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Abstract 

In this work, a Bayesian approach of probabilistic estimation for decline curve analysis in 

unconventional reservoirs is presented. The primary objectives of this study are the 

quantification of the uncertainty for production forecasting and do a parent-child 

analysis for wells from the same play. 

MCMC-based Metropolis algorithm is used for sampling from the proposal 

distributions to generate posterior distributions for the decline curve parameters. This 

sampling technique is applied for three models: Arps, Duong, and power law exponential 

models. Prior and likelihood distributions are established for the three models based on 

our understating of the data and the models. Forecast estimates are generated using 

multiple intervals of initial production data to understand how the sampling algorithm 

generates better estimates with increasing amount of training data. 

282 oil and gas wells Meramec STACK unconventional play are used in this work 

to quantify the production forecasting uncertainty. Results show that the MCMC-based 

approach was able to establish uncertainty bounds, matching MAP estimates for 

cumulative production. Based on the amount of production data available and the nature 

of the flow, the model that fits best can vary. Using the estimated decline curve 

parameters, parent-child well comparison analysis is done to understand the changing 

production dynamics in the Meramec STACK play. 
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Chapter 1 

Introduction 

In this chapter, I provide a general overview of the aspects of the oil and gas industry that 

is necessary to facilitate an easier understanding of this research. Post that, I introduce 

the decline curve models. In Section 1.1, I present the concepts of conventional and 

unconventional reservoirs, vertical and horizontal wells. In section 1.2, I present the 

concepts of transient and boundary dominated flow for wells. In section 1.3, I will discuss 

how the amount of oil or gas production of a well, captured at a daily or monthly 

frequency, is important for understanding the production trends. In Section 1.4, I will 

further explain the procedures to extrapolate the production trend, to understand the 

future production and thereby the economic potential of the well. In the following 

sections, I introduce the concepts of decline curve analysis (DCA) and various industry 

standard models for decline curves. In chronological order from Section 1.5 through 1.9, 

I review and present the workings of the DCA models. The Arps model [1945], a standard 

model for forecasting production for conventional reservoirs, is presented first followed 

by various newer models that are developed for unconventional reservoirs. In Section 

1.10, I discuss the need for understanding the forecasting uncertainty irrespective of the 

method used for predicting production. Section 1.11 details the profile of wells in the 

STACK area chosen for this analysis. 

1.1 Reservoir 

A reservoir is a subsurface pool of oil or gas contained in porous or fractured rock 

formations. There are two types of reservoirs - conventional and unconventional. 

Conventional resources are located under impermeable rock formations called a caprock, 

which allow for trapping of hydrocarbons. Reservoir and fluid characteristics of 

conventional reservoirs typically permit oil or natural gas to flow readily into wells. They 

are developed using vertical wellbores and produce oil and natural gas at economic flow 

rates with minimal or no stimulation. 

 Unconventional resources are trapped by low permeability and low porosity 

rocks. Oil or gas cannot be extracted at economical rates and require the use of more 

sophisticated means to extract oil and gas economically.  
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Figure 1.1 Conventional and unconventional resources (US EIA). 

Figure 1.1 shows a conventional and unconventional play in the same schematic, 

with a vertical well producing from the conventional non-associated gas reservoir and a 

horizontal well producing from an unconventional gas-rich shale, shows the use of 

horizontal wells to develop a shale resource and, shows various unconventional 

resources.  

Stimulation is a treatment performed to restore or enhance the productivity of a 

well. Stimulation in shale oil and gas reservoirs is done by hydraulic fracturing 

treatments. Figure 1.2 shows a four-stage completion for a horizontal well with four 

fractures per stage. Fracturing creates a highly conductive path for fluids between the 

reservoir and wellbore. Horizontal wells in very‐low‐permeability formations such as 

shales are typically hydraulically fractured with 10 or more stages starting at the “toe” of 

the well and working back to the “heel” where the well bends up to the surface. The 

combination of horizontal wells and hydraulic fracturing has rendered production from 

unconventional shales economic and viable. 
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Figure 1.2 Multi-stage horizontal well (Guo et al. 2017). The black vertical lines 

represent hydraulic fractures. In the figure above there are four stages of fractures with 
four fractures per stage. 

1.2 Reservoir flow 

Flow in a reservoir is characterized as being one of the two types: transient flow and 

boundary dominated flow (BDF). During the initial transient flow period, pressure 

transients migrate outward from the well without encountering any boundaries. This 

happens when a well is placed in a region where there has been no prior oil and gas 

production, so the well only ‘sees’ the original reservoir pressure. In a system like this, 

the pressure transients created by the producing well move outward, draining larger and 

larger reservoir volumes. This is the transient flow period. Eventually, of course, the 

pressure transients intersect pressure transients originating from other wells in the 

vicinity or a physical boundary. The onset of this effect is called boundary dominated 

flow. 

 Figure 1.3 shows the cross-section of a reservoir into which a horizontal well has 

been drilled. The cross-section shows three fractures of the horizontal well. The three 

cross-sectional pictures show the pressure profiles after 5, 10 and 60 years of production. 

The varying pressure in the reservoir is represented by different colors, with dark red 

indicating the highest pressure and dark blue the lowest pressure in the reservoir. The 

pressure around the fractures continues to decrease as the reservoir drains.  After 5 years 

of production, the pressure transients move outwards, but have not reached all the 

boundaries. After 60 years of production, the pressure transients have reached all the 
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boundaries and the pressure is decreasing at the boundary indicating boundary 

dominated flow for the well. 

 

Figure 1.3 Cross-section view of a reservoir with a horizontal well. Figure shows a single 
stage with three fractures. The three cross-section images show the pressure profiles 

after 5, 10 and 60 years of production (Chen. 2016). 

1.3 Production data 

Production can begin as soon as wells are completed, and surface facilities are installed. 

Well production rates are produced fluid per unit of time. These production rates are 

recorded on a daily or monthly basis. Figure 1.4 shows daily rates and cumulative 

production for an oil well as a function of time. Figure 1.5 shows daily rates and 

cumulative production for a gas well over time. 
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Figure 1.4 Daily oil rate (left) and cumulative oil production (right) for an oil well. 

 

Figure 1.5 Daily gas rate (left) and cumulative gas production (right) for a gas well. 

1.4 Decline curve analysis 

One of the biggest challenges in the oil and gas industry is forecasting production trends. 

This is typically done using a workflow called decline curve analysis (DCA). Production 

data is plotted as in Figure 1.4 and Figure 1.5, and the trends are extrapolated to forecast 

future production, obtained after analyzing historical production data. These trends are 

then used to determine future oil and gas production, to determine if some form of 

intervention is necessary to assess future economic viability and estimated ultimate 

recovery (EUR) of a well. If the forecasted production rates are low, the operator may 

decide to intervene in the form of drilling more wells or stimulating existing wells. 

Decline curve analysis (DCA) methods, in a variety of forms, have been used in the 

petroleum industry for more than fifty years to analyze production data and forecast 

reserves. These models forecast the future production data using empirical rate-time 
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equations with parameters. The unknown parameters in the decline curves are 

determined by fitting the decline curves to historical data. Future production is estimated 

by extrapolating the decline curve to a specified final rate. The final rate is usually 

determined as the lowest rate that is still economically viable. For this reason, the 

specified final rate is called economic rate or abandonment rate. Reserves are the 

difference between cumulative production at abandonment and current cumulative 

production. I will be presenting various decline curve models in Sections 1.5 – 1.9. Figure 

1.6 shows the projected daily oil rate for an oil well using Arps (1945) hyperbolic decline 

model. Using the Arps decline model (1945), the production has been forecasted for 880 

days based on the initial production data for 440 days. 

 
Figure 1.6 Projected production rate forecasted using Arps (1945) hyperbolic decline 

model. 

To summarize, decline curve analysis is important for two reasons: for predicting 

future production and thereby estimating the ultimate recovery for oil and gas wells. 

These metrics help understand if the development is economical. In 1945, J.J. Arps 

proposed decline models when there was no formalism to predict future production and 

reserve estimates (Arps, 1945). While the Arps model has been applied successfully for 

conventional wells, their extension to unconventional wells is not straightforward 

(Duong,  2011). 
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For conventional reservoirs, due to high reservoir permeability, the transient flow 

lasts a few days. The original Arps model is valid only for boundary-dominated flow. In 

unconventional shale reservoirs where the matrix permeability is extremely low, there is 

a chance that the flow will not become boundary dominated during its life (Lee et al. 

2010). Unfortunately, this implies that the Arps model cannot be applied to decline curve 

analyses for unconventional reservoirs. The application of Arps to the transient flow 

period in unconventional wells can result in expected ultimate recovery (EUR) 

predictions to be unrealistically high. 

Since 2008, several new decline-curve models have been introduced to estimate 

unconventional reservoirs. Ilk et al. (2008) introduced the power-law decline curve to 

model the decrease in the decline exponent b with time. Valko et al. (2010) introduced 

the stretched exponential production decline curve and used it to quantify the 

uncertainty in field-production forecasts. Duong (2011) proposed a new model for 

unconventional reservoirs with very low permeability, and the shape of this curve is 

suited for wells that exhibit long periods of transient flow. Daal et al. (2019) recently 

presented conceptual decline curve models which conform to the long-term transient 

flow behavior observed in unconventional reservoirs. In the following sections, I present 

a detailed summary of these models' decline curve analysis, their application, different 

parameters, and their purpose. 

1.5 Arps model 

Arps (1945) proposed that the production drop over a given constant interval is a 

percentage of the preceding production rate. This production drop fraction as a 

percentage per month value is called the loss ratio. 

 
𝑎 =  

𝑞

𝑑𝑞
𝑑𝑡

 ………………………………...(1) 

In Eq. 1, a represents loss ratio, q represents production rate, and t represents 

time. If the drop in the production rate per unit of time is proportional to the production 

rate, we obtain a specific form of the production decline called an exponential decline. 

 𝑞𝑡 = 𝑞𝑖  ∗  𝑒𝑥𝑝(−𝐷𝑖 ∗ 𝑡) …………………………………..(2) 
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In Eq. 2, qt represents production rate at time t. qi represents the rate at t=1. Di 

represents the initial decline rate which is the reciprocal of the loss ratio. Subsequent 

observations determined that the exponential decline is conservative and led to the 

development of other decline curves such as the hyperbolic decline as represented in Eq. 

3. Note that the exponential decline is obtained directly from Eq. 3 in the limit of b tending 

to 0. If b is equal to 1, we obtain what is known as the harmonic decline. 

 
𝑞𝑡  =  

𝑞𝑖

(1 + 𝑏𝐷𝑖𝑡)1/𝑏
 

…………………………………..(3) 

In Eq. 3, 𝑞𝑖, 𝑞𝑡 , 𝐷𝑖  represent the same values as in Eq.2, b represents the hyperbolic 

decline constant. Arps model is strictly valid for boundary-dominated flow (BDF) and 

hence has been applied successfully for conventional reservoirs. Its application to 

unconventional reservoirs is only valid when transient flow has ended. In any case, the 

parameters to be estimated for calculating production forecast using Arps model are 

initial rate (𝑞𝑖), decline rate (𝐷𝑖) and hyperbolic decline constant (𝑏). 

Figure 1.7 shows a regression matching of daily rates for an oil well with the 

calculated production using the least square fit match using Arps model. 

 
Figure 1.7 Calculated production matching versus actual production for oil well using 

Arps model. 
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1.6 Power law model 

In practice, for any reservoir, before the onset of BDF, the b-value is always higher than 

1. Extrapolating short-term declines to predict long-term production, results in 

extremely high overestimation of the well EUR. Ilk et al. (2008) present the need for an 

appropriate model for reserves extrapolation in tight reservoirs. A new power law loss 

ratio is developed which has more generality than the hyperbolic rate decline relation for 

tight gas/shale gas wells. As a non-hyperbolic approach to reserves estimates, Ilk et al. 

(2008) develop a method which employs a different functional form for the decline D 

parameter as given by: 

 𝐷 =  𝐷∞ + 𝐷1𝑡
−(1−𝑛) …………………………………...(4) 

In Eq. 4, D1 and D∞ stand for the decline constant intercept at t =1 and t = ∞ 

respectively, n is the time exponent, D is the decline at time t. Eq. 4 is the power law loss-

ratio formulation. Its interpretation is that the loss ratio can be approximated by a 

decaying power law function with a constant behavior at large time (D∞ being a constant). 

This model is flexible enough to model transient, transition and BDF in many cases, but 

at long times the relation reduces to the traditional exponential decline relation since the 

contribution of the power law term is relatively smaller. Substituting Eq. 4 into the loss 

ratio Eq. 1 and integrating yields the below: 

 𝑞 = �̂�𝑖 𝑒𝑥𝑝 [ −𝐷∞𝑡 − �̂�𝑖𝑡
𝑛] …………………………………..(5) 

In Eq. 5, q stands for Rate at time t, �̂�𝑖 stands for Rate intercept, D1 and D∞ stand 

for the decline constant intercept at t =1 and t = ∞ respectively. �̂�𝑖  is D1 divided by n 

where n is the time exponent. Figure 1.8 shows how Arps model compares to the power 

law model (Ilk et al. 2008). Arps hyperbolic model shows a constant value for production 

rate q and decline value D at early times whereas those values tend to be non-constant 

for the power law model. At late times, power law model shows exponential rate decline 

for q and a constant D value which takes the value of the parameter D∞. The unknown 

parameters that need to be estimated for power law model are the decline rates at t =1 

and t = ∞, D1 and D∞ respectively, Rate intercept (�̂�𝑖) and the time exponent (n). 
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Figure 1.8 Rate and loss ratio comparison of Arps hyperbolic and power law model (Ilk 

et al. 2008). The green curves represent the production data and decline rate parameter 
using the Arps equation. The black curves show the rates and decline rate observed are 

subsequently fitted with a power law model. 

1.7 Stretched exponential production decline model 

Valko et al. (2010) propose a model that relies on parameter processing for a large group 

of wells using a concept called ‘group-data controlled forecast’. A natural interpretation 

of the stretched exponential decay of a quantity is that it is generated by a sum(integral) 

of pure exponential decays with a ‘fat-tailed’ probability distribution of the time 

constants. The stretched exponential production decline (SEPD) model assumes that the 

actual production decline is determined by a great number of contributing volumes 

individually in exponential decay in pseudo-steady state, but with a specific distribution 

of characteristic time constants. The distribution is determined by a parameter pair (n, 

𝜏). 𝜏 is the median of the characteristic time constants and n is the exponent parameter 

for the SEPD model. The nearer the value of n is to zero, the larger is the tail of the 

distribution, or in other words, the elementary volumes have very large time constants. 

SEPD equation is as shown below: 
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 𝑞 =  𝑞0𝑒𝑥𝑝[−(𝑡/𝜏)𝑛] …………………………………..(6) 

In Eq. 6, q indicates the rate at time t and q0 indicates the rate at time t=0. Although 

the SEPD model has been applied often, it was specifically developed for the operating 

conditions associated with Barnett Shale. No claim is made that it applies to all plays with 

a similar consistency and hence its applicability remains untested. The unknown 

parameters that need to be estimated for Stretched exponential production decline model 

are initial rate (q0), median characteristic time constant (𝜏) and the exponent parameter 

(n). 

1.8 Duong model 

Duong (2014) propose an alternative approach to estimate EUR from wells in which 

fracture flow is dominant and matrix contribution is negligible. For fracture flows at a 

constant flowing bottom hole pressure, a log-log plot of rate, q divided by cumulative 

production, Gp versus time will yield a straight line with a unit slope regardless of fracture 

type as shown in Figure 1.9. In practice, a slope of greater than unity is normally observed 

because of actual field operations, data approximation, and flow-regime changes. A 

rate/time or cumulative production/time relationship can be established based on the 

intercept and slope values of this log-log plot and initial gas or oil rate. Results show that 

this alternative approach is easier to use, gives a reliable EUR and can be used to replace 

the traditional decline methods for unconventional reservoirs. 

 
Figure 1.9 A log-log plot of q/Gp vs time for a shale gas well (Duong 2014). 
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Duong (2014) used this finding to derive an empirical decline model for 

cumulative production Gp as proposed in Eq. 7 that is based on a long-term linear flow in 

many wells in tight and shale gas reservoirs. This applies to unconventional reservoirs 

with very low permeability. The shape of the curve is well-suited even for long periods of 

transient flow. Like other unconventional methods, this method will also predict a finite 

EUR and is a very conservative approach. 

 𝐺𝑝 = 
𝑞1

𝑎
𝑒

𝑎
1−𝑚

(𝑡1−𝑚−1) …………………………………..(7) 

In Eq. 7, q1 is the theoretical rate at t = 1. Estimates of a and m are derived from 

the intercept on the y-axis and slope from the log-log plot as shown in Figure 1.9. The 

ratio of daily rate q and cumulative production Gp is defined by Eq. 8 below: 

 
𝑞

𝐺𝑝
=  𝑎𝑡−𝑚 …………………………………..(8) 

The daily flow rate is derived from Eq. 7 and Eq. 8 as shown below: 

 𝑞 =  𝑞1𝑡
−𝑚𝑒

𝑎
1−𝑚

(𝑡1−𝑚−1) …………………………………..(9) 

The unknown parameters that need to be estimated for this model are the initial 

rate (q1), slope and intercept from the plot in Figure 1.9, m and a respectively. 

1.9 Variable power law exponential model 

Daal et al. (2019) present conceptual decline curve models which conform to the long-

term transient flow behavior in unconventional reservoirs. These models are validated 

by matching production rate, loss ratios and the b-factors. As depicted in Figure 1.10, 

these models are built on the concept that the loss ratio and the b-factor are not 

continuous functions of time. 
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Figure 1.10 Conceptual model proposed by Daal et al. (2019). 

Since pinpointing the duration of the flow regimes is challenging, the model 

develops generalized expressions for b-factor as expressed in Eq. 10. 

 𝑏(𝑡) =  
𝑑

𝑑𝑡
[𝑎] = 𝑓(𝑡, 𝛽1, 𝛽2, … 𝛽𝑛) …………………….(10) 

The work by Daal et al. (2019) proposes two models: power law exponential 

model and variable power law exponential model. These models are built on the 

observations of quadratic changes in loss ratio and power law changes in inverse loss 

ratio, respectively. Variable power law exponential model is an extension of the SEPD 

model (Valko et al., 2010) where the primary difference is that the extension accounts for 

curvature in the inverse loss ratio plot which SEPD represents as a straight line. 

Using production data from Barnett-Shale, the proposed models are compared to 

existing models and show a unique level of flexibility in fitting production data. The 

power law exponential fits the power law behavior of inverse loss ratio through time. 

This corresponds to the inverse loss ratio following a straight-line relationship on a log-

log plot. Eq. 11 represents the power law exponential relationship between the current 
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rate (q) and initial rate (qi) using decline curve parameters α0 and β0. These parameters 

are empirically approximated based on loss ratios for a given well. 

 𝑞 =  𝑞𝑖𝑒𝑥𝑝 [
𝛼0𝑡

1−𝛽0

𝛽0 − 1
] …………………………………..(11) 

Variable power law exponential is a decline curve for observation of variable 

power law behavior of inverse loss ratio through time. This corresponds to the inverse 

loss ratio following a curved line relationship on a log-log plot. Eq. 12 represents the 

power law exponential relationship between the current rate and initial rate based on a 

predefined set number of decline curve parameters αj and βj. 

 𝑞 =  𝑞𝑖𝑒𝑥𝑝 [∑
𝛼𝑗𝑡

1−𝛽𝑗

𝛽𝑗 − 1
] ….…………………….……..(12) 

These decline curve equations are derived with an emphasis to match not only 

rate-time historical production, but also b-factor and the loss ratio. The unknown 

parameters that need to be estimated for these models are the initial rate (qi) and decline 

curve parameters αj and βj. 

1.10 Uncertainty in production estimates 

There have been several modifications to the traditional Arps model over the past decade, 

that account for specific scenarios such as elongated transient periods in low 

permeability reservoirs and the, power law behavior of the loss ratio.  

As with any regression model, the results provide fixed parameter estimates with 

a single prediction of rate/cumulative production/EUR. In general, the authors do not 

address the uncertainty associated with the parameters, do not consider the noise in the 

measurement (the production data), nor do they provide production forecasts with 

uncertainty. Figure 1.11 and Figure 1.12 show the daily production and cumulative 

production matching for an oil well using Arps (1945), power law exponential (Daal et al. 

2019) and Duong (2014) models. Each model with different sets of parameters obtained 

using regression show different estimates for daily production and cumulative 

production. This plot underlines the importance of calculating uncertainty estimates 

which provides a distribution for future production of a well. 
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Figure 1.11 Production matching for an oil well using various decline models. 

  
Figure 1.12 Cumulative production matching for an oil well using various decline 

models. 
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Although we have numerous methods to analyze production data from 

unconventional shale wells, we do not have proper methods to quantify uncertainty in 

the forecasts (McVay et al. 2014). This becomes important when attempting to calculate 

the economic value of a development project, to make decisions about drilling more or 

fewer wells or to design surface facilities. 

There have been a few attempts to embrace the uncertainty resulting from noise 

in the data. Jochen and Spivey (1996) and Cheng et al. (2010) developed bootstrap 

methods that can generate probabilistic decline forecasts and thereby quantify reserves 

uncertainty. The modified bootstrap method (MBM) (Cheng et al. 2010)  is shown to 

provide estimates of uncertainty in cumulative production that envelope the true value 

for several field case studies.  

McVay et al. (2014) proposed a solution that uses a Bayesian methodology to 

approximate Arps decline curve parameters. Their approach is based on the Markov 

chain Monte Carlo (MCMC) method for parameter estimation and was tested on 197 

wells. This was the first paper to provide a comprehensive treatment of uncertainty in 

forecasts using samples from the MCMC-derived posterior distribution. The major 

drawback of this approach was that it was not applied to and tested with several of the 

more recent unconventional shale well models. 

This thesis documents the application and validity of the MCMC approach to 

decline curve parameter estimation for several different decline curve models when 

applied to production data from unconventional wells. Additionally, there has been no 

comprehensive analyses of parent and child well performance in terms of decline curve 

parameters. I address this shortcoming in my thesis. In the next section, I provide a brief 

description of the field data used in this thesis. 

1.11 Field characteristics 

The purpose of this research is to ascertain the production performance using 

uncertainty estimates for wells in a single play. In this thesis, I use data from the 

Mississippian Meramec formation in the Sooner Trend Anadarko Canadian and 

Kingfisher (STACK) play, which is an unconventional target in the Anadarko basin in west 

central Oklahoma. It is one of the most productive tight-oil systems in the Anadarko basin 
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(Almasoodi et al. 2020). Since 2017, the Meramec has been a high-interest area for oil and 

gas production (Haustveit et al. 2017), but the recent drop in oil prices in 2020 has 

severely dampened enthusiasm for additional drilling operations. The Meramec STACK 

play is a multi-layered tight oil reservoir and most development is centered in the 

Kingfisher and Canadian counties in Oklahoma (Li et al. 2020). A map of the Devon Energy 

company acreage is shown in Figure 1.13. 

 
Figure 1.13 Meramec STACK play (Devon energy, 2015). 

The wells that came online in the past one year are excluded while performing the 

uncertainty analysis. 268 oil and gas wells have been identified in the Meramec field for 

this research. Figure 1.14 shows the number of wells that came online every year since 

October 2014. The first producing well was drilled in October 2014 and starting with the 

second quarter of 2018, there has been a prolific increase of infill drilling in the area. Infill 

drilling method refers to the drilling of additional wells in a field to recover additional oil. 
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It has the effect of decreasing the spacing between wells and increases the probability of 

well interference. 

 
Figure 1.14 Meramec wells operated by Devon energy. 

1.12 Organization of the Thesis 

This thesis is organized into four chapters. Chapter 1 discusses the introduction to the 

decline curve models and their application for wells based on various classifications. 

Chapter 2 explains the Mathematical foundation of this research and explain about 

Bayesian methods, MCMC and the samplers that made the computation of random 

variable estimates so effective. It also includes a simple demonstration of how a simple 

regression fit can be obtained by specifying a model using PyMC3 (2016). Key estimates 

like maximum a posteriori (MAP), posterior probability distribution, are explained. 

Chapter 3 provides a summary of the parameter distributions generated using Arps 

(1945), power law exponential (Daal et al. 2019) and Duong (2014) models for the 

chosen wells from STACK. It will also include the summary of metrics R-squared, RMSE 

and MAE for the posterior estimates of the sample wells. Posterior distribution graphs 

for sample wells using three decline models are shown. An analysis of change in the initial 

rates and the decline rates over time is shown vs. number of frac states, lateral length and 

the amount of proppant used. Based on our understanding of the decline curve values for 

wells in this field, we present analysis on how infill development and the completion 
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design has impacted the production in the field. Finally, Chapter 4 concludes the thesis 

and presents the scope of future work. 
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Chapter 2 

Mathematical foundation 

In this chapter, I introduce the probabilistic framework which is the basis for Bayes 

theorem. In the following sections, I explain the advent of Markov chain Monte Carlo 

(MCMC) methods and provide a detailed explanation on four sampling methods. I end 

this chapter by providing a simple example of Bayesian linear regression to demonstrate 

the application of MCMC to parameter estimation and uncertainty quantification. 

From a Bayesian perspective, probability quantifies the degree of confidence we 

have in the estimate of a parameter. A frequentist approach treats unknown parameters 

as fixed values, thereby no probabilities (prior) can be assigned to them. 

2.1 Bayes theorem 

Consider a situation with some noisy measurements, y and a possible model with 

parameters, θ that generated that data. We would like to assess the confidence we have 

that the model with parameters, θ generated the noisy measurements. If this model is 

unlikely, we would like to find the most probable set of model parameters that generated 

the noisy observations or measurements. 

 p(θ|y)  =  
p(y|θ)p(θ)

p(y)
 …………………………………(13) 

This is expressed by Bayes’ theorem as shown in Eq. 13. The term, p(θ|y) is 

denoted as the posterior distribution and reflects the confidence we have that a model 

with parameters, θ generated the data, y. The maximum of this distribution is called the 

Maximum A Posteriori estimate of θ also known as the MAP estimate. 

To compute the posterior probability of the model parameters, we need to define 

p(θ) which is the prior distribution of the model parameters before even looking at the 

data, y. p(y| θ) is the likelihood function and, expresses the plausibility of the data given 

the parameters, θ. p(y) is called the marginal likelihood. Also known as evidence, it is the 

probability of observing the data averaged over all possible values of parameters and is 

generally not computed because Bayes’ theorem is a proportionality if marginal 

likelihood is ignored as expressed in Eq. 14. 
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 p(θ|y)  ∝  p(y|θ)p(θ) ………………………………...(14) 

To find the MAP estimate of the model parameters, we do not need to know the 

proportionality constant. While the analytic form of the posterior distribution can 

occasionally be computed, it makes sense to use sampling methods to compute the 

posterior, especially in high-dimensional spaces. In the next section, I describe a few of 

these sampling approaches. 

2.2 Markov chain Monte Carlo (MCMC) 

MCMC uses Monte Carlo integration using Markov chains to integrate over high-

dimensional probability distributions to infer model parameters. Monte Carlo integration 

draws samples and then creates sample averages to approximate expectations. Markov 

chain Monte Carlo draws samples by constructing a Markov chain for a long time. There 

are different samplers to construct these chains. All the newer samplers including Gibbs 

Sampler (Geman et al. 1984) are special cases of the general framework of Metropolis et 

al. (1953) and Hastings (1970). 

2.2.1 Monte Carlo integration 

Metropolis and Ulam (1949) first published a document on Monte Carlo simulation. This 

paper introduces Monte Carlo particle methods which form the basis for modern 

methods such as bootstrap filters, condensation, and survival of the fittest algorithms. 

The features of the posterior distribution – moments, quantiles, highest posterior density 

regions, MAP estimates are all legitimate for Bayesian inference and they can be 

expressed in terms of posterior expectations of functions of the parameter θ. Let X be a 

vector of random variables with a posterior distribution p(x). The posterior expectation 

for f(X) is given by the equation: 

 𝐸[𝑓(𝑋)]  =  
∫ 𝑓(𝑥)𝑝(𝑥)𝑑𝑥

∫𝑝(𝑥)𝑑𝑥
 ………………………....(15) 

Monte Carlo integration evaluates E[f(X)] by drawing samples {Xt, t = 1, … ,n} from 

p(x) and then approximating as shown in Eq. (16) below: 
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 𝐸[𝑓(𝑋)]  ≈  
1

𝑛
∑𝑓(𝑥𝑡)

𝑛

𝑡=1

 ….……………………………(16) 

The population mean of f(X) is estimated by a sample mean and when the samples 

are independent, the law of large numbers ensures that the approximation is accurate by 

increasing the sample size n. One way of generating the samples xt is by using a Markov 

Chain which makes it Markov chain Monte Carlo. 

2.2.2 Markov chain 

Markov chain is a sequence for which a set of random variables (X1, X2, ... , Xt)  are 

identified such that at each time t >= 0, the next state Xt is sampled from a distribution 

P(Xt|Xt-1) which depends only on the previous state of the chain and does not depend on 

the prior history of the chain (X1, X2, ... , Xt-2). A sequence of random variables (X1, X2, ... , 

Xt) on a discrete state space is called a first order Markov Chain if: 

 
p(Xt = xt | Xt−1 = xt−1, . . . , X1 = x1) = p(Xt = xt | Xt−1 = xt−1) …..……(17) 

In other words, the distribution of Xt given the whole history of the process is the 

same as the distribution of Xt given just the most recent value, Xt-1. Therefore, the more 

steps that are included, the more closely the sample distribution matches actual 

distribution. The chain will gradually forget its initial state and the probability function 

will converge to a unique stationary distribution. We discuss various sampling methods 

in the upcoming sections. 

2.2.3 Rejection sampling 

In the 1940s, Ulam and Neumann developed many Monte Carlo algorithms, including 

importance sampling and rejection sampling. Assume that we wish to generate samples 

from a distribution p(x) that is not one of the standard distributions. For example, it may 

be a product of several different other distributions. We define a proposal distribution, 

q(x) and a constant M such that p(x) ≤ Mq(x) for x ∊ X. A value x(i) sampled from q(X) will 

be accepted if it meets condition in Eq. 18 

 𝑢 <
𝑝(𝑥(𝑖))

𝑀𝑞(𝑥(𝑖))
 ……………………………….(18) 
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u in Eq. 18 is a random value drawn from a uniform distribution with the range 

(0,1). This process is repeated until a predetermined number of iterations are reached. 

The resulting accepted values are then distributed according to p(x). Figure 2.1 illustrates 

this concept of rejection sampling. 

 
Figure 2.1 Rejection sampling [Andrieu et al., 2003]. 

This simple method suffers from a severe limitation since it is not always possible 

to bound p(X)/q(X) with a reasonable constant M. 

2.2.4 Importance sampling 

Importance sampling helps approximate expectations from distributions especially when 

the distribution has a complex, non-standard form. As with rejection sampling, we draw 

samples from a proposal distribution, q(x). Assuming we want to estimate the mean of 

the function, f(x), with respect to probability distribution, p(x). Using this principle, the 

possible Monte Carlo simulation for the integral sum for f(x) is shown in Eq. 19. 

 𝐼 =  ∑𝑓(𝑥𝑖)𝑤(𝑥𝑖)

𝑁

𝑖=1

 …………………………………(19) 

w(x) in Eq. 19 is the importance weight and is obtained using Eq. 20. 

 𝑤(𝑥) ≜  
𝑝(𝑥)

𝑞(𝑥)
 ………………………………...(20) 

p(x) denotes the posterior density and q(x) is the proposal distribution. The 

proposal distribution which minimizes the variance of the estimator integral must be 

chosen. 
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2.2.5 Metropolis-Hastings sampling 

Metropolis-Hastings (MH) algorithm is the most popular MCMC method (Hastings, 1970; 

Metropolis et al., 1953). An MH step of a distribution p(X) and the proposal distribution 

q(X) involves sampling a candidate value xi given the current value x, which is q(xi | x). 

The Markov chain then moves towards xi with acceptance probability defined by Eq. 21. 

 𝐴(𝑥, 𝑥𝑖) = 𝑚𝑖𝑛 {1,
𝑝(𝑥𝑖)𝑞(𝑥|𝑥𝑖)

𝑝(𝑥)𝑞(𝑥𝑖|𝑥)
} ………………..…….(21) 

Similar to rejection sampling, a value ‘u’ is drawn from a uniform distribution with 

the range (0,1). If the acceptance probability is greater than ‘u’, the Markov chain moves 

towards xi with the acceptance probability value of A(x, xi), otherwise it remains at x for 

that iteration. This process is repeated until the total number of iterations for sampling 

are exhausted. Figure 2.2 indicates how a Gaussian proposal distribution better 

approximates a bimodal target distribution as the number of iterations increase from 100 

to 5000. The proposal normal distribution has a sampled mean and a variance of 100. For 

this example, the target distribution is identified by Eq. 22: 

 𝑝(𝑥) = 0.3 ∗ 𝑒−0.2∗𝑥2
+ 0.7 ∗ 𝑒(−0.2(𝑥−10)2) ………………...(22) 



25 
 

 

Figure 2.2 Target distribution and histogram of the MCMC samples for different 
iterations [Andrieu et al., 2003]. 

2.2.6 Gibbs sampling 

Donald and Stuart Geman (1984) showed how the Metropolis Hastings algorithm could 

be adapted to the high-dimensional problems that arise in Bayesian statistics. This 

algorithm was named after physicist Josiah Gibbs. Gibbs sampler generates posterior 

samples for each variable by sampling from its conditional distribution whereas the 

remaining variables are fixed to their current values. For D random variables X1, X2, X3…, 

XD, below algorithm shows the sampling mechanism: 

Step 1: Initialize initial values x(0) for the random variables from proposal distribution q 

Step 2: for I = 1, 2, … N: 

x1(i) ∼p(X1=x1| X2=x2(i-1), X3=x3(i-1), … , XD=xD(i-1)) 

x2(i) ∼p(X2=x2| X1=x1(i-1), X3=x3(i-1), … , XD=xD(i-1)) 
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. 

. 

. 

xD(i) ∼p(XD=xD| X1=x1(i-1), X2=x2(i-1), … , XD-1=xD-1(i-1)) 

This process continues until the proposal distribution matches the actual 

posterior distribution. Using this algorithm, we simulate samples by sweeping through 

all the posterior conditionals, one random variable at a time. Since they are initialized 

using random variables, the early samples may not represent the actual posterior 

distribution. With many iterations, MCMC converges to the posterior eventually. 

To summarize, importance sampling works for scenarios where it is easy to 

calculate the proposal distribution and easy to specify a constant value as the threshold 

for the proposal to posterior distribution ratio. Rejection sampling on the other hand is 

for scenarios where it is difficult to produce samples from the population to model rare 

events. Gibbs sampling breaks the curse of dimensionality by producing low dimensional 

conditionals. Metropolis sampling creates a Markov chain based on an acceptance-

rejection step. Gibbs sampling can be considered a special case of Metropolis algorithm 

with an acceptance probability of one. Given the volatility in the well performance and 

production data, Metropolis sampler is used for generating the posterior distributions for 

all decline curve models. 

2.3 Posterior analysis 

The result of a Bayesian analysis is a posterior distribution which is a set of plausible 

values generated based on prior, data and the likelihood (model). Posterior spread is 

proportional to the parameter uncertainty and a larger spread indicates a higher degree 

of uncertainty. 

A commonly used method to summarize posterior spread is to use a highest-

posterior density (HPD) interval. If 95% HPD for the parameter is [2-5], it means that 

according to the given prior and model, the distribution of the variable in question is 

between 2 and 5 with a probability of 95%. In common terms, this interval is a credible 

interval. Performing a Bayesian analysis enables the possibility of having a probability 

distribution of a parameter. This is not possible with the frequentist approach of 
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confidence intervals since the parameters are fixed by design and the confidence interval 

either contains or does not contain the true value of the parameter. 

The mode value of the posterior distribution is called maximum a posteriori 

(MAP). It is generally found using the numerical optimization methods. The posterior 

predictive distribution is sampled to calculate outcome production values. The computed 

cumulative production values can further be classified into P10, P50 and P90 estimates 

by performing percentile calculations. 

2.4 Bayesian example using PyMC3 

PyMC3 (Salvatier et al., 2016) is a package that enables probabilistic programming in 

Python. Though the base code for this package is written using Python, the 

computationally demanding parts are written using NumPy and Theano. Theano 

compiles Python code to C code. 

For this demonstration, I use a simple linear equation of the form y = α + βx. The 

first step is to assume values for intercept and slope of the linear equation and calculate 

the outcome value. The second step is to add random noise to the value. Figure 2.3 shows 

the true regression line in thick black and the points generated by adding random noise 

as blue dots. 

 
Figure 2.3: Actual data (straight-line) with added error (blue dots). 

The second step is the model definition where prior distributions are assigned to 

the parameters. The model defines the intercept α as a normal distribution with a mean 

value of 0 and a standard deviation of 10. The slope β is also defined as a normal 
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distribution with a mean value of 0 and a standard deviation of 1. Likelihood is defined 

as a normal distribution whose mean value is deterministic value generated by the 

original linear equation. Half-Cauchy distribution is used for standard deviation of the 

likelihood. This distribution with heavy tails suits model parameters with a higher 

uncertainty. The model now has prior distributions defined for all parameters and a 

likelihood function defined as normal distribution. Figure 2.4 shows the posterior trace 

as a frequency distribution plot as well as a line chart over all iterations. The posterior 

trace is generated over four sampling chains of 2000 iterations and each chain is shown 

as a different color line. The trace shows good convergence proving the choice of priors 

to be correct.  

Posterior trace values are plugged into the original linear equation to obtain the 

range of outcome values shown in Figure 2.5. All outcomes plotted together explain the 

amount of uncertainty associated with the predicted parameter values. 

 
Figure 2.4: Posterior trace of three parameters. 
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Figure 2.5: Predictions generated from posterior trace. 

The thick black line in Figure 2.5 is a calculated outcome using the mean values 

from posterior trace, blue dots are the actual data used to train the model and the 

remaining gray lines represent all possible outcomes. 
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Chapter 3 

MCMC Application and Results 

In this chapter, I will present a detailed analysis and summary of decline curve parameter 

estimation and uncertainty estimates generated for 268 wells in the STACK play. In the 

first section, I discuss the data gathered for the purpose of this research. In the second 

section, I will discuss the parameter convergence pattern and the posterior distribution 

of the parameters generated for an oil well using the Arps model. In the third section, I 

will present the results for few sample oil and gas wells using three DCA models – Arps 

(1945), Duong (2014) and power law exponential (Daal et al. 2019) models. In the fourth 

section, I will present the summary statistics of the parameters approximated for three 

models. 

3.1 Data 

This section describes the various production and completion data attributes collected 

for this thesis. 

Rates: The daily production rates for oil, gas, and water for all wells. The earliest well 

came online in 2014 and the last well came online in 2019. 

Downtime: Wells undergo downtime occasionally due to various operational reasons 

that may be intentional or non-intentional. Chemical treatment, offset activities, 

equipment maintenance necessitates intentional downtime while the involuntary 

reasons include equipment failure. For this research, the number of daily downtime 

hours and the reason for downtime is capture for all wells. 

Stimulation: A treatment performed to restore or enhance the productivity of a well. 

Stimulation in shale gas reservoirs is done by hydraulic fracturing treatments. Fracturing 

creates a highly conductive flow path between the reservoir and wellbore. 

Frac fluid: A fluid injected into a well as part of the stimulation operation. 

Proppant: Sized particles mixed with frac fluid to hold fractures propped open after a 

hydraulic fracturing treatment. 
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Stim stages or frac stages: The number of intervals that are stimulated using hydraulic 

fracturing for a horizontal wellbore. 

Lateral length: The length of the horizontal wellbore. 

Infill drilling:  The drilling of additional wells in a field to recover additional oil. It has 

the effect of decreasing the spacing between wells and increases the probability of well 

interference. 

3.2 Prior and Likelihood function 

In this section, I will present the priors and likelihood functions as probabilistic 

distributions to obtain the posterior distributions for the decline curve parameters. The 

prior distribution essentially quantifies the users’ degree of confidence in a parameter 

value or set of parameter values. The likelihood function, for a given model, expresses the 

probability that the measurements obtained were generated by the model. For this 

research, I use non-informative or uniform priors. 

In the Arps (1945) model, the value of b and log values of initial rate qi and, decline 

rate Di are modeled as uniform distributions with the ranges specified below: 

-4.61 < log(qi) < 13.8 

-2.3 < log(Di) < 3.91 

0 < b <2 

The upper- and lower-limits for log(qi) are chosen based on an examination of 

initial rates across the field. The range for log(Di) is chosen to account for abnormal or 

normal daily decline rates. The upper limit of 2 for hyperbolic b parameter is chosen 

because b tends to be greater than 1 for unconventional plays. 

For the Duong (2014) model, I first use a curve fitting procedure to arrive at the 

initial estimates for log value of the theoretical rate at day 1, slope and intercept of the 

log-log plot between the ratio of daily-rate and cumulative production q/Gp versus time, 

log(q1), m, and a respectively, and define uniform distributions around these initial 

estimates as prior distributions. 
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For the power law exponential (Daal et al. 2019) model, I first use a curve fitting 

procedure to arrive at the initial estimates for the log value of the initial rate qi and the 

two dimensionless decline curve parameters, α and β, log(qi), log(α), and log(β) 

respectively, and define uniform distributions around this value to be used as prior 

distributions.  

The likelihood function can be modeled as a normal distribution if the noise in the 

data is assumed to be from a zero-mean, normal distribution (McVay et al. 2014).  

 𝑝(𝑦|𝜃) =  
1

√2𝜋𝜎2
𝑒𝑥𝑝 (

−(𝑦𝑎𝑏𝑠 − 𝑦𝑝𝑟𝑒𝑑)
2

2𝜎2
) ……….……(23) 

Eq. 23 shows the likelihood modeled as a normal distribution for a noise standard 

deviation of σ (BBL or MCF) in the production data. In Eq. 23, yabs and ypred are the 

observed and predicted values of flow rates, respectively. In this research, θ represents 

the decline curve parameters for Arps (1945), Duong (2014) and power law exponential 

(Daal et al. 2019) models respectively, as shown below: 

𝜃 = [𝑙𝑜𝑔(𝑞𝑖) , 𝑙𝑜𝑔(𝐷𝑖) , 𝑏]𝑇 

𝜃 = [𝑙𝑜𝑔(𝑞1) ,𝑚, 𝑎]𝑇 

𝜃 = [𝑙𝑜𝑔(𝑞𝑖) , 𝑙𝑜𝑔(𝛼), 𝑙𝑜𝑔(𝛽)]𝑇 

For a well producing for n days, ypred = (y1, y2, … ,yn) indicates the ‘n’ sequential 

observations of production. The likelihood function for the ‘n’ sequential observations 

becomes: 

 𝑝(𝑦 |𝜃)  ∝ 𝑒𝑥𝑝 [(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑎𝑏𝑠)
𝑇
𝐶𝑦

−1(𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑎𝑏𝑠)] ………….(24) 

Cy represents the variance between the n observations as shown below: 

 

𝐶𝑦 = 

[
 
 
 
 
 
 
𝜎𝑦1

2    𝜎𝑦1𝑦2
2   …  𝜎𝑦1𝑦𝑛

2

𝜎𝑦2𝑦1
2    𝜎𝑦2

2   …  𝜎𝑦2𝑦𝑛
2

.

.

.
𝜎𝑦𝑛𝑦1

2    𝜎𝑦𝑛𝑦2
2   …  𝜎𝑦𝑛

2  ]
 
 
 
 
 
 

 …………………………….(25) 
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The observations are independent of each other, which implies the variances 

between different observations can be assumed as zero. Assuming the remainder 

variances are equal denoted by 𝜎𝑦
2, the matrix in Eq. 25 can be represented as: 

 

𝐶𝑦 = 

[
 
 
 
 
 
 
𝜎𝑦

2   0  …   0

0   𝜎𝑦
2   …   0
.
.
.

0   0  …  𝜎𝑦
2 ]
 
 
 
 
 
 

 …………………………….(26) 

I use Metropolis algorithm for sampling. Using a Markov chain, we can 

approximate the distribution of a parameter θs given the most recent value θs-1. While 

constructing the Markov chain, we draw samples from a proposal distribution ‘q’ since 

the posterior distribution is unknown. There is a probability ‘α’ that that the candidate 

θproposal drawn from the proposal distribution is accepted and a probability (1- α) that it 

is not accepted. Ratio of the posterior probability of θproposal to θs-1 is given by Eq .25 

(McVay et al. 2014). 

Posterior probability ratio = 
𝑝(𝜃𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙|𝑦)

𝑝(𝜃𝑠−1|𝑦)
  ……………….(25) 

The Markov chain generated by use of the Metropolis algorithm will converge to 

the desired posterior distribution when the acceptance ratio ‘α’ equals the minimum of 

numeric value one and ratio of the normalized posterior probability of θproposal to θs-1 is 

given by Eq. 26 (McVay et al. 2014). 

Normalized posterior probability ratio =  

𝑝(𝜃𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙|𝑦)

𝑞(𝜃𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙|𝜃𝑠−1)

𝑝(𝜃𝑠−1|𝑦)

𝑞(𝜃𝑠−1|𝜃𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙)

  …………(26) 

Eq. 26 is derived from Eq. 19 discussed in Section 2.2.5. The reason to normalize 

proposal distribution is to keep the Markov chain independent of the proposal 

distribution (McVay et al. 2014). 

As defined in Eq. 12 in Section 2.1, posterior distribution is proportional to the 

product of the likelihood and the prior distribution. 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃) ……………………...…………(27) 
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The maximum number of distinct posterior parameter estimates generated for a 

well per model are limited to 2000. 

3.3 MCMC Convergence 

In this section, I will present the results of parameter estimation using the Arps model for 

a randomly selected oil well (Well 1).  The well has been continually producing since May 

2018 with no offset activities and therefore is a good candidate to apply and test the 

MCMC method for parameter estimation. I chose four iterations of MCMC and generate 

over 20000 successive parameter samples for each iteration for a total of 80000 samples. 

Figure 3.1 shows the Arps posterior parameter histograms using the initial 20% (176 

days) of the production data. Figures 3.2, 3.3 and 3.4 show corresponding figures when 

the initial 30% (264 days), 40% (352 days) and 50% (441 days) of the production data. 

The histograms show progressively narrower distributions with the availability of more 

data and a corresponding decrease in the uncertainty of the parameter estimates. The 

mode frequency has increased from close to 40,000 to 60,000 for the parameters’ qi and 

b. 

 
Figure 3.1 Posterior parameter distribution for the model with 20% of data used for 

training. 
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Figure 3.2 Posterior parameter distribution for the model with 30% of data used for 
training. 

 
Figure 3.3 Posterior parameter distribution for the model with 40% of data used for 

training. 

 
Figure 3.4 Posterior parameter distribution for the model with 50% of data used for 

training. 

Figure 3.5 shows the actual versus predicted daily and cumulative production for 

Well1. The cumulative production values are calculated using the posterior parameter 

distribution obtained by training the model with 20% of the initial production data. For 

the same model, Figure 3.6 shows the parameter distribution for Well1. This is a posterior 

trace plot which plots the trace values as sampled using the model definition. The values 

shown on the plot are log(qi), log(Di) and b. The four draws, each with 20000 iterations, 

are shown in four different colors. 
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Figure 3.7 shows the actual versus predicted daily and cumulative production for 

Well1. The cumulative production values are calculated using the posterior parameter 

distribution obtained by training the model with 30% of the initial production data. For 

the same model, Figure 3.8 shows the posterior parameter distribution. The comparison 

between Figure 3.5 and Figure 3.7 shows the improved match between the calculated and 

the actual cumulative production. Figures 3.9, 3.10 show similar plots obtained by 

training the model with 40% of the initial production data. Figures 3.11, 3.12 show 

similar plots obtained by training the model with 50% of the initial production data. 

There is little spread associated with the forecasts and relatively less uncertainty for 

Well1. 

 
Figure 3.5 Cumulative production calculated using posterior parameter distribution for 

the model trained with 20% of the initial production data. 
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Figure 3.6 Posterior parameter distribution for Well1 with 20% of initial production 

data used for training. 

 

Figure 3.7 Cumulative production calculated using posterior parameter distribution for 
the model trained with 30% of the initial production data. 
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Figure 3.8 Posterior parameter distribution for Well1 with 30% of initial production 
data used for training. 

 
Figure 3.9 Cumulative production calculated using posterior parameter distribution for 

the model trained with 40% of the initial production data. 
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Figure 3.10 Posterior parameter distribution for Well1 with 40% of initial production 

data used for training. 

 
Figure 3.11 Cumulative production calculated using posterior parameter distribution 

for the model trained with 50% of the initial production data. 
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Figure 3.12 Posterior parameter distribution for Well1 with 50% of initial production 
data used for training. 

Figure 3.13 shows the predicted cumulative production  and the match to this data 

for MAP estimates obtained by training the model with 20% (176 days), 30% (264 days), 

40% (352 days), 50% (441 days) of initial production data. To assess the impact of 

changing amounts of initial production data on MCMC parameter estimation, I vary the 

amount of production data from 176 days to 264 days to 352 days to 441 days and 

compare the performance of the models given by the MAP parameter estimates. With just 

20% of the data, we clearly see that we are underestimating the true production. As more 

data becomes available, the fidelity of the MAP estimates improves. 
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Figure 3.13 Calculated cumulative production and the actual production generated 

using various training intervals for Well 1 using Arps model. 
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3.4 Field-wide results 

268 wells from Meramec field in STACK are analyzed using the MCMC-based  parameter 

estimation with the PyMC3 (2016) package. The models considered in this work are Arps 

(1945), power law exponential (Daal et al. 2019) and Duong (2014) decline curve models. 

For each well, the posterior distributions and the MAP estimates are calculated. MAP 

estimates are generated for various training intervals, posterior distributions are 

generated by using 50% of the initial production data for training. 

I do not apply any smoothing  to the production data neither are wells with a 

significant amount of downtime excluded from the dataset. However, if there is 

significant downtime for a well due to events like offset activities, that well will be 

considered a candidate for multi-segment forecasting. For multi-segment forecasting, I fit 

a decline curve prior to the shutdown and successive, separate decline curves for each 

period of long downtime periods to account for changing completions, artificial lift 

method or nearby well activity. 

3.4.1 Metrics 

Four metrics are captured for simulated production data from the set of parameter 

estimates. They are R-Squared, Root mean square error (RMSE), Mean absolute error 

(MAE) and the percentage difference between the true data and the model-predicted 

production. 

The coefficient of determination or R-squared is a measure that determines the 

proportion of variance and therefore is a goodness of fit indicator showing how well the 

model fits the data. It is quantified as the regression sum-of-squares divided by the total 

sum-of-squares or one minus the mean square error between the actual and predicted 

values divided by the variance in the dependent variables. 

RMSE represents difference between the predicted and the observed values. 

MAE measures the average magnitude of the errors in a set of predictions, without 

considering their direction. It is the average of the absolute difference between the 

predicted values and observed value. All individual differences are weighted equally in 

the average. 
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RMSE gives a relatively larger weight to big errors since the errors are squared 

before they are averaged. RMSE is a better indicator when large errors are undesirable. 

But given the volatile nature of the transient period and the large errors that occur during 

that period, MAE is captured in addition to RMSE for a better understanding of the quality 

of the models. The last metric, difference percentage is a percentage of the difference 

between calculated and actual cumulative production divided by the actual cumulative 

production. 

3.4.2 Oil well production matching using the Arps decline curve 

Using the MCMC approach for parameter estimation, I show the results of the match to 

daily rate and cumulative production in Figure 3.14 for a single oil well. Analysis on how 

the actual cumulative production matches with the MAP, P10 and P90 estimates for all 

the wells is shown after the single well analysis. 

50% of the production data (582 days) is used for training the model. From the 

posterior parameter distribution, 401 distinct parameter estimates are generated. For 

the production calculated using these 401 estimates, R-squared, RMSE and MAE are 

captured. Table 3.1 shows the average values for the 401 estimates for Well2. 

Avg. R2 Avg. RMSE Avg. MAE 
0.91 39.53 18.44 

Table 3.1 Metrics summary for Well 2 posterior analysis. 

Table 3.2 shows the summary of the 401 production estimates captured. All values 

shown are shown in MMBLS (millions of barrels). 

Max. 
Cumulative 

Min. 
Cumulative 

P90 P50 P10 Actual 

211.09 185.35 193.21 196.08 201.26 201.12 

Table 3.2 Production estimates summary in MMBLS for Well 2 posterior analysis. 

Table 3.3 shows the data associated with the MAP estimate for Well 3. MAP 

estimate underestimates the cumulative oil production by 2.49%. Figure 3.15 shows the 

actual daily and cumulative production in comparison to the calculated daily and 

cumulative production based on the MAP estimate. 
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qi Di b Estimate R2 RMSE MAE 
Cumulative 

(MMBLS) 
Difference 

% 

737.29 3.87 1.14 
MAP (582 

days) 
0.91 39.41 18.25 196.1 2.49 

Table 3.3 MAP estimate summary for Well 2. 

 
Figure 3.14 Estimates for forecasted daily production date and cumulative oil 

production for Well 2 using the Arps model, with the parameter estimate samples from 
their posterior distributions. 
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Figure 3.15 Estimates for forecasted daily production date and cumulative oil 

production for Well 2 using the Arps model, with the MAP estimate. 
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I will now present how the MCMC approach for parameter estimation was able to 

generate the MAP estimates for 265 oil wells. Figure 3.16 shows the correlation between 

the cumulative actual production and the cumulative production generated using MAP 

estimates.  The linear regression line shows a strong relationship with an R-squared value 

of 0.979 which indicates good validity of the MAP estimates. 

 
Figure 3.16 Regression line between the cumulative actual production and the 

cumulative production generated using MAP estimates for oil wells using Arps model. 

Figure 3.17 shows the frequency plot of wells based on the condition if the 

cumulative actual production lies in the range of  [P90 – P10] values of the posterior 

distribution. The x-axis has labels with intervals of 12 months starting Oct 2014. Figure 

3.18 shows a similar frequency plot based on whether the actual cumulative production 

falls within [-10%, 10%] range of the MAP estimate. The percentage of wells failing 

outside the range of [P10-P90] and the MAP +/- 10% estimates increases as amount of 

production data available for training the model decreases. 
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Figure 3.17 Histogram plot showing the distribution of oil wells falling within and 

outside the range of [P90-P10] estimates, while using Arps model. 

  
Figure 3.18 Histogram plot showing the distribution of oil wells falling within and 

outside the range of [-10%, 10%] of the MAP estimate, while using Arps model. 

3.4.3 Gas well production matching using the Arps decline curve 

Using the MCMC approach for parameter estimation, I show the results of the match to 

daily rate and cumulative production in Figure 3.19 for a single gas well. Analysis on how 

the actual cumulative production matches with the MAP, P10 and P90 estimates for all 

the wells is shown after the single well analysis. 

50% of the production data (207 days) is used for training the model. From the 

posterior parameter distribution, 281 distinct parameter estimates are generated. For 

the production calculated using these 281 estimates, R-squared, RMSE and MAE are 

captured. Table 3.4 shows the average values for these metrics. 

Avg. R2 Avg. RMSE Avg. MAE 
0.86 184.23 104.6 

Table 3.4 Metrics summary for Well 3 posterior analysis. 
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Table 3.5 shows the summary of the 281 production estimates captured. All values 

shown are shown in MMCF (Million cubic feet). 

Max. 
Cumulative 

Min. 
Cumulative 

P90 P50 P10 Actual 

512.15 452.66 472.66 478.15 487.02 475.84 

Table 3.5 Production estimates summary in MMCF for Well 3 posterior analysis. 

Table 3.6 shows the data associated with the MAP estimate for Well 3. MAP 

estimate overestimates the cumulative oil production by 0.57%. Figure 3.20 shows the 

actual daily and cumulative production in comparison to the calculated daily and 

cumulative production based on the MAP estimate. 

qi Di b Estimate R2 RMSE MAE 
Cumulative 

(MMCF) 
Difference 

% 

2864.6 5.73 1.82 
MAP (207 

days) 
0.87 183.3 102.5 478.57 -0.57 

Table 3.6 MAP estimate summary for Well 3. 
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Figure 3.19 Estimates for forecasted daily production date and cumulative gas 

production for Well 3 using the Arps model, with the parameter estimate samples from 
their posterior distributions. 
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Figure 3.20 Estimates for forecasted daily production date and cumulative gas 

production for Well 3 using the Arps model, with the MAP estimate. 
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I will now present how the MCMC approach for parameter estimation was able to 

generate the MAP estimates for 247 gas wells. Figure 3.21 shows the correlation between 

the cumulative actual production and the cumulative production generated using MAP 

estimates.  The linear regression line shows a strong relationship with an R-squared value 

of 0.967 which indicates good validity of the MAP estimates. 

 
Figure 3.21 Regression line between the cumulative actual production and the 

cumulative production generated using MAP estimates for gas wells using Arps model. 

Figure 3.22 shows the frequency plot of wells based on the condition if the 

cumulative actual production lies in the range of  [P90 – P10] values of the posterior 

distribution. The x-axis has labels with intervals of 12 months starting Oct 2014. Figure 

3.23 shows a similar frequency plot based on whether the actual cumulative production 

falls within [-10%, 10%] range of the MAP estimate. The frequency plot in Figure 3.22 

does not show a similar pattern as seen with the oil wells using Arps for the [P10-P90] 

estimates. The frequency plot in Figure 3.23 indicates a similar trend as seen with MAP 

estimates for oil wells using Arps. 
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Figure 3.22 Histogram plot showing the distribution of gas wells falling within and 

outside the range of [P90-P10] estimates, while using Arps model. 

 
Figure 3.23 Histogram plot showing the distribution of gas wells falling within and 

outside the range of [-10%, 10%] of the MAP estimate, while using Arps model. 

3.4.4. Oil well production matching using the power law exponential 

decline curve 

Using the MCMC approach for parameter estimation, I show the results of the match to 

daily rate and cumulative production in Figure 3.24 for a single oil well using the power 

law exponential decline curve. Analysis on how the actual cumulative production 

matches with the MAP, P10 and P90 estimates for all the wells is shown after the single 

well analysis. 

50% of the production data (441 days) is used for training the model. From the 

posterior parameter distribution, 2000 distinct parameter estimates are generated. For 

the production calculated using these 2000 estimates, R-squared, RMSE and MAE are 

captured. Table 3.7 shows the average values for these metrics captured for Well 4. 
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Avg. R2 Avg. RMSE Avg. MAE 
0.85 34.44 17.56 

Table 3.7 Metrics summary for Well 4 posterior analysis. 

Table 3.8 shows the summary of the 2000 production estimates captured. All 

values shown are shown in MMBLS (millions of barrels). 

Max. 
Cumulative 

Min. 
Cumulative 

P90 P50 P10 Actual 

42.73 28.65 35.18 35.77 36.29 40.53 

Table 3.8 Production estimates summary in MMBLS for Well 4 posterior analysis. 

Table 3.9 shows the data associated with the MAP estimate for Well 4. MAP 

estimate underestimates the cumulative oil production by 11.75%. Figure 3.25 shows the 

actual daily and cumulative production in comparison to the calculated daily and 

cumulative production based on the MAP estimate.  

qi α β Estimate R2 RMSE MAE 
Cumulative 

(MMBLS) 
Difference 

% 

683.81 0.07 0.37 
MAP (441 

days) 
0.85 34.39 17.55 35.76 11.75 

Table 3.9 MAP estimate summary for Well 4. 
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Figure 3.24 Estimates for forecasted daily production date and cumulative oil 

production for Well 4 using the power law exponential model, with the parameter 
estimate samples from their posterior distributions. 
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Figure 3.25 Estimates for forecasted daily production date and cumulative oil 

production for Well 4 using the power law exponential model, with the MAP estimate. 
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The underestimation of production during BDF has resulted in the significant drop 

of cumulative production from around day 250 as shown in Figure 3.25. 

I will now present how the MCMC approach for parameter estimation was able to 

generate the MAP estimates for 181 oil wells using the power law exponential model. 

Figure 3.26 shows the correlation between the cumulative actual production and the 

cumulative production generated using MAP estimates.  The linear regression line shows 

a strong relationship with an R-squared value of 0.972 which indicates good validity of 

the MAP estimates. 

 
Figure 3.26 Regression line between the cumulative actual production and the 

cumulative production generated using MAP estimates for oil wells using power law 
exponential model. 

Figure 3.27 shows the frequency plot of wells based on the condition if the 

cumulative actual production lies in the range of  [P90 – P10] values of the posterior 

distribution. The x-axis has labels with intervals of 12 months starting Oct 2014. Figure 

3.28 shows a similar frequency plot based on whether the actual cumulative production 

falls within [-10%, 10%] range of the MAP estimate. The percentage of wells failing 

outside the range of [P10-P90] and the MAP +/- 10% estimates increases as amount of 

production data available for training the model decreases. 
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Figure 3.27 Histogram plot showing the distribution of oil wells falling within and 

outside the range of [P90-P10] estimates, while using power law exponential model. 

 
Figure 3.28 Histogram plot showing the distribution of oil wells falling within and 

outside the range of [-10%, 10%] of the MAP estimate, while using power law 
exponential model. 

3.4.5. Gas well production matching using the power law exponential 

decline curve 

Using the MCMC approach for parameter estimation, I show the results of the match to 

daily rate and cumulative production in Figure 3.29 for a single gas well using the power 

law exponential decline curve. Analysis on how the actual cumulative production 

matches with the MAP, P10 and P90 estimates for all the wells is shown after the single 

well analysis. 

50% of the production data (819 days) is used for training the model. From the 

posterior parameter distribution, 2000 distinct parameter estimates are generated. For 

the production calculated using these 2000 estimates, R-squared, RMSE and MAE are 

captured. Table 3.10 shows the average values for these metrics captured for Well 4. 
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Avg. R2 Avg. RMSE Avg. MAE 
0.79 458.3 313.6 

Table 3.10 Metrics summary for Well 5 posterior analysis. 

Table 3.11 shows the summary of the 2000 production estimates captured. All 

values shown are shown in MMCF (million cubic feet). 

Max. 
Cumulative 

Min. 
Cumulative 

P90 P50 P10 Actual 

4171.4 2020.41 2731.12 3100.89 3528.54 3307.17 

Table 3.11 Production estimates summary in MMCF for Well 5 posterior analysis. 

Table 3.12 shows the MAP estimate details for Well 5. MAP estimate 

underestimates the cumulative gas production by 6.37%.  

qi α β Estimate R2 RMSE MAE 
Cumulative 

(MMCF) 
Difference 

% 

4689.2 0.003 0.13 
MAP 
(819 
days) 

0.83 422.01 268.83 3096.6 6.37 

Table 3.12 MAP estimate summary for Well 5. 
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Figure 3.29 Estimates for forecasted daily production date and cumulative gas 

production for Well 5 using the power law exponential model, with the parameter 
estimate samples from their posterior distributions. 
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Figure 3.30 Estimates for forecasted daily production date and cumulative gas 

production for Well 5 using the power law exponential model, with the MAP estimate. 
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Figure 3.30 shows the actual daily and cumulative production in comparison to 

the calculated daily and cumulative production based on the MAP estimate. 

I will now present how the MCMC approach for parameter estimation was able to 

generate the MAP estimates for 113 gas wells using the power law exponential model. 

Figure 3.31 shows the correlation between the cumulative actual production and the 

cumulative production generated using MAP estimates.  The linear regression line shows 

a strong relationship with an R-squared value of 0.958 which indicates good validity of 

the MAP estimates. 

 
Figure 3.31 Regression line between the cumulative actual production and the 

cumulative production generated using MAP estimates for gas wells using power law 
exponential model. 

Figure 3.32 shows the frequency plot of wells based on the condition if the 

cumulative actual production lies in the range of  [P90 – P10] values of the posterior 

distribution. The x-axis has labels with intervals of 12 months starting Oct 2014. Figure 

3.33 shows a similar frequency plot based on whether the actual cumulative production 

falls within [-10%, 10%] range of the MAP estimate. For all durations, we see higher 

number of wells failing with in the [P10-P90] range as opposed to the trends seen so far.  
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Figure 3.32 Histogram plot showing the distribution of gas wells falling within and 

outside the range of [P90-P10] estimates, while using power law exponential model. 

 
Figure 3.33 Histogram plot showing the distribution of gas wells falling within and 

outside the range of [-10%, 10%] of the MAP estimate, while using power law 
exponential model. 

3.4.6 Oil well production matching using the Duong decline curve 

Using the MCMC approach for parameter estimation, I show the results of the match to 

daily rate and cumulative production in Figure 3.34 for a single oil well using the Duong 

decline curve. Analysis on how the actual cumulative production matches with the MAP, 

P10 and P90 estimates for all the wells is shown after the single well analysis. 

50% of the production data (429 days) is used for training the model. From the 

posterior parameter distribution, 1190 distinct parameter estimates are generated. For 

the production calculated using these 1190 estimates, R-squared, RMSE and MAE are 

captured. Table 3.13 shows the average values for these metrics captured for Well 4. 

Avg. R2 Avg. RMSE Avg. MAE 
0.8 76.44 40.29 

Table 3.13 Metrics summary for Well 6 posterior analysis. 
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Table 3.14 shows the summary of the 1190 production estimates captured. All 

values shown are shown in MMBLS (millions of barrels). 

Max. 
Cumulative 

Min. 
Cumulative 

P90 P50 P10 Actual 

104.6 76.5 82.9 89.8 96.6 83.9 

Table 3.14 Production estimates summary in MMBLS for Well 6 posterior analysis. 

Table 3.15 shows the data associated with the MAP estimate for Well 6. MAP 

estimate overestimates the cumulative oil production by 7.19%. Figure 3.35 shows the 

actual daily and cumulative production in comparison to the calculated daily and 

cumulative production based on the MAP estimate.  

Qi m a Estimate R2 RMSE MAE 
Cumulative 

(MMBLS) 
Difference 

% 

149.64 1.42 3.43 
MAP (429 

days) 
0.8 75.87 39.87 89.93 -7.19 

Table 3.15 MAP estimate summary for Well 6. 
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Figure 3.34 Estimates for forecasted daily production date and cumulative oil 

production for Well 6 using the Duong model, with the parameter estimate samples 
from their posterior distributions. 
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Figure 3.35 Estimates for forecasted daily production date and cumulative oil 

production for Well 6 using the Duong model, with the MAP estimate. 
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I will now present how the MCMC approach for parameter estimation was able to 

generate the MAP estimates for 169 oil wells using the Duong model. Figure 3.36 shows 

the correlation between the cumulative actual production and the cumulative production 

generated using MAP estimates.  The linear regression line shows a strong relationship 

with an R-squared value of 0.954 which indicates good validity of the MAP estimates. 

 
Figure 3.36 Regression line between the cumulative actual production and the 

cumulative production generated using MAP estimates for oil wells using Duong model. 

Figure 3.37 shows the frequency plot of wells based on the condition if the 

cumulative actual production lies in the range of  [P90 – P10] values of the posterior 

distribution. The x-axis has labels with intervals of 12 months starting Oct 2014. Figure 

3.38 shows a similar frequency plot based on whether the actual cumulative production 

falls within [-10%, 10%] range of the MAP estimate. The percentage of wells failing 

outside the range of [P10-P90] and the MAP +/- 10% estimates increases as amount of 

production data available for training the model decreases. 
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Figure 3.37 Histogram plot showing the distribution of oil wells falling within and 

outside the range of [P90-P10] estimates, while using Duong model. 

 
Figure 3.38 Histogram plot showing the distribution of oil wells falling within and 
outside the range of [-10%, 10%] of the MAP estimate, while using Duong model. 

3.4.7 Gas well production matching using the Duong decline curve 

Using the MCMC approach for parameter estimation, I show the results of the match to 

daily rate and cumulative production in Figure 3.39 for a single gas well using the Duong 

decline curve. Analysis on how the actual cumulative production matches with the MAP, 

P10 and P90 estimates for all the wells is shown after the single well analysis. 

50% of the production data (210 days) is used for training the model. From the 

posterior parameter distribution, 450 distinct parameter estimates are generated. For 

the production calculated using these 450 estimates, R-squared, RMSE and MAE are 

captured. Table 3.16 shows the average values for these metrics captured for Well 7. 

Avg. R2 Avg. RMSE Avg. MAE 
0.33 264.48 190.19 

Table 3.16 Metrics summary for Well 7 posterior analysis. 
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Table 3.17 shows the summary of the 450 production estimates captured. All 

values shown are shown in MMCF (million cubic feet). 

Max. 
Cumulative 

Min. 
Cumulative 

P90 P50 P10 Actual 

635.57 453.97 495.35 568.19 618.22 554.8 

Table 3.17 Production estimates summary in MMCF for Well 7 posterior analysis. 

Qi m a Estimate R2 RMSE MAE 
Cumulative 

(MMCF) 
Difference 

% 

823.36 1.13 1.68 
MAP 
(210 
days) 

0.64 194.07 134.83 569.63 -2.67 

Table 3.18 MAP estimate summary for Well 7. 

Table 3.18 shows the data associated with the MAP estimate for Well 7. MAP 

estimate overestimates the cumulative gas production by 2.67%. Figure 3.40 shows the 

actual daily and cumulative production in comparison to the calculated daily and 

cumulative production based on the MAP estimate.  
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Figure 3.39 Estimates for forecasted daily production date and cumulative gas 

production for Well 7 using the Duong model, with the parameter estimate samples 
from their posterior distributions. 
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Figure 3.40 Estimates for forecasted daily production date and cumulative gas 

production for Well 7 using the Duong model, with the MAP estimate. 
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This well has a little over one year of production data with most of the duration 

being in the transient flow period. Duong model closely matches the production using 

MAP estimate indicating the effectiveness of this model for wells with prolonged with 

transient flow periods. 

I will now present how the MCMC approach for parameter estimation was able to 

generate the MAP estimates for 101 oil wells using the Duong model. Figure 3.41 shows 

the correlation between the cumulative actual production and the cumulative production 

generated using MAP estimates.  The linear regression line shows a strong relationship 

with an R-squared value of 0.947 which indicates good validity of the MAP estimates. 

 
Figure 3.41 Regression line between the cumulative actual production and the 

cumulative production generated using MAP estimates for gas wells using Duong model. 
 

Figure 3.42 shows the frequency plot of wells based on the condition if the 

cumulative actual production lies in the range of  [P90 – P10] values of the posterior 

distribution. The x-axis has labels with intervals of 12 months starting Oct 2014. Figure 

3.43 shows a similar frequency plot based on whether the actual cumulative production 

falls within [-10%, 10%] range of the MAP estimate. As seen earlier, gas wells do not 

follow the same trends as the oil wells for ranges. Duong model for gas wells shows the 
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highest percentage of wells to have the actual cumulative production in the [P10-P90] 

range. 

 
Figure 3.42 Histogram plot showing the distribution of gas wells falling within and 

outside the range of [P90-P10] estimates, while using Duong model. 

  
Figure 3.43 Histogram plot showing the distribution of gas wells falling within 

and outside the range of [-10%, 10%] of the MAP estimate, while using Duong model. 

3.4.8 Multi-segment forecast for an oil well using the Arps decline curve 

model 

Segment being a general word, the reference made here indicates a production interval 

that does not include any events with a downtime to the well which has a potential to 

alter the production post the downtime. Those events include offset well drilling or any 

other completions activity. The need for multi-segment forecast arises with the fact that 

the production rates need not necessarily produce at the earlier predicted rates. This 

implies that the for a well with a single downtime event, two segments of production exist 

which are before and after the downtime. For Well 8 as shown in Figure 3.44, this occurs 

at Day 570. The graph shows that the MAP estimate is underpredicting the production 

post Day 880. 
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Figure 3.44 shows the same well with a single MAP estimate from the model 

trained using 50% of the production data over both the segments. Two segments are 

trained using Arps as likelihood as if they are both different wells each starting on Day 1 

and then merged back to show the results for Well 8. For the duration of the second 

segment, there is better matching when compared with the single forecast in Figure 3.45. 

 
Figure 3.44 Estimates for forecasted daily production rate for Well 8 using the Arps 

model, with different MAP estimates for two segments. 
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Figure 3.45 Estimates for forecasted daily production rate and cumulative oil 

production for Well 8 using the Arps model, with the MAP estimate. 
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3.4.9 MCMC summary 

Figure 3.46 shows the number of wells for which I was able to generate the decline curve 

parameters using the three models – Arps, Duong, and power law exponential. 

 

Figure 3.46 Classification of the total number of wells based on the product and decline 
curve model for which I was able to estimate the decline curve parameters. 

The reason for the number of gas wells being less than the oil wells is because of 

the higher volatility associated with the gas rates when compared with the oil rates. When 

multiple patterns of production occur due to high volatility, models will converge to bad 

estimates. Arps generated the estimates for the highest number of wells. Duong models 

show best matching when the ratio of daily rate and cumulative production plotted vs 

time follows a straight line on a log-log plot. Power law exponential model shows best 

matching when the loss ratio exhibits the power law behavior. 121 of the total 268 

available wells had significant downtime during their lifetime which could have impacted 

the single segment forecast for those wells by not producing a posterior estimate that 

generates plausible production estimates. The R-squared values for the linear regression 

plots between the cumulative actual production and cumulative predicted production 

calculated using MAP estimates for the three models are listed below: 

 Arps Power law exponential Duong 
Oil 0.979 0.972 0.954 
Gas 0.967 0.958 0.947 

Table 3.19 R-squared values for linear regression plots. 
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3.5 Well analyses for the Meramec play 

In this section, I present, how over years, changing completion design has impacted the 

normalized initial rates. I also present how infill development has impacted the parent 

well production. 

3.5.1 Infill versus non-infill wells performance 

Completion design is defined by a set of attributes: amount of proppant used, lateral 

length of the completion, number of stimulation or hydraulic fracturing stages. 

Normalized initial rate is the actual initial rate divided by the amount of proppant used 

per feet of lateral length. Eq. 26 shows the definition for the normalized initial rate: 

 𝑄𝑖_𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑄𝑖

𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
 ……………………(26) 

Figure 3.47 shows an increasing trend of Qi_Normalized until Oct 2017 – Oct 2018 

and then following a declining trend. Infill development has started in the second quarter 

of 2018 and there has been no new non-infill development in the Meramec play since the 

first quarter of 2019. 

 
Figure 3.47 Average of normalized initial rates (qi) for infill and non-infill wells. 
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Figure 3.48 and Figure 3.50 show a clear increasing trend of the lateral length and 

the amount of proppant used for completing the wells. Figure 3.49 shows the changing 

pattern for the number of stimulation stages between infill and non-infill wells with no 

clear trend. 

 
Figure 3.48 Average of lateral length over years for infill and non-infill wells. 

 
Figure 3.49 Average number of stimulation stages over years for infill and non-infill 

wells. 
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Figure 3.50 Average amount of proppant used over years for infill and non-infill wells. 

3.5.2 Parent and child well analysis 

For this analysis, I have picked five wells within a radius of 2000 feet, three of which came 

online in the second quarter of 2018 and the two that came online in the second quarter 

of 2020, I compare the values of the MAP estimates Qi_Normalized, Di and b. All three 

values are significantly less for the newer wells even with higher lateral length, proppant 

and the number of stimulation stages used. Figures 3.51, 3.52 and 3.53 show these values 

and their declining trend for the newer wells. The three non-infill wells have come online 

in the second quarter of 2018 and the two infill wells have come online in the second 

quarter of 2020. Figures 3.54, 3.55 and 3.56 show an increasing trend for the number of 

stages, lateral length and proppant used for completing the well. The five wells have a 

true vertical depth in range of [9300 ft – 9650 ft]. Figure 3.56 shows that the newer infill 

wells are in an exponential decline state given the Arps decline exponent ‘b’ is close to the 

value zero. 
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Figure 3.51 Arps normalized initial rate (qi) for the Kingfisher county oil wells. 

 
Figure 3.52 Arps rate of decline (Di) for the five Kingfisher county oil wells. 
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Figure 3.53 Arps decline exponent (b) for the five Kingfisher county oil wells. 

 
Figure 3.54 Number of stimulation stages for the five Kingfisher county oil wells. 
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Figure 3.55 Lateral length (ft.) for the five Kingfisher county oil wells. 

 
Figure 3.55 Amount of proppant used (lbs.) for the five Kingfisher county oil wells. 
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Chapter 4 

Conclusions and Future Work 

This chapter is divided into two sections. The first section presents conclusions based on 

the analysis conducted for this research. The second section presents the 

recommendations of this thesis. 

4.1 Conclusions 

In this study, I implemented a MCMC-based approach for decline curve parameter 

estimation and uncertainty estimation in production forecasting. I also compare the 

parameter values for infill and non-infill wells to provide insights into parent versus child 

well performance. The following conclusions can be drawn from this work: 

1. MCMC using the Metropolis algorithm is a promising approach for uncertainty 

quantification in production forecasting. 

2. The uncertainty in the production forecasts is seen to decrease with an increase 

in the availability of more production data. 

3. Multi-segment forecasting is essential if offset activities and changing completion 

strategies impact the well production significantly. To avoid compromising 

production forecasts, it is always necessary to forecast ahead beginning with the 

termination of  a significant disruptive event.  

4. A comparison of infill (child) and non-infill (parent) well performance shows that 

child wells show reduced productivity despite being completed with longer 

laterals, and larger completion designs. This indicates that pressure depletion has 

already occurred in the region of the study. 

4.2 Recommendations for future work 

Given the potential of MCMC-based production forecasting and uncertainty estimation, it 

would be appropriate to extend this study to a larger set of wells and many other plays. 

This would allow for a more detailed description of infill versus non-infill well 

performance, identify sweet spots, diagnose anomalous declines, and make 

recommendations for completion practices.   
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