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Chapter 1

Introduction

1.1 Understanding the open world classification

problem

In traditional supervised learning for classification, models are trained based on

data sets that contain examples of all classes to be identified. That is, in so

called closed world problems, all classes are known in advance. Once the model

is trained, it can used to predict or otherwise discriminate between these same

classes in new data. However, there are problems where this condition does not

hold. That is, in open world problems, the training data is incomplete and the

new data for which the model has been developed may contain classes which the

model was not trained on. This problem has its origins in the field of computer

vision for recognition in which a target image class or set of classes should be

recognized among known and unknown image classes. Indeed, much of the re-

search on open world problems is concentrated within the domain of computer

vision and referred to as open set recognition (OSR) or open world recognition
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(OWR). In [1], one of the earliest works in OSR, the authors formally defined

terms such as open space and openness that correspond to the problem of open

set recognition, and also show how this problem setting is different from general

data modeling task. In [2], the authors extend the concept of OSR to OWR and

identify the necessary tasks for an effective system, i.e., the system should be able

to detect unknown classes, label unknown points, and update the model. The

open world supervised learning scenario is not limited to computer vision, but

applies to numerous domains associated with traditional classification problems,

i.e., open world classification is applicable to any classification problem without

a guarantee on the exhaustiveness of the training classes. Indeed, it is plausible

that one not know a priori if a multi-class problem is open or closed. Given

this broad spectrum for application, the open world condition applies to prob-

lems with vastly different data types, sources, and characteristics which includes

image, text, sensor data, or more traditional structured data types.

The present work addresses this with a general framework that tackles this

broad perspective. For open world classification (OWC), ideally a model is

trained on a finite set of known classes and when applied to new data, it is

able to accurately address four tasks: (i) label all known classes, (ii) identify

the instances associated with the new, unknown classes, (iii) create new, distinct

classes for these instances, and (iv) update itself without losing predictive per-

formance power on the known classes and be able to consistently classify the

unknown classes in new data. These tasks are similar to those from [2], however,

unlike their work, here we are only interested in an approach which accomplishes

these goals automatically and without human intervention. Furthermore, OWC

should not be limited to only specific machine learning (ML) techniques, since

depending on the domain and data type, modelers often use different type of clas-
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sifiers for the problem at hand. The present study addresses these goals with a

framework that applies irrespective of the type of data or nature of the classifier.

1.2 Contributions of this work

The present work develops a general framework that tackles the problem of open

world classification (OWC), by addressing the following four tasks: (i) label

all known classes, (ii) identify the instances associated with the new, unknown

classes, (iii) create new, distinct classes for these instances, and (iv) update itself

without losing predictive performance power on the known classes and be able to

consistently classify the unknown classes in new data. However, the first task is

not the focus of this paper and the remaining three tasks can be broadly classi-

fied into two categories namely, identification and categorization. While the task

of identification involves identifying data instances associated with the new or

unknown classes, categorization deals with the discovery of the unknown classes

and also categorizing the identified instances into their respective classes, without

human intervention. The contributions of this paper can be attributed to these

two tasks and are as follows:

Identification of unknown data Most of the works in the literature address

the open world problem in the domain of computer vision. Furthermore, the

solutions proposed to this problem are very algorithmic specific and are tied to a

specific machine learning algorithm, which restricts other researchers from using

classifiers of their interest. To address this issue, we approach this problem with a

two stage process by separating the training phase from the identification phase.

In Chapter 3, we developed an algorithm that identifies the data instances from

3



open world data that belong to unknown classes. This algorithm can be used in

conjunction with any classifier and also the type of the data.

Categorization of unknown data Most of the works in the literature, pro-

pose solutions to the identification task as a complete solution to the open world

problem. One the other hand, identifying the data belonging to unknown classes

as the only solution, it is important to discover the number of new classes and also

to categorize the instances accordingly. Furthermore, the tasks of class discovery

and categorization should not include any human intervention. In Chapter 4, we

developed an algorithm that discovers the unknown classes and also categorize

the instances into their respective classes, without any human intervention.
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Chapter 2

Literature review

2.1 Introduction

In the previous chapter, four tasks corresponding to OWC have been stated, of

which the first task is not the focus of this paper, assuming a high quality classifier

already exists. However, the remaining three tasks can be broadly classified into

two categories namely, identification and categorization. While identification

deals with identifying instances associated with the new or unknown classes,

categorization involves categorizing these instances into new, distinct classes.

Furthermore, the task of updating the model with an additional capability of

classifying the new classes, is also considered a part of the categorization phase.

The works available in the literature are grouped into these two categories and

presented in this section.
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2.2 Identification of unknown classes

As specified in the previous section, OSR based works, constitute major portion

of literature related to this task and we make an effort to present some of the

noticeable works in this section.

Open set recognition as defined in [1] provides a mathematical foundation

and basic definitions for open world problems. Furthermore, in the same work,

the authors modify a support vector machine to design a 1-vs-set machine to

address OSR. [3] extended this to deal with multiple target classes and formulated

a Weibull-Calibrated SVM in conjunction with a technique based on compact

abating probability to identify the data instances belonging to unknown classes.

Similarly, [4, 5] have modified a traditional SVM classifier to adapt to the open

world setting. Alternatively, there are works [2,6,7] in the literature based on the

Nearest Class Mean (NCM) classifier to solve the problem of open set recognition.

Similarly, [8] developed an open set classifier that is an extension to the nearest

neighbor classifier for OSR. [9]

Apart from considering the traditional ML models for OSR, there are works

that address this problem from a deep learning perspective. One of the early

works corresponding to this progression is done by [10], where the authors re-

placed the SoftMax layer of a neural network with an OpenMax layer to adapt

to the problem of open set recognition. Similarly, [11, 12] developed methods to

handle OSR by making algorithmic modifications to the output layer of a deep

neural network. On the other hand, [13] tried to solve the problem of open set

recognition by developing a neural network based representation of the data sam-

ples. [14] introduced a modified version of an autoencoder to solve for OSR. In

their next work, Multi task learning based CNN for OSR was developed by [15].
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Applications of OSR in various fields such as malware detection, face recognition,

text classification etc., were done by [11,16–20]. While most of the deep learning

based works discussed so far are discriminative approaches, there are works in

the literature that address this problem in a generative perspective as well. Sim-

ilar to the OpenMax classifier discussed previously, [21] developed a generative

openmax classifier to identify data points from unknown classes. Conversely, [22]

proposed a new data augmentation technique called counterfactual image gen-

eration (OSRCI) in conjunction with generated adversarial network (GAN) to

address the problem of OSR. Other works in the field of OSR include [23–30]. A

more detailed survey about the various works in this field is provided by [31].

2.3 Categorization of unknown classes

All the works in the domain of open set recognition that have been discussed so

far mainly focuses on just the identification of the data instances coming from

unknown classes; they do not provide any solutions as to how the identified data

can be organized into their respective classes. However, we have identified few

works that try to solve this problem. In [2], the authors tried to categorize the

data instances by human intervention, where the identified data instances were

manually labelled and used to further update the model. In [32], the authors

developed a neural network based model called Pairwise Classification Network

(PCN) to identify if two images belong to the same class or a different class, along

with another deep learning model called Open Classification Network (OCN) for

open image classification. The predictions made by PCN are used as a distance

function for hierarchical clustering to cluster the data points. In [33], on the other

hand, tried to solve this problem from a generative modeling perspective where

7



they implement modified Hierarchical Dirichlet Process (HDP) to model both the

training and test data, and also to come up with an estimate as to how many

clusters are possibly present in the test data. They claim that this estimate can be

further used as a prior to clustering algorithms such as K-means, etc. Considering

these works, the solution provided by [2] does not satisfy our need completely, as

we would want a technique that automatically identifies the clusters in the data

without any human intervention. On the other hand, [32] and [33] also provide

an estimation as opposed to accurate value about the possible number of clusters

in the data. On the whole, we can understand that the categorization of the

identified data instances is still an unsolved problem, and there is a need for a

solution that can automatically and accurately organize the identified instances.

2.4 Other related work

We briefly mention areas within supervised learning that have some conceptual

similarities to open world classification, yet are distinct from and pose entirely

different challenges than open world problems. Semi-supervised learning train

models on relatively small subsets of labeled data and a large set of unlabeled

data [34]. Few shots learning [35–40], one shot learning [41, 42], and zero shot

learning [43–45] are extreme forms of semi-supervised learning. In the latter case,

while models are trained to make predictions on data that belong to classes not

seen during training, the algorithm is provided semantic or attribute information

regarding the unseen classes [31]. Domain adaption machine learning is designed

for scenarios in which the training data and the test data have different data

distributions [46–50]. In concept drift problems [51–53], the data distribution

changes dynamically over time and the ML model must update itself. However,

8



in all of these domains, all classes are known in advance of model training. This

includes the number of classes that may be encountered as well examples of all

classes and/or information about all classes. In the open world classification

problem we address, we assume no information about the quantity or quality of

any unknown classes in the test data.

2.5 Gaps and research objectives

While there are much fewer works that try to provide solution to the problem of

open world classification, there are certain drawbacks associated with them.

• Most of the works discussed above are applied especially to the domain of

computer vision.

• All the works make algorithmic changes to the existing machine learning

models to come with a classifier that can handle the open world problem.

• To the best of our knowledge, there are no signs of works that can be applied

to any given type of data.

• There are no techniques available in the literature that can accurately cat-

egorize the data instances into their categories.

Taking the above mentioned drawbacks into consideration, the following re-

search objectives have been formulated, and will be addressed in the present

work.

• Research objective 1: To develop a methodology that can handle the open

world problem for any type of data.
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• Research objective 2: To come up with a technique that can automatically

categorize the data instances from unknown classes without human inter-

vention

10



Chapter 3

Identification of data that belong

to unknown classes

3.1 Background and methodology

Let K denote the set of all known classes and U denote the set of unknown classes.

Let T denote the training data containing instances of k = |K| known classes and

O denote the open world test data which may contain up to k+ u classes, where

u = |U|. Let nT denote the number of observations in T and nO denote the

number of observations in O. For a given observation i, let ci ∈ K ∪ U denote

the true class. Both T and O have the same number of features, m. Let C be

any classifier, trained on T , which maps the m-dimensional training or test data

to k probability values, 0 ≤ pj ≤ 1 ∀j ∈ K. Additionally,
∑

j∈K pj = 1. If X

denotes the input data, then C : X → Rk, whereas the predicted class is given by

ĉ = arg maxj∈K pj.

There are basically two key issues to be addressed in the context of open world

problem, of which the first motive is to identify the data instances belonging to

11



the unknown classes (identification) and the second motive is to categorize these

identified data points into their respective categories (categorization).

The task of identifying unknown classes is necessary when a trained classifier

is applied to the open world test data. Hence, it sufficient to have an identifi-

cation method that occurs during the application phase. As mentioned in the

previous section, a lot of works in the field of open world problem have been

limited to computer vision and are mostly algorithmic modifications to existing

machine learning models. Furthermore, these works try to integrate the task of

identification with the actual model training, making it a single process.

However, to provide a general approach to identify instances in O associated

with classes in U , we separate model training or algorithm specifications from

the identification task. This is accomplished by performing anomaly detection

on the k-dimensional probability space generated by C(T ) and C(O). The identi-

fication task is now independent of the type of probabilistic classifier and makes

no assumptions on the original input data.

The probability distribution generated by C(T ) is a function of the quality of

the classifier and the separability of the classes in the training data. However,

the k-dimensional probability space is independent of the type of data associated

with any problem domain. For perfect probabilistic classifiers, not only is the

predicted class correct for any observation i, i.e., ĉi = ci, but also each pj is a

k-dimensional binary vector. If such a classifier were applied to an observation

associated with class j /∈ K, the k-dimensional space would be inadequate to

represent the entity. Nonetheless, the observation would be mapped as to the

space. The projection of such a point would likely be a non-binary vector of

probabilities. For less than perfect classifiers, we operate under the hypothesis

that the k-dimensional probability distribution for a known class is detectably

12



distinct from that of the distribution for an unknown class.

There are a variety of metrics to measure dissimiliarity between probabil-

ity distributions including Kullback–Leibler (KL) divergence [54] and Jensen-

Shannon distance (JSD) [55]. For two probability distributions P and Q on the

same probability space X, the KL divergence DKL is computed as

DKL (P‖Q) =
∑
x∈X

P (x) log
P (x)

Q(x)

The JSD is a symmetric dissimilarity measurement based on the asymmetric KL

divergence. The JSD between two probability distributions P and Q is

DJSD (P‖Q) =

√
1

2
DKL (P‖M) +

1

2
DKL (Q‖M)

where M = 1
2

(P +Q).

3.2 Algorithm for anomaly detection using Jensen-

Shannon distance

The algorithm for identification of unknown classes based on JSD follows. First,

the predicted probabilities from the trained classifier are determined. Specifically,

Ptrain is an n × k probability matrix generated from the application of C on T .

For each class j ∈ K, compute the centroid, c̃j, for the set of observations Cj =

{i ∈ Ptrain : ci = j} of the predicted probability distributions from Ptrain. Next,

compute the DJSD between every observation i ∈ Cj and each c̃j and determine

the corresponding mean, µj, and standard deviation, σj, of the dissimilarity values

between each point and each centroid.
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Generate the prediction probabilities for every data point in O using C and

store in Ptest. The JSD for every point i ∈ Ptest to the previously determined

centroids is computed, DJSD(i, c̃j) ∀j ∈ K. These values are then mean-centered

and scaled using µj and σj.

For each class j ∈ K, if the value of the test point i from c̃j is greater than

critical value (τ), the data point is identified as anomaly and is stored in F . The

value of τ is determined using Chebyshev’s inequality [56] based on a confidence

parameter (α). Since we are unaware of the underlying distribution from which

the distances are generated, using Chebyshev’s inequality will provide generaliza-

tion to the method as it can be used for any data set irrespective of its underlying

distribution.

Algorithm 1 Identify outsiders (Jensen-Shannon Distance)

Input:
training data T with n observations
open world data O
probabilistic classifier C
confidence parameter α

Output:
F : flagged data

1: Ptrain ← C (T )
2: Compute centroids c̃j ∀j ∈ K from Ptrain

3: Compute DJSD(i, c̃j) ∀i ∈ Ptrain and µj, σj ∀j ∈ K
4: Ptest ← C (O)
5: For each j ∈ K, compute DJSD(i, c̃j) ∀i ∈ Ptest and mean-center and scale

using µj and σj
6: Determine τ using Chebyshev’s inequality for a confidence parameter α
7: For each i ∈ Ptest, if the scaled value of DJSD(i, c̃j) ≥ τ, ∀j ∈ K, identify i

as an anomaly and store it in F .
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Chapter 4

Categorization of data that

belong to unknown classes

4.1 Background and methodology

Once data instances are identified as not belonging to the set of known classes,

the next step is to categorize the instances into new classes. This is the most

critical part of the analysis since incorrect categorization of instances can mislead

the model while making predictions.

The prediction probabilities associated with the data instances are the key

drivers for this analysis as they offer generalization to the methodology. When

classifier C is applied to observations belonging classes in U , the resulting k-

dimensional space is generally inadequate. The distribution of prediction prob-

abilities corresponding to observations that belong to class j ∈ K are ideally

skewed towards class j in such a way to as exceed some confidence threshold.

This is impossible for classes in U . The error distribution for an observation be-

longing to class i ∈ U may either be non-informative or contain inherent patterns
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since the open world classifier is incomplete with respect to classes in U . We hy-

pothesize that the error is informative and additionally there is a distinguishable

residual signature for different unknown classes.

4.2 Algorithm for detecting unknown classes us-

ing association rule mining (ARM)

ARM is a rule-based machine learning method to discover interesting relations

between variables in a large databases [9] and is considered great tool for decision

making in various fields such as, market basket analysis [57,58], medical diagnosis

[59, 60], Bioinformatics [61–63], Multimedia [64, 65], computer network security

[66,67], census data [68], remote sensing data [69,70].

The algorithm for categorization of identified data instances based on ARM

is provided in Algorithm 2. The required inputs for this algorithm include the

sets T , F , O, and the classifier C. Furthermore, ω, η, β, and γ are user-defined

parameters that are described below.

This is an iterative algorithm where the unknown classes are discovered based

on the residual signatures that exist within the flagged instances. Furthermore,

for every unknown class discovered, all the instances associated with that par-

ticular unknown class are identified and removed from the flagged set F . This

process is continued until the stopping criteria is satisfied. The stopping condi-

tion for this algorithm is when there are less than ω fraction of data points left

in F .

The first step in the methodology is to find the prediction probabilities of

all the identified data instances. Specifically, Pidentified is an m × k probability
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matrix generated from the application of C on F , where |F| = m. An example

is depicted in Table 4.1. In this table, index 1 is associated with the first flagged

observation for which classes c1 and c2 have the H highest probabilities across

the residual signature. Similarly, the highest H probabilities for every data point

in Pidentified are determined and the corresponding training class labels are stored

as items in a set I. Table 4.2 depicts an example set I for H=2 from the data

shown in Table 4.1. Apply the Apriori algorithm [71] on I to generate frequent

itemsets of length H based on a user-defined value of support (S) and confidence

(C). Support and confidence are ARM-specific parameter values. Determine the

itemset s from I, with the highest support value and identify all the instances

from F with s as their highest H probabilities and store them in B. If the number

of data points in B is at least η percentage of F , proceed forward. Update F

by removing B from F . Next step is to label all the instances in B with a new

class k + i. Initially i is to set to be equal to 0 and is incremented by 1 for every

unknown class discovered. Update T by appending B to T . Retrain the classifier

C on T . Make predictions on F using C and determine all the instances that are

predicted as k + i with a prediction confidence (prediction probability) value of

at least γ and store them in P . Update F and T by removing P from F and

appending P to T . This process is repeated until the number of data points in

P is less than β |F|. The output of this algorithm is an updated classifier (C)

that is capable of classifying both the known and the identified unknown classes.
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Algorithm 2 Residual signature based categorization of identified instances
Input:

training data T with n observations
identified data F with m observations
open world data O
probabilistic classifier C
maximum probability parameter H
ω, η, and β: termination parameters
γ: prediction probability parameter

Output:
Updated probabilistic classifier C

1: L← |F|
2: i← 0
3: while |F| ≥ ω(L) do
4: Pidentified ← C (F)
5: create I from Pidentified based on H
6: B ← instances in F associated with the itemset with the highest support

value.
7: if |B| < η|F| then

return C
8: end if
9: i← i+ 1
10: F ← F \ B
11: create new label k + i for all observations in B
12: T ← T ∪ B
13: retrain classifier C on T
14: repeat
15: P ← instances in F that are predicted as k + i with a prediction

probability of at least γ
16: T ← T ∪ P
17: retrain classifier C on T
18: F ← F \ P
19: until |P| < β|F|
20: end while
21: return C
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Table 4.1: Pidentified

index c1 c2 c3 . . . ck

1 0.40 0.50 0.08
2 0.70 0.07 0.20
3 0.60 0.09 0.30
...

. . .

m

Table 4.2: I for H=2

index itemset

1 {c1, c2}
2 {c1, c3}
...
m {c1, c3}
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Chapter 5

Experiments and results

5.1 Introduction

To analyze the performance of the proposed methodology, four different experi-

ments with the number of unknown classes ranging from 0 to 3 are conducted. A

wide variety of data types from different domains are considered. Table 5.1 lists

all the experiments conducted and the associated data sets.

Table 5.1: Data description

Experiment Data |K| |U| nT nO

1 Code commit messages 5 0 1418 1351
2 Traditional numeric data 6 1 5416 2690
3 Human activity recognition 6 2 2898 2839
4 Hand written digits 10 3 22504 6000

Certain factors are same across all experiments. Random Forest is used as

the classifier and Table 5.2 lists the accuracy, precision, recall and f1-score for

the performance of the classifier. on the training data, prior to implementing the

proposed framework. The level of confidence for the Chebyshev’s inequality (α)
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is considered to be 0.1 and the distance metric used is Jensen-Shannon Distance.

Table 5.2: Performance of C in every experiment

Performance metric 1 2 3 4

Accuracy 0.98 0.95 0.94 0.97
Precision 0.98 0.95 0.94 0.97
Recall 0.98 0.95 0.94 0.97
F1−score 0.98 0.95 0.94 0.97

5.2 Data

5.2.1 Code commit messages

CCM data for experiment 1 is derived from different open source projects avail-

able on GitHub such as messages that belong to different categories such as bug

fixing, design improvement, adding new features, improving non functional re-

quirements and no category. The dataset contains 5 different classes with a total

of 3377 instances.

5.2.2 Traditional numeric data

TND [72] used for experiment 2 is derived from Geo-spatial data having six

different classes corresponding to the land cover such as impervious, farm, forest,

grass, orchard and water. The features present in the dataset are the maximum

NDVI (normalized difference vegetation index) values derived from the time-

series of satellite images. Each observation in the dataset is represented using 29

attributes and there are a total of 10546 observations.
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5.2.3 Human activity recognition data

HAR is a sensor data [73] corresponding to different human activities such as

walking, walking upstairs, walking downstairs, sitting, standing and laying. This

dataset contains 10299 observations and 561 features.

5.2.4 Hand written digits data

This dataset [74] contains images corresponding to the hand written digits 0 to

9. There are a total of 60000 observations each represented by a 784 dimensional

feature vector.

5.3 Analysis on text data

As the first step in the process, Algorithm 1 is applied on the open world data

containing 1351 instances, out of which 52 have been identified, which is less than

4% of the total number of observations inO. Based on the Chebyshev’s inequality,

there is a chance for 10% of the known data to be identified as belonging to

unknown classes. Furthermore, presence of an unknown class would result in

higher percentage of identified instances. However, in this scenario, we do not

see a strong evidence to suspect the presence of an unknown class. Thus, we can

terminate the algorithm here and not proceed forward to the second stage of the

methodology.

5.4 Analysis on Crowd sourcing data

The training data considered for this experiment contains classes 1, 2, 3, 4 and

5 and the open world data contains a new class 0 along with the known classes.
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Table 5.3: Classwise data distribution of O and F for Text data

Class class information |O| |F|

1 bug fixing 417 19
2 no category 117 1
3 design improvement 181 8
4 adding new features 229 5
5 non functional requirements 407 19

From Table 5.4, it is evident that 1150 out of 2690 instances have been identified

by Algorithm 1. Furthermore, about 88% of the identified data instances belong

to the unknown class. As we have a large number of instances identified in

the first step, we proceed forward to the categorization stage of the framework.

Algorithm 2 is applied on F using the parameter setting provided in Table 5.5

and it successfully discovered the unknown class. This evident from Table 5.9,

as we see that about 88% of the data instances belonging to class 0 are classified

correctly and the majority of the remaining instances are misclassified as class

1, as class 0 (farm) is more similar to class 1 (forest). The overall accuracy

of the classifier increases from 50% to 90% and the information regarding other

performance metrics is provided in Table 5.10. This experiment demonstrates

the successful working of the proposed methodology for the case when a single

unknown class is present in the open world data.

Table 5.4: Classwise data distribution of O and F for TND

Class class information |O| |F| Percentage (%)

0 Farm 1224 1014 88.17
1 Forest 1230 91 7.90
2 Grass 126 15 1.73
3 Impervious 70 20 1.30
4 Orchard 8 4 0.52
5 Water 32 6 0.34
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Table 5.5: Parameter settings for experiments 2,3 and 4

Experiments

Parameter 1 2 3 4

Chebyshev’s parameter (τ) 3.16 3.16 3.16 3.16
Maximum probability limit (H) 2 3 3 4

Support (S) 0.1 0.1 0.1 0.1
Confidence (C) 0.1 0.1 0.1 0.1

Termination parameter (ω) 0.25 0.25 0.25 0.25
Termination parameter (β) 0.1 0.1 0.1 0.1
Termination parameter (η) 0.1 0.1 0.1 0.1
Prediction confidence (γ) 0.6 0.6 0.6 0.4

Table 5.6: Confusion matrix for performance of C on O for crowd sourcing data

Predicted class

True class 0 1 2 3 4 5

0 0 1087 11 123 0 3
1 0 1126 0 4 0 0
2 0 6 57 7 0 0
3 0 13 1 112 0 0
4 0 7 0 0 1 0
5 0 4 0 3 0 25

5.5 Analysis on HAR data

The open world data contains data from all the classes out of which classes 2

and 6 were randomly selected to be considered as the unknown classes and the

remaining as the known classes. The distribution of the data before and after

the identification stage is displayed in Table 5.11. We see that 1990 out of 2839

instances present in O are flagged, out of which about 96% of the them belong

to the unknown classes. We proceed forward and apply Algorithm 2 based on

the parameters specified in Table 5.5. This algorithm successfully discovered the

two unknown classes and assign the identified instances into two new classes.
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Table 5.7: Confusion matrix for the final performance of C on O for TND

Predicted class

True class 0 1 2 3 4 5

0 1082 109 1 29 0 3
1 72 1054 0 4 0 0
2 13 1 53 3 0 0
3 19 1 0 106 0 0
4 3 4 0 0 1 0
5 2 2 0 3 0 25

Table 5.8: Initial and final performance of C on O for TND

Performance metric Initial Final

Accuracy 0.51 0.90
Precision 0.27 0.90
Recall 0.51 0.90
F1−score 0.35 0.90

We further evaluate the quality of the categorization by providing a confusion

matrix which is displayed in Table 5.13. Based on the results from this table it

is evident that nearly 90% of observations belonging to class 2 are classified cor-

rectly and the majority of the remaining instances are misclassified as class 3 as

class 2 (walking upstairs) exhibit more similarity to class 3 (walking downstairs)

compared to other classes. Similarly, 97.5% of observations belonging to class

6 are classified correctly and the major portion of the remaining instances are

misclassified as class 4 as class 6 (laying) is more similar to class 4 (sitting). The

overall accuracy of the classifier increases from 24% to 93% and the information

regarding other performance metrics is provided in Table 5.10. This experiment

demonstrates the successful working of the proposed on data containing two un-

known classes.
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Table 5.9: Confusion matrix for performance of Cnew on O for crowd sourcing
data

Predicted
0 1 2 3 4 5

True

0 1082 109 1 29 0 3
1 72 1054 0 4 0 0
2 13 1 53 3 0 0
3 19 1 0 106 0 0
4 3 4 0 0 1 0
5 2 2 0 3 0 25

Table 5.10: Initial and final performance of C on O for TND

Performance metric Initial Final

Accuracy 0.51 0.90
Precision 0.27 0.90
Recall 0.51 0.90
F1−score 0.35 0.90

5.6 Analysis on MNIST data

The open world data contains observations belonging to all the digits 0 to 9, out

which digits 1,5 and 8 are considered as the unknown classes and the remaining

digits as known classes. The distribution of the open world data and the flagged

data is displayed in Table 5.15. From the table, it is evident that about 86%

of the instances in O are flagged as belonging unknown classes. Furthermore,

more than 80% of the identified instances in F belong to the unknown classes.

Since the criteria to proceed forward is met, we apply Algorithm 2 on F using

the parameters specified in Table 5.5. From the results, all the three unknown

classes are discovered and the quality of the categorization is displayed in Table

5.17. About 79% of observations belonging to class 1, 8% of the observations

belonging to class 5 and 73% of the observations belonging to class 8 are classified

26



Table 5.11: Classwise data distribution of F for HAR data

Class Class information |O| |F| Percentage (%)

1 Walking 196 27 1.35
2 Walking upstairs 917 748 37.58
3 Walking downstairs 149 10 0.50
4 Sitting 175 13 0.65
5 Standing 211 30 1.50
6 Laying 1191 1162 58.39

Table 5.12: Confusion matrix for performance of C on O for HAR data

Predicted class

True class 1 2 3 4 5 6

1 194 0 1 1 0 0
2 209 0 605 0 103 0
3 8 0 140 0 1 0
4 0 0 0 163 12 0
5 0 0 7 9 195 0
6 1049 0 3 99 40 0

correctly. The performance of the latest classifier on class 5 is poor compared to

other unknown classes due to the lack of a common pattern across majority of

the observations belonging to class 5. Furthermore, only few instances possess

a similarity pattern and are identified by the Algorithm 2. Hence, the classifier

has insufficient observations to learn from and resulted in performing poorly on

that particular class. However, it is interesting to note that, for class 1, the

majority of the misclassified instances are predicted as class 7, and the reason

is that digit 1 possess similar pixel arrangement with digit 7 and this similarity

resulted in the misclassification. Similarly, digits 5 and 8 are more similar to

digit 3 and the results explain the same as the majority of the instances that

belong to digits 5 and 8 are misclassified as digit 3. Furthermore, the results

from this experiment support our hypothesize that the error is informative and

27



Table 5.13: Confusion matrix for the final performance of C on O for HAR data

Predicted class

True class 1 2 3 4 5 6

1 167 21 0 0 0 8
2 2 822 92 0 1 0
3 7 9 133 0 0 0
4 0 0 0 162 13 0
5 0 7 0 10 194 0
6 0 1 0 34 2 1154

Table 5.14: Initial and final performance of C on O for HAR data

Performance metric Initial Final

Accuracy 0.24 0.93
Precision 0.09 0.94
Recall 0.24 0.93
F1−score 0.12 0.93

Table 5.15: Classwise data distribution of O for MNIST data

Class |O| |F| Percentage (%)

0 435 59 1.71
1 1109 1104 32.09
2 396 78 2.26
3 433 81 2.35
4 425 98 2.84
5 892 790 22.96
6 422 76 2.20
7 454 79 2.29
8 999 988 28.72
9 435 87 2.52

that the residual signature helps in distinguishing the unknown classes. The final

performance of the classifier increases from 48% to 75% and other performance

metrics are displayed in Table 5.16.
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Table 5.16: Initial and final performance of C on O for MNIST data

Performance metric Initial Final

Accuracy 0.48 0.75
Precision 0.28 0.73
Recall 0.48 0.75
F1−score 0.34 0.72

Table 5.17: Confusion matrix for the final performance of C on O for MNIST
data

Predicted class

True class 0 1 2 3 4 5 6 7 8 9

0 410 0 1 0 1 0 0 0 23 0
1 0 873 10 2 4 6 4 1 207 2
2 0 6 363 2 3 0 0 2 20 0
3 0 2 5 400 1 6 0 5 12 2
4 3 2 1 0 394 14 2 2 0 7
5 13 6 9 387 34 70 28 7 284 54
6 1 0 0 0 3 0 403 0 15 0
7 0 9 6 1 2 22 0 410 0 4
8 5 24 39 67 17 31 10 6 735 65
9 0 1 1 5 7 28 0 3 3 387
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Chapter 6

Sensitivity analysis

6.1 Introduction

Given the presence of different parameters that govern the functioning of the

methodology, it is imperative to analyze the impact of change in these parameter

values on the performance of the methodology. The following are the parameters

that we considered for the sensitivity analysis.

• Number of known classes (|K|)

• Chebyshev’s parameter (τ)

• Maximum probability parameter (H)

• Quality of the classifier

To maintain consistency, we conduct all the analyses on the MNIST data as it is

one of the standard data sets available.
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6.2 Sensitivity analysis: Number of known classes

Purpose The goal of this analysis is to analyze the impact of number of known

classes on the overall performance of the methodology.

Hypothesis As the number of known classes increases, the dimensionality of

the probabilistic space increases and provides more detail for categorization.

Experimental setup Three experiments, by varying the number of known

classes at 2,5 and 8 are conducted. Furthermore, data corresponding to digits 8

and 9 are considered as the unknown classes for all the experiments. Figures 1

and 2 are the images corresponding to digits 8 and 9 respectively. Also, random

forest (RF) is the classifier used for all the experiments conducted. The parameter

settings associated with Algorithm 1 and Algorithm 2 and the details about each

experiment is provided in Table 6.1.

Table 6.1: Sensitivity analysis 1: Experimental setup

Experiments

Parameter 1 2 3

Number of unknown classes 2 2 2
Number of known classes 2 5 8

Classifier RF RF RF
Chebyshev’s parameter (τ) 3.16 3.16 3.16

Maximum probability limit (H) 1 3 4
Termination parameter (ω) 0.25 0.25 0.25
Termination parameter (β) 0.1 0.1 0.1
Termination parameter (η) 0.1 0.1 0.1
Prediction confidence (γ) 0.6 0.6 0.4
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Table 6.2: Sensitivity analysis-1 (Experiment-1): Classwise data distribution of
O for MNIST data

Class |O| |F|

0 937 49
1 1063 38
8 1005 982
9 995 972

6.2.1 Experiment-1

The training data considered for this experiment contains classes 0 and 1 and

the open world data contains two new classes 8 and 9 along with the known

classes.

The first step is the identification stage where we apply Algorithm 1 on O

to identify the data instances belonging to the unknown classes. The results

of the identification stage indicate that about 50% of the instances in O are

identified (flagged) as potentially not belonging to the known classes. From

Table 6.2, we further evaluate the quality of the identified instances by analyzing

the distribution of the flagged instances in F , and we see that about 96% of

the flagged instances belong to the unknown classes. Since we have more than

10% of the instances as flagged, we move forward to the next step which is the

categorization of flagged instances. Algorithm 2 is applied on F and the results

from Table 6.4 indicate that Algorithm 2 discovered a single unknown class as

opposed to two unknown classes. Furthermore, we also see that about 98% of

the instances belonging to class 8 are correctly classified whereas instances that

belong to 9 are completely misclassified. Table 6.3 provides a comparison of

performance between the old and new classifier and we see improvement in the

overall performance of the classifier.
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Table 6.3: Sensitivity analysis-1 (Experiment-1):Initial and final performance of
C on O for MNIST data

Performance metric Initial Final

Accuracy 0.49 0.73
Precision 0.25 0.61
Recall 0.49 0.73
F1−score 0.33 0.65

Table 6.4: Sensitivity analysis-1 (Experiment-1):Confusion matrix for the final
performance of C on O for MNIST data

Predicted class

True class 0 1 8 9

0 928 0 9 0
1 0 1024 39 0
8 7 9 989 0
9 14 4 977 0

6.2.2 Experiment -2

In the second experiment, we increase the number of training classes to 5, but

the number of unknown classes remain the same. The training data T includes

images corresponding to digits 0,1,2,3 and 4 and O contains data that belong to

digits 0,1,2,3,4,8 and 9. The same procedure similar to the first experiment is

followed and the results corresponding to the identification phase are displayed in

Table 6.5. From the table, we see that about 46% of instances that are identified

belong to the unknown classes. From Table 6.2, we further evaluate the quality

of the identified instances by analyzing the distribution of the flagged instances

in F , and we see that about 88% of the flagged instances belong to the unknown

classes. Since we have more than 10% of the instances as flagged, we move forward

to the next step which is the categorization of flagged instances. Algorithm 2 is

applied on F and the results from Table 6.4 indicate that Algorithm 2 discovered
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Table 6.5: Sensitivity analysis-1 (Experiment-2): Classwise data distribution of
O for MNIST data

Class |O| |F|

0 403 51
1 430 40
2 387 55
3 399 55
4 381 62
8 1005 989
9 995 595

both the unknown classes successfully. However, we see that 64% of class 8 are

correctly classified, while the remaining 36% of them are spread across the other

classes, of which majority of them are wrongly classified as class 9. Similarly, for

class 9, 73% of them are correctly classified and the majority of them misclassified

as class 4. The overall performance of the final classifier is provided in Table 6.3

and we see a considerable improvement in the performance.

Table 6.6: Sensitivity analysis-1 (Experiment-2): Initial and final performance of
C on O for MNIST data

Performance metric Initial Final

Accuracy 0.49 0.81
Precision 0.30 0.83
Recall 0.0.49 0.81
F1−score 0.0.36 0.81

6.2.3 Experiment-3

In the final experiment, we increase the number of training classes to 8 and

the number of unknown classes remain the same. The training data T includes

images corresponding to digits 0,1,2,3,4,5,6,7 and O contains data that belong to
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Table 6.7: Sensitivity analysis-1 (Experiment-2): Confusion matrix for the final
performance of C on O for MNIST data

Predicted class

True class 0 1 2 3 4 8 9

1 0 421 2 2 2 3 0
2 3 0 346 0 5 33 0
3 0 0 2 351 0 36 10
4 1 1 1 0 360 0 18
8 6 36 22 27 21 641 252
9 9 7 10 17 218 3 731

all the digits 0 to 9. The result of the identification phase is displayed in Table 6.8

and we can see that more than 50% of instances that are identified belong to the

unknown classes. From Table 6.2, we further evaluate the quality of the identified

instances by analyzing the distribution of the flagged instances in F , and we see

that about 84% of the flagged instances belong to the unknown classes. Since we

have more than 10% of the instances as flagged, we move forward to the next step

which is the categorization of flagged instances. Algorithm 2 is applied on F and

the results from Table 6.4 indicate that Algorithm 2 discovered both the unknown

classes successfully. However, we see that 74% of class 8 are correctly classified,

while the remaining 26% of them are spread across the other classes, of which

majority of them are wrongly classified as class 3. Similarly, for class 9, 79%

of them are correctly classified and the majority of the remaining instances are

misclassified as class 4. The overall performance of the final classifier is provided

in Table 6.3 and we see a considerable improvement in the performance.

Conclusion The main motive of analysis is to determine the effect of the num-

ber of training classes on the proposed framework. In this regard, we carried out

different experiments with varying the number of training classes ranging from 2
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Table 6.8: Sensitivity analysis-1 (Experiment-3): Classwise data distribution of
O and F for MNIST data

Class |O| |F|

0 247 41
1 283 20
2 236 65
3 268 63
4 239 54
5 230 70
6 231 45
7 266 45
8 1005 1001
9 995 963

Table 6.9: Sensitivity analysis-1 (Experiment-3): Initial and final performance of
C on O for MNIST data

Performance metric Initial Final

Accuracy 0.48 0.86
Precision 0.30 0.88
Recall 0.48 0.86
F1−score 0. 36 0.87

to 8. Results strongly suggest that as the number of known classes increases, the

ability to identify and discriminate the unknown classes also improves. However,

it is interesting to note from Table 6.11 that, in all the experiments conducted, the

performance of the methodology corresponding to the identification task remains

consistent. The only difference in the performance is noticed with the categoriza-

tion task. In the first experiment, there are insufficient number of known classes

to capture the similarity patterns existing in the data and both the unknown

classes exhibited similarity to the same known class. Increase in the number of

training classes, resulted in a unique similarity pattern to each unknown class and

resulted in better categorization in the second and third experiments. However,
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Table 6.10: Sensitivity analysis-1 (Experiment-3): Confusion matrix for the final
performance of C on O for MNIST data

Predicted class

True class 0 1 2 3 4 5 6 7 8 9

1 0 280 1 1 1 0 0 0 0 0
2 3 2 221 1 3 0 2 2 2 0
3 0 0 4 243 0 0 1 6 8 6
4 0 1 0 0 227 0 0 1 0 10
5 2 1 0 2 0 212 3 0 2 8
6 3 0 0 0 0 1 227 0 0 0
7 1 1 7 0 2 1 0 251 0 3
8 3 21 37 89 14 29 7 5 743 57
9 9 3 13 12 121 5 0 27 18 787

we see some discrepancy in the prediction distribution for the unknown classes

and the overall misclassification rate associated with the categorization of the

unknown classes decreases as seen in Table 6.11. Furthermore, from the same

table, we see that the overall performance of the final classifier also increases as

the number of known classes increases.

Table 6.11: Sensitivity analysis 1: Combined results of all experiments

Experiments

Parameter 1 2 3

Percentage of data identified 50 46 50
Number of unknown classes discovered 1 2 2

Percentage misclassified for class 8 2 36 26
Percentage misclassified for class 9 100 27 21

Final F1−score 0.65 0.81 0.87
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6.3 Sensitivity analysis: Chebyshev’s parame-

ter

Purpose One of the critical parameters associated with the framework is the

Chebyshev’s parameter (τ) and it governs the way the methodology works and

plays a major role in the identification phase. It is imperative to choose an ap-

propriate value as any fallacious results that occur in this stage will subsequently

lead to undesirable results in the second stage and ultimately lead to overall fail-

ure of the framework. Hence, it is imperative to assign a proper value to τ to

achieve desired results.

Hypothesis The higher the value of τ , the fewer will be the number of instances

flagged. On the other hand, a very low value of τ might cause more instances

from the known classes be flagged which is again not desirable. The methodology

fails for extreme values of the Chebyshev’s parameter τ .

Experimental setup To maintain consistency, all the experiments are con-

ducted on the MNIST data, where the training data O includes data correspond-

ing to digits 0 to 7 and the open world data O contains data that belongs to

all the digits 0 to 9. The only varying parameter for this analysis is τ and is set

to 1.4, 2.0 and 4.47 for the first, second and third experiment respectively. The

details about the other parameters associated with the methodology is provided

in Table 6.12.
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Table 6.12: Sensitivity analysis 2: Experimental setup

Experiments

Parameter 1 2 3

Classifier RF RF RF
Chebyshev’s parameter (τ) 1.414 2 4.47

Maximum probability limit (H) 4 4 4
Termination parameter (ω) 0.25 0.25 0.25
Termination parameter (β) 0.1 0.1 0.1
Termination parameter (η) 0.1 0.1 0.1
Prediction confidence (γ) 0.4 0.4 0.4

6.3.1 Experiment-1

The first step is the identification stage where we apply Algorithm 1 on O, using

the Chebyshev’s parameter (τ) that is set to a value of 1.414. The results of the

identification stage indicate that about 65% of the instances in O are identified

(flagged) as belonging to the unknown classes. From Table 6.13, we analyze the

distribution of the flagged instances in F , and we see that about 76% of them

belong to the unknown classes. Since we have more than 10% of the instances as

flagged, we move forward to the next step which is the categorization of flagged

instances. Algorithm 2 is applied on F and the results from Table 6.14 indicate

that Algorithm 2 successfully discovered both the unknown classes. Furthermore,

we also see that about 53% of the instances belonging to class 8 are correctly clas-

sified while the remaining are spread across the other classes, of which majority

of them are wrongly classified as class 3. Similarly, for class 9, 84% of them are

correctly classified and the majority of the remaining instances are misclassified

as class 4. The overall accuracy of the classifier increases from 48% to 82% and

the information regarding other performance metrics is provided in Table 6.15.
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Table 6.13: Sensitivity analysis-2 (Experiment-1): Classwise data distribution of
O and F for MNIST data

Class |O| |F|

0 247 68
1 283 34
2 236 93
3 268 99
4 239 82
5 230 108
6 231 69
7 266 66
8 1005 1002
9 995 994

6.3.2 Experiment -2

The first step is the identification stage where we apply Algorithm 1 on O, using

the Chebyshev’s parameter (τ) that is set to a value of 2. The results of the

identification stage indicate that about 62% of the instances in O are identified

(flagged) as belonging to the unknown classes. From Table 6.16, we analyze the

distribution of the flagged instances in F , and we see that about 80% of them

belong to the unknown classes. Since we have more than 10% of the instances as

flagged, we move forward to the next step which is the categorization of flagged

instances. Algorithm 2 is applied on F and the results from Table 6.17 indicate

that Algorithm 2 successfully discovered both the unknown classes. Furthermore,

we also see that about 53% of the instances belonging to class 8 are correctly clas-

sified while the remaining are spread across the other classes, of which majority

of them are wrongly classified as class 3. Similarly, for class 9, 84% of them are

correctly classified and the majority of the remaining instances are misclassified

as class 4. The overall accuracy of the classifier increases from 48% to 82% and

the information regarding other performance metrics is provided in Table 6.18.
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Table 6.14: Sensitivity analysis-2 (Experiment-1):Confusion matrix for the final
performance of C on O for MNIST data

Predicted class

True class 0 1 2 3 4 5 6 7 8 9

0 246 0 0 0 0 0 1 0 0 0
1 0 280 1 1 1 0 0 0 0 0
2 1 2 223 1 5 0 1 1 2 0
3 0 0 5 243 0 1 1 6 10 2
4 0 1 0 0 224 0 0 1 1 12
5 2 1 0 2 0 211 3 0 4 7
6 3 0 0 0 0 0 228 0 0 0
7 1 1 7 0 1 1 0 249 0 6
8 6 54 67 138 16 79 14 5 530 96
9 7 4 15 12 74 5 0 24 16 838

Table 6.15: Sensitivity analysis-2 (Experiment-1): Initial and final performance
of C on O for MNIST data

Performance metric Initial Final

Accuracy 0.48 0.82
Precision 0.30 0.84
Recall 0.48 0.82
F1−score 0.36 0.81

Table 6.16: Sensitivity analysis-2 (Experiment-2): Classwise data distribution of
O and F for MNIST data

Class |O| |F|

0 247 51
1 283 29
2 236 76
3 268 87
4 239 66
5 230 90
6 231 55
7 266 55
8 1005 1002
9 995 991
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Table 6.17: Sensitivity analysis-2 (Experiment-2): Confusion matrix for the final
performance of C on O for MNIST data

Predicted class

True class 0 1 2 3 4 5 6 7 8 9

0 246 0 0 0 0 0 1 0 0 0
1 0 280 2 1 0 0 0 0 0 0
2 1 2 223 1 5 0 1 1 2 0
3 0 0 5 243 0 1 1 6 10 2
4 0 1 0 0 224 0 0 1 1 12
5 2 1 0 2 0 211 3 0 4 7
6 3 0 0 0 0 0 228 0 0 0
7 1 1 7 0 1 1 0 249 0 6
8 6 54 67 138 16 79 14 5 530 96
9 7 4 15 12 74 5 0 24 16 838

Table 6.18: Sensitivity analysis-2 (Experiment-2): Initial and final performance
of C on O for MNIST data

Performance metric Initial Final

Accuracy 0.48 0.82
Precision 0.30 0.84
Recall 0.48 0.82
F1−score 0.36 0.81

6.3.3 Experiment -3

Algorithm 1 is applied on O, using the Chebyshev’s parameter (τ) that is set to

a value of 4.47. The results of the identification stage indicate that about 59% of

the instances in O are identified (flagged) as belonging to the unknown classes.

From Table 6.19, we analyze the distribution of the flagged instances in F , and

we see that about 84% of them belong to the unknown classes. Since we have

more than 10% of the instances as flagged, we move forward to the next step

which is the categorization of flagged instances. Algorithm 2 is applied on F and

the results from Table 6.17 indicate that Algorithm 2 successfully discovered both
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Table 6.19: Sensitivity analysis-2 (Experiment-3): Classwise data distribution of
O and F for MNIST data

Class |O| |F|

0 247 42
1 283 20
2 236 57
3 268 60
4 239 54
5 230 66
6 231 42
7 266 42
8 1005 1002
9 995 967

the unknown classes. Furthermore, we also see that about 53% of the instances

belonging to class 8 are correctly classified while the remaining are spread across

the other classes, of which majority of them are wrongly classified as class 3.

Similarly, for class 9, 85% of them are correctly classified and the majority of

the remaining instances are misclassified as class 4. The overall accuracy of

the classifier increases from 48% to 82% and the information regarding other

performance metrics is provided in Table 6.21.

Conclusion The main motive of this analysis to determine the effect of Cheby-

shev’s parameter (τ) on the performance of the methodology. We hypothesized

that the number of instances flagged decreases as the value of τ increases and the

results from Table 6.22 support our hypothesis. Furthermore, it is interesting to

note that decrease in the number of flagged instances can be mainly attributed to

the instances from the known classes while there is a negligible decrease for the

unknown classes. However, from Table 6.22, we can see that the overall perfor-

mance of the final classifier in all the three experiments remains consistent. This
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Table 6.20: Sensitivity analysis-2 (Experiment-3): Confusion matrix for the final
performance of C on O for MNIST data

Predicted class

True class 0 1 2 3 4 5 6 7 8 9

0 246 0 0 0 0 0 1 0 0 0
1 0 281 1 1 0 0 0 0 0 0
2 2 2 224 0 3 0 0 2 3 0
3 0 0 6 244 1 2 0 5 9 1
4 0 1 0 0 225 0 0 1 1 11
5 2 1 0 2 0 215 3 0 1 6
6 3 0 0 0 0 0 228 0 0 0
7 1 1 7 1 1 0 0 250 0 5
8 5 66 67 128 22 73 11 6 530 97
9 8 5 14 14 90 6 0 21 16 821

Table 6.21: Sensitivity analysis-2 (Experiment-3): Initial and final performance
of C on O for MNIST data

Performance metric Initial Final

Accuracy 0.48 0.82
Precision 0.30 0.84
Recall 0.48 0.82
F1−score 0.36 0.81

implies that even when there is difference in the percentage of flagged instances,

the overall performance of the framework across all experiments remains consis-

tent. This characteristic of the methodology is desirable as the results show that

the framework is robust to the false positives, i.e., the instances that actually

belong to the known classes but are identified by the methodology as potentially

belonging to the unknown classes.
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Table 6.22: Sensitivity analysis 2: Combined results of all experiments

Experiments

Parameter 1 2 3

Chebyshev’s parameter (τ) 1.414 2 4.47
Percentage of data identified 65 62 59

Percentage of instances in F that belong to unknown classes 50 50 49
Number of unknown classes discovered 2 2 2

Percentage correctly classified for class 8 53 53 53
Percentage correctly classified for class 9 84 84 85

Final F1−score 0.81 0.81 0.81

6.4 Sensitivity analysis: Maximum probability

parameter (H)

Purpose Maximum probability parameter (H) is one of the parameters that

can have considerable effect on the performance of the framework. This parameter

governs the categorization step of the methodology and decides the size of the

itemsets that are generated by Algorithm 2. In this analysis, we determined the

performance of the framework by conducting experiments for different values of

H.

Hypothesis A very low value of H does not provide enough information to

capture the residual patterns existing within the data. On the other hand, a very

high value of H will result in a common residual signature across all the unknown

classes and makes it difficult to distinguish one another.

Experimental setup To maintain consistency, in all the experiments the train-

ing data T includes the classes 0 to 7 and the open world data O contains data

that belongs to all the digits 0 to 9. Three experiments with different values of
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H, 1, 4 and 7 are conducted. The details about the parameter settings associated

with other parameters are provided in Table 6.23. Since the parameter H is a

part of Algorithm 2, we apply Algorithm 1 on O to determine the set of flagged

instances F and use the same flagged set for all the experiments conducted in

this analysis. Th results of identification stage is provided in Table 6.24. From

the results, we see that about 59% of the instances in O are identified (flagged)

as belonging to the unknown classes. Furthermore, 83% of the flagged instances

belong to the unknown classes.

Table 6.23: Sensitivity analysis 3: Experimental setup

Experiments

Parameter 1 2 3

Classifier RF RF RF
Chebyshev’s parameter (τ) 3.16 3.16 3.16

Maximum probability limit (H) 1 4 7
Termination parameter (ω) 0.25 0.25 0.25
Termination parameter (β) 0.1 0.1 0.1
Termination parameter (η) 0.1 0.1 0.1
Prediction confidence (γ) 0.4 0.4 0.4

6.4.1 Experiment-1

For this experiment, the value of H is set equal to 1. Algorithm 2 is applied on the

data and the results for the categorization phase are provided in Table 6.25. From

this table, we see that 3 unknown classes are identified, while the actual number

of unknown classes present is 2. Furthermore, 37% of the instances belonging

to class 8 are classified correctly, 39% of them are misclassified as class 9 and

13% of them are misclassified as belonging to the third unknown class. On the

other hand, 93% of the instances belonging to class 9 are correctly classified and
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Table 6.24: Sensitivity analysis 3: Classwise data distribution of O and F for
MNIST data

Class |O| |F|

0 368 63
1 415 33
2 360 96
3 409 100
4 361 73
5 335 105
6 362 69
7 390 75
8 1490 1486
9 1510 1443

the remaining are misclassified as other classes, of which only 10 instances are

classified as belonging to the new class. However, from Table 6.26, we see an

improvement in the overall performance of the final classifier compared to the

initial classifier.

Table 6.25: Sensitivity analysis-3 (Experiment-1): Confusion matrix for perfor-
mance of Cnew on O for MNIST data

Predicted class

True class 0 1 2 3 4 5 6 7 8 9 new

0 365 1 0 0 0 0 2 0 0 0 0
1 0 441 1 1 0 0 0 0 1 1 0
2 3 2 339 0 0 0 1 5 2 7 1
3 0 0 3 310 0 0 1 5 85 2 3
4 0 2 0 0 289 0 0 1 1 68 0
5 2 2 0 1 0 230 5 0 2 4 89
6 3 1 0 0 0 1 355 0 0 0 2
7 1 1 6 0 0 0 0 375 1 6 0
8 6 58 65 4 1 5 13 4 552 581 201
9 10 5 7 4 6 0 0 39 29 1400 10

Since the value of H was considered to be 1, only itemsets with size 1 are

returned and the categorization of the instances happen based on these itemsets.
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Table 6.26: Sensitivity analysis-3 (Experiment-1): Initial and final performance
of C on O for MNIST data

Performance metric Initial Final

Accuracy 0.48 0.77
Precision 0.30 0.83
Recall 0.0.48 0.77
F1−score 0.0.36 0.77

The results corresponding to the performance of the final classifier is provided

in table. From table conf, we can see that, for this particular value of H, 3 new

classes were identified by the framework as opposed to 2 unknown classes. This

can be considered as the failure of the framework and is due to the very low value

being set to the parameter H.

6.4.2 Experiment-2

For this experiment, the value of H is set equal to 4. Algorithm 2 is applied

on the data and the results for the categorization phase are provided in Table

6.27. From this table, we see that exactly two unknown classes are discovered.

Furthermore, 66% of the instances belonging to class 8 are classified correctly

and majority of the remaining instances are misclassified as belonging to class 3

and class 9. On the other hand, 86% of the instances belonging to class 9 are

correctly classified and majority of the remaining instances are misclassified as

class 4. The overall accuracy of the classifier increases from 48% to 86% and the

information regarding other performance metrics is provided in Table 6.28.
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Table 6.27: Sensitivity analysis-3 (Experiment-2):Confusion matrix for the final
performance of C on O for MNIST data

Predicted class

True class 0 1 2 3 4 5 6 7 8 9

0 365 0 0 1 0 0 2 0 0 0
1 0 412 2 1 1 0 0 0 1 0
2 3 2 341 0 2 0 1 4 7 0
3 0 0 5 369 0 2 1 7 16 9
4 0 2 0 0 342 0 2 1 4 10
5 2 1 0 4 0 303 6 0 5 14
6 2 1 0 0 0 2 357 0 0 0
7 0 1 9 0 3 0 0 372 1 4
8 9 58 72 134 20 74 17 4 986 116
9 15 6 16 18 93 6 1 31 18 1306

Table 6.28: Sensitivity analysis-3 (Experiment-2): Initial and final performance
of C on O for MNIST data

Performance metric Initial Final

Accuracy 0.48 0.86
Precision 0.30 0.87
Recall 0.48 0.86
F1−score 0.36 0.86

6.4.3 Experiment-3

For this experiment, the value of H is set equal to 7. Algorithm 2 is applied

on the data and the results for the categorization phase are provided in Table

6.27. From this table, we see that exactly two unknown classes are discovered.

However, only 13% of the instances belonging to class 8 are correctly classified

correctly and 77% of the instances are misclassified as belonging to class 9. On the

other hand, 90% of the instances belonging to class 9 are correctly classified and

majority of the remaining instances are misclassified as class 4 and class 7. The

overall accuracy of the classifier increases from 48% to 70% and the information
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regarding other performance metrics is provided in Table 6.30.

Table 6.29: Sensitivity analysis-3 (Experiment-3): Confusion matrix for the final
performance of C on O for MNIST data

Predicted class

True class 0 1 2 3 4 5 6 7 8 9

0 333 0 1 1 0 0 0 0 0 33
1 0 399 2 0 0 0 0 0 14 0
2 3 2 304 0 1 0 1 1 26 22
3 0 0 2 368 0 3 1 3 13 19
4 0 0 0 0 307 0 0 0 26 28
5 2 2 1 2 2 287 2 0 14 23
6 2 1 0 0 0 2 357 0 0 0
7 0 1 6 0 0 0 0 349 17 17
8 3 21 28 50 4 21 7 0 202 1154
9 1 4 1 17 24 5 0 28 73 1357

Table 6.30: Sensitivity analysis-3 (Experiment-3): Initial and final performance
of C on O for MNIST data

Performance metric Initial Final

Accuracy 0.48 0.70
Precision 0.30 0.71
Recall 0.48 0.71
F1−score 0.36 0.69

Conclusion Based on the experiments conducted, we see that a very low value

or a very high value of parameter H resulted in the failure of the methodology.

Furthermore, a very low value of H implies that we trying to categorize the flagged

instances based on a single similarity pattern. As a result, very little information

is used to categorize the instances as we are considering the similarity of identified

instances with just one of the training classes. On the other hand, when the

value of H is set to a high value, more information than required is used for
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categorization. This information is no more informative as we are considering

the similarity of the flagged instances with all the training classes. This induces

noise into the process and the itemsets generated are associated to instances

from multiple unknown classes as opposed to a particular unknown class. This

eventually leads to incorrect categorization of the models and is evident from the

results displayed in Table 6.36. Furthermore, we see a poor performance from

the classifiers when H is set to extreme values. Hence, a moderate value of H is

required to obtain desired results, and as a rule of thumb, we recommend this

value to be equal to |K|/2.

Table 6.31: Sensitivity analysis 3: Combined results of all experiments

Experiments

Parameter 1 2 3

Maximum probability limit (H) 1 4 7
Number of unknown classes discovered 3 2 2

Percentage correctly classified for class 8 37 66 13
Percentage correctly classified for class 9 93 86 90

F1−score 0.77 0.86 0.69

6.5 Sensitivity analysis: Quality of classifier

Purpose This analysis does not correspond to any parameter associated with

the methodology but relates to one of the characteristics of the classifier itself.

For the purpose of analysis, we examine the effect of quality of the classifier on the

overall performance of the framework. This is an important analysis to conduct

as we encounter classifiers with varied performance depending on the problem.
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Hypothesis A high quality classifier has better understanding of the patterns

that exist within the training data and makes predictions on the known classes

that are confident and accurate. The same classifier supplied with instances

belonging to unknown classes makes predictions that are inaccurate and not con-

fident. This discrepancy in predictions helps us to identify the unknown classes.

On the other hand, a low quality classifier is inaccurate and not confident in mak-

ing predictions on both the known classes as well as the unknown classes. This

similarity in the performance, makes it difficult to distinguish between known

and unknown classes. Hence, the performance of the framework improves with

the increase in the quality of the classifier.

Experimental setup To maintain consistency, all the experiments are con-

ducted on the MNIST data, where the training data O includes data correspond-

ing to digits 0 to 7 and the open world data O contains data that belongs to all

the digits 0 to 9. Three experiments by varying the quality of the classifier are

conducted. The details about the experimental settings are provided in Table

6.32.

Table 6.32: Sensitivity analysis 4: Experimental setup

Experiments

Parameter 1 2 3

Classifier RF RF RF
Quality (Accuracy %) High Moderate Low

Chebyshev’s parameter (τ) 3.16 3.16 3.16
Maximum probability limit (H) 4 4 4

Termination parameter (ω) 0.25 0.25 0.25
Termination parameter (β) 0.1 0.1 0.1
Termination parameter (η) 0.1 0.1 0.1
Prediction confidence (γ) 0.4 0.4 0.4
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Experiment -1

In the first experiment, we consider the classifier with a very high accuracy of

99%. The first step is the identification stage where we apply Algorithm 1 on O,

using the Chebyshev’s parameter (τ) that is set to a value of 3.16. The results

of the identification stage indicate that about 59% of the instances in O are

identified (flagged) as belonging to the unknown classes. From Table 6.33, we

analyze the distribution of the flagged instances in F , and we see that about

83% of them belong to the unknown classes. Since we have more than 10% of the

instances as flagged, we move forward to the next step, which is the categorization

of flagged instances. Algorithm 2 is applied on F and the results from Table

6.34 indicate that Algorithm 2 successfully discovered both the unknown classes.

Furthermore, we also see that about 74% of the instances belonging to class 8

are correctly classified while the remaining are spread across the other classes, of

which majority of them are wrongly classified as class 3. Similarly, for class 9,

79% of them are correctly classified and the majority of the remaining instances

are misclassified as class 4. The overall accuracy of the classifier increases from

48% to 86% and the information regarding other performance metrics is provided

in Table 6.35.

Experiment -2

In this experiment, we consider a classifier with a lower performance (Accuracy:

70%) compared to the classifier in the previous experiment. We apply Algorithm

1 on O, using the Chebyshev’s parameter (τ) that is set to a value of 3.16.

The result of the identification stage is that none of the instances are flagged as

belonging to the unknown classes. Since we do not have any data to proceed
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Table 6.33: Sensitivity analysis-4 (Experiment-1): Classwise data distribution of
O and F for MNIST data

Class |O| |F|

0 247 41
1 283 20
2 236 65
3 268 63
4 239 54
5 230 70
6 231 42
7 266 45
8 1005 1001
9 995 963

further, we terminate the algorithm here.

6.5.1 Experiment-3

For this experiment, we consider a classifier with a relatively low performance

(Accuracy: 51%) compared to the previous two experiments. Similar to the

previous experiment, none of the instances were identified for a critical value of

3.16 after the identification stage.

Conclusion The results from this analysis support our hypothesis that the

quality of the classifier plays a crucial on the performance of the framework. The

framework performed successfully when used in conjunction with a high quality

classifier as supported by the results from Experiment 6.5. For Experiments 6.5

and 6.5.1, we see that the framework terminated in the first stage of the process

itself as Algorithm 1 failed to identify instances that belong to the unknown

classes.
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Table 6.34: Sensitivity analysis-4 (Experiment-1):Confusion matrix for the final
performance of C on O for MNIST data

Predicted class

True class 0 1 2 3 4 5 6 7 8 9

0 246 0 0 0 0 0 1 0 0 0
1 0 280 1 1 1 0 0 0 0 0
2 3 2 221 1 3 0 2 2 2 0
3 0 0 4 243 0 0 1 6 8 6
4 0 1 0 0 227 0 0 1 0 10
5 2 1 0 2 0 212 3 0 2 8
6 3 0 0 0 0 1 227 0 0 0
7 1 1 7 0 2 1 0 251 0 3
8 3 21 37 89 14 29 7 5 743 57
9 9 3 13 12 121 5 0 27 18 787

Table 6.35: Sensitivity analysis-4 (Experiment-1): Initial and final performance
of C on O for MNIST data

Performance metric Initial Final

Accuracy 0.48 0.86
Precision 0.30 0.88
Recall 0.48 0.86
F1−score 0.36 0.87

Table 6.36: Sensitivity analysis 4: Combined results of all experiments

Experiments

Parameter 1 2 3

Quality (Accuracy %) High Moderate Low
Percentage of identified instances 59 0 0

Number of unknown classes discovered 2 - -
F1−score 0.86 - -
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Chapter 7

Case study - Social media

analytics for community

resilience

7.1 Introduction

Social media platforms such as Facebook and Twitter have become prevalent

communication tools in modern society. These platforms provide a mechanism

for collecting dynamic data on human behavior and sentiment. Such data has

proven useful to study a variety of activity including crime prediction [75], disease

outbreak [76], stock market prices [77], and political election results [78], among

other things.

Recent studies consider the use of social media during natural disasters [79],

studying mainly either the mood of the population or the various reactions of

the public during a specific incident. Furthermore, most of the works that utilize

social media data to support emergency management mainly rely on Twitter
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data for analysis [80]. One of the first works in social media data analysis during

disasters was in 2008 after the wildfires in South Carolina [81]. Since then,

many case studies have been related to the Haiti earthquakes [82, 83] Hurricane

Irene [84,85], or Hurricane Sandy [86–89]. A summary of the ongoing research in

the area of emergency management using Twitter as a source of data is provided

in [90]. Most of the related analysis, especially those occurring in the United

States, rely heavily on data collected from Twitter.

Twitter is a micro-blogging service in which, collectively, users broadcast hun-

dreds of millions of brief messages daily [91]. One major characteristic of Twitter

is that the messaging service is conducted in real-time and the day and time that

the message is sent is recorded. Twitter messages, known as tweets, can also

be labeled with keywords using the hashtag symbol (#) to allow messages to be

categorized. The twitter feed (i.e., on-going stream of tweets sent to users) can be

filtered based on these labels. Additionally, if the user creating a tweet has per-

mitted location identification services from Twitter, the data include automatic

geo-location coordinates embedded within the tweet. The real-time nature of this

social media platform, the ability to search for specific keyword labels, and the

ability to filter by date, time, and location facilitates data collection regarding

how the engaged population react to major events.

In research related to the use of social media during natural disasters, several

studies measure user sentiment. For example, [92] and [87] classify the tweet

text as expressing Positive, Neutral or Negative emotions (also referred to as

the sentiment polarity). [84] conducted a demographic analysis of the sentiment

using the tweets corresponding to Hurricane Irene. A binary (positive or neg-

ative) or three-way (positive, negative, neutral) classification of sentiment are

common levels of granularity used in sentiment analysis [86,93–97]. On the other
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hand, [98] performed a fine-grained sentiment analysis on the disaster-related

tweets. The tweets were classified into 7 categories which include anger, disgust,

fear, happiness, sadness, and surprise. [99] proposed a big data framework to an-

alyze the user sentiment by applying various text mining and machine learning

techniques on disaster related tweets. Apart from sentiment analysis on natural

hazard related tweets, researchers have analyzed tweet sentiment during other

types of emergencies such as the 2013 Boston Marathon bombing [100], the 2017

Las Vegas shooting [101], the Syrian refugee crisis [102] and the Ebola disease

outbreak [103].

Works that use social media to tackle various disaster related tasks have pro-

liferated in the recent times [104–107]. In research related to the use of social

media during natural disasters, several studies measure user sentiment. For ex-

ample, [92] and [87] classify the tweet text as expressing Positive, Neutral or

Negative emotions (also referred to as the sentiment polarity). [84] conducted a

demographic analysis of the sentiment using the tweets corresponding to Hurri-

cane Irene. A binary (positive or negative) or three-way (positive, negative, neu-

tral) classification of sentiment are common levels of granularity used in sentiment

analysis [86, 93–97]. On the other hand, [98] performed a fine-grained sentiment

analysis on the disaster-related tweets. The tweets were classified into 7 cate-

gories which include anger, disgust, fear, happiness, sadness, and surprise. [99]

proposed a big data framework to analyze the user sentiment by applying various

text mining and machine learning techniques on disaster related tweets. Apart

from sentiment analysis on natural hazard related tweets, researchers have ana-

lyzed tweet sentiment during other types of emergencies such as the 2013 Boston

Marathon bombing [100], the 2017 Las Vegas shooting [101], the Syrian refugee

crisis [102] and the Ebola disease outbreak [103]. With an intention to pro-
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vide valuable crisis response information to the humanitarian organizations, [108]

have released a dataset that contains tweets belonging to various actionable cate-

gories. [109] used machine learning models to classify disaster related tweets into

various categories of disaster management phases like mitigation, preparedness,

emergency response and recovery. [110] classified tweets during Haiti disaster

into multiple informative categories. [111] classified disaster related tweets that

come under the category of situational awareness. A hybrid model combining

both machine learning and rule based methods was proposed by [112] to classify

disaster related tweets which can help the emergency responders identify people

who are at risk. [113] used Convolutional Neural Networks to classify informative

tweets from non-informative tweets. A summarization of research in the field of

crisis management using twitter as the main source of information is provided

by [90,114].

These works explain the importance of social media analytics in effective dis-

aster management and ameliorating the community resilience. The basic idea is

to extract useful information from disaster related tweets by classifying them into

various informative categories. One of the key aspects associated with develop-

ing the classification models for tweet classification is the preparation of training

data. Literature suggests works that deal with different classification types such

as informative vs non-informative, sentiment analysis, multi-class classification

involving multiple informative classes, etc. Furthermore, in each of the these

tasks, the decision about the type of classification or the categories for tweet

classification are decided by the researcher and the training data is prepared ac-

cordingly. After the data preparation phase, machine learning models are trained

to classify the tweets into different categories, to use them at the time of hazards

that occur in the future. Since, the choice of tweet categories is manual and lim-
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ited, it is possible for the classifiers to encounter tweets from categories that are

not present in the training data. This opens up the need to address the problem

of open world classification in social media analytics for disaster management. In

Section 7.2, we demonstrate the occurrence OWC on Twitter analysis and also

the performance of the proposed framework on a sample real world dataset.

7.2 Application of the proposed framework on

disaster related Twitter data

We apply the proposed framework on Crisis MMD dataset [115], which com-

prises of human-annotated tweets collected during different major disasters. The

dataset under consideration contains 10,347 tweets corresponding to different

humanitarian categories such as affected individuals, infrastructure and utility

damage, injured or dead people and, rescue volunteering or donation effort.

For the experiment, “rescue volunteering or donation effort” class is consid-

ered to be the unknown class while the other classes are the known classes. In

order to be consistent with the testing and the sensitivity analysis, we use random

forest for the classification using the Tf-idf based word representation. The dis-

tribution of the open world data and the identified instances is displayed in Table

7.1. From this table, we see that about 30% of the instances in O are flagged

as belonging to the unknown class. Furthermore, 77% of the flagged instances

belong to the unknown class. Since, we have more than 10% of the instances as

flagged in the first stage,we proceed to the second stage based on the parameter

settings displayed in Table 7.2. The results indicate that the algorithm auto-

matically terminated after discovering the presence of a single unknown class in

60



Table 7.1: Class wise data distribution of O and F for Twitter data

Class class information |O| |F|
0 affected individuals 193 83
1 infrastructure and utility damage 479 57
2 injured or dead people 196 53
3 rescue volunteering or donation effort 1977 641

the open world data. Furthermore, Table 7.4 depicts that 82% of the instances

that belong to class 3 are classified correctly and the majority of the remaining

instances are misclassified as class 1. Before applying our framework, the distri-

bution of the predictions made by the initial classifier on the open world data

is provided in Table 7.3. This table shows, that majority of the instances in O

that belong to the unknown class are misclassified as class 1. This shows that

class 3 possess semantic similarity with class 1 in the vector space, resulting in

the misclassification as class 1, before and after the application of the frame-

work. From Tables 7.4 and 7.6,we see that in presence of of an unknown class,

the performance of the classifier on the known classes is not degraded much, but

the framework automatically discovered the single unknown class and correctly

classified 1630 instances out of 1977 instances totally present. This case study

demonstrates the possibility of open world problems in social media analytics and

also the applicability of the proposed framework to such real world applications.

Table 7.2: Parameters setting for Algorithm 2 - Twitter data

Parameter Value

Maximum probability limit (H) 3
Termination parameter (ω) 0.25
Termination parameter (β) 0.1
Prediction confidence (γ) 0.6
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Table 7.3: Confusion matrix for the initial performance of C on O for Twitter
data

Predicted class

True class 0 1 2 3

0 49 128 16 0
1 7 467 5 0
2 3 36 157 0
3 252 1631 94 0

Table 7.4: Confusion matrix for the final performance of C on O for Twitter data

Predicted class

True class 0 1 2 3

0 23 50 9 111
1 4 383 2 90
2 0 20 150 26
3 19 321 7 1630

Table 7.5: Initial and final performance of C on O for Twitter data

Performance metric Initial Final

Accuracy 0.24 0.77
Precision 0.08 0.79
Recall 0.24 0.77
F1−score 0.11 0.76

Table 7.6: Initial and final performance of C on known classes for Twitter data

Performance metric Initial Final

Accuracy 0.82 0.69
Precision 0.83 0.85
Recall 0.82 0.69
F1−score 0.79 0.72
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Chapter 8

Summary

8.1 Conclusion

To date, the problem of open world classification has been addressed primarily in

the domain of computer vision. Most of the works that are available in the litera-

ture try to solve this problem especially for the image data. The main goal of this

work is to be able to generalize the problem of open world classification without

confining it to a particular domain or the data being worked upon. To the best of

our knowledge, there is no work in the literature that solves the problem of open

world classification, irrespective of the nature of the data and also the classifier

in use. We address this issue by developing a framework that is based on the

projection of data on to a probabilistic space as opposed to working with the

original feature space. Hence, this projection provides the method to generalize

to any type of data. Also, the idea of projecting the data onto a probabilistic

space makes the methodology independent of the classifier, as it is possible to

generate the probabilistic space using any classifier. Furthermore, most of the

techniques available in the literature that address this issue are either data spe-
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cific or algorithmic specific. Considering this issue, we propose a methodology

that acts like an accessory to any classifier to solve the problem of open world

classification.

It is evident from the literature review that most of the works in this field

try to build models that focus mainly on the identification phase. This is just a

partial solution and is complete only when the identified data points are organized

into their respective classes. While there are a few works in the literature that

address the problem of discovering the unknown classes, their solutions are not

accurate as they just provide an estimate as to how many unknown classes can be

present in the open world data. To address this issue, in this paper, we propose a

novel way of categorizing the data instances belonging to unknown classes based

on the idea of residual signature. Each unknown class can possess a unique

signature in the probabilistic space and this idea is leveraged to group the data.

The experiments prove the successful working of the proposed methodology for

different number of unknown classes and also for different types of data. The

case study presented in this paper demonstrates the applicability of the proposed

framework to social media analytics to improve community resilience.

8.2 Limitations

Ideally, we would expect Algorithm 1 to flag only those instances that belong to

the unknown classes. However, we see some of the observations from the known

classes also being flagged by the algorithm. From the results in Section 6.5, we see

that the framework does not perform as expected when used in conjunction with

a low quality classifier. Another limitation is with regards to Algorithm 2 where

the performance of the framework is relatively poor when there are fewer number
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of known classes present in the data. This is specifically true when the number of

unknown classes is greater than the number of known classes. Furthermore, when

few instances are associated with a particular itemset during the categorization

phase, causes imbalance in the dataset which makes the task of training the

machine learning model difficult.

In Algorithm 2, the class labels can be replaced with the actual probability

values to generate the itemsets. Techniques such as [35–40], one shot learning

[41, 42] can be applied when dealing with imbalanced data sets.

8.3 Future work

This framework is based on the assumption that the open world data is already

available at once, which is basically referred to as the offline setting. One of

the future works could be based on adapting this framework to the online set-

ting, where a single or relatively small number of instances are provided to the

framework at a given instance of time.
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[63] Sung Hee Park, José A Reyes, David R Gilbert, Ji Woong Kim, and Sangsoo

Kim. Prediction of protein-protein interaction types using association rule

based classification. BMC bioinformatics, 10(1):36, 2009.

[64] Osmar R Zaiane, Jiawei Han, and Hua Zhu. Mining recurrent items in mul-

timedia with progressive resolution refinement. In Proceedings of 16th In-

ternational Conference on Data Engineering (Cat. No. 00CB37073), pages

461–470. IEEE, 2000.

[65] Mei-Ling Shyu, Shu-Ching Chen, and Rangasami L Kashyap. General-

ized affinity-based association rule mining for multimedia database queries.

Knowledge and Information Systems, 3(3):319–337, 2001.

74



[66] James J Treinen and Ramakrishna Thurimella. A framework for the ap-

plication of association rule mining in large intrusion detection infrastruc-

tures. In International Workshop on Recent Advances in Intrusion Detec-

tion, pages 1–18. Springer, 2006.

[67] Shingo Mabu, Ci Chen, Nannan Lu, Kaoru Shimada, and Kotaro Hirasawa.

An intrusion-detection model based on fuzzy class-association-rule mining

using genetic network programming. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), 41(1):130–139, 2010.

[68] Donato Malerba, Floriana Esposito, Francesca A Lisi, and Annalisa Ap-

pice. Mining spatial association rules in census data. Research in Official

Statistics. v5 i1, pages 19–44, 2003.

[69] Qin Ding, Qiang Ding, and William Perrizo. Association rule mining on

remotely sensed images using p-trees. In Pacific-Asia Conference on Knowl-

edge Discovery and Data Mining, pages 66–79. Springer, 2002.

[70] Umamaheshwaran Rajasekar and Qihao Weng. Application of association

rule mining for exploring the relationship between urban land surface tem-

perature and biophysical/social parameters. Photogrammetric Engineering

& Remote Sensing, 75(4):385–396, 2009.

[71] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining

association rules. In Proc. 20th int. conf. very large data bases, VLDB,

volume 1215, pages 487–499, 1994.

[72] Brian A Johnson and Kotaro Iizuka. Integrating openstreetmap crowd-

sourced data and landsat time-series imagery for rapid land use/land cover

75



(lulc) mapping: Case study of the laguna de bay area of the philippines.

Applied Geography, 67:140–149, 2016.

[73] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and

Jorge Luis Reyes-Ortiz. A public domain dataset for human activity recog-

nition using smartphones. In Esann, volume 3, page 3, 2013.

[74] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist

handwritten digit database. ATT Labs [Online]. Available:

http://yann.lecun.com/exdb/mnist, 2, 2010.

[75] X. Wang, M. Gerber, and D. Brown. Automatic crime prediction using

events extracted from twitter posts. In Proceedings of the 2012 5th In-

ternational Conference on Social Computing, Behavioral-Cultural Modeling

and Prediction, pages 231–238, 2012.

[76] J. Ritterman, M. Osborne, and E. Klein. Using prediction markets and

twitter to predict a swine flu pandemic. In Proceedings of the 1st Interna-

tional Workshop on Mining Social Media, volume 9, pages 9–17, 2009.

[77] J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, and X. Deng. Exploiting topic

based twitter sentiment for stock prediction. In Proceedings of the 51st

Annual Meeting of the Association for Computational Linguistic, pages 24–

29, 2013.

[78] A. Tumasjan, T. Sprenger, P. Sandner, and I. Welpe. Predicting elections

with Twitter: What 140 characters reveal about political sentiment. In Pro-

ceedings of the 4th International Conference of Weblogs and Social Media,

volume 10, pages 178–185, 2013.

76



[79] Mark T Riccardi. The power of crowdsourcing in disaster response opera-

tions. International Journal of Disaster Risk Reduction, 20:123–128, 2016.

[80] Christian Reuter, Gerhard Backfried, Marc-André Kaufhold, and Fabian
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