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Abstract 

The Harvard Automatic Processing Pipeline for Electroencephalography (HAPPE) in 

conjunction with The Batch Electroencephalography Automatic Processing Platform (BEAPP)  

is a computerized EEG data processing pipeline specifically designed for multiple site analysis 

of populations with neurodevelopmental disorders. This pipeline has been validated in-house by 

the developers but external testing using real-world datasets remains to be done. We collected 

resting and auditory event related data within a clinical trial for 100 children ages 3-6 years with 

Fragile X Syndrome. The trial encompasses 6 sites using several different EEG systems. This 

data set represents an ideal test of the new processing pipelines because the data comes from a 

population with typically high amounts of artifact as well as from different sites and systems. 

Therefore, we used this rich dataset to evaluate the software’s noise reduction techniques, data 

standardization features, and data integration in comparison to traditional manualized methods of 

processing. A MANCOVA was used to examine several measures of data post-processing and 

was found to be significant. Univariate results indicated that the HAPPE/BEAPP pipeline 

resulted in greater trials retained (F(4,24) = 5.80, p = 0.02), variance retained through ICA 

(F(4,24) = 39.74, p < 0.01), and smaller kurtosis (F(4,24) = 4.29, p = 0.049) than a manual 

pipeline for task-related data. No significant differences were found in signal-to-noise ratio 

(SNR) (F(1,24) = 0.18, p = 0.68). We did observe an overall loss of signal in the 

HAPPE/BEAPP pipeline, which is supported by the decrease in kurtosis. In order to further 

explore the reduction in signal, we processed simulated data in both pipelines. The simulated 

data was composed of simulated brain, pink noise, and real artifact. We measured correlations 

between the post-processed data from each pipeline and the pure simulated brain signal. Using a 

paired samples t-test we determined that the correlation between the pure signal and processed 
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data was significantly higher for the manually processed data (M = 0.96, SD = 0.03) compared to 

the HAPPE processed data (M = 0.29, SD = 0.03); t(55)  = 105.87, p < 0.01. In conclusion, data 

processed using HAPPE has many benefits including less active processing time and artifact 

reduction without removing segments. One major drawback is an overall reduction of signal. It 

eliminates noise and artifact at the cost of reducing signal. Importantly the SNR in the real data 

was not significantly different between the manually processed data and the HAPPE processed 

data, so the signal reduction may not negatively affect outcome measures. Therefore 

recommended implementation of the HAPPE pipeline for neurodevelopmental populations 

depends on the goals and priorities of the research
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Background  

Electroencephalography (EEG) can be an effective, relatively inexpensive means for 

assessing brain activity in a number of contexts. However, use of EEG includes consideration of 

practical issues related to artifacts in the data. Artifacts can be caused by participants (i.e., as eye 

blinks, eye movements, muscle tension, or movement) or by environment (i.e., electrical noise, 

or equipment misuse and malfunction) (Keil et al., 2014). In order to provide accurate 

assessment of brain activity, artifacts must first be separated from brain signal. 

To accomplish this separation, researchers use several methods of artifact removal or 

correction during preprocessing. There are no established and accepted standards for removal of 

artifacts, which has resulted in artifact removal techniques varying considerably between 

researchers. One typical approach to artifact removal is manual selection of artifact free data. 

This method is time intensive, and due to the reliance on subjective judgment of artifact levels, 

can vary considerably between processors. It can also reduce the number of trials available for 

data analysis. However, manual removal allows for specific selection of artifacts and can work 

especially well for artifacts that are irregular or extreme (Dickter & Kieffaber, 2014). 

 Another commonly utilized method for artifact correction is independent component 

analysis (ICA). ICA works by taking the EEG signal, which is a mixture of brain activity and 

artifact, and blindly separating it from rows of mixed data, separated by channel, into a matrix of 

temporally independent data sources, separated by a specified number of sources. ICA assumes 

that the data is linear with minimal delays in measurement, that the time courses of the sources 

are independent, and that the number of sources is no greater than the number of sensors. EEG 

data meets each of these assumptions given that the researcher chooses a number of components 

that is less than or equal to the number of channels used to collect the data. The resulting data 
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after ICA is divided into components by source rather than by channel. Researchers visually 

inspect the components in order to determine which are caused by brain activity and which are 

caused by eye or muscle movements, channel noise, electrical activity, or heart rate. Then the 

data is reconstructed into its original state, separated by electrode channel, now without the 

components that contain artifacts and are marked for removal (Jung, 2000; Makeig et al., 1996). 

ICA is particularly adept at extracting the smaller, more regular artifacts such as blinks, eye-

movement, or heart rate because the regularity creates a pattern within the data that ICA can 

distinguish as originating from one source. However, ICA does not do as well at extracting larger 

or more irregular artifacts, such as movement or muscle tension, into a singular source. In 

addition, because these artifacts can create more extreme variance in the data, movement 

artifacts can disguise the variance of the smaller more regular artifacts (Dickter & Kieffaber, 

2014; Jung, 2000).  

In order to make ICA component separation more accurate, researchers often employ 

ICA component removal after removing segments of artifact manually through visual 

examination and hand selection of the large irregular artifacts (Dickter & Kieffaber, 2014). 

Manually removing artifacts before ICA prevents larger irregular artifacts from masking smaller 

regular artifacts like heart rate and eye blinks, which allows for a cleaner separation of 

components in ICA. However, these methods introduce two points of subjective decision 

making, in which subjectivity is introduced into the data cleaning process. Researchers are 

trained to remove specific types of artifacts or to identify components for removal, but the 

process involves some subjectivity and compromise. Each researcher may choose to remove 

different sections of data or ICA components.  
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 In attempts to increase standardization, particularly at previously subjective decision 

points, and decrease labor, some preprocessing software has been developed to automate various 

parts of the processing. These pipelines have been developed and tested in healthy adults, who 

generally produce low levels of artifact. Most automated pipelines focus solely on automating 

the ICA component selection without any additional built in artifact removal (Joyce et al., 2004; 

Mognon et al., 2011). These automated artifact removal programs can work well in adults or 

simulated data. However, most are untested in children or neurodevelopmental populations. The 

automated programs are expected to have more difficulties in removing eye-related artifacts and 

heartrate in children and other high artifact populations because there are more overall sources of 

artifacts. Further, these populations tend to have larger amplitude, irregular artifacts related to 

increased movement and touching of the EEG equipment. To date, systematic evaluations of the 

discussed automated pipelines have not been done in children or neurodevelopmental 

populations (Webb et al., 2015).  

Another less utilized method for partially automating artifact removal is usage of wavelet 

transform and thresholding. EEG signals can be decomposed into different time-frequency 

domains. A wavelet function can be fit to the original EEG signal using the underlying frequency 

patterns of the data and correlating frequency wavelets to the EEG signal. During this fitting, 

wavelets can be omitted from the wavelet reconstruction if they fail to meet a certain threshold, 

which can be and has been defined using several different methods. Some of which emphasize 

elimination of white noise while other methods aim to get rid of eye-movement or cardiovascular 

artifacts(Castellanos & Makarov, 2006; Mamun et al., 2013). In order to increase the accuracy of 

wavelet thresholding, some researchers have attempted systems of combined wavelet 

thresholding and ICA. One study decomposed the data into wavelets then further decomposed it 
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using ICA denoising before filtering the wavelets and reconstructing the signal (Walters-

Williams & Li, 2011). Another paper used a form of ICA, Second Order Blind Identification 

(SOBI), to decompose the data into independent components (ICs) and then ran a soft wavelet 

threshold on the ICs before reconstructing the data (Kaur & Singh, 2015). Each of these methods 

show some promise. However, most of these techniques have been tested on simulated or 

partially simulated data that often does not contain realistic artifacts above and beyond white 

noise, and none of them were tested in children or high artifact contaminated data.  

EEG is increasingly being used in studying developmental populations, populations with 

neurodevelopmental disorders, and more generally in disorders with increased prevalence of 

artifact within EEG data. Specifically, EEG is being used to develop biomarkers for use in 

diagnosis and clinical testing for many disorders including fragile X syndrome, autism spectrum 

disorder (ASD), and epilepsy (Bosl, 2017; Sahin et al., 2018). Although the use of EEG in these 

populations can inform treatments and diagnoses and is a promising avenue for research, the 

discussed currently available automated processing pipelines for removing artifact are not 

designed for high artifact populations and therefore cannot be successfully deployed. The large 

amplitude artifacts found in these populations can mask the variance in the smaller more regular 

artifacts resulting in poor separation of artifact from brain activity during ICA. Instead, manual 

artifact removal and manual ICA component selection are typically used. These manual 

processes allow for more complicated and precise decision making in the artifact removal 

process, but they also introduce both increased processing time and subjectivity into the 

preprocessing.  

The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE) 

attempts to alleviate these issues and create a fully automated preprocessing pipeline that can 
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handle data with high levels of artifact (Gabard-Durnam et al., 2018). It was originally designed 

and tested using a dataset from a developmental population with diagnosed autism spectrum 

disorder. It can process event-related and resting state EEG data. The pipeline puts data through 

a series of filtering, channel selection, electrical noise removal, channel rejection, wavelet-

enhanced ICA, ICA with component rejection, channel interpolation, and re-referencing. It also 

provides some standardized outputs for assessing data post-processing (Gabard-Durnam et al., 

2018). The Batch Electroencephalography Automated Processing Platform (BEAPP) is a 

platform that integrates various EEG processing tools including HAPPE for use on multiple files, 

also addressing some issues with multiple data collection systems and sites (Levin et al., 2018).  

Purpose and Research Objectives 

In the current study, we aim to independently evaluate HAPPE through BEAPP using a 

dataset from a large multisite clinical trial. The dataset is uniquely fitting for the evaluation of 

HAPPE for several reasons. It contains data from children with Fragile X Syndrome, which is a 

single gene neuro-developmental disorder with symptoms of cognitive impairments, extreme 

social anxiety, sensory hypersensitivity, and some slight physical characteristics such as facial 

dysmorphologies (Hagerman & Hagerman, 2002). EEG data collected from children with Fragile 

X syndrome often has a high level of artifact (Hagerman & Hagerman, 2002). In this study, the 

data was collected using several different EEG systems, in different sites across the US, and has 

a series of repeated visits per subject. The dataset has both resting-state data, and event-related 

data. Therefore, this dataset represents an ideal test of HAPPE in the contexts for which it was 

designed. We evaluated HAPPE in comparison to the typical methods of manual artifact 

rejection in conjunction with manual artifact component removal after ICA.  
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Although using real data from children with FXS allows for testing HAPPE in the exact 

conditions for which it was designed and will be implemented in, there are some limitations in 

assessing the outcome of the pipelines. We have efficient methods for estimating signal to noise 

ratio in real EEG data, but true signal and true noise cannot be known in real data. Therefore, a 

supporting analysis was done using simulated data. HAPPE was developed and tested using real 

data (Gabard-Durnam et al., 2018). The Multiple Artifact Rejection Algorithm (MARA), a 

component of the HAPPE pipeline, in particular was developed using machine learning on 

distinct features of real EEG data (Winkler et al., 2011). Therefore, it may not perform optimally 

on simulated brain data and artifacts if the simulations are not realistic.  Current methods of 

simulating data often focus largely on simulating only clean brainwaves, or in a single channel, 

or only a short period of time (Haufe & Ewald, 2019; Pontifex et al., 2017). Simulations 

typically use white noise as an introduction of noise to their signal, but they often fail to 

introduce artifacts such as eye-movements, blinks, heart-rate, muscle tension, or general 

movement and high amplitude artifacts. In order to use simulated data in these pipelines and 

represent how they would perform in the real world, this data needs to be as realistic as possible 

by inclusion of realistic artifacts. Our simulated data is composed of simulated signal, pink noise, 

and artifact components taken from the FXS dataset. Our method of using simulated signal, 

simulated pink noise, and real artifacts, creates a balance in which the signal can be known and 

measured before and after processing. Further the artifact is realistic enough to be processed by 

the pipelines similarly to real data. The data was processed using both pipelines, and signal to 

noise ratio was determined by assessing the correlation between the processed data and the 

simulated signal that went into the pipelines. This outcome aids in the interpretation of the results 

of the main analysis. 
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For the main analysis, we hypothesized that data preprocessed using manual artifact 

rejection techniques would have a smaller signal-to-noise ratio and fewer trials retained in 

comparison to the automated processing pipeline using BEAPP to integrate data and run HAPPE.  

We used variance retained and number of components removed to explore the results of 

any signal to noise ratio differences found between the pipelines. We used variance retained and 

number of epochs retained to evaluate data retention in resting-state data. 

Additionally, for each pipeline, we examined the test-retest reliability of the P1 ERP peak 

amplitude of an auditory oddball task by evaluating the difference between data collected at two 

different timepoints for subjects in the FXS dataset. As this is a within-subjects assessment 

across both time and pipeline, differences in intraclass correlation between pipelines highlight 

differences in standardization of data cleaning and signal retention. 

Lastly, we evaluated and compared qualitative aspects of the pipeline, such as, amount of 

time needed to process the data, number of salvageable datasets, and problems faced in using the 

pipeline.  

The richness of the current dataset in combination with the simulated data work together 

to highlight strengths and limitations to the HAPPE/BEAPP pipeline, including specific 

circumstances or artifactual features which are not reliably classified by automated processing.   
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Methods 

FXS Dataset 

For this evaluation, we used data from a double-blind randomized clinical trial which 

includes 100 children ages 32 months to 6 years that have a diagnosis of fragile X syndrome 

(FXS), a full FMR1 mutation. All patients participated in a 4 month placebo lead-in period. 

Task-related EEG as well as resting-state EEG data were collected at baseline, and then again 

before starting treatment or placebo. The task is a passive listening auditory oddball task lasting 

approximately 8 minutes. Participants completed a passive auditory oddball task presented using 

Presentation software (Neurobehavioral Systems, Albany, CA). Stimuli consisted of 432 

“standard” tones (1000 Hz; 90% of stimuli) and 48 “oddball” tones (2000 Hz; 10% of stimuli) 

presented at 70 dB SPL via bilateral speakers. Tones were 70 ms in duration including a 10ms 

rise/fall with 1000 ms inter-stimulus interval. Order of stimuli was pseudorandomized with the 

caveat that at least 6 standard stimuli must be presented sequentially before an oddball stimulus 

would occur once at either the 7th, 8th, 9th, or 10th position in a 10 stimulus train (Schneider et al., 

2013). Participants watched a silent video of their choice during stimulus presentation to improve 

comfort and reduce movement. For the purposes of this study, only the standard stimuli were 

analyzed.  

Resting-state collection lasted approximately 3 minutes. Participants were instructed to 

sit quietly with eyes open for 1 minute, 30 seconds with eyes closed, then repeat this sequence 

once more. If a participant was unable to comply with instructions to maintain eye closure, 2 

minutes of eyes open resting EEG data was collected. Due to compliance issues in this age range 

and level of intellectual ability, the majority of participants provided eyes open EEG only, 

therefore only eyes open resting data was analyzed for the purposes of this study. We use the 
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EEG data from the initial screening visit, and a baseline follow-up. Both visits occur prior to 

randomization and treatment administration. The data was collected from 6 different sites and 4 

EEG systems, a Biosemi 32 channel system (1 site), an EGI 32 channel system (1 site), an EGI 

64 channel system (1 site), an EGI 128 channel system (3 sites). Of the 100 children in the 

overall study, we were able to collect usable EEG data from 25 children for our analysis. As a 

result of the population and diverse data collection circumstances, we are able to test the 

HAPPE/BEAPP pipeline in the exact conditions for which it was designed. For the comparison, 

all data is preprocessed using both a manual pipeline and the HAPPE/BEAPP pipeline separately 

in order to evaluate the effectiveness of the automatic pipeline in removing artifact against the 

known effectiveness of the manual pipeline (Ethridge et al., 2019).  

Simulated Dataset 

 A power analysis was done using G*Power (Erdfelder et al., 1996). Specifically, we 

calculated how many participants would be needed to find the difference in SNR from the SNR 

univariate test in the FXS dataset analysis at a power of .8 and alpha of .05. From this, we 

determined 56 simulated datasets would be sufficient for the simulated data analysis. The 

simulated data was created to have the same 33 channel layout as the FXS dataset, the same 1000 

HZ sampling rate, and be 244.25 seconds long or approximately 4 minutes. It was constructed 

from 32 components falling into 3 categories. The first category was simulated brain signal. 

Eight of the 32 components were simulated brain signal. The 8 components were 2 delta 

components, 2 theta components, 2 alpha components, and 2 beta components. Each had 

topographies typical of their frequency band but none had identical topographies. The simulated 

signal was created using EEG Simulation Scripts from the SimEEG program (Bridwell et al., 

2018). The second category was pink noise. Pink noise made up 16 of the components in the 
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simulated data. The pink noise was generated with the power spectral density slope and  ranged 

from -3 dB/oct. to -10 dB/dec with a zero mean (Zhivomirov, 2020).The last category was 

artifact. Artifacts were selected by examining the ICA components from the FXS data in order to 

make the simulated data as realistic as possible so that the quality of processing assessed for the 

pipelines could be more accurately generalized to real data.  The artifact components selected 

contained clear artifacts with as little brain activity as possible. 8 artifacts were selected: 2 eye 

movement artifact components, 2 blink artifact components, 2 heartrate artifact components, 1 

ear muscle artifact component, and 1 neck muscle artifact component. Each artifact component 

was shifted a varying amount of time for every simulated dataset so that artifacts would not 

occur at the same time in each dataset. In addition, each artifact component was multiplied by a 

random number from 0.2 to 2 in order to vary the amplitudes and relative variance accounted for 

of each artifact.  

Manual pipeline – Real EEG Data 

Before processing, all FXS data was re-montaged to a 33-channel EEGLAB standard 

channel layout following the 10-20 system. Then raw data was digitally filtered at .5-120 HZ (12 

and 24 db/octave rolloff, respectively; zero-phase; 60 Hz notch) and re-referenced to average 

reference. The data was visually inspected. During this inspection, sections of high amplitude 

artifacts as well as sections of artifacts that are present across the majority of channels, such as 

some muscle tension artifacts, were removed by hand selection. The periods of data selected for 

rejection range from one short burst of muscle tension or high amplitude to a larger range of 

several seconds of muscle tension or high amplitude artifact. The amount removed differed 

between subjects depending on the presence of the larger artifacts. The shortest task-related data 

file after segment rejection was 266 seconds, and the shortest resting-state file used after segment 
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rejection was 90 seconds. The lower length limit required to perform ICA on this data was 22 

seconds (Groppe et al., 2009). Bad channels were interpolated (no more than one interpolated 

channel per file) using spherical spline interpolation implemented in BESA 6.0 (MEGIS 

Software, Grafelfing, Germany). These bad channels were identified visually by pervasive high 

amplitude irregular artifact throughout the majority of the recording. However, a limit of one 

interpolated channel was used to retain data integrity given that the data only has 33 channels 

and interpolating more than 5% of channels would introduce bias into the data. Heart-rate, eye-

movement, and muscle movement artifacts were removed using independent component analysis 

(ICA) implemented in EEGLAB (Delorme & Makeig, 2004) through MATLAB (The 

Mathworks, Natick, MA) to separate the variance within the data into source components. Then 

visual inspection was done to remove the components containing artifact.  

Decisions regarding component removal or retention were made by examining several 

features of the data in each component. Brain related components that were marked for retention 

were recognized by scalp topographies with dipoles, as well as a slowly decreasing power 

spectrum with peaks between 5 and 30 HZ, and/or visible ERP in the epoched data. As for 

components marked for removal, eye-related components were identified by topographies in 

which the variance is localized towards the front of the scalp, as well as through characteristic 

patterns of moderately high amplitude spikes or steps in the component’s waveform, and a power 

spectrum with low frequencies. Heart-rate related components were identified by diagonally 

oriented near linear gradients across the scalp in the topography, either no peaks or a very small 

theta peak in the power spectrum, and a clear regular QRS complex in the waveform. Muscle-

tension related components have power concentrated in higher frequencies, and have highly 

specialized localized topographies over single or very few electrodes, such as outside the head, 
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the back of the neck, or over an ear. Line noise components were identified by a strong peak in 

the power spectrum at 50 or 60 HZ. Lastly, channel noise components were identified by 

topographies localized to one electrode. Movement artifacts should have largely been removed 

from the data prior to ICA, but were recognized by large amplitude in the waveform, 

concentrated variance in the epoched data, or variance contained in a small number of trials.  

Some components may contain both artifact and brain data or are more difficult to match 

to a specific artifact (see Figure 1 for examples of each of these artifacts). Researchers had to 

make judgements regarding level of artifact and amount of brain data to be lost in order to 

determine if the components should be retained or removed. This can be particularly difficult and 

increasingly subjective if the source separation between brain and artifact is not clear. The 

flexibility of a researcher can be a benefit when perfect source separation is not possible, but it 

can also introduce differences in processing between researchers and datasets.  

After the components containing artifact were identified and marked for removal, the 

data was reconstructed into its original form of separation by channel without the components 

that were marked as artifact. Task-related data was then segmented into 1500 ms trials (-500 to 

1000 ms). Resting state data was blocked into 2 second epochs. Trials and epochs were 

considered residual artifact if waveform amplitudes exceeded 120µV and were removed. Task 

data was then averaged across trials for standard stimuli. Event marker timing was adjusted prior 

to segmentation if necessary according to event timing tests performed at each site prior to data 

collection. Overall the manual processing pipeline uses subjective reasoning in 3 parts of its 

process. We had to decide which channel, if any, needed to be interpolated, the segments of data 

that needed to be removed, and which of the components from the ICA needed to be removed.   
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Automatic pipeline – Real EEG Data 

In order to combine the different EEG systems, data was first re-montaged from their 

original system layouts to an EEGLAB standard 33 channel montage, and for each file a 

maximum of one bad channel was selected and interpolated if necessary. BEAPP was used in 

order to choose preprocessing settings, integrate EEG systems, and run HAPPE on the data 

(Levin et al., 2018). In BEAPP, settings for preprocessing were decided based on recommended 

settings for HAPPE as well as with the knowledge that ERP data needs a slightly lower high-pass 

filter. Those included filtering at 0.5-250 HZ and notch filtering at 60 HZ in order to remove 

electrical noise. The automated pipeline filtered the data, labeled and removed bad channels, and 

ran the data through wavelet-enhanced ICA (W-ICA), ICA, Multiple Artifact Rejection 

Algorithm (MARA), referencing, and then segmentation for task-related data (Gabard-Durnam et 

al., 2018). The main aspects of this pipeline that are unique compared to the manual pipeline are 

the automatic selection of bad channels, the W-ICA, and the use of MARA for component 

classification. Our data was not suited for automatic selection and interpolation of bad channels 

through HAPPE because it does not allow for a maximum number of channels to be set for 

interpolation. Since the data is limited to 33 channels, interpolation of more than one channel 

could bias the data. Therefore, we preselected a maximum of one channel for interpolation and 

allowed HAPPE to select other channels for removal without reintroduction.  

The W-ICA works by decomposing the data through ICA into components, and then the 

components are subjected to a wavelet transform to further separate the neural data from the high 

amplitude artifacts and remove the statistically separated out artifact from each component 

without removing the component as a whole. In this way, it eliminates larger artifacts from the 

data while retaining neural signal. Then the data is reconstituted into its original form organized 
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by electrode channel (Castellanos & Makarov, 2006). After W-ICA, the data is put through ICA 

again and broken down into components. Then the components were examined for retention or 

rejection by MARA. MARA uses 6 features of EEG data to give a rating of artifact for each 

component. Those features include current density norm, range within pattern, mean local 

skewness, λ and fit error, and the average log band power of the alpha band (8-13 HZ). The six 

features are a result of the reduction of 38 features of ICA to the 6 features that best discriminate 

brain activity from artifact. Current density norm is an estimation of the complexity of the 

underlying source location and spread with more complex sources more likely to be artifact. 

Range within pattern is the logarithm of the differences between the minimum and maximum 

activations in a component’s pattern. Mean local skewness gives the mean absolute local 

skewness for 15 second time intervals over the component waveforms. λ indicates wavelength 

deviation of each component’s power spectrum from a 1/frequency curve. Fit error also 

examines the difference between a components power spectrum and a 1/frequency wave by 

using the logarithm of the mean squared error. The last feature MARA uses is the average log 

band power of the alpha band (8-13 HZ). After rating each of these features, MARA outputs an 

overall rating of the probability of artifact in a component to choose which components to 

remove (Winkler et al., 2011, 2014). From the MARA output, HAPPE generally uses a cut off of 

0.5 for eliminating components, but suggests an increase to 0.7 for high artifact contaminated 

data. After examining processed data with both the 0.5 threshold and the 0.7 threshold, we 

determined that the 0.7 threshold was a better fit for this dataset. It did a better job retaining 

relevant signal in some files and was not noticeably detrimental compared to the 0.5 threshold in 

any files. Once data was through ICA and MARA, data was average referenced, and then task-

related data was segmented into 1500 ms trials (-500 to 1000 ms). HAPPE outputs the processed 
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data as well as some descriptive results for each file. Resting state data was blocked into 2 

second epochs. Trials and epochs were considered residual artifact if waveform amplitudes 

exceeded 120µV and were removed. For the task related data, we then averaged the pre-

processed data across trials for standard stimuli. Overall, algorithms within the HAPPE/BEAPP 

pipeline make discriminations about artifact and its removal in two parts of the pipeline, in W-

ICA and in determining which ICA components to reject or retain. In this particular dataset an 

additional subjective element was introduced because HAPPE had no method for placing an 

upper limit on the number of channels to be interpolated, so we preemptively interpolated a 

channel if needed before running the data through the pipeline.  

Processing Simulated Data 

 For the simulated data, both processing pipelines were run with all of the same settings as 

the real data with two notable exceptions. First, the simulated data was created using artifact 

components from ICA run after data had been through manual interpolation of channels and 

manual selection of data for removal. This means that although the data contains real artifact, it 

is retains less large-scale artifact than raw data from children with FXS. Due to this caveat, for 

the simulated data in the manual pipeline, no additional channels were removed and no 

additional segments of artifact were removed. The primary method for artifact removal in the 

simulated data was ICA and manual ICA component removal. In addition, one problem 

encountered with processing simulated data is that artifacts were too easily identifiable for both 

researchers using the manual pipeline and for the automated pipeline. ICA was able to perfectly 

separate the simulated data into its 32 components with ease due to their reduced statistics 

dependence relative to real EEG data. Therefore, we limited ICA decomposition in both the 

manual pipeline and the ICA part of the automated pipeline to 16 components. This forced the 
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ICA algorithm to find fewer sources of variance, combine components and introduced some 

minor mixing between different types of components as well as some ambiguity in the artifact 

removal process, and more accurately simulated real-world decision making with mixed sources.  

Comparisons between manual and automated pipelines in FXS data 

We evaluated the differences between the pre-processed data from the manual and 

automated pipelines in several areas: signal to noise ratio (SNR), number of trials/epochs 

retained, variance retained, and system and site differences. In order to estimate the level of noise 

for the SNR, we multiplied the values of every other epoch for the standard waveform by -1 to 

flip the waveform so that positive peaks would be negative and negative peaks would be 

positive. Then we combined the altered standards with the normal standard trials. This 

combination retains power and variance throughout the dataset, but cancels out any event-related 

effects (van Drongelen, 2007). SNR was calculated by the amplitude at peak amplitude of the P1 

ERP (40-150 ms) for all standard trials divided by the amplitude of the flipped and combined 

standard trials during the same time window (Thigpen et al., 2018). Percent variance retained 

from ICA component rejection is automatically output by HAPPE and was calculated for the 

manually preprocessed data using the same EEGLAB function used in HAPPE. For the task-

related ERP data, a MANCOVA was conducted in SPSS with the dependent variables: SNR, 

number of trials retained, variance retained, and kurtosis. The covariates used were system and 

site. The dependent variable was the pipeline (e.g, manual or automated), and was treated as a 

repeated measure. Signal-to-noise ratio allows us to compare how well the pipeline reduces 

artifact or noise by evaluating the known and expected signal of a reliably activated sensory 

processing ERP peak (the P1 response) to the standard tone in our oddball task paradigm. 

Number of trials retained allows us to assess data retention, which is specifically impacted by 
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manual segment rejection in the manual pipeline as well as the final artifact threshold of 120µV 

for both pipelines. Variance retained only assessed the proportion of variance in the data after 

ICA compared to before ICA. It is relevant to both pipelines as both pipelines use ICA and 

component rejection, but it is influenced by the different steps preceding it in the different 

pipelines. Lastly, kurtosis allows us to examine the variance and outliers left in the data after 

processing. For resting-state data, a MANCOVA was conducted with the following independent 

variables: variance retained, epochs retained, and kurtosis. Again, the dependent variable was the 

pipeline, which was treated as a repeated measure. The covariates were system and site. Test-

retest reliability was calculated via intraclass correlation for the ERP peak amplitude of P1 for 

the standard trials in the auditory oddball task from the screening visit to the visit at baseline for 

each pipeline separately. Lastly, we compared the intraclass correlations by transforming the r-

scores to z-scores and running a difference test.   

Comparison for OB Yi = β0 + β1Pipelinei + β2Systemi + β3Sitei + ei, where SNR, Variance 

retained, Kurtosis, and Trials Retained are the DVs, and Pipeline is the IV.  

Comparison for Resting Yi = β0 + β1Pipelinei + β2Systemi + β3Sitei + β4Daysi + ei, where 

Seconds retained, kurtosis, and variance retained are the DVs, and Pipeline is the IV.  

Intraclass correlations and comparisons 

For test-retest: intraclass correlation of the peak amplitude of the P1 for standard trials for each 

dataset in each pipeline. In order to compare the pipelines we transformed the resulting Rs into z-

scores and found the difference between them using the following formula: 

𝑍𝑜𝑏𝑠 =  
𝑍𝑚𝑎𝑛𝑢𝑎𝑙−𝑍𝐻𝐴𝑃𝑃𝐸

√
(

1

𝑁𝑚𝑎𝑛𝑢𝑎𝑙−3
)+(

1

𝑁𝐻𝐴𝑃𝑃𝐸−3
)
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Comparisons between manual and automated pipelines in simulated data 

The correlation between the manually processed cleaned data and the pure simulated 

signal that went into the simulated data were calculated for all 56 simulated datasets. The 

correlation between the HAPPE, automatically processed cleaned data and the pure simulated 

signal was also calculated for every dataset. These correlations provide an overall measure of 

how well the pipelines retain signal and eliminate noise and artifact. A dependent t-test was used 

to compare correlations for the manually processed data and correlations for the automatically 

processed data. In addition to this analysis I calculated the power of the manually processed data, 

the HAPPE processed data, and the pure signal within delta, theta, alpha, and the beta frequency 

bands. I then calculated correlations between the processed power data and the pure signal power 

in order to further examine if any particular frequency band was differentially reduced in the 

cleaning process. Lastly, I ran time-series multiple regression analyses for every channel and 

every subject in both pipelines with the cleaned data as the dependent variable, and the original 

frequency band simulated signals as the regressors.  
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Results 

Task-related MANCOVA 

In order to examine the difference in processed task-related data from a manual 

processing pipeline as compared to HAPPE, a one-way repeated measures MANCOVA was 

used to allow an overarching look at multiple aspects of the resulting processed data for 25 files 

processed through each pipeline. The MANCOVA had one independent variable, the pipeline 

used to process the file, and four dependent variables, variance retained after ICA, trials retained, 

kurtosis of the waveform, and signal-to-noise ratio. Site and System were included as covariates. 

The model was highly significant (F(4,21) = 14.85, p < 0.01) demonstrating that there were 

differences in the processed data resulting from the two pipelines. There was a significant 

interaction between pipeline and site (F(4,21) = 4.35, p = 0.01), and no significant interaction 

between pipeline and system (F(4,21) = 2.16, p = 0.11) 

The univariate ANOVAs for the model allow investigation of the significance of the 

overall MANCOVA and of each outcome. The univariate test for SNR was positively skewed, so 

we log-transformed the variable, and it was not significant (F(1,24) = 2.33, p = 0.14). The 

univariate test for kurtosis was significant (F(4,24) = 4.29, p = 0.049), with a smaller kurtosis for 

HAPPE processed data. Univariate tests for trials retained and variance retained were each 

significant (respectively, F(4,24) = 5.80, p = 0.02, F(4,24) = 39.74, p < 0.01), with more variance 

retained and trials retained in the HAPPE processed data (See means in table 1 and univariate 

results in table 2). The significant difference in kurtosis between the pipelines without a 

significant difference in SNR may reflect a change in the scaling of the HAPPE processed data.  

Beyond the within-subject effects, between-subjects effects were used to examine the 

effects of site and system. No significant differences were found in SNR (F(1,24) = 0.18, p = 
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0.68), trials retained (F(1,24) = 1.81, p = 0.19), nor kurtosis (F(1,24) = 0.04, p = 0.84) between 

systems. Also no significant differences were found in SNR (F(1,24) = 1.86, p = 0.19), trials 

retained (F(1,24) = 2.39, p = 0.14), nor kurtosis (F(1,24) = 1.06, p = 0.31) between sites. 

However, there was a significant difference in variance retained for both systems (F(1,24) = 

6.97, p = 0.01) and sites (F(1,24) = 4.77, p = 0.04). This reflects differences in the amount of 

artifact removed in the ICA step. Therefore, although the different sites and EEG systems may 

differ in the amount of artifact removed, there seems to be no significant difference in the 

resulting cleaned data. 

Resting-state MANCOVA 

 Although signal retention is more difficult to assess in resting-state data given the lack of 

a defined and expected signal to examine, it is still important to assess how the pipelines handled 

resting-state data given its abundant use and generally shorter file length. Therefore, we ran a 

MANCOVA assessing data retention of resting-state data between the two pipelines with 4 DVs, 

kurtosis, variance retained in ICA, components retained in ICA, and seconds retained, with 

pipeline as the IV. Site and system were treated as covariates. The model was not significant 

(F(3,20)=1.91, p = 0.15). Further none of the univariate tests were significant: kurtosis (F(1,20) 

= 3.50, p = 0.08), variance retained (F(1,20) = 2.04, p = 0.17), seconds retained (F(1,20) = 0.13, 

p = 0.725).  Therefore, data retention of resting-state data was not different between processing 

pipelines.  

Intraclass Correlation 

Of the 25 files processed through both pipelines, 10 had both a screening and a follow-up 

visit. Therefore, an intraclass correlation was run to examine the reliability of the P1 peak 

amplitude for standard trials in the task related data from the screening to the follow-up. For the 
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data processed with the HAPPE pipeline, the intraclass correlation coefficient was 0.35. This 

indicates a weak to moderate relationship between P1 peak amplitude between visits. For the 

data processed with the manual pipeline, the intraclass correlation coefficient was 0.45 showing 

a moderate relationship between visits. After transforming these correlation scores to z-scores, 

the resulting difference test found no significant difference between the reliability of the P1 

amplitude processed with the HAPPE pipeline and the reliability of the P1 amplitude processed 

with the manual pipeline (z = 0.22, p = 0.83). 

Simulated Data Correlation and Multiple Regression 

 Pearson correlations were calculated between each processed set of data within both 

pipelines and the original simulated signal. Using a paired samples t-test we determined that the 

correlation between the pure signal and processed data was significantly higher for the manually 

processed data (M = 0.96, SD = 0.03) compared to the HAPPE processed data (M = 0.29, SD = 

0.03); t(55)  = 105.87, p < 0.01. Therefore, the manual processing pipeline recovered the original 

simulated signal to a greater extent than the HAPPE pipeline. Based on the main analysis we  

predicted that there would be a decrease in the scale of the signal when data is processed through 

HAPPE, but this comparison suggests that the difference occurs in both scale and in cleaning 

capabilities for simulated data. In order to further examine where those differences occur and if 

certain frequency bands are differentially affected, we also calculated power for delta, alpha, 

theta, and beta bands in the manually processed data, HAPPE processed data, and pure signal. 

Then we ran correlations between the processed datasets and the pure signal (see Table 3). The 

manually processed data had strong correlations with the pure signal for theta and alpha, a 

moderate correlation for delta, and a weak non-significant correlation between beta 

measurements. The HAPPE processed data and the pure signal had a weak significant correlation 
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for delta, and weak non-significant correlations for alpha, theta and beta. This shows greater 

reduction of signal in the beta band for both pipelines, and greater reduction of alpha and theta 

for the HAPPE pipeline. Regression coefficients for each signal and each channel were 

calculated and averaged across simulated subjects. Then the averaged beta weights were plotted 

on topographies for delta, theta, alpha, and beta predictors as well as for the residual variance 

(shown in Figure 6). The manual pipeline regression coefficients appear to be greater in all four 

frequency bands compared to the HAPPE processed regression coefficients, and the residual 

variance is smaller for the manual regression across the scalp.  
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Discussion 

The implementation of a fully automated processing pipeline for removal of artifact from 

high artifact EEG data could be revolutionary for EEG research and its expansion and 

standardization. If the success of HAPPE and its use through BEAPP can be independently 

replicated and supported, then it would fulfill this need.  The main MANCOVA model for the 

task-related data found significant differences between the processed data from the manual 

pipeline compared to processed data from the HAPPE/BEAPP pipeline. The main differences 

were driven by increased data retention shown by greater number of trials retained in task related 

data. In addition, variance retained in the ICA step of each pipeline was compared, and it was 

found that the HAPPE/BEAPP pipeline retained more variance. However, this difference is most 

likely driven by greater reduction in variance in the steps leading up to the ICA in the 

HAPPE/BEAPP pipeline, e.g. channel rejection and wavelet-threshold ICA, compared to the 

steps leading up to ICA in the manual pipeline, e.g. visual segment rejection. This idea is 

supported by the significant difference in kurtosis, which was significantly different between 

pipelines and showed decreased kurtosis for the data processed in the HAPPE pipeline. This 

reduction in kurtosis indicates reduction of variance and specifically artifact reduction. Perhaps 

the most important indicator of signal retention, artifact rejection, or both is SNR. The model 

found no significant difference between the SNR of data cleaned by the two processing 

pipelines. These results fit with the conclusion that there is an overall reduction in variance when 

files go through HAPPE, and this leads to a decrease in the scale of the HAPPE processed data in 

comparison to the manually processed data. The change in scale is shown in the range of the 

standard deviations of the processed data: the automatically processed data (min = 1.02, max = 

4.87), the manually processed data (min = 7.09, max = 18.57).  
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The between subject effects for site and system showed that the outcome measures 

quantifying cleanliness and length of the processed files did not differ between sites or systems. 

The only outcome measure that did differ between the sites and EEG systems was variance 

retained. Variance retained focuses solely on the amount of variance that was removed in ICA 

and can be a measure of data retention, but is difficult to interpret without other factors such as 

quantifications of signal and noise within the variance removed or retained. However, one likely 

explanation for the significance in variance retained between sites and systems is that there are 

differing levels of artifact in the pre-ICA data. If that is the driving force behind this difference 

then these results show that even if sites and systems had different levels of artifact in their raw 

data, they did not have different measures of kurtosis, SNR, or trials retained post analysis, 

which in combination supports the use of either pipeline for use with integrating different sites 

and systems.  

The comparison of the HAPPE/BEAPP pipeline and manual pipeline processing for the 

resting-state data showed no significant results, leading to the conclusion that the pipelines did 

not differ in data retention for the resting-state data. This result is particularly interesting given 

that the processing of the data in both pipelines should be no different for resting-state data 

compared to task related data. Since we included some of the same measures in the resting-state 

MANCOVA we expected similar results for variance retained, seconds retained (in place of trials 

retained), and kurtosis as were obtained for the task-related data. The most obvious explanation 

for this discrepancy is the length of the files. The resting-state files in this dataset were much 

shorter than the task related data, ranging from 138 seconds to 364 seconds with an average of 

191.22 seconds. They are adequate length for the measures needed for the clinical study such as 

measures of power and are an adequate length for cleaning and processing procedures. However, 
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the length of the file may influence the performance of the pipelines in the wICA step of the 

automated pipeline or the ICA steps ( Delorme et al., 2007; Makeig et al., 1996). This influence 

may or may not impact the final cleaning steps of the data. Since this MANCOVA only 

examined some aspects of overall data retention and not signal retention or noise reduction, we 

cannot make conclusions about how well either pipeline performed in cleaning the resting-state 

data. However, we can note that although the manual pipeline included segment rejection, the 

two pipelines did not differ significantly in seconds retained. The ICA step in the pipelines did 

not perform significantly differently in either components rejected and variance retained. Lastly, 

kurtosis was not significantly different in the cleaned data from the two pipelines possibly 

indicating similar levels of artifact reduction, or more generally, similar levels of reduction of 

variance and outliers.  

The results of the intraclass correlation were also not significant. Both pipelines showed 

weak to moderate intraclass correlation of the peak amplitude of the P1 for standard trials from 

the screening visit to the baseline visit. The low intraclass correlation may be driven by the 

young age of the participants (2.5 – 6 years) in combination with the time between visits (~4 

months). There was no significant difference in the intraclass correlations between the two 

pipelines. Given that the two pipelines were processing the same files and the HAPPE/BEAPP 

pipeline should increase standardization, we expected that would result in increased reliability of 

ERP measurements, but the HAPPE/BEAPP pipeline did not have a greater intraclass 

correlation. A main reason for using automated pipelines is increased standardization and the 

increased reliability that presumably can come from the increased standardization. This could 

potentially indicate that the increased standardization does not result in better reliability and 

therefore negates a major advantage for using this automated pipeline.  
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There are many aspects of signal retention, artifact rejection, and overall processing that 

are difficult to quantify and evaluate given the complex nature of EEG and the difficulty in 

parsing out true signal and true artifact. If one could determine true brain and true artifact easily 

then cleaning EEG data would be simple and perfectly automating the cleaning process would be 

a standard procedure in lab settings. Therefore, in addition to quantifying the differences 

between data processed by each pipeline in the ways already discussed, the cleaned data was 

examined qualitatively to see if there were trends in how each processing pipeline was successful 

or unsuccessful.   

Qualitative Differences 

A side-by-side comparison immediately reveals differences in the appearance of the 

cleaned waveforms after being processing by the two pipelines. While every HAPPE/BEAPP 

processed file appears very similar and clean, the level of cleanliness of the manually processed 

files varies somewhat from file to file. The only aspect of the data that was distinctly visually 

different between the automatically processed files was the degree to which high frequency 

artifact contaminated the data (see Figure 4). Beyond this, the most apparent difference between 

the two sets of processed files is the scale. The data processed with the HAPPE/BEAPP pipeline 

is reduced in absolute scale (representative examples shown in Figure 4 and Figure 5). Again, 

this reduction in scale can be seen in the minimum and maximum standard deviation values for 

the automatically processed data (min = 1.02, max = 4.87) compared to the manually processed 

data (min = 7.09, max = 18.57).One of the main strengths of the automated pipeline is that it 

consistently removed eye movements and large amplitude artifacts, and if the reduction in scale 

does not influence signal retention then it may be suitable for certain analyses.  



27 
 

In order to further investigate where the differences between the cleaned data arise we 

investigated the performance of critical steps in the HAPPE/BEAPP pipeline. The 

HAPPE/BEAPP pipeline allows for data output at almost every step of the process with the 

exception of between the wICA step and the ICA and component removal step. However, 

because wICA is one of the main computational steps differentiating HAPPE from this manual 

pipeline and other automated pipelines, and in order to examine the extent of the cleaning 

occurring in wICA compared to ICA, the data were output after wICA and before ICA. From 

visually inspecting the data between the wICA and ICA steps, it appears that the greater overall 

reduction in artifact and variance observed in the HAPPE processed waveforms is driven largely 

by the wICA step. After this step, the majority of the artifacts in the waveform are removed, 

particularly, eye-movements, blinks, and low frequency movement artifacts. It is unsurprising 

after this observation that the ICA step of the HAPPE pipeline removed much less variance in 

the ICA step compared to the manual pipeline. In the HAPPE pipeline, ICA seems to act as a 

back-up for left over artifact rather than a main method of removing artifact. Whereas, in the 

manual pipeline, the ICA step is a key part of the artifact removal process and the only method 

used for certain artifacts including eye-related artifacts and cardiac artifact.  

Lastly, the resulting ERPs for the data processed with the two pipelines showed similar 

visually observable differences as the waveforms. When examining the ERPs, the noise and 

signal of the manually processed data were much larger than the noise and signal of the 

automatically processed data (see Figure 5). The model showed the SNRs did not significantly 

differ between pipelines. Therefore, it seems to be the case that the automated processing 

pipeline is reducing both signal and noise more than the manual processing, but not providing 

increase in SNR compared to the manual pipeline.  
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Both processing pipelines took about the same amount of time to process a single file, 

about 40 minutes. However, the time spent processing in the manual pipeline was time in which 

a researcher had to be actively processing. The HAPPE pipeline processes files without 

intervention from the researcher, and the BEAPP processor allowed for files to be run in batches, 

so many can be run at once without interference from a researcher. This is a major strength in 

using the automated pipeline. If the researcher decides to make a change such as in level of 

filtering or resampling, it is fairly easy to reprocess all of the files. However, we did encounter 

several technical issues in using both BEAPP and HAPPE that could perhaps be improved upon 

in future releases. 

First although BEAPP is designed to analyze data from multiple EEG systems and 

integrate it, it does not have a way to montage the data to a new channel layout. Since our data 

was coming from different layouts, we needed to montage it to a standard layout prior to 

cleaning in order to retain standardization of processing between sites. Therefore, we had to 

montage the data in EEGLAB prior to putting it through the automated pipeline. Since full 

automation is the goal, this is one area in which the pipeline fails to meet that goal. One option it 

does have for integrating the systems could be to select only the channels which overlap most in  

location coordinates between systems to use and discard the rest of the channels. However, the 

channels may not be located in exactly the same place and this can introduce systematic 

differences between sites or systems. Another problem encountered is that the HAPPE/BEAPP 

pipeline removes any channels from the data that are three standard deviations outside of the 

mean amplitude. It also interpolates data back into those channels after the data cleaning process 

is over. This could be a good and standard way to remove bad channels from the data. However, 

no upper limit can be placed on the number of channels removed and interpolated. Our data 
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contains 33 channels so interpolation of more than one electrode would be over 5% of the data 

and interpolation would bias the data. Therefore, we had to inspect the data visually and 

interpolate an electrode, if needed, before running the data through the automated pipeline. This 

introduces subjectivity into the automated pipeline and undermines one of the main reasons to 

use it which is the removal of subjectivity from the data cleaning process. However, BEAPP did 

give an option for removing bad channels without interpolating them back in after processing. 

This allowed for HAPPE to work within the conditions it was designed, eliminating further bad 

channels, without biasing the data through interpolation. In contrast, in the manual pipeline, we 

did not remove channels above and beyond the maximum of one channel interpolated.  

One major strength and limitation of this analysis is our use of real data. Since our dataset 

was made up of various EEG systems and contained data from children with FXS, it allowed us 

to test HAPPE and BEAPP together in the exact conditions for which they were developed: from 

neurodevelopmental populations with high artifact contamination and multiple sites and systems 

integrated together. However, it was difficult to accurately capture and assess performance of the 

pipelines given the inability to know and parse out what is truly brain activity and truly artifact. 

Therefore, our next step was to include simulated data in addition to the FXS dataset in order 

measure the exact levels of signal and of noise in the data pre and post processing. This allows us 

to capture both signal and noise reduction resulting from the two pipelines.  

Simulated Data  

The manually processed simulated data was significantly more correlated with the 

original simulated signal than the HAPPE processed simulated data was. This correlation 

indicates a relationship between the processed data and the original pure signal that went into the 

data. The strong correlation between the two implies that the manual pipeline removed most of 
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the artifact and noise and retained most of the signal. However, the data going into the manual 

pipeline was already cleaner than data in the FXS dataset because it was made up of artifacts 

from the FXS dataset that had been through the interpolation and segment rejection steps of the 

pipeline. Therefore, the interpolation and segmentation steps are not included in this assessment. 

Another limitation was a lack of blindedness in the manual processing. The researcher removing 

artifact was aware that the data was simulated, which could have influenced decision making. 

However, this same adjustment in processing is what makes automating EEG processing such a 

difficult task. The weak correlation between the HAPPE processed data and the pure simulated 

signal suggests either a reduction of signal or retention of artifact or a combination of both. 

There was a reduction of signal in the HAPPE processed files of the main analysis, so this could 

be indicative of that change, but reduction in scale alone could not affect the relationship 

between the processed data and the pure signal to that extent, so the processed data likely retains 

some of the artifact or noise. In order to further investigate how the signal is affected, we 

examined the power of each frequency band in the processed data in comparison to the pure 

signal. That analysis showed that all four frequency bands had signal loss and a decrease in 

power. In particular the higher frequencies, beta and theta did not correlate significantly for the 

HAPPE processed data. Beta power was also not significantly correlated for the manually 

processed data and the pure signal. This may indicate that the higher frequency beta signal mixed 

more with one of the artifacts or with the pink noise resulting in increased loss with the removal 

of artifact. Overall, the manual pipeline did a better job of recovering the original signal and 

removing the artifacts and noise for the simulated data. One major limitation to this conclusion is 

that this is simulated data and its generalizability to real data is uncertain. The HAPPE artifact 

removal algorithms were trained on real EEG data and may not operate as effectively on 
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simulated datasets, regardless of the effort made here to make the simulated data as realistic as 

possible using artifact waveforms derived from real data. However, similar patterns arise in the 

simulated data as in the FXS data. An overall decrease in power for the HAPPE processed data is 

seen in both analyses.  

Although HAPPE is a fairly new processing pipeline, it has been used successfully in a 

number of studies. So far, it has been applied in studying resting-state power bands in infants and 

young children with autism (Gabard-Durnam et al., 2019; Wilkinson, Gabard-Durnam, et al., 

2019; Wilkinson, Levin, et al., 2019). These studies are the perfect candidates for HAPPE in that 

they are working with populations that may have shorter recordings with more artifact, and they 

are focusing on power related outcomes. HAPPE makes it easier to process the data, and 

although there may be signal reduction, they are looking at differences in power. Therefore, as 

long as the signal reduction is consistent, it should still work as a measure of change within a 

population. HAPPE has also been used in a study of perceived maternal stress and its 

relationship with infant beta and theta power (Pierce et al., 2019). While this population is ideal 

for HAPPE use, there is concern over how power is affected by the processing when comparing 

it to other outcomes. It is possible that the relationship found between perceived maternal stress 

and EEG power could be impacted by the signal loss.  Additionally, our results showed that 

HAPPE and BEAPP could be used to standardize processing between sites and EEG systems. 

Therefore, it could be used as a tool for future meta-analyses where raw data can be obtained.  

If implemented successfully, HAPPE in combination with BEAPP could potentially 

decrease the labor cost of EEG processing and could increase standardization of EEG processing. 

However, there are issues with signal retention that could impact certain outcome measurements. 

It eliminates noise and artifact at the cost of reducing signal. The SNR in the real data was not 
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significantly different between the manually processed data and the HAPPE processed data, so 

the signal reduction may not negatively affect outcome measures. However, there was a trend 

toward a decrease in SNR, and the signal in the simulated data was disproportionally impacted 

by HAPPE. Therefore, recommended implementation of the HAPPE pipeline for 

neurodevelopmental populations depends on the goals and priorities of the research. HAPPE is 

useful for integration across sites and systems and for some resting-state power comparisons. It 

would not be recommended for ERP analyses where the signal is less robust, where outcomes 

need to be compared to outcomes from other studies that did not use HAPPE, or for comparison 

between power and other variables. 
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Tables 

 

Table 1: Descriptive statistics 

 

 

Variance 

Retained 

Trials 

Retained 

Signal-to-

Noise Ratio 

Kurtosis 

 

 M SD M SD M SD M SD 

Automated Pipeline 88.00 8.07 99.97 0.13 0.34 0.48 3.13 0.17 

Manual Pipeline 32.51 14.42 79.51 16.04 0.66 0.69 9.37 5.95 

 

Table 2: Univariate MANCOVA results 

 df MS F p-value 

 

SNR 1 .625 2.33 0.14 

Variance Retained 1 4461.1 39.74 <0.01 

Trials Retained 1 826.29 5.80 0.02 

Kurtosis  1 73.74 4.29 0.049 
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Table 3: Power Correlations 

 

  Mean 

(uV2) 

SD Delta Theta 

 

Alpha Beta 

Manually 

Processed 

 

Delta 4.07 0.40 0.35*    

Theta 1.77 0.08  0.71*   

Alpha 0.68 0.03   0.60*  

Beta 0.53 0.07    0.18 

HAPPE 

Processed 

Delta 0.17 0.04 0.27*    

Theta 0.07 0.01  0.34*   

Alpha 0.04 0.01   0.23  

Beta 0.07 0.01    0.16 

 

Note: ‘*’ marks significance at alpha 0.05. The power for the processed data from the manual 

pipeline and HAPPE, and the correlation with the power for the corresponding pure signal.  
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Figures 

  

1. Brain Component 2. Line noise component 

  

3. Muscle component 4. Heart rate component 

 

 

5. Blink component 6. Lateral eye movement component 

Figure 1.  Examples of each type of component and the output used to determine its status as 

artifact or brain. Each component output contains: a topography, the waveform, epoched activity, 

and the activity power spectrum. The spikes at 60 HZ are where line noise has or has not been 

removed and can be ignored. 
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Figure 2. Automated pipeline (HAPPE/BEAPP) processing diagram. Blue boxes are done by 

HAPPE though BEAPP. Green boxes are done manually in EEGLAB. Epoching is done 

manually for resting-state data but by HAPPE for task-related data. Steps where decisions are 

made by HAPPE are marked by a green outline.  

 

 

Figure 3. Manual pipeline processing diagram. All steps are done in either EEGLAB or Matlab. 

Steps where decisions are made by a researcher are marked by a green outline.  
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Figure 4. A representative example of 5 seconds of data before undergoing cleaning, after going 

through the manual processing pipeline, and after going through HAPPE. All segments are 

scaled at 50 microvolts.  
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Figure 5. Example ERP from both pipelines scaled to 20 µV and 4 µV. The highlighted section 

shows the window used for determining the P1 peak (40-150 ms). The red line shows the highest 

positive peak within the window.  
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Figure 6. Heat maps showing standardized Beta weights from single channel multiple 

regressions averaged across simulated subjects. Regressions investigated relationship between 

pipeline cleaned data and the pure signals for each channel. Scaled from -1 to 1. 
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