was also applied to all images. Tissue 

extinction coefficients were then calculated, and thresholding was performed to specifically 

identify the necrotic core—the threshold values were determined by the histology images of the 

spheroids. After thresholding, morphological operations were, again, performed to filter images to 

match necrotic core region in the histology.  

 

2.6. Volume Calculation and Mathematical Modeling of the Necrotic Region Growth 

Curve 
After the detection and identification of the necrotic region of the spheroids, volume calculations 

were performed. Similar to the 3D spheroid volume calculation, areas values for each 2D cross-
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sectional slice were summed up, and this results in a calculated volume for the spheroid. After 

plotting the volumetric data for both 5,000 and 50,000 groups, curve fitting using two basic models 

were executed: exponential-linear and logistic models. RMSE and AICc measures were also taken 

in order to evaluate the growth kinetics of the necrotic core, quantitatively. 

3  Results 

3.1 Accuracy of Automated Algorithm 
Manually traced images of the spheroid were taken [as gold standards] to determine the accuracy 

of the segmented images. Three volunteers manually traced the outline of the spheroid for three 

different images (9 total images), and these images were used as ground truth images in Dice 

coefficient calculations. The Sørensen–Dice coefficient is mostly used in image segmentation, and 

this value represents the similarity between ground truth and segmented images. This value ranges 

from 0 to 1 with 0 meaning no overlap (between ground truth and segmented image) and 1 

representing a total or perfect overlap between ground truth and segmented images—higher Dice 

score indicates higher similarity and accuracy between two images. The manual tracing of spheroid 

for accuracy assessment is shown in Figure 3. 

  

 

Fig. 3.  Manual tracing of spheroid for accuracy assessment of algorithm through boundary 

tracing by 3 volunteers (markers). a) OCT image, b) manual profiles (outlines) on OCT image, c) 

processed image, d) manual profiles on processed image 

 

The image processing algorithm presented above was selected by finding the best combination of 

edge detection threshold and morphological operations. The following values for sensitivity (edge 

detection threshold) were tested: 0.04, 0.05, 0.06, 0.07, 0.08, and 0.09. With regards to 

morphological operations application, methods with only dilation and methods with a combination 

of dilation and erosion were tested. For these operations, two structuring elements were used: disk 

structuring element (radius=3) and spherical structuring element (size=3). Table 1 shows the Dice 

coefficients after using a specific combination of edge detection threshold and morphological 

operation sequence. Application of 0.07 edge detection sensitivity while dilating and eroding the 

images with spherical structuring element resulted in the best Dice coefficient, 0.9449. This 
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coefficient represents the similarity between the ground truth image (manually traced) and the 

processed image after implementation of the algorithm.  

 

Table 1.  Dice coefficients after combination of edge detection threshold and morphological 

operations sequence. Method sequence was dilation followed by erosion. If only one 

morphological operation is listed, no erosion was applied. S, spherical structuring element (size:3). 

D, disk-shaped structuring element (radius:3). 

 

 

 

3.2 Volumetric Growth of 3D Tumor Spheroids 
The OCT system was used to take volumetric imaging of OVCAR-8 spheroids for both 5,000 and 

50,000 groups each day for a total of 18 days. Figure 4 quantitatively shows the changes in volume 

of 5,000 (blue) and 50,000 (orange) groups. It was found that the initial averaged volume for the 

5,000 group was 6.82X107 ± 1.43X106 µm3 while 50,000 group’s was 2.9X108 ± 2.66X107 µm3. 

For both groups, initial decrease (from day 1 to 2) can be observed, and this volumetric decline 

shows that cells are still fusing and aggregating to form a solid spheroid.12 After this slight 

decrease, volumes (for both groups) began to rapidly increase (5,000: day 2-7. 50,000: day 3-12), 

and this was followed by slight changes in volume for the 5,000 group and a plateau phase for the 

50,000 group. The averaged final volume for the low cell seeding group (5,000) was 3.69X108 ± 

2.08X107 µm3 and high cell seeding group’s (50,000) was 4.89X108 ± 9.12X106 µm3.The average 

volumes for all time points for both groups are shown in Figure 4. 
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Fig. 4.  OVCAR-8 volumes for both groups—5,000 cell seeding density [blue] and 50,000 cell 

seeding density [orange]. Data points are means ± standard deviations. 

 

3.3 Mathematical Modeling 
To further study the growth kinetics of the spheroid, quantitatively, modeling curves were fitted 

against the data points (both 5,000 and 50,000 groups) in Figure 5 with the four models mentioned 

earlier—exponential-linear (orange), Boltzmann sigmoidal (blue), logistic (green), and Gompertz 

(red). These models (especially exponential-linear, Gompertz and logistic) have been previously 

known as volumetric growth models of spheroids and tumors (using data from conventional 

microscopy), but no study has compared all four models together while using OCT, hence this 

study evaluated these models relative to one another to determine the best fit curve for spheroid 

growth.9,10,11 Assessment of the best fitted curve can be useful in growth prediction, dose 

prescription, and drug-response prediction studies.  
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Fig. 5.  Curve fitting with four models: exponential linear [orange], Boltzmann [blue], logistic 

[green], and Gompertz [red]. Fitted models are shown against 5,000 data [left] and 50,000 data 

[right]. Data points are means ± standard deviations. 

 

3.4 Goodness-of-Fit 
To assess the best model for the OVCAR-8 volumetric growth, two main approaches were taken: 

RMSE and AICc. RMSE is a statistical measure known to test how good the fit the model is to the 

data, and this is the square root of variance’s residuals. RMSE values have the same units as the 

quantity being measure, and for this case, spheroid volume in µm3. AICc, on the other hand, is a 

widely accepted measure to assess the quality between nonlinear models, and the equation for this 

measure is shown below: 

𝐴𝐼𝐶 = 2𝐾 − 2ln(𝐿) 

where K is the number of parameters and L is the log-likelihood estimate (the likelihood of model 

to yield the observed values). This measure is, therefore, unitless. 

For both measures, lower values represent better fit of model to the dataset. It is important to 

analyze the AICc values relative to each other as AICc value, by itself, is not meaningful. RMSE 

and AICc average values for both cell seeding density groups are shown in Figure 6. The results 

of the RMSE assessment shows that the Boltzmann had the lowest RMSE for both 5,000 (RMSE 

= 2.44X107 µm3) and 50,000 (RMSE = 3.64X107 µm3) groups while exponential-linear model had 

the highest RMSE values (4.40X107 µm3 and 6.16X107 µm3 for 5,000 and 50,000 groups, 

respectively). In the AICc graph, on the other hand, AICc values of 5,000 group for Boltzmann, 

logistic, and Gompertz were almost similar to one another with values of 626.3, 629.0, and 624.8, 

respectively while exponential-linear’s value was the largest at 652.2. The AICc values for the 

50,000 groups were similar in trend as 50,000 RMSE values with increasing values starting from 

Boltzmann to logistic, Gompertz, and exponential-linear models. The summary figures for both 

goodness-of-fit measures are shown below. 
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Fig. 6. RMSE [left] and AICc [right] values of all models (exponential-linear, Boltzmann, logistic, 

and Gompertz) for both 5,000 and 50,000 groups. Values of 5,000 group are shown in blue while 

50,000’s are shown in orange. RMSE, root-mean-square error. AICc, Akaike information criterion. 

 

Additional residual graphs are also provided in Figure 7. Each plot represents each group (5,000 

and 50,000), and the horizontal lines within the data set indicate the value of the mean for each 

model. Paired t-tests were also performed between each model, and only three pairs had 

statistically significant difference (all in the 5,000 group): exponential-linear/Boltzmann 

(p=0.0004), exponential-linear/logistic (p=0.0043), and exponential-linear/Gompertz (p=0.0003). 

The rest of the pairs in the 5,000 and 50,000 group had no significant differences. The residual 

plots for both groups are shown below. 

 

Fig. 7. Residual plots of the four models (exponential-linear, Boltzmann, logistic, and Gompertz). 

The plot for the 5,000 group is shown on the left while the plot for the 50,000 group is shown on 

the right. No significance between pairs were observed in the 50,000 group. ***: p-value<0.001. 

**: p-value<0.01. 
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3.5 Accuracy of Necrotic Region Algorithm 
Accuracy measurement was also done—necrotic core region in the histology images were 

manually traced (3 total images for 3 different days), and these images were compared with 

processed images. Several thresholds (for attenuation coefficient) were tested in order to obtain 

the maximum Dice coefficient for the algorithm, and the results are shown in Figure 8. After 

applying these thresholds, the highest resulting Dice coefficient for the necrotic core identification 

algorithm was 0.9145 using the threshold value of 3.  

 

Figure 8.  Dice coefficients after application of several threshold values (attenuation coefficient). 

 

Additionally, the H&E-stained images, OCT images, processed images (after algorithm 

application) and OCT images overlay, and processed images and histology images overlay are 

shown in Figure 9. Necrotic core calculation was performed for both low and high cell seeding 

density groups. 
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Fig. 9.  Necrotic core detection accuracy using histology results from days 5, 7, and 10. a) histology 

images, b) original OCT images, c) processed images [red] (after algorithm application) and 

original OCT image overlay, d) histology [dark] and processed images [bright] overlay. 

 

3.6 Volumetric Growth of Necrotic Core 
After 2D cross-sectional images of the spheroids were taken, optical attenuation coefficient 

calculations followed by filtering methods (mentioned earlier) were performed to identify the 

necrotic region of the spheroid. Similar process as volume calculation for the entirety of the 
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spheroids was then executed—all pixels in each slice were added up for an area value then area 

for all cross-sectional images were summed up to quantify the volume. Necrotic core calculations 

were performed on both low (5,000) and high (50,000) cell seeding density groups. The volumetric 

growth of the necrotic core for both groups is shown in Figure 10 where each data point represents 

the averaged necrotic region volume for each time point for a total of 18 data points per group. 

This graph shows that in the early cultures (day1-3), necrotic tissues are almost non-existent in the 

spheroids then it consistently increased until day 10, and after day 10, a plateau phase can be seen. 

The final average necrotic core volume for the 5,000 group was 1.22X108 ± 2.51X107 µm3 while 

the final volume (average) for the 50,000 group was 1.48X108 ± 2.51X107 µm3. The overall 

volumetric growth of the necrotic tissues over 18 days is shown in Figure 10. 

 

Fig. 10.  Necrotic core volumes for the 5,000 [blue] and 50,000 [orange] groups. Data points are 

means ± standard deviations. 

 

3.7 Mathematical Modeling for Necrotic Region Growth 
Again, to study the growth kinetics of the necrotic region, quantitatively, curve fitting against the 

data points were performed for both groups. Two basic functions (exponential and sigmoidal) were 

used in this curve fitting section—the exponential-linear and logistic models. These modeling 

curves fitted against the data points are shown in Figure 11. 
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Figure 11. Curve fitting with two models: exponential linear [orange] and logistic [green]. Fitted 

models are shown against 5,000 data [left] and 50,000 data [right]. Data points are means ± 

standard deviations. 

 

3.8  Goodness-of-Fit 
Two main approaches were used to determine which of the two models best fit the necrotic core 

growth curve—RMSE and AICc measures. For both statistical measures, lower values indicate 

better fit, and for both the 5,000 and 50,000 groups, RMSE and AICc values were calculated and 

compared. The RMSE values for the logistic model were 7.21X106 µm3 and 1.48X107 µm3 for the 

5,000 and 50,000 groups, respectively. These values are lower than the exponential-linear’s RMSE 

values of 1.27X107 µm3 and 1.83X107 µm3 for the low and high cell seeding density groups, 

respectively. These results indicate that the logistic model is a better fit than the exponential-linear 

according to the RMSE measure. In terms of the AICc measure, the logistic model had AICc values 

of 578.5 and 604.5 for the 5,000 and 50,000 groups, respectively. The exponential-linear model, 

on the other hand, had values of 607.6 and 620.6, and these results indicate that the logistic model 

is, again, the better fit. The RMSE and AICc values are shown in Figure 12. 
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Fig. 12. RMSE [left] and AICc [right] of the exponential-linear and logistic models for both 5,000 

and 50,000 groups. Values of 5,000 group are shown in blue while 50,000’s are shown in orange. 

RMSE, root-mean-square error. AICc, Akaike information criterion. 

Additional residual graphs are further provided in Figure 13. Each plot represents each group (low 

and high cell seeding density groups), and the horizontal lines mean values for each model. Paired 

t-tests were also performed between the two models, but no significant differences were observed 

for both the 5,000 and 50,000 groups. The residual plots for both groups are shown Figure 13. 

 

Fig. 13. Residual plots of the logistic and exponential linear models. The plot for the 5,000 group 

is shown on the left while the plot for the 50,000 group is shown on the right.  

 

4 Discussion and Conclusion 
Quantitative evaluation of 3D spheroids’ growth curve and necrotic core volume is significant as 

morphological features of a tumor are often relevant in analyzing and predicting tumor activities.14 

Currently, 2D and 3D culture models are used in many oncological studies, but a tumor spheroid 
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(3D model) surpasses 2D models in this field of study in terms of mimicking real tumor behaviors. 

Many anti-cancer drugs fail, 90% failure in solid tumors, due to oversimplification in 2D in vitro 

models.4 This study, therefore, utilized 3D spheroids. Tumor spheroids often consist of three 

layers—proliferative, quiescent, and necrotic—and the presence of these zones are critical in 

predicting the growth of tumors. Imaging of these models is another factor that is significant in 

evaluating the growth curves, accurately. Brightfield microscopy, phase-contrast microscopy, and 

even light sheet imaging have been well-established in viewing tumor spheroids but these 

modalities have disadvantages that prevent accurate calculation of volumes—loss of signal at 

greater depths and/or time-consuming sample preparation. These hurdles can be overcome by 

using OCT to image the 3D spheroids as OCT’s penetration depth on biological tissue is around 

1-3 mm compared to brightfield’s several hundred microns penetration on tissue.15 Additionally, 

OCT does not require any labels thus reducing the overall sample preparation time. This study, 

therefore, used OCT to image 3D spheroids along with an automated algorithm’s application with 

the purpose of quantifying growth curve of the tumor volume and necrotic core volume.  

An interesting observation in the growth curve of the spheroid for both groups is the initial decline 

from day 1 to day 2/3. This phenomenon was previously observed by other studies, and they 

claimed that during this phase, the cells are still aggregating and fusing to each other to form a 

solid spheroid.16 The results of this experiment, thus, further solidifies that claim. The overall 

growth curve for both spheroids also seems to be similar to a sigmoidal shape, and this is consistent 

with previous studies in which they modeled the volumetric growth of spheroids.9,11,17 Some 

studies also portrayed that spheroids, in early phases, grows quickly but once it reaches a maximum 

volume, this growth ceases, and this is again, consistent with the results of this experiment.6 This, 

in a way, validates the accuracy of the OCT system and the developed algorithm. To assess this 

observation, various models were fitted against the data points for both groups, and according to 

the RMSE values, Boltzmann curve seems to fit best with the growth curve of OVCAR-8 (for both 

5,000 and 50,000 groups). When assessed with AICc measure, however, it became difficult to 

differentiate the models from one another due to the proximity of the values relative to one another. 

Another measure was taken, residual plots, to determine whether there is any significant difference 

between each model. The results of this assessment show that in the 5,000 group, the exponential-

linear model is significantly different from the other three models—it is the least fitted model 

against the growth data. For the residual plot of 50,000 group, on the other hand, no significance 

was observed in any of the pairs of models. It is, therefore, hard to conclude which of the four 

mathematical curves is best fitted for this study’s data. More data samples may be necessary to 

find significant differences between each model. Additionally, necrotic tissue detection and 

calculations were also performed, and as mentioned earlier, necrotic volumes (especially for the 

5,000 group) were almost non-existent earlier in the culture. This makes sense since necrotic core 

forms as a result of lack of nutrients and oxygen within the spheroid, and in earlier cultures, 

spheroids are still small, thus, all parts of the spheroid receive enough supply to live. Consistent 

volume growth was then observed for both groups, and this volume eventually reaches a plateau 

phase or minimal volume change as cultures age. Only two basic models were fitted (exponential-

linear and logistic), and out of the two, the logistic model resulted in a better fit according to both 

the RMSE and AICc measures. In future studies, more spheroid samples and modeling curves can 

be applied in order to further enhance and solidify the results of this study. 
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In summary, this study’s purpose was to develop an algorithm to calculate the volumes of the 

spheroid, and this is significant as morphology is often related to tumor activity and current volume 

calculation techniques can be time-consuming or inaccurate. The algorithm was developed using 

image segmentation and processing methods to accurately calculate the volumes of the spheroids, 

and the resulting Dice coefficients were 0.9449 (for spheroid volume calculation) and 0.9145 (for 

necrotic core volume calculation). Additionally, various mathematical models were fitted against 

the data points for both groups to further study the growth kinetics of the volumetric growths. In 

the spheroid volumetric curve, the Boltzmann sigmoidal model was the best fitted model according 

to the RMSE. In the necrotic core growth, on the other hand, the logistic model resulted in a better 

fit (according to both RMSE and AICc measures) compared to the exponential-linear model. The 

results show an efficient (in both time and accuracy) algorithm that was used to calculate the 

volumes of the spheroids and their necrotic cores. The calculation of necrotic core volumes (an 

innovation of this study) allows for more studies to be conducted (such as evaluating the effects 

of a drug in the necrotic volume of the spheroid), and overall, this study contributes and advances 

the knowledge of spheroid (and its necrotic core) growth so that in the future, better drugs can 

potentially be developed. 
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