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Abstract 

In order to maintain leadership and competitiveness in a global economy driven by science, 

technology, engineering, and mathematics (STEM), the United States needs to increase 

representativeness of its STEM workforce and leaders. Several studies have indicated that 

significant issues of underrepresentation remain in STEM despite national investments in 

training and program grants intended to promote diversity. The present study focuses on two 

groups that are currently underrepresented in STEM: individuals from low-income backgrounds 

and individuals of first-generation status. Further, the sample majority consisted of 

undergraduate students who identify as American Indian/Alaskan Native, who are notably 

underrepresented in both research and STEM. The present study uses social cognitive career 

theory (SCCT) as a frame to investigate factors that may explain the role of socioeconomic and 

first-generation status on undergraduate enrollment in a STEM major. Results indicate mixed 

findings on the predictive value of social class but reveal new proximal predictors of STEM-

major enrollment. New methods for attracting students into STEM, limitations, and future 

research directions are discussed. 

Keywords: Social Cognitive Career Theory, STEM, SES, first-generation status  
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Introduction 

The United States is persistently concerned with maintaining global leadership 

competitiveness in  science, technology, engineering, and mathematics (STEM; National Science 

Board, 2010). Currently, the United States has extensive opportunity to meet this goal by 

increasing representativeness within the STEM workforce and its leaders. Past implicit and 

explicit biases on top of a myriad of other factors have hindered the growth of diversity in 

STEM. In this context, diversity refers to members of gender or ethnic groups who have 

historically been underrepresented in STEM. This includes women, African Americans, 

American Indian Alaska Natives (AIAN), Hispanics, and Pacific Islanders (Office of Science 

and Technology Policy, 2016). In comparison to the general population, the representation for 

racially minoritized groups in STEM fields is disproportionately lower than it is for both Whites 

and Asians. For example, African Americans, Hispanics, and AIAN together account for 27% of 

the U.S. population, yet in 2016, underrepresented minorities accounted for just 22% of all 

science and engineering degrees awarded that year. The disparity grows larger when examining 

the professional gaps, where only 13% of STEM professionals are members of underrepresented 

minorities. These gaps are even further demonstrated at the doctoral level; for example, although 

African Americans account for 12% of the population, they only accounted for 4% of all science 

and engineering doctoral degrees earned in 2015 (National Science Board, 2018).  

In addition to gender and ethnicity, diversity in the contexts of higher education and 

STEM also extends to members of low socioeconomic status (SES) and first-generation status, 

which refers to students whose parents did not attain a college degree. Individuals from the 

fastest growing segments of the population, including low-income families, are the least likely to 

earn a college degree. Students from the lower quartile of socioeconomic status are significantly 
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more likely to leave STEM by dropping out of college in comparison to their peers from higher 

income backgrounds (Chen, 2013) and these educational attainment gaps are only continuing to 

grow (Kelly, 2005; Mortenson, 2006; Western Interstate Commission for Higher Education 

(WICHE), 2003). These results are also demonstrated among first-generation students, who are 

significantly underrepresented in both higher education and STEM (Engle & Tinto, 2008). It is 

critical to note that low-income students and first-generation students disproportionately consist 

of racial minorities, which contributes to the complicated, intersectional experiences these 

students may face in attaining higher education (Engle & Tinto, 2008). 

The lack of diverse individuals in STEM may be a contributing factor to the lack of social 

mobility opportunities for women and racially minoritized groups, which can also exacerbate 

economic disparities (Soo Oh & Lewis, 2011). Further, this under-representation of minoritized 

groups in STEM may contribute to minority health gaps (Satcher & Pamies, 2005). For example, 

discrimination, bias, and prejudice are all noted as contributors to racial and ethnic disparities in 

accessible health care (Nelson, 2002). However, when diverse individuals succeed in STEM, this 

provides an opportunity for financial stability. Undergraduate students who major in STEM are 

more likely to seek jobs that are related to their major than students enrolled in non-STEM 

majors. This may provide more opportunities for employment since students are likely be better 

able to capitalize on the knowledge and skills they gain during their undergraduate career. 

Further, research has indicated that individuals who attain alignment between their college major 

and employment are more likely to earn more, maintain longer employment, and have higher 

levels of life satisfaction (Xu, 2013). Thus, not only do STEM careers provide an opportunity for 

financial success, these careers may also help individuals perceive their lives more favorably. 
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With these considerations, the current study focuses on identifying factors that promote or 

dissuade undergraduate enrollment in STEM majors.  

Lastly, the current study explored a notably understudied sample of underrepresented 

students: American Indian Alaska Native undergraduates. In comparison to Asian, White, and 

Hispanic students, AIAN students have the lowest rate of graduation from high school (National 

Science Foundation, 2013). AIAN students are underrepresented in gifted and talented programs, 

have lower GPA and SAT scores, and are less likely to take advanced placement (AP) exams 

(Miller, 2004). Additionally, AIAN students are less likely to enroll in college and have a 

decreased likelihood to graduate with a college degree in comparison to Asians and Whites 

(National Science Board, 2010). In degree attainment, only 0.6% of students who graduate with a 

STEM bachelor’s degree are AIAN (Fiegener, 2015), despite making up 2% of the population 

(Jones & Ramirez, 2010). When examining these statistics, it is imperative to recognize that 

numbers are not neutral and cannot represent the totality of the experiences AIAN students face. 

Education was and continues to be a powerful tool utilized to force students to assimilate into the 

mainstream, predominantly White culture. The experiences of AIAN students in education is 

directly connected to a history of Indian boarding schools that utilized punitive measures and 

enforcement of the English language and Christian values to “kill the Indian and save the man” 

(Pratt, 1892, pp. 260-271; Tippeconnic III & Tippeconnic Fox, 2012). AIAN students in 

education may face cultural conflict, especially in STEM where there may be incompatibilities 

between Western science and traditional values (Alkholy et al., 2017). This historical and 

ongoing oppression towards AIAN students continues to affect their educational pathways 

(Writer, 2001). Although this paper is centered on the cross-racial/ethnic experiences of students 

from various social status backgrounds, it is critical that researchers understand the experiences 
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of AIAN students. In sum, the purpose of the current study is to provide additional knowledge 

about the role of SES and first-generation on undergraduate STEM-major enrollment. In 

addition, this study aimed to further understanding of the experiences of AIAN students, as most 

previous research has not included a large enough sample to examine this group. 

Social Cognitive Career Theory 

 Social Cognitive Career Theory (SCCT) was used as a conceptual framework to guide 

the selection of predictors that influence enrollment in a STEM major (Lent et al., 1994). Based 

on an expansion of Bandura’s work, SCCT assumes that person inputs (i.e., gender and 

race/ethnicity) and background/contextual characteristics (i.e., SES) interact in influencing 

career-related behaviors (Bandura, 1986). Specifically, SCCT posits that past learning 

experiences influence an individual’s self-efficacy (beliefs in their competency in completing a 

task) and outcome expectations (beliefs about probable outcomes), which then impact career 

interests, choice goals, and choice actions (i.e., enrolling in a STEM major). In addition, person 

inputs and background/contextual characteristics impact various proximal contextual influences, 

such as barriers and supports, which subsequently affect career-relevant choice actions (Lent et 

al., 1994, 2000). Figure 1 provides an overall illustration of the SCCT model.  

The SCCT framework has been shown to provide a good fit to the data for first-

generation and low-income students with respect to predicting math and science interests and 

goals (Garriott et al., 2013). This model may be especially useful in capturing experiences 

unique to SES and first-generation students due to its focus on both individual and contextual 

factors (L. Y. Flores et al., 2017). Additionally, research focusing on intersectionality, which 

refers to the relationship between joint social identities and psychological outcomes and 

consequences has been gaining in popularity  (Cole, 2009). Understanding the relations among 
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social class variables across all racial/ethnic groups can improve the content of career 

interventions and counseling (Fouad & Brown, 2000). Despite this, existing SCCT literature 

offers only minimal research on how exposure to educational and career opportunities may affect 

the relationship between social class and career choice goals. Further, SCCT research also 

contains little in regards to the intersectionality of social class using an Asian and AIAN sample 

(L. Y. Flores et al., 2017). Thus, the proposed study sought to utilize the SCCT framework to 

examine these understudied populations. 

The current study utilized a revised version of the full SCCT model. Specifically, the 

present study examined the influence of person inputs and background/contextual affordances on 

learning experiences. Learning experiences were expected to predict self-efficacy. In turn, self-

efficacy was proposed to predict career choice actions. Additionally, the proposed study 

examines the impact of background/contextual affordances on proximal contextual influences, 

which were predicted to affect career choice actions. Lastly, two additional paths in the SCCT 

model were added: from background/contextual affordances to choice action and from 

background/contextual affordances to proximal contextual influences. 

 For the current study, the person inputs were gender and race. The variables of interest 

are those that were unique to the current study or that have been identified in research as most 

likely to contribute to the SCCT model. In the present effort, the primary variable of interest, 

background/contextual affordances, was operationalized as Family SES, School SES, and first-

generation undergraduate status. Learning experiences included ACT math score and the number 

of advanced placement math and science courses taken in high school. Self-efficacy was 

measured by math self-efficacy and identity as a scientist. The secondary variable of interest, 

proximal contextual influences, was defined by financial stress, concern with finding a job 



 

 6 

locally, and communal orientation. The hypothesized model and variable relationships are 

provided in Figure 2. The following sections provide further discussion of these proposed 

relationships. 

Social Cognitive Career Theory: Background/Contextual Affordances 

 In the present study, the focal block of interest in the SCCT framework was 

background/contextual affordances. These attributes were examined to understand how they may 

serve as pathways through which group membership influences STEM enrollment. These 

contexts and learning backgrounds influence the progression from learning experiences, to self-

efficacy, to choice actions. This set of main variables are theorized by Lent and colleagues to be 

environmental influences that begin in early childhood and can continue to affect the individual 

(Lent et al., 1994). Regarding enrollment in a STEM major, Lent and colleagues proposed that 

the development of knowledge and interest in STEM, and subsequent enrollment in a STEM 

major, are influenced by group socialization and norms (1994). As such, the present study 

examines individuals from diverse backgrounds (i.e., socialized backgrounds) and how those 

backgrounds may influence their learning experiences, current day proximal influences, and 

career choice actions.  

Socioeconomic Status. In a study conducted by Engle and Tinto (2008), students having 

an annual household income under $25,000 are classified as low income. Students who come 

from a low socioeconomic background face unique challenges in their post-secondary schooling 

experiences, such as having fewer opportunities and more disadvantages in attaining higher 

education. These students are more likely to be older, receive less financial support from parents, 

and work full-time. In turn, these multiple obligations affect their ability to be fully involved in 

college integration opportunities, such as study groups, interactions with faculty, or participation 
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in extracurricular activities (Engle & Tinto, 2008). Additionally, students from low 

socioeconomic backgrounds have an increased likelihood of leaving the institution after their 

first year, even after controlling for academic and financial factors (Engle & Tinto, 2008; Fenske 

et al., 2000; Stinebrickner & Stinebrickner, 2003). In the context of STEM-related variables, low 

SES individuals have lower mathematic achievement and progress in comparison to their higher 

SES peers (Graham & Provost, 2012). and are less likely to take AP math and science courses in 

high school, which could dissuade them from pursuing a STEM career (Wang & Degol, 2013).  

Currently, the value of SES as a predictor for choosing a STEM major is equivocal, 

which may be due to inconsistencies in how socioeconomic status is measured. Therefore, the 

current study specifies two SES variables to be examined: Family SES and School SES. Family 

SES can be defined as a combination of all or some of the following variables: parental 

education, parental occupation, family income, and/or perceived social ladder status. Using only 

occupational prestige as a socioeconomic predictor, male and female students whose fathers 

were in a professional or executive position were more likely to choose an engineering or science 

major (Leppel et al., 2001). However, a study that used just family income as a proxy for SES 

found that higher SES students were more likely to choose a non-lucrative major such as the 

humanities (Ma, 2009). Other studies have found that, by itself, Family SES was not related to 

college major choice (Niu, 2017; X. Wang, 2013). The discrepancies in these research findings 

may also be due to many studies examining samples of only low-income students (L. Y. Flores et 

al., 2017). Thus, this study aims to include a variety of students from differing SES backgrounds 

to reduce range restriction and better clarify the relationship between Family SES and choice of 

major. 
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For the purposes of this study, School SES is defined by the number of students that 

qualify for free or reduced lunch at the participant’s high school. A high School SES indicates a 

high number of students who qualify for free or reduced lunch. A student’s School SES 

negatively correlates with the number of math and science subjects taken (Li et al., 2009), high 

school achievement and SAT score (Crisp et al., 2009), and math self-efficacy (Cordero et al., 

2010), which all positively correlate with STEM enrollment (Rumberger & Palardy, 2005). The 

learning experiences of students in low SES schools may also be a contributor to disparities in 

math and science achievement. For example, students in low-income areas are more likely to 

experience less qualified teachers, more likely to face low expectations, and their schools have 

less funding per student in comparison to schools in higher-income areas (Alfinio. Flores, 2007). 

Only a few studies have indicated the predictive value of School SES on STEM-major 

enrollment. For example, Orr et al. (2011) found that students from high School SES 

backgrounds were less likely to enroll in engineering majors. Similarly, Niu (2017) found that 

even when taking into account the qualifications of their math teachers, SAT math score, and 

highest level of mathematics completed in high school, students from low School SES 

environments reported higher rates in STEM enrollment. School SES likely impacts the 

educational resources that a student is offered, which affects their learning experiences and 

subsequent self-efficacy. School SES also appears to impact STEM-major enrollment directly. 

Despite this finding, the SCCT literature has yet to include examination of School SES on 

STEM-major enrollment. Thus, the following hypotheses are proposed:  

Hypothesis 1: Family SES will have a direct, positive relationship with enrollment in an 

undergraduate STEM major.  
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Hypothesis 2: School SES in high school will have a direct, negative relationship with 

enrollment in an undergraduate STEM major. 

First Generation Students. Parental education is an important predictor of both college 

enrollment and degree attainment for all students (Astin & Oseguera, 2005; Terenzini et al., 

1996). The education level of a parent can increase the human, cultural, and social capital that 

they can provide to their child. For example, college-educated parents have greater access to 

resources through social networks and familial relationships that allow them to help their child 

navigate the financial, informational, and social obligations and opportunities of college. 

Students from families who have only minimal educational support or knowledge, such as first-

generation students, may be at a significant disadvantage in comparison to their non-first-

generation peers. A lack of relevant social connections and resources may leave first-generation 

students making less informed decisions about applying and preparing for college (Bradley & 

Corwyn, 2002; Coleman, 1988; Dika & Singh, 2002; Hossler et al., 1999; McDonough, 1997). 

First-generation students represent at least 25% of the undergraduate population; however, only 

26% of low-income or first-generation students graduate with a bachelor’s degree. Although 

first-generation students may initially be only slightly underrepresented in STEM enrollment, 

they are the most likely out of all diversity groups to not complete their degree (Anderson & 

Kim, 2006). Graduation rates for students who are both low-income and of first-generation status 

drop further to 11% (Engle & Tinto, 2008), compared to the 55% graduation rate of higher-

income non-first-generation students.  

The academic preparation for college among first-generation students differs significantly 

in comparison to that of non-first-generation students. Past studies have indicated that first-

generation students are more likely to come from low-income backgrounds, receive less family 
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support related to attaining a college degree, and spend less time with family (Terenzini et al., 

1996). They are more likely to work full-time in college, have more loans, and maintain a lower 

GPA (Martinez et al., 2009). Additionally, first-generation undergraduate students are likely to 

have less access and understanding of information relevant to college success (Pascarella et al., 

2004). Regarding STEM, first-generation students may face additional barriers such as lower 

quality learning experiences in math and science (Bloom & College, 2007) and lower self-

perception of preparedness in mathematics (Dika & D’Amico, 2016). Given these findings, this 

study seeks to further examine the relationship between first-generation status and STEM-major 

enrollment. 

Hypothesis 3: First-generation status will have a direct, negative relationship with 

enrollment in an undergraduate STEM major. 

Social Cognitive Career Theory: Person Inputs 

The SCCT person inputs model encompasses person-related variables such as gender and 

ethnicity. These personal characteristics may evoke specific reactions determined by the 

socio/cultural environment, which then influence career-relevant experiences (Lent et al., 1994). 

In contrast to background/contextual affordances, which examine environmental influences, 

person-inputs are centered on individual and internal factors. These internal characteristics are 

proposed as having a great influence on an individual’s social identity, which can then affect 

learning experiences and self-efficacy. A plethora of previous research has supported the 

distinctive influence of person inputs, like gender and race, as STEM career-relevant variables 

(Crisp et al., 2009; Fouad & Santana, 2017; Lent et al., 2018, p. 20; Ma, 2009; Niu, 2017; Turner 

et al., 2017). However, in a study by Turner and colleagues (2017), gender was not found to 

influence STEM actions. Thus, although the focus of the present study is not on person inputs, 
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these person-centered factors were included to control for their potential influence on STEM-

major enrollment. 

Social Cognitive Career Theory: Learning Experiences 

 The next area of the SCCT model examines how past learning experiences influence the 

development of sources for self-efficacy. Classical definitions of learning experiences include 

performance accomplishments, vicarious learning, verbal persuasion, and physiological arousal 

(Lent et al., 1994). Enhancing past learning experiences (e.g. taking AP math and science 

courses) can improve the likelihood of an individual pursuing a STEM career. Past SCCT 

research has supported this notion, finding that enhanced learning experiences influenced 

math/science self-efficacy and subsequent math/science goals (Garriott et al., 2013). Despite this 

key role, few studies have delved into the influence of socioeconomic-related background 

variables on learning experiences. Although Garriott and colleagues examined social class, as 

measured by parental education, household resources, and perceived social status, the unique 

influences of each indicator on learning experiences was not examined. As such, the present 

study aims to utilize a variety of socioeconomic background influences, including both school- 

and family-related variables, and their unique influences on learning experiences, self-efficacy, 

and pursuit of a STEM career.  

Outside of the SCCT framework literature, past research has indicated that pre-college 

experiences and preparation affect college experiences (Crisp et al., 2009). For example, students 

who take AP math and science courses in high school are more likely to enroll in a STEM major 

(Wang & Degol, 2013). Further, this exposure to AP math and science courses was found even 

more influential on entrance into STEM above and beyond math achievement and math self-

efficacy. Thus, the present effort examined past academic achievement and past opportunities for 
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science and math development. Individual preparation in math and science during middle and 

high school has been identified as a critical factor in developing students’ learning experiences, 

self-efficacy, and later interests in STEM, particularly mathematics (Shoffner & Dockery, 2015; 

DeThomas, 2017). Scholars have recommended that interventions in middle school and high 

school target skill development in math and science, as this enables students to pursue more AP 

coursework (Valla & Williams, 2012), enhancing learning experience and helping to develop 

self-efficacy (Navarro et al., 2007). In fact, this may be the best way to develop self-efficacy 

within the SCCT framework, as personal success and exposure to mathematics and sciences was 

found to be the most powerful source of self-efficacy in a sample of high school students (Lopez 

& Lent, 1992). DeThomas found a similar trend among sophomore college STEM students, with 

those who were placed in higher-ability mathematics classes in middle and high school reporting 

significantly higher levels of mathematics self-efficacy. Specific hypotheses related to past 

learning experiences are discussed further in the paper. 

ACT Math Score and Number of Advanced Placement Math & Science Courses 

Taken. Highly-educated, high-earning families are better able to prepare their children for 

college level mathematics and science courses. For example, educated, high-SES parents are 

more likely to encourage their children to enroll in AP math courses (Useem, 1992). This 

enhanced preparation in math and science can significantly impact rates of STEM enrollment. 

High school achievement in the form of test scores has been shown to predict whether a student 

will enroll in a STEM major (Crisp et al., 2009), and the number of math courses taken in high 

school has been shown to reflect persistence in STEM (Maltese & Tai, 2011). Research 

conducted by Niu (2017) suggests that higher-SES students were more likely to enroll in a 

STEM major if they had a high SAT math score; however, this effect was not maintained for 
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students from low SES backgrounds. In fact, low-SES students were not any more likely to 

enroll in a STEM major even if they had a high SAT math score, suggesting these students may 

be deterred from entering STEM due to factors other than just past math achievement, such as 

financial or familial concerns.  

These results may also capture differences in math preparation and exploration. For 

example, opportunities for math and science learning are stratified by socioeconomic status with 

higher socioeconomic families providing more opportunities for science exploration through 

after-school activities and summer camps (Duncan & Murnane, 2011). Thus, the current study 

explored a variety of school-related mechanisms that may explain the relationship between social 

background and enrolling in a STEM major. Specifically, learning experiences by exposure to 

math and science were accounted for to examine whether background/contextual affordances 

may have an effect beyond just past experiences. 

Hypothesis 4: Family SES will have a direct, positive effect on a) ACT math score, b) the 

number of AP math courses taken, and c) number of AP science courses taken. 

Hypothesis 5: School SES will have a direct, negative effect on a) ACT math score, b) 

the number of AP math courses taken, and c) number of AP science courses taken.  

Hypothesis 6: First-generation status will have a direct, negative effect on a) ACT math 

score, b) the number of AP math courses taken, and c) number of AP science courses 

taken.  

Social Cognitive Career Theory: Self-Efficacy 

Self-efficacy, another critical aspect of the SCCT model, can be defined as an 

individual’s belief in their ability to succeed in a specific domain, and is proposed to influence an 

individual’s subsequent interest, goals, and choice actions in that domain (Lent et al., 1994). 
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Self-efficacy stems from previous learning experiences, which are influenced by the interactions 

between person inputs and background/contextual affordances. A recent meta-analysis by Sheu 

and colleagues have supported such relations where past learning experiences, especially in the 

form of direct experiences, positively predicted self-efficacy (2018). This research has been 

further supported in the SCCT choice model, with several studies linking the relationship 

between self-efficacy and action choices (S. D. Brown & Lent, 2004; Moakler & Kim, 2014; 

Rittmayer & Beier, 2008). The following section discusses the relationships of self-efficacy for 

STEM-relevant variables.   

 Math Self-Efficacy and Identity as a Scientist. As alluded to earlier, self-efficacy 

beliefs are predictive of interests, which then predict college major choice and career choices 

(Lent et al., 1994). Past studies have shown that math self-efficacy (Lent et al., 1984; Leslie et 

al., 1998) and exposure and proficiency in math and science (Anderson & Kim, 2006) predict 

persistence in a STEM major. Students from low-SES or first-generation status backgrounds may 

be particularly at risk of developing low math self-efficacy, due to lack of well-trained teachers 

or lack of teachers credentialed in science education (Muijs et al., 2004; Nasir et al., 2011). In 

fact, math self-efficacy has been found to mediate the link between SES and both anticipated and 

actual mathematics grades in high school (Wiederkehr et al., 2015). Given that minority and low-

income students are more prone to low self-efficacy, which in turn leads to lower performance, 

math self-efficacy may help account for why these students might avoid STEM courses and 

occupations (Betz, 1997; Lent et al., 2005). 

Math self-efficacy and choice actions may also be driven by identity formation in the 

sciences. Research indicates that adolescents actively create an identity that will help them  

understand their role in the world and help them feel successful and connected in their daily lives 
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(Adams & Marshall, 1996; Erikson, 1968). Previous literature on student persistence and success 

in academics indicates that students who identify with context relevant identities are more likely 

to excel in their academic careers (Eccles & Barber, 1999). Further, research conducted on 

undergraduate and graduate underrepresented racial/ethnic minority students found that those 

with higher self-efficacy were more likely to identify as a scientist, which then promoted 

commitment to a science-related career (Chemers et al., 2011). Students from low-income 

schools or those of first-generation status may have fewer opportunities to develop a science 

identity due to the aforementioned limited number of science courses taken, lower numbers of 

qualified teachers in science, and less exposure to STEM careers (Engle & Tinto, 2008; Alfinio. 

Flores, 2007). Thus, a goal of the present study will be to examine the extent to which identity as 

a scientist affects enrollment in a STEM major.   

Hypothesis 7: ACT math score will have a direct, positive effect on a) math self-efficacy 

and b) identity as a scientist. 

Hypothesis 8: The number of AP math courses taken in high school will have a direct, 

positive effect on a) math self-efficacy and b) identity as a scientist. 

Hypothesis 9: The number of AP science courses taken in high school will have a direct, 

positive effect on a) math self-efficacy and b) identity as a scientist. 

 

Hypothesis 10: Math self-efficacy will have a direct, positive effect on enrollment in a 

STEM major. 

Hypothesis 11: Identity as scientist will have a direct, positive effect on enrollment in a 

STEM major. 
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Social Cognitive Career Theory: Proximal Contextual Influences 

 The last portion of the SCCT model in the present study examines proximal contextual 

influences. Proximal contextual influences, as proposed by Lent and colleagues (2000), are 

variables that are much closer in time to the choice action, as opposed to distal predictors such as 

person inputs and background/contextual affordances. According to SCCT and past research, 

proximal contextual influences in the form of social, academic, or financial barriers and supports 

may significantly impact career-relevant choices (Lent et al., 2001, 2003; Turner et al., 2017; X. 

Wang, 2013). However, there is scant SCCT literature that has examined how proximal 

contextual predictors relating to social class influence STEM-major enrollment. Thus, the current 

study examined financial stress, concern with finding a job locally, and communal orientation. 

These proximal variables may also help explain why a student’s background would impact their 

choice to enroll in STEM. 

Financial Stress & Hours Worked per Week. It is important to note that science, 

technology, engineering, and mathematics students take longer to graduate than other majors, 

which can exacerbate the financial concern about enrolling in STEM (Barton, 2003; Fenske et 

al., 2000). These financial factors have been shown to influence how first-generation and lower-

income students select their college and major. For example, in a study by Saenz, Hurtado, 

Barrera, Wolf, and Yeung (2007), first-generation students indicated that financial assistance or 

low tuition was of primary concern in their college decision-making process. In another study, 

underrepresented minorities (URM) in STEM were more concerned about financing college than 

their non-URM classmates (Hurtado et al., 2010). The stress of financing education then leads to 

inhibited experiences in academic and social adjustment (Hurtado et al., 2010). Combined with 

the fact that low-income and first-generation students are more likely to be working full-time and 
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off-campus, this group of students may be more prone to experiencing financial stress. Despite 

this implication, little to no studies have examined the relationship of financial stress on STEM-

major enrollment. Lastly, although a study by Wang (2013) found no direct effect on STEM-

major enrollment from hours worked per week, this may have been due to the presence of both 

positive and negative effects associated with working in college. Hence, the current study aims to 

examine how the proximal influence of financial stress impacts STEM-major enrollment, and 

further clarify the relationship between hours worked per week and STEM.   

Concern with Finding a Job Locally and Communal Orientation. The structure of 

many STEM careers assumes the willingness and capability to relocate in pursuit of advanced 

graduate school or training (Oishi et al., 2007). This is unique in comparison to other fields such 

as business, where an individual has more opportunities to work within the community in which 

they have built personal relations. For example, in a qualitative study by Sanez et al. (2007), 

nearly 27% of first-generation students selected their undergraduate program in part because of 

its proximity to their home, compared to only 17% of non-first-generation students. In other 

words, first-generation students indicated that a desire to stay near their local community was a 

significant factor in selecting their university. Thus, those with less means or flexibility may thus 

be discouraged from enrolling in a STEM major due to a lack of degree programs close in 

proximity or a lack of perceived employment opportunities in their home cities. However, this 

relationship has not been examined. Further, there is little to no research that has examined the 

relationships between concerns with findings a job locally and STEM-major enrollment. 

Communal values, which are held as important to both first-generation students and 

underrepresented minority students, may also impact the relationship between low-SES and first-

generation students and majoring in STEM (Harackiewicz et al., 2016). In comparison to higher-



 

 18 

SES individuals, individuals from low-SES backgrounds are more likely to hold other-oriented 

values, which may also be captured in communal values (Kraus & Stephens, 2012). With regard 

to our study sample, AIAN students tend to have high scores on communal measures, which may 

further promote a desire to stay near their hometown (Smith et al., 2014). Additionally, previous 

studies have indicated that  science coursework may not align with the values of 

underrepresented minorities (Hurtado et al., 2010). This lack of science interest may be due to 

perceptions that STEM careers are less communal and collaborative in comparison to other 

careers such as business or education (Diekman et al., 2017). Further, STEM careers often do not 

place clear emphasis on giving back to the community (Smith et al., 2014). Thus, the numbers of 

first-generation and low-income students enrolling in STEM may be impacted by scores on 

communal and collaboration values. In sum, the present study aimed to illuminate the linkages 

between background, proximal contextual influences, and enrollment in a STEM major. 

Hypothesis 12: Financial stress will have a direct, negative effect on enrollment in a 

STEM major. 

Hypothesis 13: The number of hours worked per week will have a direct, negative effect 

on enrollment in a STEM major. 

Hypothesis 14: Concern with finding a job locally will have a direct, negative effect on 

enrollment in a STEM major. 

Hypothesis 15: Communal orientation will have a direct, negative effect on enrollment in 

a STEM major. 

Hypothesis 16: Family SES will have a direct, negative relationship on a) financial stress, 

b) the number of hours worked per week, c) concern with finding a job locally, and d) 

communal orientation. 
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Hypothesis 17: School SES will have a direct, positive relationship on a) financial stress, 

b) the number of hours worked per week, c) concern with finding a job locally, and d) 

communal orientation. 

Hypothesis 18: First-generation status will have a direct, positive relationship on a) 

financial stress, b) the number of hours worked per week, c) concern with finding a job 

locally, and d) communal orientation. 

Hypothesis 19: The relationship between Family SES and enrollment in a STEM major 

will be mediated by a) financial stress, b) the number of hours worked per week, c) 

concern with finding a job locally, d) communal orientation. 

Hypothesis 20: The relationship between School SES and enrollment in a STEM major 

will be mediated by a) financial stress, b) the number of hours worked per week, c) 

concern with finding a job locally, d) communal orientation. 

Hypothesis 21: The relationship between first-generation status and enrollment in a 

STEM major will be mediated by a) financial stress, b) the number of hours worked per 

week, c) concern with finding a job locally, d) communal orientation. 

Method 

Sample 

 Undergraduate students at a south-central research university were invited to participate 

in an online study examining student experiences. Demographic information was collected from 

self-reported data obtained from an online, longitudinal student achievement study. The analyses 

utilized data that consisted of multiple cohorts starting in Fall 2015 and ending in February of the 

Spring 2020 semester. Apart from semesters Spring 2017, Fall 2017, and Spring 2018, new 

participants were recruited every semester. Based on the purpose of a larger study examining 
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AIAN experiences in STEM, only AIAN, Asian, and White students were recruited. These three 

groups were recruited primarily due to their representative size at the university and to examine 

the experiences of a diverse group of students. Ethnicity was determined by a combination of 

both a race check-all-that-apply item, as well as an item which asked how the student ethnically 

identifies. Due to centuries of inter-racial interactions, the racial background of AIAN 

individuals is complicated. As such, ethnic identity has been noted as a crucial indicator of who 

is classified as AIAN (Huyser et al., 2010). Given this, a looser categorization method was used 

for AIAN participants than for White participants. Participants were categorized as AIAN if they 

ethnically identified as AIAN and if they selected an AIAN racial background along with one or 

more other races, and/or if indicated that they were enrolled in a tribe. A similar method was 

utilized for categorization of Asian participants to be more inclusive of Asian-identifying 

participants who are mixed-race. For participants that were categorized as Asian, these 

participants ethnically identified as Asian either alone or along with one or more other races and 

did not select their race as AIAN. White participants were categorized based upon reporting their 

race and identifying only as White.  

The sample included 541 first year undergraduate students. The majority of participants 

identified as female (n = 344, 63.6%) in comparison to those who identified as male (n = 197, 

36.4%). In terms of race/ethnicity, 43.6% were categorized as AIAN (n = 236), 36.6% as White 

(n = 195), and 19.8% as Asian (n = 107). Participants ranged in age from 17 to 40 (M = 19, SD = 

1.32). Regarding their major, 41.4% of participants were in a non-STEM major (n = 224) and 

58.6% of participants were in a STEM major (n = 317). For participants in STEM, 41% were 

male (n = 131) and 59% were female (n = 186). Additionally, the race/ethnicity makeup of 

participants in STEM was 42% AIAN (n = 134), 23% Asian (n = 73), and 35% White (n = 110). 
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The sample included a normal distribution of participants from varying family SES backgrounds, 

with approximately 25.4% (n = 137) of students falling within the first quartile, 41% in the 

second quartile (n = 222), and 33.6% (n = 182) in the third quartile of socioeconomic status. 

Regarding school SES, approximately 27% (n = 146) of students came from a high school where 

the majority of students were on free or reduced lunch. In terms of parental education, 61.7% (n 

= 334) of participants did not identify as a first-generation status student, whereas the remaining 

38.3% (n = 207) did identify as a first-generation status student. 

Procedure 

Participants were recruited via email and invited to take a survey that took approximately 

30 to 45 minutes to complete. A total of 1,635 survey responses were collected. To meet the 

current study requirements, participants must have answered at least 60% of the questions on the 

survey and correctly answer 50% or more of the embedded attention-check questions. This 

reduced the sample size to 1,174. In addition, participants were excluded from the dataset if they 

did not answer questions related to their parental income, parental education, and high school. As 

previously noted, this resultant total sample size was 541 participants. Participant data was 

utilized if they answered questions pertaining to their parental incomes, parental education, and 

provided their high school name and location. Participants were compensated with a $20 gift 

card. The participants were included in the current data analysis if they were of “First Year” 

academic standing. Classification was determined by credit hours, with “First Year” having 

accumulated between 1-29 semester hours. With permission from both the university and 

participant, academic records were accessed to obtain academic standing, major, and ACT math 

score. 
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Survey Measures 

Demographic Variables. Demographic variables were obtained, including self-reported 

age, gender, and ethnicity. Gender was coded 0 for males and 1 for females. Ethnicity was coded 

1 for AIAN, 2 for Asian, and 3 for White. 

Family SES. Family SES was measured by assessing Family Income. Participants 

reported their combined parental figures’ yearly income with values ranging from 1 (Less than 

$20,000) to 10 (Greater than $200,000).  

School SES. School SES was measured by analyzing the percentages of the student body 

receiving free/reduced-price lunch at each participant’s high school. Higher School SES 

indicated higher percentages of students at the participant’s high school who qualified for 

free/reduced price lunch. Data on school SES was obtained from the National Center for 

Education Statistics (NCES). 

First-Generation Status. In order to assess first-generation status, participants reported 

their maternal and paternal parental figures’ highest level of education attainment with values 

ranging from 1 (Less than High School diploma or GED) to 9 (Doctoral or Professional degree).  

The information was recoded such that participants indicating that both parental figures did not 

obtain a college degree represented first-generation students. This operationalization was based 

on work by Toutkoushian, Stollberg, and Slaton (2018), which found that college deficits were 

most prevalent among students whose parents held no bachelor’s degrees, in comparison to one 

college-educated parent. 

Financial Stress. Financial stress was adapted from the financial subscale on the College 

Stress Inventory (Solberg et al., 1993). Using a scale from 1 (Never) to 5 (Very Often), students 

were asked to rate 8-items. A sample item is “In the last year, how often did you experience 
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difficulty paying student fees next semester.” The items were averaged, with higher scores 

indicating higher levels of financial stress. For this current study, Cronbach’s α was .91. 

Hours Worked per Week. Participants were first asked if they were currently employed. 

Students who indicated yes were then asked how many hours they work per week. Answer 

choices ranged from 1 to 40+ hours a week. Students who indicated no were coded as 0. 

Concern with Finding a Job Locally. Concern with Finding a Job Locally was assessed 

using a 4-item scale that measured the importance of several factors in choosing where the 

participant wished to live after college (Johnson, Elder, & Stern, 2005). The measure rated items 

on a Likert-scale ranging from 1 (Not at all Important) to 5 (Extremely Important). The scale was 

adapted because undergraduate students may not currently live in the same area in which they 

grew up. Thus, a few items were changed to better reflect this. For example, item 3 originally 

said “to be in the community where you live now” and item 4 said “to leave this area.” The 

adapted number 3 now states “to live in the community where you were raised” and item 4 states 

“to leave the area where you grew up” (reverse coded). The items were averaged, with higher 

scores indicating a desire to find a job in the area in which participants grew up. For this current 

study, Cronbach’s α was .81. 

Communal Orientation. Communal orientation was assessed by using a 23-item scale 

assessing goal endorsement (Diekman et al., 2010). Within the 22-item scale were two subscales, 

agentic and communal goal endorsement. The measure rated items on a Likert-scale ranging 

from 1 (Not at all Important) to 7 (Extremely Important). Items were slightly adapted for clarity. 

For example, instead of “serving community,” the item was adapted to state “serving the 

community.” Higher scores on the communal goals were indicative of serving, caring, and 

helping others. For this current study, Cronbach’s α was .86. 
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Number of Advanced Placement Math Courses taken. Participants were asked to 

indicate which advanced placement math courses they took during high school. The number of 

courses taken was summed, with higher scores indicating greater exposure to math in high 

school.  

Number of Advanced Placement Science Courses taken. Participants were asked to 

indicate which advanced placement science courses they took during high school. The number of 

courses taken was summed, with higher scores indicating greater exposure to science in high 

school.  

Math Self-Efficacy. Math Self-Efficacy was measured using a reduced 18-item scale 

adapted from Usher and Pajares (2009). The original scale included 24 items. Six of the items 

(e.g., “Seeing adults do well in math pushes me to do better”) were excluded because they were 

not appropriate for the current sample of college-aged students. The items were rated using a 

scale from 1 (Strongly Disagree) to 6 (Strongly Agree). Sample items are “I have always been 

successful with math,” “Doing math work takes all of my energy,” and “I image myself working 

through challenging math problems successfully.” The items were averaged, with higher scores 

indicating higher levels of math self-efficacy. For this current study, Cronbach’s α was .97. 

Identity as a Scientist. Identity as a Scientist was assessed using a modified five-item 

version of Chemers et al. (2011) Identity as a Scientist measure. Participants were asked to 

indicate the extent to which they identify as a scientist, using a scale ranging from 1 (Strongly 

Disagree) to 5 (Strongly Agree). A sample item is “In general, being a scientist is an important 

part of my self-image.” The items were averaged, with higher scores indicating higher levels of 

identity as a scientist. For this current study, Cronbach’s α was .96.  

Institutional Records 
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Major. The majors of participants who gave researchers permission to access their 

institutional records were collected from the university system. To qualify as enrolled in a STEM 

major, participants must have been in one of the following fields: engineering, biological 

sciences, mathematics, physical sciences, or a related field. Related fields include those related to 

research, innovation, or developing new technology using engineering, mathematics, computer 

science, or a natural science. When there was ambiguity of the categorization of a major, existing 

taxonomies and evaluative judgments of the math and science courses required in the major were 

used as determinants of STEM classification. 

ACT Math Score. Participant ACT math score was obtained from their academic 

records.  

Analyses 

Prior to executing analyses, the data was examined for assumptions of normality and 

missing data. Data was analyzed using Mplus Verison 8 (L. Muthén & Muthén, 2018). Variables 

were considered non-normal if their values of absolute skew were < 3.0 and absolute kurtosis at 

< 10 (Weston & Gore Jr, 2006). Examination of the data indicated small percentages of missing 

data and non-normality. The percentages of missing data were all under 0.01%, with the 

exception of ACT math score at 15.5%. The absence of some ACT math scores is likely 

attributed to participants who did not take the ACT math test, and thus do not have an ACT math 

score. In order to further examine the patterns of missingness, the “BaylorEdPsych” package was 

utilized in R (Beaujean, 2012; R Core Team, 2013). While it is likely not feasible to determine 

whether missing data is missing completely at random (MCAR), MCAR tests can provide some 

indirect evidence that the missing data is missing at random (MAR). Little’s MCAR test was not 

significant, χ2 = 397.72, p > .001, suggesting that the pattern of missingness was not problematic 
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(Little, 1988). Means, standard deviations, minimum and maximum values, and the percentage 

of missing data for each measure are presented in Table 1. 

Given the binary outcome of enrollment in a STEM major and non-normality of the data, 

two options were considered: 1) the weighted least square with adjustment in mean and variance 

(WLSMV) estimator and 2) robust maximum likelihood (MLR). While the WLSMV indicator 

utilizes probit regression, MLR utilizes logistic regression. Although both approaches are 

capable of modeling categorial data, WLSMV has been noted as the best option due to its lack of 

assumption of normally distributed variables (T. A. Brown, 2015). In handling missing data, 

WLSMV utilizes pairwise present, which holds assumptions of MCAR, where cases of 

missingness on exogenous covariates are dropped. Due to no missing data on the exogenous 

covariates, no cases were dropped due to missingness. Further, and perhaps most importantly, 

WLSMV provides fit indices information, whereas MLR does not. As one of the goals of the 

present study was to examine whether the SCCT model will provide a good fit to the data, the 

WLSMV estimator was chosen. Further, the WLSMV can be utilized to conduct chi-squared 

difference tests for nested models, whereas MLR cannot. In order to compute the chi-square 

difference tests, the DIFFTEST option in Mplus was utilized (L. Muthén & Muthén, 2018).        

 Due to the high number of predictor variables and their close theoretical relationship, 

multicollinearity was checked. Multicollinearity occurs when highly correlated predictor 

variables inflate the regression coefficients in regression results. This can cause the R-squared 

and contribution of each predictor variable to be limited in size. In order to examine 

multicollinearity, the VIF values were examined. VIF values above 10 are cause for concern and 

indicate a high likelihood of multicollinearity (Hair et al., 2010). The majority of the VIF values 

were quite close to 1, and no VIF values were > 1.5. Thus, it is unlikely that multicollinearity 
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was occurring. Further, while there were several significant correlation coefficients between the 

predictor variables, no correlations exceeded .80. Thus, it appears that multicollinearity was not 

present and model analyses continued. The inter-variable correlations are displayed in Table 2. 

Model Analyses 

Path analysis, a type of structural equation modeling (SEM), was utilized to model the 

relationships among all study variables (see Figure 2). This type of SEM analysis was chosen 

because path analysis can examine the relations among predictors that are also assumed to relate 

to the dependent variable (Kline, 2015). Further, path analysis provides information on model-

data fit. Multiple goodness-of-fit indicators were examined, including: χ2, Comparative Fit Index 

(CFI), Tucker-Lewis index (TLI), root-mean-square error of approximation (RMSEA), and the 

weighted root mean square residual (WRMR). For CFI and TLI, values above ≥ .90 indicates a 

good fit, whereas above ≥ .95 indicates a very good fit of the model to the data (Bentler & 

Bonett, 1980). RMSEA values above ≤ .05 indicate very good fit and a value ≤ .10 indicate good 

fit (Kline, 2015; Steiger, 1990, 1990). WRMR value at or below .95 indicates good fit (Yu, 

2002).  

Past SCCT research has most often considered gender and ethnicity as person inputs that 

predict other endogenous variables in the model. However, a few studies have indicated the 

value of using these variables as control measures on all endogenous variables, due to their 

influence on each path of the SCCT model (Navarro et al., 2007; Turner et al., 2017). For 

example, in a study by Turner (2017) it was found that modeling gender solely as a person input 

led to significantly worse model-data fit. As such, in order to control for the extraneous 

confounding effects of person inputs, gender and ethnicity were controlled for across all 
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endogenous variables. An alternative model was also tested where gender and ethnicity were 

modeled as a person input. 

Results 

Hypothesized Model Evaluation 

Initial examination of the hypothesized model indicated poor model fit to the data when 

using the WLSMV estimator, χ2(39, N = 541) = 225.57, p < .01; RMSEA = .09 (.08, .1); CFI = 

.70; TLI = .27; WRMR = 1.45. Although the RMSEA value was within an acceptable range, the 

χ2, CFI, TLI, and WRMR indicated a poor-fitted model. Upon examination of the model 

modification indices, three adjustments to the model were considered. The modification indices 

suggested allowing for correlations between the residual variances of three observed variables.  

Due to the theoretical relationship between these variables and their placement within the same 

set of variables of the SCCT model, paths between the residual correlations were added. First, 

the residuals between the number of AP math courses and AP science courses taken were freely 

correlated. Second, the residuals between concern with finding a job locally and communal 

orientation were freely correlated. Third and last, the residuals between financial stress and the 

number of hours worked per week were freely correlated.  

Hypothesized Final Model 

After these modifications, overall results indicated the modified model exhibited overall 

acceptable fit χ2(36, N = 541) = 88.13, p < 0.01; RMSEA = .05 (.04, .06); CFI = .92; TLI = .78; 

WRMR = .88. Although the fit index TLI suggest poor fit, the RMSEA, CFI, and WRMR 

indicators suggest the model does fit the data well. No further modification indices with a 

substantial value were suggested. In consideration of model parsimony, several paths were 

removed from analyses (Kline, 2011). Based upon recommendations by Wuensch (2016), paths 
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were trimmed if they did not meet the minimum criteria of |β| < .05. The finalized, trimmed 

model (see Figure 3) indicated excellent model fit, χ2(47, N = 541) = 97.22, p < .01; RMSEA = 

.04 (.02, .04); CFI = .95; TLI = .92; WRMR = 0.86. The finalized model accounted for 53.8% of 

the variance in declaring a STEM major, 26.2% of the variance in math self-efficacy, 17.2% of 

the variance in financial stress, 12.7% of the variance in ACT math score, 12.1% of the variance 

in identity as a scientist, 4.1% of the variance in number of AP science courses taken, 6.7% of 

the variance in number of AP math courses taken, 5.1% of the variance in number of hours 

worked per week, 3.3% in communal orientation, and 2.1% in concern with finding a job locally.  

Alternative Model Evaluation 

 An alternative model was tested in which gender and ethnicity were not controlled for on 

each of the dependent variables. Similar to the hypothesized model, initial examination of the 

alternative model indicated very poor model fit to the data when using the WLSMV method, 

χ2(53, N = 541) = 259.59, p < .01; RMSEA = .09 (.08, 1.0); CFI = .67; TLI = .41; WRMR = 

1.54. Examination of the modification indices indicated that the model fit would see significant 

improvement by allowing a few residuals to correlate. The correlated residuals in the alternative 

model were the same as those in the hypothesized model: a) number of AP math courses and AP 

science courses, b) concern with finding a job locally and communal orientation, and c) financial 

stress and the number of hours worked per week. After the alternative model was modified there 

were still a few suggested modification indices that had values > 10; however, these modification 

indices did not align with the SCCT framework.  

Alternative Final Model 

 The alternative model indicated overall poor fit to the data, χ2(52, N = 541) = 128.00, p < 

.01; RMSEA = 0.05 (.04, .06); CFI = .89; TLI = .77; WRMR = 1.01. Although RMSEA was 
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within acceptable range, all other fit indices indicate poor fit. In comparison to the hypothesized 

model, there is a degradation in goodness of fit for the alternative model Δ χ2 (14, N = 541) = 

33.69, p < .05. Thus, this suggests that utilizing gender and ethnicity as a control variable, as 

opposed to a person input, across all endogenous variables is supported. The goodness-of-fit 

indicators for the hypothesized and alternative model are presented in Table 5.  

Primary Analyses 

As depicted in Figure 2, the significant standardized path coefficients ranged from -0.37 

to 0.50 (p < .05). Parameter estimates for the model, including direct and indirect effects, are in 

Table 3. In addition, the changes in predicted probabilities are also reported for all variables that 

significantly predicted enrollment into a STEM major. For calculating entrance into STEM, 

probit regression analyses were run. The probit coefficient is the change in z score that is related 

to a one-unit change in X. As this is not easily interpretable, the predicted probability was 

calculated using the following formula (L. K. Muthén & Muthén, 2009): 

P(y = 1|X) = F(a + b * X) = F(-t + b1 * χ1 + b2 * χ2 + …), 

where F = the standard normal distribution function, a = regression intercept, b = unstandardized 

probit regression coefficients, t = the threshold of enrollment in a STEM major, and -t = the 

negative of the probit regression intercept. In the first equation, the probability of P(y = 1| x) 

when all independent variables are held at their mean was calculated. In the second equation, the 

impact of a one unit change on each independent variable was calculated, where x̄ + 1, and then 

the P(y = 1| x) was recalculated. The first probability was then subtracted from the second 

probability, which indicates the effect on the predicted probability of enrollment in a STEM 

major (where enrollment in a STEM major = 1) when all other independent variables are set to 

their mean.   
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Hypothesis 1 – Hypothesis 3 

Hypotheses 1 through 3 examined the direct effects from background/contextual 

affordances to STEM-major enrollment, which controlling for gender and ethnicity. Hypothesis 

1, which states that Family SES will have a direct, positive relationship with enrollment in an 

undergraduate STEM major, was not supported. Instead, the opposite was found, where a one-

unit increase in the mean of Family SES predicted a -.03 significant decrease in the probability 

of enrolling in a STEM major. In other words, an increase in Family SES decreases the 

likelihood of a student enrolling in a STEM major. Hypotheses 2 and 3 were not supported, 

indicating no direct effect of School SES and first-generation status on enrollment in STEM (p > 

.05). Gender and ethnicity were also not predictive of enrollment in a STEM major (p > .05). 

Hypothesis 4 – Hypothesis 6 

 Hypotheses 4 through 6 proposed direct effects from background to learning experiences 

in high school. The background characteristics of Family SES, School SES, first-generation 

status did not predict ACT math score (p > .05). However, the covariates of gender (β = -.19, p < 

.001) and ethnicity (β = .13, p < .001) did predict ACT math score. Specifically, females on 

average had lower ACT math scores in comparison to males. A one-way between-subjects 

ANOVA was conducted to further explore the relationship between ethnicity and ACT math 

score. As expected, the one-way ANOVA indicated significant mean differences on ACT math 

score among AIAN, Native, and White students F(2,454 = 10.05, p < .000) Post hoc 

comparisons using the Tukey HSD test indicated that the mean score on ACT math for AIAN 

students (M = 24.17, SD = 4.20) was significantly lower than Asian (M = 25.92, SD = 3.91) and 

White (M = 26.01, SD = 4.75) students (p < .05). There were no significant differences between 

Asian and White students (p > .05). The number of AP math courses taken was significantly 
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predicted by Family SES (β = .10, p < .05), but School SES, first-generation status, gender, and 

ethnicity were not significant predictors (p > .05). Interestingly, no variables significantly 

predicted the number of AP science courses taken (p > .05), indicating there may be variables 

outside of the scope of this study that warrant further examination. Thus, Hypothesis 4 was 

partially supported, but Hypotheses 5 and 6 were not supported.   

Hypothesis 7 – Hypothesis 9 

 The next set of hypotheses proposed that the learning experiences of ACT math score, 

number of AP math courses taken, and number of AP science courses taken would predict 

identity as a scientist and math self-efficacy. Hypothesis 7 was supported (β = .21, p < .000), 

where ACT math score significantly predicted both identity as a scientist and math self-efficacy 

(β = .49, p < .000). Thus, higher ACT scores predicted higher identity as a scientist and math 

self-efficacy. The number of AP math courses taken in high school did not have a direct effect on 

either identity as a scientist and math self-efficacy (p > .05), thus Hypothesis 8 was not 

supported. There was partial support for Hypothesis 9, where more AP science courses taken in 

high school significantly predicted higher identity as scientist (β = .32, p < .000), but not math 

self-efficacy (p > .05). Lastly, gender and ethnicity were not predictive of identity as a scientist 

and math self-efficacy (p > .05). 

Hypothesis 10 – Hypothesis 15 

 Hypotheses 10 and 11 state that the self-efficacy variables of identity as a scientist and 

math self-efficacy will have a direct effect on enrollment in a STEM major. Hypotheses 12 

through 15 propose that the proximal contextual influences of financial stress, the number of 

hours worked per week, concern with finding a job locally, and communal orientation will 

predict enrollment in a STEM undergraduate major. Identity as a scientist had the largest impact 
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on enrollment in a STEM major. Specifically, a 1-point increase in the mean of identity as a 

scientist resulted in a .20 increase in their probability of enrollment in a STEM major. Math self-

efficacy had the second largest impact on enrollment, where an increase in math self-efficacy of 

1-point above the mean increased the probability of STEM-major enrollment by .07. Thus, 

Hypothesis 10 and 11 were supported. In support of Hypothesis 12, a 1-point increase in the 

mean of financial stress indicated a .05 decrease in the probability of enrollment in STEM. In 

other words, higher levels of financial stress negatively predict enrollment in STEM. Contrary to 

what was expected, Hypothesis 14 was not supported, where a 1-point increase in concern with 

finding a job locally indicated a .05 increase in the probability of STEM enrollment. Namely, 

higher concerns with finding a job locally was related to slightly increased predicted enrollment 

in STEM. Lastly, Hypotheses 13 and 15 were not supported, where the number of hours worked 

per week and communal orientation did not have an impact on enrollment in a STEM major (p > 

.05). In sum, our results suggest that student concerns with finding a job locally may positively 

impact the likelihood of their enrollment in STEM. Gender and ethnicity did not increase the 

probability of enrollment in a STEM major (p > .05). 

Hypothesis 16 – Hypothesis 21 

 The last portion of hypotheses proposed a new path between background contextual 

affordances and proximal influences. Further, mediation analyses were hypothesized, where 

proximal influences would explain part of the relationship between background variables and 

enrollment in a STEM major. As predicted in Hypothesis 16, financial stress was negatively 

predicted by Family SES (β = -.15, p < .000), where higher income predicted lower financial 

stress. Financial stress was not predicted by School SES and first-generation status (p > .05). 

Similarly, the number of hours worked per week was negatively predicted by Family SES (β = -
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.12, p < .01), but not School SES and first-generation status (p > .05). Concern with finding a job 

locally was also only predicted by Family SES (β = .04, p < .05). Thus, it appears that as Family 

SES increases, there is a small increase in scores of concern with finding a job locally. Taken 

together, Family SES negatively influenced financial stress and the number of hours worked per 

week, but positively influenced concerns with finding a job locally. There were no significant 

predictors of communal orientation (p > .05). In sum, there was partial support of Hypothesis 16, 

but no support of Hypothesis 17 and 18.   

 Lastly, hypothesized indirect effects (i.e., Hypotheses 19-21) were estimated 

utilizing Mplus’s MODEL INDIRECT command and bootstrapping procedures. The following 

indirect effects were tested: background characteristics (e.g., Family SES, School SES, and first-

generation status) on enrollment in a STEM major through proximal influences (e.g., financial 

stress, number hours worked per week, concern with finding a job locally, and communal 

orientation). All indirect effects are reported in Table 4. There was only one significant indirect 

effect. The bootstrapped unstandardized indirect effect from Family SES, financial stress, to 

enrollment in a STEM major was .05, with a 95% confidence interval that ranged from .01 to 

.09. As such, the relationship between Family SES and enrollment in a STEM major appears to 

be partially mediated by financial stress. 

Discussion 

The present study is one of the first to use SCCT to examine predictors of STEM-major 

enrollment for a sample of AIAN college students. Further, few studies have examined the 

influence of proximal characteristics, besides supports and barriers, on enrollment in STEM. The 

overarching purpose of the study was to examine the influence of variables related to 

socioeconomic status on STEM-major enrollment and provide clarity in the equivocal literature. 
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The results indicate that after modifying the hypothesized model, the proposed model provided 

an acceptable fit to the data. Further, after model trimming, there was excellent model-data fit. 

Overall, the proposed model explained 53.8% of the amount of variance in undergraduate 

enrollment in a STEM major. 

 Despite the overall support of the paths proposed by SCCT, the support for the 

hypotheses was mixed and sometimes contrary to what was expected. Most notably, first-

generation status was not found to be predictive of learning experiences, proximal influences, or 

enrollment in a STEM major. Despite past research that has found that first-generation status 

students are underrepresented in undergraduate STEM majors (Chen, 2005), this study found no 

differences in rate of enrollment based upon first-generation status. This aligns with findings 

from Crisp and colleagues (2009), who found that in a sample of Hispanic, Asian, and White 

students, first-generation status was not predictive of enrollment in a STEM major. It may be that 

despite potential lack of parental knowledge on STEM careers and higher education, first-

generation status students are as equally motivated to enter STEM as their non-first-generation 

status counterparts. Lastly, Family SES was found to negatively influence the probability of 

STEM-major enrollment. These results reflect the same findings from Ma (2009), in which lower 

family income increased the likelihood of an individual’s enrollment in a STEM major. There is 

some indication to suggest that these students may recognize the advantage of future job 

prospects in STEM, and feel driven to enter STEM in order to gain access to social mobility 

opportunities (Conrad et al., 2009). 

Thus, the current study supports that even distal predictors in the SCCT model may 

impact choice actions (i.e., STEM-major enrollment). It should be noted that the increase in 

probability from distal predictors was half that of concern with finding a job locally, math self-
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efficacy, and financial stress, and about a fifth of the influence on probability of identity as a 

scientist. The strength of the self-efficacy variables on STEM-major enrollment is unsurprising, 

considering students who feel more efficacious in a subject are more likely to pursue it through 

goals and choice actions. Despite this, the significance of Family SES even among variables that 

are more proximal to choice actions, supports the SCCT proposition that environmental 

influences continue to affect career choices into adulthood (Lent et al., 1994). In contrast to 

findings from Niu and Orr et al. (2017; 2011), School SES was not predictive of enrollment in a 

STEM major. In other words, students from high schools that reported all ranges of students 

qualifying for free or reduced lunch equally enter into STEM. This finding helps clarify that 

while STEM enrollment rates among students from high schools that vary in SES may be similar 

among initial first year enrollment at a university, it may be after students begin their college 

education when the representation issues occur. For example, as students engage in introductory 

mathematics and science “gateway” courses in college, they may be discouraged if they were not 

prepared by their high school education and subsequently leave their STEM major.  

 Surprisingly, this study’s background contextual influences did not predict scores on the 

ACT math exam. Instead, there was a significant influence of gender and ethnicity on ACT math 

scores. Specifically, both females and AIAN students were more likely to score lower on their 

ACT math exam than their male and White or Asian counterparts. These findings align with 

trends in national datasets, where AIAN students typically score several points lower on the ACT 

than Asian and White students, with females scoring lower than males (ACT, Inc., 2015; Buddin, 

2014). This finding suggests that the influence of an individual’s personal identity is more salient 

in influencing their ACT math score, independent of their social capital resources. It is possible 

that perceptions of women and minoritized groups not excelling at math may influence how 
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these students expect to do on the ACT test, which can subsequently influence how well they 

score. Although not predictive of ACT math score and the number of AP science courses taken, 

Family SES did predict the number of AP math courses taken. Students from higher Family SES 

backgrounds were more likely to take a greater number of AP math courses. This finding aligns 

with research by Useem (1992), in which higher-SES parents were more likely to encourage 

their children to enroll in AP math courses. It may be that parents who have higher incomes have 

more capacity to provide emotional and instrumental support to their children and encourage 

them in their educational pursuits. The present study did not illuminate what may predict the 

number of AP science courses a student takes. There may be indicators beyond the scope of the 

present study, such as the number of AP science courses offered at the high school, which 

defines opportunities to take AP science courses. Overall, there appears to be support that some 

environmental and self-identity characteristics may influence exposure and achievement in the 

math and sciences. 

 There also appeared to be some support that these learning experiences impact self-

efficacy. Scores on the ACT math test significantly predicted both self-efficacy measures, 

identity as a scientist and math self-efficacy. Thus, high achievers on the ACT math test are more 

likely to believe in their math and science success. The number of AP math courses taken did not 

impact self-efficacy beliefs, and the number of AP science courses only predicted identity as a 

scientist. Thus, this indicates that mere exposure to math and science courses may not raise self-

efficacy as much as achievement. This finding closely aligns with classical definitions of 

learning experiences, which include performance accomplishments but not exposure (Lent et al., 

1994).  
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 Past research has typically examined proximal influences in the forms of supports and 

barriers. The present study sought to find other proximal influences that may impact enrollment 

in a STEM major. The findings suggest that, along with the impacts of self-efficacy and Family 

SES, financial stress and concerns with finding a job locally may play important roles as well. As 

expected, higher financial stress was found to negatively impact the probability of enrollment in 

STEM. Additionally, the present findings suggest that financial stress partially explains the 

negative relationship between Family SES and enrollment in a STEM major. For example, a 

2009 national survey of First Year students found that 57.2% of students expressed “some” 

concerns with their ability to finance their education, and 19.8% indicated “major” concern. In 

turn, these financial concerns may impact student decision-making about college (Rios-Aguilar 

& Stolzenberg, 2015; Ruiz et al., 2010). It is likely that this concern combined with perceptions 

that STEM degrees take longer to complete than non-STEM may dissuade students from 

deciding to enroll in STEM (Barton, 2003; Fenske et al., 2000). Lastly, contrary to what was 

expected, higher concerns with finding a job locally positively impacted the probability of 

enrollment in STEM. Historically, there has been significant growth of STEM employment 

opportunities in the U.S. (U.S. Bureau of Labor Statistics, 2014). Thus, undergraduate students 

may perceive that STEM-related jobs are more readily available in their local community in 

comparison to non-STEM jobs. However, it should be noted that this relationship was small and 

potentially trivial.  

Implications 

For education practitioners, the present study suggests that additional pathways aside 

from high school experiences may impact a student’s decision to enroll in STEM. Financially 

stressed students were less likely to enroll in a STEM major, which highlights the criticality of 
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adequately resourcing students. Students who receive this support may feel better equipped to 

pursue their STEM career aspirations. In addition to expanding financial aid packages, 

universities can find other ways in which to financially assist their students. For example, 

universities could alleviate levels of financial stress by expanding their usage of work-study 

programs. Alternatively, universities could promote financial literacy courses, which are 

especially valuable for students from first-generation status or AIAN backgrounds (Carter et al., 

2013; Tierney et al., 2007). Outreach workshops designed to educate students about the financial 

aid process may also positively impact student access to STEM.  

Furthermore, education practitioners should consider the impact of student concerns with 

finding a job locally. Informing students about STEM jobs within their community may increase 

rates of enrollment in STEM majors. For example, universities could partner with local STEM 

organizations and create outreach programs that promote local STEM job opportunities. For 

students who moved away from their community to attend university, these local outreach 

programs may not be as helpful. Thus, universities could encourage academic advisors to 

provide supplementary resources for these students informing them about job opportunities in 

their local communities. 

Limitations 

Despite the strengths of the current study in revealing additional relationships that may 

impact STEM-major enrollment, there are several limitations to note. A primary purpose of the 

study was to examine a severely under-represented sample of students, AIAN undergraduates. 

Thus, the sample only included AIAN, Asian, and White students at a single south-central 

university. Therefore, due to this limited sample, findings may not be generalizable to other 

ethnic/racial groups. Additionally, the inclusion of students in their second semester of college 
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introduced the possibility of participants who may have already left their STEM major or had 

recently transferred in. Despite this, past research has indicated that after initial STEM 

enrollment, students do not significantly leave their major until after the third semester (Orr et. 

al, 2011). Thus, it is likely that the sample still captured the experience of a newly admitted 

undergraduate student who had yet to transfer major. Due to sample size limitations and model 

complexity, the study did not run multiple-groups analyses. Therefore, it is possible that the 

model would not fit across diverse ethnic/racial groups and there could be group-based 

differences in the strength and significance of path coefficients. In addition, path analysis was 

chosen to examine the unique relations among predictors and dependent variables. However, 

path analysis assumes the variables are measured without error. Thus, there may have been 

issues in measurement that were not accounted for in the analyses. Lastly, there are significant 

variations in how STEM majors are defined. Given that university institutions and the 

government may define STEM majors and fields differently, implications may vary depending 

on how STEM majors are coded. 

Future Directions 

The number of AP science courses taken was the strongest predictor of identity as a 

scientist, which was the most influential predictor of STEM-major enrollment. However, the 

variables in the present study did not predict the number of AP science courses that a student 

took in high school. As discussed in the limitations, the number of AP science courses taken is 

bound by the availability of AP science courses at a student’s high school. Thus, future research 

should consider the number of AP science courses taken as a percentage of the number of AP 

science courses available. In turn, researchers could then examine how someone’s background or 

person attributes would predict the percentage of AP science courses taken, and AP math courses 
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could be examined similarly. If researchers better understood this relationship, this would 

provide opportunities for interventions, which would in turn increase STEM-major enrollment. It 

would also be valuable for researchers to consider other influences of self-efficacy, such as 

vicarious learning or psychological arousal that may more directly shape how efficacious an 

individual is in their math and science performance. 

This study revealed that higher concerns with finding a job locally positively predicted 

enrollment in STEM. The present effort assumes that this relationship may be due to participant 

perceptions that STEM jobs are more easily attainable in their local community in comparison to 

non-STEM jobs. Future research should conduct qualitative studies to further understand this 

relationship, such as directly asking participants about their perceptions of STEM job availability 

in their town.  

The present effort examined several direct effects of social class variables on initial 

STEM enrollment rates. However, more research in the SCCT literature is needed to examine 

how to best support diverse students throughout the course of their undergraduate careers. 

Longitudinal analyses should be conducted to more accurately examine the impact of Family 

SES, School SES, and first-generation status on STEM-major enrollment. Additionally, the 

current study was only able to explain half of the variance in STEM-major enrollment, indicating 

that there may be nuanced dynamics of how social class may function in influencing STEM 

choice actions. For example, the present effort did not see any significant relationships between 

first-generation status students and STEM-related outcomes. Alternatively, there may be other 

social cognitive variables not examined in the present study that are more influential on STEM-

major enrollment. Thus, future research should utilize qualitative methods to examine the impact 

of social class variables, particularly first-generation status, on STEM enrollment. Future 



 

 42 

quantitative research should also examine other social cognitive variables that may influence 

STEM enrollment.  

Future research should collect a large enough sample to assess if the final model is 

invariant across groups. Specifically, multiple group analyses should be conducted to examine 

model fit across diverse groups and investigate differences in the path coefficients. Lastly, future 

research that collects a large enough sample size should also consider intersectionality. This 

study may not have fully captured the experiences of students who hold multiple marginalized 

identities (i.e., first-generation status, low SES, and ethnically under-represented in STEM). 

Thus, future research should consider the impact of having multiple social identities on students’ 

experiences in STEM. 

Conclusions 

 Given the need to maintain national competitiveness in STEM, the study sought to 

identify ways in which the STEM pipeline could be improved to recruit students from 

historically underrepresented diverse groups. Specifically, the present study helps clarify the 

relationship of social class indicators on undergraduate enrollment in STEM. The study 

additionally responds to the need for increased representation of AIAN students. The findings 

indicate that the SCCT model can be used to better understand the impact of Family SES, School 

SES and first-generation status on enrollment in STEM. In contrast to past studies, School SES 

was not predictive of enrollment in STEM or of learning experiences. In alignment with some 

research, Family SES was negatively related to enrollment in STEM. Notably, first-generation 

status was not predictive of any relationships. Consistent with past research, self-efficacy in the 

form of identity as a scientist was the strongest predictor of STEM major-enrollment. The 

present effort also revealed that proximal influences of financial stress or concerns with finding a 
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job locally significantly impact the probability of entrance into STEM. Further, financial stress 

was found to partially mediate the relationship between Family SES and enrollment in STEM. 

This research equips practitioners with new methods to better attract students into STEM majors. 

In conclusion, the present study provides avenues to consider for future research in pursuit of 

fully understanding the lives of diverse students in STEM.   
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Table 1  

Means, standard deviation, minimum and maximum values, and the percentage of missing data  

Measure Mean SD Min Max Percentage of Missing Data 

Family SES 5.18 5.17 1.00 9.00 .00% 

School SES .40 .05 0.00 1.00 .00% 

ACT Math 25.20 19.65 0.00 36.00 15.53% 

AP Math 2.11 6.42 0.00 10.00 .74% 

AP Science 1.27 1.87 0.00 10.00 1.11% 

Math Self-Efficacy 3.99 1.63 1.00 6.00 .00% 

Identity as a Scientist 2.55 1.30 1.00 5.00 .00% 

Financial Stress 2.25 .93 1.00 4.60 .37% 

Job Local 2.91 .85 1.00 5.00 .18% 

Communal Orientation 5.75 .62 1.00 7.00 .18% 

Hours Worked 1.05 2.38 .00 6.00 .00% 

Note. N sizes ranged from 457 – 541. 
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Table 2 

Correlation coefficients 

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. Ethnicity                            

2. Gender -.10*                          

3. Family SES .15** -.04                        

4. School SES -.26** .01 -.31**                      

5. FGS -.11* .02 -.49** .19**                    

6. ACT Math .19** -.20** .15** -.18** -.11*                  

7. AP Math .03 -.05 .09* .01 -.05 .19**                

8. AP Science .07 -.08 .05 .01 -.04 .17** .43**              

9. Math Self-Efficacy .05 -.15** .06 .01 -.01 .47** .15** .10*            

10. Identity as a Scientist .00 -.07 -.10* .02 .02 .15** .11* .27** .18**          

11. Financial Stress -.10* .10* -.40** .19** .23** -.15** -.09* -.05 -.16** .03        

12. Job Locally -.09* .06 .07 .03 -.02 -.08 -.07 -.08 .05 .03 .02      

13. Communal -.09* .14** .03 .03 -.03 -.09 -.03 -.01 .01 .04 .05 .24**    

14. Hours Worked .01 .09* -.19** .11* .10* -.03 -.02 -.08 -.01 .09* .28** .02 .02  

15. STEM-major  .01 -.12** -.07 .01 .04 .21** .08 .16** .22** .56** -.07 .08 -.04 .00 

Note. ** p < .01, * p < .05 
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Table 3  

Parameter estimates 

Variable B  CP 

StemCode    

Identity as a Scientist .57 (.04)** .63 (.04)** .20 

Math Self-Efficacy .18 (.04)** .22 (.05)** .07 

Family SES -.08 (.03)* -.17 (.06)* -.03 

     School SES .02 (.24) .01 (.05)  

     First-generation status .03 (.12) .02 (.06)  

     Concern with Finding a Job Locally .14 (.06)* .13 (.06)* .05 

     Financial Stress -.15 (.07)* -.14 (.06)* -.06 

     Hours Worked Per Week .02 (.04) .03 (.06)  

     Communal Orientation -.06 (.08) -.05 (.06)  

     Gender -.15 (.10) -.07 (.05)  

     Ethnicity .01 (.05) .01 (.05)  

    

Identity as a Scientist    

ACT Math .05 (.02)** .21 (.06)**  

AP Math Courses Taken -.03 (.03) -.07 (.06)  

AP Science Courses Taken .27 (.05)** .32 (.06)**  

Gender -.02 (.11) -.01 (.05)  

Ethnicity -.05 (.06) -.04 (.05)  

    

Math Self-Efficacy    

     ACT Math .14 (.02)** .49 (.05)**  

     AP Math Courses Taken .01 (.19) .01 (.05)  

     AP Science Courses Taken .08 (.10) .09 (.05)  

     Gender -.13 (.08) -.05 (.04)  

     Ethnicity -.05 (.05) -.04 (.04)  

(continued) 
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(continued) Table 3  

Variable B  CP 

Financial Stress    

Family SES -.15 (.02)** -.35 (.05)**  

School SES .33 (.19) .07 (.04)  

     First-generation status .08 (.10) .04 (.05)  

     Gender .17 (.08)* .09 (.04)*  

     Ethnicity -.01(.86) -.01 (.04)   

    

Communal Orientation    

Family SES .01 (.02) .04 (.05)  

School SES .11 (.15) .03 (.04)  

     First-generation status -.04 (.08) -.03 (.05)  

Gender .23 (.07)** .14 (.04)**  

Ethnicity -.07 (.09) -.08 (.05)  

    

Concern with Finding a Job Locally    

     Family SES .04 (.02) .11 (.05)  

     School SES .13 (.20) .03 (.05)  

     First-generation status .03 (.10) .02 (.05)  

     Gender .10 (.08) .05 (.04)  

     Ethnicity -.09 (.04)* -.09 (.04)*  

    

Number of Hours Worked per Week    

     Family SES -.12 (.04)** -.17 (.05)**  

     School SES .50 (.33) .07 (.05)  

     First-generation status .00 (.17) .00 (.05)  

     Gender .27 (.14) .08 (.04)  

     Ethnicity .10 (.07) .06 (.05)  

(continued) 
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(continued) Table 3 

Variable B  CP 

Act Math    

Family SES -.154 (.11) -.19 (.05)  

School SES -1.62 (.99) .13 (.05)  

     First-generation status -.18 (.48) .07 (.05)  

     Gender -1.72 (.42)** -.08 (.05)**  

     Ethnicity .62 (.22)**  -.02 (.05)**  

    

Number of AP Math Courses Taken    

Family SES .11 (.06)* -.04 (.05)*  

School SES .57 (.56) .02 (.05)  

     First-generation status -.04 (.26) .10 (.05)  

Gender .23 (.22) .05 (.04)  

Ethnicity -.07 (.12) -.01 (.04)  

    

Number of AP Science Courses Taken    

     Family SES .04 (.03) -.08 (.05)  

     School SES .13 (.30) .07 (.05)  

     First-generation status .03 (.15) .00 (.05)  

     Gender .10 (.13) .05 (.05)  

     Ethnicity -.09 (.06) -.02 (.04)  

 Note. Standard errors for raw and standardized estimates are presented in parenthesis. CP = calculated probability for significant 

effects. 

* p < .05, ** p < .01. 
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Table 4  

Summary of Indirect Effects. 

Path/Effect B  95% CI 

StemCode    

<- Financial Stress <- Family SES .02 (.00)* .05 (.02)* (.01, .09) 

<- Finding a Job Locally <- Family SES .00 (.00) .01 (.00) (.00, .01) 

     <- Hours Worked Per Week <- Family SES .00 (.00) .00 (.00) (-.02, .01) 

     <- Communal Orientation <- Family SES -.00 (.00) -.00 (.00) (-.00, .00) 

     <- Financial Stress <- School SES -.05 (.03) -.01 (.00) (-.03, -.00) 

     <- Finding a Job Locally <- School SES .01 (.03) .00 (.01) (-.00, .02) 

     <- Hours Worked Per Week <- School SES .00 (.01) .00 (.00) (-.00, .00) 

     <- Communal Orientation <- School SES -.00 (.00) -.00 (.00) (-.01, .00) 

     <- Financial Stress <- First-generation status -.01 (.01) -.01 (.00) (-.02, .00) 

     <- Finding a Job Locally <- First-generation status .00 (.01) .00 (.01) (-.00, .01) 

     <- Hours Worked Per Week <- First-generation status .00 (.00) .00 (.00) (-.01, .00) 

     <- Communal Orientation <- First- generation status .00 (.00) .00 (.00) (-.00, .01) 

Note. Standard errors for raw and standardized estimates are presented in parenthesis. CI = confidence interval for standardized 

results. 

* p < .05, ** p < .01. 
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Table 5 

Model Fit Indices for hypothesized and alternative models 

Note. *p < 0.01 

 

 

 

 

 

  

Model 2 df RMSEA 90% CI 

RMSEA 

WRMR CFI TLI 

Hypothesized Model 225.57* 39 .09 (.08, .11) 1.45 .70 .27 

Modified Hypothesized Model 88.13* 36 .05 (.04, .06) .88 .92 .78 

Trimmed Hypothesized Model 97.22* 47 .04 (.03, .06) .97 .92 .86 

Alternative Model 259.56 53 .09 (.08, .10) 1.54 .67 .41 

Final Alternative Model 120.92 50 .05 (.04, .06) 1.03 .89 .79 
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Figure 1 

Social Cognitive Career Theory model 
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Figure 2  

A revised version of SCCT’s person input, background/contextual affordances, and self-efficacy model 
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Figure 3 

Trimmed model and corresponding standardized parameter estimates 

 

 
 

Note. Gender and Ethnicity are not included in the figure for ease for interpretation. 

 


