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Abstract 

Heating and cooling in residential buildings, provided by Heating, 

Ventilation, and Air-Conditioning (HVAC) systems, represent a crucial load for 

electric utilities. Fluctuations of heating and cooling loads in residential buildings 

have a significant impact on a utility’s load profile. Electricity suppliers have 

introduced time-of-day (TOD) or time-of-use (TOU) electricity pricing, making 

peak electricity very expensive to consumers, as a means of managing load 

demand when the grid is near capacity. The impact on the utility’s load profile 

can be mitigated by grid-interactive efficient HVAC operations that reduce the 

peak load demand. Pre-cooling is a strategy that reduces the load during on-peak 

hours by shifting cooling operation from on-peak hours to off-peak hours. 

Accordingly, many manufacturers have built in rule-based pre-cooling operation 

strategies into their smart thermostats by setting the space temperature a few 

degrees lower for a period preceding the start of on-peak hours. However, 

common rule-based pre-cooling operation strategies might not be an optimal 

solution for a specific home with specific thermal properties and HVAC system 

cooling capacity under a given utility rate structure and varying weather 

conditions in terms of cost savings. Moreover, even though the smart thermostat 

and utility industries have increasingly collected abundant operational data, there 

is still a lack of a systematic framework that can utilize such data to generate 

actionable information for advanced home HVAC system diagnosis and control, 

and for realizing home energy cost savings and grid-interactive efficient 

operations. Therefore, the primary research question to address in this study is — 
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What is the fundamental system science underlying the design of such a 

framework using the data collected from smart devices for the intelligent dynamic 

management of cooling energy use in a home? 

Recognizing that a home thermal model, which is capable of connecting 

the data such as weather with HVAC operations, is at the heart of this framework, 

this study first aims to develop such model that is built upon the standard RC 

(Resistance–Capacitance) approach for one lumped virtual envelope to describe 

the thermal dynamics of a home. A parameter estimation scheme is also 

developed that enables automatic, sequential, and optimal estimation of the model 

parameters, i.e., the thermal properties, of a home, using the data collected 

through smart thermostats and internet connections. The technical approach 

includes the development and validation of the home thermal model and its 

parameter estimation scheme using data collected from a test home. Moreover, 

with reasonable simplifications to the home thermal model, a model-based 

envelope performance evaluation method is also proposed to assess the thermal 

performance of a home envelope in this study. The simplicity of the method 

allows the parameter to be automatically estimated using a short period of indoor 

and outdoor air temperature data through data screening without the need for a 

home’s physical information. 

Then, an optimal pre-cooling strategy is developed based on an 

optimization algorithm that is constructed utilizing the automatically identified 

home thermal model, which is unique for each home, to search optimal HVAC 

operations for minimizing energy cost with a given TOU utility rate structure, 
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HVAC system capacity, and weather condition. The algorithm determines the 

HVAC on/off control signal that minimizes the 24-h energy cost while 

maintaining thermal comfort and calculates the corresponding optimal indoor air 

temperature. Through simulations, the results demonstrate that the optimal pre-

cooling strategy is indeed significantly more effective than the common rule-

based pre-cooling strategies.  

Since the optimal pre-cooling is heavily dependent on a specific set of 

conditions, such as specific thermal properties, HVAC system capacity, utility 

rate structure, and weather condition, the impact of different sets of conditions on 

the optimal pre-cooling is investigated by the operation and energy performance 

analysis on the thermal dynamics, total energy consumption, and energy cost and 

is also compared with a rule-based pre-cooling through simulations. It is found 

that the optimal pre-cooling is adaptive based on changing conditions and its 

performance is significantly dependent on weather conditions and home thermal 

properties, while its performance may vary for different cooling capacities and 

utility rate structures. The better the home thermal condition is, the less energy 

cost the operation requires. In terms of weather condition, it has the dominant 

impact on the performance of the optimal pre-cooling operation. The hotter the 

weather is in summer, the more cost savings a good thermal condition home can 

achieve. Moreover, less energy cost can be achieved for a HVAC system with a 

higher cooling capacity only when a home has a better thermal condition, and also 

tends to be achieved for a utility rate structure with a much higher on-peak 

electricity price than the price during off-peak or/and mid-peak hours. For a home 



xxiv 

with a poor thermal condition, however, it is found that the optimal pre-cooling 

strategy may need more energy consumption, while the least energy consumption 

can always be achieved without sacrificing thermal comfort for a home with a 

good or better thermal condition, compared with rule-based operation pre-cooling 

strategies. The superb energy performance of the optimal strategy is attributed to 

a longer runtime of the HVAC system in cool outdoor air conditions and to the 

elimination of deadband in the HVAC operation, which is required by the rule-

based operation strategies, to allow the indoor air temperature to stay near the 

thermal comfort upper bound as much as possible. These observations are in line 

with the analysis and expectations and experience. 

Additionally, this study conducts several experiments through a real test 

home, including the investigations of the impact of internal heat gains on the 

home thermal model and cooling load calculations using the mode-based method 

and the HVAC efficiency. This study also investigates the implementation of the 

optimal pre-cooling strategy and meanwhile demonstrates the effectiveness of the 

optimal pre-cooling strategy in terms of the operation and energy performance 

analysis through experiments. 

Overall, this study has helped to answer important questions about 

effective decision making for the operation of HVAC systems, with tremendous 

potential for minimizing home energy cost. This study is a fundamental research 

that has culminated in understanding of thermal interactions and investigation of 

methodologies for achieving grid-interactive efficient operation of HVAC system. 

This study also contributes to knowledge through the development of step-by-step 
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approach that may be followed to achieve optimal operation of HVAC systems, 

based on consideration of thermal properties, weather condition, HVAC cooling 

capacity, and utility rate structure in a smart grid environment. Therefore, the 

developed framework in this study is useful for advanced home HVAC system 

diagnosis and control, and for realizing home energy savings and grid-interactive 

efficient operations. 
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Chapter 1: Motivation and Problem Identification 

This chapter introduces the motivation for this study and the background 

information to building thermal modeling and optimal operation in the presence 

of smart grid environment. It also includes the state of the art and current 

challenges with building systems for achieving grid-interactive efficient 

operations. It concludes with the objectives and overview of this research. 

1.1 Motivation 

 As more variable power supply, such as renewable wind and solar 

photovoltaic power, has been and will likely continue to be added to the electric 

grid, there is a mismatch between the power supply and power demand. Energy 

storage system, such as batteries, is used as one of the ways to compensate for 

both diurnal variability of solar power and the difficulty to predict stochastic 

variability of wind power. However, the high cost and relatively fast deterioration 

of batteries pose an obstacle for the massive adoption of the renewable power 

supplies. 

In buildings, thermal mass, which is equivalent to the thermal capacitance 

or heat capacity, provides characteristics that enable it to store energy and provide 

thermal inertia against temperature fluctuations. Since the thermal mass of 

buildings can absorb thermal energy when the surrounding temperature is higher 

than building envelope and release thermal energy back when the surrounding 

temperatures are cooler, the thermal mass of buildings usually can serve to flatten 

or shift the daily temperature fluctuations when surrounding temperatures are 
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fluctuating throughout the day. By absorbing and progressively releasing heat, 

thermal mass helps in the regulation of indoor temperature. This is reflected in the 

shift of the peak space load. Due to these characteristics of the thermal mass of 

buildings, there is a large potential for load shifting and peak demand reduction, 

i.e., moving the building electricity use from on-peak hours to off-peak hours, and 

has been the most important focus for utilities in order to avoid building more 

power plants powered by fossil fuels and consequently reduce capital expenses, 

carbon emissions and environmental pollution. 

Consequently, buildings are looked upon to operate in a way to 

accommodate the variations of grids. In the U.S., about 71% of power on the grids 

is consumed by buildings (EIA 2012). The infrastructure advancement of smart 

grids and smart buildings makes it possible to use buildings as thermal storage 

batteries to accommodate the variability of the renewable power suppliers, 

dynamic electricity rates, and other auxiliary services to the grids. According to 

an estimate by U.S. EIA, shown in Figure 1.1, the retail sales of electricity in 

residential buildings rank the highest among three different sectors and continue 

to increase year by year. Thus, changes in residential electricity use can have 

dominant impact on the electricity consumption portfolio in the nation.  
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Figure 1.1. U.S. annual electricity retail sales by sector (1950-2018).  

(Source: EAI, Electric Power Monthly). 

On the other hand, average annual utility expense per household, including 

electricity, water, and sewage, is between $1400 and $2600 (EIA 2015), which 

presents an appealing cost-saving incentive for homeowners to invest in smart 

home devices and lower expenses. Moreover, Figure 1.2 shows the power profile 

of a test home in a typical summer day. As observed, the measured on-peak 

demand is close to 20 kW and it occurs at around 5:20 pm, which is the high 

electricity price period as marked in red circle. Therefore, the merging need for 

load shifting advocated by utility companies provides significant cost savings 

opportunity for homeowners. 
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Figure 1.2. The power profile of a test home in a typical summer day. 

In terms of energy consumption, about 40% of total U.S. energy was 

consumed in residential and commercial buildings in 2015 (EIA 2015). 

Approximately 30% of energy used in building is used inefficiently or 

unnecessarily (Sherwin 2010). For residential buildings, space heating and 

cooling annually consumed 11 Quads, nearly 10% of the energy used in the U.S. 

(DOE 2011), which also provides a significant energy savings opportunity.  

Excessive energy consumption and cost in buildings can be explained by 

failure to operate as intended control strategy, wrong sizing of HVAC system, and 

lack of understanding of dynamic thermal loads and interactions. Development 

and implementation of regulations and national policies to encourage reduced 

building energy consumption and cost have raised worldwide interests from 

governments. Meanwhile, the dynamic nature of temperature, weather, internal 

heat gains, occupancy schedules, and the variation of grids, alongside their 

interactions with the thermal characteristic of a specific building construction 

continue to provide challenges for optimal operation of HVAC systems. 
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1.2 Problem Statement 

  The smart thermostat and utility industries have increasingly provided 

homeowners with abundant operational data related to advanced HVAC system 

control and energy usage management in homes (EERE 2016; Lu et. al 2010; 

Nest 2015). The data include weather and its forecasting, home occupancy, 

comfort level, time-of-day (TOD) or time-of-use (TOU) electricity pricing, etc., 

as illustrated in Figure 1.3. These data are usually available to homeowners, smart 

thermostat manufacturers and utilities through access to the cloud-based servers 

provided by the latter. The research gap is a lack of a systematic framework to 

utilize all the available data. The research hypothesis in this study is that such 

available data can be used in the systematic framework proposed in this 

dissertation to produce actionable instruction for advanced home HVAC system 

diagnosis and control, and for realizing home energy cost savings and grid-

interactive efficient operations. 
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Figure 1.3. Operational data related to advanced HVAC system control and 

energy usage management in homes. 

Heating and cooling in homes, provided by HVAC systems, represent a 

crucial load for many electric utilities. Fluctuations of heating and cooling loads 

in buildings also have significant impact on a utility’s load profile. This impact 

can be mitigated by optimal and efficient HVAC operations that shift or reduce 

the peak load demand. In this emerging area, to enable grid-interactive and 

efficient HVAC operations, development of a holistic, physics-based model that 

describes the dynamics of HVAC system and automatically estimates the thermal 

properties of buildings for a control purpose is at the heart of this framework. 

Rule-based pre-cooling is a strategy that can reduce the load during peak 

hours by shifting cooling operation from on-peak hours to off-peak hours. Many 

thermostat manufactures have built in rule-based pre-cooling operation strategies 

into their smart thermostats by resetting the indoor air temperature a few degrees 

lower for a period preceding the start of on-peak hours. Since the electricity use 

and cost of a HVAC system to maintain the space temperature set point are 

related to the HVAC system capacity, weather condition, utility rate structure, and 

home thermal properties that determine the heat transfer rate and thermal capacity 

of a home, the common rule-based pre-cooling strategies utilized by the smart 

thermostat manufacturers might not be an optimal solution. 

Therefore, two research questions are raised here and need to be answered 

in this study:  
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1) to what extend can an optimal pre-cooling strategy outperform common rule-

based pre-cooling strategies?  

2) how different home thermal properties, HVAC system capacity, weather 

condition, and utility rate structure impact the optimal pre-cooling?  

These will be investigated through both simulations and experiments. The 

outcome of this research will fill the following knowledge gaps: 

1) Lack of a holistic, physics-based model that describes the dynamics of HVAC 

system for a control purpose and estimates the thermal prosperities of homes 

for the envelope performance evaluation. 

2) Lack of real-time optimization algorithm to generate customized optimal 

solutions while factoring in specific home thermal properties, HVAC system 

cooling capacity, weather condition, and utility rate structure for a specific 

home. 

3) No quantitative evaluation of existing common rule-based pre-cooling 

strategies compared to an optimal pre-cooling strategy that is formulated 

based on a dynamic thermal model of a home to search for the optimal space 

air temperature set point solution with specific thermal properties under a 

given utility rate structure, HVAC cooling capacity, and weather condition.  

4) No quantitative study and performance analysis of how different home 

thermal properties, HVAC system cooling capacities, weather conditions, and 

utility rate structures impact the pre-cooling strategies in terms of the 

operation and energy performance. 
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5) No experimental analysis of how the internal heat gains impact the home 

thermal model and the corresponding model-based cooling load calculation 

and optimal pre-cooling strategy and how the optimal indoor air temperature 

set points from the pre-cooling strategy will be implemented and performed in 

a real residential building. 

1.3 Research Objective 

Note that energy cost is determined by energy price and use, while energy 

use for space heating and cooling is determined by their loads, which are typically 

influenced by weather, home thermal properties, and occupancy. Therefore, a 

home thermal model that can estimate heating and cooling loads serves as a 

bridge that connects the data on the weather, occupancy, HVAC system 

parameters, and internal gains with the energy use and costs, as illustrated in 

Figure 1.4. The objective of this research focuses on developing such a 

framework as mentioned in Section 1.2. The model will facilitate generation of 

information on deterioration of the home envelope, air distribution, and 

heating/cooling load, and HVAC system efficiency as well as monetary savings 

associated with deterioration correction. Moreover, the home thermal model will 

help home occupants optimize their thermostat settings in response to time-

varying electricity prices and in ways that enable occupants to account for trade-

offs between indoor temperatures (being an indicator of comfort) and energy cost 

savings.  
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Figure 1.4. Connections between the space cooling load and exogenous inputs. 

This research mainly focuses on design and analysis of the building 

thermal model for grid-interactive efficient operations. Specifically, the five tasks 

are designed as follows: 

1) The Thermal Model Construction. This task focuses on constructing such 

a home thermal model. The construction of an accurate and efficient 

model is challenging because of different heat transfer mechanisms 

introduced by various weather inputs such as outdoor air temperature, 

wind, and solar. This challenge is compounded by the lack of detailed 

home information, such as the orientation, location, layout, floor area, and 

construction materials. In this study, this challenge is addressed by 

introducing a model that draws inspiration from traditional network model 

approaches. The home thermal model that can estimate heating and 
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cooling loads serves as a bridge that connects all the mentioned operation 

data. 

2) Model Parameter Estimation Scheme. This task is to develop a real-time 

model parameter estimation scheme and verify the effectiveness of the 

scheme. The scheme will enable automatic, sequential, and optimal 

estimation of the model parameters, i.e., the thermal properties, of a home, 

using data collected through smart thermostats and internet connections. 

3) Optimization Formulation. The task is to formulate a pre-cooling 

optimization problem that finds HVAC control signals over a time period 

and minimizes energy cost subject to maintaining both the indoor air 

temperature within a pair of bounds for thermal comfort. The formulation 

of the optimization problem utilizes the home thermal model with specific 

thermal properties and a given utility rate structure, HVAC cooling 

capacity, and weather condition to investigate how an optimal strategy 

outperforms common rule-based operation strategies. 

4) Performance Analysis of Optimal Pre-Cooling. The task is to investigate 

how different home thermal properties, HVAC system cooling capacities, 

weather conditions, and utility rate structures impact the optimal pre-

cooling strategy in terms of the operation and energy performance. 

5) Experimental Verification and Implementation. The impact of internal 

heat gains on the home thermal model and the corresponding model-based 

cooling load calculation and optimal pre-cooling strategy will be 
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investigated through experiments. The optimal indoor air temperature set 

points generated from the pre-cooling strategy will be implemented into 

the study of a residential building in HVAC filed in order to minimize 

energy cost of the HVAC system through experiments. 

This research is therefore a fundamental research that will culminate in the 

development of methodologies for grid-interactive and efficient HVAC 

operations. The above tasks will be carried out through the use of a data 

acquisition system and a software platform built for a smart thermostat which 

serves to integrate physical sensor measurement with mathematical models for 

real-time control of HVAC system operations. This research will focus on the 

following thrust areas: 

a) Develop a thermal model that may be used to carry out fundamental study 

of building thermal interactions. 

b) Identify computationally efficient methods to automatically estimate the 

model parameters. 

c) Develop and validate a model-based method for envelope performance 

evaluation. 

d) Formulate a pre-cooling optimization problem that is a quadratically-

constrained integer linear program and can be solved through suitable 

tools. 

e) Validate the developed methodologies using case studies in a typical 

residential building. 
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1.4 Research Outline 

This dissertation begins with motivation and problem identification in 

Chapter 1 and critical review of literatures on the HVAC system control and 

optimization and the corresponding methods for building thermal modeling in 

Chapter 2. This is followed by a description of thermal processes in a home and a 

traditional 3R2C plus 2R2C model, and the formulation of a home thermal model 

and its validations in Chapter 3. Next, characterization of U.S. home thermal 

performance is investigated by a method that utilizes the home thermal model in 

Chapter 4. Then an optimal pre-cooing strategy is formulated by utilizing the 

home thermal model and simulations and comparisons are made between the 

selected rule-based operation cases and the optimal solution in Chapter 5. 

Moreover, the performance analysis of the optimal strategy is studied by 

investigations of the impact of different home thermal properties, weather 

conditions, HVAC cooling capacities, and utility rate structures on the optimal 

pre-cooling in terms of energy and operation performance in Chapter 6. As 

followed, experiments are carried out in a real test house to validate the 

effectiveness of the model and the optimal strategy and meanwhile demonstrate 

their implementations in Chapter 7. Finally, conclusions and future work are 

summarized in Chapter 8. Details of the dissertation structure is laid out as shown 

in Figure 1.5. 
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Figure 1.5. Dissertation structure flowchart. 

1.5 Dissertation Contributions 

 Although there are various building thermal models available, the 

innovation of this research is the construction of the computationally efficient, 

physics-based model using a data driven method. The model can accurately 

identify home thermal properties and predict space air temperature dynamics in 

real time, from which online prediction of home energy costs and comfort levels, 

along with HVAC system efficiency and home envelope conditions, can be made 

automatically without homeowner intervention. 

Additionally, this research is fundamental for developing and delivering a 

building HVAC control system that provides optimal grid-interactive control of 

the thermal environment while informing occupants on the impacts of the 
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changing condition of their buildings and the heating/cooling equipment and 

actions they take on energy use, comfort, and costs. The framework will generate 

actionable information for advanced building HVAC system diagnosis and 

control and for realizing grid-interactive energy-efficient operations using data 

from various sources such as smart sensors or meters, emerging smart Internet-of-

Things (IoT) devices, and the Internet. A building thermal model capable of 

connecting all these elements is at the heart of the proposed framework. 

Specifically, the overall contributions of this research may be summarized 

as follows: 

• Understanding of thermal interactions in buildings, especially for homes. 

• Development of a home thermal model that is a core of a systematic 

framework for realizing home energy cost savings and grid-interactive 

efficient operations. 

• Investigation of the data length needed for the accurate model parameter 

estimates through an automatically parameter estimation scheme. 

• Characterization of U.S. home envelope performance through 

identification of thermal properties using a data-driven method. 

• Development of optimization algorithm for operation and energy 

performance evaluation. 

• Development of model-based cooling load calculation and HVAC system 

efficiency identification method. 
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• A benchmark of the energy consumption and cost savings capabilities for 

different pre-cooling strategies utilizing different thermal properties, 

weather conditions, HVAC cooling capacities, and utility rate structures. 

• Applications of the developed approaches for grid-interactive efficient 

operations. 
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Chapter 2: Literature Review 

Building operation control and optimization are mainly challenged by 

dynamic load changes. Unlike lighting and plug loads, the HVAC system load is 

variable and fluctuates with indoor and outdoor environments. Building systems 

need to accommodate this characteristic for achieving efficient operations. 

Inappropriate control strategy and faulty equipment always lead to deficiencies in 

building system operation. Since buildings are the largest electricity users on the 

grids, the variations of grids also impose additional challenges, which make 

operation control and optimization of HVAC systems difficult. To cope with these 

challenges, lots of operation control and optimization strategies have been 

proposed and/or tested from literatures. 

2.1 State of the Art and Current Challenges 

 Heating and cooling in homes, provided by HVAC systems, are known to 

be energy-consuming and costly for homeowners and represent a crucial load for 

many electric utilities. In 2015, the average end-use energy consumption per 

household in the U.S. is 42.4 million Btu for heating and cooling alone, which 

accounts for nearly 55% of total household energy consumption (EIA 2015). In 

terms of energy cost, the average annual utility expense per household, including 

electricity, water, and sewage, is between $1400 and $2600, of which more than 

43% is spent on heating and cooling spaces in homes (EIA 2015; DOE 2011). 

Therefore, home space heating and cooling offer considerable potential for energy 

cost reduction (EERE 2015). Fluctuations of heating and cooling loads also have 
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significant impact on a utility’s load profile. This impact can be mitigated by 

optimal and efficient HVAC operations that shift or reduce the peak load demand.  

As a means of controlling demand when the grid is near its capacity, 

electricity suppliers have introduced TOD or TOU electricity price in recent 

years, making peak electricity expensive to consumers (Kamyar and Peet 2017; 

Tabares-Velasco et al. 2019; Baniasadi 2019). Since electricity is more expensive 

during on-peak hours, smart thermostat manufacturers have incorporated rule-

based pre-cooling strategies into their products, which set the indoor air 

temperature a few degrees lower for a period preceding the start of on-peak hours 

(EERE 2016). The resulting lower indoor air temperature, obtained at a lower 

electricity price, delays the start time of HVAC systems and reduces their runtime 

during on-peak hours. Such rule-based pre-cooling strategies reduce energy 

expenditure for homeowners while maintaining reasonable comfort levels in 

homes because they take advantage of the thermal mass possessed by the building 

structure. In practice, rule-based pre-cooling strategies vary slightly by setting 

different pre-cooling runtimes or lowering the indoor air temperature to different 

levels.  

Although rule-based pre-cooling strategies provide a means of shifting or 

reducing the peak demand, they are guided primarily by intuition and may not be 

optimal in terms of cost savings. The limitation or/and challenges of rule-based 

pre-cooling strategies can be accommodated through pre-cooling optimization 

using model-based strategies. Unlike rule-based pre-cooling strategies, which 
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keep the same operation schedule for all the applied homes throughout the entire 

season regardless of home thermal properties or weather conditions, optimal pre-

cooling strategies are more adaptive, searching for optimal solutions based on 

changing conditions, such as home thermal properties, size and efficiency of the 

HVAC system, weather condition, and utility rate structure. The operations and 

cost savings of an optimal pre-cooling strategy may vary significantly for 

different home thermal properties, sizes and efficiencies of the HVAC system, 

weather conditions, and utility rate structures compared to a rule-based pre-

cooling strategy. Therefore, there is a need to investigate and analyze the 

performance of an optimal pre-cooling strategy regarding the aforementioned 

various conditions.  

Moreover, an optimal pre-cooling strategy is built upon a home thermal 

model that accounts for the aforementioned conditions. A home thermal model 

that can be served as this purpose is in urgent need. The home thermal model is 

expected to be simpler, require fewer measured inputs and less total data, and 

operate without any homeowner intervention since both precise physical 

knowledge of the building and a significant amount of data for calibration are 

generally not available for homes. 

2.2 HVAC System Control and Optimization 

A summary of HVAC system control methods is introduced in Section 

2.2.1 and the corresponding control strategies that minimize building demand 

and/or energy cost are illustrated in detail in Section 2.2.2. 
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2.2.1 Summary of HVAC system control methods 

Tables 2.1 and 2.2 compare the most common methods that have been 

used for the HVAC system control (modified from Ogunsola 2016). These tables 

show the description of the control methods and its limitations to current HVAC 

system applications. Of all the methods shown in Tables 2.1 and 2.2, the optimal 

control methods that have the capacity of minimizing the energy cost while 

maintaining the required thermal comfort, are adopted in this study due to its 

effectiveness and robustness and reliability in comparison with the classical 

control methods. It’s sufficient to be served as a way to benchmark energy 

performance focused on this study. 

Table 2.1. Comparison of traditional HVAC system control methods. 

Control 

Methods 

Examples Description Limitations 

Classical 

Control 

ON/OFF 

Regulates a given 

process between lower 

and upper bounds 

Unable to control 

time delay due to 

thermal inertia. 

Large swings 

display in 

controlled states 

P, PI, PID 

Modulates a control 

variable to achieve 

control using error 

dynamics 

Controller tuning 

is cumbersome. 

Operating 

conditions should 

not vary widely 

from tuning 
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conditions 

 

Table 2.2. Comparison of innovative HVAC system control methods. 

Control 

Methods 

Examples Description Limitations 

Hard 

Control 

Gain Scheduling 

PID 

Different set of gains 

applied to a nonlinear 

system divided into 

piecewise liner regions 

Inability to handle 

time varying 

constraints and 

disturbances 

Nonlinear Control 

Uses a control law to 

drive a nonlinear system 

toward a stable state 

Requires complex 

mathematical 

analysis for the 

identification of 

stable states 

Robust Control 

Designs a controller that 

works well with time 

varying disturbances 

Require 

specification of 

additional 

parameters which 

could be 

impractical to 

integrate in HVAC 

systems 

Optimal Control 

Solves an optimization 

problem to minimize a 

cost function 

The optimal 

solution may not 

be easily 

implemented into 

current HVAC 

control system and 
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requires a 

relatively higher 

computation 

capacity in some 

problems. 

Model Predictive 

Control 

Predictive optimal 

control with disturbance 

rejection, constraint 

handling, and slow-

moving dynamics 

integrated into controller 

design 

The controller is 

able to regulate the 

system tightly 

within the given 

bounds. But it 

requires accurate 

predictive model. 

Soft 

Control 

Fuzzy Logic 

Control actions are 

implemented in the form 

of if-then statements 

Requires extensive 

knowledge of 

system operations 

and states 

Neural Network 

Trained using 

performance data to fit a 

nonlinear mathematical 

model 

It’s a completely 

black box 

approach. Training 

data must cover a 

wide range of 

operating 

conditions. 

Hybrid 

Control 

Adaptive Fuzzy, 

Fuzzy PID, etc. 

It’s a fusion of hard and 

soft control techniques. 

Inherits problems 

associated with 

soft and hard 

control methods, 

such as requiring 
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large amounts of 

data, or problems 

with controller 

tuning 

 

2.2.2 Strategies for minimizing building demand and/or energy cost 

To provide a means of reducing the peak demand and/or energy cost while 

maintaining reasonable comfort levels in residential buildings, a variety of rule-

based pre-cooling strategies, taking advantage of building thermal mass as a way 

to shift or reduce the peak load demand by shifting cooling operations from on-

peak hours to off-peak hours, have been heavily investigated. 

Studies on rule-based pre-cooling strategies using temperature setting 

schedules have been conducted by a lot of researchers. Specifically, Xu et. al 

(2004) demonstrated the potential of reducing peak-period electrical demand in a 

moderate-weight commercial building by modifying the HVAC control systems. 

With their strategy, zone temperatures were maintained at the lower end of a 

comfort region before 2 pm and allowed to float to the higher end after 2 pm. As a 

result, the chiller power was reduced by 80%−100% during on-peak hours (i.e., 2 

pm−5 pm) without incurring any complaints on thermal comfort. In a subsequent 

work (Xu 2009), 11 pre-cooling test schedules that include linear, two-step, and 

exponential temperature setting strategies and different weather conditions and 

dates were studied. Through comparison with a baseline operation and analysis of 

on-site measurement data of two large commercial buildings in California, it was 
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found that the pre-cooling test schedules were effective in both light and heavy 

mass buildings. For the light mass building, these schedules significantly reduced 

the cooling load (35% on cold days, 25% on warm days). For the heavy mass 

building, the load reduction was even more significant: for example, the peak 

HVAC load was reduced by 30% on warm days using the exponential 

temperature setting strategy. This result agreed with the observation that pre-

cooling tends to be more effective when the building mass is relatively heavy.  

Yin et. al (2010) found that pre-cooling strategies with an exponential or 

step temperature setting were better compared to those with a linear temperature 

setting through a study on a commercial building in California. A baseline model 

equipped with physical information and calibrated with field test data was used to 

estimate the demand savings. An analysis of factors (e.g., building location, mass 

level, pre-cooling control strategy, and TOU utility rate) was conducted by 

Morgan and Krarti (2007) to evaluate the impact of key design and operating 

conditions on the effectiveness of pre-cooling strategies for peak demand and 

overall energy cost reduction in office buildings. It was observed that 4–8 hours 

of pre-cooling were most effective in reducing peak cooling load and operating 

cost without significantly increasing energy consumption.  

Studies on rule-based pre-cooling strategies have also been conducted for 

residential buildings. Woon and Han (2011) studied pre-cooling strategies 

characterized by the proper setback period, set point, and setback temperature to 

achieve peak reduction in residential buildings. Arababadi and Parrish (2015) 
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compared the performances of five different pre-cooling strategies, similar to 

those done by Xu (2009), for a wood frame house. The first two strategies each 

adopted a two-step constant temperature set point, with the first strategy having a 

lower temperature set point for on-peak hours and a higher one for off-peak hours 

compared to the second. The third and fourth strategies increased the thermostat 

temperature linearly and exponentially, respectively, during on-peak hours and 

behaved the same during off-peak hours. The last one adopted a three-step 

constant temperature set point and was intended to examine how the house would 

response to a more complicated pre-cooling design. Through EnergyPlus, it was 

found that the second strategy could reduce peak energy consumption by up to 

7.5% and had the least increase in annual energy consumption while the third and 

fifth strategies not only did not reduce the on-peak energy consumption, they led 

to an increase in annual energy consumption during on-peak hours, perhaps due to 

a low thermal mass of the house.  

Surles and Henze (2012) developed an automated thermostat temperature 

set point control strategy for homes located in different climate zones. The 

strategy was able to respond to price variations in a TOU tariff and create set 

points and schedules with varied peak period length, rate ratio, and set point offset 

through custom scripts written in MATLAB. Through simulation in EnergyPlus 

using historical weather data, it was found that the total energy saving potential 

was highly dependent on climate zone. For example, all else being equal, it was 

possible to consume 50% and 27% less energy consumption during peak hours for 
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homes in Houston and Los Angeles, which represent ASHRAE Climate Zones 2 

and 3, respectively. In terms of monetary saving, the largest test home in Houston 

yielded more than $200 saving over a four-month period in 2018, whereas the 

smallest one in Chicago yielded only $10. In addition, homes with different sizes 

but similar thermal properties and located in similar climate were found to have 

comparable saving percentages. Turner et. all (2015) found that the effectiveness 

of pre-cooling was highly dependent on climate zone and the selected pre-cooling 

strategies for residential buildings with low thermal mass. However, pre-cooling 

strategies were also found to yield a higher cooling energy consumption in 

general. 

These strategies set the indoor air temperature a few degrees lower for a 

period preceding the start of on-peak hours with a higher electricity price. The 

lower indoor air temperature, obtained at a lower electricity price and controlled 

by a thermostat with a deadband to determine the HVAC on/off signal, delays the 

start time of HVAC systems and reduces their runtime during on-peak hours. In 

practice, rule-based pre-cooling strategies vary slightly by setting different pre-

cooling runtimes or lowering the indoor air temperature to different levels. 

Although these rule-based pre-cooling strategies provide a means of shifting or 

reducing the peak demand, they are guided primarily by intuition and may not be 

optimal in terms of cost savings, thus leaving room for improvement. To this end, 

research on how optimization can help enhance the demand response 

performance, especially in the context of model-based pre-cooling strategies, 
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attracted widespread attention and has been carried out since the 1990s. In 

particular, Keeney and Braun (1996, 1997) formulated an optimization problem, 

based on a simplified building thermal model consisting of plant power, cooling 

load, comfort, and weather models, to determine an optimal cooling control 

strategy that minimizes the energy cost for commercial buildings. Simulation 

results were used to convert the optimal strategy into two simpler, practical pre-

cooling strategies, which were subsequently tested with 1008 different building 

types, weather conditions, cooling plants, and utility rates. It was found that the 

optimal strategy and the two simplified ones all resulted in 95%–97% saving on 

cooling cost compared to night setback control. Lee and Braun (2008) developed 

a model-based approach for minimizing peak cooling demand using energy stored 

in a commercial building. With this approach, zone temperature setpoints were 

kept at the lower end of a comfort region before a demand-limiting (DL) period 

and adjusted upward during the DL period following a trajectory that kept the 

peak cooling load below a target. To generate the trajectory and target, a building 

RC (resistance-capacitance) model was utilized, in which its parameters were 

identified using a global search based on crude building description field data. 

Such data included temperatures from ambient, ground, and floor as well as solar 

and internal heat gains. The model was then implemented at a test site to 

determine zone temperature set points for studying the potential of peak load 

reduction. Their results showed that a 30% reduction of peak cooling loads was 

achievable compared to night setback control. Similar work has also been done by 
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Li and Malkawi (2016), Nikovski et. al (2013), and Chandan et. al (2015), where 

the common goal was to develop a pre-cooling control strategy that reduces 

energy demand and cost while maintaining a desired thermal comfort. 

Unlike for commercial buildings, model-based pre-cooling optimization in 

residential buildings have received far less attention (e.g., Reddy et. al 1991; Avci 

et. al 2012). In one of the earlier works done by Reddy et. al (1991), a simplified 

1R1C model was used to study the impact of peak-shaving strategies on the 

thermal response of a house. The study included examining the time required for 

the indoor air temperature to increase by 3.6 °F when the HVAC system was off 

(i.e., temperature float-up) at houses with different time constants. It also included 

calculating the cooling power used by a linear ramping-up thermostat temperature 

control and comparing the result with a base case with constant temperature set 

point. Avci et. al (2012) also used a 1R1C model to develop a residential HVAC 

load control strategy. However, the model only considered the impact of outdoor 

air temperature and energy consumed by the HVAC system. In addition, to 

determine its parameters, the size, structure, and thermal conductivity of the 

building need to be known. Once determined, an optimal solution that minimizes 

a weighted sum of cost and thermal comfort is sought, where the latter is reflected 

by the indoor air temperature. Their results showed that the optimal strategy could 

improve comfort while reducing electricity cost and energy usage at peak hours 

compared to a base case without pre-cooling. 
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Wang et. al (2020) proposed an optimal pre-cooling strategy based on an 

integer linear programming problem that utilizes a dynamic home thermal model, 

and its performance was compared with three rule-based control strategies. It was 

found that the optimal pre-cooling strategy requires the least energy consumption 

without sacrificing thermal comfort and can save up to 56% of the HVAC 

electricity cost compared with the rule-based strategies. However, the study was 

conducted for one summer day only and the conclusions were limited to one 

envelope thermal condition. Chan and Bashash (2017) developed a mixed-integer 

quadratic programming (MIQP) problem that utilized a second-order differential 

equation model to search for optimal HVAC operations that minimize energy 

cost. The results showed that up to 35% cost savings can be achieved compared 

with rule-based control. Similar work has also been done by Braun (1990), 

Kintner-Meyer and Emery (1995), Henze et. al (2008), and Chandan et. al (2015), 

where the common goal was to develop an optimal pre-cooling strategy that 

utilizes building thermal models to reduce energy demand and cost while 

maintaining desired thermal comfort.  

To this end, the performance analysis of the optimal pre-cooling strategies 

on energy consumption and/or energy cost reduction in the context of different 

weather conditions and TOU or TOD electricity rates has been investigated using 

different methods (Kamyar and Peet 2016; Yoon et. al 2014; Tabares-Velasco et. 

al 2019; Surles and Henze 2012; Li and Malkawi 2016; Nelson et. al 2019; Henze 

et. al 2007). Kamyar and Peet (2016) investigated the impact of different TOU 
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rates on cost savings. A dynamic programming-based algorithm was proposed to 

solve the optimal control problem of thermostat programming in the presence of 

thermal energy storage for consumers with combined demand chargers and TOU 

electricity rates. The optimization problem was defined as minimization of the 

total cost of power consumption, subject to the building thermal dynamics and 

thermal comfort constraints. The thermal dynamics were predicted based on a 

partial-differential model of diffusion that only considers the conductive heat 

transfers through the exterior wall of a residential building. By comparing the 

optimal thermostat programming control with four constant set-point controls, the 

proposed algorithm can reduce monthly electricity bills by up to 25% in the 

summer with average savings of 9.2% over a variety of building models by using 

different TOU electricity rates. 

Yoon et. al (2014) investigated the impact of different weather conditions 

on cost savings. A dynamic demand response controller to reset the thermostat 

temperature set point was proposed based on real-time retail pricing for 

residential buildings. The building model was developed using OpenStudio and 

EnergyPlus, which consider the geometry of a residential building and 

geographical environment. The controller was implemented into Simulink and 

connected to EnergyPlus through a building control virtual test bed. The strategy 

changed the thermostat set-point temperature to control HVAC loads depending 

on real-time electricity retail pricing for peak load reduction. Simulation results 

showed that heating and cooling electricity consumption on both the coldest and 
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hottest months were reduced by 12% and 21% and electricity costs were curtailed 

by 29% and 31%, respectively, compared to the fixed set-point temperature 

control strategy. However, the study was not conducted for the optimal pre-

cooling strategy.  

Using a similar approach proposed by Yoon et. al (2014), Tabares-Velasco 

et. al (2019) developed a modeling framework for optimization-based thermostat 

control of a residential building for TOU pricing. The framework integrated 

EnergyPlus and AMPL (an algebraic modeling language) using MATLAB and 

Simulink. The impact of different TOU electricity rates on the electricity cost, 

thermal comfort, and peak demand deduction was analyzed and simulated through 

the framework. Simulated results showed that the optimization-based control can 

reduce cooling electricity costs by up to 30% and demonstrated that cost savings 

and peak demand reduction were highly dependent on the TOU electricity rates. 

Similar work has also been done by Surles and Henze (2012), Li and Malkawi 

(2016), and Nelson et. al (2019), where the common goal was to investigate the 

impact of different size homes under different climates on energy costs, with the 

help of common modeling tools. 

Henze et. al (2007) conducted a sensitivity analysis for evaluating the 

optimal thermal mass control of an office building and its performance, compared 

to a nighttime setback control reference case, with respect to utility rate structure, 

internal gains, occupancy period temperature set-point range, onset and duration 

of occupancy and on-peak periods, weather, and building thermal mass. The 
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analysis utilized a dynamic building energy simulation program coupled with a 

technical computing environment. Through analysis and comparison, it was found 

that: 1) high utility rate incentives lead to lower pre-cooling temperature set points 

and larger early morning pre-cooling loads; 2) internal gains largely influence the 

reference case and the largest savings were observed for small internal gains; 3) 

the pre-cooling temperature is dependent on whether occupancy and on-peak 

periods begin or end at the same time; 4) on-peak hours beginning far before or 

after the beginning of occupancy reduce the effectiveness of load shifting; 5) large 

diurnal temperature swings reduce cooling loads and ambient humidity has less 

impact on the cost savings potential; and 6) larger thermal mass reduces cooling 

loads. All the findings are in line with expectations or experience.  

Although the existing pre-cooling strategies provide a means of shifting or 

reducing the peak demand and/or energy cost in residential buildings, majority of 

them are rule-based, guided primarily by intuition. The rest of them are model-

based but generally do not consider the influence of solar radiation and infiltration 

due to wind. Wang et. al (2019) showed that the wind impact was not negligible 

in the formulation of a thermal model for residential buildings. Moreover, 

previous studies considered the impact of different TOU electricity rates and/or 

weather conditions but did not include a performance analysis of home 

conditions, such as different building thermal properties and HVAC system 

efficiencies. Unlike rule-based pre-cooling strategies, which keep the same 

operation schedule for all the applied homes throughout the entire season 



32 

 

 

regardless of home thermal or weather conditions, optimal pre-cooling strategies 

are more adaptive, searching for optimal solutions based on changing conditions, 

i.e., they vary not only depending on TOU electricity rates, but also depending on 

home thermal properties, sizes and efficiencies of the HVAC system, and weather 

conditions (Wang et. al 2020). The operations and cost savings of the optimal pre-

cooling strategy may vary significantly for different home thermal properties, 

weather conditions, sizes and efficiencies of the HVAC system, and electricity 

rate structures, compared to a rule-based pre-cooling strategy. Therefore, there is 

a need to understand to what extent can an optimal strategy outperform common 

rule-based operation strategies through the development of the optimal pre-

cooling strategy that can account for various factors (e.g., the outdoor air 

temperature, wind, solar, HVAC size and efficiency, and utility rate structure). 

Moreover, it also needs to investigate and analyze the performance of an optimal 

pre-cooling strategy regarding the aforementioned various factors. To address 

these needs, performance analysis of an optimal pre-cooling strategy built upon a 

home thermal model that accounts for the aforementioned factors are conducted 

and presented in this study.  

2.3 Building Thermal Modeling 

  This section illustrates the building thermal modeling methods and the 

selection of building thermal model used in this study. Specifically, review of the 

building thermal modeling methods is stated in Section 2.3.1. Then advances in 
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RC modeling approach are present in Section 2.3.2. Finally, inputs to home 

thermal model are introduced in Section 2.3.3. 

2.3.1 Review of building thermal modeling methods 

Since the 1970s, a variety of building thermal models have been proposed 

(Wilson and Templeman 1976; Shaviv and Shaviv 1978; Waters 1980; 

Zmeureanu 1987), an important subset of which is the thermal network models 

derived from the standard RC approach. The first such model was a 35-node 

thermal network simulation model established in 1980 and used at the University 

of California, San Diego (UCSD) to study room air temperature control of a house 

(Carroll and Clinton 1987). The model, consisting of various component sub-

models that need the physical properties of construction materials and the choice 

of heat transfer coefficients to simulate each component of the house, was used to 

calculate the temperatures of the mean radiant temperature (MRT) nodes and the 

room air for a passive solar house in a given climate. Similarly, in a study done by 

Achterbosch et. al (1985), physical information on the test buildings was needed 

for the thermal model, although it is slightly different in the construction of the 

model elements and the definition of the room air temperature (a weighted 

average of the indoor air and internal element temperature was used). In a study 

done by Ogunsola and Song (2012), common challenges facing RC models were 

reviewed. Their study also identified and evaluated several factors that can impact 

the accuracy of one of the RC models, i.e., the 3R2C plus 2R2C model where 

3R2C is used to describe heat transfers through envelopes and 2R2C is for 
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internal thermal mass, for building load estimation. Crabb et. al (1987) verified, 

through a case study at a school, the idea that the thermal dynamics of 

intermittently occupied buildings can be described by two time constants, namely, 

a smaller time constant that represents the time needed for the indoor air and wall 

temperatures to come to an equilibrium, and a one that represents the time needed 

for the building structure to cool down or warm up. Their results were obtained 

using a 2R2C model. Other variations of the RC models were also tested, 

including those reported by Xu and Wang (2008), Bacher and Madsen (2011), Lin 

et. al (2012), and Tindale (1993). Recently, Ogunsola and Song (2013, 2015) 

compared several RC structures for heating and cooling season validation in a 

typical office building. Their results showed that the 2R2C model offers the best 

overall fit for the internal mass in terms of the R2 value and error indices such as 

the mean error (ME), mean bias error (MBE), and coefficient of variation of root 

mean square error (CVRMSE). Related work has also been done by Underwood 

(2014), Kircher and Zhang (2015), Hasan et. al (2014), Nassiopoulos et. al (2014), 

Bueno et. al (2012), Gouda et. al (2002), Goyal and Barooah (2012), Lauster et. al 

(2014), and Naveros and Ghiaus (2015), in which the common goal was to obtain 

a simplified and yet accurate building thermal model based on various 

approaches.  

Although RC models are an ideal tool for sufficiently capturing building 

thermal dynamics under a variety of circumstances, their parameters must be 

appropriately determined for them to be useful. To this end, a rich collection of 
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parameter estimation methods has been proposed over the years. For example, 

Jimenez et al. (2008) showed that the ARMAX (auto-regressive-moving-average 

with exogeneous inputs) model, together with suitable physical constraints, can be 

used to accurately estimate the overall heat transfer coefficient (U-value) and 

solar heat gain coefficient of a simple homogeneous, opaque wall with errors 

below 0.03 W/(m2-k) and 0.01, respectively. Wang and Xu (2006) used Genetic 

Algorithms (GAs) to develop estimators that optimally identify the parameters of 

a simplified 2R2C model. Their results showed that the average errors between 

the measured and the predicted cooling load were 7.8% and 9.7% during office 

hours and non-office hours, respectively, over 14 days. Ogunsola and Song (2014) 

identified the 3R2C model parameters of building envelopes using theoretical 

characteristics of building construction in frequency domain and data generated 

by EnergyPlus. They also identified the 2R2C model parameters of internal 

masses using GAs. Another popular method for parameter estimation is the least 

squares method, which has been adopted by Penman (1990), Coley and Penman 

(1992), Dewson et. al (1993), Chen and Athienitis (2003), and Kramer et. al 

(2013) and found to be effective for low-order RC models. 

Although the aforementioned models and parameter estimation methods 

are effective, most of them require either precise physical knowledge of the 

building or a significant amount of data for calibration, both of which are 

generally not available for homes. Indeed, home thermal models are expected to 

be simpler, require fewer measured inputs and less total data (from a few days to a 
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week at a time interval of minutes), and operate without any homeowner 

intervention. Therefore, one goal of this study is to use the standard RC approach 

to develop a home thermal model that possesses these desirable features. 

2.3.2 Advances in RC modeling approach 

The thermal network approach has been modified and applied in different 

forms (Ogunsola et. al 2014; Ogunsola and Song 2015; Ogunsola et. al 2016; 

Wang et. al 2019). The general applicability of the thermal network approach has 

been limited by the identified issues, such as convergence and stability issues due 

to the need for different time steps, less sensitivity to outliers, and only limited 

exploration of the thermal network model capabilities permitted because of 

depending on previous measurements of building load, weather, and usage of 

several time-steps to forecast future loads (Ogunsola 2016). Moreover, the needed 

measurements may be unavailable or unreliable due to issues from sensor 

malfunction or data quality assurance. Most importantly, with increasing building 

complexity, the thermal network model becomes increasing difficult to develop 

and optimize.  

Even though, the RC thermal network model has been applied for multiple 

scenarios and case studies of different building constructions and HVAC system 

operation modes after curtailments and simplifications. Among several models, 

the RC model IS deemed to be appropriate to capture the dynamics of building 

construction and HVAC components, with advantages such as: 
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(1) Capability to represent physical properties of different building constructions 

in order to investigate the thermal properties on the effectiveness of pre-cooling. 

(2) Capability to simulate different HVAC system schedules. 

(3) Simulation applicable, in order to investigate multiple scenarios of operations 

across different weather conditions and controls. 

(4) Ability to predict thermal dynamics and cooling/heating loads for thermal 

comfort control and load estimation. 

(5) Ability to determine system stability based on model parameters. 

(6) Potential capability as a foundation model to optimize HVAC system peak 

load and operational control, in response to multiple weather and operation 

scenario across different climates, since it is simulation-based. 

(7) Item (1) to (6) are applicable for residential buildings in this study. 

 Most of the models used in previous studies in Section 2.3.1 do not meet 

the requirements. For example, the simulation environment used in a study 

(Morgan and Krarti 2010) was an integration of a weather predictor and 

EnergyPlus. It was capable of simulating temperature floats under static 

schedules, without the flexibility or capability to determine the optimal pre-

cooling hour and cooling system size for design purposes. Also, the performance 

of the simulation model has not been assessed for different constructions and 

climate types. Likewise, Braun (2002, 2003) estimated zone sensible cooling 

requirement from on-site measurements. The approach was not suitable for this 

study, because of the need for simulation scenarios for different weather 
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conditions. Edmund and Liao (2010) used EnergyPlus in their simulation, but it 

was not capable of optimizing the system operation based on objectives defined 

by the user. 

2.3.3 Inputs and outputs of building thermal model 

  As illustrated in Figure 2.1, the inputs to thermal models consist of 

building geometry, weather condition, HVAC systems and components, internal 

loads, operating strategies and schedules, and other parameters. Outputs from the 

RC building thermal model may include interior and exterior surface temperature 

of walls, zone temperatures, heating or cooling loads, and other thermal variables 

of interest. Detailed description of these inputs can also be found in Table 2.3. 

 

Figure 2.1. Inputs to RC Thermal Models. 
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Table 2.3. Typical inputs to RC thermal models. 

Input Description 

Building 

construction 

information 

The thermal characteristics of building construction determine 

the temperature fluctuations and thermal delay of radiative 

heat gains. 

Loads and 

operation 

schedules and 

strategies 

Internal loads are heat generated within the building, such as 

from the lightings, computers, office equipment, and 

occupants and its related activities. The occupancy schedules 

are the times that occupants are physically present in the 

thermal zone. The schedules may impact the operation of 

HVAC system using an on/off control strategy. 

HVAC system 

The HVAC system operates to maintain thermal comfort 

within the conditioned space. It compensates for the building 

heating or cooling loads. 

Weather 

condition 

The weather condition includes outdoor air temperature, solar 

radiation, and wind speed specified by a location being 

studied. 

 

  For homes, however, the precise physical knowledge of the building, such 

as the orientation, location, layout, floor area, and construction materials, or a 

significant amount of data for model training are generally not available. 

Therefore, the RC model needs to be modified appropriately for homes, so that it 
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can be identified through data training rather than using knowledge about 

buildings. 
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Chapter 3: Formulation of Home Thermal Model 

In this chapter, a traditional building RC network model is introduced 

first. Based on the network modeling approaches, a novel home thermal model is 

developed for representation, modeling, and analysis of the thermal response of a 

home, and can be used for the home load calculation and HVAC operation 

optimization. The novel model, which is built upon the energy conservation law, 

is described through the analysis of heat transfer processes. Then a parameter 

estimation scheme of the thermal model is established and used to estimate the 

thermal properties of a test home. Moreover, the stability analysis of the model 

and the parameter estimation scheme are also included in this chapter.  

3.1 Thermal Processes in a Home 

The thermal interactions in a home are complex and include all the basic 

heat transfer processes introduced by the eight exogenous inputs, illustrated in 

Figure 3.1 using a cooling season, including solar heat gain, heat transfer through 

opaque envelope elements with the outdoors (driven by the temperature difference 

between indoors and outdoors), air infiltration, indoor loads (e.g., uses of lighting 

and appliances), and occupants. The exogenous inputs represent heat gains or 

losses depending on seasons. For example, the heat gains need to be removed by 

HVAC systems to maintain the desired home air temperature in summer. The heat 

extraction rate, i.e., the amount of heat removed, equals the cooling load if the 

space air temperature is perfectly maintained at a set point. The cooling load 
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experiences delays from the exogenous inputs at times because of heat storage in 

the home structure and in furnishings. 

Home thermal dynamics, i.e., regulating HVAC energy use and/or room 

air temperature impacted by the eight exogenous inputs, can be described using a 

home thermal model. The thermal dynamics of each home are uniquely 

determined by home design, location, construction materials, air tightness, and 

home orientation. Thus, each home has its unique thermal characteristics. 

Therefore, a home thermal model applicable across homes needs to have the 

capacity to learn these unique characteristics for an individual home. 

 

Figure 3.1. Thermal interactions in a home during a cooling season. 

3.2 Traditional 3R2C plus 2R2C Model 

In this section, a traditional building RC model is introduced and the 

limitation of the traditional RC model for the home application is discussed.  
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The most used building envelope model is the 3R2C model, which is 

based on physical heat transfer and thermodynamic laws (Ogunsola et. al 2014; 

Ogunsola and Song 2015) but simplified by aggregating parameters and variables 

that are either costly or impossible to obtain, as shown in Figure 3.2. 

The multiple layers of opaque walls and roof of a building, including 

physical layers such as plywood, insulation, siding, and interior/exterior resistance 

layers formed by radiative and convective coefficients, are represented in a 

simplified form as three thermal resistances and two capacitances (3R2C, i.e., 

𝑅!" , 𝑅!# , Re3, and two 𝐶$ ) by consolidating the layers with similar thermal 

properties. The indoor surface temperature (𝑇%&) and outdoor surface temperature 

(𝑇'&) of the exterior wall and the outdoor ambient temperature (𝑇()*) are needed 

in the model. Heat gains from the outdoor air and the solar energy incident on 

exterior surfaces are combined and represented as the quotient of the difference 

between the sol-air temperature (𝑇+&) and the outdoor surface temperature (𝑇'&) 

and the resistance (𝑅!"), where 𝑅!" and 𝑇+& are defined so that the quotient equals 

the combined rate of heat transfer associated with the incident solar energy and 

convective heat transfer from the air (Ogunsola et. al 2014). The solar energy 

incident on the outdoor surface of each opaque structural element depends on 

orientation of the surface and, as a result, 𝑇+&  varies with the structural 

component. Therefore, each structural component (wall or roof) is considered 

separately in this model. Because the thermal capacities of glazing materials are 

small, the heat transfer through windows is modeled as steady-state and 
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represented as the quotient of the outdoor-indoor temperature difference (𝑇()* – 

𝑇%,) and a thermal resistance (𝑅$%,"). 

 

Figure 3.2. 3R2C plus 2R2C thermal model, showing only one exterior wall, 

solar-air temperature (𝑻𝒔𝑬), and HVAC system input (𝑸𝒔𝒚𝒔). 

The total heat capacity of interior structural components and furniture, 

which is the product of their mass and specific heat, is lumped into the 2R2C 

(𝑅%,0", 𝑅%,0#, and two 𝐶%,0) circuit on the right-hand side of Figure 3.2, in which 

𝑇%,0"  and 𝑇%,0#  represent two temperature nodes and 𝑄1"  represents half of the 

radiative heat gains (Ogunsola et. al 2014) generated by occupants, solar 

irradiation through fenestration, lighting or/and appliances, while their convective 

heat gains (𝑄2',3) directly become the load and have no thermal delays. 

Indoor air is represented by one uniform air temperature (𝑇%,) in a thermal 

zone and its associated air thermal capacity (𝐶%,). According to the diagram of the 

thermal model in Figure 3.2, a heat balance at each node yields the following 

equations: 



45 

 

 

𝐶$
45!"
40

= 5#"65!"
7$%

+ 5&"65!"
7$'

                                                                               (3.1) 

𝐶$
45&"
40

= 5!"65&"
7$'

+ 5&(65&"
7$)

                                                                                (3.2) 

𝐶%,
45&(
40

= 5&"65&(
7$)

+ 5&(*'65&(
7&(*'

+ 5+,-65&(
7.&(%

+ 𝑄2',3 + 𝑄+8+                                 (3.3) 

𝐶%,0
45&(*'
40

= 5&(65&(*'
7&(*'

+ 5&(*%65&(*'
7&(*%

+ 𝑄1"                                                          (3.4) 

𝐶%,0
45&(*%
40

= 5&(*'65&(*%
7&(*%

+ 𝑄1"                                                                            (3.5) 

Equations (3.1) to (3.5) represent an inhomogeneous system of first-order 

differential equations. In state-space representation, these equations can be re-

written as:  

�̇� = 𝐴𝑇 + 𝐵𝑈,                                                                                                    (3.6)  

where A and B are matrices with constant coefficients that are functions of the RC 

parameters and are given by 
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T = [𝑇'& 𝑇%& 𝑇%, 𝑇%,0# 𝑇%,0"]=,                                                                (3.7) 

and 

U = [𝑇+& 𝑇()* 𝑄1" 𝑄2',3 𝑄+8+]=.                                                           (3.8) 

The indoor air temperature can be represented by 

𝑇%, = 𝐶𝑇 + 𝐷𝑈,                                                                                                 (3.9) 

where C and D are given by  

C = [0 0 1 0 0] and D = [0 0 0 0 0],                                      (3.10) 

and T and U are given by Equations. (3.7) and (3.8). 

With the Laplace transform of Equations (3.9) and (3.10), Equation (3.9) 

becomes 

𝑇%,(𝑠) = 𝐶(𝑠𝐼 − 𝐴)6"𝐵𝑈(𝑠) = 𝐶(𝑠𝐼 − 𝐴)6"𝐵"𝑇+&(𝑠) + 𝐶(𝑠𝐼 −

𝐴)6"𝐵#𝑇()*(𝑠) + 𝐶(𝑠𝐼 − 𝐴)6"𝐵9𝑄1"(𝑠) + 𝐶(𝑠𝐼 − 𝐴)6"𝐵:𝑄2',3(𝑠) +

𝐶(𝑠𝐼 − 𝐴)6"𝐵;𝑄+8+(𝑠)                                                                                    (3.11) 

The coefficients in transfer functions 𝐶(𝑠𝐼 − 𝐴)6"𝐵% (i =1, 2, …, 5) have 

products and inverses of the parameters R(.) and C(.), which are nonlinear 

functions of the parameters R(.) and C(.). Therefore, estimation of their individual 

values is extremely difficult, if not impossible. For example, 

𝐶(𝑠𝐼 − 𝐴)6"𝐵" = [𝑅$%," + (𝐶%,0𝑅%,0"𝑅$%," + 2𝐶%,0𝑅%,0#𝑅$%,")𝑠 +

𝐶%,0# 𝑅%,0"𝑅%,0#𝑅$%,")𝑠#]/∆(𝑠)                                                                         (3.12) 

where ∆(𝑠) = 𝑥;𝑠; + 𝑥:𝑠: + 𝑥9𝑠9 + 𝑥#𝑠# + 𝑥"𝑠 + 𝑥> , and the coefficients 𝑥> , 

𝑥", 𝑥#, 𝑥9, 𝑥:, and 𝑥; are very complicated functions, which are not shown here. 
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To visualize the inner structure of the 3R2C plus 2R2C thermal model, a 

block diagram of it is shown in Figure 3.3. Most of the blocks involve the sum or 

convolution of one to five parameters. The diagram provides another view of the 

complexity of the coefficients that make the estimation of parameters, using five 

inputs and one output, extremely difficult. 

 

Note: 𝑅!(",#,9) = 𝑅!"𝑅!#𝑅!9, 𝑅!("6#69) = 𝑅!" + 𝑅!# + 𝑅!9, 𝑅(!9,$",%#) =

𝑅!9𝑅$%,"𝑅%,0#	, and 𝑅(!96$"6%#) = 𝑅$%,"𝑅%,0# + 𝑅!9𝑅$%," + 𝑅!9𝑅%,0#.  

Figure 3.3. Block diagram of the 3R2C plus 2R2C thermal system model. 

 However, the automated parameter estimation is particularly critical for 

this development, because it allows the model to identify the needed parameters 

automatically with no need for user inputs. Homes have much smaller footprints, 

usually with one or two thermal zones, which introduce an opportunity to simplify 

the 3R2C plus 2R2C model for an automated parameter estimation process. In 

addition, although homes have similar airtightness compared with commercial 
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buildings (Sherman and Matson 2002; Emmerich and Persily 2005), infiltration is 

not negligible. A home usually does not have positive building pressure control 

and therefore has a large possibility of experiencing outdoor air infiltration. 

Therefore, a home thermal model that can be automatically estimated and 

considers air infiltration is needed. 

3.3 Home Thermal Model Formulation  

   In this section, a home thermal model, which is built upon the energy 

conservation law, is formulated through the analysis of heat transfer processes 

between indoors and outdoors. The model represented by a second-order dynamic 

equation is used to capture the thermal dynamics of the indoor space and wall of a 

home. 

3.3.1 Heat transmissions through temperature differences 

For a 3R2C model application, the exterior wall shown in Figure 3.2 needs 

to be replaced by a wall for all exterior walls having different orientations, i.e., 

different orientations of the walls require them to be modeled individually. 

However, homes usually have one thermal zone (the entire house in most cases, 

and generally not more than two zones). Therefore, the home envelope (for a 

home with one zone) may be consolidated into one virtual envelope with the 

orientation-dependent wall temperature (𝑇%!) represented by the weighted-average 

of the impacts on envelope elements having different orientations, as shown in 

Figure 3.4. The thermal properties of the virtual envelope are the weighted 

average of the thermal resistance and heat capacity, i.e., 𝑅3! and 𝐶3!,%, of all the 



49 

 

 

envelope components. For internal space, the indoor air is represented by one 

uniform air temperature (𝑇%,) in a thermal zone and its associated air thermal 

capacity (𝐶(%1) and thermal resistance (𝑅(%1). Therefore, the heat transmissions 

through all the envelope components and internal space can be represented by two 

heat transfer relationships driven by the temperature difference between the 

outdoor air temperature (𝑇') and the wall temperature (𝑇%!), and driven by the 

temperature difference between the interior wall surface temperature (𝑇%! ) and 

indoor air temperature (𝑇%,), along with the consolidated thermal properties of all 

the envelope components and internal space, to be estimated using home 

operational data, shown in Equations (3.13) and (3.14), respectively. 

𝐶3!,%,
45&$
40

= 5!65&$
7/$

+ 5&(65&$
7+&0

                                                                   (3.13) 

𝐶(%1
45&(
40

= 5&$65&(
7+&0

                                                                                            (3.14) 

 

Figure 3.4. One virtual envelope. 

3.3.2 Solar impacts 

Solar radiation transfers heat inside a home through an envelope, 

consisting of all structural elements that separate the conditioned indoor spaces 
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from unconditioned indoor spaces and the outdoors, by two mechanisms. One is 

to heat the exterior opaque surfaces of the home. The heat received by the opaque 

envelope elements is absorbed by the total heat capacity of the opaque envelopes 

first and then released into the indoor air through conduction and convection. The 

other mechanism is to heat indoor structural components and furnishings through 

which solar radiation transmitted through glazing, such as windows and skylights. 

Some of the solar heat gain absorbed by interior furnishings and structural 

components (e.g., walls) are immediately transferred to the indoor air by 

convection, and the rest is conducted into the structure or furnishings and 

gradually released later, thus heating the indoor air. In a traditional RC thermal 

model, the two mechanisms are described separately. The heat transfer of solar 

radiation on the exterior surfaces of opaque structural components is described by 

the sol-air temperature, which is orientation-dependent, while the solar gain 

through fenestration is separately described as radiative heat gains (McQuiston et. 

al 2000). In this home model, however, a third-order polynomial, shown in 

Equation (3.15), is used to describe the overall attenuation from the global 

horizontal irradiation to the solar heat received by all the envelope components, 

including opaque and fenestration components, and eventually contributed to the 

internal space. The coefficients in the polynomial in Equation (3.15), representing 

the home thermal responses to solar inputs, are estimated using a parameter 

estimation scheme introduced in Section 3.4.  

𝑄+'B(𝐺) = 𝑎"𝐺 + 𝑎#𝐺# + 𝑎9𝐺9                                                                      (3.15) 
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where 𝐺 is the global horizontal irradiation; 𝑄+'B(𝐺)	is the space air temperature 

increase that represents solar impacts on a home; and 𝑎" , 𝑎# , and 𝑎9  are 

empirically-determined coefficients using home operational data. 

3.3.3 Wind impacts 

 Wind impacts home thermal load through two mechanisms: changes in 

convection heat transfer coefficient and infiltration. Wind impact is not 

considered in Equations (3.1)–(3.5). To investigate the wind impacts, a 

preliminary study was carried out in March 2016 in an unoccupied home, and 

distinctive heat losses were observed for different wind speeds for the same 

outdoor air temperature. As shown in Figure 3.5, when the wind speed was at 3 

mph, the heat loss rates were approximately 10% higher than the loss rates at 1.5 

mph wind speed and more than 50% higher than the loss rates at close to 0 mph. 

This proves that wind impacts cannot be ignored for home thermal load studies 

and suggests that the amount of heat gains or losses can be related to wind speeds. 

The heat loss rates were calculated using operational data of a gas-heater logged 

over one-minute intervals.  
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Figure 3.5. Home heat loss rate vs. outdoor air temperature for three different 

wind speeds. 

 Due to the difficulties in directly calculating the infiltrated air flow rate 

(Gowri et. al 2009; Waite and O’Brien 2010) and quantifying the convection heat 

transfer coefficient changes, in this study the quadratic equation, 𝑏"=𝑊 + 𝑏#=𝑊#, is 

used to capture the wind impacts for each specific home with the values of its 

parameters estimated through data training. Therefore, the rate of heat transfer by 

wind effects can be expressed by 

𝑞3$= = 5!65&(
"/D*%1EF*'1E'G

= 5!65&(
7/.

                                                                           (3.16) 

where 𝑞3$=  is the heat transfer rate by wind effects; 𝑊 is the wind speed; 𝑏"=  and 

𝑏#=  are the empirical coefficients; and 𝑅3$ is a variable resistance dependent on 

the wind speed and the airtightness of a specific home. 

3.3.4 Internal heat gain impacts 

 For homes, the dominant thermal mass (the product of the mass and the 

specific heat capacity) comes from the envelopes (Kosny et. al 2001; Johra and 

Heiselberg 2017), because the heat capacity per specific volume of concrete, glass 

and wood/plastic, and materials for envelope elements is 1000 times higher than 

the heat capacity per volume of air while interior structure of a house is much 

smaller than a commercial building given the need for corridor, stairs, and 

elevator in addition to interior zones in a building. Meanwhile, for residential 

buildings, the volume of the envelope is significantly larger than the volume of 



53 

 

 

the partition walls and furnishings. Therefore, internal thermal mass, represented 

by 2R2C in Equations (3.1)–(3.5), is ignored. On the other hand, internal heat 

gains have relatively small impacts compared with envelope heat gains/losses 

(Kim and Moon 2009). Herein, the internal heat gains are simply treated as one 

input 𝑄%,0 in this study.   

3.3.5 Formulate heat transfer processes 

 By integrating the contributions of Sections 3.3.1–3.3.4, the governing 

equation for the home thermal model can be expressed as 

𝐶3!,%,
45&$
40

= 5!65&$
7/$

+ 5&(65&$
7+&0

                                                                   (3.17) 

𝐶(%1
45&(
40

= 5&$65&(
7+&0

+ 𝑞3$= + 𝑄+'B + 𝑄%,0 + 𝑄+8+                                              (3.18) 

where 𝑄%,0  represents the sum of all internal heat gains and 𝑄+8+  is the HVAC 

system output. 

Compared with Equations (3.1)–(3.5), Equations (3.17) and (3.18) are 

expressed in a 2R2C model format which eliminates the exterior wall surface 

temperatures (𝑇'&) by using one virtual envelope assumption and meanwhile uses 

𝑄+'B to represent the solar impacts instead of the traditional solar-air temperature 

(𝑇+&). Furthermore, the heat transfer impacted by wind is included as a function of 

wind speed. 𝑅3! , 𝐶3!,%, , 𝑅(%1 , and 𝐶(%1  are time-invariant parameters, but 𝑅3$ 

varies with time as wind speeds change. The circuit diagram for Equations (3.17) 

and (3.18) are shown in Figure 3.6.  
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Figure 3.6. Schematic diagram of the 2R2C network. 

Applying the Laplace transform to Equations (3.17) and (3.18) yields 

𝐶3!,%,𝑠𝑇%!(𝑠) =
5!(+)65&$(+)

7/$
+ 5&((+)65&$(+)

7+&0
                                                        (3.19) 

𝐶(%1𝑠𝑇%,(𝑠) =
5&$(+)65&((+)

7+&0
+ 𝑞3$= (𝑠) + 𝑄+'B(𝑠) + 𝑄%,0(𝑠) + 𝑄+8+(𝑠)            (3.20) 

Rearranging Equations (3.19) and (3.20), these become 

𝑇%!(𝑠) =
"
+
S 5!(+)
7/$</$,&(

+ 5&((+)
7+&0</$,&(

− 5&$(+)
7/$</$,&(

− 5&$(+)
7+&0</$,&(

T                                   (3.21) 

𝑇%,(𝑠) =
"
+
U 5&$(+)
7+&0<+&0

− 5&((+)
7+&0<+&0

+
HI/.1 (+)FJ#!3(+)FJ&(*(+)FJ#4#(+)K

<+&0
V                      (3.22) 

Similarly, a block diagram of the home thermal model in Figure 3.6 is 

constructed and shown in Figure 3.7.  

Compared with the block diagram of the 3R2C plus 2R2C thermal model 

in Figure 3.3, the home thermal model has the same number of inputs but 

different outputs and expressions of solar impacts. Furthermore, it includes 

infiltration impacts. Each block in the model (see Figure 3.7) is a straightforward 
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transfer function. Therefore, parameter estimation using measured input and 

output data is easier than for the model in Figure 3.3. 

 

Figure 3.7. Block diagram of the home thermal model. 

3.3.6 Summary 

 Substituting Equations (3.15) and (3.16) into Equation (3.18) and 

rearranging Equations (3.17) and (3.18), the equations are the time-continuous 

model 

45&$(0)
40

= "
L%
[𝑇'(𝑡) − 𝑇%!(𝑡)] +

"
L'
XY𝑇%,(𝑡) − 𝑇%!(𝑡)Z[                                      (3.23) 

45&((0)
40

= − "
L)
𝑇%,(𝑡) +

"
L)
X𝑇%!(𝑡) + Y𝑇'(𝑡) − 𝑇%,(𝑡)ZY𝑏"𝑊(𝑡) + 𝑏#𝑊#(𝑡)Z +

Y𝑎"𝐺(𝑡) + 𝑎#𝐺#(𝑡) + 𝑎9𝐺9(𝑡)Z + (𝑄%𝑢%(𝑡) + 𝑄+𝑢+(𝑡))[,                             (3.24) 

where 𝜏" = 𝐶3!,%,𝑅3!  and 𝜏9 = 𝐶(%1𝑅(%1  are the time constants of the envelope 

and indoor air of a home, respectively; 𝜏# = 𝐶3!,%,𝑅(%1 , 𝑎" = 𝑎"=𝑅(%1 , 𝑎# =
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𝑎#=𝑅(%1 , 𝑎9 = 𝑎9=𝑅(%1 , 𝑏" = 𝑏"=𝑅(%1 , and 𝑏# = 𝑏#=𝑅(%1  are the corresponding 

coefficients associated with 𝑅(%1 ; and 𝑄% = 𝑄%,0𝑅(%1  and 𝑄+ = 𝑄+8+𝑅(%1 , where 

the internal heat gain 𝑄%,0 and HVAC system output 𝑄+8+ are treated as constant 

associated with the internal activity schedules 𝑢% and HVAC system on/off signal 

𝑢+, respectively. 

All the coefficients in Equations (3.23) and (3.24), representing the 

thermal responses of the envelope and indoor air of a home to the inputs of 

outdoor air temperature, interior wall surface temperature, wind, solar, internal 

heat gains, and HVAC system output, are estimated using a parameter estimation 

scheme introduced in Section 3.4. 

3.4 Parameter Estimation 

 The formulated home thermal model in Equations (3.23) and (3.24) 

includes several unknown parameters that need to be estimated. In this section, a 

parameter estimation scheme is introduced using Euler’s approximation and the 

least squares method. 

3.4.1 Model discretization 

Because the home thermal model in Equations (3.23) and (3.24) is time-

continuous, it must be discretized in order to use measured input and output data 

for the parameter estimation. The continuous-time model is converted into a 

discrete-time model by applying Euler’s method. As an example, the left-hand 

sides in Equations (3.23) and (3.24) become 
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45&$(0)
40

= 5&$(0)65&$(06")
∆0

                                                                                      (3.25) 

45&((0)
40

= 5&((0)65&((06")
∆0

                                                                                     (3.26) 

where ∆𝑡 is the sampling interval between measurements.                                                                                           

By substituting Equations (3.25) and (3.26) into Equations (3.23) and 

(3.24), respectively, the continuous-time state equations are approximately 

converted in discrete time to 

𝑇%!(𝑘) − 𝑇%!(𝑘 − 1) =
∆0
L%
[𝑇'(𝑘) − 𝑇%!(𝑘)] +

∆0
L'
[(𝑇%,(𝑘) − 𝑇%!𝑘)]                (3.27) 

𝑇%,(𝑘) − 𝑇%,(𝑘 − 1) = − ∆0
L)
𝑇%,(𝑘) +

∆0
L)
X𝑇%!(𝑘) + Y𝑇'(𝑘) − 𝑇%,(𝑘)ZY𝑏"𝑊(𝑘) +

𝑏#𝑊#(𝑘)Z + Y𝑎"𝐺(𝑘) + 𝑎#𝐺#(𝑘) + 𝑎9𝐺9(𝑘)Z + (𝑄%𝑢%(𝑘) + 𝑄+𝑢+(𝑘))[  

(3.28) 

where k denotes discrete time, i.e., each measurement sampling time, k=1, 2, 3, 

….                     

The right side of Equations (3.27) and (3.28) refers to the linear, quadratic, 

and polynomial terms. Due to the complexity of the model, a stepwise data 

parameter estimation scheme is proposed and shown in Section 3.4.2. To identify 

the values of these parameters, the least squares method is used. Herein, as an 

example, Equation (3.27) in the first-step parameter estimation can be written in a 

matrix form as 

𝑋𝛽 = 𝑌                                                                                                             (3.29) 
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where X and Y are the matrices containing measured variables, whose elements 

are the inputs and output of the home thermal model, and β is the matrix of 

constant coefficients, which are the unknown parameters to be estimated. 

Assuming that X has full column rank, the least squares solution to 

Equation (3.29) is: 

𝛽a = (𝑋5𝑋)6"𝑋5𝑌                                                                                            (3.30) 

where 𝛽a  is the optimal estimate of the unknown parameters, and 

𝑋 = b
𝑥"" ⋯ 𝑥")
⋮ ⋱ ⋮
𝑥," ⋯ 𝑥,)

f;           𝛽 = g
𝛽"
⋮
𝛽)
h;             𝑌 = g

𝑦"
⋮
𝑦,
h	.                          (3.31) 

where 𝑛  represents sampling data in time steps and 𝑚  represents different 

combination of measured variables involved in Equation (3.27). Detailed 

definitions can be found in Equations (A.1) to (A.4) in the Appendix A. 

3.4.2 Parameter estimation scheme 

 The home thermal model in Equations (3.23) and (3.24) requires 

estimation of ten parameters using a data set of seven known inputs: indoor air 

temperature (𝑇%,), outdoor air temperature (𝑇'), interior wall surface temperature 

( 𝑇%! ), wind speed (𝑊 ), global horizontal irradiation (𝐺 ), internal activity 

schedules (𝑢%), and HVAC system on/off signal (𝑢+). Among all the parameters to 

be estimated, the accuracy of the time constants (𝜏" and 𝜏9) in Equations (3.23) 

and (3.24) are the most dominant parameters for ensuring the accurate 

representation of the home thermal properties, including the home envelope and 

internal space, which stay the same in HVAC on/off mode for a specific home. To 
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minimize the errors introduced by the indoor air and wall surface temperature in 

HAVC on/off mode in Equations (3.23) and (3.24), a stepwise data estimation 

scheme based on the least squares method described in Equations (3.29) to (3.31) 

is used. The parameter estimation process consists of two steps: 

(1) Identify 𝜏"	and 𝜏# through solving a least squares problem that is formed in 

Equation (3.27) and the measurements of indoor air temperature 𝑇%,(𝑘), outdoor 

air temperature 𝑇>(𝑘), and interior wall surface temperature 𝑇%!(𝑘), focusing on 

time periods when HVAC system is off; and 

(2) Identify 𝜏9 , 𝑏" , 𝑏# , 𝑎" , 𝑎# , 𝑎9 , 𝑄% , and 𝑄+  by solving another least squares 

problem that is formed in Equations (3.28) and all the measurements at each time 

step, completing the parameter estimation process. 

Figure 3.8 shows a schematic diagram of the parameter estimation process. 

Details of the parameter estimation are presented in Equations (A.1) to (A.8) in 

the Appendix A. 

 

Figure 3.8. A schematic diagram of parameter estimation. 



60 

 

 

3.5 Validations 

The indoor air temperature predication for a typical home located in Norman, 

Oklahoma was used to validate the home thermal model and the parameter 

estimation scheme. To mitigate the impacts of occupancy disturbances that may 

cause uncertainties in the model validation, two experiments were conducted, 

where the first one was from May 7 to May 21, 2020 (15 days) when the HVAC 

system was forced to shut down and another was from May 28 to June 11, 2020 

(15 days) when the HVAC system was on. The home description, measurements, 

and data collection and analysis are introduced in this section. 

3.5.1 The experimental home and data acquisition system 

Validations were performed in the home shown in Figure 3.9(a); it is a 

single-family, one-story home with a floor area of 1,658 ft2, built in 1940. The 

home is equipped with 3.5 tons (42,000 Btu/h) of cooling capacity and 1,400 cfm 

of air flow rate. The home includes three bedrooms and one living room. The 

thermostat is in the living room. The measured inputs include the indoor and 

outdoor air temperature, interior wall surface temperature, wind speed, global 

horizontal irradiation, return air flow rate, used to represent the HVAC on/off 

status. All temperature data were measured using T-type thermocouple and 

logged using the connected Raspberry Pi and its associated thermocouple hat, 

shown in Figure 3.9(b), and air velocity sensors were installed on the return air 

ducts shown in Figure 3.9(c). All the thermocouples were calibrated according to 

the ASTM standard E220 (ASTM 2019). An outdoor weather station, shown in 
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Figure 3.9(d), was set up for the outdoor temperature, wind, and solar 

measurements at thirty-second intervals, which were compared with the data 

downloaded from Mesonet (Oklahoma Mesonet 2016) at five-minute intervals. 

The comparison shows that the Mesonet data provided more consistent results. 

Therefore, the Mesonet data were used in the study. For the experimental period, 

there were total 30 days, including 20 sunny days, 8 cloudy days, and 2 rainy 

days. The outdoor temperature varied from 38.1 °F to 94.5 °F during the 

experiment. All the measured weather conditions were plotted and shown in 

Figures B.1 and B.2 in the Appendix B. Table 1 lists the specifications of the 

sensors used in the experiment. 

 

(a) 

           

                   (b)                                                   (c)                                                   (d)  
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Figure 3.9. Test home and data acquisition device: (a) Outside view of the front 

of the test home; (b) Raspberry Pi and thermocouple hat; (c) Flow rate sensor; (d) 

Outdoor weather station. 

Table 3.1. Specifications of the sensors in the experiment. 

Sensors Measurement Range Accuracy 

Indoor thermocouple Temperature 32 – 392 °F ±0.9 °F  

Air velocity transducer Air speed 25 – 1500 fpm ±2% 

Outdoor weather station 

Temperature -40 – 167 °F 
±0.38 °F 

from 32 to 122 °F 

Wind speed 0 – 125 mph ±4% 

Solar radiation 0 – 1250 W/m2 ±5% 

 

3.5.2 Validation of the parameter estimation scheme 

To predict the indoor air temperature using the thermal model, the model 

parameters in Equations (3.23) and (3.24) need to first be estimated using the 

stepwise parameter estimation scheme discussed in Section 3.4.2. In general, 

more training data provide more robust results, although collection of more data 

will need more waiting time for the model to function properly. Therefore, the 

number of data collection days required to obtain sufficiently reliable results for 

the parameter estimation was first examined using the two sets of the collected 15 

days’ data. 
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Two examinations were conducted based on Equations (3.23) and (3.24) 

of the model using the two sets of data separately. Each examination was initiated 

by using one day’s training data to estimate the parameters. The parameter 

estimation was repeated for increased training data sets by incrementally adding 

one-day’s (24-hour) data per trial, i.e., the first trial uses one day of training data, 

the second trial uses two days of training data, and the nth trial uses training data 

for n days. For the first trial, by applying the 15-day operational data one-by-one, 

a total number of 15 sets of parameters were obtained, one set for each day’s data 

collected at 30-second intervals. For the second trial, two consecutive days of 

training data were applied to train the parameters for each set, and a total of 14 

(15-2+1) sets of parameters were obtained. The process continued by adding one 

day to increase the training data length per trial, so that the 15th trial only 

generated one set (15-15+1) of parameters. 

The results of the trials were compared to determine the minimum number 

of data points needed to obtain stable results. According to the model formulation 

shown in Equations (3.23) and (3.24), the values of 𝜏"  and 𝜏9  represent the 

physical home thermal properties, i.e., area-weighted average thermal properties 

of all envelope elements and internal space, which are supposed to be a relatively 

constant numbers regardless of the home operation conditions. Therefore, the 

consistency of the estimated values of 𝜏" and 𝜏9 are used to determine the number 

of days needed for training data collection. Figure 3.10 shows example results of 
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values of the time constants (𝜏" and 𝜏9) for all the trials. Results of values of other 

model parameters are shown in the Appendix C. Note that the spikes in the 1st 

trials indicate less robust results using a relatively small amount of data. As can 

be seen from the mean values of 𝜏" and 𝜏9 in Figure 3.10, by 6 consecutive days 

of data per set (6th trial), the values of 𝜏" and 𝜏9 have already reached relative 

constant values compared with the values obtained from less than 6 consecutive 

days of data. Therefore, 6 or more consecutive days’ data length is suggested for 

the estimation of the model parameters 𝜏" and 𝜏9. Moreover, when reaching the 

first available 15 consecutive days of data, the value of 𝜏" and 𝜏9 still vary after 6 

consecutive days of data. Hence, in the next section, the thermal model is 

constructed twice, using the parameters 𝜏"  and 𝜏9  estimated with 6 and 15 

consecutive days of data from the two sets of data, respectively, to show the 

impacts of different lengths of the training data sets on the model accuracy. 
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(a) Parameter 𝜏" 
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(b) Parameter 𝜏9 

Figure 3.10. Empirically-determined values of parameters 𝝉𝟏 and 𝝉𝟑 for different 

numbers of days in each data set, used for validation. 

3.5.3 Analysis and validation for two identified models 

 Table 3.2 shows the results of estimating the home thermal model 

parameters using the first 6 and 15 consecutive days of training data. The first 6 or 

15 consecutive days of the training data are chosen because they would be the 

earliest available data while generating relatively reliable model parameters 

through the estimation scheme. Using these sets of estimated parameters in 

Equations (3.23) and (3.24) yields two home thermal models with different 

parameters that can be used for simulation. 

Table 3.2. Estimated parameters for two identified models. 

Length of training data 𝝉𝟏 𝝉𝟐 𝝉𝟑 𝒃𝟏 𝒃𝟐 

First 6 consecutive days 2636 278.6 7.584 0.01272 -0.0002349 

First 15 consecutive days 2350 272.1 8.191 0.01488 -0.0007994 

Length of training data 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝑸𝒔  

First 6 consecutive days 4.331 -8.457 5.218 -2.200  

First 15 consecutive days 5.361 -10.33 6.264 -2.267  
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 Figures 3.11 and 3.12 show the measured and predicted indoor air 

temperatures and interior wall surface temperatures using the two identified 

models. These temperatures were predicted for every 24-hour ahead of the current 

time. In terms of the indoor air temperature, the predicted temperatures match the 

measured temperatures well, with a mean absolute error of 0.82 °F and 0.80 °F 

and an absolute error of 1.85 °F and 1.90 °F at 95% confidence interval for the 

two models, respectively. Similar to the indoor air temperature predictions, the 

interior wall surface temperatures follow the trend of the measured ones that show 

small fluctuations due to the HVAC system on/off. Figure 3.13 compares the 

histogram of absolute error distribution of indoor air temperature for the two 

models. This tends to indicate that the home thermal model is effective at 

capturing the home thermal dynamics through learned thermal properties for a 

specific home. 
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(a) for the home thermal model trained by first 6 consecutive days’ data 

 

(b) for the home thermal model trained by first 15 consecutive days’ data 
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Figure 3.11. Measured and predicted indoor air temperature comparison using the 

data from the first 6 and 15 consecutive days to estimate the thermal model 

parameters. 

 

(a) for the home thermal model trained by first 6 consecutive days’ data 
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(b) for the home thermal model trained by first 15 consecutive days’ data 

Figure 3.12. Measured and predicted interior wall surface temperature 

comparison using the data from the first 6 and 15 consecutive days to estimate the 

thermal model parameters. 
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(a) for the home thermal model trained by first 6 consecutive days’ data 
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(b) for the home thermal model trained by first 15 consecutive days’ data 

Figure 3.13: Absolute error distribution for the indoor air temperature with 

predictions based on the home thermal model parameters estimated using 

data for the first 6 and 15 consecutive days. The red arrows identify the 

mean error and the error at 95% confidence interval. 

 The simulation results for the thermal model trained using data for 6 and 

15 consecutive days are very close to each other, as presented in Figures 3.11 and 

3.12. In addition, as shown in Table 3.3, the mean, maximum, and absolute error 

at 95% confidence interval of the model trained using data from 15 consecutive 

days are slightly better than the errors in indoor temperature prediction for the 

model trained using data from the first 6 consecutive days. Both models have 

similar accuracy in predicting the indoor air temperature 24 hours into the future 

and successfully verify the effectiveness of the proposed home thermal model and 

the parameter estimation scheme.  

Table 3.3. Absolute error comparison for two identified models. 

Length of training 

data 

Mean 

absolute  

error, °F 

Maximum 

absolute 

error, °F 

Absolute error at 

95% confidence 

interval, °F 

First 6 consecutive 

days 
0.82 3.84 1.85 



73 

 

 

First 15 consecutive 

days 
0.80 3.26 1.90 

 

3.6 Summary 

 With one virtual envelope node to describe the heat transfer processes 

between the indoor and outdoor environments of a home, the home thermal model 

is successfully formulated to capture the home thermal dynamics with reasonable 

accuracy. The simplicity of the model also allows its parameters to be 

automatically estimated using a short period of home operational and weather 

data and therefore eliminates the need for user inputs. The validation results for 

the test home show that training data for 6 consecutive days are needed to 

generate reliable parameters, i.e., the thermal properties of the home. More data 

improve the model robustness and therefore accuracy, but only marginally. In this 

study, the accuracy of the home thermal model is validated by applying it to 

predict the home indoor temperature for the test home. By utilizing on the model, 

the calculations of cooling load and cooling efficiency of the HVAC equipment 

will be investigated in Section 7.3. As conclusions, the novelty of the study 

resides in the successful self-identification of the parameters of the thermal model 

for each specific home using the parameter estimation process presented. The 

automatically identified model can effectively connect weather data with home 

operations and capture the home thermal dynamics with reasonable demands on 
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training data. The successful development of the model provides a key to achieve 

system operation optimization and reduce the energy cost needs for homes, which 

is the critical first step to realize model-based intelligent home HVAC system 

operations. However, since the model is simplified under the assumptions that the 

internal heat gains and HVAC system output are treated as two constant inputs 

and latent heat is not considered, there is room for improvement in the prediction 

of the dynamics of space air temperature, which will be the focuses of future 

studies (but while keeping the model sufficiently simple for compatibility with 

actual application in homes).  
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Chapter 4: Characterization of U.S. Home Thermal Performance 

This chapter introduces the state of the art of home thermal performance 

analysis firstly. Then a model-based envelope performance evaluation method is 

proposed based on the home thermal model in Chapter 3 through some 

simplifications. Three sequential experiments are conducted to validate the 

effectiveness of the method. Finally, the characterization of U.S. home thermal 

properties is investigated through using data collected from 1,676 homes. 

4.1 State of the Art of Home Thermal Performance Analysis 

Energy usage for heating and cooling homes is known to account for a 

significant share of energy consumption in the United States. Indeed, in 2015 the 

118.2 million housing units in the United States consumed 4.67 quads, or 4.67 × 

1015 BTUs (4.93× 1015 kJ), of end-use energy for heating and cooling alone, 

which was nearly 10% of the total energy use in the country (DOE 2011; EIA 

2015). The energy consumption in homes is affected by multiple factors, such as 

the overall envelope thermal performance, HVAC system efficiency, weather 

conditions, and occupants’ behavior. Among these factors, the overall envelope 

thermal performance, reflected by the integration of thermal properties (thermal 

transmittance and capacity) and airtightness, has a critical impact on the energy 

performance due to a large percentage of the total energy demand on the heating 

and cooling by envelope (Caffey 1979; Dickerhoff 1982; Harrje and Born 1982; 

Cooperman et al. 2011).  
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Although the thermal properties are provided in the design phase, 

performance can deteriorate and vary in practice due to the impacts caused by 

irregular construction, workmanship quality, multi-dimensional heat and moisture 

flow, and material degradation (Atsonios et al. 2017). Thus, envelope 

performance evaluation, namely evaluation of the thermal properties (thermal 

transmittance and capacity) and airtightness are becoming increasingly important 

for achieving energy efficient homes.  

Over the past half century, a variety of envelope performance evaluation 

methods have been proposed. This section introduces the state of the art of home 

thermal performance analysis methods, such as those based on initial design data, 

measured structure data from sampling, and in-situ measurements using a heat 

flow meter. Unlike traditional evaluation methods, the model-based envelope 

performance evaluation method proposed in this section is based on a simplified 

home thermal model. 

4.1.1 In-situ measurement methods 

 In-situ measurement methods are further categorized into two types: 

destructive and non-destructive (or invasive and non-invasive) testing methods. 

The destructive testing method adopts an auxiliary analysis method that obtains 

the values of the thickness and conductivity of each envelope components by 

using instrumental measurements of each layer for the selected sampling, which is 

acquired using a hollow drill. Then the thermal resistance (or R-value) and 

thermal transmittance (or U-value) can be calculated in accordance with the ISO 
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6946 (ISO 2017). With this method, the in-situ values of the envelope 

components can be directly compared with the design parameters. The destructive 

method provides a means of understanding ground-truth of an operational wall 

from inside to outside surfaces. Therefore, this method can be adopted to obtain 

the U-value as a reference to calibrate or evaluate other methods. However, 

uncertainties could happen when calculating the U-values for multilayer walls due 

to the error accumulation of measurements caused by instruments and/or users 

(ISO 2014). 

Currently, on the other hand, many non-destructive methods are widely 

used and available for building envelope performance evaluations due to the rapid 

development of measurement tools such as heat flow meters (HFMs) and infrared 

(IR)/thermographic cameras. Such tools are broadly used for in-situ 

measurements and diagnostics of building envelope performance in many 

applications (Desogus et al. 2011; Ficco et al. 2015; ISO 2018; Albatici and 

Tonelli 2010; Fokaides and Kalogirou 2011; Lehmann and Wakili 2013; Fox et 

al. 2014; Kylili et al. 2014; Nardi et al. 2016). Briefly, the HFMs are designed for 

the measurements of heat flux using the heat flux sensors and thermocouples. A 

heat flux sensor is a thin plate with a known thermal conductivity 𝜆 (Btu/(h·ft·°F) 

and thickness 𝑑 (ft), which is mounted perpendicular to the surface of building 

envelope component, to monitor the amount of heat energy loss/gain through the 

plate. The plate is also equipped with thermocouples with multiple contacts on 

both sides to measure the temperature difference 𝛥𝑇 (°F). When reaching stable 
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temperature difference, i.e., thermal equilibrium, the heat flux 𝑞 (Btu/(h·ft2)) can 

be calculated by:  

𝑞 = 𝜆 Q5
4

                                                                                                              (4.1) 

Then the HFM method simplifies the calculation of the 𝑈 -value 

(Btu/(h·ft2)) by dividing the sum of heat flux of all the measurement points using 

the sum of differences between indoor air temperature 𝑇%, (°F) and outdoor air 

temperature 𝑇'  (°F), i.e., the calculated 𝑈-value is obtained using a progressive 

mean method or an average method (ISO 2014), as given by: 

𝑈 = ∑ I&
(
&5%

∑ D5&(,&65!,&G(
&5%

                                                                 (4.2) 

where the subscript 𝑖 represents the 𝑖0S measurement. 

Moreover, if the internal surface temperature 𝑇%+ (°F) and external surface 

temperature 𝑇!+  (°F) are available, the HFM method can also calculate the 𝑈-

value by using the thermal conductance 𝐶 (Btu/(h·ft2·°F)), the internal total heat 

transfer coefficient ℎ%0  (Btu/(h·ft2·°F)) (including both convective and radiative 

heat transfer coefficient), and the external total heat transfer coefficient ℎ!0 

(Btu/(h·ft2·°F)), shown in:  

𝑈 = "
%
6&*
F%7F

%
6$*

                                                                                                     (4.3) 
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where the calculation of the thermal conductance is similar to the 𝑈 -value 

calculation using Equation (4.2), but the temperature difference is replaced by the 

ones between internal and external surface temperatures, shown in: 

𝐶 = ∑ I&
(
&5%

∑ D5&#,&65$#,&G(
&5%

                                                                                         (4.4) 

The HFM method (Atsonios et al. 2017; Desogus et al. 2011; Ficco et al. 

2015) was also adopted by the ISO 9869-1 (ISO 2014). The comparisons of the 

𝑅-values (Desogus et al. 2011) or 𝑈-values (Ficco et al. 2015) measured by the 

HFM method and the one calculated from the destructive method were also 

conducted and concluded. From Desogus et al. (2011), the results verified that the 

𝑅 -value measured by the HFM was significantly affected by environmental 

conditions, especially by the temperature difference between the indoor and 

outdoor air. The results also showed that the HFM method was reliable if the 

indoor and outdoor air temperature difference was equal to or higher than 50 °F in 

their tests. In addition, the result from Ficco et al. (2015) showed that the in-situ 

𝑈-value could be considerably influenced by many operative conditions such as 

high temperature gradient variation and heat flow inversion, whereas other 

factors, such as sampling time and heat flow meter plate dimensions, seemed to 

be less significant. Similar work was also done by Atsonios et al. (2017), who 

implemented two methods, the average and summation method and the dynamic 

and sum of least squares method, in three representative walls measured at 

different conditions in terms of surface temperature difference and direction of 
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heat flow. For the average and summation method, high temperature differences 

between the indoor and outdoor surfaces of the tested wall were required to 

provide 𝑅-values in a short measurement period with low variability. For the 

dynamic and sum of least squares method, however, the required measuring 

period is independent of the measuring conditions and 𝑅-values can still have low 

variability when only considering that the direction of heat flow is stable during 

the measurements. 

The IR method, however, is another way to estimate the 𝑈-value. The IR 

method considers the heat flux that is obtained by measuring the total heat 

transfer coefficient, environment temperature, and surface temperature of the 

building element. Then the 𝑈-value is determined by the difference between the 

indoor and outdoor temperature of the building element that is in steady-state. 

Thus, the 𝑈-value can be calculated from (ISO 2018):  

𝑄 = ℎ0(𝑇%! − 𝑇%+)𝐴                                                                                         (4.5) 

𝑈 = J
(5&$65!$)T

                                                                                                     (4.6) 

where ℎ0  is the total heat transfer coefficient of the surface of the building 

element (Btu/(h·ft2·°F)), which is measured by using a heat transfer coefficient 

sensor; 𝑇%!  and 𝑇'!  are the indoor and outdoor environment temperature (°F), 

which are conceptual quantities defined as a weighted average of the radiative 

temperature and air temperature and measured by environmental temperature 

(ET) sensors installed on the surfaces of the building element; 𝑇%+ is the internal 
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surface temperature of the building element (°F), which is measured with an IR 

camera; and 𝐴 is the heat transfer area of the building element (ft2). 

From Albatici and Tonellli (2010), the IR method was proposed to obtain 

the 𝑈-value of the building envelope in a quasi-steady state condition in three 

case studies, through a comparison with the HFM and theoretical calculation 

method, where the overall 𝑅 -value is calculated based on the wall material 

thickness and thermal properties. Their results indicated that the IR method could 

estimate the 𝑈-value in existing buildings. However, Case A showed that the 

average 𝑈-value by IR was 31% higher than the theoretically calculated one and 

21% lower than the one measured with the HFM method. Case B showed the 

average 𝑈-value by IR was 29.6% and 80% different from the calculated one 

when wind speed was 0 to 2.2 mph, and Case C showed a 27% difference 

compared to the calculated one. Fokaides and Kalogirou (2011) stated that the IR 

method was a reliable measurement method and validated that the absolute 

deviation percentage of the measured 𝑈-values was in the range of 10–20% in 

comparison with the use of the HFM method. Similar works have also been done 

by Lehmann and Wakili (2013), Fox et al. (2014), Kylili et al. (2014), and Nardi 

et al. (2016), whose common goal was to prove the IR was a useful and yet 

effective method based on various case studies. However, limitations of the IR 

method are that the emissivity and the reflective temperature of the envelope need 

to be known for calibrations; meanwhile, the thermal image analysis requires 

professionals (Kylili et al. 2014). 
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To overcome these strict requirements, especially for the HFM method, a 

frequency response method was introduced by Peng and Wu (2008), who 

calculated the overall 𝑅-values using the 0th order of the frequency responses of 

heat conduction, the mean indoor and mean solar-air temperatures, and the 

average of the indoor air and inside surface temperatures of the building envelope 

elements, with no need for the heat flux measurements. Their result showed a 

good agreement in comparison with the design values. Additionally, an Excitation 

Plus Method (EPM) based on the transient response factors (RFs) method was 

investigated and tested by Rasooli et al. (2016) through three case studies. 

Basically, a triangular temperature pulse was applied to the interior surface and 

the measured heat flux responses on both the interior and exterior surfaces of the 

walls with constant surface temperatures were used to calculate the RFs and then 

to obtain the 𝑅-values. Their results showed that the 𝑈-values could be calculated 

with less than 2% error by using only one and a half hours of in-situ 

measurements compared with the required measurements in the ISO 9869-1 (ISO 

2014). Evangelisti et al. (2018), using a finite-element analysis method, verified 

that an equivalent homogeneous wall could be used to represent a multilayer wall 

by producing the same behavior when exposed to the same weather conditions.  

As a conclusion, for these above methods, it is difficult to apply in 

practice due to unavailability of requisite temperatures and required weather 

conditions as well as long measurement periods. In addition, the in-situ 

measurement methods are designed to measure the thermal resistance of an 
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envelope element that is associated with steady-state heat transfer only and 

therefore do not provide an overall integrated performance evaluation of an 

envelope, i.e., thermal resistance and thermal capacity through dynamic heat 

transfer study, and its associated airtightness.  

4.1.2 Model-based methods 

To overcome the disadvantages of in-situ measurement methods, model-

based methods have been proposed and studied. A recent model-based approach 

was proposed by Zeifman and Roth (2016), who developed a coarse grade 

thermal response model to evaluate the envelope performance. The model used 

nighttime data to correlate the interval indoor temperature changes over a heater’s 

runtime to evaluate the thermal properties for a home. It assumed that the indoor 

temperature increased linearly with a constant outdoor temperature in each 

runtime, in addition to ignoring wind and internal heat gains. However, Wang et 

al. (2019) proved that it was not appropriate to ignore the wind impacts and 

suggested that the amount of heat gains or losses could be related to wind speeds; 

for example, the heat loss rate at wind speed of 0.6 mph was approximately 50% 

higher than the rates at close to 0 mph for the same outdoor air temperature. 

Therefore, the model will unavoidably cause large errors in the real practice of 

envelope performance evaluation. Similar work was done by Newsham et al. 

(2017), in which a model-based method was expressed as a simple linear equation 

to estimate the integrated 𝑈-values. On the other hand, their work assumed the 

indoor temperature dropped linearly with the temperature difference between the 
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average indoor and outdoor air within the setback period. Therefore, these models 

are only applicable for nighttime heating or nighttime indoor temperature floating 

period (temperature setback period in this case). Siemann (2013) applied the RC 

network approach and physics-based solar and infiltration method to model the 

thermal dynamics in homes, along with 12 parameters to be estimated by applying 

the data, such as the indoor and outdoor temperature, wind speed, solar 

irradiation, and HVAC signal, to train the model using the Genetic Algorithm 

(GA) method. Although the model is complicated and difficult to be applied, and 

wind and solar data usually are unavailable for homes, thermal conductivity and 

thermal mass of the envelope—described by two parameters in the model—can 

be used to evaluate the performance of the envelopes.  

Inspired by the previous work, this study has developed a model-based 

envelope performance evaluation method that uses a home thermal model through 

reasonable simplifications. The development of an accurate and effective model-

based envelope performance evaluation method is challenging because of the 

different heat transfer mechanisms introduced by different weather inputs, e.g., 

outdoor air temperature, wind, and solar, and availability and quality of the data. 

In this study, the challenges are addressed by simplifications of a home thermal 

model in Section 4.2 and construction of an automated data screening procedure 

in Section 4.3. More specifically, in this study it first briefly introduces the 

formulation of a home thermal model that is able to account for the heat transfers 

between indoor and outdoor temperatures as well as the impacts of infiltration and 
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solar in Section 4.2.1. Secondly, a model-based envelope performance evaluation 

method is proposed through the simplification of the model by applying it to the 

nighttime data in Section 4.2.2, along with an introduction of a data screening 

procedure. Finally, three sequential experiments are conducted to validate the 

effectiveness of the method in Section 4.3. 

4.2 Methodology of Model-Based Envelope Performance Evaluation 

 Building thermal dynamic models have been intensively studied and used 

for a long time. For the home envelope evaluation application, there are unique 

features to be considered to formulate a home thermal model. In this section, a 

model-based envelope performance evaluation method, which is built upon the 

standard RC network approach, is introduced through the analysis of heat transfer 

processes. 

4.2.1 A simplified home thermal model for performance evaluation 

A home thermal model, which can account for the heat transfer between 

indoors and outdoors using one virtual envelope as shown in Figure 4.1(a), is 

constructed in Chapter 3, where the impacts of infiltration and solar energy are 

described using two polynomial regressions, as expressed by 

𝐶3!,%,
45&$(0)
40

= 5!(0)65&$(0)
7/$

+ 5&((0)65&$(0)
7+&0

                                                            (4.7) 

𝐶(%1
45&((0)
40

= − "
7+&0

𝑇%,(𝑡) +
"

7+&0
X𝑇%!(𝑡) + Y𝑇'(𝑡) − 𝑇%,(𝑡)ZY𝑏"𝑊(𝑡) +

𝑏#𝑊#(𝑡)Z + Y𝑎"𝐺(𝑡) + 𝑎#𝐺#(𝑡) + 𝑎9𝐺9(𝑡)Z + (𝑄%𝑢%(𝑡) + 𝑄+𝑢+(𝑡))[           (4.8) 



86 

 

 

The home thermal model can be further simplified by using the thermostat 

temperature ( 𝑇5U5T5 ), which directly reflects the dynamics of space air 

temperature ( 𝑇%, ), and by ignoring the node for the interior wall surface 

temperature ( 𝑇%! ), shown in Figure 4.1(b), when using HAVC off data at 

nighttime only. Because the only excitation is outdoor air and the indoor air 

presents a very small time constant, for its small heat capacity (𝐶(%1) and thermal 

resistance (𝑅(%1 ) compared with the home envelope (ASHRAE Handbook: 

Fundamentals 2017; ASHRAE Standard 90.2 2007) when the interests of 

investigation lie in envelope heat transfer performance. Moreover, the error of 

ignoring the node for the interior wall surface temperature can be effectively 

minimized through the best-fit search in the parameter estimation. Therefore, the 

heat transmission through all the envelope components can be represented by one 

heat transfer relationship driven by the single temperature difference between the 

indoor air temperature (in this case, the thermostat temperature) and outdoor air 

temperature, along with the consolidated thermal properties of all the envelope 

components. 

Thus, the home thermal model in Equations (4.7) and (4.8) can be 

simplified into: 

45&((0)
40

= − "
L
𝑇%,(𝑡) +

"
L
X𝑇'(𝑡) + Y𝑇'(𝑡) − 𝑇%,(𝑡)ZY𝑏"𝑊(𝑡) + 𝑏#𝑊#(𝑡)Z +

Y𝑎"𝐺(𝑡) + 𝑎#𝐺#(𝑡) + 𝑎9𝐺9(𝑡)Z + (𝑄%𝑢%(𝑡) + 𝑄+𝑢+(𝑡))[                             (4.9) 
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where 𝜏 = 𝐶3!,%,𝑅3! is the time constant of the virtual envelope of a home; 𝑅3$ =

1/(𝑏"=𝑊 + 𝑏#=𝑊#); 𝑏"=  and 𝑏#=  are the empirical-determined coefficients; and 𝑏" =

𝑏"=𝑅3! and 𝑏# = 𝑏#=𝑅3!. 

                  
                    (a)  One virtual envelope                                          (b) Simplified one virtual envelope 

Figure 4.1. Schematic diagram of the one virtual envelope. (a) one virtual 

envelope; (b) simplified one virtual envelope where the heat capacity of the 

indoor air and interior thermal resistance are ignored. 

 

Figure 4.2. Modified RC home thermal model with simplified one virtual 

envelope. 

4.2.2 Model-based envelope performance evaluation method 

 In Equation (4.9), 𝜏 is the time constant of the home virtual envelope. It 

describes the time needed for a home to thermally respond to the indoor and 
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outdoor air temperature differences. The unit of 𝜏 is the same as the time unit of 

the data sampling time interval. Physically, it represents the product of thermal 

resistance 𝑅3! (i.e., the reciprocal of 𝑈) and thermal capacity 𝐶3!,%, of the home 

envelope.  

Because the internal heat gains (due to marginal occupant activities) and 

solar are both negligible at nighttime, only nighttime home operational data are 

used for model simplification. Therefore, only heat transmission through indoor 

and outdoor air temperature differences and infiltration needs to be considered.  

Note that 𝜏  reflects the heat transfer rate only by temperature difference. The 

infiltration impacts are accounted for by the wind term in Equation (4.9), 

Y𝑇'(𝑡) − 𝑇%,(𝑡)ZY𝑏"𝑊(𝑡) + 𝑏#𝑊#(𝑡)Z . Using only intermittent data when the 

HVAC system is off, Equation (4.9) can be simplified into: 

45&((0)
40

= − "
L
𝑇%,(𝑡) +

"
L
X𝑇'(𝑡) + Y𝑇'(𝑡) − 𝑇%,(𝑡)ZY𝑏"𝑊(𝑡) + 𝑏#𝑊#(𝑡)Z[   (4.10) 

Rearranging Equation (4.10), it becomes 

45&((0)
40

= "
L
X1 + Y𝑏"𝑊(𝑡) + 𝑏#𝑊#(𝑡)Z[Y𝑇'(𝑡) − 𝑇%,(𝑡)Z                           (4.11) 

However, for the cases when wind data are not available or when the wind 

term is ignored, Equation (4.10) further reduces to: 

45&((0)
40

= − "
L1
𝑇%,(𝑡) +

"
L1
𝑇'(𝑡) =

"
L1
Y𝑇'(𝑡) − 𝑇%,(𝑡)Z                           (4.12) 

where 𝜏  is replaced by 𝜏= , which reflects the heat transfer rate by both heat 

transmission and infiltration.  
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Therefore, the difference between 𝜏  and 𝜏=  represents the impacts of 

infiltration. Note here that 𝜏=  is a wind speed-dependent parameter, while 𝜏  is 

independent of wind. As observed in Equations (4.11) and (4.12), 𝜏=  should 

always have a smaller value than 𝜏 because 𝜏= represents the heat loss from both 

the heat transmission by temperature difference and air infiltration caused by 

wind. With given wind speeds, the smaller the difference between the values of 𝜏 

and 𝜏=, the better the airtightness of a home.  

The simplified models represented by Equations (4.10) and (4.12) are a 

time-continuous model. To use the measured data for parameter estimation, 

discretization of the models is needed. Thus, the continuous-time models are 

converted using Euler’s method into the discrete-time models, given by: 

𝑇%,(𝑘 + 1) = (1 − 𝛼)𝑇%,(𝑘) + 𝛼X𝑇'(𝑘) + Y𝑇'(𝑘) − 𝑇%,(𝑘)ZY𝑏"𝑊(𝑘) +

𝑏#𝑊#(𝑘)Z[                                                                                                   (4.13) 

𝑇%,(𝑘 + 1) = (1 − 𝛼=)𝑇%,(𝑘) + 𝛼=𝑇'(𝑘)                                                     (4.14) 

which can be rewritten as: 

𝑇%,(𝑘 + 1) − 𝑇%,(𝑘) = 𝛼Y𝑇'(𝑘) − 𝑇%,(𝑘)Z + 𝛼Y𝑇'(𝑘) − 𝑇%,(𝑘)ZY𝑏"𝑊(𝑘) +

𝑏#𝑊#(𝑘)Z                                                                                                   (4.15) 

𝑇%,(𝑘 + 1) − 𝑇%,(𝑘) = 𝛼=Y𝑇'(𝑘) − 𝑇%,(𝑘)Z                                         (4.16) 

where 𝛼 = 5#
L

 and 𝛼= = 5#
L1

; 𝑇+ is the sampling interval; and 𝑘 denotes discrete time. 

Detailed identification of the parameters, using 𝛼 (corresponding to 𝜏) as 

an example, can be found in Equations (A.9) to (A.11) in the Appendix A. The 
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least squares method is adopted to minimize the sum of squared differences 

between the data values. 

4.3 Characterization of U.S. Home Thermal Properties  

Three sets of experiments were conducted in this section, which were 

designed to test the effectiveness of the method. In the first experiment that 

conducted in 2016, an unoccupied home located in Norman, OK was used to 

validate the method. All the data in this test home were collected by lab meters 

with good data quality. In the second experiment, four occupied homes located in 

Tulsa and Oklahoma City, OK were selected to compare their envelope 

performance and the data was obtained through a smart thermostat provider 

collected in 2015, 2016, and 2017 respectively. The indoor and outdoor air 

temperatures were measured on site and obtained through their home smart 

thermostats. Wind speed data were obtained through local weather stations. Since 

the physical addresses of the four homes were unknown due to privacy protection 

given to the homeowners, there are uncertainties how proximate the four homes 

were to the local weather stations and how accurately the wind data could reflect 

the real wind speed surrounding the test homes. In the third experiment, 

operational data in 7,000+ homes located in the United States were obtained 

through a smart thermostat provider. Because there were no wind data available 

for these homes, only 𝜏=, shown in Equation (4.12), was estimated. To understand 

the results of the third experiment with missing wind data, the wind impacts were 

first examined in the first two experiments.  
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For all three experiments, data quality was examined. For example, 

outdoor temperature that increases after midnight when the solar effects are 

supposed to diminish was considered a bad measurement. Moreover, to eliminate 

the random sensor noise impacts, only the data that contain such abnormal 

patterns over one hour were eliminated.  

4.3.1 The first experiment 

In the first experiment, validation of the proposed model-based envelope 

performance evaluation method was performed in a typical home located in 

Norman, Oklahoma as shown in Figure 4.3. The home is a single-family, two-

story home with a floor area of 3,160 ft2, built in 2003. All bedrooms and a living 

room are located on the first floor, with a game room on the second floor. The 

thermostat is in the living room. The measured inputs include the outdoor air 

temperature, wind speed, global horizontal irradiation, and the indoor air 

temperature represented by the thermostat temperature. An outdoor weather 

station starter kit, shown in Figure 4.4(a), was set up for the outdoor temperature, 

wind, and solar measurements at one-minute intervals. Additionally, the air 

conditioner (A/C) return air temperature and on/off signal from the thermostat 

were measured and logged using the temperature and current transducer data-

loggers shown in Figures 4.4(b) and 4.4(c). Table 1 lists the specifications of the 

sensors and data loggers used in the experiment. 
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Figure 4.3. Profile of the front of the test home. 

                  

               (a)                                                 (b)                                            (c)  

Figure 4.4. Data acquisition device: (a) Indoor temperature sensor; (b) Current 

transducer data-loggers; (c) Weather station starter kit. 

Table 4.1. Sensor specifications in the experiment. 

Sensor Name Measurement Measuring 
Range 

Measurement 
Accuracy 

 Outdoor air 
temperature -40 – 167 °F ±0.38 °F from 32 to 

122 °F 
Weather station 

starter kit Wind speed 0 – 170 mph ±2.4 mph 

 
 
 

Solar radiation 0 – 406 
Btu/(h·ft2) ± 3 Btu/(h·ft2) 

Temperature 
sensor 

 

Indoor/return air 
temperature 

 

-40 – 158 °F 
 

±0.63 °F from 32 to 
122 °F 

Current transducer Fan current 0 – 20.1 mA ±0.001 mA 
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 To mitigate the impacts of occupancy disturbances that may cause 

uncertainties in the method validation, the first experiment was conducted from 

September 27 to November 28, 2016 (63 days), when the home was unoccupied. 

In addition, nighttime data when the HVAC system was off were selected for the 

experiments. Due to the fact that randomly selected 10-day consecutive data can 

provide robust parameter estimation through data training (Wang et al. 2019), the 

earliest available data, the first available 10 days’ data, were selected for the first 

experiment. Then the values of 𝜏 and 𝜏=, were estimated by using the 10 days’ 

home operational data at one-minute intervals for two cases: with and without 

wind data. By implementing the proposed envelope performance evaluation 

method, the estimated values of 𝜏  and 𝜏=  were 3,357 and 2,868, respectively. 

Therefore, the value of 𝜏= estimated without wind data, representing the integrated 

heat loss rate caused by heat transfer and infiltration, was 14.57% smaller than the 

value of 𝜏  estimated with wind data, representing the heat loss rate by heat 

transfer only. The difference between these two values can be used to evaluate the 

airtightness of the home envelope. Moreover, the fact that smaller value indicated 

a larger heat loss rate validated that the model is effective in capturing thermal 

behaviors of a home. By plotting the temperature data together with the value of 

𝜏=estimated from no wind data as shown in Figure 4.5, where the black squares 

represent the indoor air temperature and the grey dots represent the outdoor air 

temperature, the indoor air temperature was shown to decrease by 1.3 to 3.6 ºF 

over night, when the outdoor air temperature was between 40 ºF and 80 ºF. 
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Figure 4.5. 𝝉= value and its training data, i.e., indoor and outdoor temperatures, 

for a test home in Norman, OK. 

4.3.2 The second experiment 

Four homes located in Oklahoma were tested for the second experiment. 

Of these, two were in Tulsa, one in Oklahoma City east (OKCE), and one in 

Oklahoma City north (OKCN). Nighttime data when the HVAC system was off 

were used for the experiments. Meanwhile, the extent of the impact of wind on 

the 𝜏 value of the test homes was also investigated using data collected from city 

weather stations. The values of 𝜏 and 𝜏= were estimated using the 10 days’ home 

operational data sampled at five-minute intervals for two cases: with and without 

wind data. Two sets of the values were obtained, as shown in Table 4.2, from 

which differences of 2% to 10% were observed. However, an opposite pattern 

was observed in Table 4.2, i.e., the values of 𝜏=estimated with no wind data were 

larger than the values of 𝜏 with wind data. For the four test homes, the physical 

addresses were not known. The experiment results indicated the wind data 
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obtained through a city weather station might not be accurate to reflect the true 

wind conditions near the homes. Therefore, for the third experiment where the 

wind data were not measured onsite, only the values of 𝜏= were calculated. 

Table 4.2. Variations in 𝝉 and 𝝉= for four homes. 

 
Home 1 

from Tulsa 

Home 2 

form Tulsa 

Home 3 

form 

OKCE 

Home 4 

form 

OCKN 

Values of 𝝉= without 

wind data (minute) 
4361 2757 3323 1862 

Values of 𝝉 with wind 

data (minute) 
4270 2625 3017 1812 

Error percentage (%) 2.13 5.03 10.14 2.76 

 

By plotting the temperature data together with the values of 𝜏= , the 

variation of indoor air temperatures along with outdoor air temperature changes is 

shown for the four homes in Figure 4.6, where the black squares represent the 

indoor air temperature and the grey dots represent the outdoor air temperature. In 

general, larger values of 𝜏= indicate better envelopes. As evident in Figure 4.6(a) 

and (b), although the outdoor air temperature is in a similar range, the indoor air 

temperature drops more drastically for Home 2 than for Home 1. The poorest 

envelope in Home 4 with the lowest value of 𝜏= is observed by the fact that the 
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indoor air temperature almost drops vertically in Figure 4.6(d) in similar outdoor 

air conditions. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.6. Comparison of the values of 𝛕= for four homes in the state of 

Oklahoma. (a) Home 1 from Tulsa; (b) Home 2 from Tulsa; (c) Home 3 from 

OKCE; (d) Home 4 from OKCN. 

4.3.3 The third experiment 

Due to inconsistent quality in the data provided by a smart thermostat 

manufacturer, in the third experiment data screening was first applied. The 
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screening also allowed for intermittent data selection, where only nighttime data 

and the HVAC system was off were selected. 

Data Screening. Home operational data from 10,000+ homes worldwide 

were provided by a smart home thermostat manufacturer. Among these homes, 

7,000+ homes across the United States were selected. Figure 4.7 shows the 

location of the test homes on an U.S. map (only city-level information is known). 

All the homes were equipped with smart thermostats that provide five-minute 

interval data. Information and operational data for the past three years in these 

7,000+ real homes were collected. The operational data included the indoor and 

outdoor air temperature, humidity, HVAC system on/off (from fan signals), 

occupancy and so on, while home information data included year built, square 

footage, story, city, state and so on. Figure 4.8 shows a screenshot of part of the 

data of home information as an example. As can be seen, there are missing data 

with blank or dashes and differently labelled country names (for example, some 

homes are labelled as United States while others are as U.S.), marked with red 

circles in Figure 4.8. Unavoidably, these undesirable situations increased the time 

and difficulty of data screening. 
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Figure 4.7. The 7,000+ real homes distribution from the U.S. shown by Google 

map. 

 

Figure 4.8. The known real home information. 

To qualify and implement the proposed model-based envelope 

performance evaluation method, several data-processing steps are needed for data 

selection. They are briefly described below:  

(1) Data processing for data quality control 
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To simplify the experiments, only single-family detached homes with no 

auxiliary heat were selected. To further eliminate the undesired situations as 

mentioned above, for the home information data file, a standard name format that 

includes country, state, and home style was created to replace the inconsistent 

names, e.g., using US to replace the United States or us for countries, OK to 

replace Oklahoma or oklahoma for cities, and semidetached to replace Semi-

Detached or semidetached for home style, and then to eliminate the homes with 

incompatible data and missing data labelled with blanks and/or dashes. The 

homes that successfully passed the home information data screening were used 

for the operational data screening.  

A large amount of operational data files was provided by the smart 

thermostat manufacturer for three-year home operations. Each data file, consisting 

of one-month operational data for each home, was stored in the folder named by 

the month for which the data were collected. Therefore, there were a total 36 

folders (for three years) with a total of three years’ operational data, and each 

folder contained the operational data files for that month for all the test homes. 

The files were named by the unique home ID, shown by the green rectangle in 

Figure 4.8. Therefore, the first step was to combine all the data files that have the 

same filenames but were in different folders into one file, i.e., each home 

operational data file only contained all the operational data for one specific home 

in the past three years. Then, for each constructed home operational data file, 

similar processing procedures to the home information data screening were 
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carried out to eliminate the undesirable situations. Therefore, the desired data that 

included the date and time, indoor and outdoor temperatures, and fan signals (0 or 

1) remained. Meanwhile, the homes with undesired data, such as missing data, 

were eliminated.  

(2) Data processing for selecting the data in appropriate periods 

To use Equation (4.16), only data, including the date and time, indoor and 

outdoor temperatures, and HVAC off signals, were selected. Then, the nighttime 

data from 12:00am to 6:00am were selected. The selection criteria made the 

length of each time segment contain 73 time points. More than 10 days of data 

were selected due to the requirements of parameter estimation (Wang et al. 2019). 

To automatically manipulate the data processing procedures described 

above, automated data screening codes were programmed to execute the data 

processing steps. Finally, 1,676 homes passed the screening criteria and qualified 

operational data were obtained and ready for use. 

Data Testing. By implementing the training data into Equation (4.16), 

1,676 sets of the values of 𝜏= were estimated and generated for the test homes. 

Since there was no information about the home conditions and no ground-truth of 

each test home envelope, to validate the effectiveness of the method, the values of 

𝜏= versus the ages of the homes were plotted in Figure 4.9, with the expectation 

that older homes would have poorer envelope thermal performance, presented by 

lower values of 𝜏=. 
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Figure 4.9. 𝝉= value estimation using nighttime and AC off. 

Although slight improvement can be seen for younger homes in Figure 

4.9, the improvement pattern is not distinctive. To further investigate the values of 

𝜏= in Figure 4.9, the test homes were divided into two groups, according to the 

sample sizes of each age group: homes 40 years or younger and homes more than 

40 years old. The sample sizes for the age group for 40 years or younger ranged 

from 72 to 278 homes, while the sample sizes for the age groups older than 40 

years old ranged from 7 to 54 homes. The values of 𝜏= for homes less than 40 

years old are plotted in Figure 4.10(a), which shows the average values of 𝜏= with 

error bars that represent the distribution of the 𝜏= values in the age group, as well 

as a trend line together with the coefficient of determination (R2 value). As can be 

seen, a distinctive correlation between the values of 𝜏=and the age of the test 

homes can be observed with a high correlation coefficient. This observation is in 

line with the facts that the older homes with older technologies result in poorer 

thermal performance of the envelopes in design and construction phase as well as 
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the thermal performance of home envelopes deteriorate as the age increases. 

Moreover, the value of 𝜏= for the first experiment home, 15 years old, is plotted 

and represented by using a red dot as shown in Figure 4.10(a), in which the value 

is slightly lower than, but in the range of, the average value of 𝜏=  for its age. 

However, no obvious pattern was observed for the values of 𝜏=  for the homes 

older than 40 years, as shown in Figure 4.10(b). This observation also aligns well 

with our expectations due to two reasons: 1) A much smaller sample size provides 

greater randomness; and 2) older homes have a better chance for renovations, 

through which the home envelope thermal performance can be greatly enhanced. 

 

(a) 



104 

 

 

 

(b) 

Figure 4.10. 𝝉= distribution versus home ages: (a) from 0 to 40 years old; (b) from 

45 to 120 years old. 

4.4 Summary 

With reasonable simplifications to the home thermal model that describes 

the heat transfer processes between the indoor and outdoor conditions in a home, 

a model-based envelope performance evaluation method is proposed to assess the 

thermal performance of a home envelope. The simplicity of the method allows the 

parameter to be automatically estimated using a short period of indoor and 

outdoor air temperature data through data screening without the need for a home’s 

physical information. Depending on the availability of the wind or not, the 

method can also evaluate the integrated heat transfer rate of an envelope through 

both heat transmission and infiltration together or the heat transfer rate through 

heat transmission only. Three sequential experiments are conducted to validate 
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the effectiveness of the method. The first experiment shows the wind effect can 

cause around 15% difference in envelope thermal property estimations; the 

second experiment suggests that wind data collected from a city weather station 

might not be accurate to represent the local wind conditions near the test homes; 

and the third experiment, using data collected from 1,676 homes, demonstrates 

that the envelope performance decreases proportionally as the home age increases 

for homes that are 5 to 40 years old, while there is no distinctive patterns for 

homes older than 40 years due, perhaps, to a small sample size. The demonstrated 

results of the third experiment align well with the expectation that younger homes 

experience better home envelope thermal performance. Therefore, the 

experimental results show that the thermal properties can be estimated and 

evaluated using the simplified model-based method. Moreover, the proposed 

method also shows that the estimated thermal properties are effective across 

homes. As a conclusion, although more experiments with the knowledge of the 

ground-truth of test home envelope conditions are needed, the proposed method 

can possibly be an effective alternative to traditional methods, which require 

intensive labor for measurements and calculations, for the evaluation of the home 

envelope properties using only short-period measurements of the indoor and 

outdoor air temperatures and HVAC on/off status. In addition, wind impact is not 

negligible for the data-driven envelope evaluation method if high-precision 

estimation is desired. 
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Chapter 5: Design and Analysis of Optimal Pre-cooling 

 Although the existing pre-cooling strategies provide a means of shifting or 

reducing the peak demand and/or energy cost in residential buildings, majority of 

them are rule-based, guided primarily by intuition. The rest of them are model-

based but generally do not consider the influence of various factors (e.g., the 

outdoor air temperature, wind, solar, HVAC size and efficiency, and utility rate 

structure). Therefore, there is a need to understand to what extent can an optimal 

strategy outperform common rule-based pre-cooling strategies through the 

development of an optimal pre-cooling strategy that can account for the various 

factors. To address this need, a pre-cooling optimization problem built upon a 

home thermal model that is able to account for the aforementioned factors is 

presented in this chapter.  

 As will be shown, the pre-cooling optimization problem is a quadratically-

constrained integer linear program concerned with finding the HVAC on/off 

control signal over a 24-hour period that minimizes energy cost subject to 

maintaining the indoor air temperature within a pair of bounds. To eliminate the 

need to know the detailed specifications of a home which is often impractical, the 

model parameters are determined through data training that can be performed in 

real time. Finally, through simulation using real data collected from a test home 

and a local weather station, the performance of the proposed optimal pre-cooling 

strategy is compared with those of three rule-based operation strategies in terms 
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of their thermal dynamics, total and on-peak energy consumption, energy cost, 

and potential cost savings. Summary is given at the end. 

5.1 Overview of Rule-Based Pre-Cooling Strategy 

Heating and cooling in homes, provided by HVAC systems, are known to 

be energy-consuming and costly for homeowners and represent a crucial load for 

many electric utilities. In 2015, the average end-use energy consumption per 

household in the U.S. is 42.4 million Btu for heating and cooling alone, which 

accounts for nearly 55% of total household energy consumption (U.S. EIA 2015). 

In terms of energy cost, the average annual utility expense per household, 

including electricity, water, and sewage, is between $1400 and $2600, of which 

more than 43% is spent on heating and cooling spaces in homes (U.S. EIA 2015; 

U.S. DOE 2011). Therefore, home space heating and cooling offer considerable 

potential for energy cost reduction (U.S. EERE 2015; U.S. EERE 2016). 

Fluctuations of heating and cooling loads also have significant impact on a 

utility’s load profile. This impact can be mitigated by an optimal and efficient 

HVAC operation that shifts or reduces the peak load demand. As a means of 

controlling demand when the grid is near its capacity, electricity suppliers have 

introduced time-of-day or time-of-use electricity price in recent years, making 

peak electricity expensive to consumers (Kamyar and Peet 2017; Tabares-Velasco 

et. al 2019; Baniasadi et. al 2019). Since electricity is more expensive during on-

peak hours, smart thermostat manufacturers have incorporated rule-based pre-

cooling strategies into their products, which set the indoor air temperature a few 
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degrees lower for a period preceding the start of on-peak hours (U.S. EERE 

2016). The resulting lower indoor air temperature, obtained at a lower electricity 

price, delays the start time of HVAC systems and reduces their runtime during on-

peak hours. Such rule-based pre-cooling strategies reduce energy expenditure for 

homeowners while maintaining reasonable comfort levels in homes because they 

take advantage of the thermal mass possessed by the building structure. 

As reviewed in Section 2.2.2, three common rule-based operation 

strategies, studied by Xu et. al (2004), Xu (2009), Yin et. al (2010), Morgan and 

Krarti (2007), Moon and Han (2011), Arababadi and Parrish (2015), Surles and 

Henze (2012), and Turner et. al (2015), were selected as references to compare 

with an optimal pre-cooling strategy proposed in Section 5.2. The profiles of the 

three rule-based operation strategies are shown in Figure 5.1. As depicted in the 

figure, the first strategy—referred to as Base Case I (BC I)—has no pre-cooling 

and utilizes a uniform indoor air temperature set point 𝑇+!0[𝑘]  of 78 °F. The 

second and third strategies—referred to as Base Cases II and III (BC II and BC 

III)—both have pre-cooling with different profiles. Specifically, BC II starts out 

with a 𝑇+!0[𝑘] of 78 °F, reduces it later to 73 °F for 6 hours, and returns it to 78 °F 

when on-peak hours begin. BC III behaves similarly but has a shorter and more 

aggressive pre-cooling, i.e., 𝑇+!0[𝑘] is reduced for only 5 hours but to a lower 71 

°F. For each of these strategies, the selected 𝑇+!0[𝑘] was used by the thermostat to 

determine the HVAC on/off control signal 𝑢+[𝑘]  following the description in 

Section 5.2.1, where the deadband width ±𝜎 was ±1 °F. 
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Figure 5.1. Profile of the indoor air temperature set point for the three rule-based 

operation strategies. 

5.2 Development of Optimal Pre-Cooling Strategy 

Figure 5.2 depicts an approach to formulating the aforementioned pre-

cooling optimization problem. As can be seen from the figure, key to the 

formulation is a home thermal model that takes into account the weather 

conditions, HVAC system capacity, and home thermal properties that characterize 

the heat transfer rate and thermal capacity of a home. This model will be briefly 

introduced in Section 5.2.1. The model, along with the thermal comfort criteria, 

utility rate, and cooling capacity and total power use of the HVAC system, will be 

utilized to formulate a pre-cooling optimization problem in Section 5.2.2. 
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Figure 5.2. An approach to formulating a pre-cooling optimization problem. 

5.2.1 Home thermal dynamic modeling 

Consider a home equipped with a HVAC system. Let 𝑇%,(𝑡) and 𝑇%!(𝑡) 

denote the indoor air temperature and interior wall surface temperature of the 

home at time 𝑡 and suppose their dynamics are described by the following lumped 

home thermal model, as shown in Equations (5.1) and (5.2), which was 

formulated and detailed in Chapter 3. 

45&$(0)
40

= "
L%
[𝑇'(𝑡) − 𝑇%!(𝑡)] +

"
L'
XY𝑇%,(𝑡) − 𝑇%!(𝑡)Z[																																												(5.1)	

45&((0)
40

= − "
L)
𝑇%,(𝑡) +

"
L)
X𝑇%!(𝑡) + Y𝑎"𝐺(𝑡) + 𝑎#𝐺#(𝑡) + 𝑎9𝐺9(𝑡)Z +

Y𝑇'(𝑡) − 𝑇%,(𝑡)ZY𝑏"𝑊(𝑡) + 𝑏#𝑊#(𝑡)Z + (𝑄%(𝑡)𝑢%(𝑡) + 𝑄+(𝑡)𝑢+(𝑡))[           (5.2) 

where 𝜏" = 𝐶3!,%,𝑅3!  and 𝜏9 = 𝐶(%1𝑅(%1  are the time constants of the envelope 

and indoor air of a home, respectively; 𝜏# = 𝐶3!,%,𝑅(%1, 𝑎", 𝑎#, 𝑎9, 𝑏", and 𝑏# are 

the corresponding coefficients associated with 𝑅(%1; 𝑅3! and 𝐶3!,%, are the thermal 

resistance and thermal capacitance of the home envelope; 𝑇'(𝑡) is the outdoor air 
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temperature; 𝐺(𝑡) is the global horizontal irradiation; 𝑊(𝑡) is the wind speed; 

𝑄%(𝑡)  and 𝑄+(𝑡)  are the scaled internal heat gain and HVAC system output 

(determined by the HVAC system capacity) associated with 𝑅(%1 ; 𝑢%  is the 

internal activity schedule; 𝑢+(𝑡) ∈ {0, 1}  is the HVAC system on/off control 

signal; and 𝑎" , 𝑎# , 𝑎9 , 𝑏" , and 𝑏#  are the model parameters. These parameters 

together with 𝜏", 𝜏#, and 𝜏9 may be empirically identified using operational data 

and the least-squares method, as detailed in Section 3.4.2 and also summarized in 

Section 5.3.1. In addition, note that 𝑇%,(𝑡)  in Equation (5.2) is influenced by 

several exogenous inputs, involving all three basic heat transfer modes 

(conduction, convection, and radiation) separately. 

Typically, the HVAC on/off control signal 𝑢+(𝑡)  is determined by a 

control algorithm (i.e., thermostat) that attempts to regulate the indoor air 

temperature 𝑇%,(𝑡) around a set point 𝑇+!0(𝑡). To avoid high frequency cycling, a 

deadband of width ±𝜎  is often inserted, leading to a hysteresis behavior as 

illustrated in Figure 5.3. For the cooling mode, this hysteresis behavior can be 

expressed as  

𝑢+(𝑡) = {
1,																						if	𝑢(𝑡 − 𝛿) = 0	and	𝑇%,(𝑡 − 𝛿) > 𝑇+!0(𝑡 − 𝛿) + 𝜎
0,																						if	𝑢(𝑡 − 𝛿) = 1	and	𝑇%,(𝑡 − 𝛿) < 𝑇+!0(𝑡 − 𝛿) − 𝜎
𝑢+(𝑡 − 𝛿),								otherwise																																																																								

   (5.3) 

where 𝑡 − 𝛿 is the ‘previous’ time instant based on which the ‘current’ 𝑢+(𝑡) is 

determined. 
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(a) 

 

(b) 

Figure 5.3. A typical HVAC on/off control algorithm in the (a) heating mode and 

(b) cooling mode. 

5.2.2 Optimization problem formulation 

In this study, the HVAC on/off control signal 𝑢+(𝑡) in Equation (5.2) is 

treated as an optimization variable as opposed to being determined by Equation 

(5.3). Specifically, 𝑢+(𝑡) for 𝑡 ∈ [0, 𝑡V] will be chosen to minimize the objective 

function 

𝐽(𝑢+) = ∫ 𝑃(𝑡)𝐸(𝑡)𝑢+(𝑡)
08
> 𝑑𝑡                                                                           (5.4) 

subject to the constraints 

                 𝑢+(𝑡) ∈ {0, 1} for all 𝑡 ∈ [0, 𝑡V]                                            (5.5) 

                 𝑇B* ≤ 𝑇%,(𝑡) ≤ 𝑇W* for all 𝑡 ∈ [0, 𝑡V]                                    (5.6) 
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                             dynamics Equations (5.1) and (5.2) with 

                             𝑇%,(0) = [0 1] �
𝑇%!(0)
𝑇%,(0)

� = [0 1] �
𝑇%!,>
𝑇%,,>

�                          (5.7) 

where [0, 𝑡V] is the optimization time horizon; 𝑃(𝑡) is the electricity price at time 

𝑡; 𝐸(𝑡) is the total power use of the HVAC system; 𝑇B*  and 𝑇W*  are lower and 

upper bounds on 𝑇%,(𝑡) that ensure thermal comfort; and 𝑇%,,>  and 𝑇%!,>  are the 

initial values of 𝑇%,(𝑡) and 𝑇%!(𝑡), respectively. Accordingly, a solution 𝑢+∗(𝑡) for 

𝑡 ∈ [0, 𝑡V] to the optimization problem Equations (5.4)−(5.7) is the HVAC on/off 

control signal that minimizes energy cost over the time horizon [0, 𝑡V]  while 

maintaining an acceptable level of thermal comfort. 

Moreover, to maintain a proper HVAC operation cycle time for safe 

operations, the number of the total operation cycles is limited by N/2, which 

becomes another constraint of the optimization problem, and can be expressed by 

∑ [𝑢+(𝑡) − 𝑢+(𝑡 − 1)]#
08
" ≤ 𝑁                                                                            (5.8) 

Although Equations (5.4)−(5.8) represent a meaningful optimization 

problem, it is formulated in continuous-time and, thus, is not amenable to 

practical implementation. To address this issue, the problem will be discretized as 

follows: let ∆𝑡  denote the sampling period, 𝐾 = 𝑡V/∆𝑡  denote the number of 

discrete time slots, and 𝑥[𝑘] for 𝑘 =1, 2, …, 𝐾 denote the sampled values of a 

generic continuous-time signal 𝑥(𝑡) at time 𝑡 =0, ∆𝑡, …, (𝐾 − 1)∆𝑡. By applying 

the forward Euler method, the continuous-time model in Equations (5.1) and (5.2) 

can be converted into a discrete-time model 
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𝑇%![𝑘 + 1] = (1 − 𝛼" − 𝛼#)𝑇%![𝑘] + (𝛼"𝑇'[𝑘] + 𝛼#𝑇%,[𝑘])                            (5.9) 

𝑇%,[𝑘 + 1] = (1 − 𝛼9)𝑇%,[𝑘] + 𝛼9(𝑇%![𝑘] + (𝑎"𝐺[𝑘] + 𝑎#𝐺#[𝑘] + 𝑎9𝐺9[𝑘]) +

(𝑇'[𝑘] − 𝑇%,[𝑘])(𝑏"𝑊[𝑘] + 𝑏#𝑊#[𝑘]) + 𝑄%[𝑘]𝑢%[𝑘] + 𝑄+[𝑘]𝑢+[𝑘])            (5.10) 

where	α" =
∆0
L%

, α# =
∆0
L'

, and α9 =
∆0
L)

. Equations (5.9) and (5.10) can be combined 

and further be expressed in the form of a linear time-varying system 

𝑥[𝑘 + 1] = 𝐴[𝑘]𝑥[𝑘] + 𝐵[𝑘]𝑢+[𝑘] + 𝑑[𝑘]                                                     (5.11)	

where 𝑥[𝑘],	𝐴[𝑘],	𝐵[𝑘],	and	𝑑[𝑘]	are matrices given by 

𝑥[𝑘] = �𝑇%!
[𝑘]

𝑇%,[𝑘]
� 

𝐴[𝑘] = �
1 − 𝛼" − 𝛼# 𝛼#

𝛼9 (1 − 𝛼9) − 𝛼9(𝑏"𝑊[𝑘] + 𝑏#𝑊#[𝑘])� 

𝐵[𝑘] = � 0
𝛼9𝑄+[𝑘]

� 

𝑑[𝑘] =	

�
𝛼"𝑇'[𝑘]

𝛼9(𝑇'[𝑘](𝑏"𝑊[𝑘] + 𝑏#𝑊#[𝑘]) + (𝑎"𝐺[𝑘] + 𝑎#𝐺#[𝑘] + 𝑎9𝐺9[𝑘]) + 𝑄%[𝑘]𝑢%[𝑘])
� 

As is known (Brogan 1991), the solution 𝑇%,[𝑘] of the linear time-varying 

system Equation (5.11) is given by 

𝑥[𝑘] = ��𝐴[𝑝]
Y6"

Z["

�𝑥[1] + 

∑ ∏ 𝐴[𝑝](𝐵[𝑗 − 1]𝑢+[𝑗 − 1] + 𝑑[𝑗 − 1])Y6"
Z[\

Y
\[#                                              (5.12) 

where ∏ 𝐴[𝑝],
Z[) = 𝐴[𝑚]	𝐴[𝑚 + 1] ∙∙∙ 𝐴[𝑛] if 𝑚 ≤ 𝑛, and ∏ 𝐴[𝑝],

Z[) = 1 

otherwise. Equation (5.12) can be alternatively written as 
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𝑥[𝑘] = Φ(𝑘, 1)𝑥[1] + ∑ Φ(𝑘, 𝑗)Y
\[# (𝐵[𝑗 − 1]𝑢+[𝑗 − 1] + 𝑑[𝑗 − 1])             (5.13) 

where Φ(𝑘, 𝑗) = ∏ 𝐴[𝑝]Y6"
Z[\  is the so-called state transition matrix (Brogan 1991). 

With the above discretization, the continuous-time problem Equations 

(5.4)−(5.8) can be reformulated in discrete-time as follows: find a HVAC on/off 

control sequence 𝑢+[𝑘] for 𝑘 =1, 2, …, 𝐾 that minimizes the objective function  

𝐽(𝑢+) = ∑ 𝑃[𝑘]𝐸[𝑘]𝑢+[𝑘]]
Y["                                                                           (5.14) 

subject to the constraints    

𝑢+[𝑘] ∈ {0, 1}  for 𝑘 =1, 2, …, 𝐾                                                         (5.15) 

            ∑ (𝑢+[𝑘] − 𝑢+[𝑘 − 1])#]
Y[# ≤ 𝑁                                                          (5.16) 

𝑇B* ≤ 𝑇%,[𝑘] ≤ 𝑇W* for 𝑘 =1, 2, …, 𝐾                                                 (5.17) 

𝑇%,[𝑘] = [0 1] �Φ(𝑘, 1) �
𝑇%!(1)
𝑇%,(1)

� + ∑ Φ(𝑘, 𝑗)Y
\[# (𝐵[𝑗 − 1]𝑢+[𝑗 − 1] +

𝑑[𝑗 − 1])� for 𝑘 =1, 2, …, 𝐾                                                                            (5.18) 

Note that the discrete-time problem Equations (5.14)−(5.18) is a 

quadratically-constrained integer linear programming problem (Schrijver 1998) 

that may be solved, for example, using CVX, a MATLAB-based modeling system 

for convex optimization (Mathworks 2019; Grant and Boyd 2014), based on the 

MOSEK solver for convex optimization (MOSEK ApS 2019). This method of 

determining the optimal HVAC on/off control sequence 𝑢+∗[𝑘] for 𝑘 =1, 2, …, 𝐾 

is referred to as the proposed optimal pre-cooling strategy. With such 𝑢+∗[𝑘] and 

with Equation (5.18), the corresponding optimal indoor air temperature 𝑇%,∗ [𝑘] for 
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𝑘 =1, 2, …, 𝐾 may be calculated, as is done in Section 5.4.  Moreover, different 

from the typical HVAC on/off control algorithm in Figure 5.3, 𝑢+∗[𝑘]  is not 

determined based on a set point with a deadband control. Because set point 

control makes the optimization problem Equation (5.14) extremely difficult, if not 

impossible, to solve. In contrast, optimal HVAC on/off control has the advantage 

of controlling thermostats directly via the generated 𝑢+∗[𝑘] . The disadvantage, 

however, is that currently available thermostats may not have this function. 

5.3 Simulation Setup 

This section describes a simulation setup that allows one to evaluate the 

effectiveness of the optimal pre-cooling strategy proposed in Section 5.2 by 

comparison with three rule-based operation strategies introduced in Section 5.1. 

Section 5.3.1 introduces the selection of home thermal parameters. Section 5.3.2 

states the relevant thermal comfort criteria and utility rate structure. Finally, 

Section 5.3.3 presents a method for calculating the HVAC system output and its 

total power use. Upon completing this section, details about the simulation setup 

would have been provided. 

5.3.1 Selection of home thermal parameters 

In Section 3.5.2, a two-step parameter estimation scheme along with the 

first 6 consecutive days of data and the available 15 consecutive days of data was 

used to identify the parameters 𝜏" , 𝜏# , 𝜏9 , 𝑎" , 𝑎# , 𝑎9 , 𝑏" , 𝑏# , and 𝑄+  of the 

discrete-time home thermal model in Equations (5.9) and (5.10). When the test 

home was unoccupied, the term 𝑄%[𝑘]𝑢%[𝑘]  in Equation (5.10) was zero and, 
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hence, did not affect the identification. In practice, when the HVAC system is on, 

however, the term 𝑄+[𝑘]  in Equation (5.10) varied with the outdoor air 

temperature 𝑇'[𝑘]  instead of a constant value identified in Section 3.5.2. 

Therefore, the relationship between 𝑄+[𝑘]  and 𝑇'[𝑘]  is investigated in Section 

5.3.3.  

In Section 3.5.2, the accuracy of the identified model was validated by 

comparing 24-hour-ahead prediction of indoor air temperature with the measured 

one. Indeed, by using 15 consecutive days of data, the resulting mean, maximum, 

and 95%-confidence-interval absolute errors were found to be relatively better 

than the one by using the first 6 consecutive days of data. Hence, this section 

adopts the model parameters that were trained by the 15 consecutive days of data, 

as shown in Table 5.1. With the parameter values from Table 5.1, the home 

thermal model in Equations (5.9) and (5.10) becomes ready for simulation use.  

Table 5.1. Identified values of the home thermal model. 

Parameter 𝝉𝟏 𝝉𝟐 𝝉𝟑 𝒃𝟏 

Value 2350 272.1 8.191 0.01488 

Parameter 𝒃𝟐 𝒂𝟏 𝒂𝟐 𝒂𝟑 

Value -0.0007994 5.361 -10.33 6.264 

 

5.3.2 Thermal comfort criteria and utility rate structure 

In the simulation, 70 °F and 79 °F were selected as the lower bound 𝑇B* 

and upper bound 𝑇W*  on the indoor air temperature 𝑇%,[𝑘]  in Equation (5.17), 
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respectively, following the ASHRAE thermal comfort requirements 

(ANSI/ASHRAE Standard 55 2017). In addition, the time-of-day utility rate 

structure that defines the 24-hour electricity price 𝑃[𝑘]  in Equation (5.14) is 

provided by a utility supplier in the state of Oklahoma. This rate structure is 

shown in Figure 5.4, from which it can be seen that the on-peak hours are 

15:00−19:00 (3 pm−7 pm), and the on-peak electricity price of $0.22/kWh is 

much higher than its off-peak counterpart of $0.05/kWh.  

 

Figure 5.4. Time-of-day utility rate structure from a utility supplier. 
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5.3.3 HVAC system output and total power use 

As shown in Equation (5.10), the HVAC system output, determined by the 

HVAC system capacity, affects the dynamics of 𝑇%,[𝑘]  through the 

term 	𝑄+[𝑘]𝑢+[𝑘] , where 𝑄+[𝑘] = 𝑅(%1𝑄+8+[𝑘]  represents the scaled cooling 

capacity by 𝑅(%1. 𝑄+[𝑘] was assumed to be constant and the estimated value of 𝑄+ 

equals -2.267 for the HVAC equipment of a manufacturer with 3.5 tons (42,000 

Btu/h) of cooling capacity and 1,400 cfm of flow rate, as identified in Section 

3.5.3. Ideally, the HVAC cooling capacity varies with weather conditions, but is 

not affected as much by the changes in the indoor dry bulb (DB) and wet bulb 

(WB) temperatures. To investigate how the HVAC cooling capacity, 𝑄+[𝑘], in 

Equation (5.10) changes with weather conditions, the cooling capacity data from a 

HVAC manufacturer, as shown in Figure D.1 in the Appendix D, was converted 

into 𝑄+[𝑘] based on the assumption that 𝑄+ = −2.267 at 3.5 tons was achieved 

under median weather conditions. Figure 5.5, which was generated using such 

data, displays the relationships between the HVAC cooling capacity 𝑄+[𝑘] at 3.5 

tons and outdoor air temperature 𝑇'[𝑘]  for five different indoor DB and WB 

temperatures. As observed, the relationships are sensitive to changes in both the 

outdoor air temperatures and indoor DB and WB temperatures. According to the 

ASHRAE thermal comfort requirements (ANSI/ASHRAE Standard 55 2017), the 

conditioned indoor space air is close to the DB temperature at between 75 °F and 

80 °F and WB temperature at 62 °F, and the two relationships (75DB62WB and 

80DB62WB) are very close as observed in the figure. Therefore, the relationship 
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was adopted based on the indoor DB and WB temperatures at 80 °F and 62 °F, 

respectively. Moreover, the relationship may be approximated by a second-order 

polynomial, 

𝑄+[𝑘] = −0.00005982𝑇'#[𝑘] + 0.00200312𝑇'[𝑘] + 2.25981693              (5.19)             

with a coefficient of determination (R2) of 0.99883293. Therefore, for simplicity, 

𝑄+[𝑘] in Equation (5.10) is replaced by Equation (5.19) in the simulation. 

 

Figure 5.5. HVAC system scaled cooling capacity versus outdoor air temperature 

for different indoor DB and WB temperatures. 

 Similarly, to investigate how total HVAC power use, 𝐸[𝑘], in Equation 

(5.14) varies with weather conditions, power data from the same HVAC 

manufacturer were used. Figure 5.6 shows the relationship between HVAC total 

power use 𝐸[𝑘] and outdoor air temperature 𝑇'[𝑘] for five different indoor DB 

and WB temperatures. As observed, the relationship is insensitive to changes in 
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the indoor DB and WB temperatures. Moreover, the relationship may be 

accurately approximated by a second-order polynomial, 

𝐸[𝑘] = 0.00019940𝑇'#[𝑘] − 0.00353571𝑇'[𝑘] + 1.96209821                   (5.20)  

with a coefficient of determination (R2) of 0.99938409. Therefore, for simplicity, 

𝐸[𝑘] in Equation (5.14) is replaced by Equation (5.20) in the simulation. 

 

Figure 5.6. HVAC total power use versus outdoor air temperature for different 

indoor DB and WB temperatures. 

5.4 Simulation Results 

 This section presents and compares the simulation results for BC I, II, III, 

and the proposed optimal pre-cooling strategy (OPS). In particular, Section 5.4.1 

analyzes the simulated indoor temperature and control signal, Section 5.4.2 

examines the resulting total and on-peak energy consumption, and Section 5.4.3 

compares the resulting energy cost and saving potential. 
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5.4.1 Comparison of indoor temperature and control signal 

Based on the simulation setup described in Section 5.3, a 24-hour 

simulation with a sampling period ∆𝑡 of 10 minutes has been carried out for BC I, 

II, III, and OPS. The simulation utilized weather data from August 2, 2020, as 

shown in Figure B.3 in the Appendix B, which was selected as an example to 

show a summer day in Norman, Oklahoma. Figures 5.7–5.10 show the simulation 

results for BC I, II, III, and OPS, respectively. Each figure includes three 

graphics, in which the top one represents different temperatures, the middle one 

represents the HVAC on/off control signal 𝑢+[𝑘], and the bottom one represents 

the electricity price 𝑃[𝑘], along with 24-hour time. Moreover, the gray, blue, red, 

black dotted, and magenta dashed curves in the top graphic of each figure 

represent the outdoor air temperature 𝑇'[𝑘] , interior wall surface temperature 

𝑇%![𝑘], indoor air temperatures and 𝑇%,[𝑘], lower bound 𝑇B*, and upper bound 𝑇W*. 

In addition, to enable a better comparison, the four red and blue curves 

representing 𝑇%![𝑘]  and 𝑇%,[𝑘]  from Figures 5.7–5.10, respectively, were 

superimposed on Figure 5.11, where the top graphic represents 𝑇%![𝑘] and the 

bottom one represents 𝑇%,[𝑘] (using different colors to distinguish among them). 

For BC I shown in Figure 5.7 which had no pre-cooling, the HVAC 

system had to stay on for the whole on-peak hours to cope with the relatively high 

𝑇'[𝑘]. Because BC I did not try to avoid the high on-peak electricity price, it 

incurred a high energy cost. With this strategy, 𝑇%,[𝑘] was allowed to float to the 

upper bound 𝑇W*  and exceed 𝑇W*  for some times and hence the HVAC system 
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cannot maintain the thermal comfort, at which the system was turned on to keep 

𝑇%,[𝑘] bouncing between ±1 °F of the uniform set point 𝑇+!0[𝑘] of 78 °F. Since 

the thermal mass of the wall is larger than that of air, 𝑇%![𝑘]  showed slow 

fluctuations and had some time delay to rise to the upper bound 𝑇W*. 

 

Figure 5.7. Simulation result for BC I. 

 Unlike BC I, for BC II shown in Figure 5.8 which had pre-cooling, the 

HVAC system could be kept off for 2 hours and 30 minutes during part of the on-

peak hours, i.e., it was off two times from 15:00 to 17:10 and from 17:30 to 17:50 

for the total of 2 hours and 30 minutes, despite the high 𝑇'[𝑘]. Thus, BC II was 

capable of avoiding part of the high on-peak electricity price. To accomplish this 

cost saving, however, the HVAC system had to start running at 9:00 and remain 

on for all 6 hours to try to bring 𝑇%,[𝑘] down for pre-cooling before the on-peak 
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hours. However, due to limited cooling capacity, 𝑇%,[𝑘] still increased slightly 

when 𝑇'[𝑘]  kept increasing and became high. During the on-peak hours, the 

HVAC system was turned on two times for 20 minutes from 17:10 to 17:30 and 1 

hours and 10 minutes from 17:50 to 19:00. Following the latter operation starting 

at 17:50, the system had to continually stay on for 20 minutes until 19:20 after the 

on-peak hours end at 19:00. Furthermore, the system was turned on twice times 

for 20 minutes from 19:40 to 20:00 and for 20 minutes from 20:20 to 20:40 

during the off-peak hours, to prevent 𝑇%,[𝑘] from exceeding 𝑇W*. Due to the effect 

of pre-cooling, the wall could store cooling energy and gradually release to the 

indoor air. Therefore, the HVAC system did not run much time during both the 

on-peak hours and off-peak hours at nighttime. 

 

Figure 5.8. Simulation result for BC II. 
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 Similar to BC II, for BC III shown in Figure 5.9 which also had pre-

cooling, the HVAC system could be kept off for 1 hour and 50 minutes during the 

on-peak hours, i.e., it was off four times for 20 minutes, 50 minutes, 20 minutes, 

and 20 minutes from 15:00 to 15:20, from 15:40 to 16:30, from 16:50 to 17:10, 

and from 17:30 to 17:50, respectively. Following the latter operation starting at 

17:50, the system had to continually stay on for 20 minutes until 19:20 after the 

on-peak hours end at 19:00. Furthermore, the system was turned on twice times 

for 20 minutes from 19:40 to 20:00 and for 20 minutes from 20:20 to 20:40 

during the off-peak hours, to prevent 𝑇%,[𝑘]  from exceeding 𝑇W* . The HVAC 

system start running at 10:00 with lower 𝑇+!0[𝑘] of 71 °F and remained on for all 

5 hours to try to bring 𝑇%,[𝑘] down for pre-cooling before the on-peak hours. 

Similar to BC II, due to limited cooling capacity, 𝑇%,[𝑘] still keep rising slightly 

when 𝑇'[𝑘] kept increasing and became high. Moreover, the system had a longer 

turn-on time than BC II during the on-peak hours. This is because with BC II, its 

6 hours of pre-cooling was able to slightly lower 𝑇%![𝑘]  and 𝑇%,[𝑘]  than its 

shorter, 5 hours of pre-cooling with BC III, despite its lower 𝑇+!0[𝑘] of 71 °F. The 

fact that the HVAC system with BC III was kept on more times during and after 

the on-peak hours suggests that BC III had a higher energy cost than BC II for this 

specific home thermal condition on this particular day. 
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Figure 5.9. Simulation result for BC III. 

 Finally, for OPS shown in Figure 5.10 which selected 𝑢+[𝑘] to minimize 

energy cost while keeping 𝑇%,[𝑘] between 𝑇B*  and 𝑇W* , the HVAC system was 

turned off during the entire on-peak hours unlike other operation cases. In 

addition, pre-cooling began in the early morning at 3:20 (compared to 9:00 and 

10:00 for BC II and III) and lasted for 6 hours and 30 minutes until 9:50, reducing 

𝑇%,[𝑘]  and 𝑇%![𝑘]  to as low as 72.5 °F and 73.6 °F, respectively, which was 

actually able to lower 𝑇%,[𝑘] and 𝑇%![𝑘] before on-peak hours compared with BC 

I, II, and III (see Figure 5.11). This behavior was due to OPS exploiting the fact 

that between 3:20 and 9:50, the higher HVAC efficiency produced by cooler 

outdoor air enabled the HVAC system to run more economically. Because pre-

cooling ended earlier at 9:50, three additional rounds of pre-cooling, of which the 
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first two lasted for only 10 minutes and the latter lasted for 2 hours and 20 

minutes, took place before the on-peak hours started at 15:00. After the on-peak 

hours ended at 19:00, the HVAC system was kept off entirely to take fully use of 

the upper bound 𝑇W*  of thermal comfort, which was different from the three 

operation cases that required to be turned on. Note that unlike the rigid, rule-based 

BC II and III, OPS was able to optimally adapt its pre-cooling pattern to all 

relevant factors including specific home thermal properties, HVAC system 

capacity, utility rate structure, and weather conditions. 

 

Figure 5.10. Simulation result for the proposed optimal pre-cooling strategy 

(OPS). 
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Figure 5.11. Comparison of the interior wall surface temperatures and the indoor 

air temperatures for BC I, II, III, and OPS. 

5.4.2 Comparison of total and on-peak energy consumption 

 The total and on-peak energy consumption are defined as ∆𝑡 ∑ 𝐸[𝑘]𝑢+[𝑘]Y  

where 𝑘 is taken over the whole day and over the on-peak hours, respectively. 

Table 5.2 lists the total and on-peak energy consumption for BC I, II, III, and 

OPS. Observe from the table that BC I requires less total energy consumption 

compared to BC II, BC III, and OPS due to both no pre-cooling and not 

maintaining the thermal comfort. The observation is in line with conclusions, 

made in the literature, that pre-cooling tends to reduce cost but consume more 

energy. In terms of pre-cooling operations, even if OPS has much longer runtime 

and strictly maintains the thermal comfort, it only requires a slightly higher total 
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energy consumption than BC III but less than BC II. This can be attributed to: 1) 

running the HVAC system more in cool outdoor air conditions when the HVAC 

efficiency is high; and 2) eliminating the 1 °F deadband in operation, which is 

required by the rule-based strategies, to allow 𝑇%,[𝑘] to stay near 𝑇W* as much as 

possible. As additional observations, BC II needs more total energy consumption 

than BC III—likely because BC II has a lowered 𝑇+!0[𝑘] for one more hour than 

BC III. As for on-peak energy consumption, OPS requires none, while all of BC I, 

II, and III require some with BC I needing more. These observations agree with 

the discussions in Section 5.4.1.  

Table 5.2. Comparison of total and on-peak energy consumption for BC I, II, III, 

and OPS. 

Operation strategy BC I BC II BC III OPS 

Total energy consumption, kWh 23.04* 26.20* 25.47* 25.63 

On-peak energy consumption, kWh 12.73 4.76 6.89 0.00 

Note: * represents that the thermal comfort cannot be maintained. 

5.4.3 Comparison of energy cost and saving potential 

The energy cost is defined by the objective function Equation (5.14). 

Table 5.3 lists the 24-hour energy cost for BC I, II, III, and OPS as well as the 

percentage of cost saving that can be achieved when OPS is used in place of BC I, 

II, and III. Notice from the table that the percentage of saving enabled by using 

OPS is 39.62% compared with BC II and may be as high as 61.45% compared 

with no pre-cooling operation BC I, confirming its benefit.  
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Table 5.3. Comparison of energy cost and saving potential for BC I, II, III, and 

OPS. 

Operation strategy BC I BC II BC III OPS 

Energy cost $3.32* $2.12* $2.44* $1.28 

Percentage of OPS cost saving 61.45% 39.62% 47.54% 0% 

Note: * represents that the thermal comfort cannot be maintained. 

5.5 Summary 

 This chapter formulates a pre-cooling optimization problem that accounts 

for the thermal properties of a home, HVAC system capacity, utility rate 

structure, and weather conditions and makes use of a home thermal model. The 

effectiveness and energy performance of the proposed optimal pre-cooling 

strategy is investigated and compared with three rule-based operation strategies 

that differ in whether they have pre-cooling and their pre-cooling characteristics. 

It is found that on a hot summer day in Norman, Oklahoma, the optimal strategy 

requires more total energy consumption than no pre-cooling operation but 

requires a less or similar total energy consumption compared with the two rule-

based pre-cooling strategies without sacrificing thermal comfort, agreeing with 

conclusions reached in the literatures. Moreover, even if the optimal pre-cooling 

has much longer runtime compared with the rule-based pre-cooling operations, 

the energy consumption almost keeps same, which is attributed to the longer 

runtime of the HVAC system in cool outdoor air conditions and to the elimination 

of the deadband operation, which is required by the rule-based strategies, to allow 
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the indoor air temperature to stay near the thermal comfort upper bound as much 

as possible after on-peak hours. After on-peak hours, even if the HVAC system is 

still in high cooling demand, the system can still be kept off for the optimal pre-

cooling strategy. In terms of 24-hour energy cost, the three rule-based operation 

strategies require $3.32, $2.12, and $2.44, respectively, whereas the optimal 

strategy only requires $1.28. These figures represent a saving of 61.45%, 39.62%, 

and 47.54%, respectively. The results suggest that the optimal strategy is indeed 

significantly more effective than the existing rule-based operation strategies.  

The successful development of the pre-cooling optimization algorithm for 

homes provides a way to benchmark energy performance of the optimal pre-

cooling strategy. However, it is found that the optimization is heavily dependent 

on a specific set of conditions (i.e., specific thermal properties, HVAC system 

capacity, utility rate structure, and weather conditions). The impact of different 

sets of conditions on the energy performance of optimal pre-cooling operation 

needs to be investigated. This will be the focus in Chapter 6. 
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Chapter 6: Performance Analysis of Optimal Pre-Cooling 

 To provide a means of reducing the peak demand and/or energy cost from 

on-peak hours to off-peak hours in residential buildings, an optimal pre-cooling 

strategy is proposed in Chapter 5 as an alternative to rule-based pre-cooling 

strategies that are intuitive and may not provide optimal cost savings. Since the 

optimal pre-cooling strategy is heavily dependent on a specific set of conditions, 

such as specific thermal properties, HVAC system cooling capacities, weather 

conditions, and utility rates, an analysis of different sets of conditions on the 

performance of the optimal pre-cooling strategy will be conducted in this chapter, 

as illustrated in Figure 6.1. 

 

Figure 6.1. Performance analysis of optimal pre-cooling by different influencing 

factors. 
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6.1 Simulation Setup 

A simulation setup that allows one to conduct a performance analysis of 

the optimal pre-cooling strategy proposed in Chapter 5 is described in this section. 

The parameters of the home model adopted for various home thermal conditions 

are described in Section 6.1.1. A method for calculating different HVAC system 

outputs is presented in Section 6.1.2. The calculation method of different HVAC 

system total power uses is introduced in Section 6.1.3. The varying weather 

conditions that are adopted are described in Section 6.1.4. Finally, the selections 

of different lower and/or upper bounds and utility rate structures are stated in 

Section 6.1.5. 

6.1.1 Determine home thermal model parameters for various home thermal 

conditions 

 In Chapter 3, the parameters 𝜏" , 𝜏# , 𝜏9 , 𝑎" , 𝑎# , 𝑎9 , 𝑏" , and 𝑏#  of the 

discrete-time home thermal model, as shown in Equations (3.27) and (3.28), were 

identified using a two-step parameter estimation scheme and 15 consecutive days 

of data collected at an unoccupied test home in Norman, Oklahoma. Table 6.1 

lists the identified values of the model parameters. The identified model showed a 

good performance in validations with the resulting mean, maximum, and 95%-

confidence-interval absolute errors of 0.80 °F, 3.26 °F, and 1.90 °F, respectively. 

Table 6.1. Identified values of the home thermal model parameters. 

Parameter 𝝉𝟏 𝝉𝟐 𝝉𝟑 𝒃𝟏 𝒃𝟐 
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Value 2350 272.1 8.191 0.01488 -0.0007994 

Parameter 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝑸𝒔  

Value 5.361 -10.33 6.264 -2.267  

 

 In Chapter 4, using 1,676 homes across the U. S., it was found that the 

average Tau (i.e., 𝜏") value ranged from 2000 to 5000, with 5000 representing a 

good thermal condition and 2000 a poor condition, as shown in Figure 4.10 in 

Chapter 4, by the distribution of Tau values versus home ages. Since the Tau 

value represents the physical home thermal properties, i.e., the area-weighted 

average thermal properties of all envelope elements, and the impacts of wind and 

solar are relatively small (Wang et. al 2019; Wang et. al 2020), variations of the 

Tau value are adopted in this study to represent different home thermal 

conditions. 

6.1.2 Determine HVAC system output for different units 

Similar to method used in Section 5.3.3, to investigate how the HVAC 

cooling capacity, 𝑄+[𝑘], of 3.5 tons, 4 tons, and 5 tons in Equation (5.10) changes 

with weather conditions, the cooling capacity data from a HVAC manufacturer, as 

shown in the Appendix D, were converted into 𝑄+[𝑘] based on the assumption 

that 𝑄+ = −2.267 at 3.5 tons was achieved under median weather conditions. 

Figure 6.2, which was generated using such data, displays the relationships 

between the HVAC cooling capacity 𝑄+[𝑘] at 3.5 tons, 4 tons, and 5 tons and 

outdoor air temperature 𝑇'[𝑘] for five different indoor DB and WB temperatures, 
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respectively. As observed, the relationships are sensitive to changes in both the 

outdoor air temperatures and indoor DB and WB temperatures. According to the 

ASHRAE thermal comfort requirements (ANSI/ASHRAE Standard 55 2017), the 

conditioned indoor space air is close to the DB temperature at between 75 °F and 

80 °F and WB temperature at 62 °F, and the relationships (75DB62WB and 

80DB62WB) are very close as observed. Therefore, the relationships are adopted 

based on the indoor DB and WB temperatures at 80 °F and 62 °F, respectively. 

Moreover, the relationships may be approximated by second-order polynomials, 

𝑄+[𝑘] = −0.00005982𝑇'#[𝑘] + 0.00200312𝑇'[𝑘] + 2.25981693                (6.1) 

𝑄+[𝑘] = −0.00006027𝑇'#[𝑘] + 0.00064772𝑇'[𝑘] + 2.66622436                (6.2)             

𝑄+[𝑘] = −0.00013254𝑇'#[𝑘] + 0.01099916𝑇'[𝑘] + 2.82327276                (6.3)                         

with coefficients of determination (R2) of 0.99883293, 0.99915505, and 

0.998477398, representing the HVAC scaled cooling capacity at 3.5 tons, 4 tons, 

and 5 tons, respectively. Therefore, for simplicity, 𝑄+[𝑘] in Equation (5.10) is 

replaced by Equations (6.1)–(6.3) to represent the HVAC scaled cooling capacity 

at 3.5 tons, 4 tons, and 5 tons in the simulation, respectively. 
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(a) 

 

(b) 
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(c) 

Figure 6.2. HVAC system scaled cooling capacity versus outdoor air temperature 

for different indoor DB and WB temperatures in different units: (a) 3.5 tons; (b) 4 

tons; and (c) 5 tons. 

6.1.3 Determine HVAC system total power use for different units 

 Similar to the method used in Section 6.1.2, to investigate how the HVAC 

system total power use, 𝐸[𝑘], in Equation (5.14) varies with weather conditions, 

power data from the same HVAC manufacturer were used. Figure 6.3 shows the 

relationships between the HVAC total power use 𝐸[𝑘]  and outdoor air 

temperature 𝑇'[𝑘]  for five different indoor DB and WB temperatures from 

different cooling capacity HVAC units. As observed, these relationships are 

insensitive to changes in the indoor DB and WB temperatures. Moreover, these 

relationships may be accurately approximated by second-order polynomials, 
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𝐸[𝑘] = 0.00019940𝑇'#[𝑘] − 0.00353571𝑇'[𝑘] + 1.96209821                     (6.4)  

𝐸[𝑘] = 0.00023631𝑇'#[𝑘] − 0.00500000𝑇'[𝑘] + 2.26308036                     (6.5)  

𝐸[𝑘] = 0.00029583𝑇'#[𝑘] − 0.00678571𝑇'[𝑘] + 2.71790179                     (6.6)  

with coefficients of determination (R2) of 0.99938409, 0.99937370, and 

0.99935438, representing the HVAC system total power use at 3.5 tons, 4 tons, 

and 5 tons, respectively. Therefore, for simplicity, 𝐸[𝑘]  in Equation (5.14) is 

replaced by Equations (6.4)–(6.6) to represent the HVAC system total power use 

at 3.5 tons, 4 tons, and 5 tons in the simulation, respectively. 

 

(a) 
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(b) 

 

(c) 
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Figure 6.3. HVAC total power use versus outdoor air temperature for different 

indoor DB and WB temperatures in different units: (a) 3.5 tons; (b) 4 tons; and (c) 

5 tons. 

6.1.4 Selection of different weather conditions 

 To investigate the performance of the optimal pre-cooling strategy under 

different weather conditions, three typical summer days, i.e., July 16, July 20, and 

August 2, 2018, were adopted to represent a medium hot summer, the hottest 

summer day, and a cool summer day, respectively, in Norman, Oklahoma. Their 

outdoor temperature profiles are shown in Figure 6.4. The profiles of wind speed 

and solar radiation can be found in Figures B.4–B.6 in the Appendix B. As 

observed in the figure, 𝑇'[𝑘] varied between 75.5 ºF and 95.5 ºF on July 16, 

between 77.2 ºF and 108.3 ºF on July 20, and between 66.2 ºF and 90.5 ºF on 

August 2. 
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Figure 6.4. Profile of the outdoor temperature for the three summer days. 

6.1.5 Selection of different lower and upper bounds and utility rate structures 

 As introduced in Section 5.3.2, 70 °F and 79 °F were selected as the lower 

bound 𝑇B* and upper bound 𝑇W* of the indoor air temperature 𝑇%,[𝑘] in Equation 

(5.17), respectively, following the ANSI/ASHRAE Standard 55 (2017), in the 

simulation. If no optimal solution is found, the lower bound at 70 °F will keep 

same while the upper bound will be released to 83 °F for the purpose of 

comparison and analysis. In addition, three TOD utility rate structures, referred to 

RI, RII, and RIII, that define the 24-hour electricity price 𝑃[𝑘] in Equation (5.14) 

are provided from a utility supplier in the state of California, which were selected 

to investigate the impact of different time periods and rates of off-peak, mid-peak, 

and on-peak hours on different pre-cooling strategies, respectively. The profiles of 
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the three TOD utility rate structures are shown in Figure 6.5, from which it can be 

seen that RI has on-peak hours from 16:00 to 21:00 and its on-peak electricity 

price of $0.42/kWh is much higher than its off-peak counterpart of $0.24/kWh. 

Compared with RI, RII and III have the same on-peak hours, but different from 

the mid-peak hours. RII has it on-peak electricity price of $0.43/kWh compared 

with its off-peak price of $0.23/kWh and mid-peak price of $0.19/kWh, while 

RIII has the electricity prices of $0.31/kWh, $0.22/kWh, and $0.30/kWh for on-

peak, off-peak, and mid-peak hours, respectively.  

 

Figure 6.5. Profiles of three TOD utility rate structures from a utility supplier. 

6.2 Operation Performance Analysis 

This section presents a comparison of simulation results for operation 

performance analysis by using different sets of home thermal properties, HVAC 
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cooling capacities, and weather conditions in the presence of different TOD utility 

rate structure data. More specifically, the comparison of the operation 

performance by different home thermal properties and HVAC cooling capacities 

is conducted in Section 6.2.1 and 6.2.2. Then the comparison of the operation 

performance by different weather conditions and utility rate structures is carried 

out in Section 6.2.3 and 6.2.4. Finally, the comparison of the operation 

performance with a rule-based pre-cooling strategy is stated and analyzed in 

Section 6.2.5. 

Based on the simulation setup described in Section 6.1, a 24-hour 

simulation with a sampling period ∆𝑡 of 10 minutes was carried out for different 

sets of home thermal properties, HVAC cooling capacities, and weather 

conditions in the presence of different time-of-day utility rate structure data. The 

simulation utilized weather data from three summer days on July 16, July 20, and 

August 2, 2018, representing a medium hot summer day, the hottest summer day, 

and a cool summer day, respectively, in Norman, Oklahoma. Tau (i.e., 𝜏") values 

of 2000, 3500, and 5000 were selected to represent a home with poor, medium, 

and good thermal conditions, respectively. Moreover, the 3.5, 4, and 5 tons of 

HVAC unit, referred to CC=3.5, 4, and 5, were selected to represent different 

cooling capacities and three utility rate structures, i.e., RI, RII, and RIII, were 

selected to represent different profiles of utility rates in the state of California. 

In addition, Figures 6.6–6.15 show the simulation results of the optimal 

pre-cooling strategy when considering different home thermal properties, HVAC 
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cooling capacities, weather conditions, and utility rate structures. Each figure 

includes three graphics. On the bottom graphic, the black, red, and blue solid 

curves represent the HVAC on/off control signals 𝑢+[𝑘]  under different 

conditions; on the top and middle graphics, the black curve with point markers, 

red curve, and blue curve with cross markers represent the resulting indoor air 

temperatures 𝑇%,[𝑘]  and interior wall surface temperatures 𝑇%![𝑘] , and the 

magenta dashed and purple dash-dot curves represent the upper bound 𝑇W*  and 

lower bound 𝑇B* at Tau=2000, 3500, and 5000, respectively. In addition, Figure 

6.17 shows the comparison of the simulation results of the optimal pre-cooling 

strategy with a rule-based pre-cooling strategy based on the same thermal 

properties, cooling capacity, and weather condition but different from the utility 

rate structures, where the gray solid curves represent the resulting 𝑇%,[𝑘]  and 

𝑢+[𝑘] of a rule-based pre-cooling operation for each graphic of the figure. 

6.2.1 Comparison of the performance by different home thermal properties 

For HVAC operations on July 16 (the medium hot summer day), shown in 

Figure 6.6, the three graphics at the bottom of the figure indicate that the optimal 

pre-cooling strategy results in completely avoiding HVAC operations during on-

peak hours for the medium and good thermal condition homes (Tau=3500 and 

5000), except for the poor thermal condition home (Tau=2000), taking advantage 

of low electricity rates during off-peak hours. For the medium and good thermal 

condition homes (Tau=3500 and 5000), the HVAC system was turned on in the 

very early morning and cooled down 𝑇%,[𝑘] first, taking advantage of lower utility 
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rate by pre-cooling before on-peak hours. The higher HVAC efficiency produced 

by the cooler outdoor air enabled the HVAC system to run more economically 

and allowed 𝑇%,[𝑘] floating during on-peak hours. For the poor thermal condition 

home, the HVAC system was on at 3:30 and almost ran for the rest of day and 

cannot avoid the on-peak hours. More specifically, the HVAC system started pre-

cooling at 3:30, 0:00, and 0:10 and ran a total of 11 hours and 10 minutes, 15 

hours and 40 minutes, and 13 hours and 20 minutes, respectively, before on-peak 

hours for different thermal condition homes. The resulting lowest pre-cooling 

temperature 𝑇%,[𝑘] was reached at 74.85 °F, 73.20 °F, and 73.25 °F for the Tau 

values of 2000, 3500, and 5000, respectively. For the home thermal conditions 

that could avoid the on-peak hours, it appears that the larger the Tau value, the 

less pre-cooling runtime and temperature drop the system requires.  

After on-peak hours, the HVAC system kept on for the rest of day for the 

poor thermal condition home (Tau=2000). On the contrary, for the medium and 

good thermal condition homes (Tau=3500 and 5000), the HVAC system was able 

to completely turn off to allow 𝑇%,[𝑘] to approach 𝑇W*  as much as possible at 

nighttime to balance between the cost and thermal comfort. The peak of 𝑇%,[𝑘] 

was reduced and shifted from the afternoon to the night where the system was 

kept off for the rest of day after on-peak hours. This demonstrates the advantage 

of a home with good thermal mass. This situation is likely to occur many days per 

year if 𝑇'[𝑘] is not too high and the envelope is in a good thermal condition.  
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In addition, these observations are in line with expectations: 1) The 

optimal pre-cooling operation could delay heat transfer and attenuate/shift peak 

load from the late afternoon to the nighttime after on-peak hours; 2) the envelope 

with good thermal condition has a shorter pre-cooling runtime and the 

corresponding HVAC system has a earier pre-cooling start time with lower 𝑇'[𝑘] 

and better HVAC efficiency and therefore correspondingly leads to lower energy 

cost for optimization; and 3) the optimal operation is adaptive for different home 

thermal properties. 

 

Figure 6.6. Fluctuations of the temperature and operation control signals for 

different thermal properties based on the 3.5-ton unit and RI on July 16 (a 

medium hot summer day). 
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6.2.2 Comparison of the performance by different HVAC cooling capacities 

To investigate how the impact of different HVAC cooling capacities on 

the performance of the optimal pre-cooling operation, the simulation results that 

use the HVAC cooling capacity of 3.5, 4, and 5 tons, i.e., CC=3.5, 4, and 5, on 

July 16 are shown in Figure 6.7. Moreover, the impact of different cooling 

capacities on the optimal pre-cooling operation was further investigated based on 

different thermal condition homes as shown in Figures 6.8 and 6.9. As these 

figures show that different behaviors in control signals and indoor air 

temperatures were observed for the operations. 

For operations in the poor thermal condition home (Tau=2000), shown in 

Figure 6.7, the HVAC system was completely on during on-peak hours for 

CC=3.5 and 4, while the system was off for most of time for CC=5. Therefore, the 

results showed that the operation for CC=5 had a much earlier pre-cooling start 

time, more pre-cooling runtime, a lower pre-cooling temperature 𝑇%,[𝑘] that can 

be reached, and a quicker pre-cooling temperature drop, compared to the 

operations for CC=3.5 and 4. More specifically, the HVAC system had the pre-

cooling starting at 3:30, 5:20, and 0:00 and running a total of 11 hours and 10 

minutes, 8 hours and 30 minutes, and 15 hours and 50 minutes before on-peak 

hours for CC=3.5, 4, and 5, respectively. The resulting lowest pre-cooling 

temperature 𝑇%,[𝑘] was reached at 74.85 °F, 74.74 °F, and 71.03 °F for each 

cooling capacity, respectively. Similar patterns were observed for the 

corresponding wall interior surface temperature 𝑇%![𝑘]. Moreover, the resulting 
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pre-cooling temperature 𝑇%,[𝑘] for the cooling capacity of 5 tons was maintained 

to approach 𝑇B* as much as possible before on-peak hours to lower the energy cost 

while maintaining required thermal comfort.  

After on-peak hours, the HVAC system was turned on for the entire 8 

hours for the cooling capacities of 3.5 and 4 tons, while the system was only on 

two times for 40 minutes for the cooling capacity of 5 tons, to keep 𝑇%,[𝑘] slightly 

below 𝑇W*  to maintain thermal comfort. These results showed that cooling 

capacity of 5 tons had much impact on the performance of the pre-cooling 

operations compared with the ones of 3.5 and 4 tons. Note that the system still 

cannot completely avoid the on-peak hours even with a 5-ton cooling capacity. 
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Figure 6.7. Fluctuations of the temperature and operation control signals for 

different cooling capacities based on Tau=2000 and RI on July 16 (a medium hot 

summer day). 

For the operations in medium and good thermal condition homes 

(Tau=3500 and 5000), shown in Figures 6.8 and 6.9, the optimal pre-cooling can 

completely avoid HVAC operations during on-peak hours for all the cooling 

capacities. Compared with the corresponding operations at Tau=2000, the system 

had an earlier pre-cooling start time, longer pre-cooling runtime, and a lower pre-

cooling temperature 𝑇%,[𝑘] that can be reached for cooling capacities of 3.5 and 4 

tons due to no operations during the on-peak hours, while the system had a later 

pre-cooling start time, shorter pre-cooling runtime, and a higher pre-cooling 

temperature 𝑇%,[𝑘] for cooling capacity of 5 tons due to a relatively better home 

thermal condition (Tau=3500). These patterns were more obvious for the good 

home thermal condition (Tau=5000). More specifically, the optimal pre-cooling is 

also adaptive for different cooling capacities, i.e., the HVAC system had the pre-

cooling starting at 0:00, 1:30, and 2:30 and running a total of 15 hours and 40 

minutes, 13 hours and 30 minutes, and 11 hours, respectively, before on-peak 

hours for different cooling capacities at Tau=3500, while the system had the pre-

cooling starting at 0:10, 0:40, and 2:00 and running a total of 13 hours and 20 

minutes, 11 hours and 40 minutes, and 9 hours and 30 minutes at Tau=5000. The 

resulting lowest pre-cooling temperature 𝑇%,[𝑘] was reached at 73.20 °F, 73.03 

°F, and 71.83 °F for the medium thermal condition home (Tau=3500), compared 
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with the corresponding ones at 73.25 °F, 72.73 °F, and 72.14 °F for the good 

thermal condition home (Tau=5000). The operation for cooling capacity of 5 tons 

had the lowest 𝑇%,[𝑘]  due to its better cooling performance, compared to the 

operations for cooling capacities of 3.5 and 4 tons. After on-peak hours, the 

HVAC system was switched off for all the cooling capacities to keep 𝑇%,[𝑘] 

slightly below 𝑇W* to maintain thermal comfort.  

These results demonstrate that HVAC cooling capacity had a major impact 

on the performance of optimal pre-cooling operations only when the system had a 

better cooling capacity and accommodates with a medium or good thermal 

condition home since the HVAC runtimes were significantly reduced. 
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Figure 6.8. Fluctuations of the temperature and operation control signals for 

different cooling capacities based on Tau=3500 and RI on July 16 (a medium hot 

summer day). 

 

Figure 6.9. Fluctuations of the temperature and operation control signals for 

different cooling capacities based on Tau=5000 and RI on July 16 (a medium hot 

summer day). 

6.2.3 Comparison of the performance by different weather conditions 

To investigate how the impact of different weather conditions on the 

performance of the optimal pre-cooling operation, the simulation results on 

July16, July 20, and August 2, representing a medium hot summer day, the hottest 

summer day, and a cool summer day, respectively, are shown in Figure 6.10, 

based on the poor thermal condition home (Tau=2000) with HVAC cooling 
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capacity of 4 tons. Moreover, the weather impact was further investigated with 

different thermal condition homes under the same cooling capacity of 4 tons and 

simulation results are shown in Figures 6.11 and 6.12. 

For the operations in the poor thermal condition home (Tau=2000), shown 

in Figure 6.10, the HVAC system could only avoid operations during on-peak 

hours for the cool summer day (August 2). Note that no optimal result was found 

when keeping the upper bound of thermal comfort at 79 °F for the operation on 

the hottest summer day (July 20), where the system still cannot avoid operations 

during on-peak hours even though the upper bound was released to 83 °F for 

display purpose. For the operations on July 16, the system cannot avoid the on-

peak operations but ran less time and meanwhile maintained the thermal comfort, 

compared with the operations on July 20. In terms of the operations on August 2, 

the HVAC system had the pre-cooling starting at 4:40 and running a total of 9 

hours before on-peak hours and the resulting lowest pre-cooling temperature 

𝑇%,[𝑘] was reached at 72.48 °F. 

After on-peak hours, the HVAC system was kept on continually for the 

rest of time on July 16 and 20, while the system was completely off to take 

advantage of 𝑇W* as much as possible to lower the energy cost while maintaining 

required thermal comfort on August 2. These results showed that weather 

conditions had significant impact on the performance of the pre-cooling 

operations. Even with optimal pre-cooling operations, the system still cannot 

completely avoid on-peak hours, especially for operations with the worst thermal 
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condition home but under much hotter outdoor temperatures. Indeed, the weather 

had a significant impact on the performance of optimal pre-cooling operations. 

 

Note: The upper bound was released to 83 °F for the operation on July 20, as 

represented by 𝑇W*∗ . 

Figure 6.10. Fluctuations of the temperature and operation control signals for 

different weather conditions based on Tau=2000, CC=4, and RI. 

For the operations in the medium and good thermal condition homes 

(Tau=3500 and 5000), shown in Figures 6.11 and 6.12, the HVAC system can 

maintain the required thermal comfort for all the days. Moreover, the system can 

completely avoid HVAC operations during on-peak hours on July 16 and August 

2, on which the system had an earlier pre-cooling start time and lower pre-cooling 

temperature 𝑇%,[𝑘] that can be reached compared to the operations for the poor 
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thermal condition home (Tau=2000). More specifically, the optimal pre-cooling 

was also adaptive for weather conditions, i.e., the HVAC system had the pre-

cooling starting at 1:30, 1:30, and 2:30 and running a total of 13 hours and 30 

minutes, 14 hours and 20 minutes, and 7 hours and 40 minutes, before on-peak 

hours for the medium thermal condition home, compared to the corresponding 

pre-cooling operations starting at 0:40, 0:00, and 2:30 and running a total of 11 

hours and 40 minutes, 15 hours and 40 minutes, and 7 hours, respectively. The 

resulting lowest pre-cooling temperature 𝑇%,[𝑘] was reached at 73.03 °F, 74.12 

°F, and 72.30 °F for the medium thermal condition home (Tau=3500), while 

𝑇%,[𝑘] was reached at 72.73 °F, 73.25 °F, and 72.69 °F for the good thermal 

condition home (Tau=5000), respectively. For all the thermal condition homes, 

the operations on August 2 had the lowest 𝑇%,[𝑘]  due to its relatively cooler 

outdoor temperature, compared to the operations on July 16 and 20. 

After on-peak hours, the HVAC system was completely off for the 

operations on July 16 and August 2 to keep 𝑇%,[𝑘] slightly below 𝑇W* to maintain 

thermal comfort, while the system was kept on for the rest of time for the medium 

thermal condition home (Tau=3500) and switched on for two time for a total of 4 

hours and 10 minutes for the good thermal condition home (Tau=5000). 

Additionally, for a cooler summer day, the total of HVAC total runtimes was 

significantly shorter than a medium and hotter day. These results further 

demonstrated that weather conditions had a significant impact on the performance 

of optimal pre-cooling operations. 
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Figure 6.11. Fluctuations of the temperature and operation control signals for 

different weather conditions based on Tau=3500, CC=4, and RI. 
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Figure 6.12. Fluctuations of the temperature and operation control signals for 

different weather conditions based on Tau=5000, CC=4, and RI. 

6.2.4 Comparison of the performance by different utility rate structures 

To investigate how the impact of different utility rate structures on the 

performance of the optimal pre-cooling operation, the simulation results are 

shown in Figure 6.13, which utilize the three utility rate structures, i.e., RI, RII, 

and RIII, cooling capacity of 4 tons, and weather data on August 2. Moreover, the 

impact of different utility rate structures on the optimal pre-cooling operation was 

further investigated in combination with different thermal condition homes as 

shown in Figures 6.14 and 6.15. 

For the operations in the poor thermal condition home (Tau=2000), shown 

in Figure 6.13, the HVAC system was completely off during on-peak hours and 

continually kept off after on-peak hours to keep 𝑇%,[𝑘]  slightly below 𝑇W*  to 

maintain thermal comfort for all the operations with RI, RII, and RIII. Unlike the 

system with RI that had no mid-peak hours and was completely on during these 

hours, the system with RII and RIII tried to avoid operations as less as possible 

during the mid-peak hours. In terms of the operations with RII and RIII, the 

system with RII cannot completely keep off for both the first mid-peak hours 

from 6:00 to 10:00 and the second mid-peak hours from 14:00 to 16:00, while the 

system with RIII was able to be completely off during the first mid-peak hours but 

cannot completely avoid the second mid-peak hours. Moreover, the system with 

RIII ran less time than the system with RII during mid-peak hours due to the mid-
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peak electricity price of RIII is higher than the one of RII. Hence, the pre-cooling 

operation of RIII required to start earlier than the operation with RII.  

More specifically, the optimal pre-cooling operation was also adaptive to 

different utility rate structures, i.e., the HVAC system had the pre-cooling starting 

at 4:40, 2:10, and 0:20 and running a total of 9 hours, 9 hours and 30 minutes, and 

9 hours and 50 minutes before on-peak hours for RI, RII, and RIII, respectively. 

The resulting lowest pre-cooling temperature 𝑇%,[𝑘]  was reached at 72.48 °F, 

71.07 °F, and 71.87 °F for each utility rate structure, respectively. Similar patterns 

were observed for the corresponding wall interior surface temperature 𝑇%![𝑘] that 

droped slowly due to the thermal mass of wall was much larger than space air. 

Moreover, the resulting pre-cooling temperature 𝑇%,[𝑘] for the operations with RII 

and RIII were decreased as much as possible even before the mid-peak hours 

from 6:00 to 10:00 to balance the operation periods under a higher HVAC 

efficiency and lower electricity cost while minimizing the energy cost and 

maintaining required thermal comfort. 
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Figure 6.13. Fluctuations of the temperature and operation control signals for 

different utility rate structures based on Tau=2000 and CC=4 on August 2 (a cool 

summer day). 

 Similar to the operations in the poor thermal condition home (Tau=2000), 

for the operations in the medium and good thermal condition homes (Tau=3500 

and 5000), shown in Figures 6.14 and 6.15, the HVAC system also can 

completely switch off during on-peak hours and continually keep off after on-

peak hours to keep 𝑇%,[𝑘] slightly below 𝑇W* to maintain thermal comfort for all 

the operations with RI, RII, and RIII. Unlike the operations in the poor thermal 

condition home, the system had an earlier pre-cooling starting time and less pre-

cooling runtime for RI and meanwhile can completely avoid all the mid-peak 
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hours for RII and RIII in the medium and good thermal condition homes. 

Additionally, the system operations and temperature dynamics with RII and RIII 

kept same for the medium and good thermal condition homes. 

 

Note: the temperature curves for RII and RIII are overlapped.  

Figure 6.14. Fluctuations of the temperature and operation control signals for 

different utility rate structures based on Tau=3500 and CC=4 on August 2 (a cool 

summer day). 
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Note: the temperature curves for RII and RIII are overlapped.  

Figure 6.15. Fluctuations of the temperature and operation control signals for 

different utility rate structures based on Tau=5000 and CC=4 on August 2 (a cool 

summer day). 

6.2.5 Comparison of the performance with a rule-base pre-cooling strategy 

The performance of the optimal pre-cooling strategy was further 

investigated and compared with a rule-based pre-cooling strategy, i.e., BC II as 

descried in Chapter 5, with pre-cooling starting at 9:00 and lasting 6 hours. 

Because this rule-based pre-cooling strategy showed advantage of energy savings 

compared with other rule-based operation strategies. Therefore, this rule-based 

pre-cooling strategy was adopted as base case, referred to BC, for comparison 

with the optimal pre-cooling strategy in this section. To accommodate with the 
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three utility rate structures with on-peak hours from 16:00 to 21:00, the rule-based 

pre-cooling start time was moved forward by one hour, starting at 10:00 and 

lasting the same 6 hours. The profile of the rule-base pre-cooling strategy is 

shown in Figure 6.16. 

 

Figure 6.16. Profile of the indoor air temperature set point for the rule-based pre-

cooling strategy. 

The simulation utilized the same thermal condition home (Tau=3500), 

cooling capacity of 4 tons, and weather data on July 16, but different from the 

utility rate structures. Since the rule-based pre-cooling strategy is not adaptive to 

different utility rate structures, this study just shows the simulation result of the 

rule-based pre-cooling operation utilizing one of the three utility rate structure 

profiles (e.g., RI).  
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Figure 6.17 shows the comparison of the simulation results of the optimal 

pre-cooling with the rule-based pre-cooling strategy. For the rule-based pre-

cooling operation (BC), the HVAC system cannot maintain the thermal comfort in 

some time periods before and after on-peak hours. The system was almost on 

during most of the on-peak hours and switched on/off frequency after on-peak 

hours. Moreover, the rule-based strategy did not enable the HVAC system to run 

more economically with higher HVAC efficiency produced by the cooler outdoor 

air in the early morning. In terms of the optimal pre-cooling operations, the 

system can completely avoid operations with RI and RII during on-peak hours, 

except for the operations with RIII, with which the system was switched on two 

times for a total of 30 minutes even if RII and RIII shared the same pattern. 

Because RII had a lower electricity price than RIII during mid-peak hours and 

meanwhile had much higher electricity price than RIII during on-peak hours. This 

explained that the system with RIII did not completely avoid operations during 

on-peak hours but was switched off for one hour during the mid-peak hours from 

6:00 to 10:00, compared to the system with RII that only ran 10 minutes during 

that mid-peak hours and was kept off during on-peak hours. These results further 

demonstrated that the optimal pre-cooling strategy was adaptive to different utility 

rate structures. However, the rule-based pre-cooling strategy cannot cope with the 

ever-changing electricity prices in a smart grid environment. 
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Note: 𝑇%,[𝑘] @ BC represents the operations with RI, RII, and RIII for BC, which 

were overlapped. 

Figure 6.17. Fluctuations of the temperature and operation control signals for 

different operation strategies based on Tau=3500 and CC=4 on July 16 (a medium 

hot summer day). 

6.3 Energy Performance Analysis 

This section introduces the comparison of energy consumption and cost of 

the optimal pre-cooling strategy for different thermal properties, weather 

conditions, cooling capacities, and utility rate structures. The energy performance 

of the optimal pre-cooling strategy is also compared with the rule-based pre-
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cooling strategy based on the same thermal properties, cooling capacity, and 

weather condition.  

6.3.1 Energy consumption comparison 

The total energy consumption is defined as ∆𝑡 ∑ 𝐸[𝑘]𝑢+[𝑘]Y , where 𝑘 is 

taken over the whole day. Table 6.2 lists the total energy consumption for the Tau 

values of 2000, 3500, and 5000, cooling capacities of 3.5, 4, and 5 tons, and three 

utility rate structures on July 16, July 20, and August 2, respectively. Observe 

from the table that 1) the operations on July 20 requires the highest total energy 

consumption than those on July 16 and August 2 when other conditions keep 

same; 2) the operations with a larger cooling capacity do not always consume 

more or less energy, which also depend on home thermal condition, utility rate 

structure, and weather conditions; 3) the better the home thermal condition is, the 

less energy consumption the system requires; and 4) the selection of a utility rate 

structure is determined by not only the local weather condition but also the 

cooling capacity of the HVAC system in a specific thermal condition home for 

energy saving purpose. These observations are consistent with the analysis in 

Section 6.2. 

Table 6.2. Comparison of total energy consumption for different home thermal 

properties, cooling capacities, weather conditions, and utility rate structures. 

  CC=3.5 tons CC=4 tons CC=5 tons 
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  2000 3500 5000 2000 3500 5000 2000 3500 5000 

July 16 

High: 95.5 

ºF 

Low: 74.5 

ºF 

RI 
61.39 

kWh 

48.31 

kWh 

40.56 

kWh 

60.66 

kWh 

47.53 

kWh 

40.10 

kWh 

70.53 

kWh 

46.27 

kWh 

38.92 

kWh 

RII 
62.03 

kWh 

48.31 

kWh 

41.83 

kWh 

61.29 

kWh 

48.14 

kWh 

41.25 

kWh 

70.53 

kWh 

47.76 

kWh 

40.94 

kWh 

RIII 
63.10 

kWh 

47.73 

kWh 

40.69 

kWh 

61.29 

kWh 

47.80 

kWh 

40.82 

kWh 

68.60 

kWh 

47.76 

kWh 

40.87 

kWh 

July 20 

High: 108.3 

ºF 

Low: 77.2 

ºF 

RI 
78.76* 

kWh 

51.33* 

kWh 

74.03 

kWh 

76.72* 

kWh 

87.76 

kWh 

77.40 

kWh 

74.77* 

kWh 

87.69 

kWh 

77.41 

kWh 

RII 
79.56* 

kWh 

51.43* 

kWh 

74.60 

kWh 

77.59* 

kWh 

88.49 

kWh 

77.40 

kWh 

76.82* 

kWh 

95.81 

kWh 

77.41 

kWh 
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RIII 
79.13* 

kWh 

50.73* 

kWh 

75.30 

kWh 

78.25* 

kWh 

88.49 

kWh 

77.24 

kWh 

76.97* 

kWh 

89.34 

kWh 

76.11 

kWh 

August 2 

High: 90.7 

ºF 

Low: 65.8 

ºF 

RI 
30.35 

kWh 

24.26 

kWh 

22.86 

kWh 

30.11 

kWh 

23.97 

kWh 

21.80 

kWh 

29.48 

kWh 

23.43 

kWh 

21.91 

kWh 

RII 
31.23 

kWh 

25.41 

kWh 

23.27 

kWh 

31.27 

kWh 

25.25 

kWh 

23.02 

kWh 

31.29 

kWh 

24.73 

kWh 

22.50 

kWh 

RIII 
32.29 

kWh 

25.51 

kWh 

23.27 

kWh 

32.47 

kWh 

25.25 

kWh 

23.02 

kWh 

31.29 

kWh 

24.73 

kWh 

22.50 

kWh 

Note: * represents that the result is available after releasing the upper bound to 83 

°F. 

 Moreover, Table 6.3 lists the comparison of energy consumption of the 

optimal pre-cooling strategy with the rule-base pre-cooling strategy based on the 

three different utility rate structures. Observe from the table that the optimal 

strategy has the least energy consumption compared with the rule-base strategy 
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with RI, RII, and RIII for the same weather condition and cooling capacity of the 

HVAC system in a medium thermal condition home. It further illustrated the 

advantage of the optimal pre-cooling strategy. Moreover, the optimal strategy 

with RII had less energy consumption than the one with RI and RIII. These 

observations are consistent with the analysis in Section 6.2. 

Table 6.3. Comparison of total and on-peak energy consumption and saving 

potential for the optimal and rule-based pre-cooling strategy. 

Operation strategy Optimal strategy Rule-based strategy 

Utility rate structure RI RII RIII RI RII RIII 

Total energy consumption, kWh 47.53 48.14 47.80 49.00 49.00 49.00 

On-peak energy consumption, 

kWh 
0 0 0 17.89 17.89 17.89 

 

6.3.2 Energy cost comparison 

The energy cost is defined by the objective function in Equation (5.14). 

Table 6.4 lists the 24-hour energy cost for the Tau values of 2000, 3500, and 

5000, cooling capacities of 3.5, 4, and 5 tons, and three utility rate structures on 

July 16, July 20, and August 2, respectively. Similar patterns are observed from 

the table. The larger the Tau value is, the less energy cost the operation requires. 

In terms of weather conditions, energy cost is highest on July 20 and lowest on 

August 2 compared with July 16, confirming its dominant impact on the 

performance of the optimal pre-cooling operation. The hotter the weather is in 
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summer, the more cost savings a good thermal condition home can achieve. 

Moreover, less energy cost can be achieved for a HVAC system with a higher 

cooling capacity only when a home has a better thermal condition. In addition, 

less energy cost tends to be achieved for a utility rate structure with a much 

higher on-peak electricity price than those during off-peak or/and mid-peak 

hours. These observations are consistent with the analysis in Section 6.2 and are 

in line with expectations and experience.  

Table 6.4. Comparison of energy cost for different home thermal properties, 

cooling capacities, weather conditions, and utility rate structures. 

  CC=3.5 tons CC=4 tons CC=5 tons 

  2000 3500 5000 2000 3500 5000 2000 3500 5000 

July 

16 

High: 

95.5 ºF 

Low: 

74.5 ºF 

RI $17.74 $11.59 $9.74 $18.00 $11.41 $9.62 $17.47 $11.11 $9.34 

RII $16.62 $9.88 $8.39 $16.97 $9.67 $8.08 $15.13 $9.29 $7.78 
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RIII $16.72 $11.89 $9.76 $16.68 $11.55 $9.64 $17.42 $10.93 $8.99 

July 

20 

High: 

108.3 

ºF 

Low: 

77.2 ºF 

RI $22.31* $12.32* $21.17 $22.32* $24.99 $21.70 $22.68* $25.78 $18.58 

RII $20.63* $10.50* $19.77 $20.94* $23.25 $19.76 $21.92* $24.20 $15.97 

RIII $21.32* $12.63* $20.13 $20.95* $23.88 $20.33 $21.27 $24.16 $19.24 

August 

2 

High: 

RI $7.29 $5.82 $5.49 $7.23 $5.75 $5.23 $7.08 $5.62 $5.26 
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90.7 ºF 

Low: 

65.8 ºF 
RII $6.27 $4.85 $4.42 $6.17 $4.80 $4.37 $5.97 $4.70 $4.27 

RIII $7.44 $5.61 $5.12 $7.24 $5.56 $5.07 $6.93 $5.44 $4.95 

Note: * represents that the result is available after releasing the upper bound to 83 

°F. 

In addition, the energy cost of the optimal pre-cooling strategy is 

compared with the rule-based pre-cooling strategy in the presence of RI, RII, and 

RIII as well as the percentage of cost savings that can be achieved when the 

optimal strategy is used in place of the rule-based strategy with RI, RII, and RIII, 

respectively. Notice from the table that the percentage of the optimal strategy cost 

savings is 15.51% compared with BC with RIII and may be as high as 32.93% 

compared with BC with RII, confirming its benefit. In terms of the optimal pre-

cooling strategy, the operation with RII has less energy cost compared with those 

with RI and RIII. These observations are also in line with the analysis in Section 

6.2.5. 
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Table 6.5. Comparison of energy cost and saving potential for the optimal and 

rule-based pre-cooling strategy. 

Operation strategy Optimal strategy Rule-based strategy 

Utility rate structure RI RII RIII RI RII RIII 

Energy cost $11.41 $9.67 $11.55 $14.98 $14.24 $13.67 

Percentage of the optimal 

strategy cost savings 
0% 0% 0% 23.83% 32.93% 15.51% 

 

6.4 Summary 

This chapter investigates the performance of the optimal pre-cooling 

strategy, proposed in Chapter 5, that utilizes a home thermal model with diverse 

home parameters and different weather conditions, HVAC cooling capacities, and 

utility rate structures. Through simulation, a performance analysis of the optimal 

pre-cooling on the thermal dynamics, total energy consumption, and energy cost 

was conducted and compared with a rule-based pre-cooling strategy. It is found 

that the optimal pre-cooling strategy is adaptive based on changing conditions and 

its performance is significantly dependent on weather conditions and home 

thermal properties, while its performance may vary for different cooling 

capacities and utility rate structures. The larger the Tau value is, the less energy 

cost the operation requires. In terms of weather conditions, energy cost is highest 

on the hottest day and lowest on a cool summer day compared with a medium hot 

summer day, confirming its dominant impact on the performance of the optimal 
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pre-cooling operation. The hotter the weather is in summer, the more cost savings 

a good thermal condition home can achieve.  

Moreover, less energy cost can be achieved for a HVAC system with a 

higher cooling capacity only when a home has a better thermal condition, and less 

energy cost also tends to be achieved for a utility rate structure with a much 

higher on-peak electricity price than those during off-peak or/and mid-peak hours. 

In addition, it is found that the optimal strategy has the least energy consumption 

and cost while maintaining the required thermal comfort compared with the rule-

base strategy with different utility rate structures for the same weather condition 

and cooling capacity of the HVAC system in a medium thermal condition home. 

The superb energy performance of the optimal strategy is attributed to a longer 

runtime of the HVAC system in cool outdoor air conditions and to the elimination 

of deadband in HVAC operation, which is required by the rule-based strategies, to 

allow the indoor air temperature to stay near the thermal comfort upper bound as 

much as possible. These observations are in line with the analysis and 

expectations and experience.  

Through the performance analysis of the optimal pre-cooling strategy, it 

provides a quantifiable analysis of the optimal pre-cooling operation in terms of 

specific thermal properties, HVAC system cooling capacity, weather condition, 

and utility rate structure. However, since the optimization was formulated based 

on a simplified home thermal model. The model assumes that the internal heat 

gains are negligible and not considered. The impact of the internal heat gains on 
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the model and the optimization problem needs to be investigated. Moreover, the 

implementation of the optimal pre-cooling strategy needs to be investigated 

through real homes. These will be the focuses in Chapter 7.  
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Chapter 7: Experimental Verification and Implementation 

 To implement the home thermal model and optimal pre-cooling strategy 

proposed in Chapters 3 and 5, experiments were conducted through the HVAC 

system of a real test home in this Chapter. The home thermal model is first 

implemented into the calculations of the cooling load and HVAC efficiency. 

Since the pre-cooling optimization problem utilizes the model without 

considering the effect of internal heat gains, the impact of internal heat gains on 

the thermal model is then investigated through experiments. Finally, the 

feasibility of implementing the optimal operation schedules of the HVAC system 

that are obtained through the simulation results of the optimal pre-cooling strategy 

is tested using the HVAC system through a software platform. 

7.1 Experimental Apparatus 

This section introduces the devices used for the data acquisition system 

and an open-source platform for distributed sensing and control. 

7.1.1 Devices for data acquisition system 

Experiments were performed in the same test house as detailed in Section 

3.5.1. The house was equipped with a HVAC system with a cooling capacity of 

3.5 tons and air flow rate of 1,400 cfm. Figure 7.1(a) and (b) shows the indoor and 

outdoor unit of the HVAC system for the house. A data acquisition system was 

installed in the house, which measured the entering and leaving air temperatures 

from the outdoor unit of the HVAC system, indoor and outdoor air temperatures, 

interior wall surface temperatures, supply and return air temperatures from air 
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ducts, air temperatures from the supply and return air diffusers, wind speed, 

global horizontal irradiation, return air flow rate, and power consumptions for the 

indoor and outdoor unit and total power use of the entire home. These data were 

measured using T-type thermocouples, velocity sensors, anemometer, 

pyranometer, and power meters, respectively, as shown in Figure 7.1(c)–(h) in 

addition to Figure 3.9(b)-(d) in Chapter 3. All the data were logged at thirty-

second intervals using the connected Raspberry Pis and its associated hats, as 

shown in Figure 7.1(i). All the thermocouples were calibrated before use. 

                       

                  (a)                                                    (b)                                                    (c) 
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                    (d)                                                        (e)                                                    (f) 

                      

                  (g)                                                  (h)                                                       (i) 

Figure 7.1. Experimental devices used for data acquisition system. 

 Note: (a) Indoor unit with the measurements of the relative humidity and 

temperature from the supply and return air duct; (b) Outdoor unit with the 

entering and leaving air temperature measurement; (c) Thermocouples for the 

indoor air temperature measurements; (d) Thermocouples for the interior wall 

surface temperature measurements; (e) Thermocouples for the exterior wall 

surface temperature measurements; (f) Thermocouple for the air temperature 

measurement from one supply diffuser; (g) Thermocouples for the air temperature 

measurements from two return diffusers; (h) Power meters for the indoor unit and 

outdoor unit of the HVAC system and total power for the house; and (i) 

Raspberry Pi and its associated hat. 

 To further illustrate the sensors and its measurements and locations in the 

house, a floor plan was drawn as shown in Figure 7.2. Specifications of all the 

measurements and locations of the sensors with its Pis for the data acquisition 
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system are shown in Tables 7.1 and 7.2. Since the combination of the indoor air 

temperature T7 and interior wall surface temperature T11 showed more consistent 

results, T7 and T11 was used for in the study. Moreover, weather data from the 

data acquisition system were compared with the data downloaded from Mesonet 

(Oklahoma Mesonet 2016) at five-minute intervals. The comparison showed that 

the Mesonet data provided similar, but more consistent results. Therefore, the 

Mesonet data were used in the study. 

 

Figure 7.2. House floor plan with the locations of the sensors. 

Table 7.1. Specifications of all the measurements for the data acquisition system. 

Pi 

No. 
Measurement Channel 

Pi 

No. 
Measurement Channel 

Pi 1 
T1 0 Pi 

10 

T25 0 

T2 1 T26 1 
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T3 2 Open 2 

T4 3 Open 3 

Pi 2 

T5 0 

Pi 

11 

T21 0 

T6 1 T22 1 

T7 2 T23 2 

T8 3 T24 3 

Pi 3 

T9 0 

Pi 

12 

T28 0 

T10 1 T29 1 

T11 2 T30 2 

T12 3 T31 3 

Pi 5 

T15 0 

Pi 

13 

T32 0 

T16 1 T33 1 

T17 2 T34 2 

T18 3 T35 3 

Pi 6 

Wind speed 0 

Pi 

14 

T38 0 

Open 1 T39 1 

Open 2 T40 2 

Open 3 T41 3 

Pi 7 

T19 0 
Pi 

15 

T43 0 

T20 1 T44 1 

T36 2 T45 2 
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T37 3 T46 3 

Pi 8 

T13 0 

Pi 

16 

T47 0 

T14 1 T48 1 

T27 2 T49 2 

T42 3 Open 3 

Pi 4 

Indoor 

frequency 
0 

Pi 9 

Solar radiation 0 

Outdoor 

frequency 
1 

Airflow from return duct 

1 
1 

House 

frequency 
2 

Airflow from return duct 

2 
2 

Indoor power 3 
Relative humidity from 

supply air duct 
3 

Outdoor power 4 
Air temperature from 

supply air duct 
4 

House power 5 
Relative humidity from 

return air duct 
5 

Indoor pulse 6 
Air temperature from 

return air duct 
6 

Outdoor pulse 7 Total air flow rate 7 

House pulse 8 Open 8 
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Table 7.2. Specifications of the location and function of the sensors with its 

connected Pi for the data acquisition system. 

Pi 

Number 
Location Function 

1 
Between 

bedroom 1 and 2 
Indoor air temperature measurements 

2 Livingroom Indoor air temperature measurements 

3 Bedroom 3 
Temperature measurements for indoor air and 

interior wall surface 

4 Dining room Power measurements 

5 
Between 

bedroom 1 and 2 

Temperature measurements for the exterior wall 

surface and leaving and entering air of the 

outdoor unit 

6 Bedroom 3 Wind speed measurement 

7 Bedroom 3 
Temperature measurements for the exterior wall 

surface and supply air from diffuser 

8 Dining room 

Temperature measurements for indoor and 

outdoor air, exterior wall surface, and supply air 

from diffuser  

9 Bedroom 3 Solar radiation and duct flow rate measurements 

10 Attic Duct temperature measurement 
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11 Living room Partition wall surface temperature measurement 

12 Bedroom 1 Interior wall surface temperature measurement 

13 Bedroom 3 
Temperature measurements for interior wall 

surface and supply air from diffuser  

14 
Between 

bedroom 1 and 2 

Air temperature measurements from supply 

diffusers  

15 
Between 

bedroom 1 and 2 

Air temperature measurements from supply 

diffusers 

16 Living room 
Air temperature measurements from return 

diffusers 

 

7.1.2 Platform for operation control 

The house HVAC system was controlled by a smart thermostat, shown in 

Figure 7.3(a), which uses the common rule-base control algorithm that attempts to 

regulate the indoor air temperature around a set point with 1 °F deadband as 

detailed in Section 5.2.1. The thermostat can receive inputs of the indoor air 

temperature set points at a 30-minute interval for the HVAC system. By trials, 

however, it was not feasible even when using a 30-minute interval of control 

signals in practice due to the software malfunction.  

In this study, since a better granularity in terms of both the indoor air 

temperature set points and time duration was required, an open-source software 

platform, i.e., VOLTTRON (VOLTTRON 2019), for distributed sensing and 
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control was adopted, as shown in Figure 7.3(b) and (c). On the platform, software 

modules called “agents” and device driver modules are connected to a message 

bus to interact. Users may configure included drivers for industry standard device 

communication protocols, such as BACnet or Modbus, or develop and configure 

their own. Therefore, VOLLTRON was installed in the thermostat and each 

Raspberry Pi for the data acquisition and system control use. Through the 

platform, control signals obtained from the optimal pre-cooling strategy were able 

to be implemented for testing in the house as described in Section 7.4. 

     

(a) thermostat from a manufacturer         (b) VOLTTRON operation interface 
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(c) VOLTTRON Thermostat Scheduler  

Figure 7.3. The installed thermostat and software platform. 

7.2 Experiment on the Cooling Load 

This section introduces a model-based method for the calculations of the 

cooling load and home HVAC efficiency.  

7.2.1 Model-based cooling load calculation method 

 Without considering the internal heat gains, the discrete-time home 

thermal model proposed in Chapter 3 can be expressed by  

𝑇%!(𝑘) − 𝑇%!(𝑘 − 1) =
∆0
L%
[𝑇'(𝑘) − 𝑇%!(𝑘)] +

∆0
L'
[(𝑇%,(𝑘) − 𝑇%!𝑘)]                  (7.1) 

𝑇%,(𝑘) − 𝑇%,(𝑘 − 1) = − ∆0
L)
𝑇%,(𝑘) +

∆0
L)
X𝑇%!(𝑘) + Y𝑇'(𝑘) − 𝑇%,(𝑘)ZY𝑏"𝑊(𝑘) +

𝑏#𝑊#(𝑘)Z + Y𝑎"𝐺(𝑘) + 𝑎#𝐺#(𝑘) + 𝑎9𝐺9(𝑘)Z + 𝑄+(𝑘)𝑢+(𝑘)[                      (7.2) 

 Since the term 𝑄+(𝑘)𝑢+(𝑘) in the model represents the scaled sensible 

cooling load associated with the corresponding heat transfer coefficient and area, 

the hourly sensible cooling load can be calculated based on either the 

rearrangement of the model or the term 𝑢+, as expressed by 

𝑄2B,) = ST
"#>

∑ ¤𝜏9
5&((YF")65&((Y)

∆0
+ 𝑇%,(𝑘) − X𝑇%!(𝑘) + Y𝑇'(𝑘) −]

"

𝑇%,(𝑘)ZY𝑏"𝑊(𝑘) + 𝑏#𝑊#(𝑘)Z + Y𝑎"𝐺(𝑘) + 𝑎#𝐺#(𝑘) + 𝑎9𝐺9(𝑘)Z[¥            (7.3) 

𝑄2B,) = ST∑ J#(Y)W#(Y)9
%
"#>

                                                                                       (7.4) 

where 𝑄2B,) is the hourly sensible cooling load (Btu/h) calculated by the model-

based method; K is the length of data point, K=1, 2, 3, ….; ℎ is the overall heat 
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transfer coefficient (Btu/(hr.ft2.°F)), using the value of 1.63 in this study in 

accordance with ASHRAE Standard 90.2 (ASHRAE 2018); 𝐴 is the heat transfer 

surface area that can be approximated using the floor area (ft2); 𝑄+ is the scaled 

HVAC system output (°F); and 𝑢+ is the HVAC system on/off signal (i.e., either 0 

or 1) in 30-second interval. 

 Moreover, the sensible cooling load was also calculated by the theoretical 

method, i.e., the product of the measured air flow rate and temperature difference 

between the supply and return air temperature from diffusers for validation, 

shown by 

𝑄2B,4 = �̇�𝐶Z(𝑇+( − 𝑇1() = 𝜌�̇�𝐶Z(𝑇+( − 𝑇1()                                                    (7.5) 

where 𝑄2B,4  is the hourly sensible cooling load distributed to the house space 

through ducts of the HVAC system (Btu/h); �̇�  is the mass flow rate from a 

diffuser (lb/h);  𝜌 is the air density (lb/ ft3); �̇� is the volume flow rate (ft3/h); 𝐶Z is 

the specific heat capacity of air; 𝑇1(  is the average temperature from the two 

return diffusers, i.e., RD1 and RD2, shown in Figure 7.2 (°F); 𝑇+( is the average 

temperature from each supply diffuser weighted by the corresponding flow rate 

(°F). In this study, the supply air temperature from one diffuser, e.g., D7, was 

selected for use due to its availability and representativeness through 

observations. 
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7.2.2 The home HVAC system efficiency 

 Similar to Equation (7.5), the cooling capacity of the HVAC system can 

be calculated by 

 𝑄22 = �̇�4𝐶ZY𝑇+(,4 − 𝑇1(,4Z = 𝜌�̇�4𝐶ZY𝑇+(,4 − 𝑇1(,4Z                                      (7.6) 

where 𝑄22 is the sensible cooling capacity of the HVAC system (Btu/h); �̇�4 is the 

mass flow rate from the supply duct (lb/h); �̇�4 is the volume flow rate from the 

supply duct (ft3/h); and 𝑇+(,4 and 𝑇1(,4 are the leaving and entering temperature 

from the indoor unit of the HVAC system (°F). 

Based on Equations (7.5) and (7.6) using the measured data on August 9 

and 19, 2020, as shown in Figures B.7 and B.8 in the Appendix B, the sensible 

cooling load Qcl,d was calculated and compared with the cooling capacity Qcc in 

30-sencond internal, as shown in Figure 7.4. As observed, approximately 60% of 

the cooling capacity of the HVAC system (Qcc) was transferred to the indoor 

space in terms of the sensible cooling load (Qcl,d) and meanwhile Qcc accounted 

for approximately 65%-90% of the design cooling capacity Qcc,d at 3.5 tons 

(42,000 Btu/h) for the specific days. In this study, 50% of the design cooling 

capacity, i.e., 0.5Qcc,d, was adopted as a reference to calculate the absolute error 

percentage of the model-based cooling calculation using the same month data.  
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(a) Data on August 9, 2020 

 

(b) Data on August 19, 2020 

Figure 7.4. Comparison of the calculated cooling load and cooling capacity. 

Moreover, based on Equation (7.4), the hourly sensible cooling load Qcl,m 

was calculated using the model-based method and compared with the calculated 

Qcl,d using the measured data from August 1 to August 7, 2020, as shown in 

Figure 7.5(a). The detailed weather condition can be found in Figure B.9 in the 

Appendix B. As observed, the cooling load Qcl,m calculated by the model-based 
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method matched well but far less than Qcc. This indicated that air leakage 

occurred in the duct and a lot of the cooling energy were lost during duct 

transmission. Moreover, the absolute error percentage, defined by |Qcl,d - 

Qcl,m|/0.5Qcc,d, was less than 10% during most of the time, as shown in Figure 

7.5(b). It validated the effectiveness of the model-based cooling load calculation 

method. 

 

(a) Cooling load and cooling capacity calculation 

 

(b) Absolute error percentage 

Figure 7.5. Comparison of the cooling load calculation with the cooling capacity 

using data from August 1 to August 7, 2020. 

7.3 Experiments on the Internal Heat Gains 

Since the test house was unoccupied, the simulation results in Chapters 5 

did not consider the impact of the internal heat gains on the pre-cooling strategies. 

Moreover, the impact of the internal heat gains on the accuracy of the cooling 
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load calculation also needs to be investigated. Hence, these effects were 

investigated in this section.  

The internal heat gains are typically generated by occupant and internal 

activities, for example, the cooking activities using the appliances inside the 

house. For the house, the total internal loads of 1.5 kW (5,118 Btu/h) and 3 kW 

(10,236 Btu/h) were selected to represent the moderate and high-intensity internal 

heat gains generated by the occupant and appliances. In this study, two electric 

heaters, each with a power of 1.5 kW, were used to simulate the internal loads. 

Figure 7.6 shows the electric heater of 1.5 kW used for the experiments of internal 

heat gains. 

                     

                      (a)                                                                          (b) 

Figure 7.6. Electric heaters used for internal heat gain test: (a) one heater 

representing moderate-intensity heat gains; and (b) two heaters representing high-

intensity heat gains. 
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In Chapter 3, the term 𝑄%, i.e., the scaled internal heat gains, in Equations 

(3.23) and (3.24) of the home thermal model proposed in Chapter 3 is similar to 

the term 𝑄+ , which is the scaled HVAC system output, reflecting the cooling 

capacity of 3.5 tons (42,000 Btu/h), and was identified through operational data. 

Since the cooling load and internal loads are similar and impact the thermal 

dynamics of the house space, the value of 𝑄% was estimated by the power ratio of 

the identified value of 𝑄+ , which is available in Chapter 3. Therefore, for one 

heater with 5,118 Btu/h, 𝑄%," = − ;,""^
:#,>>>

𝑄+ = −0.122𝑄+ , where the negative 

represents the heating effect on the house compared to the cooling effect from 𝑄+ 

(negative). For two heaters with a total of 10,236 Btu/h, 𝑄%,# = − ">,#9_
:#,>>>

𝑄+ =

−0.244𝑄+ . These values are available for use to investigate the impact of the 

internal heat gains on the home thermal model, model-based cooling load 

calculation method, and optimal pre-cooling strategy. 

 The home thermal model was simulated utilizing weather data on June 10 

and 17, 2020, as shown in Figures B.10 and B.11 in the Appendix B, and the 

value of 𝑄% in addition to the identified model parameters in Chapter 3. During the 

experiments, both operations of one and two heaters were tested from 2 to 4 pm 

when the outdoor temperature was relative higher during the day. The validation 

results were analyzed and compared whether considering the term 𝑄%  of the 

internal heat gains or not in the model. 
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Figures 7.7 shows the comparison of the simulation results for two internal 

heat gain experiments, where the gray solid, blue dash-dot, red dashed, and black 

solid curves represent the temperatures of the outdoor air, measured indoor air, 

simulated indoor air without 𝑄%, and simulated indoor air with 𝑄%, respectively. As 

observed in Figure 7.7(a), no obvious difference is observed from the simulated 

temperatures whether considering the moderate-intensity internal heat gains (𝑄%,") 

or not. This is a normal scenario occurring at the house in daily life. However, for 

the rare scenario where high-intensity internal heat gains (𝑄%,#) were generated, as 

shown in Figure 7.7(b), the simulated temperatures just deviated from the 

measured ones during the period from 2 to 4 pm and matched with the measure 

ones again after the period. In terms of this experiment on June 17, space air 

temperatures located at different bedrooms in the house were also compared and 

plotted in Figure 7.8. As observed in Figures 7.7(b) and 7.8, the temperature 

differences between the simulated and measured ones during the test period were 

similar to the measured temperature differences between different bedrooms 

before the test period and were still in a reasonable range. Moreover, to 

quantitatively observe the differences between the measured and simulated 

temperatures for these scenarios, the comparison of the absolute errors of the 

simulation results was listed in Table 7.3, in which the worst scenario was still in 

a range of 1.02 °F and 3.59 °F of the mean and maximum absolute error and was 

within the statistic error generated by the thermal model itself. 
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(a) The internal heat gains of 5,118 Btu/h when considering 𝑸𝒊,𝟏 or not. 

 

(b) The internal heat gains of 10,236 Btu/h when considering 𝑄%,# or not 
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Figure 7.7. Validation for two different internal heat gains generated from 2 to 4 

pm on June 17, 2020 when considering 𝑸𝒊 or not. 

 

Figure 7.8. Comparison of space air temperatures located at different bedrooms 

in the house. 

Table 7.3. Absolute error comparison for the simulated data. 

      Scenario 

   Day 

Mean absolute error, °F Maximum absolute error, °F 

Without 𝑄% With 𝑄% Without 𝑄% With 𝑄% 

June 10 0.66 0.67 2.80 2.90 

June 17 1.02 1.03 3.59 2.93 

 

 In addition, to investigate the energy performance of the experimental 

days whether considering the internal heat gains or not, the corresponding cooling 
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load Qcl,m (without considering Qi) and Qcl,m @ Qi (with considering Qi) and the 

absolute error percentage, defined by |Qcl,m – Qcl,m @ Qi|/0.5Qcc,d, were also 

calculated and compared, as shown in Figures 7.9 and 7.10. As observed from the 

figures, the cooling load did not show much difference whether considering the 

internal heat gains or not and the absolute error percentage was less than 10% 

even for the rare scenario where high-intensity internal heat gains were generated. 

Through these experiments, it validated that the internal heat gains had little effect 

on the home thermal model and model-based cooling load calculation in terms of 

their accuracy and energy performance. Moreover, the simulation results from the 

optimal pre-cooling operations when considering the internal heat gains or not 

were plotted in Figure 7.11, of which the HVAC operation performance of pre-

cooling was similar and only around 40-minute pre-cooling runtime difference 

was observed. Hence, the internal heat gains were negligible in this study. 

 

(a) Cooling load calculations 
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(b) Absolute error percentage 

Figure 7.9. Comparison of the cooling load calculations when considering 𝑸𝒊,𝟏 or 

not using data on June 10, 2020. 

 

(a) Cooling load calculations 

 

(b) Absolute error percentage 

Figure 7.10. Comparison of the cooling load calculations when considering 𝑸𝒊,𝟐 

or not using data on June 17, 2020. 

 

(a) When not considering 𝑄%,# 
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(b) When considering 𝑄%,# 

Figure 7.11. Comparison of the optimal pre-cooling operations using data on 

June 17, 2020. 

7.4 Implementation of Optimal Pre-Cooling Strategy 

This section illustrates the implementation of the simulated results of the 

optimal pre-cooling strategy (OPS) into on-site operations through the software 

platform, as described in Section 7.1.2. 

7.4.1 Selection of weather conditions 

   Since the experiments started in September, there were few days suitable 

for the experiments. Hence, based on weather forecast, weather data on 

September 5, 2020 was selected as a reference day to generate the operation 

control signals from the simulation results of OPS and then the signals were 

implemented into the control system operating in a similar day on September 26, 

2020. Figure 7.12 shows the comparison of the outdoor air temperatures for the 

selected days. The detailed weather conditions can also be found in Figures B.12 

and B.13 in the Appendix B. As observed, the outdoor temperature of the 

operation day on September 26 does not matched the reference day on September 

5 well, especially before noon. This may cause differences for the operation and 
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energy performance in the experiment. But this can still serve as the purpose for 

testing OPS in real operations. 

 

Figure 7.12. Comparison of the outdoor air temperatures from the selected days. 

7.4.2 Experiment for optimal operation control 

Followed by the same simulation setup described in Section 5.3, a 24-hour 

simulation with a sampling period ∆𝑡 of 5 minutes has been carried out for OPS. 

The simulation utilized weather data as described in Section 7.4.1. The optimal 

operation control signals from the simulation results of OPS were implemented 

into the platform to control the thermostat operations as stated in Section 7.1.2. 

All the simulated and real operation results were compared in terms of the 

operation and energy performance. These results were plotted in Figures 7.13 and 

7.14. Note that the simulations utilized the indoor air temperature T7 while the 

real operation control was based on the thermostat temperature. Because the data 
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from T7 had a better granularity (i.e., 30-second interval) than the measured data 

from thermostat (i.e., 5-minute interval). 

As observed from Figure 7.13, both the measured air temperatures from 

thermostat and T7, located in different locations of the house as shown in Figure 

7.2, matched with the thermostat set points with different deadbands during most 

of the day, except for the times at 15:25 and 15:45 during the on-peak hours from 

15:00 to 19:00, at which the system was on two times for around 20 minutes in 

total, and the times at 21:40, 23:20, and 23:30 after on-peak hours, at which the 

system was on three times for around 15 minutes in total. The operation 

differences between thermostat set points and its measured temperatures may be 

explained by the operation control that used data from T7 instead of the 

thermostat temperature data. Even if the system was on for a short time during the 

on-peak hours, the HVAC system was still able to avoid most of the on-peak 

hours.  
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(a) Thermostat set point and thermostat temperature 

 

(b) Thermostat temperature and the measured indoor air temperature T7 

Figure 7.13. Comparison of the thermostat temperature set points and 

corresponding indoor temperature T7 for OPS. 
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Additionally, Figure 7.14 shows the comparison of the simulated and 

measured total power use, where the simulated one is slightly higher than the 

measured one. This is because the outdoor temperature for the selected reference 

day on September 5 was generally higher than the operation day on September 26. 

The performance is consistent with the analysis in Chapter 5 and experiences. 

Overall, this experiment tested the implementation successfully and meanwhile 

demonstrated the effectiveness of the optimal pre-cooling strategy. 

 

Figure 7.14. Comparison of the HVAC total power uses for OPS. 

7.5 Summary 

 This chapter validates the effectiveness of the home thermal model in 

Chapter 3 by investigations of the impact of internal heat gains on the thermal 

model, accuracy of cooling load calculation using the mode-based method, and 

HVAC efficiency through experiments, which are conducted using the HVAC 
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system of a real test house. Moreover, it also implements and demonstrates the 

effectiveness of the optimal pre-cooling strategy proposed in Chapter 5 in terms 

of the operation and energy performance analysis. The experiments conducted in 

this chapter are based on assumptions, such as the weather condition used in 

experiments needs to be similar or identical to the selected reference day from 

weather forecast, the measured indoor temperature is used to represent the 

thermostat temperature, and the thermostat has a constant deadband during 

operation control, which need to be studied in the future work. 
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Chapter 8: Conclusions and Future Work 

In this study, a home thermal model is first successfully formulated to 

capture the home thermal dynamics with reasonable accuracy to describe the heat 

transfer processes between the indoor and outdoor environments of a home. The 

simplicity of the model also allows its parameters to be automatically estimated 

using a data-driven method. The accuracy of the home thermal model is validated 

by applying it to predict the home indoor temperature for the test home. The 

validation results for the test home show that training data for 6 consecutive days 

are needed to generate reliable parameters, i.e., the thermal properties of the 

home. More data improves the model robustness and therefore accuracy, but only 

marginally. The novelty of the study resides in the successful self-identification of 

the parameters of the thermal model for each specific home using the parameter 

estimation process presented. The automatically identified model can effectively 

connect weather data with home operations and capture the home thermal 

dynamics with reasonable demands on training data. The successful development 

of the model provides a key to achieve system operation optimization and reduce 

the energy cost needs for homes, which is the critical first step to realize model-

based intelligent home HVAC system operations.  

With reasonable simplifications to the home thermal model, a model-

based envelope performance evaluation method is proposed to assess the thermal 

performance of a home envelope in this study. The simplicity of the method 

allows the parameter to be automatically estimated using a short period of indoor 
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and outdoor air temperature data through data screening without the need for a 

home’s physical information. Depending on the availability of the wind or not, the 

method can also evaluate the integrated heat transfer rate of an envelope through 

both heat transmission and infiltration together or the heat transfer rate through 

heat transmission only. The effectiveness of the method is validated through three 

sequential experiments. The experiment results show that the thermal properties 

can be estimated and evaluated using the proposed method. Moreover, the method 

also shows that the estimated thermal properties are effective across homes. 

Although more experiments with the knowledge of the ground-truth of test home 

envelope conditions are needed, the proposed method can possibly be an effective 

alternative to traditional methods, which require intensive labor for measurements 

and calculations, for the evaluation of the home envelope properties using only 

short-period measurements of the indoor and outdoor air temperatures and HVAC 

on/off status. In addition, wind impact is not negligible for the data-driven 

envelope evaluation method if high-precision estimation is desired. 

Then this study also develops a pre-cooling optimization algorithm based 

on a quadratically-constrained integer linear programming problem that accounts 

for the thermal properties of a home, HVAC system capacity, utility rate 

structure, and weather conditions and makes use of a home thermal model. The 

effectiveness and energy performance of the optimal pre-cooling strategy is 

validated by comparison with three rule-based operation strategies. Through 

simulations, the results suggest that the optimal strategy is indeed significantly 
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more effective than the existing rule-based operation strategies. The successful 

development of the pre-cooling optimization algorithm for homes provides a way 

to benchmark energy performance of the optimal pre-cooling strategy.  

Since the optimal pre-cooling is heavily dependent on a specific set of 

conditions, such as specific thermal properties, HVAC system capacity, utility 

rate structure, and weather condition, the impact of different sets of conditions on 

the optimal pre-cooling is investigated by the operation and energy performance 

analysis on the thermal dynamics, total energy consumption, and energy cost 

through simulations, and is also compared with a rule-based pre-cooling strategy. 

It is found that the optimal pre-cooling is adaptive based on changing conditions 

and its performance is significantly dependent on weather conditions and home 

thermal properties, while its performance may vary for different cooling 

capacities and utility rate structures. The better the home thermal condition is, the 

less energy cost the operation requires. In terms of weather condition, it has the 

dominant impact on the performance of the optimal pre-cooling operation. The 

hotter the weather is in summer, the more cost savings a good thermal condition 

home can achieve. Moreover, less energy cost can be achieved for a HVAC 

system with a higher cooling capacity only when a home has a better thermal 

condition, and less energy cost also tends to be achieved for a utility rate structure 

with a much higher on-peak electricity price than those during off-peak or/and 

mid-peak hours. For a home with a poor thermal condition, however, it is found 

that the optimal pre-cooling strategy may need more energy consumption, while 
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the least energy consumption can always be achieved without sacrificing thermal 

comfort for a home with a good or better thermal condition, compared with rule-

based operation pre-cooling strategies. The superb energy performance of the 

optimal strategy is attributed to a longer runtime of the HVAC system in cool 

outdoor air conditions and to the elimination of deadband in HVAC operation, 

which is required by the rule-based strategies, to allow the indoor air temperature 

to stay near the thermal comfort upper bound as much as possible. These 

observations are in line with the analysis and expectations and experience.  

In addition, experiments are conducted in this study through using a real 

test home to investigate the impact of internal heat gains on the thermal model 

and cooling load calculations using the mode-based method and the HVAC 

efficiency. Moreover, experiments are also carried out for the implementation of 

the optimal pre-cooling strategy and meanwhile demonstrate the effectiveness of 

the optimal pre-cooling strategy in terms of the operation and energy performance 

analysis. 

Successful development of the home thermal model, model-based 

envelope performance evaluation method, model-based cooling load calculation 

method, and pre-cooling optimization algorithm for homes provides a systematic 

framework underlying an intelligent home HVAC system that can analyze the 

data to provide actionable instruction for advanced home HVAC system diagnosis 

and control, and for realizing home energy savings and grid-interactive efficient 

operations.  
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8.1 Potential Impact 

According to Building America Research to Market Plan (EERE 2015), 

the HVAC systems in residential buildings along present 27% to 42% energy 

savings opportunities by using advance monitoring of residential loads and fault 

detection and diagnosis. Buildings offer considerable potential for energy cost 

reduction. Grid-interactive and efficient building operations can shift or reduce 

load during peak hours, resulting in significant savings for both utilities and 

customers, according to the DOE statistics (EERE 2016). 

The pre-cooling optimization algorithm developed in this study could be 

applied to various HVAC systems and weather conditions for different thermal 

condition homes under the presence of different utility rate structures in a smart 

grid environment. Moreover, accuracies of the home thermal model and the 

related model-based methods have been validated and demonstrated through test 

homes. Additional thermal model capabilities that have been explored in this 

study include simulation of temperature fluctuations, study of thermal model 

parameters for simulation of cooling load, and real-time HVAC efficiency 

identification. These capabilities present cost-effective solutions and opportunities 

for fault detection and diagnosis, control, and cost savings in building system 

operations. The potential impact of this study includes: 

• Availability of abundant home operation data has provided a game-

changing opportunity to advance home operations. 
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• A holistic, physic-based model that can sufficiently capture the thermal 

behaviors is fundamental for optimal control purpose and HVAC system 

performance evaluations. 

• An energy efficient home HVAC system that provides valuable 

information to homeowners, occupants, and HVAC contractors can be 

developed based on the framework described. 

• Utilities could offer this system as their part of home energy efficiency 

programs. 

This research is therefore a fundamental research that will culminate in the 

development of methodologies and facilitate corresponding related software 

platforms built for smart thermostats and devices which serve to integrate 

physical sensor measurements with mathematical models for enabling grid-

interactive and efficient HVAC operations to obtain significant energy cost 

savings. 

8.2 Limitations 

The home thermal model is simplified under the assumptions that the 

internal heat gains are treated as one constant input and latent heat is not 

considered, there is room for improvement but while keeping the model 

sufficiently simple for compatibility with actual application in homes.  

This study formulates the quadratically-constrained integer linear 

programming problem that is solved using CVX, a MATLAB-based modeling 

system for convex optimization, based on the MOSEK solver for nonlinear 
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convex optimization. A relatively longer runtime is needed for the solver to get 

solutions for the optimization problem if weather condition is under a medium hot 

summer with a small diurnal temperature difference. Moreover, the thermal 

properties of different thermal condition homes were investigated and reflected by 

one of the model parameters, i.e., the value of the time constant of home 

envelope, in the simulations. When operational data from different thermal 

condition homes are available, other model parameters obtained by training 

process should be considered in practice.   

The experiment for optimal pre-cooling operation conducted in this study 

is based on assumptions, such as the weather condition used in the experiment 

needs to be similar or identical to the selected reference day from weather 

forecast, the selected indoor temperature is used to represent the thermostat 

temperature, and a thermostat needs to keep a constant deadband during operation 

control but different deadbands are observed during trials. 

Moreover, different from the typical HVAC on/off control algorithm 

based on the indoor air temperature set point with a deadband, optimal HVAC 

on/off control has the advantage of controlling thermostats directly via the 

generated optimal solution. However, currently available thermostats may not 

have this function. Other limitations in this study include the practicability and 

real-time deployment of the developed methodologies, given the current 

computational limitations for thermostats and HVAC control systems. 
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8.3 Future Work 

In view of the results from this study and issues encountered during the 

analysis, further investigation is required in the future. It includes: 

• When collecting data from different HVAC seasons for model training, 

investigations are required to determine whether the model parameter 

estimates need to be updated seasonally. 

• The internal heat gains need to be time-varying variables instead of 

constant and the latent heat needs to be investigated for home applications. 

• The optimal pre-cooling needs to be implemented and validated using 

additional measurements in more real homes and simulations to extend the 

results nationwide. 

• A prototype for the efficient home HVAC system will be built and tested 

with an industry partner. 

• The impact of the efficient home HVAC system on the utilities needs to be 

expanded to a neighborhood or a city level.  
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Appendix A: Model Parameter Estimation 

(1) Identify 𝜏" and 𝜏# in Equation (3.27) in Chapter 3 

𝑋"𝛽" = 𝑌"                                                                                                          (A.1) 

The least squares solution to Equation (A.1) is 

𝛽a" = ¨𝛽
a"(1)
𝛽a"(2)

© = (𝑋"5𝑋")6"𝑋"5𝑌"                                                                      (A.2) 

Thus, 

𝜏" = ∆𝑡/𝛽a"(1) and 𝜏# = ∆𝑡/𝛽a"(2).                                                                  (A.3)  

where 𝑋" and 𝑌" are known matrices; 𝛽" is the matrix to be identified; and  𝛽a" is 

the least squares solution matrix. 

𝑋" =

⎣
⎢
⎢
⎢
⎡ 𝑇'(2) − 𝑇%!(2) 𝑇%,(2) − 𝑇%!(2)

𝑇'(3) − 𝑇%!(3) 𝑇%,(3) − 𝑇%!(3)
⋮ ⋮

𝑇'(𝑘 − 1) − 𝑇%!(𝑘 − 1) 𝑇%,(𝑘 − 1) − 𝑇%!(𝑘 − 1)
𝑇'(𝑘) − 𝑇%!(𝑘) 𝑇%,(𝑘) − 𝑇%!(𝑘) ⎦

⎥
⎥
⎥
⎤

,         𝛽" = ª
𝜏"
𝜏#«,  

𝑌" =

⎣
⎢
⎢
⎢
⎡ 𝑇%!(2) − 𝑇%!(1)

𝑇%!(3) − 𝑇%!(2)
⋮

𝑇%!(𝑘 − 1) − 𝑇%!(𝑘 − 2)
𝑇%!(𝑘) − 𝑇%!(𝑘 − 1) ⎦

⎥
⎥
⎥
⎤

.                                                                       (A.4) 

(2) Identify 𝜏9, 𝑏", 𝑏#, 𝑎", 𝑎#, 𝑎9, 𝑄%, and 𝑄+ in Equation (3.28) in Chapter 3 

𝑋#𝛽# = 𝑌#                                                                                                          (A.5) 

The least squares solution to Equation (A.5) is: 
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𝛽a# =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛
𝛽a#(1)
𝛽a#(2)
𝛽a#(3)
𝛽a#(4)
𝛽a#(5)
𝛽a#(6)
𝛽a#(7)
𝛽a#(8)⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

= (𝑋#5𝑋#)6"𝑋#5𝑌#                                                                    (A.6) 

Thus,  

𝜏9 = ∆𝑡/𝛽a#(1), 𝑏" = 𝛽a#(2)/𝛽a#(1), 𝑏# = 𝛽a#(3)/𝛽a#(1), 𝑎" = 𝛽a#(4)/𝛽a#(1), 𝑎# =

𝛽a#(5)/𝛽a#(1), 𝑎9 = 𝛽a#(6)/𝛽a#(1), 𝑄% = 𝛽a#(7)/𝛽a#(1), and 𝑄+ = 𝛽a#(8)/𝛽a#(1).  

(A.7) 

where 𝑋# and 𝑌# are known matrices; 𝛽# is the matrix needed to identify; and  𝛽a# 

is the least squares solution matrix. 

𝑋! =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑇𝑖𝑒.2/−𝑇𝑖𝑛.2/ (𝑇"(2) − 𝑇#$(2))𝑊(2) .𝑇"(2) − 𝑇#$(2)/𝑊!(2) 𝐺(2) 𝐺!(2) 𝐺%(2) 𝑢#(2) 𝑢&(2)

𝑇𝑖𝑒.3/−𝑇𝑖𝑛.3/ .𝑇"(3) − 𝑇#$(3)/𝑊(3) .𝑇"(3) − 𝑇#$(3)/𝑊!(3) 𝐺(3) 𝐺!(3) 𝐺%(3) 𝑢#(3) 𝑢&(3)
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑇𝑖𝑒.𝑘−1/−𝑇𝑖𝑛.𝑘−1/ .𝑇"(𝑘 − 1) − 𝑇#$(𝑘 − 1)/𝑊(𝑘 − 1) .𝑇"(𝑘 − 1) − 𝑇#$(𝑘 − 1)/𝑊!(𝑘 − 1) 𝐺(𝑘 − 1) 𝐺!(𝑘 − 1) 𝐺%(𝑘 − 1) 𝑢#(𝑘 − 1) 𝑢&(𝑘 − 1)
𝑇𝑖𝑒.𝑘/−𝑇𝑖𝑛.𝑘/ .𝑇"(𝑘) − 𝑇#$(𝑘)/𝑊(𝑘) .𝑇"(𝑘) − 𝑇#$(𝑘)/𝑊!(𝑘) 𝐺(𝑘) 𝐺!(𝑘) 𝐺%(𝑘) 𝑢#(𝑘) 𝑢&(𝑘) ⎦

⎥
⎥
⎥
⎥
⎤

,         

𝛽# =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜏9
𝑏"
𝑏#
𝑎"
𝑎#
𝑎9
𝑄%
𝑄+⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

,  

𝑌# =

⎣
⎢
⎢
⎢
⎡ 𝑇%,(2) − 𝑇%,(1)

𝑇%,(3) − 𝑇%,(2)
⋮

𝑇%,(𝑘 − 1) − 𝑇%,(𝑘 − 2)
𝑇%,(𝑘) − 𝑇%,(𝑘 − 1) ⎦

⎥
⎥
⎥
⎤

.                                                                      (A.8) 
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(3) Identify the parameter 𝛼 (corresponding to 𝜏) in Chapter 4 

 Equation (4.15) can be written in a matrix form as: 

𝑋𝛽 = 𝑌                                                                                                    (A.9) 

where 

𝑋 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑇$(0) − 𝑇%&(0) +𝑇$(0) − 𝑇%&(0),𝑊(0) +𝑇$(0) − 𝑇%&(0),𝑊'(0)

𝑇$(1) − 𝑇%&(1) +𝑇$(1) − 𝑇%&(1),𝑊(1) +𝑇$(1) − 𝑇%&(1),𝑊'(1)
⋮ ⋮ ⋮

𝑇$(𝑘 − 2) − 𝑇%&(𝑘 − 2) +𝑇$(𝑘 − 2) − 𝑇%&(𝑘 − 2),𝑊(𝑘 − 2) +𝑇$(𝑘 − 2) − 𝑇%&(𝑘 − 2),𝑊'(𝑘 − 2)
𝑇$(𝑘 − 1) − 𝑇%&(𝑘 − 1) +𝑇$(𝑘 − 1) − 𝑇%&(𝑘 − 1),𝑊(𝑘 − 1) +𝑇$(𝑘 − 1) − 𝑇%&(𝑘 − 1),𝑊'(𝑘 − 1)⎦

⎥
⎥
⎥
⎥
⎤

,  

𝛽 = g
𝛼
𝛼𝑏"
𝛼𝑏#

h, 𝑌 =

⎣
⎢
⎢
⎢
⎡ 𝑇%,(1) − 𝑇%,(0)

𝑇%,(2) − 𝑇%,(1)
⋮

𝑇%,(𝑘 − 1) − 𝑇%,(𝑘 − 2)
𝑇%,(𝑘) − 𝑇%,(𝑘 − 1) ⎦

⎥
⎥
⎥
⎤

.                                             (A.10) 

Assuming that 𝑋  has full column rank, the least squares solution to 

Equation (A.9) is: 

𝛽a = �
𝛽a(1)
𝛽a(2)
𝛽a(3)

� = (𝑋5𝑋)6"𝑋5𝑌                                                              (A.11) 

where 𝛽a  is the optimal estimate of the unknown parameters. 

Thus,  

𝛼 = 𝛽a(1), 𝑏" = 𝛽a(2)/𝛽a(1), and 𝑏# = 𝛽a(3)/𝛽a(1).                                       (A.12) 
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Appendix B: Weather Conditions 

 

Figure B.1. Weather data from May 7 to May 21, 2020. 

 

Figure B.2. Weather data from May 28 to June 11, 2020. 
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Figure B.3. Weather data on August 2, 2020. 

 

Figure B.4. Weather data on July 16, 2018. 
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Figure B.5. Weather data on July 20, 2018. 

 

Figure B.6. Weather data on August 2, 2018. 
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Figure B.7. Weather data on August 9, 2020. 

 

Figure B.8. Weather data on August 19, 2020. 
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Figure B.9. Weather data on from August 1 to August 7, 2020. 

 

Figure B.10. Weather data on June 10, 2020. 
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Figure B.11. Weather data on June 17, 2020. 

 

Figure B.12. Weather data on September 5, 2020. 
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Figure B.13. Weather data on September 26, 2020. 
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Appendix C: Model Parameter Study Process 

 

Figure C.1. Study process of the model parameter 𝝉𝟐. 

 

Figure C.2. Study process of the model parameter 𝑏". 
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Figure C.3. Study process of the model parameter 𝑏#. 

 

Figure C.4. Study process of the model parameter 𝑎". 



239 

 

 

 

Figure C.5. Study process of the model parameter 𝑎#. 

 

Figure C.6. Study process of the model parameter 𝑎9. 
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Figure C.7. Study process of the model parameter 𝑄+. 
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Appendix D: HVAC System Cooling Performance Data from 

Different Tons 

 

Figure D.1. Performance Data – 3 Tons from a Manufacturer. 
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Figure D.2. Performance Data – 4 Tons from a Manufacturer. 
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Figure D.3. Performance Data – 5 Tons from a Manufacturer. 

 


