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Abstract 

The effect of rainfall spatial variability on catchment responses during floods remains 

poorly understood. The overall objective of this work is to develop a robust understanding 

of how rainfall spatial variability influences flood peak discharge, with a focus on its 

contribution relative to basin physiography. A machine learning approach is used on a 

high-resolution rainfall and flooding event dataset spanning 10 years and gathering rainfall 

events and basins of widely varying characteristics across the U.S. This approach 

overcomes a major limitation of prior studies based on limited observations or model 

simulations. This study explores the first-order dependencies in the relationships between 

peak discharge, rainfall variability, and basin physiography, and it disaggregates these 

complex interactions using a multi-dimensional statistical modeling approach. After 

selecting amongst the different regression methods (Lasso, Elastic Net, Multilinear 

Regression, Random Forest and Xgboost) we use Xgboost to generate regression models 

to predict peak discharge and perform predictor importance analysis. A parsimonious 

model is finally created that has low bias and variance and which can be deployed in the 

future for flash flood forecasting. The results confirm that the spatial organization of 

rainfall within a basin has a significant influence on the basin response, but the basin 

physiography is shown to be the primary driver of peak discharge. These findings have 

unprecedented representativeness in terms of flood characterization. An improved 

understanding of sub-basin scale rainfall spatial variability will aid in developing a robust 

flash flood characterization as well as identifying basins which could most benefit from 

distributed hydrologic modeling. 
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Key words: Hydrology, machine learning, flood prediction, hydrologic models, 

precipitation moments, basin physiography.  
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Chapter 1: Introduction & Literature Review 

Flash Flood in the US 

Floods hazards are ranked the third most frequent type of natural disaster behind 

severe storms and tropical cyclones. They have contributed to an estimated loss of $146.5 

billion to the US economy in the last forty years and that number is steadily increasing 

(Smith, 2020). More flooding is expected along with more intense precipitation events 

globally under climate change (Sillmann et al., 2013). Fatalities under flash floods 

circumstances represent the major contribution of flood fatalities (Ashley & Ashley, 

2008). Flash floods are rapid rises of water along a an existing waterway, that begins 

within 6 hours, and often within 3 hours, of the causative rainfall (NOAA, 2005). The 

ability to characterize and predict flash floods is increasingly important (Gourley et al. 

2017).  

The effect of rainfall on the discharge is shown through a hydrograph which shows 

precipitation rate and discharge as a function of time on the same graph. In figure 1, peak 

discharge is the maximum amount of water in a river after a rainfall event. If the peak 

discharge is more than the bank discharge capacity, then a flood will occur. As discharge 

is dependent on many factors of the basin response, geomorphological characteristics and 

the precipitation spatial distribution, we try to characterize the peak flow of a hydrograph. 
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Figure 1. Flash Hydrograph (Jackson, 2014) 

Flash flood monitoring systems include the Flash Flood Guidance (FFG) that is used 

worldwide and issues warnings based on the runoff generation (Sweeney & Baumgardner, 

1999). However, FFG only represents parts of the floods characteristics as it is not focused 

on the propagation of water overland and along streams. Hence it misses any occurrence 

of flood downstream of the rainfall, especially delay, magnitude, and duration of the flood. 

A flood forecasting system needs to describe these characteristics to help predict events 

ahead of time, such that destruction of property and life can be mitigated by efficient 

warning systems.  

Modelling in Hydrology 

During a flash flood the discharge in the outlet increases suddenly under the integrated 

influences of specific hydrological processes which show variable effects under different 

basin geomorphology, climatology and spatiotemporal conditions (Saharia et al., 2017). 

Hydrological models are used to interpret and anticipate floods characteristics through 

simplified representations of the processes that take place in the watershed.  Models can 
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be classified in three categories based on how hydrological processes are described: 

empirical, conceptual, and physical models (Solomatine & Wagener, 2011).  

 

Figure 2. Classification of hydrological models (Solomatine & Wagener, 2011) 

Traditional empirical (statistical) models are built from the joint analysis of 

precipitation (input) and discharge (response) time series data to derive statistical 

equations based on regression and correlation that represents the input-response behavior 

of a catchment. The unit hydrograph approach is an example of such empirical model. The 

data-based models do not consider catchment features (e.g. geomorphology) and 

hydrological processes, hence while they have high predictive power at a given location 

(basin outlet) they also have low explanatory efficiency and cannot be applied to a 

different basin (Devia et al., 2015).  

Physically based models are mechanistic and designed to represent the physical 

processes of the system. The rationale expects a degree of physical realism to the extent 

that the laws of conservation of mass, momentum and energy are maintained. Such models 

use variables that are functions of space and time. The model’s structure and parameters 
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are designed a priori based on the understanding of the basin physics. As such the selected 

parameters are not calibrated, making diagnosis difficult. Such models initially rely on 

abundant geomorphological data on the catchment, in addition to hydrological and 

meteorological observations. However, this type of model also overcomes the limitation 

of versatility (for other basins) and interpretability that empirical models experience. 

Conceptual models are parametric models with a structure that is decided a priori, 

while the parameters are calibrated using the observations of the catchment. A number of 

hydrologic processes are synthesized into single parameters, such that they are hard to 

interpret from the basin data-stream. As such they are imperfect representations of the 

physical processes. An example of a conceptual distributed model is the Ensemble 

Framework for Flash Flood Forecasting (EF5). It is the state of the art solution developed 

at the University of Oklahoma and the NOAA National Severe Storms Laboratory for 

flash flood prediction at the U.S. National Weather Service (Flamig et al., n.d.). It uses 

various conceptual models to simulate streamflow and soil saturation forecasts. With input 

of precipitation, temperature, evo-transpiration, discharge, the model parameters require 

large hydrological and meteorological data. These models identify processes which are 

important for flash floods.  

The approach used here is a “physical- statistical” modeling approach that improves 

on the drawbacks of the above classification. Datasets are gathered that represent the 

geomorphology, the climatology and the spatiotemporal attributes of the precipitation 

forcing. While this approach primarily builds on observations like the empirically based 

modelling class, the physical depiction of the basin behavior is enriched through the 

integration of geomorphologic and climatological characteristics. As such, the 
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contribution of hydrologic processes, that are driven by the basin features, are accounted 

for to represent their integrated response at the basin outlet. The curated dataset allows 

regression modelling using gradient boosted trees to identify the multivariate relationships 

that exist between the dependent (peak discharge) and independent input variables 

representing the geomorphology, the climatology, as well as the spatiotemporal attributes 

of precipitation. While empirical models are observed to overfit events in the training 

dataset (Devia et al., 2015), the addition of physical constraints along with the use of 

proper methodologies to mitigate overfitting, ease the generalization of the model for 

diverse catchments.  

Unlike the conceptual and physically based modelling categories, this approach 

undertakes no prior assumptions (e.g. uniform depiction of basins) in the design of the 

model structure or the calibration of parameters. While biases arise from a priori structure 

design and parameter choices that impact the applicability over ungauged basins, this 

approach inherently calibrates the parameters to the data. Once calibrated by data training, 

it requires no further tuning. Unlike traditional empirical approaches, such a model can be 

used as a diagnostic tool to identify and interpret key hydrological processes. Through the 

study of feature importance, simpler and parsimonious models can be designed to 

represent the basin physics as mechanistic models do. By incorporating the central features 

of all the model types and eliminating its shortcomings, our modelling approach uniquely 

utilizes the best of all the approaches.  

Solomatine & Wagener (2011) emphasized the advent of new data driven models 

through the integration of machine learning. The present approach is novel owing to a few 

reasons. First, it utilizes a diverse data set that comprehensively incorporates the physics 
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of the hydrologic system. Second, it improves model validation by using a combination of 

evaluation metrics such as the “Mean Relative Error”, “Co-efficient of determination 

(R^2)” and the “Root Mean Squared Error”. Such implementation makes sure that the 

model explains the variance along with the systemic error. And finally, understanding of 

key parameters without an a priori basis gives us new insights on the science of basins 

response.  

This new category of model can address important challenge in hydrologic sciences, 

i.e. characterizing of floods in ungauged basins. This novel approach seeks to provide a 

high predictive power interpretation with versatility over diverse basins. 
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Chapter 2: Data 

2.1 Predictand: peak discharge 

Times series information from USGS automated stream gauges are curated in the 

Unified Flash Flood Database (National Severe Storms Laboratory, n.d.) 

(https://blog.nssl.noaa.gov/flash/database/) to provide flooding peak discharge values at 

more than 10,000 locations across the U.S. A subset of 3,490 stream gauge locations is 

used, with stages corresponding to action, minor, moderate, and major flooding defined 

by the NWS in coordination with local stakeholders for modeling and diagnostics. This 

dataset covers diverse climatologist, hydrologic and weather conditions, which makes it a 

representative flash flood database over the U.S.  

Gauges that are impacted by regulation or diversion are screened out using the 

regulation codes supplied by the USGS. In this database, a flood event is defined as the 

period when streamflow is above the defined action stage for that gauge. If there is a 24-

hour period with discharge values below action stage, then the events are considered as 

separate. The database contains the start and end time when the flow first exceeded and 

dropped below the action stage threshold respectively, along with the time and magnitude 

of peak flow. The maximum basin area in this study is approximately 45,000 km2 with a 

median area of 890 km2 is suitable for analyzing the impact of rainfall spatial variability 

on floods 

2.2 Predictor: geomorphology and climatology 

A natural flood generally starts because of snowmelt or intense rainfall. But the 

physiography of the basin and sub-basin scale variability of rainfall will dictate the speed 

https://blog.nssl.noaa.gov/flash/database/
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of conveyance of water through the channel network and the magnitude of the maximum 

discharge. Since the goal of this study is to understand the relative impact of rainfall 

variability and catchment features on flooding, the database is enhanced with attributes 

representing various landscape properties such as vegetation, topography, climatology, 

and soil. Several geomorphological parameters were derived from the Digital Elevation 

Model (DEM) data of the National Elevation Dataset (NED; http://ned.usgs.gov/) as 

potential explanatory variables of flash flooding. Flow accumulation and flow direction 

information was extracted by delineating basins with USGS stations. The National 

Hydrography Dataset (NHD; http://nhd.usgs.gov/) was used to resample the 30-m DEM 

to a 1-km grid to ensure compatibility between DEM-based flow accumulations and the 

actual river network across the Contiguous United States (CONUS). The geomorphologic 

parameters for delineated catchments were extracted from these grids using custom 

libraries developed using MATLAB. Variables representing soil properties such as mean 

depth-to-bedrock and K-factor (erodibility) were derived from the STATSGO database 

(Miller & White, 1998) while land cover and land use data from the National Land Cover 

Dataset (Fry et al., 2011) were used to estimate the runoff curve number. Lastly, the 

hydroclimatic variables of mean annual precipitation and temperature were extracted from 

the 30-year datasets (for period 1981-2010) prepared by the PRISM Climate Group of 

Oregon State University (http://www.prism.oregonstate.edu/normals/). The static 

spatially distributed basin attributes included in this study are provided in Table 1. 

 

 

 

http://ned.usgs.gov/
http://nhd.usgs.gov/
http://www.prism.oregonstate.edu/normals/
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Table 1. Important Predictors for the study 

Type Variable Meaning 

Geomorphological 

Area 

Estimated Area (from Digital 

Elevation Model; flow grids) 

G1 

First-order Moment of flow 

distance (Catchment averaged flow 

distance) 

G2 

Second-order Moment of flow 

distance 

River Length Length of the river systems 

Relief Ratio 

R divided by Basin Length 

(highly correlated with drainage 

area) 

Ruggedness 

Ruggedness expressed as 

drainage density multiplied by relief 

Slope to 

Outlet 

Outlet Slope 

Rock Volume 

Volume of rock; similar to rock 

depth 

Precip moments 

Activated 

Basin 

Part of the basin where rainfall 

falls 

Rainfall 

Volume 

Rainfall Volume 
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Product Mean 

Mean of the product of 

accumulated precipitation and flow 

distance of the activated basin 

Flow 

Distance (Mean) 

Mean of flow distance of the 

activated basin 

Climatological 

bio_10 

Mean Temperature of Warmest 

Quarter 

bio_15 Precipitation Seasonality 

Snow 

Percentage 

Percentage of Snow in the 

Gauge 

Temp (Mean) 

Climatological Average 

temperature 

 

The dataset includes 21,143 rainfall events (observations) over 133 variables. These 

variables include morphological, bioclimatic, climatological, precipitation and gauge 

observations from across 902 different basins over the Contiguous United States 

(CONUS). Among these variables, the precipitation variability is described through 

precipitation moments (Zoccatelli et al., 2010). Flash flood are characterized by the 

observed peak discharge during a hydrological event at the basin outlet.  

The provided dataset is devoid of missing values and is numerical in all its attributes. 

Out of the initial 133 variables, through prior domain knowledge and through previous 

studies on lag time studies (Duarte, 2019) a majority of variables were eliminated and only 

50 predictors were selected. Eliminated variables were merely meant for quality control 
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and deemed non-relevant for the model. The focus is primarily on the precipitation 

moments, the climatological and the morphological variables. Formulations for 

precipitation variability as moments are shown to provide a deeper understanding and 

representation of rainfall events (Duarte, 2019; Z. Zhang et al., 2012; Zoccatelli et al., 

2010). They give an understanding on the spatial distribution of a rainfall event over a 

basin and how it impacts discharge at the basin outlet. Climatological and morphological 

attributes are equally important in describing the hydrological processes. Owing to such 

pruning measures 50 variables were selected.  

This dataset repurposes existing data through a rigorous preprocessing that eases 

predicting, characterizing and understanding flash floods. Furthermore, its 

representativeness was demonstrated by Saharia et al. (2017) by mapping basin flashiness 

over the U.S. to predict flash flooding severity in ungauged regions with fair accuracy.  

 The dataset was created by (Saharia et al., 2017) by sourcing from multiple previous 

works (Gourley et al., 2013). The three primary sources for the database are: 1) the 

automated discharge observations from the U.S. Geological Survey, that have been 

reprocessed to describe individual flooding events, 2) flash-flooding reports collected by 

the National Weather Service from 2006 to 2013, the Multi-Radar/Multi-Sensor 

precipitation reanalysis (J. Zhang et al., 2016)(J. Zhang & Gourley, 2018).  

Feature engineering is the process of transforming raw data into predictors using 

domain knowledge to better represent the objective. It improves the performance of 

machine learning algorithms. Feature engineering was performed retroactively once 

important predictors were identified through the modeling. As will be shown in next 

section, Area i.e., the Estimated Area (from Digital Elevation Model; flow grids) for the 
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given basin is deemed an important variable. Precipitation Mean is the mean of 

precipitation averaged over the duration of the rain event on the activated basin (Activated 

Basin; part of the basin where rainfall falls). Knowing this, additional variables were 

engineered as follows:  

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  
𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝐵𝑎𝑠𝑖𝑛

𝐴𝑟𝑒𝑎
 

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 =  𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝐵𝑎𝑠𝑖𝑛 ∗ 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑎𝑛 

By expressing the active basin as a percentage, an additional predictor can be created 

that captures the volume of water collected from precipitation by the basin and that 

contributes to the peak discharge (m3/s) which technically depends on the amount of 

rainfall accumulated in the basin. 

 

Figure 3. Histogram of engineered predictors 

 

To understand the data and its distribution, univariate distribution plots, such as 

histograms with fitted and kernel density estimators, were plotted for all the predictors. 

The probability distribution function generated made clear that the predictors are not 

normally distributed as can be seen in the histograms in Figure 3 and 4.  
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Figure 4. Histogram prior to transformation 

 The features in the dataset have different ranges. In order to make the data normally 

distributed and bring all attributes on a common scale, we need to normalize the data. This 

ensures that the algorithms sensitive to skewness and scaling will not be affected. Most of 

the attributes exhibited skewness in their distributions along with a wide range of value 

scales. Through the examples in figure 2 and 3 we can see that while Slope to Outlet has a 

very short range 0-0.2, while Rainfall volume has a range of 0-3500. Similarly, there are 

predictors having negative values as well. Owing to this, we needed to normalize the data.  

Log and Box-Cox transformation could not be performed due to the presence of 

negative values in some of the attributes. Z-score standardization in the previous attempts 

(Duarte, 2019) did not produce great results. Hence Yeo-Johnson power transformation 

was selected, as it performs similar transformation to the log and Box-Cox while also 

managing negative values. Cubic transformations can also be tried in the future, as they 

too handle negative values and are used in rainfall datasets. The scipy package in python 

contains the Yeo-Johnsons transformation function which finds the optimal lambda (λ) 

parameter that maximizes the log-likelihood function and transforms the dataset. An 



   

 

14 

 

example of the normalization of the target attribute peak discharge (peakq) is provided in 

figure 5.   

 

Figure 5. Histogram before (left) and after (right) transformation 

These transformations were performed so that the regression methods such as multiple 

linear regression, lasso and elastic net could function as intended. Also, to keep a leveled 

comparison between the different regression methods, we used transformed data as inputs 

in all the 5 regression approaches that were compared. However, no transformation was 

used in the final implementation as we choose to perform a tree-based regression 

algorithm which is invariant to monotonic transformations of the independent variables. 

As we are using gradient boosting, a tree-based approach, to predict peak discharge no 

such preprocessing was performed.   
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Chapter 3: Methodology 

3.1 Approach 

 A statistical (predictive) model is a mathematical representation of the problem 

statement concerning the data. Analysis of these models help understand and interpret the 

predictor relationships, make predictions on unseen data, and visualize that information. 

Our modeling approach involves the use of regression to perform the prediction of a 

continuous dependent variable “Peak Discharge” from several independent predictors.  

3.2 Algorithm Selection 

Algorithms selection (Lin & Li, n.d.-b, n.d.-a) is essential to identify the best performing 

model. We choose five main algorithms to compare with each other:    

Multiple Linear Regression, Lasso, Elastic Net, Random Forests and XGBoost. Multiple 

Linear Regression identifies a linear relationship between multiple the predictor 

(explanatory) variables and target (response) variable using ordinary least-squares 

regression. Least Absolute Shrinkage and Selection Operator (Lasso) is a regression 

algorithm that performs both variable selection and regularization to increase the prediction 

accuracy of the target variable. Elastic Net is an embedded linear regression model trained 

with both l1 and l2 -norm regularization of the coefficients. This combination allows for 

learning a model where some weights are non-zero (as seen in Lasso) while also utilizing 

the regularization properties of Ridge. Random forests are an ensemble learning model that 

creates multiple decision trees at training time and generates a probability of the output in 

terms of mean prediction (for regression). They often overfit their training set and hence 

Extreme gradient boosting is also selected, as its more regularized model formalization is 
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designed to mitigate this issue. Comparison of the models derived from these algorithms 

was done on default parameters. 

The algorithm selection was based on accuracy metrics, and the domain understanding 

that the selected predictors imparted. The selected predictors should be able to explain 

basin physics and must adhere to the prior understanding from hydro metrology.  Based on 

these constraints we finally end up using Extreme Gradient Boosting (XGBoost), a 

machine learning technique which produces a prediction model in the form of an ensemble 

of weak prediction decision trees. It is a supervised learning algorithm designed for fast 

computational time, especially on very large data sets. XGBoost is a form of gradient-

boosted decision trees that can generate new models based on the prediction of the 

residuals’ errors of prior models. The term “gradient boosting” refers to the utilization of a 

gradient descent to minimize the loss when adding additional models (Brownlee, 2016). 

XGBoost combines the benefits of the tree-based and gradient boosted models to overcome 

multi-collinearity. Its robustness towards correlated predictors is an advantage in the 

context of prediction with respect to its counterparts (e.g., Random Forests, Elastic Net, 

Lasso). This supervised learning algorithm builds models sequentially and generalizes 

them by allowing optimization of a differentiable loss function (root mean square error). 

XGBoost is well known for great performance in terms of speed and prediction accuracy 

and lower overfitting (Brownlee, 2016). The model predictions are evaluated through 

various error/performance metrics (see below). 

3.3 Performance Metrics 

Amongst many possible models, the best one should explain as much variance as 

possible (in the sense of R2) and minimize the overall bias (in the sense of Mean Relative 
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Error) while minimizing over-fitting. Models were compared using performance metrics 

that target systematic discrepancies and random errors in the model predictions with 

respect to observations. The Mean Relative Error is used to quantify systematic error, while 

Root mean squared error (RMSE) is used to describe the random error. To quantify over-

fitting amongst different models, an Accuracy Loss is introduced as the difference in R2 

values obtained when comparing the model predictions with the training and test data (see 

below).  

3.4 Data Partitioning 

Data partitioning is used to split the main data set before model creation, so that 

data are available to objectively assess the model. Such a testing approach is designed for 

reducing overfitting, bias and variance. The best practice is to split the data into three 

smaller data sets, i.e., training, validation and test sets. The training subset is used to create 

the model that relates the predictors and the predictand (flood peak values) and perform 

exploratory data analysis. The validation subset is unseen while model training. It is used 

to tune the model structure through hyperparameters (e.g., learning rate, depth of the tree) 

and compare performance between different models. The testing dataset is used to 

objectively assess the performance of the final model.  

We performed data partitioning using stratified random sampling and by splitting 

data into training, validation and testing sets using a 70:15:15 ratio (cf. Figure 6). By 

dividing a population into distinct strata and then randomly sampling from each stratum, 

this sampling technique helps each of these datasets be representative of each other. We 

ensure this by comparing the mean peak discharge value (i.e., the predictand) in all the sets 

shown in Figure 7.  
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Figure 6. Data Partitioning using 70:15:15 ratio for training, validation and test dataset. 

K-fold cross-validation performed on training data. 

3.5 Model Training 

We build our predictive model on the training data set. An XGBoost model derives 

trees defined by varying depth and number of nodes according to user’s specifications. The 

ensemble of trees that are generated (or learned) while training becomes the parameters for 

the predictive model. These trees are defined by hyper-parameters such as subsample ratios 

of predictors, learning rate, max depth, etc. Hyper-parameters cannot be estimated while 

training and are tuned manually to achieve the best model performance (hyper-parameter 

tuning).  
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In the present study, hyper-parameter tuning is performed on the training set to 

optimize performance (i.e., reducing bias and variance) and identify the best model. We do 

so through a testing technique known as 4-fold cross validation (cf. Fig. 6). The training 

data set (sample) is randomly partitioned into four equal sized subsamples. A single 

subsample is retained as the inner-fold validation set for checking the model performance, 

and the remaining three subsamples are used as inner-fold training sets. The cross-

validation process is repeated four times, with each of the four subsamples used once as 

the inner-fold validation data. The four results are averaged to produce a single estimation 

for a single hyper-parameter combination.  

Cross validation serves the goal improving the representativeness of the model by 

using all observations for both training and validation. Among the possible designs of k-

fold cross validation, k = 4 was selected as a trade-off between model refinement and 

computational time. Searching for the best parameter combination in the hyper-parameter 

space occurs by random selection.  Such combinations are selected 50 times and each of 

them under-go a 4-fold cross validation (cf. Fig. 6). Essentially, 200 (50*4) models are 

tested to find the best hyper parameters. Once the best hyper-parameter combination is 

identified, we use those settings to train the predictive model on the training data. The 

model performance is then checked on the validation dataset. 
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Figure 7. Modelling methodology 

3.6 Predictor Selection and importance 

Predictor selection is performed recursively after initial modelling of data (as 

mentioned above). Gradient boosted trees identify the predictor importance by measuring 

the mean decrease in impurity (variance). While training a tree, we can compute how much 

each predictor decreases the weighted impurity in a tree. Predictor Importance is a 
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parameter that is used to rank predictors by averaging the impurity decrease from each 

predictor in a forest of trees.   

‘Predictor importance’ is an absolute value, which implies how much reduction 

occurred in the standard deviation (at the leaf of the decision tree) when the said predictor 

was used. The more the reduction, the better the importance of the predictor. Hence, if the 

predictor keeps appearing as ‘important’ in the 40 modelling runs, its cumulative score will 

be higher, as is shown by the ‘Area (estimated area)’. 

Upon receiving the importance scores for each predictor, we select the predictors whose 

importance is greater or equal to the mean of the all the predictor importance values. This 

selection technique is chosen after comparing with other techniques such as Recursive 

Feature Selection, Permutation Feature Importance and other embedded methods (LASSO 

and Elastic Net). By using the methodology of comparing means of the predictor 

importance values, we are able to run our large dataset with the Monte-Carlo sub-sampling 

experiments to get unbiased estimates.  

The selected predictors are used to create a pruned training/validation/testing dataset, 

upon which we train a more parsimonious model. Performance metrics between the 

parsimonious model and the initial model are systematically compared and its observed 

that the difference is negligible , validating the fact that parsimonious models perform as 

good as the model with all the predictors. 

3.7 Ranking of Variables 

In order to avoid any bias associated with the dataset partitioning, the entire modelling 

methodology in Figure 2 (grey area) is performed 40 times with different subsets of training 

and validation splits and we obtain 40 different models. An ensemble of models gives more 
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insights on the predictor importance and reduces bias induced (Beven & Binley, 1992).  As 

such, an uncertainty analysis implemented as a Monte-Carlo experiment enables objective 

extraction of a set of empirical models to identify the most important associated predictors. 

Note that this approach is different from the Generalized Likelihood Uncertainty Estimator 

(GLUE) which applies on conceptual models to quantify the prediction uncertainty that 

results from their design and structure. 

The “repeated random sub-sampling validation,” i.e., Monte Carlo cross-validation, is 

used to generate multiple random splits of the dataset into training and validation data. For 

each such split, a model is fit to the training data by identifying the best hyper-parameter 

combination and by assessing the predictive accuracy on the validation data. With 40 such 

unique random splits, a total of 8000 models are created. Monte Carlo cross-validation 

allows to keep the proportion of the training/validation split independent from the number 

of iterations (i.e., the number of partitions) to ensure proper representation of the training 

and the validation data.  

Each of the 40 models provides its own unique predictor importance ranking (see 

Figure 3). The 40 rankings are aggregated to identify the most important predictors in 

terms of frequency of occurrence (i.e., how often they are selected across the 40 models) 

and importance (i.e., in each of the 40 models). Descriptive statistics of the predictor 

importance are derived, such as frequency of occurrence and importance sum for each 

predictor. The sum is used to rank the predictors overall.  If a predictor was selected at 

least once in the 40 iterations, it is deemed as important. With this definition, 32 

predictors out of the 50 predictors are identified as important.   
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Chapter 4: Results 

4.1 Algorithm Selection 

In Fig.8 we compare performance metrics on the validation dataset to see that the best R2 

is achieved by Xgboost with 83% explained variance followed by the Random Forests with 

79% explained variance. While R2 is indicative of the random error in the model, it does 

not give any information on the bias, hence we cannot yet choose Xgboost as the best 

performing model. 

 

Figure 8. R2 for models from different algorithms 
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Figure 9. Evaluation metric comparison 

As mentioned earlier, bias and variance must be taken into context through the 

introduction of mean relative error (MRE). Using R2 and MRE, we can choose a 

comprehensive model. As shown in Figure 9, in comparison of the two best performing 

algorithms, for the validation dataset the R2 and RMSE is better by 0.02 and 0.03, 

respectively, for the XGBoost. We see that the extreme gradient boosting algorithm and 

the random forests have equivalent MRE of 70%. Furthermore, overfitting and the number 

of variables for Xgboost is almost half of that of random forest. Also, we see an average of 

18% and 10% accuracy loss across all the models of random forests and XGBoost 

respectively. Hence more overfitting is observed in the random forest models. Based on 

these inferences, we use XGBoost algorithm to create models and further analyze 

hydrological processes.  
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4.2 Model Selection 

A model should be general enough such that it explains the variance of the entire 

dataset to a satisfactory level. This means that metrics such as the coefficient of 

determination (noted R2 herein) is maximized while overfitting should be minimized. 

Amongst the 40 models we generate, we choose the model with the best R2 on the 

validation dataset (cf. Figure 10), while also keeping the training and validation 

performance loss to less than 15% (cf. Figure 11). Furthermore, the number of selected 

predictors has to be below 20 (reducing more than 60% of predictors), such that we could 

generate a sufficiently parsimonious model, and these predictors have to explain more than 

or equal to 60% of predictor importance (cf. Figure 13). In figures 10, 11 and 12, the red 

line indicates the performance of selected model amongst the 40 runs while the green 

writing indicates the constraint that was subjected to select the best model.  

 

Figure 10. Selecting model based on performance on validation set.  
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Figure 11. Selecting model based on overfitting 

  

Figure 12. Selecting model based on number of predictors selected and proportion of 

importance explained. 

Another substantiation is with regards to the physical realism of the empirical 

model. This is performed by checking the predictor importance and partial terms.  Amongst 

the categories of processes that impact the hydrologic response of a basin, geomorphology 

is expected to have the greatest impact, followed by the spatial distribution of precipitation 

(precipitation moments), and finally the climatology. Hence a model should also reflect 

physical consistency in terms of predictor importance.  

To assess such physical consistency globally, we  consider the overall ranking of 

predictors across the 40 models. By combining the predictors by category of processes 
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(geomorphology, precipitation spatial variability, climatology), a representative value of 

importance for each category is extracted with the importance median value. Upon doing 

so, we observe that the predictor importance map obtained from our chosen model is able 

to explain the physics of the basin in terms of hierarchy of importance of different predictor 

categories (mentioned above). 

4.3 Model Performance & Feature selection 

Through the model selection methodology, we select a model whose performance 

on the validation dataset has a R2 of 0.78. The selected model is now tested on the testing 

dataset that was untouched in the all the selection and ranking procedures. On the testing 

dataset, the model predictions have a R2 value of 0.77, mean relative error of 0.02 and the 

root mean squared error of 157.25 with a train vs test R2 loss of 15%. With such metrics 

we can conclude to have an unbiased model. 

 

Figure 13. Predicted vs Observed peak discharge values (Test Dataset) 
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Figure 14. Predictor Importance Map.  

Amongst the 50 predictors we choose 16 important predictors as seen in figure 14. 

Of these identified we have 9 geomorphological, 3 precipitation moments, 4 climatological 

variables as shown in table 1.  

4.4 Accumulated Local Effects Plots 

Additional insight is provided by Accumulated Local Effects (ALE) Plots.  An ALE 

plot highlights the average impact of a given predictor on the model predictions (Molnar, 

2019). ALE plots are unbiased and valid when predictors are correlated. They help reduce 

complex prediction functions to a newer function which solely depends on the predictor of 

interest. To understand the influence of a given predictor in multivariable functions, 

differences in prediction are calculated for the predictor, which are averaged (accumulated) 

to define the partial derivative of that predictor, before it is centered. The partial derivative 

for that predictor is computed by holding all the other predictors constant. ALE plots utilize 

this basic calculus and find partial derivatives conditional on the features’ values. This 
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derivative is further integrated to focus on the predictor and filter out the interaction with 

correlated predictors. The generated value is then centered by subtracting over a constant 

(e.g., mean value) to improve the interpretation.  

  To estimate the gradient with the Xgboost model, the predictor is binned into 

intervals and differences in predictions are computed. Bins are based on percentile values 

taken by the predictors to ensure uniformity across bins. The differences in the prediction 

relays the effect in terms of partial derivative of the predictor for each individual instance 

in a bin. These partial derivatives are conditionally averaged over each bin to estimate the 

local effects. These local effects are summed (accumulated) across all bins to derive ALE 

values, that are finally centered.  

The ALE plots for geomorphological attributes, spatial distribution of precipitation, 

and climatology are provided below. To interpret the ALE values, one should consider the 

value on the y-axis as the conditional effect of the given predictor, when compared to the 

overall mean prediction for that bin. For instance, if the difference in the peak discharge is 

-65 for the 10th percentile of Area, then the prediction is lower by 50 cm3s-1 in comparison 

with the mean prediction involving all predictors.  

Figures 15, 16, 17 show the ALE plots for the geomorphological, precipitation 

moments, and the climatological predictors, respectively. To allow a comparison between 

variables, ALE values are computed at percentile bins of each variables. Consistent with 

the importance map (Fig. 3), in general the geomorphological ALE plots display larger 

ranges of variations than the precipitation and the climatological ALE plots, indicating that 

the geomorphological predictors have a higher impact on the model output (i.e., they 
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generate higher differences in predicted peak discharge), while the climatological 

predictors have less impact. 

 

Figure 15. ALE analysis geomorphological predictors 

.  

Figure 16. ALE analysis Precipitation moments predictors 

An estimation of volume of water, processed through hydrological processes in 

order to give is a peak value during the flood. Bio_10, identifies regions where we have 

specific atmospheric processes which generate high floods. High peak-discharge values are 

correlated with high precipitation, which are often associated with thunderstorms and 
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convection. These occur in areas which are warm and moist, and hence it indirectly affects 

everything. The longer the flow distance, the longer the time for the flood peak to appear, 

important for showing the temporal delay, less important for the volume of water. Other 

plots are provided in the appendix. 

 

 

Figure 17. ALE analysis climatological predictors 

 

4.5 Final Model Performance 

The new model (parsimonious model), which is trained on the pruned dataset 

containing only the above selected variables, shows performance on the test dataset with 

R2 value of 0.76, mean relative error of 0.02 and the root mean squared error of 159.62 

with a train vs test R2 loss of 10%. This model will be used for prediction if implemented 

for real time analysis.  
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Chapter 5: Conclusion & Future Work 

5.1 Conclusion 

Through this workflow, we successfully characterized flood peak discharge using 

machine learning. The dataset that was collected from precipitation and flood events 

across the US captures a large variety of precipitation spatial moments and basin 

geomorphological and climatological characteristics. Such a highly dimensional dataset 

helped train a statistical regression model for flash floods.  

 Among various regression algorithms and models considered, the selection was 

performed based on the coefficient of determination (R2), the mean relative error (MRE) 

and the root mean squared error (RMSE). In order to build a model with low bias and 

variance and with minimal overfitting, data partitioning was applied to create a training, 

validation and testing dataset. We then selected the XGBoost algorithm to fit the model 

on the training dataset. The best hyper-parameters for the XGBoost algorithm were 

identified prior to the training for best performance. The model was then tested on the 

validation dataset. 

 The entire process of data partitioning and model creation was performed 40 times 

in a Monte Carlo approach, and these results were aggregated to identify the model that 

reflects basin physiography the best through predictor significance. The predictor 

importance maps generated from the model helped quantify the importance of the basin 

characteristics. 

 The selected model was tested on the partitioned testing set to test its performance. 

The response of the peak discharge to the individual predictors is visualized using 

accumulated local effects plots. This measures the impact of each predictor and provides 
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more insights on the response to various classes of predictors. A parsimonious model that 

can be used in future deployments was then built by pruning the dataset to contain only 

the most important predictors. 

 The identified key predictors were backed up with physical considerations, i.e., 

understanding of the hydrological processes. The methodology allows the modeler to use 

domain knowledge to select the models that conform with the base reality. Furthermore, 

these inferences also bolstered the idea of how a new approach to hydrological modeling 

using machine learning, that encompasses the best of the physical, conceptual and 

empirical models.  Such an approach will potentially lead to new modeling techniques and 

contribute to analyze the hydrologic behavior of watersheds. 

        Likewise, the model shows promising performances in terms of predictions with 

great accuracy and low random error. It paves a way towards flood forecasting that can be 

considered in future work. 
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5.2 Future work 

 

The current study provides a blueprint for creating models for real time flood 

prediction. It would require combining peak discharge with other flood characteristics 

such as lag time and flood threshold exceedance levels. Also, precipitation moments 

would need to be computed in real time. 

Next, using the methodology outlined in this study, other efficient models can be 

created that minimize overfitting and are representative of the basin behavior to generate 

robust predictions. Further testing should be performed to check the visual and spatial 

consistency. This implementation could also be compared to existing flood forecasting 

systems like EF5. Finally, work should focus on making the information from this model 

simple for the forecaster to understand and ingest. 
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