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ABSTRACT 

Cancer is a prevalent disease that impacts many lives all over the world, projected to pass more 

than 27 million deaths in 2030. Among many cancer therapies and treatment solutions are 

immunotherapies that include immune checkpoint inhibitors, T-cell therapies, monoclonal 

antibodies, and immune system modulators; however, the induced immune response has often 

been found to decrease significantly with time. Exosomes, typically 30-100 nm diameter 

vesicular bodies produced in the endosomal compartment, are produced by every cell in the body 

and found in almost every bodily fluid, which is also true for cancerous cells and tumors. 

Exosomes not only mimic the parental cell’s membrane as they are released, but also are loaded 

with bioactive molecules like RNA that interact with neighboring cell population and even 

downstream cells and environments. Cancer cell-released exosomes have the capacity to interact 

with the immune system including CD8+ T-cells that are often responsible for many of the 

cytotoxic responses in the body. Such interactions have been hypothesized to be involved in the 

suppression of T-cell activity providing the potential explanation for the immunosuppressive 

properties of some cancers. As the exosome field of study is in its infancy, the interaction of 

exosomes with T-cells have been studied mostly in 2D cultures, but such studies have not 

managed to fully recapitulate the complex microenvironment and observations obtained from in 

vivo models. The development of more complex 3D culture environments and components that 

mimic the natural microenvironments where exosomes interact with T-cells is expected to 

provide cell responses closer to those observed in vivo.  

 

Tools developed within the area of regenerative medicine and tissue engineering, including 

advanced 3D cell culture systems, have gained interest by cancer researchers as they assist in 

adding components that better mimic the physiological environments where exosome-T-cell 



xi 

interactions take place. 3D flow perfusion is one such platform that incorporates the component 

of fluid flow present when T-cells interact with exosomes. Biomimetics also allow the 

modification of porous scaffolds, improving the ability of cells to recognize specific motifs such 

as the RGD binding motif that can be recognized by T-cells. Immobilizing T-cells via the RGD 

motif allows the creation of an immobile cell structure that can be exposed to exosomes through 

flow.  

 

Poly-L-Lactic Acid (PLLA) 2D disks and 3D printed porous scaffolds have been generated and 

surface modified with Poly-ε-Cbz-L-lysine  (Poly K) using an acetone-based partial 

solubilization approach that have been further modified using amine coupling allowing the 

incorporation of RGD adhesion peptide on the surface in a controllable manner. Increasing 

numbers of CD8+ T-cells attached onto the surface of both 2D modified disks and 3D printed 

modified scaffolds as the surface density of RGD increased. Activated human CD8+ T-cells 

secrete interleukin-2 (IL-2), a white blood cell regulatory cytokine, for which release has been 

shown to decrease significantly, or even get silenced, by the presence of exosomes from cancer 

cells. The decrease in IL-2 production is linked with the deactivation of T-cells and can be 

related to the immunosuppressive properties of exosomes.  

 

When co-cultured with exosomes from H1299 (human non-small lung carcinoma) and A549 

(human adenocarcinomic alveolar basal epithelial) cancer cell lines, T-cells showed decreasing 

IL-2 production when increasing the exosome to T-cell culture ratios from a 1:1 to 1:1000 ratio. 

A 1:10 ratio of T-cells to exosomes was sufficient to completely silence the IL-2 production of 

T-cells under 2D static conditions, while in a flow perfusion bioreactor with the presence of a 
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0.15 mL/min flow rate, or a superficial velocity of 1.2±0.5 mm/min, a higher ratio of exosomes 

of 1:1000 was necessary to elicit the same response indicating significant differences between 

the two culturing systems. Higher flow rates have resulted in almost 70% T-cell detachment, and 

for that reason exosome T-cell interactions were not explored within that flow regime. RGD 

modified surfaces resulted in T-cell immobilization with cells having a diameter of 7 – 7.5 µm 

for RGD densities of 0.27±0.43 nmoles/mm2 and below. Higher RGD densities resulted in T-

cells occupying a significantly smaller surface area resulting in diameters as low as 5 µm and for 

that reason were excluded from the study of exosome T-cell interactions under 3D flow 

perfusion. Our system provides a tool that can be used in exploring the interaction of exosomes 

with T-cells, the potential generation of exosomes in real-time by cultured cancer cells that can 

interact with downstream T-cells, or even test chemotherapeutic agents that may prevent T-cell 

silencing and provide a useful screening tool for the cancer research community. 
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1. INTRODUCTION 

1.1 Relevance of Cancer and Cancer Research 

In 2015, worldwide cancer cases had already reached more than 17 million alongside more than 

8 million deaths. Between the 10-year gap from 2005 to 2015 the rate of cancer related deaths 

and cases increased by more than 30% which were partly due to population aging and increased 

birth rates. Cancer is currently the second leading cause of worldwide deaths and by 2030 is 

expected to exceed more than 27 million deaths [1]. Cancer impacts not only the lives of 

patients, their families, and their friends, but also adds an additional burden and socioeconomic 

problem to already existing ones in society with daily habits and aging like sedentary lifestyle, 

smoking, substance abuse, and alcoholism [1, 2].  The most common and notable cancer 

treatments are radiotherapy, surgery, chemotherapy, targeted therapies, and immunotherapies [3]. 

The current landscape of cancer research spans many countries and shows that cancer is an 

interinstitutional topic with advanced countries having higher research densities [4].  

1.2 Introduction to Exosomes, Cancer, and T-Cells 

1.2.1 Introduction to Exosomes 

Exosomes are small vesicles that have been strongly implicated in cancer related processes. 

Exosomes typically range from 30 – 100 nm in diameter and are exuded by every cell line in the 

body, both normal and cancerous, involved in either communication and housekeeping, and were 

discovered almost 30 years ago in 1983 [5]. They are characterized as multivesicular bodies and 

they are the only types of extracellular vesicle that are loaded with intercellular contents fused 

with the parent cell plasma membrane before being sent into the extracellular matrix (ECM) and 

extracellular space [6-8]. Exosomes originating from healthy cells can be found in a wide range 

of bodily fluids like amniotic fluid, plasma, urine, blood, saliva, and synovial fluid [9-11]. The 

parent cell dictates the exosomal content, and as a result, cells of different phenotypes produce 
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exosomes with varying synthesis and compositions, and include biomolecules like tumor 

suppressing and transcriptional proteins, ribonucleic acids (RNA) like micro-RNA and non-

coding RNA, deoxyribonucleic acids (DNA), [12, 13], and lipids [14-17]. Exosomes that have 

been circulating around their microenvironments contain such biomolecules that have the 

capacity to influence and transfer oncogenic properties and traits from cancerous to healthy cells, 

reaching even cells that can receive their contents in distant organs [18]. Cancer metastasis, or 

the spreading of cancer from its original location to other parts of the body, has been linked to 

the activity of exosomes by a theory proposed by Abdouh et al called genometastasis [19]. 

Recent studies have reaffirmed the contribution of circulating exosomes to cancer metastasis and 

their effect on oncogenic cell mutations [20, 21].  

 

Although it has been 30 years since the discovery of exosomes, the exosome field is still in its 

infancy and the question of the exact role of exosomes in tumor progression and metastasis is 

still unclear due to their submicron size and complexity of their interactions [22]. Exosomes 

from cancer cells have been shown to create cancerous cells from other healthy local epithelial 

cells and invade the nearby extracellular matrix [23]. As mentioned earlier, exosomes exuded 

from cancer cells differ significantly from normal cells. Both their contents and rates of dispersal 

have been shown to differ. In 2014, a study compared breast cancer cells to normal mammary 

epithelial and showed that the breast cancer cell line exuded exosomes at almost two orders of 

magnitude greater compared to the normal cells. Several other studies have revealed similar 

findings showing increased exosome concentration in vitro and in vivo in animals and humans 

[24, 25]. Exosomes released from cancer cells, unlike normal cells, exude RNA-induced 

silencing complex, or RISC, complex-associated mRNA and this complex is essential to 

targeting and silencing genes [23]. The mechanism for exosome biomolecule content loading and 
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sorting, until recently, was considered independent from the cellular microenvironment. 

Indications have appeared that the exosomal secretion rates and exosomal uptake rates were 

increased in cancer patients when compared to healthy patients [26-28], implying that the tumor 

microenvironment influences them significantly [25].  

 

1.2.2 Drug Resistance 

Drug resistance, both innate and acquired, remain a cancer hallmark and a major challenge and 

obstacle for research to provide therapies and successful patient outcomes. Multiple studies have 

shown that cancer cell exosomes impact and modulate chemosensitivity by transferring 

chemoresistance to nearby recipient cells by transport of bioactive molecule like RNAs [29]. It is 

suggested that the microenvironment acidity stimulates exosomal output and these increased 

output rates elevate the rate of phenotypic transfer and impact drug influence and control 

antiapoptotic cycles [30, 31]. Innate multi-drug resistances, or MDR, are commonplace in cancer 

since cancer cells over express drug efflux pumps, transporters, and resistance proteins while 

acquired drug resistance is tied to a signaling pathway through the tumor microenvironment 

heavily populated by exosomes [32]. Given the central role of exosomes in cell-cell 

communication, they are linked to the resistance of cancer therapies to drugs, but not only in 

intuitive ways like gene transfer or microenvironment signaling [33], but also via cytotoxic drug 

sequestration in vesicles and their further expulsion to negate their effects [34, 35].  

1.2.3 Immunosuppression 

As exosomes impact their microenvironment with their transfer of bioactive molecules and drug 

resistances, they inevitable interact with the immune system. Both the innate immune system and 

adaptive immune system function alongside the tumor microenvironment and have a role that 

naturally hinders tumorigenesis. While chronic inflammation provides a perfect environment for 
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cancer promotion, like hypoxia and low pH, the immune system seeks and destroys neoplastic 

cells and this interplay has been defined as cancer immunosurveillance [36-38]. This recently 

explored hypothesis [38] implicates three main factors of the immune system with tumors: (1) 

elimination of neoplastic cells, (2) the establishment of equilibrium between the growth of 

tumors set by the balance of cancer cell elimination by the immune system and tumor growth, 

and (3) the upregulation of more immune-privileged cancer cells through natural selection. The 

fundamental step of the immune response is antigen presentation which comes when 

macrophages and B-cells that are bound to major histocompatibility complexes (MHC) Class I 

and II (CD8+ for cytotoxic T-lymphocytes (T-Cells) and natural killer cells and CD4+ for helper 

T-Cells, respectively) present antigens for their respective lymphocytes and bind which forms a 

immunological synapse[39]. Cancer cells primarily interact with by the cytotoxic and natural 

killer cell with CD8+ T-lymphocytes [39]. The regulatory role of exosomes has recently 

appeared in the literature involving their regulation of the synapse formation between antigen-

presenting cells and T-cells, promoting an immune response that may play a role in inhibiting 

immunosurveillance [40-42].  

 

Exosomes interact with the immune system in four distinct ways: (1) direct antigen presentation 

of cells presenting the antigen synapse [43], (2) indirect exposure by ‘decorating’ with a 

phenomena cross-dressing which repurposes nearby completed synapses to escape the immune 

response [44-46], (3) internalized by the antigen-presenting cell (APC) and then influence the 

presented markers on the same APC [46], and (4) after internalization impact the exosomes 

secreted by the APC that further interact with the immune system [47].  As every nucleated cell 

expresses molecules for MHC Class I, their respective exosomes do as well because of the 

surface antigens obtained from the parent cell membrane such that they are able to interact with 
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the cytotoxic lymphocytes and natural killer cells [48]. Cancer-related antigens are contained in 

tumor-derived exosomes that may initiate an immune response and multiple studies [49-51] 

suggesting that tumor-secreted exosomes can also become antigens for interaction with CD8+ T-

Cells indirectly through APC presentation and cross-dressing [50]. Exosomes may also release 

factors such as galectin 9 and Fas ligand which cause apoptosis to nearby immune cells [52-54]. 

These factors are once again tied to the bioactive carriers within exosomes which have also been 

shown to impact natural killer cell immunity [55] and work by transferring micro-RNA to 

recipient cells [56, 57]. Such deactivation can be linked to the inactivation of the T-Cells and the 

respective downregulation of some cytokine productions like interleukin-2 (IL-2) or TNF-α or 

upregulation of IL-6 [58].  

1.3 Challenges of Exosome and Cancer Testing 

As the impact of exosomes on cancer has been clearly established in the oncological field, there 

is upmost importance to create a more realistic in vitro environment. Exosomes are exuded by 

almost every cell; however, mainstream exosome isolation only comes from a select few well-

defined cell lines, so greater variety of sources are needed to generate a greater variety of 

information in biology [59]. Even though a universally accepted board for exosome research has 

been created called the International Society for Extracellular Vesicles (ISEV), important aspects 

are left to the investigators’ opinions and discretions [60]. The culture conditions and extraction 

specifics play a large role in the impacts and effects on normal and cancer cells including the 

production rates from 2D vs 3D cell cultures [61], their passage number [62, 63], cellularity, and 

proximity to their cellular microenvironment [59, 62]. When transitioning from in vitro studies to 

in vivo studies, there is a large number of inconsistencies identified implying that in vitro studies 

require more attention  [64]. Discrepancies have been shown when cancer cells are exposed to 
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drugs and results have been compared to in vivo experiments. Such discrepancies even exist 

between in vitro 2D settings and in vitro 3D settings. The study of exosomes in cancer biology 

inevitably will suffer from the same limitations. 

1.4 Importance of In Vitro Testing 

In vitro models create not only an ideal starting point for medical and biological research, but 

also an important subset, complimenting the more complex in vivo models. Results of in vitro 

testing should compare and verify more complex moieties, especially in vivo models and testing 

[65]. Both in vitro and in vivo models play important roles in cancer research by enabling drug 

screenings, testing therapies, and providing mechanistic insight for tumor growth and metastasis 

[66]. One of the many advantages of in vitro models is their ability to implement and understand 

multifactorial studies for more advanced systems [67]. While in vivo models more precisely 

showcase the complexity of the cancer environment, discerning, visualizing, and extracting data 

is not only challenging and difficult, but expensive as well [66].  

 

The complexity of in vitro cancer models of tumors varies and range from 2D monocultures to 

the 3D multicellular structures and microenvironments [68]. The development of 2D models has 

historically provided insight on growth, proliferation, migration, and drug effectiveness, to name 

a few [69, 70]. Typical considerations are cell sources, extracellular matrix, and biochemical 

microenvironment [71] with some models even introducing perfusable systems [68]. But the 

ability for in vitro models to test multiple parameters is precisely their major advantage with a 

premise that these results are valid when tested in vivo. In vitro systems can be flexibly tailor-

made to reduce in vivo variability. The easy implementation of a wide variety of cancer cell lines 

in in vitro culture system have made them attractive in biological studies [72, 73] as they manage 
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to match some of characteristics of tumors [74, 75], and as said earlier, certain discrepancies still 

remain necessitating in vitro models to reach a better agreement with in vivo studies. 

1.5 2-Dimensional vs 3-Dimensional 

The prevalence of 2D systems and cultures stems from their cost, reproducibility, and ease of use 

[76]. 2D monolayer testing has proven valuable for cell-based studies, but inconsistencies found 

between 2D in vitro systems and in vivo cultures create limitations for these in vitro settings 

[77]. The absence of ECM and the 3-dimensional tissue architecture found in in vivo tumors 

cannot be recapitulated by 2D cultures which often result in misleading findings that do not 

correspond to in vivo responses [78, 79]. Cancer cells reside in their natural microenvironment 

that include the local architecture and the specific ECM, experience specific 3-dimensional 

architectures that affect cell signaling, gene expression, and overall phenotype of cancer cells 

[80-82] with the presence of vascularization and tumor specific ECM [83]. The 3D 

microenvironment affects stem cell differentiation [84, 85] and it has been also shown to 

influence the phenotype of over 100 cancer cell lines [86]. Changes in cancer cell gene 

expression and responses to circulating biomolecules have been attributed to the specific 

microenvironment these cells reside in [87].  

 

3D systems and cell cultures have been shown to mimic the natural tumor microenvironment 

more closely and are expected to recapitulate the in vivo cancer cell phenotype more reliably 

[77]. The physical and spatial characteristics of the cancer cell microenvironment impact its 

signal transduction and alters multiple signaling cascades, which allows 3D cultures to generate 

responses closer to those in vivo [88, 89]. Proliferation rates between 2D and 3D cultures vary 

and are dependent on the type of surface they are attached to, the culture media, cell density, the 

presence of secondary cell types, among others, and reduced proliferation rates have been 
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reported in some 3D cultures compared to 2D [90-92] while in others the reverse behavior has 

been observed [93]. The cultivation of cancer cells in 3D systems for cancer cell biology and 

stem cell and drug discovery studies hold great promise and move in vitro studies towards the 

final goal to mimic the behavior observed in natural in vivo tumor microenvironments [94, 95].  

1.6 Importance of Synthetic Scaffolds and Surface Modification 

1.6.1 Types of Scaffolds 

An ideal 3D system would mimic the pathophysiological and physiological microenvironments 

so that cell cultures could differentiate and proliferate, producing a model that could induce cell-

cell interactions and cell-ECM interactions, waste management and tissue-specific ECM [96]. 

The most promising models for in vitro cancer analysis are spheroids, organoids, and scaffold-

supported bioreactor models [97], borrowing many of these models from tissue engineering. 

Spheroid models are commonly used for 3D tumor models and have made advancements in the 

field such as chemoresistance [90] and gene expression [98], but these models neglect important 

stressors for tumor progression by culturing them in static systems [99]. Fluid flow and 

interstitial shear forces have been shown to play a critical role in mimicking in vivo 

biomechanical forces in vitro not only in several normal cell types [100], but in tumor cells as 

well [101, 102]. 

 

Another recent addition to oncological culturing is the use of organoids, which are self-

organizing tissue-derived stem cells that form organotypic structures [103] and can even be 

derived via induced pluripotent stem cells [104]. Although organoids present worthwhile 

benefits, their limitations to full-scale modeling reduce their viability. Organoids lack the 

development of vessels, immune cells, and stroma [105], and their interaction with serum and 

serum-derivatives cause unfavorable long-term results [106]. Unreliable growth and 
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heterogeneity between organoid samples [107] yield undesirable conditions for macroscale 

modeling. 

1.6.2 Scaffold-Supported and Polymers 

Tissue engineering typically involves cell-scaffold constructs with scaffolds having specified 

bulk and surface properties as required by the maturation rate of the tissue construct [108, 109]. 

Scaffolds with ideal characteristics and properties help develop an environment where certain 

surface properties increase compound and molecule affinity [110]. Scaffold-based models have 

shown to more accurately mimic cell-ECM characteristics and interactions compared to other 3D 

techniques [111].  

 

The challenge of mimicking tumor microenvironments stems from their environmental 

complexity. 2D morphologies differ from their 3D counterparts in matrix stiffness and ECM 

properties which alter molecule diffusion [96] and reinforce that cellular heterogeneity is present 

in environments with varying differentiation and proliferation rates [112, 113]. The disparity 

between native morphologies and 2D systems can be solved by using 3D constructs from 

synthetic and natural materials [96]. 3D models expand on 2D system and can better replicate 

tumor properties [114, 115] where natural scaffolds, like collagen and hydrogel, are 

commonplace in tumor engineering due to their relevance on physiological properties [116, 117]. 

However, natural scaffolds present limitations that range from low modularity and batch material 

inconsistencies to bioactive site variability and poor cell interactions in dynamic flow-based 

environments [118]. Synthetic polymers, like poly lactic acid (PLA), poly glycolic acid (PGA), 

and poly caprolactone (PCL) are alternatives to natural scaffolds and present solutions for their 

limitations [119]. Scaffold architecture and geometric control can be achieved with 3D printing 

and can provide desirable ECM properties [120] and alleviate batch variability [121]. Even 
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though polymers exhibit biodegradability and biocompatibility [118], some disadvantageous 

properties, like hydrophobicity and reduced cell-adhesion, require further consideration.  

 

1.6.3 Surface Modification 

Biological, physical, and chemical properties among synthetic scaffolds can be optimized to 

improve the interactions between the scaffold material and cells [122]. Surface modification is 

creating small modifications on the surface of a material to present desired physical or chemical 

characteristics without affecting the bulk compound properties. Synthetic polymers can utilize 

proteins and peptides which enhance cellular proliferation due to elevated cell adhesion and 

ECM development [123-125]. The modification of the polymer surface has the ability to improve 

the degradation rate, biocompatibility, bioactive molecule permeability, and mechanical property 

of the material [126].  

 

Cell-matrix and cell-cell interactions impact the rate of tumor proliferation and progression based 

on cell morphologies which are dependent on cell-adhesion [127, 128]. Cancer cells exhibit 

weaker cell adhesion properties and fewer bioactive sites [129, 130] which can be alleviated with 

common surface moieties for adhesion like cadherins [131] and peptides [120]. Synthetic 

scaffolds have appeared as a means to navigate 3D models for cancer by creating more uniform 

and controlled adhesion platforms [118]. Oral squamous cell carcinoma [132], breast cancer 

[133], and ovarian cancer cells lines [134] have been reported to show increases in in vivo 

characteristics like cellular penetration, angiogenic abilities, metastases, cell adhesion, and cell 

seeding when cultured with modified synthetic scaffolds.  
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1.7 Importance of Flow Perfusion and 3D Macroscale 

Fluid flow and shear rates provide beneficial dynamic environments for cellular culture and 

modeling and are showcased in the oncological field with microscale systems. Microfluidics 

have been commonplace in the oncological community for its modeling based on microscale 

control of laminar flow for nutrient and compound transport [135, 136] and cell characteristics 

and pharmaceutical properties and interactions [137]. Cell sorting [138] and pharmacodynamic 

studies [137] have been using microfluidics as an effective analytical tool for tumor biology. 

Microfabrication techniques like microcontact-printed scaffolds have noted better control over 

surface chemistry and topography [139]. Large 3D systems are often used to produce and obtain 

microscale models by providing uniform growth, distribution, and viability while reducing 

experimental variabilities [140-142]. 3D constructs, like immobilized hydrogels, have been used 

to investigate microfluidic and microscale dynamics for tumor models [143, 144], but diffusion 

cannot be controlled as closely with natural scaffolds when compared to porous scaffolds, like 

synthetic polymers [145].  

 

Macroscale flow-perfusion bioreactors may be an appropriate next step to more accurately model 

tumor progression since tumorigenesis is a delicate balance of both macroenvironmental and 

microenvironmental aspects [146] wherein the functional connections between cancer cells and 

their neighboring microenvironments can result in tumorigenesis [147] and phenotypic 

alterations [148]. Differences in cellular responses are observed when comparing microfluidic 

systems to biological assays and their macroscopic counterparts [149, 150]. Increased cell 

viability and nutrient availability was observed for macroscopic systems, and the volume 

densities varied as much as 5 times between scales [150].  Biomimetic tumor models using 

porous scaffolds [151, 152] and tumors of musculoskeletal origin [153, 154] have been 
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successfully modeled with macroscale perfusion systems and these same systems have been 

shown to obtain comparable in vitro pharmaceutical responses in tumors [155, 156]. When 

compared to static 3D cultures, flow perfusion has been shown to increase cell proliferation and 

cell homogeneity within tissue-like structures and exhibit morphology and phenotypes like 

xenografts [155]. Biomechanical stimulation due to shear stresses has been often overlooked as a 

means of tumor progression [157, 158] and 3D macroscale systems present a controlled in vitro 

environment to explore these dynamic conditions.  

1.8 Project Goals and Set-Up 

1.8.1 Scope 

The scope of this project involves in vitro modeling, cancer research, and immunology. There 

are substantial differences between 2D and 3D models based on nutrient availabilities, gene 

expressions, cell viabilities and densities, morphological and phenotypic changes, and most 

notably shear stress and fluid flow. The hurdles of 3D cancer modeling stem from the 

complexities of the microenvironment present around tumors. Spheroids, organoids, and natural 

scaffolds, like hydrogels, have limitations like geometric control, material inconsistencies, and 

unfavorable transport environments that struggle to accommodate dynamic flow conditions. 

Coupled with the high cellularity of tumors and localized stresses and gradients, 3D cancer 

modeling remains a challenge.  

 

Polymeric scaffolds with surface modifications are equipped with advantageous properties to 

remedy the challenges present in 3D macroscale cancer models. Mimicking both the 

microenvironments and macroenvironments are vital to modeling cancer due to its importance in 

cell and ECM interactions. Polymeric scaffolds offer geometric control in 3D printing and 

bioactive features like biodegradability and bioavailability, and their adhesion limitations can be 
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alleviated using surface modifications. Common surface compounds like cadherin and peptides 

are important connective ligands in tumor environments and even further mimic the tumor 

environmental conditions.  

 

Activated immune systems typically seen in cancer and infectious disease seem to be 

immunosuppressed in many types of cancer. Even therapeutic and genetic alterations, like CAR-

T systems that reactivate the immune system, are subsequently silenced. The interconnectivity 

between MHC class I cells, like cancer, and the immune system showcases their environmental 

complexity. Exosomes exuded from cancer cells have been theorized to be linked to this 

immunosuppression as well as a host of other tumor traits like metastasis, increased proliferation 

rates, and genetic and phenotypic alterations. Inconsistencies are prevalent amongst the exosome 

field which imply that improved in vitro models are needed. In vitro models can provide reduced 

costs and introduce multifactorial environmental manipulation in shear rates and ECM 

developments and reduce variability with precise management of environmental conditions. 

 

1.8.2 Goals 

T-Cells play a pivotal role in both the immune system and in cancer; however, testing T-cell 

interactions in flow models can become difficult due to their suspension-based culture. 

Immobilization of CD8+ T-cells will better isolate interactions with circulating factors. The 

utilization of surface modification and attachment with peptides allow T-Cells to become 

immobilized onto a surface to mediate testing variability. A model that encapsulates the complex 

nature of the cancer and immunological macroenvironments and microenvironments would set a 

foundation for future testing and validation.  
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The goal of this project is to create a proof-of-concept 3D system to test exosomal effects on T-

cells. The first steps are to create a surface modified 3D printed PLLA scaffold modified with 

RGD peptides to bind T-Cells. Subsequent steps are to devise indirect and non-invasive 

measurements to measure T-cell attachment and activation. These steps can be achieved together 

by measuring a cytokine produced from activated T-Cells called interleukin-2 (IL-2), which 

plays a pivotal role in T-Cell proliferation. Activated T-cells that are stimulated with specific 

compound called Tetra-deca-noyl-phorbol acetate, or PMA, produce IL-2 and deactivated or 

blocked T-Cells do not produce IL-2. High sensitivity ELISA kits can be used as an indirect 

quantification method for produced cytokines. The T-Cells would then need to withstand flow 

perfusion bioreactor conditions before exosome co-cultures in 2D and 3D. The expected 

response from the co-culture of cancerous exosomes is decreasing IL-2 production by T-cells 

due to their inactivation, blocking, or silencing. 

1.10 Conclusion 

The complexities of cancer mean that more in-depth models are needed to mimic their 

interactions. The goal of models is to create systems that mimics in vivo environments to test 

system conditions more cost effectively, more accurately, and with less variability. Exosomes 

and their impact on the body and nearby systems require more updated details. The use of 3D 

models can limit and eliminate inconsistencies found in in vivo trials while incorporating more 

complex dynamics like microenvironmental and macroenvironmental factors. The creation of a 

system to mimic the cancer biome would add not only cancer understanding, but also 

pharmaceuticals and drug therapies.  
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2. METHODS 

2.1 2D Scaffold Preparation  

2D poly-L-lactic acid, or PLLA, films were utilized due to their ease of access, high 

reproducibility, low cost of production, and their ability to generate 3-dimensional porous 

scaffolds in a reproducible way. The 2D films were prepared in accordance with procedures that 

have been previously published [159, 160].  PLLA (NatureWorks LLC; grade 6251D; 1.4% D-

enantiomer, MW = 108,500 KD) pellets were used to produce the 2D films. Approximately 2.5 

grams of PLLA pellets were weighed and then combined with a 35 mL of chloroform to 

dissolve. The pellets were mixed with a stir bar on a magnetic mixer for approximately 45 mins 

to completely dissolve to PLLA pellets. The heterogeneous mixture was then poured evenly into 

three 50 mm petri disks. The containers were set overnight at room temperature to evaporate. 

 

After the evaporation step, 2D films of 50 mm diameter were collected. The 50 mm disks were 

then stamped using a fixed stencil into 8 mm disks. Each new scaffold was sterilized using 95% 

ethanol, allowed to sit in sterile PBS to leech off ethanol for 1 hour, and then stored into a 

vacuum chamber. Scaffolds were used for cell seeding within 24 hours from their sterilization.  

2.2 3D Scaffold Preparation 

2.2.1 Material 

The method used to generate 3-dimensional porous PLLA scaffolds was 3D printing. In order to 

feed the polymer into the 3D printer, PLLA had to be in the form of a filament. Due to the 

absence of PLLA filaments free of additives the filament used was generated in-house.  

 

As specialized extruder was used to produce this filament (the used extruder was owned by the 

Aerospace and Mechanical Engineering department at the University of Oklahoma). PLLA 

pellets were placed in the hopper of the extruder to heat up, and then extruded into a 1 mm 
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diameter filament. The filament was subsequently used in a 3D printer and, similar to the PLLA 

pellets, were vacuum stored after preparation. Prior to usage, 3D scaffolds were placed in a 

biosafety cabinet and purged of air with a syringe vacuum method in PBS, cleaned with 95% 

ethanol and then allowed to sit in sterile PBS to leech off ethanol for 1 hour.  

2.2.2 Printing 

The 3D printer used was the MakerBot® Replicator® Fifth Generation Desktop 3D Printer. The 

filament was placed and raveled in their provided filament cassettes and then attached to the rear 

of the machine. Print settings were used to provide the necessary conditions for not only the 

filament temperature, but also the extrusion diameter. The filament was placed into the extruder 

and heated to 195oF, extruded to a 0.5mm diameter and placed at a rate of 0.5 cm/second. 

Scaffolds were printed in laddered extrusion patterns to produce a square 2 mm x 8 mm x 8 mm 

scaffold. 3D printed scaffolds were then stamped using the same stencil as with the 2D films. An 

image of both the printed and stamped 3D scaffolds seen in Figure 1. 

 

 
Figure 1: 3D Scaffold design from the starting square to the stamped 4 mm by 8 mm cylindrical scaffold. 
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2.3 Surface Modification 

2.3.1 2D PLLA Films 

The protocol for the surface modification of the 2D films was similar to previously published 

procedures [159, 160].  2D scaffolds were prepared as above. Each 8 mm disk was immersed 

with a 70:30 acetone aqueous solution of Poly-ε-Cbz-L-lysine (Sigma-Aldrich; Poly-ε-Cbz-L-

lysine; MW = 500-4000 KD), which will now be referred to as Poly K, ranging from 1 mg/mL to 

10-7 mg/mL. Films were placed in a shaker for 12 hours to promote the entrapment of the poly K 

mixture on the PLLA surface before being removed to be washed with 3 cycles of Triton X-100 

and sterile PBS. 

 
Figure 2: Breakdown of surface modification starting with PLLA and adding Poly-lysine, SPDP And finally 

RGDC[159, 160] 

 

Poly K presence on the films was determined by a horseradish peroxidase (periodate-HRP) 

reaction with the amino acid chain. Films modified with poly K were reacted with 600 µL of 10-8 

M of HRP (Thermo Fisher; 1-Step™ ABTS Substrate Solution) for 2 hours. The provided ABTS 

kit was used to determine the HRP presence at 405 nm on a Synergy HT Multi-Mode Microplate 



18 

Reader (Bio-Tek) with standard of measured poly K prepared for calibrations. Specified by the 

manufacturer, H2O2 and ABTS reagent were dilated with citrate buffer and then incubated with 

disks at 600 µL of the solution.  Poly K decay on 2D films was tested by performing the HRP 

detection method on films that remained in the biohood at room temperature for a period of up to 

7 days.  

 

With poly K incorporated onto the surface of the films of the PLLA, a functionalization can 

occur to chemically bind, via amine coupling, the RGD peptide to the poly K that is entrapped 

onto the surface of the scaffold. Poly K modified disks were incubated with 600 µL of 1 mM 

SPDP (Thermo Fisher; SPDP (succinimidyl 3-(2-pyridyldithio)propionate); MW = 527.57 KD) 

in HEPES buffer for approximately 30 mins. Similar washing cycles with Triton X100 and 

sterile PBS were used after the linking. The disulfide bond present in SPDP was utilized with a 

disulfide reduction to place the RGDC onto the surface. SPDP-linked scaffolds were then 

incubated with 600 µL of 100 µM RGDC (AnaSpec; Cell Adhesive Peptide [RGDC]; MW = 

449.5 KD) for 1 hour and rinsed as in the previous steps. A breakdown of the chemistry of the 

surface can be seen in Figure 2. The subsequent reaction released pyridine-2-thiol can be seen at 

a wavelength of 343 nm and can be used to determine the concentration of reacted RGD. 

 

2.3.2 3D Scaffolds 

Porosity of the 3D printed scaffolds was found to be 85% and was obtained with the scaffold 

weight, material density, and structure volume. 3D scaffolds were modified following the same 

protocol as the 8 mm 2D films by modifying the procedure of the entrapment of poly K and 

incorporation of RGD. The presence of the 3D porous network that needed to be accessed by the 

poly K and RGDC moieties during their respective scaffold incorporation necessitated the use of 
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vacuum. 3D printed scaffolds were placed in a glass vial with each concentration of poly K and 

then vacuumed repeatedly with a needle syringe. Subsequent steps using SPDP and RGDC were 

done using the same vacuum method and each step was allowed to proceed for the same time 

period as the one used in 2D films. After modification, scaffolds were left in sterile PBS in a 

biosafety cabinet and used within 24 hours.  

2.4 T-Cell Culture and Preparation 

Human CD8+ T-Cells were obtained from StemCell Technologies (StemCell Technologies; 

Human Peripheral Blood CD8+ T Cells, Frozen; 1x107 Cells per vial). As cells were labeled, 

profiled, and documented from the same donor designated by StemCell Technologies, T-Cells 

were used directly from storage. T-Cells were placed into RPMI 1640 (Thermo Fisher; RPMI 

1640 Medium) with 1% anti-anti and 10% fetal bovine serum to clean their contents and then 

centrifuged at 1000 RPM for 3 mins before resuspended in the anti-anti FBS RPMI 1640 media. 

To determine the exact number of T-cells used in calibrations, flow cytometry was used on the 

T-cell samples before use.  

2.5.2 Platform Set-Up 

2.5.1 Static 2D and 3D Set-Up 

Static conditions for attachment, spreading, and exosomes co-cultures were tested using 48-well 

plates. 2D PLLA films were placed into their respective wells. Working volumes for T-cell 

attachment and exosome co-culture for static conditions were 1 mL. 3D static scaffolds also used 

the same set-up of a 48-well plate. 3D static scaffolds were placed into their respective wells and 

1 mL working volumes were used.  
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2.5.2 Bioreactor Set-Up 

The bioreactor main body and cassettes were set up prior to use. The bioreactor system was 

sterilized 3 days prior and allowed to vent fumes before proceeding. The system was operated 

and purged of air in a biosafety cabinet and set in a 37oC incubator to reach equilibrium 

temperature for 6 hours. When equilibrated, prepared 3D scaffolds with attached T-cells were 

placed into each cassette while in the biosafety cabinet. Separate flow rates were used based on 

the peristaltic pump specifications. The lowest and highest achievements flow rates used were 

0.15 mL/min and 1.5 mL/min. Each cassette was connected to its own vial of media and had a 

working volume of 5 mL of anti-anti FBS RPMI 1640 media. For flow rate testing the bioreactor 

system was connected to a single reservoir to accommodate necessary working volumes for the 

system and can be seen in Figure 3.  

 

 
Figure 3: Mock bioreactor set-up for flow perfusion testing. A reservoir container is linked to the pump with 

tubing, and then to the insert of the scaffold cassettes and finally toward the outlet to another container. The 

inset shows the inside of each of the 6 chambers. The scaffold is form-pressed so assure that fluid flows 

through the porous structure and not around, with the inlet above and outlet below. 
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2.6 PMA Preparation and Stimulation 

2.6.1 2D PLLA Films 

2D 8 mm films were carefully cleaned of previous anti-anti FBS RPMI 1640 media and prepared 

for cytokine stimulation. PMA (Sigma-Aldrich; 12-O-Tetradecanoylphorbol 13-acetate; MW = 

616.83 KD) was used to stimulate activated T-Cells to produce IL-2. A 10 µM concentration of 

PMA in the anti-anti FBS RPMI 1640 media was created and then reacted with the 2D films for 

4 hours. To minimize potential contaminates like T-cells or scaffolding, the samples were taken 

and centrifuged at 1000 RPM for 3 mins and the supernatant used for cytokine analysis. 

2.6.2 3D Printed Scaffolds 

Static 3D scaffolds were stimulated similarly to the 2D 8 mm films. A 10 µM concentration of 

PMA was used on the 3D scaffolds and stimulated for 4 hours. Samples were centrifuged and the 

supernatant used.  3D scaffolds used in the bioreactor system were ran and stimulated with PMA. 

The collection process was similar to the static 3D scaffolds. 

2.7 Exosome Preparation and Co-Culture 

2.7.1 2D PLLA Films 

Human-derived cancer exosomes were obtained via a collaborating lab—Dr. Ragajopal Ramesh 

at the University of Oklahoma Health Science Center. Exosomes from two different cancer cell 

lines were used: (1) exosomes from H1299, a human non-small cell lung carcinoma cell line and 

(2) A549, an adenocarcinomic human alveolar basal epithelial cell line.  The concentrations of 

each exosome were 1.75 x 1010 exosomes/mL and 2.83 x 109 exosomes/mL. Exosomes were 

diluted from their initial concentrations to 103 exosomes/mL to be used in exosome ratios with 

T-cells. Ratios of 1:1, 1:5, 1:10. 1:20, and 1:100 T-cells to exosomes were used to test exosomal 

properties on T-cells. 2D films were incubated concurrently with exosomes.  
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2.7.2 3D Printed Scaffolds 

Static 3D scaffolds were cultured similarly to 2D 8 mm films. However, for the flow perfusion 

bioreactor system, the concentration of exosomes was extended and tightened to reduce testing 

capacities based on bioreactor sample availabilities. Exosomes concentrations ranged from 1:10 

to 1:100 and 1:1000 T-cells to exosomes. Exosomes were incorporated into the anti-anti FBS 

RPMI 1640 media and circulated while testing under the lowest flow condition of 0.15 mL/min.  

2.8 IL-2 Indirect ELISA 

An IL-2 ELISA kit (Abcam; Human IL-2 ELISA Kit High Sensitivity) was used to detect IL-2 

production from PMA-stimulated T-cells. The assay was performed via the manufacturer’s 

instructions. Samples and standards were prepared, and the assay wells prepped. The antibody 

linkers were placed into each well and the functionalization was underway. Washing buffer was 

used in triplets after each subsequent step. After functionalizing, the dye buffer was used, and the 

results were recorded at 450 nm.  

2.9 Statistics 

Following data collection and analysis, a one-way ANOVA was conducted to determine if there 

was a significant effect (p-value < 0.05). The number of samples ranged from 3 – 9. 
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3. RESULTS AND DISCUSSION 

3.1 Introduction 

Results will be presented sequentially to accommodate research flow. They will appear similar to 

the material and methods. 2D testing will be followed by 3D testing. Surface modification will 

lead into T-cell attachment followed by bioreactor use and finally exosome co-culture. For ease 

of access, all surface modified films and scaffolds will be designated by their initial solution 

concentration of poly K used for entrapment followed by the RGD modifications.  

3.2 Surface Modification with 2D Films 

3.2.1 2D Poly K Entrapment 

 

Figure 4: Poly-K entrapment onto 8 mm 2D PLLA films (n=6). Concentrations range from 1 mg/mL to 10-7 

mg/mL in 70:30 acetone and water. 

 

Poly K entrapment levels are presented as shown in Figure 4 as they relate to the entrapment 

process via the Poly K solution. There is a significant difference between the highest Poly K 

entrapment concentration of 1 mg/mL and the next highest at 10-1 mg/mL. The higher solutions 

at 10-1 and 10-2 mg/mL do not show significant differences of Poly K entrapment; however, as 
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lower concentrations Poly K are used, significant differences appear. Historically, these trends 

have seemed to demonstrate that above a starting solution of Poly K 10-2 mg/mL exists a 

saturation point; however, these trends could have been due to steric hindrance of the detection 

of the HRP with the maleimide used to identify the entrapped Poly K on the surface of the 

material; however, such saturation has been suggested that was due to the steric hindrance was 

not validated by our results. The immediate trend that comes from the Poly K entrapment is that 

as you increase the entrapment concentration that there is an increased entrapment of Poly K on 

the surface of the synthetic polymer. To better compare to historical data, these films were 

modified and tested on freshly made scaffolds. 

3.2.2 2D Poly K Entrapment Stability 

 

Figure 5: Poly K decay over a 7-day period to test detachment of absorbed Poly K on PLLA films (n=6). 

Based on this graph, every scaffold and film had been stored for 4-days prior to use for the poly-k on each 

would stabilize. 

 

Poly K stability requires consideration because poly K is not chemically attached to the PLLA 

but simply entrapped by the partial solubility when exposed to the acetone solution. Surface 



25 

erosion has been observed for a 7-day period. A steady decrease from day-1 to day-4 was 

observed where day-4 and day-7 present no significance differences denoting that a stable 

entrapment can be accomplished if the surfaces generated are left for a 4-day period. As such, all 

subsequent surface modification steps were performed after a 4-day resting period in sterile PBS 

to ensure a stable Poly K and peptide surface not suffering from further decay. The observed 

decay during the first 4-days after the prepared PLLA surface is attributed to potential 

physisorption beyond the expected entrapment.  

 

3.2.3 2D RGD Amine-Coupling 

 

Figure 6: RGD amine-coupling onto 2D 8 mm PLLA films (n=6). 600 µL of 100 µM RGD was added to 

concentration of poly K seeding that ranged from 1 mg/mL to 10-7 mg/mL. 

 

RGD has been attached on the Poly K surface via amine coupling which has allowed further 

modification to present the RGD peptide on the surface. Different Poly K entrapped surfaces 

have been used, characterized by the level of Poly K in the solution when partial solubilizing 

with the acetone solution. Those levels varied from 1 mg/mL to 10-7 with a control group that 

contained no Poly K. As seen above in Figure 6, there is a significant difference between 1 
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mg/mL and 10-1 mg/mL, but there are no significant differences (P < 0.01) on the RGD 

entrapment between 10-2 and downward toward the control. There was a difference (P<0.05) 

with 10-2 and 10-4 mg/mL, which does seem to corroborate the trends seen in the Poly K 

entrapment. The RGD surface density range from 2.00±0.58 nmoles/mm2 for 1 mg/mL to 

0.02±0.28 nmoles/mm2 for 10-7 mg/mL. The possible saturation points in the 2D Poly K 

entrapment concentrations do not seem to be present with the response of the 1 mg/mL modified 

film with a larger increase between 1 mg/mL and 10-1 mg/mL. On the lower end, the lowest level 

of Poly K entrapped surface did not show an expected difference with the control surface, 

contradicting the results in Figure 4 which would mean that the further modification of the Poly 

K generated significant difference had been observed from the 10-7 mg/mL surface to the control. 

It needs to be reiterated that the entrapment in Figure 4 were with freshly modified surfaces 

while the results in Figure 6 were rested to account for physisorption. As said in Figure 4, it is 

possible that the majority of Poly K detected on Figure 4 for the 10-7 mg/mL solution-Poly K 

generated surface had been physiosorbed and has been detached from the period and now 

allowing the lack of a significant difference for the RGD between the lowest Poly K entrapment 

concentration and the control. A similar trend appears in that an increase in the Poly K 

entrapment concentration increases the RGD surface density. 

 

The Poly K used in solution to entrap does seem to entrap more Poly K onto the surface on the 

surface of the films, such that there is an increased binding and reaction with the RGD after 

functionalization. An attempt was made to evaluate the RGD levels attached on the PLLA 

surface using the disulfide reaction with SPDP, as traditionally the RGD quantification was done 

via the absorbance of the pyridine-2-thiol. The absorbance of the release of Pyidine-2-Thiol can 

be tested the indirectly measure the RGD reacted on the surface of the Poly K modified films.  
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Although the absorbances for the released pyridine-2-thiol do not show large deviations, the dose 

response curve generated incorporated quite a bit of data noise. The RGD surface densities were 

found using the same dose response curve found in the appendix with Figure 20. The nmoles of 

RGD range from 100±29 nmoles to 1±13 nmoles from 1 to 10-7 mg/mL as can be seen in Figure 

6 and were corrected with the surface area of 50 mm2 for the films to 2.00±0.56 to 0.02±0.28 

nmoles/mm2. To simplify the classification of each surface modification, the average RGD 

surface density will be used to signify the Poly K entrapment and the subsequent RGD 

functionalization. 

3.3 Surface Modification 3D 

3.3.1 3D RGD Amine-Coupling 

 

Figure 7: RGD Amine-Coupling onto 3D printed PLLA scaffolds (n=6). Trends are similar to 2D films. 

 

Figure 7 showcases the same RGD amine-coupling reaction shown in Figure 6 through 2D films 

now on 3D scaffolds. The overall functionalization process was the same which utilized a 

functionalized PLLA surface that was modified with SPDP and RGD. Similarly, the levels of 

reacted RGD varies from 1 mg/mL to 10-7 mg/mL and a control without entrapped Poly K. There 
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are significant differences between all of 1, 10-1 mg/mL, 10-2 and 10-4 mg/mL; however, there is 

now a significant difference for the 10-7 mg/mL functionalized scaffolds and control unlike to the 

observations of the functionalized 2D films in Figure 6. The same trend and possible 

physisorption dynamic can be seen in these 3D scaffolds as were seen in the 2D films. Similarly 

to the 2D films, the average RGD surface density will be used to signify the Poly K entrapment 

and the subsequent RGD functionalization. Ultimately, there seems to be another trend of 

increasing Poly K entrapment and functionalized RGD on the surface of the 3D scaffold. This 

may also be due to diffusion limitations of 3D printed scaffold when compared to the 2D PLLA 

film and their ability to absorb Poly K onto the surface of the polymer. 

3.4 T-Cell Attachment with 2D  

3.4.1 2D T-Cell Attachment (Assay) 

 

Figure 8: 2D T-Cell attachment density onto 2D PLLA films to test peptide adhesion properties (n=3). 

Trends do seem to match the RGD density seen on the films. Cells attachment seems to be affected by the 

RGD peptides. 
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CD8+ T-cells represent a part of the immune system that interacts with cancer and as such their 

cancerous exosomes as well. Out of the possible immunological components tied with immune 

response, like CD8+ and CD4+ T-cells, macrophages, Regulatory T-cells, and dendritic cells for 

example, CD8+ T-cells represent the common-place cytotoxic response implemented by the 

body. To create a proof-of-concept system a decrease in overall system complexity needs to first 

be implemented. As the CD4+ T-cell response is produced by an intermediary antigen 

presentation, and the fact that Regulatory T-Cells can present both CD4 and CD8, the CD8+ T-

cells represent an earlier step for the elimination of neoplastic cells and thus warrant the initial 

exploration in a 3D macroscale system [161]. Although T-Cells are also suspension-based, 

immobilization and proximity are necessary for the experimental design. 

 

The RGD functionalized PLLA films were used to test T-cell attachment due to commonplace 

binding motif of RGD for T-cells. Due to cytokine production in activated T-cells, these tests 

had an additional benefit that IL-2 production could relate indirectly to the activation of a T-cells 

when attached to the RGD functionalized surfaces. T-cells were cultured with the RGD 

functionalized films and then stimulated to test for their IL-2 cytokine production.  RGD 

functionalized films using Poly K entrapment solutions and their respective RGD surface density 

of 2.00±0.56 to 0.02±0.28 nmoles/mm2 and control were used for the T-Cell attachment tests. T-

cell attachment as reported in Figure 8 seems to agree with the RGD surface density results 

presented in Figure 6 where RGD surface density present on the surface of the film showed 

significant differences between 10-1 and 10-2 mg/mL Poly K entrapment solutions used. This 

seems to corroborate the RGD densities seen in the 2D films in Figure 6. 1 mg/mL of poly K 

entrapment and its respective 2.00±0.56 nmoles/mm2 RGD density yielded 295±23 cells/mm2, 
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0.56±0.17 cells/mm2 yielding 140±3 cells/mm2 and 0.27±0.43 nmoles/mm2 yielding 65±4 

cells/mm2 with no significant difference between 0.27±0.43, 0.09±0.33, and 0.02±0.28 

nmoles/mm2. The projected RGD surface density presented on the surface of the 2D films in 

Figure 6 present a linear trend of T-cell attachment density with RGD functionalized films which 

is that larger amounts of surface RGD led to larger amounts of attached T-cell density. Although 

for the first time we attached T-cells onto a synthetic polymer material, this response of T-cell 

attachment on RGD a functionalized surface was expected as a previous group attached T-cells 

onto the surface of a PEG-RGDS plate hydrogel and had successful attachment [162]. The 

attachment density and material density and composition were not provided to the extent as 

provided in our study, but the attachment validity was corroborated.  

 

3.4.2 2D T-Cell Spreading (Phalloidin) 

 

Figure 9: T-Cell spreading as determined from a phalloidin stain on the plasma membrane actin of attached 

T-cells (n=3). Higher RGD surface densities seem to cause the T-cells to increase their attachment density and 

decrease their diameters, where normal physiological diameters are between 7 – 7.5 µm. 
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An unexpected result was observed during analysis of the initial T-cell attachment on 2D 

modified films. There seemed to exist a diameter difference between attached T-cells at higher 

RGD surface densities compared to lower surface densities. An initial assessment was done via 

microscope observations and determined that there was a discrepancy in cell spreading based on 

the RGD functionalization of the Poly K entrapment solutions. As a reference, mesenchymal 

stem cells tend to have increased cell spreading as surface functionalization concentrations 

increase. A phalloidin assay was performed to stain the actin present in the cell membrane of the 

T-cells, and the diameters obtained from the stain can be seen in Figure 9.  Diameters of the 

attached T-cells ranged from 7.2±.2 to 5.1±.3 µm with RGD surface densities of 0.02±0.28 and 

2.00±0.56 nmoles/mm2. A diameter of almost 5 µm diameter was produced by a RGD surface 

density of 2.00±0.56 nmoles/mm2. The diameters did not regain a typical physiological diameter 

of 7.5 µm until 10-2 mg/mL poly K seeding. The increase of T-cell attachment can be seen in 

Figure 10, where the higher RGD surface densities have increased attachment density. The lower 

cell spreading at higher RGD densities seemed to be due to an overabundance of attached T-cells 

on the 2D film which can be related to the approximated RGD surface density present on the 

surface of films, similar to the results in Figure 6. This could also be due to the ability of T-cells 

in vivo to squeeze through diameters smaller than average T-cells size based on physiological 

conditions when responding to immune signals [163]. These results led to an upper limit of 10-2 

mg/mL of poly K entrapment concentrations for subsequent trials and 3D testing to 

accommodate for decreased cell spreading and to retain the physiological norm for T-cells. 
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Figure 10: Images of T-cells on 2D PLLA films of Poly K Seeding concentrations of 10-7 mg/mL, 10-2 mg/mL, 

and 10-1 mg/mL and their respective RGD surface densities of 0.02±28, 0.26±43, and 0.56±0.17 nmoles/mm2. 

T-cell diameter can be seen to continually decrease as the density of attached cells also increases. 

 

3.5 T-Cell Attachment with 3D 

 

Figure 11: Comparison of flow in the 3D flow perfusion bioreactor of attached T-cells onto the 3D printed 

scaffolds (n=3). Flow rates range from 0.15 mL/min to 1.5 mL/min, or superficial velocities of 1.2±0.5 

mm/min to 12.4±0.1 mm/min through each scaffold, based on pump specifics. The static 3D attachment is 

provided as a reference. 

 

Static 3D cultures were first tested to determine the viability of T-cell attachment onto a 3D 

printed and RGD functionalized scaffold as well as to determine the starting T-cell 

concentrations and cell numbers prior to testing under flow conditions. Static conditions do not 
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represent the dynamic environments seen in vivo, and as such the cells attached during static 

testing may also not represent the cell numbers attached in dynamic environments. As both cells 

and scaffolds are subjected to flow, the strength of the binding motif for the cell attachment is 

tested against the shear forces generated by the flow. The functionalized scaffolds and their cell 

attachment must be able to withstand the dynamic conditions of the system without being 

removed to be able to withstand further tests under those same conditions.  Figure 11 shows the 

attachment of T-cell on RGD functionalized 3D scaffolds under both static conditions and flow, 

with the lowest and highest bioreactor flow conditions being 0.15 mL/min and 1.5 mL/min. The 

effective superficial velocity through each scaffold ranges from 1.2±0.5 mm/min to 12.4±0.1 

mm/min. A RGD surface density was selected for these experiments to avoid cell spreading 

concerns observed in Figure 9 and to optimize cell retention. Lower surface densities have also 

been used to identify effects on binding motif strength of the RGD surface densities on attached 

T-cells. Control groups with no RGD have not been used because in preliminary experiments 

have shown non-existent T-cell attachment. Static conditions began with T-cell numbers as high 

as 50±8 cells/mm2 for the RGD surface density of 0.27±0.43 nmoles/mm2 to 13.3±7.4 cells/mm2 

for 0.02±0.28 nmoles/mm2.  

 

Figure 11 shows that T-cells remained on the 3D printed scaffold through over 4 hours of 

continuous flow even with the highest flow conditions of 1.5 mL/min. There is a significant 

difference between static 3D functionalized scaffolds and their dynamic flow counterparts; 

however, the percentages between each flow condition differ. For the highest RGD surface 

density compared to the static T-cell attachment density 0.15 mL/min retained 89±11% T-cells 

and 1.5 mL/min retained 30±8% T-cells.  For the lowest RGD surface density of 0.27±0.43 

nmoles/mm2, the static seeding related to a drop in T-Cell attachment density to 69±13% and 
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19±12% for the 0.15 mL/min and 1.5 mL/min respectively. The drop observed in the T-cell 

attachment density due to flow was much more moderate. The shear rate through both flows 

were, respectively, 500 s-1 and 50 s-1, with estimated shear forces of 0.04 dynes/cm2 and 0.007 

dynes/cm2. It seems that the shear stress and shear rates disproportionately impacted cell 

adhesion, as there was an 80% increase in the shear experienced by the cells compared to the, on 

average, 50% drop in cell density between the 1.5 and 0.15 mL/min results. Overall, across all 3 

RGD densities tested, the t-cell attachment density from the surface was around 80±10% while 

the 1.5 mL/min was much more significant as 33±18%, and as such when we did exosome 

testing the 0.15 mL/min was selected. The 0.27±0.43 nmoles/mm2 and 0.15 mL/min conditions 

were selected to optimize cell attachment and number. Cell density seems to play a role in cell 

retention under flow conditions as higher RGD functionalization yielded larger cell retentions 

under both the high and low dynamic flow conditions. It may be possible that larger RGD 

surface densities may provide stronger adhesion properties for attached T-cells compared to 

surfaces with lower nmoles of RGD. This has been the first time that T-cells have been 

immobilized within 3D flow, as previous studies have been done in 3D suspension culture 

systems, so the comparisons from historical data do not elucidate any trends for the behaviors 

under flow. 

 

3.6 Exosome Co-Culture 

3.6.1 2D Co-Culture 

Cancerous exosomes have been shown to interact with the immune system which means that 

they interact with T-cells. Common changes resulting from T-cell interactions involve the 

production of cytokines. When T-cells interact with a system, there are specific cytokine 

productions that indicate response from proliferation and cell-signaling, among others, and these 
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cytokines and their productions can be related to the activation of T-cells. The cytokine 

production of IL-2, which is a common cytokine produced from activated T-cells, can be used to 

relate both the activation and exposure of exosomes with attached T-cells. The cytokines 

produced are typically related to the stimulant used with the T-cells, where PMA being a 

common chemical stimulant which produces IL-2 and relates to proliferation. As exosomes 

typically outnumber cells on an order of magnitude of 103, varied ratios of T-cells to exosomes 

were used to judge the impact of exosomes concentrations on the silencing of T-cells and their 

immune response [164]. Two separate exosomes from different cancerous cell lines were used to 

compare the impact of exosomes derived from different systems. As stated in the methods, 

H1299 is a human non-small cell lung carcinoma cell line and A549 is an adenocarcinomic 

human alveolar basal epithelial cell line. 

 

Figure 12 shows the modified 2D PLLA film individually co-cultured with exosomes from both 

H1299 and A549 cancerous cell lines. Immediately, there is an observable difference from the 

IL-2 production of T-cells cultured on 2D PLLA films without exosomes and their exosome co-

culture counterparts. Both exosomes from H1299 and A549 seem to impact the IL-2 production 

and deactivation of T-cells based on the lowered IL-2 production as the ratio of exosomes to T-

cells increase. Higher concentration of exosomes results in a lower IL-2 production from T-cells 

attached onto the modified films. 1:10 and 1:20 T-cell to exosome ratio resulted in no detectable 

IL-2 production. On the other hand, IL-2 production was detected from 1:1 and 1:5 T-cell and 

exosome ratios resulting in 2900±300 and 600±50 pg/mL of IL-2 for H1299 and 3500±700 and 

800±300 pg/mL of IL-2 for A549, respectively. The overall IL-2 response when comparing the 

H1299 and A549 exosomes show that there are higher IL-2 productions in the A549 exosomes 
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which can be said to lead to a lower silencing of the T-cells when compared to H1299 exosomes; 

however, there is not a significant enough of a difference between the two populations to make a 

substantiated claim. Even at the 1:1 ratio there is a limited silencing compared to the baseline 

shown above the figure, but the negligible IL-2 production starting at ratios of 1:10 can be used 

to justify a silencing of the T-cells and their immune response when in contact with cancerous 

exosomes on 2D films. It should be noted that the 2D films were cultured for 4-hours in a static 

condition which forced continual interactions between the exosomes and the attached T-cells. 

Now, multiple studies have cultured T-cells, however not immobilized, with cancer exosomes 

from many differing cell lines and cancer patients like melanoma, breast, neck and head, and 

lung cancers [165, 166]. and showed that their respective cancerous exosomes had 

immunosuppressive properties. Although these results were expected as both exosomes were 

from cell lines from separate types of cancer, it can be said that the cancer exosomes that were 

cultured provided some to complete immunosuppressive properties in 2D static cultures. 
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Figure 12: 2D PLLA film co-culture of CD8+ T-cells and exosomes from H1299 and A549 cell lines (n=3). 

This experiment denotes the response to the presence of exosomes when attached to the same material as used 

in 3D scaffolds, but without flow. 

3.6.2 3D Static Co-Culture 

 
Figure 13: Co-culture of H1299 exosomes with CD8+ T-cells on the 3D printed scaffolds (n=3). The IL-2 

production from the T-cell stimulation can be seen to decrease as the exosome ratio increases. 
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Figure 14: Co-culture of A549 exosomes with CD8+ T-cells on the 3D printed scaffolds (n=3). The IL-2 

production, similar to the H1299 exosomes (Figure 13), showed an overall decreasing trend with increasing 

exosome ratio, although the 1:5 ratio 1:5 is higher but shows no significance from 1:1. 

 

Figures 13 and 14 showcase the same static exosomes co-culture with attached T-cells, but now 

using 3D modified scaffolds. The 3D static conditions for both H1299 and A549 exosome co-

cultures present similar results to their modified 2D counterparts, but the IL-2 production seems 

to be larger compared to the 2D films. Since 4,000 T-cells were attached using the RGD binding 

motif, a similar result should be seen from the 2D and 3D comparison; however, the slight 

deviation may be due to diffusion limitations present in the 3D structure. Again, exosomes from 

the H1299 cell line seem to produce a lower IL-2 response from the static 3D scaffolds compared 

to the A549 cell line. Although there are discrepancies shown in A549 on the 1:5 ratio, the 

overall trend remains similar and the highest concentrations of exosome co-culture result in 

decreasing levels of IL-2 production which relate to a silencing of the T-cells.  
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3.6.3 3D Flow Co-Culture 

 

Figure 15: Co-culture of CD8+ T-cells on 3D printed scaffolds with both H1299 and A549 exosomes (n=3). 

Only 3 concentrations were used. Lower exosome ratios yielded similar results to 3D static co-culture with 

higher having lower responses. 

 

Exosome co-culture under dynamic conditions like flow more accurately replicate physiological 

conditions. IL-2 productions can be compared to their static 3D counterparts to determine the 

overall efficacy of cancerous exosomes on the silencing of immune cells. Potential diffusion 

limitations seen in static conditions, like comparing the baseline IL-2 production from both 2D 

static cultures to the 3D baseline showing lower overall IL-2 values, should be alleviated using 

flow. The responses from the PMA stimulation in 3D flow perfusion resulted in significantly 

higher IL-2 production from the same respective concentration of circulating exosomes as seen 

in Figure 15. Again, from Figure 12, 1:10 ratios resulted in IL-2 productions of 2900±300 and 

3500±700 pg/mL for H1299 and A549 up to 3500±400 and 4600±500 pg/mL, respectively, for 

the 1:10 3D counterpart. As seen throughout both 2D and 3D exosomes co-cultures, an increased 

exosome ratio resulted in a decreased IL-2 production from attached T-cells. Although responses 
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were present in all static 3D culture exosome concentrations, the flow perfusion culture seems to 

entirely silence the response of the T-cells with highest concentrations of exosomes of 1:1000. 

This may be due to the physiological concentration of exosomes and their relative 

overabundance in the body compared to other cells with an estimated relation of overall a billion 

exosomes per million of cells [164]. As this was also the first 3D flow exosome co-culture, 

comparisons with historical data are not present. Although the responses seem significantly 

larger compared to previous results, it must be considered that the working volumes of the 

bioreactor flow conditions could relate differently to the static conditions. The static conditions, 

for both 2D films and 3D scaffolds, used 1 mL of stimulant solution while each bioreactor 

cassette used 5 mL of working volume. These discrepancies have been accounted for as the 

exosome ratio was per mL of fluid used so, for example, the 1:10 ratio are comparable in both 

2D and 3D static and 3D flow. 

The 3D comparison shows that the overall IL-2 production decrease is far lower than those 

compared to the 2D static cultures. Although the 1:10 exosome ratio in the 2D cultures produced 

IL-2 levels that were almost negligible, the 3D flow perfusion exosome co-cultures produced IL-

2 responses that were higher than the lowest exosome ratio in the 2D cultures. Even at 10 times 

the exosome ratio the IL-2 response in the 3D cultures were not negligible. A suppression of the 

IL-2 production was not detected until 100 times that of the 2D static cultures with a 1:1000 

exosome ratio. In a cancer exosome study, the blood of melanoma patients was collected, and 

within each mL of blood collected, the exosome profile was examined. It was found that of the 

1010 exosomes in the blood found, the total percentage of cancer exosomes ranged from 20% to 

70% within these patients [167]. This stark difference in circulating exosomes is the precise 

environment that 2D cultures do that recapitulate. As said earlier, the number of cells in blood 
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typically range from 106 to 107 cells/mL, and this difference in relative concentration has a 

noticeable impact on exosome co-cultures, as seen in the difference between IL-2 production 

from Figure 12 and Figure 15. The overall number of white blood cells within the human body is 

approximately 109 for the 5 L of blood, which places an exosome-white blood cell ratio in the 

body as 1:5000 and similar magnitude to the levels tested. The 3D flow comparison effectively 

demonstrates that there seems to be a dose response with cancerous exosomes and their impact 

on immune cells. If the time scale of exosome T-cell interactions were known, the velocity 

within the porosity could be an important parameter for the system.  

 

The implications of these findings relate heavily to the 3D in vitro system providing better 

tailored systems to replicate and recapitulate in vivo systems. As the 3D system seems to differ 

heavily from 2D responses, these systems can be developed to better test patient-specific aspects, 

like mass screening for potential therapeutics. A more complex 3D system can even translate to 

identifying means to reduce the impact of cancerous exosomes on their influence of immune 

cells and the immune system.  
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4. CONCLUSION 

Analysis of the 3D flow perfusion system yielded results that show the translation of both T-cells 

and exosomal co-culture from modified 2D PLLA films to 3D printed scaffolds with surface 

modifications. Surface modification techniques from previous works were redone to test their 

validity and effectiveness since T-cells bind strongly to the RGD [159, 160].  RGD peptide 

incorporation translated well from 2D 8 mm films to 3D printed scaffolds, with RGD surface 

densities peptides from the highest and lowest seeding concentrations ranging from 2.00±0.58 

nmoles/mm2 for 1 mg/mL to 0.02±0.28 nmoles/mm2 for 10-7 mg/mL. T-cell attachment was a 

foundation project goal as immobilized T-cells were not common in literature. The use of PMA 

to produce IL-2 responses was successful and presented two benefits: (1) provided a means to 

detect T-cell activation and (2) provided an indirect, non-destructive method of immobilized T-

cell quantification. Although attachment was successful, there was an unexpected occurrence of 

decreased cell spreading from oversaturation of T-cells reducing their diameters below 

physiological occurrences which was accommodated in subsequent testing. 

 

The two next crucial goals for the project were 3D flow and exosomal co-culture. 3D flow 

showed interesting results, but most importantly showed that T-cell retention was evident for 

even the highest flowrates of 1.5 mL/min with around 33±18% cells after 4 hours of flow. The 

last step for this project was testing exosomal co-culture and its impact on immunosuppression. 

Exosomes provided from both H1299 and A549 cell lines were effective in reducing IL-2 

production, but the overall IL-2 production was highest in static 3D constructs with 2D films 

having IL-2 production as low as 85±5 pg/mL of IL-2 compared to 2500±600 and 8300±1000 

pg/mL for the two static 3D conditions. Interestingly, the overall IL-2 production was similar 
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between the 1:20 3D static culture to 1:100 flow perfusion ratios due to the 5-fold increase of the 

bioreactors working volumes compared to static testing. 

 

Ultimately, the goal of the project was to test the impacts of exosomal co-culture on T-cell and 

immunosuppression. Our results found that surface modification was successful in immobilizing 

T-cells to both 2D films and to 3D printed scaffolds. Although some T-cells were lost during 

bioreactor flow testing, up to 80±10% of the T-cells were retained at the lowest flow rate. 

Exosomal co-culture showed that there is a drop in IL-2 production as the ratio of T-cells to 

exosome increases. This IL-2 decrease based on our results show that there is an 

immunosuppressive interaction with the immobilized T-cells and the circulating exosomes in the 

system and that these interactions can be reproduced in our 3D flow perfusion system. Overall, 

the experimentation has added useful data for the next steps of an overarching cancer modeling 

system where T-cells and exosomes can be part of a more complex system. 
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5. FUTURE DIRECTIONS 

The results of this study showed the capacity to incorporate a complex bioreactor system with 

both T-cells and exosomes concurrently. Although the results were positive, there are places to 

improve and next steps to take. To begin, the PMA stimulation should be tested over a range of 

concentrations and times to determine an effective dose that optimizes IL-2 production for the 

number of T-cells present as well as optimizes cost for the stimulation. Alongside the PMA 

stimulation, there exists another optimization with bioreactor flow rates. Due to the fact that 

there is a decreasing retention with bioreactor flow rate, testing should be done to not only 

optimize T-cell retention against flow, but also test flow characteristics and properties on T-cell 

dynamics and exosomal effects. As for the exosome testing, co-culture and stimulation times 

need to be optimized for the characterization profiles. As exosome concentrations are 

magnitudes higher than cells, incorporating different exosome ratios to test impacts can be 

impactful as well. 

 

The future directions for the project and in vitro 3D system have huge potential. Since T-cells 

and exosomes are now possible to co-culture, the system can now be extended towards more 

complex areas. The incorporation of pharmaceuticals and other cancer therapeutics alongside the 

fully developed system can test whether their effects can impact T-cell cytokine productions. 

Treatments can even be tested that reduce only cancerous exosome secretion and leave healthy 

cells unimpacted. On the same note, other cytokine concentrations can be tested and measured to 

test their effects with not only exosomes, but other environmental conditions. The bioreactor 

system set-up allows for a potential for an even deeper cancer environment to develop with 

upstream and downstream cultures to test not only their influence on each other, but also how 

they interact with external system components like drugs and exosomes. 
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7. SUPPLEMENTARY MATERIAL 

7.1 Calibration Curves 

7.1.1 Poly K Calibration 

 
Figure 16: Calibration curve for poly K detection using concentrations from 0.1 mg/mL to 0.0000001 mg/mL 

 

Figure 16 illustrates the calibration curve used for poly K detection. 1 mL of known 

concentrations of poly K ranging from 10-1 mg/mL to 10-7 mg/mL were placed into a 48 well 

plate and reacted with HRP to obtain absorbance readings. A standard curve was generated as 

𝑦 = −10.605𝑥 + 27.111 with an R2 value of 0.9521.  
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7.1.2 RGD Calibration 

 
Figure 17: Calibration curve for RGD detection using concentrations of RGD ranging from 0.1 mg/mL to 

0.0000001 mg/mL alongside corresponding SPDP concentrations. 

 

Figure 17 illustrates the calibration curve for RGD detection. Mole breakdown could be done 

based on the surface modification chemistry provided in Figure 2. Equal concentrations of 

RGDC and SPDP were reacted in a 48 well plate for a total volume of 1 mL. The reaction was 

then read under a plate reader at 343 nm and generated a standard curve of 𝑦 = −5.3339𝑥 +

10.513 with an R2 value of 0.9508.  



58 

7.1.3 T-Cell Calibration 

 
Figure 18: Calibration curve for T-cell quantification using T-cell numbers ranging from magnitudes of 

50,000 to 5. 

 

Figure 18 illustrates the calibration curve for T-cell quantification using PMA stimulation 

detection of IL-2 production. As said above, flow cytometry was used to ascertain the number of 

T-cells in each well. Each well was stimulated with 10 µM PMA for 4 hours. As per the ELISA 

instructions, samples were taken, processed, and read in a plater reader at a 450 nm wavelength 

to generate an absorbance graph. The standard curve generated was 𝑦 = 0.0972𝑥2 − 0.0944𝑥 +

0.4507 and a R2 value of 0.9975. A lag in the curve was expected due to the relatively high 

concentration of PMA which overstimulates lower concentration of T-cells which lags IL-2 

production.  
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7.1.4 IL-2 Calibration 

 
Figure 19: Calibration curve for IL-2 detection with concentrations rangng from 60,000 pg/mL to 6 pg/mL. 

 

Figure 19 illustrates the calibration curve for IL-2 quantification based on provided IL-2 

dilutions in the IL-2 ELISA detection kit. IL-2 standards were generated from 60,000 pg/mL of 

standard to 6 pg/mL. Standards were prepared alongside samples for IL-2 detection and read in a 

plate reader at a 450 nm wavelength. The standard curve generated was 𝑦 = 43692𝑥3 −

88747𝑥2 + 60495𝑥 − 13714 with an R2 value of 0.9715.  
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7.1.5 RGD Dose Response 

 
Figure 20: RGDC & SPDP reaction dose response ranging from 10-7 nmoles to 1000 nmoles. 

 

Figure 20 illustrates the dose response for RGD reacted with SPDP based on increasing nmoles 

of RGDC. Standards were generated by reacting known concentrations and nmoles of both 

RGDC and SPDP to generate a dose response.  Standards were prepared alongside samples for 

surface modification and read in a plate reader at a 343 nm wavelength. The standard curve 

generated was 𝑦 = 0.00152𝑥5 + 0.0182𝑥4 + 0.0457𝑥3 − 0.0867𝑥2 + 0.0323𝑥 − 1.4926 with 

an R2 value of 0.9884. 


