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Abstract 

Thermal energy storage is one of the many strategies that are effective in alleviating the 

electrical power supply and demand imbalance issues on the electric grid, and buildings are a good 

place to implement such storage solutions because of their high electricity consumption. This 

thesis presents a novel energy storage solution by incorporating phase change material (PCM) in 

the building supply-air duct. The in-duct PCM storage has various advantages compared to PCM-

integrated walls including more effective heat transfer (forced convection and greater temperature 

differentials). During off-peak hours, the system runs at a supply-air temperature below the 

material’s solidification point to charge the PCM with cooling energy. During on-peak hours, a 

higher supply-air temperature is utilized so that the stored energy can be discharged into the 

supply-air. This shifts a portion of building’s cooling load from the on-peak hours to the off-peak 

hours. A numerical model for the melting and solidification of PCM in the duct was developed 

and modified using experimental data. Whole building energy simulations were conducted by 

coupling the PCM numerical model with EnergyPlus' DOE prototypical building model in a 

Simulink co-simulation platform. Simulations were performed for three cities in different climate 

zones over a three-month cooling season (June to August) and the PCM storage reduced the on-

peak energy consumption by 20-25%. The electricity cost and payback period were determined 

using current time-of-use electricity rates. 
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1. Introduction 

While the introduction of renewable energy sources has provided an alternative to fossil 

fuels and their associated greenhouse gas emissions, their limited window of availability 

(particularly solar energy) has resulted in the rapid ramping of fossil fuel power plants to make up 

for the energy shortfall during the evening hours [1]. As a result, a lot of stress is put on these 

plants over a short period of time, which might shorten their lifespan and lower the overall 

generation efficiency. Thus, there is a need to shift the demand on the electricity grid to off-peak 

hours and create a more balanced daily supply and demand. In the US, commercial buildings and 

residential homes account for about 40% of the total energy consumption, and in commercial 

buildings, 32% of that energy is consumed by the Heating, Ventilation and Air-Conditioning 

(HVAC) systems [2]. Furthermore, the square footage of commercial buildings increased by 78% 

between 1978 and 2008. This trend indicates that buildings and their HVAC systems will continue 

to be a significant contributor to the US energy consumption. This makes commercial buildings 

an attractive area to implement energy savings and peak load reduction strategies.  

 Thermal energy storage (TES) is one of the many strategies that are effective in alleviating 

the electrical power supply and demand imbalance issues on the electric grid, and buildings are a 

good place to implement such storage solutions because of their high electricity consumption. TES 

can be implemented in buildings using sensible heat or latent heat [3]. Sensible heat storage 

involves using the building’s thermal mass as a thermal battery by increasing or decreasing the 

temperature of the building envelope. Latent heat storage involves using a phase change material’s 

(PCM) latent heat of fusion to store energy in the material during the phase change process. 
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The proposed PCM latent energy storage solution is displayed in Figure 1.1. The PCM will 

be located in the supply-air duct in order to take advantage of the forced convection heat transfer 

provided by the moving air. The supply-air temperature (SAT) will be lowered to initiate the PCM 

solidification (PCM charging) and store “cooling” energy in the PCM. Once the PCM has 

solidified, the SAT is increased to initiate the PCM melting process (PCM discharging). The PCM 

charging process is conducted during the off-peak hours and the PCM discharging process is 

conducted during the on-peak hours. This increases the HVAC cooling load during the PCM 

charging and decreases it during the PCM discharging. When implemented with time-of-use 

(TOU) electricity rates, which have a higher electricity price during on-peak hours and lower 

electricity cost during off-peak hours, the building electricity cost can be effectively reduced. 

The objective of this thesis is to evaluate the energy cost savings and peak electric demand 

reduction that can be achieved installing PCM in the supply air duct of the HVAC system. This 

objective will be achieved by formulating a model for the melting and solidification of PCM in the 

duct, conducting a whole building simulation for a PCM-equipped medium office building in 

different climate zones using an EnergyPlus-Simulink co-simulation platform, and calculating the 

energy cost savings and payback period using current TOU rates. 
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Figure 1.1. Proposed PCM storage location 
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2. Literature Review 

PCM undergo solid-liquid phase transitions at a temperature within the operating 

temperature of a thermal energy system [4]. They can be classified into organic, inorganic and 

eutectic [5]. Organic PCMs are non-toxic, non-corrosive and have good thermal stability; however, 

they have low thermal conductivity which leads to high phase change times [6]. While inorganic 

PCMs have high thermal conductivity, they are more corrosive, toxic and have lower chemical 

and thermal stability, which makes them less suitable to be placed in the supply air duct. 

The use of PCM as latent heat storage has previously been investigated in many studies. 

Iten et al. [3] conducted a review of free cooling TES and PCM incorporated in the building 

envelope to increase the building’s thermal mass.  For PCM incorporated in the building envelope, 

the energy storage is driven by the increase or decrease in the outdoor or indoor temperatures, 

which initiates the melting or solidification process. Safari et. al [7] investigated the 

implementation of PCM in roof and wall construction using the Fanger comfort model to control 

HVAC thermostat operation in Madrid’s climate zone. They found that a PCM with 27 °C melting 

temperature resulted in the highest energy savings potential, and 5 mm thick modules resulted in 

a maximum of 16% annual energy savings and a minimum 6.38-year payback period for the office 

schedule. Neeper [8] investigated the thermal dynamics of a wallboard impregnated with PCM. 

The study found that the maximum diurnal energy storage occurs at a value of the PCM melt 

temperature that is close to the average room temperature in most circumstances. The diurnal 

storage achieved in practice may be limited to a range of 300–400 kJ/m2, even if the wallboard has 

a greater latent capacity. However, the investigation used a pre-determined hourly room 

temperature profile, and the effect of the PCM on the room temperature was not considered. Sleiti 

and Naimaster [9] investigated the building energy performance of recently developed organic 
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(fatty acid based) PCM products in ceiling constructions for a simulated quick service restaurant 

building model located in Atlanta, GA. PCM was added in the ceiling, in between the gypsum 

board and attic floor frame and insulation. The PCM cases considered were not able to achieve 

any changes in the zone air temperature that would translate to significant HVAC energy savings. 

In an experimental and numerical study, Athienitis et al. [10] impregnated PCM in gypsum board 

and inserted it in the inside wall lining of a full-scale outdoor test room. They observed reasonable 

agreement in the simulation and experimental results, which demonstrated that a maximum room 

temperature reduction of about 4 °C during the daytime. Lin et al. [11] studied an electrical floor 

heating system with ductless air supply and shape-stabilized PCM. The study demonstrated the 

electrical load shifting capabilities from the on-peak to off-peak periods; however, the economic 

benefits might be offset by implementing this novel under-floor heating system. PCM has also 

been incorporated in window panes and shutters to minimize solar heat gains through the window 

[12] [13]. One of the limitations for PCM TES incorporated in the building envelope is that the 

fluctuations in the zone temperature required to perform energy storage can lead to discomfort for 

the occupants [14] [15]. The air-to-PCM heat transfer is low due to the reliance on natural 

convection and the small temperature difference limits the effectiveness and heat penetration 

depth. 

Free cooling TES has been previously investigated, and it involves using the stored cooling 

potential of cold night-time air to cool the indoor space during the day [16]. At night, cold outdoor 

air is circulated through the PCM storage unit, which solidifies the PCM and stores “cooling 

energy” in it. During the day, hot air from the room is circulated through the PCM storage unit, 

which melts the PCM and delivers cooled air to the interior space. Zalba et al. [17] designed an 

experimental installation to study a PCM free cooling system using a flat plate heat exchanger. 
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Their analysis showed that the main parameters with significant influence on the solidification and 

melting processes are the thickness of the encapsulation, the inlet temperature of the air, the air 

flow rate, and the interaction thickness and temperature. Mosaffa et al. [18] performed a numerical 

investigation on the performance enhancement of a free cooling using TES unit for multiple PCMs. 

They modeled the PCM melting and solidification using the heat capacity method and investigated 

the effect of the PCM slab length and thickness, and the air passage width using an energy 

optimized method. They demonstrated that a system that utilized a PCM combination of 

CaCl2·6H2O and Rubitherm RT25, an optimum air channel width of 3.2 mm, length of 1.3 m and 

PCM slab thickness of 10 mm can achieve an optimum COP of 7.0 in Tabriz, Iran. Anisur et al. 

[19] investigated analytically and experimentally a shell and tube latent heat storage system using 

heptadecane with melting point 22.33 °C. The study found that a higher inlet temperature led to a 

higher COP, and the COP was to be 4.16 for an inlet temperature of 34.5 °C, tube inner radius of 

5.35 mm and thickness of 1 mm. Osterman et al. [20] investigated the performance of a latent heat  

storage unit experimentally and numerically using Fluent. The investigation was conducted over 

the period of a year: in the summer, free cooling was stored in the PCM using cold night air, and 

in the winter, free heating was stored in the PCM during the day using a solar air collector and 

released to the indoor space at night. The study found that the largest winter savings occurred in 

March because of the availability of heat in larger quantities, and the largest cooling storage 

occurred in July and August because of the larger temperature fluctuations between day and night. 

Takeda et al [21] investigated the reduction of the ventilation load during summer in various 

Japanese cities by installing a packed bed of PCM granules in the supply-air ventilation duct. When 

the outdoor air temperature is less than room air, two separate streams of outdoor air flow into the 

room and through the PCM bed to simultaneously charge the PCM and cool room. The air that 
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leaves the PCM section is exhausted to the outdoor environment because it has gained heat from 

the PCM. When outdoor air temperature is higher than room air, outdoor air only passes through 

PCM bed and goes into room. The maximum ventilation load reduction was determined to be 

62.8% in Kyoto; however, in the study the indoor air temperature was kept constant (26 °C) and 

heat transfer through the building walls was not considered. Yanbing et al [22] analyzed the 

thermal behavior of a Night Ventilation with PCM Packed Bed Storage (NVP) and determined 

convective heat transfer coefficients of 12 to 19 W/m2·°C and air flow resistance through the PCM 

of less than 20 Pa. Free cooling can also take advantage of geocooling in climates where the ground 

temperature is lower than room temperature. McKenna et al [23] explores the potential for using 

geocooling or ‘geothermal free cooling’ in combination with TES to reduce the energy and carbon 

impact of cooling in a small, lightweight commercial building located in a Mediterranean climate. 

A mathematical model was developed and validated experimentally and implemented in TRNSYS. 

The geocooling alone was able to meet 84% of the cooling load, but the inclusion of PCM storage 

increased the capacity to 99%. Free cooling TES is attractive because it makes affective use of 

“free” energy source, but its main disadvantage is the requirement for bypass duct/dampers to 

allow for the active control of the charging/discharging periods and prevent overcooling of the 

indoor spaces. 

PCM TES has also been implemented in solar cooling systems to provide cooling during 

solar energy’s unavailability [16]. Helm et al. [24] studied the benefits of a solar-driven absorption 

cooling system that uses a PCM storage unit and a dry air cooler instead of a conventional wet 

cooling tower in the heat rejection circuit. They found that energy consumed by the heat rejection 

can be shifted to night-time or off-peak hours, which have lower ambient temperatures. Helm et 

al. [25] performed another study of a solar-driven absorption cooling system with a PCM TES and 
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dry air cooler heat rejection circuit that consisted of four pilot installations between 7 kW and 90 

kW nominal cooling capacity and latent heat storages between 80 kWh and 240 kWh. Annual in 

situ measurement data demonstrate an increase off the seasonal energy efficiency ratio (SEER) for 

cooling up to 11.4, and simulations under different climatic conditions indicate a rise in efficiency 

up to 64% compared to a system with solely dry re-cooling. Belmonte et al. [26] performed a 

feasibility study for the integration of a dry air cooler and PCM TES in the heat rejection circuit 

of absorption solar cooling systems for the residential sector in Spain. They found that the chiller’s 

COP is deteriorated by 7-13%, and the evaporator’s total cooling energy is decreased by 21-38% 

when compared to a conventional wet cooling tower; however, the system efficiency is improved 

by 50%. While the implementation of PCM TES can improve the efficiency of solar cooling 

systems, this application is limited to systems that already use solar energy, and the capital costs 

of converting to solar cooling systems will reduce the potential energy cost savings. 

Dedicated cold storage using ice is a latent heat thermal energy storage solution with 

validated field deployments [27] [28]. Ice can be stored in tanks and employed to shift the energy 

demand from on-peak to off-peak hours [29]. In larger applications, summer heat is stored to 

provide space heating during the winter, and winter cool is stored to provide space cooling in the 

summer [30]. Yau and Lee [31] conducted a simulation case study using TRNSYS and Typical 

Meteorological Year (TMY) weather data for Kuala Lumpur. They employed an ice-slurry cooling 

storage system in a library building, which increased the cumulative energy consumption by 20% 

from the existing system. However, the shifting of the chiller load to the off-peak period led to 

energy cost savings of about 24%. Morgan and Krarti [32] investigated the peak cooling shifting 

capabilities of ice thermal storage in a Colorado elementary school. A 50 ton scroll compressor 

charges three ice tanks during the night, and the stored cooling is used during the day while the 
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chiller is kept in assist mode to handle unexpected cooling loads. They found that the ice storage 

system could achieve annual energy cost savings of around 47% due to a utility rate of 

$0.0164/kWh and a demand charge of $11.24/kW. Despite the energy cost savings potential of ice 

cold storage systems, their applications are limited to large commercial design due to the 

complicated design, high capital investment and maintenance costs. 

 The PCM TES solution proposed in this thesis attempts to address some of the issues 

pointed out in the aforementioned studies. By placing the PCM in the supply air duct, the heat 

transfer is driven by forced convection, which should improve the rate of thermal penetration 

compared to the passive systems. The supply-air temperature can be adjusted to provide a high 

enough temperature difference between the air and the PCM, and at the same time still ensure that 

enough cooling is being provided to the building zones. The solution does not require any bypass 

duct or dampers, so it is easier to retrofit than most of the free cooling solutions. 
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3. Whole Building Simulation 

In this section, the PCM model and EnergyPlus-Simulink co-simulation platform used to 

perform the whole building simulations are described. 

3.1 PCM Model 

The PCM is installed into the supply-air duct by mounting it on the interior surfaces of the 

vertical and horizontal duct walls, as displayed in Figure 3.1. Heat is transferred between the air 

and PCM through the PCM casing. The duct wall is assumed to be well insulated with external 

duct insulation and no heat is lost through the duct wall. 

 

Figure 3.1. Cross-sectional view of PCM in HVAC Duct 

The PCM model used in the whole building simulation is adapted from the Enthalpy 

method [33]. The heat transfer in the PCM is modeled as a one-dimensional conduction-controlled, 

two-region melting problem in a finite slab, which means that heat transfer is only considered in 

one direction and the natural convection heat transfer effects in the PCM are not considered. The 
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density of the solid and liquid phases is assumed to be equal (ρs = ρl = ρ), and the governing 

equation is 

 
𝜌

𝜕ℎ

𝜕𝑡
=

𝜕

𝜕𝑥
𝑘

𝜕𝑇

𝜕𝑥
 

 

3.1 

which is valid for the entire PCM region. The initial enthalpy is defined as 

 

ℎ(𝑇) =

⎩
⎪
⎨

⎪
⎧𝑐 (𝑇 − 𝑇 )                                          𝑇 < 𝑇

0                                 𝑇 = 𝑇 , fully solidified
ℎ                                    𝑇 = 𝑇 , fully melted

𝑐 (𝑇 − 𝑇 ) + ℎ                                𝑇 > 𝑇

 

 

 

3.2 

where hsl is the latent heat of the PCM, Tm is the PCM melting temperature, cpl is the liquid specific 

heat of the PCM and cps is the solid specific heat of the PCM. The PCM is initially either fully 

solid or liquid, but when the PCM is melting/solidifying, h is between 0 and hsl. The initial PCM 

thermal conductivity is assigned according to the initial phase: 

 
𝑘(𝑇) =

𝑘      𝑇 ≤ 𝑇 ,      ℎ(𝑇) ≤ 0

𝑘      𝑇 ≥ 𝑇 ,     ℎ(𝑇) ≥ ℎ
 

 

3.3 

where ks and kl are the solid and liquid thermal conductivities, respectively. The governing 

equation is discretized using a forward difference in time and central difference in space as follows: 

 
𝜌

ℎ − ℎ

∆𝑡
=

𝑘 𝑇 − 𝑇 − 𝑘 𝑇 − 𝑇

(∆𝑥 )
     𝑗 = 2, … , 𝑁 − 1 

 

3.4 
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where the location and time are represented by j and n, respectively. Figure 3.2 displays how the 

nodes in the PCM are arranged. The thermal conductivities at the half-grid, kj+½ and kj-½, are 

calculated using the harmonic mean method: 

 
𝑘 =

2𝑘 𝑘

𝑘 + 𝑘
 

3.5 

 
𝑘 =

2𝑘 𝑘

𝑘 +𝑘
 

3.6 

 

 

Figure 3.2. PCM model node arrangement 

When rearranged to solve for the enthalpy at the (n+1)th timestep, equation 3.4 becomes 

ℎ =
∆𝑡

𝜌(∆𝑥)
𝑘 𝑇 + 𝑘 𝑇 + ℎ −

∆𝑡 𝑘 + 𝑘

𝜌(∆𝑥)
𝑇    

 

3.7 

The enthalpy at node N, which is adjacent to the duct wall, is calculated using 

 

ℎ =
∆𝑡

𝜌(∆𝑥 ) 

𝑘 (𝑇 − 𝑇 )

∆𝑥
−

𝑇 − 𝑇

∆𝑥 2⁄
𝑘

+
∆𝑥 2⁄

𝑘

+ ℎ  

 

3.8 

where TD is the duct temperature, ΔxD is the duct thickness, kD is the duct thermal conductivity and 

A is the area perpendicular to the heat flow. Once the enthalpy at each node is determined, the 

temperature is found using 



   
 

13 
 

 

𝑇 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

 

𝑇 +
ℎ

𝑐
                      ℎ ≤ 0   (𝑠𝑜𝑙𝑖𝑑) 

 
  𝑇                  0 < ℎ < ℎ   (𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒)

 

𝑇 +
ℎ − ℎ

𝑐
     ℎ ≥ ℎ      (𝑙𝑖𝑞𝑢𝑖𝑑) 

 

 

 

 

3.9 

The heat transfer into the duct wall is calculated as 

 
𝑚 𝑐

𝑇 − 𝑇

∆𝑡
=

𝑇 − 𝑇

∆𝑥 2⁄
𝑘 𝐴

+
∆𝑥 2⁄

𝑘 𝐴

 
3.10 

3.2 Air-to-PCM Heat Transfer 

The air-to-PCM heat transfer was modeled using the convection correlations for internal 

turbulent flow, specifically the Dittus-Boelter correlation [34]. The Nusselt number is calculated 

using 

 𝑁𝑢 = 0.023𝑅𝑒
/

𝑃𝑟  3.11 

where ReD is the Reynolds number and Pr is the Prandtl number. The Prandtl number is calculated 

using  

 𝑃𝑟 =
𝑐 𝜇

𝑘
 3.12 

 where cpa is the specific heat of the air, μ is the dynamic viscosity and ka is the thermal conductivity 

of the air. The Reynolds number is calculated using 

 
𝑅𝑒 =

𝜌 𝑣𝐷

𝜇
 

3.13 
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where ρa is the air density, v is the air velocity, Dh is the hydraulic diameter. The hydraulic diameter 

is calculated using  

 
𝐷 =

4𝐴

𝑃
 

3.14 

where Ac is the duct cross-sectional area and P is the wetted perimeter. The convective heat transfer 

coefficient is calculated as 

 
ℎ =

𝑁𝑢 𝑘

𝐷
 

3.15 

The heat transfer through the PCM casing wall is calculated using 

 
𝑚 𝑐

𝑇 − 𝑇

∆𝑡
=

𝑇 − 𝑇

1
ℎ𝐴

+
∆𝑥 2⁄

𝑘 𝐴

−
𝑇 − 𝑇

∆𝑥 2⁄
𝑘 𝐴

+
∆𝑥 2⁄

𝑘 𝐴

 

 

3.16 

where mw is the mass of the PCM casing wall, cw is the specific heat of the PCM casing wall, Tw 

is the temperature of the PCM casing wall, Tair is the air temperature, Δxw is the wall thickness, kw 

is the wall thermal conductivity and T1 is the temperature of the PCM node adjacent to the wall. 

The enthalpy of the first PCM node is calculated using 

 
ℎ =

∆𝑡

𝜌(∆𝑥 ) 

𝑞

𝐴
−

𝑘 (𝑇 − 𝑇 )

∆𝑥
+ ℎ  

 

3.17 

where  

 
𝑞 =

𝑇 − 𝑇

∆𝑥 2⁄
𝑘 𝐴

+
∆𝑥 2⁄

𝑘 𝐴

 
3.18 
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The length of the duct is divided into different sub-sections and the PCM model is 

evaluated at each sub-section in a sequence from the inlet to the outlet sub-section. The outlet air 

of the previous subsection is considered the inlet air of the next section. Figure 3.3 displays the 

flow of air and energy in each duct subsection. The temperature of the air entering the next duct 

sub-section is calculated using 

 𝑇 = 𝑇 −
𝑞

�̇� 𝑐
 3.19 

where �̇�  is the air mass flow rate and 

 
𝑞 =

𝑇 − 𝑇

1
ℎ𝐴

+
∆𝑥 2⁄

𝑘 𝐴

 
3.20 

 

 

Figure 3.3. Lengthwise view of heat transfer in one duct section 
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3.3 PCM Experiment 

3.3.1 Experiment Setup 

The objective of the small-scale experiment is to determine the heat transfer enhancement 

of adding fins to the PCM module. The test was conducted by placing a 1” deep acrylic tray that 

is filled with PCM and covered by a finned aluminum sheet downstream of an Air Handling Unit 

(AHU) as displayed in Figure 3.4. The AHU blew air over the PCM module; the supply air 

temperature was measured using an array of 5 thermocouples suspended in the duct and the airflow 

rate was measured using a hot-wire anemometer. Inside the PCM tray, two columns are mounted 

to the bottom of the tray to suspend thermocouples at depths of 0.25”, 0.5”, and 0.75”. Two 

thermocouples were also placed on the inside surfaces of the tray bottom and the aluminum fins. 

The dimensions of the finned aluminum lid are displayed in Figure 3.5 and Table 3.1. The PCM 

used in the experiment was PureTemp 15, which is a biobased PCM with a nominal melting point 

of 15˚C [35]. The PCM thermal properties are displayed in  

Table 3.2. 

 

Figure 3.4. Placement of PCM module in HVAC Duct 
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Figure 3.5. Dimensions of the finned aluminum lid 

 

Table 3.1. Aluminum fin dimensions 

Dimension Value (in.) 

a 0.100 

b 0.188 

c 0.100 

d 0.406 

e 0.163 

f 0.238 

 
Table 3.2. PCM thermal properties 

Thermal Property Value 

Tm (°C) 15 

hsl (J/kg) 182000 

ρ (kg/m3) 905 

cpl (J/kg·K) 2560 

cps (J/kg·K) 2250 

kl (W/m·K) 0.15 

ks (W/m·K) 0.25 
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3.3.2 Experiment Parameters 

The AHU’s operating parameters were controlled and measured using a LabVIEW 

program. The experiment was conducted in two stages: the first stage consisted of solidifying the 

PCM that was initially in the liquid phase, and the second stage consisted of melting the PCM 

directly after the first stage. During the first stage, the supply-air temperature was set at 9 °C, and 

the airflow rate was set to 700 CFM. During the second stage, the supply-air temperature was set 

to 19 °C, and the airflow rate was set to 1475 CFM to achieve a similar cooling rate to the first 

stage. Figure 3.6 displays the variation of the test parameters during the experiment. 

 

Figure 3.6. PCM Experiment Test Parameters 

3.3.3 Experiment Results and Analysis 

The variation of PCM temperatures is displayed in Figure 3.7. Initially, the PCM 

temperature decreases as it loses heat to the colder overflowing air. The PCM that was used has 

an advertised melting temperature of 15 °C, but the PCM’s temperature dropped to around 12.5 
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°C and began to rise again due to the subcooling effect, which causes the PCM temperature drops 

below the melting temperature while the initial solid crystals are being formed.  

The first stage lasted for 5.6 hours and at this point between 75% and 50% of the PCM had 

solidified. This can be deduced from the rapid decrease in the PCM temperature at the 0.5” height, 

while the PCM temperature was slightly decreasing at the 0.25” height. This is confirmed visually 

in Figure 3.8, which shows the solid PCM at the top and the solid-liquid interface below halfway 

depth. Once stage 2 began, the PCM temperatures began to increase as heat was being gained from 

the hot air. Initially, the bottom and 0.25” high thermocouples recorded an increase in temperature, 

but the temperature quickly decreased and started rising slowly. This was caused by taking the tray 

out for inspection at the end of the first stage, which exposed the bottom of the tray to the warmer 

room air. This effect is displayed in Figure 3.9 where a solid layer can be seen on the bottom of 

the tray. After 4.4 hours, the PCM had fully melted, which is indicated by the rapid increase in 

temperature of the bottom thermocouple and the absence of solid crystals in Figure 3.10. 
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Figure 3.7. PCM temperature profile over the duration of the experiment  

 

 
Figure 3.8. PCM Solidification at the end of Stage 1 
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Figure 3.9. PCM melting at 3 hours after stage 2 commenced 

 

 
Figure 3.10. Fully melted PCM at the end of stage 2 

The experimental data was used to estimate a heat transfer enhancement factor to the PCM 

model that represents the addition of fins. The three parameters chosen to apply the enhancement 

factor are the air-side convective heat transfer coefficient and the solid and liquid PCM thermal 

conductivities, since the addition of fins enhances both the air-to-PCM convection and in-PCM 

conduction heat transfer. The factor was applied using a scalar multiplier, z, where 

 ℎ , = ℎ ∗ 𝑧 

𝑘 , = 𝑘 ∗ 𝑧 

𝑘 , = 𝑘 ∗ 𝑧 

 

3.21 

liquid 
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The factor z was determined using MATLAB’s nlinfit function to perform a nonlinear 

curve fitting. The experimental data for each PCM depth is concatenated into one vector and the 

temperature reported by the PCM model at the respective depths is also concatenated to form the 

two datasets that are fitted. Figure 3.11 displays the comparison of the experiment data and the 

PCM model’s predicted temperature at each depth. The melting temperature used in the PCM 

model was changed to 13.5 °C to better match the measured dynamics. The PCM model was 

unable to reflect the rate at which the PCM melted during the experiment. The top temperature 

was the only temperature that reached the melting point during the first stage predicted by the 

model. However, it only experienced a rapid decrease in temperature (which signifies a complete 

phase change at that point) after 5 hours. The rest of the PCM temperature remained above the 

melting temperature for the duration of stage 1, which show that they had not undergone phase 

change, and does not match the rate of solidification recorded in the experiment.  
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Figure 3.11. PCM Temperature predicted by the PCM model before the factor z is applied 

The enhancement factor z was estimated to be 8.5, and the resulting temperature 

distribution simulated by the corrected PCM model is shown in Figure 3.12. After z is applied, the 

PCM model is now much closer to the experimental data, although it is not a complete match. The 

sources of mismatch are the non-ideal phase change due to PCM subcooling, which is not captured 

by the Enthalpy method. The single enhancement factor limits how close the PCM model is fitted 

to the experimental data because it assumes that the air-to-PCM heat transfer enhancement is equal 

to the internal PCM heat transfer enhancement. Also, the fin depth is lower than the PCM 

thickness, which causes a non-uniform conductivity enhancement in the PCM. 

 For the top temperature, the PCM model undergoes rapid solidification and melting at the 

beginning of the first and second stages, but the final temperature was higher for stage 1 and lower 

for stage two. This trend is similar for the other temperature nodes. The duration of the melting 
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and solidification processes are similar but there is a difference in the final temperature when the 

phase change is complete. Since the focus of the simulation is latent energy storage, the tracking 

the phase change process is more important than the sensible heating process. In the whole building 

simulations, the enhanced PCM heat transfer model was used.  

 

Figure 3.12. PCM Temperature predicted by the PCM model after the factor z is applied 

3.4 EnergyPlus and Simulink Cosimulation Platform 

3.4.1 Co-simulation Platform Description 

The whole building energy simulation was performed using an EnergyPlus co-simulation 

platform in Simulink that was developed by my colleague, Aly Elhefny. The EnergyPlus 

Functional Mock-up Unit (FMU) file contains the building energy models and is linked to the 

PCM model using three primary interfacing variables, which are updated at each timestep in a 

0 2 4 6 8

104

10

12

14

16

18

P
C

M
 T

e
m

p
er

at
ur

e
 (d

e
g

re
e

s 
C

)

PCM Model-Experiment Data Fittiing

Fitted PCM Model

Experiment Data

top 0.75”
5 

0.50”
5 

0.25”
5 

bottom 



   
 

25 
 

ping-pong scheme. Figure 3.13 displays a schematic drawing of the co-simulation. The EnergyPlus 

FMU outputs the supply-air mass flow rate and supply air temperature, which are input to the PCM 

model which outputs the temperature at the outlet of the PCM section after the PCM model’s heat 

transfer calculations have been performed. The EnergyPlus FMU then inputs this temperature as 

the air temperature being supplied to the individual zones.  

The building type used in the co-simulation was the three-floor prototypical medium office 

building, which contains 15 conditioned zones (3 core zones and 12 perimeter zones). Each floor 

has a dedicated air handling unit and a direct-expansion air-conditioning system. Each zone has a 

variable air volume terminal with reheat.  

 

Figure 3.13. Schematic diagram of EnergyPlus co-simulation platform in Simulink developed 

by Aly Elhefny 

3.4.2 Candidate Cities 

The building loads and HVAC performance are dependent on the climate region that the 

building is located in. The whole building simulation was conducted for multiple cities to 

understand how the performance of the proposed PCM storage is affected by the climate location. 

Table 3.3 and Figure 3.14 display the candidate cities in which the whole building simulation was 
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conducted. The climate zones 1A, 3B and 5A are designated as hot-humid, hot-dry and cold, 

respectively. The U.S. Department of Energy (DOE) [36] defines the climate zones as follows: 

1. Hot-humid 

A hot-humid climate is generally defined as a region that receives more than 20 in. (50 cm) of 

annual precipitation and where one or both of the following occur: 

 A 67°F (19.5°C) or higher wet bulb temperature for 3,000 or more hours during the 

warmest 6 consecutive months of the year; or 

 A 73°F (23°C) or higher wet bulb temperature for 1,500 or more hours during the warmest 

6 consecutive months of the year. 

2. Hot-dry 

A hot-dry climate is generally defined as a region that receives less than 20 in. (50 cm) of annual 

precipitation and where the monthly average outdoor temperature remains above 45°F (7°C) 

throughout the year. 

3. Cold 

A cold climate is generally defined as a region with approximately 5,400 heating degree days 

(65°F basis) or more and fewer than approximately 9,000 heating degree days (65°F basis). 

 These climate zones were chosen because they cover three opposing climates: the hot-

humid climate will provide high external heat gains and high external latent load, the hot-dry 

climate will provide high external heat gains and low external latent load, and the cold climate will 

provide lower external heat gains. The HVAC system was sized by EnergyPlus according to the 

design conditions for each city and corresponding climate zone. 
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Table 3.3. Whole Building Simulation Candidate Cities 

Candidate City Climate Zone 

Miami, Florida 1A 

El Paso, Texas 3B 

Buffalo, New York 5A 

 

 

Figure 3.14. Location of candidate cities and ASHRAE climate zones [37] 

3.5 Simulation Case Description 

The whole building simulations consist of two cases: baseline and PCM-equipped. The 

baseline case is the case that simulates normal HVAC operation without the PCM in the duct and 

the SAT setpoint is set at a constant value of 12.7 °C. In this case, there is no interaction between 

the EnergyPlus FMU and the PCM model. The PCM-equipped case involves lowering the SAT 

setpoint to 9.2 °C from 6 AM to 12 PM (PCM charging period) and raising the SAT setpoint to 

Buffalo 

El Paso Miami 
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15.2 °C from 12 PM to 3 PM and 15.7 °C from 3 PM to 6 PM. The period from 12 PM to 6 PM 

(PCM discharging period) corresponds with the on-peak energy hours. The simulations were 

conducted for a 3-month cooling season from the beginning of June to the end of August. 

For each case, the timestep in the EnergyPlus simulation is ten minutes. To ensure 

convergence requirements for the Enthalpy method are met, the timestep in PCM model is 0.5 s, 

which is implemented inside the MATLAB function block in Simulink. 

3.6 PCM and Duct Sizing 

The PCM mass was sized for each floor of the medium office building according to the on-

peak HVAC sensible cooling energy usage for the hottest day of the whole cooling season. The 

baseline case was simulated for the 3-month cooling season and the day with the highest on-peak 

total HVAC sensible cooling energy (𝑄 ) was used as the design day. The PCM was sized to have 

total latent heat energy equal to one tenth of the maximum one-day on-peak HVAC sensible 

cooling energy: 

 
𝑚 =

𝑄 ,  

10 ℎ
 

3.22 

 The duct in each floor was sized according to the maximum design airflow rate (∀̇ ) 

determined by EnergyPlus. The square duct width (Wd) was determined as  

 
𝑊 =

∀̇

𝑣
 

3.23 

where vmax is the maximum recommended air velocity in a duct (1200 fpm). The duct wall 

thickness is set at 1.31 mm, which corresponds with 16-gauge galvanized steel. The total length 



   
 

29 
 

of the PCM duct section was 20 m and it was divided into 20 lengthwise subsections. The PCM 

thickness was determined using the PCM mass, total duct length and duct width. 
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4. Simulation Results 

This section presents the results of the whole building simulation and the analysis to deduce 

meaningful insights on the load shifting capabilities of the PCM thermal energy storage. First, one 

day results for hot-dry and mild-humid days are presented and analyzed for El Paso. These two 

days were chosen because they have weather conditions that have high sensible and latent cooling 

loads, which will give insight into how these loads are shifted and their effect on the peak energy 

demand reduction. Then, the 3-month cooling season loads and energy costs are presented for each 

location. Lastly, the payback period for each location is determined. 

4.1 PCM Charging/Discharging Rate 

Figure 4.1 displays the supply-air temperature and post-PCM air temperature for each floor 

on a hot and dry day. The yellow shaded area represents the PCM charging period, and the green 

shaded area represents the PCM discharging period. During the charging process, the air 

temperature at the PCM section outlet is higher than the supply-air temperature, which is due to 

the heat gained by the air from the PCM. During the discharging process, the air temperature at 

the PCM section outlet is lower than the supply-air temperature, which is due to the heat lost by 

the air to the PCM. Figure 4.2 displays the air-to-PCM heat transfer rate profile for each floor on 

a hot and dry day, which is the rate that the PCM loses (positive) and gains (negative) thermal 

energy in the charging and discharging periods, respectively. Figure 4.3 displays the latent heat 

ratio (LHR), which signifies how much of the PCM has melted or frozen and how much of the 

PCM’s latent heat capacity is utilized during the charging and discharging process. The LHR is 

the mean value of the ratio between the enthalpy and hsl for all the PCM nodes. When the averaged 

enthalpy is greater than hsl, LHR is 1, and when the enthalpy is less than hsl, LHR is 0. The PCM 
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begins in a liquid phase with the LHR equal to 1. The LHR dropped to below 0.1 during the 

charging process, which means that more than 90 % of the PCM’s latent storage capacity is used. 

The supply air temperature increases above the PCM’s melting temperature in the discharging 

process, which causes the LHR to increase to above 0.95. 

 

Figure 4.1. Post-PCM air temperature profile on a hot-dry day 
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Figure 4.2. Air-to-PCM heat transfer rate profile for each floor during a hot and dry day  

 

Figure 4.3. Latent heat ratio profile for each floor during a hot and dry day 
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4.2 HVAC Sensible Cooling Load 

Figure 4.4 displays the total HVAC sensible cooling load profile for the baseline and PCM-

equipped cases on hot-dry and mild-humid days. The addition of the PCM results in an increase in 

the HVAC sensible load during the charging period due to the lower supply-air temperature and a 

decrease during the discharging period due to the lower supply-air temperature. The amount of the 

load that is shifted from the on-peak hours to the off-peak hours on the hot-dry day is 389 MJ, 

which equates to 11.4 % of the baseline on-peak sensible load. The amount of the load that is 

shifted from the on-peak hours to the off-peak hours on the mild-humid day is 306 MJ, which 

equates to 14.9 % of the baseline on-peak sensible load.  

 

Figure 4.4. Total HVAC sensible load profile for a hot-dry day and a mild-humid day  
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4.3 HVAC Latent Cooling Coil Load 

Figure 4.5 displays the HVAC latent cooling load profile for the baseline and PCM-

equipped cases on hot-dry and mild-humid days. The addition of the PCM results in an increase in 

the HVAC latent cooling load during the charging period and a decrease during the discharging 

period. The load is higher during the charging period in the PCM-equipped case because the supply 

air temperature is lower, which leads to a lower evaporating temperature and more removal of 

water vapor from the air. Conversely, the supply air temperature is higher in the discharging period, 

which results in less dehumidification because of the higher evaporating temperature and lower 

moisture level in the re-circulating air. This effect is not attributed to the presence of the PCM, but 

the variation of the supply-air temperature during the charging and discharging periods. Figure 

4.17 displays a core zone’s relative humidity profile for the baseline and PCM-equipped cases on 

a mild and humid day. During the PCM charging period, the relative humidity is lower for the 

PCM-equipped case than the baseline case because of the additional dehumidification of the supply 

air. During the PCM discharging period, relative humidity is higher for the PCM-equipped case 

than the baseline case because there is less dehumidification of the supply air due to the higher 

supply air temperature. The amount of the latent load that is shifted from the on-peak hours to the 

off-peak hours on the hot-dry day is 25.7 MJ, which equates to 52.9 % of the baseline on-peak 

latent load. The amount of the latent load that is shifted from the on-peak hours to the off-peak 

hours on the mild-humid day is 279 MJ, which equates to 40.2% of the baseline on-peak latent 

load. The mild-humid day has a higher latent cooling load than the hot-dry day due to the higher 

moisture content of the air in the outdoor environment. 
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Figure 4.5. Total HVAC latent load profile for a hot-dry day and a mild-humid day 

4.4 Total HVAC Cooling Load 

Figure 4.6 and Figure 4.7 display the total HVAC cooling load profile for the baseline and 

PCM-equipped cases on hot-dry and mild-humid days. The amount of the load that is shifted from 

the on-peak hours to the off-peak hours on the hot-dry day is 414 MJ, which equates to 12.0 % of 

the baseline on-peak total cooling load. The amount of the load that is shifted from the on-peak 

hours to the off-peak hours on the mild-humid day is 586 MJ, which equates to 21.3 % of the 

baseline on-peak total cooling load. The amount of load shifted is higher for the mild-humid day 

than the hot-dry because of the higher latent cooling load shifted during the mild-humid day. 
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Figure 4.6.Total HVAC load profile for a hot-dry day 

 

 

Figure 4.7. Total HVAC load profile for a mild-humid day 
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4.5 Total Cooling Coil Power  

Figure 4.8 displays the total HVAC cooling coil electric power consumption (compressor 

and condenser fan power) profile for the baseline and PCM-equipped cases on hot-dry and mild-

humid days. The amount of the compressor power usage that is shifted from the on-peak hours to 

the off-peak hours on the hot-dry day is 56.2 kWh, which equates to 22.6 % of the baseline on-

peak electric load. The amount of the electric load that is shifted from the on-peak hours to the off-

peak hours on the mild-humid day is 34.4kWh, which equates to 29.9 % of the baseline on-peak 

electric load. The percentage of the electric load shifted is higher than the corresponding thermal 

load shift due to the higher compressor COP during on-peak hours, which the ratio between the 

total cooling load and the total cooling coil electric power, for the PCM-equipped case. Figure 4.9 

displays the compressor COP profile for the baseline and PCM-equipped cases on hot-dry and 

mild-humid days. In both days, the compressor COP was higher for the PCM-equipped case during 

the PCM discharging. This is because a higher SAT would increase the COP with a reduced 

pressure lift across the compressor, so the compressor will require less work input to provide the 

same amount of cooling. 
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Figure 4.8. Total cooling coil electric power profile for a hot-dry day and a mild-humid day  

 

Figure 4.9. Compressor COP profile for a hot-dry day and a mild-humid day 
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4.6 Total Fan Power 

Figure 4.10 displays the total fan electric power consumption profile for the baseline and 

PCM-equipped cases on a hot-dry day. The amount of on-peak fan electric load increases by 8.27 

kWh, which equates to a 35.9 % increase. It may be noted that the fan power represents a small 

fraction of the total HVAC power use and the increase in the on-peak fan power usage can be well 

compensated for by the compressor power reduction, which will be discussed in the next 

subsection. Since the supply air temperature is decreased in the charging period, a lower air mass 

flow rate is required to provide cooling to the building zones. The mass flow rate increases during 

the discharging period because the supply air temperature is increased, and more air is required to 

provide sufficient cooling. The total air mass flow rate profile for the baseline and PCM cases on 

a hot-dry day is displayed in Figure 4.11. 

 

Figure 4.10. Total fan electric power profile for a hot-dry day 
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Figure 4.11. Total air mass flow rate profile for a hot-dry day 

4.7 Total HVAC Power Reduction 

Figure 4.12 displays the total HVAC electric power consumption profile for the baseline 

and PCM-equipped cases on hot-dry and mild-humid days. Although the fan power is increased 

during the on-peak hours, the compressor power reduction is dominant leading to much reduced 

on-peak HVAC electricity usage. The amount of the electric load that is shifted from the on-peak 

hours to the off-peak hours on the hot-dry day is 47.9 kWh, which equates to 17.6 % of the baseline 

on-peak electric load. The on-peak peak demand of the HVAC electric power on the hot-dry day 

was reduced by 9.65 kW, which equates to a reduction by 17.8 %. The amount of the electric load 

that is shifted from the on-peak hours to the off-peak hours on the mild-humid day is 31.9 kWh, 

which equates to 25.3 % of the baseline on-peak total electric load. The on-peak peak demand of 

the HVAC electric power on the mild-humid day was reduced by 6.63 kW, which equates to a 
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cases on hot-dry and mild-humid days, which is defined as the ratio between the total cooling load 

and the total HVAC electric power. For both days the system COP is higher during the PCM 

discharging period for the PCM equipped case, which means that less work input is required to 

provide the same amount of cooling. This leads to a further reduction of the on-peak power 

consumption that is primarily driven by the thermal load shifting. 

 

Figure 4.12. Total HVAC electric power profile for a hot-dry day and a mild-humid day  
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Figure 4.13. System COP profile for a hot-dry day and a mild-humid day 

4.8 Zone Temperature and Relative Humidity 

 Figure 4.14 and Figure 4.15 display the variation of the dry-bulb air temperature in a core 

zone, perimeter zone and outdoor environment for the baseline and PCM-equipped cases on hot-

dry and mild-humid days, respectively. The zone temperature was maintained at 24 °C during the 

occupied hours, which ensured that the occupants were experiencing a comfortable temperature 

despite the addition of the PCM. Figure 4.16 and Figure 4.17 display the variation of the relative 

humidity in a core zone and outdoor environment for the baseline and PCM-equipped cases on 

hot-dry and mild-humid days, respectively. The comfort range for the zone relative humidity is 

0.25 to 0.6 and is represented by the blue-shaded are in the figures. In both days, the zone relative 

humidity was maintained in the comfort zone during the occupied hours. Since there was little 

latent load shifting for the hot-dry day, the relative humidity profile is similar for the baseline and 

PCM-equipped cases. On the other hand, during the mild-humid day the relative humidity for the 
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PCM-equipped case was lower in the PCM charging period than the baseline case. This is due to 

the increased dehumidification caused by lowering the SAT. The relative humidity was higher in 

the PCM discharging period because the SAT was increased, which led to less dehumidification 

of the supply air. 

 

Figure 4.14. Zone temperature profile for a hot-dry day 
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Figure 4.15. Zone temperature profile for a mild-humid day 

 

Figure 4.16. Zone relative humidity profile for a hot-dry day 
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Figure 4.17. Zone relative humidity profile for a mild-humid day 

4.9 Indoor Air Quality Requirements 

ASHRAE 90.1 imposes a minimum zone airflow rate of 30% of the zone peak airflow rate 

to provide sufficient ventilation to the zone and maintain indoor air quality standards [38]. Figure 

4.18 and Figure 4.19 display the zone airflow rate and airflow ratio profile for a perimeter zone on 

a mild-humid day in El Paso. The zone airflow ratio is the ratio between the zone airflow rate and 

the peak zone airflow rate. EnergyPlus reported the peak zone airflow rate to be 0.649 m3/s for this 

specific zone. The PCM case led to a decrease in the zone airflow rate during the charging period 

because of the decrease in the supply air temperature. Despite the decrease in zone airflow rate, 

the airflow ratio is above 0.3 during the occupied hours from 8AM to 6PM, which satisfies the 

requirements of ASHRAE 90.1. Therefore, the implementation of PCM TES does not lead to poor 

indoor air quality. Since the zone airflow rate is higher in hotter days to provide sufficient cooling 

for the higher loads, the ratio will be higher than 0.3 for those days as well. 
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Figure 4.18. Perimeter zone airflow rate profile for a mild-humid day 

 

Figure 4.19. Perimeter zone airflow ratio profile for a mild-humid day 
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4.10 Total HVAC Energy Cost 

4.10.1 Electricity Rate Schedules 

The total HVAC energy cost was calculated using the TOU electricity rates charged by 

energy providers in the three locations. The rates used in the cost calculation correspond to the 

summer months. Table 4.1 displays a breakdown of the utility rates. The rates comprise two 

charges: the energy charge and the demand charge. The energy charge is the cost of the electrical 

energy ($/kWh) and is calculated at each timestep according to the specific rate at that time. The 

demand charge is the cost of providing the highest electrical demand, in kW, over a 30-minute 

interval in a month and is calculated at the end of each month. 

Table 4.1. Summer energy and demand rates for the three locations 

City Rate name Energy rate ($/kWh) Demand Charge 

($/kW) 

On-Peak Mid-peak Off-peak On-peak Anytime 

El Paso EL PASO 

ELECTRIC 

COMPANY 

SCHEDULE NO. 

24 [39] 

0.11861 

(12-6PM) 

— 0.00502 

(12AM-12PM 

and 6PM-

12AM) 

— 24.50 

Miami Florida Power & 

Light Company 

General Service 

Demand-TOU 

(GSDT-1) [40] 

0.07078 

(12-9PM) 

— 0.03272 

(12AM-12PM 

and 9PM-

12AM) 

9.98 — 

Buffalo Orange and 

Rockland 

Utilities Time of 

Use [41] 

0.32012 

(12-7PM) 

0.1145 

(10AM-12PM 

and 7-9PM) 

0.02061 

(12AM-

10AM and 

9PM-12AM) 

— — 
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4.10.2  Electricity Cost 

The total on-peak HVAC electricity consumption and HVAC electricity cost are displayed 

in Figure 4.20 and Figure 4.21 for the baseline and PCM-equipped cases in El Paso, Miami and 

Buffalo over the duration of the 3-month cooling season. The total on-peak electric consumption 

was decreased by 4074 kWh (25.0%) in El Paso, 4511 kWh (20.0%) in Miami and 3349 kWh 

(23.4%) in Buffalo. Miami had the highest on-peak electricity consumption due to the hot and 

humid climate, which leads to high sensible and latent cooling loads. As a result, there was a higher 

amount of load shifting that took place. The total electricity cost was decreased by $889.00 (12.3%) 

in El Paso, $472.00 (9.6%) in Miami and $812.00 (14.5%) in Buffalo. Despite having the highest 

total decrease in on-peak electricity consumption, Miami had the lowest electricity cost saving 

because it had the least aggressive rate scheduling. The on-peak energy charge is 24x higher in El 

Paso, 2x higher in Miami and 16x higher in Buffalo than the off-peak charge. Therefore, the rate 

schedule in Miami does not incentivize load shifting as much compared to El Paso and Buffalo.  
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Figure 4.20. Total on-peak electricity consumed by HVAC system for the baseline and PCM-

equipped cases in various cities 
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Figure 4.21. Total energy cost contributed by HVAC system for the baseline and PCM-

equipped cases in various cities 

4.11 Cooling Season Energy and Cost Summary 

Table 4.2,  

Table 4.3 and Table 4.4 display the total loads, electric energy and electricity cost for the whole 

simulation period in El Paso, Miami and Buffalo, respectively. Miami had the highest total cooling 

load due to high sensible and latent load, which is characteristic of the hot-humid climate. This 

climate has the highest potential for load shifting because the implementation of the PCM TES 

will shift both the sensible and the latent load. For all cities, the average system COP is slightly 

lower in the PCM-equipped case than the baseline case. This is because the increase in the COP 

during the PCM discharging period is smaller than the decrease during the PCM charging period, 

as shown in Figure 4.13. Despite using more electric energy overall, the electricity cost is lower in 

0

1000

2000

3000

4000

5000

6000

7000

8000

El Paso Miami Buffalo

E
ne

rg
y 

C
os

t (
$)

Baseline PCM-equipped



   
 

51 
 

all cities because the consumption was shifted from the on-peak hours to the off-hours, leveraging 

the use of cheaper electricity during off-peak hours. 

Table 4.2. El Paso - Cooling season total energy and electricity cost 

 Baseline PCM-equipped 

Cooling Coil Sensible Load (GJ) 490 518 

Cooling Coil Latent Load (GJ) 117 125 

Cooling Coil Total Load (GJ) 607 643 

Cooling Coil Electric Energy (MWh) 35.7 37.8 

Supply Fan Electric Energy (MWh) 3.0 3.7 

Total Electric Energy (MWh) 38.7 41.5 

System COP 4.4 4.3 

Total PCM (kg) — 1915 

Total Electricity Cost ($) 7227 6338 

On-Peak Electric Energy (kWh) 16325 12251 

 

Table 4.3. Miami - Cooling season total energy and electricity cost 

 Baseline PCM-equipped 

Cooling Coil Sensible Load (GJ) 488 521 

Cooling Coil Latent Load (GJ) 392 403 

Cooling Coil Total Load (GJ) 880 924 

Cooling Coil Electric Energy (MWh) 51.2 55.2 

Supply Fan Electric Energy (MWh) 3.1 3.6 

Total Electric Energy (MWh) 54.3 58.8 

System COP 4.5 4.4 

Total PCM (kg) — 2418 

Total Electricity Cost ($) 4940 4468 

On-Peak Electric Energy (kWh) 22602 18091 
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Table 4.4. Buffalo - Cooling season total energy and electricity cost 

 Baseline PCM-equipped 

Cooling Coil Sensible Load (GJ) 411 436 

Cooling Coil Latent Load (GJ) 228 236 

Cooling Coil Total Load (GJ) 639 672 

Cooling Coil Electric Energy (MWh) 31.9 34.3 

Supply Fan Electric Energy (MWh) 2.4 2.9 

Total Electric Energy (MWh) 34.3 37.2 

System COP 5.2 5.0 

Total PCM (kg) — 1902 

Total Electricity Cost ($) 5582  

On-Peak Electric Energy (kWh) 14332 10983 

 

4.12 Payback Analysis 

 A simple payback analysis was performed to determine how long it would take to recover 

the cost of the PCM. The payback years were calculated as follows: 

 
𝑃𝑎𝑦𝑏𝑎𝑐𝑘 𝑦𝑒𝑎𝑟𝑠 =  

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑃𝐶𝑀

𝐴𝑛𝑛𝑢𝑎𝑙 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑆𝑒𝑎𝑠𝑜𝑛 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑠𝑡
 

4.24 

The cost of the PCM was assumed to be $2 per kg [42]. The payback years for each city are 

displayed in Table 4.5. El Paso had the lowest payback period (4.3 years) among the cities. This 

was due to the high energy cost savings in El Paso and a relatively low total PCM cost. Buffalo 

had a slightly higher payback period (4.7 years) because it had lower energy cost savings and 

similar PCM cost. Since Miami used the most PCM and involved the lowest energy cost saving, it 

had the highest payback period (10.2 years). 
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Table 4.5. Payback years for PCM cost in the candidate cities 

City PCM Cost ($) Payback years 

El Paso 3830 4.3 

Miami 4836 10.2 

Buffalo 3804 4.7 
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5. Conclusion 

In this thesis, the energy cost savings, on-peak load shifting, and peak electric demand 

reduction potentials were evaluated for a PCM based TES system designed for installations in 

supply-air duct. A numerical model for the PCM in the duct was formulated and calibrated using 

experimental data. The model was linked with EnergyPlus through FMU to perform whole 

building simulations for a medium office in three different climate regions over a 3-month cooling 

season. The PCM TES was able to shift the sensible HVAC load from the on-peak to off-peak 

hours due to the lowering of the SAT to store “cooling” energy in the PCM during the charging 

process and raising of the SAT to release the “cooling” energy in the PCM during the discharging 

process. Due to the lower SAT during the charging process, there was more dehumidification in 

the morning. On the other hand, there was less dehumidification during the afternoon hours when 

the SAT was raised. This led to a shift in the latent HVAC load from the on-peak to off-peak hours. 

The shift in the total cooling load resulted in a shift in the HVAC electric power consumption 

because less work input is required to provide cooling in the on-peak hours and more work input 

is required to provide the additional cooling in the off-peak hours. Miami had the highest on-peak 

load reduction because its hot-humid climate meant that it had a high sensible load, which led to a 

large PCM size, and high latent load. However, since it had the least aggressive price difference 

between on-peak and off-peak hours, it had the lowest electricity cost savings. El Paso had the 

most aggressive TOU rate schedule so it had the highest energy cost savings. Similarly, El Paso 

had the shortest payback period of 4.3 years. In actual building operations, the payback period is 

expected be shorter when the cost analysis is extended to other months where space cooling is still 

required; for commercial buildings whose cooling loads are mainly internal gain driven, space 

cooling is usually required throughout the whole year.   
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The work done in this thesis can be extended to gain a better understanding of the cost 

saving potential of PCM in the supply-air duct: 

1. Full scale experiments can be conducted to validate the simulation results and determine 

the load shifting potential under real life conditions. 

2. PCM thermal enhancement strategies can be investigated to improve the charge rate, and 

increase the load reduction potential.  

3. A comprehensive bill of material and labor costs need to be determined to understand the 

actual capital investment and total payback period. 
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