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Abstract 

Natural fractures and fracture networks characteristics significantly influence the success 

of reservoir stimulations. Subsurface and surface investigations consider various 

geophysical techniques to probe and measure natural fracture characteristics at depth. 

However, the relationship between geophysical properties of a rock mass and its hydro-

mechanical parameters is not unique. As a result, numerical modeling can be called upon 

to advance the characterization of fractured reservoir stimulation. 

To simulate fractured reservoir stimulation (e.g., Enhanced Geothermal System), a fully 

coupled thermo-hydro-mechanical-seismic (THMS) finite element model with a dynamic 

3D fracture network capability is further developed which incorporates the processes of 

fracture flow, poroelastic deformation, shear dilation, fracture network propagation and 

induced seismicity. A dual-scale semi-deterministic fracture network is generated using 

data from image logs, foliations/micro-fractures, intact and fractured core. Fracture 

network propagation under injection is considered using a rapid analytical approach. The 

induced stress field (stress shadow) caused by fracture pressurized is quantified using the 

Eshelby solution. The numerical model allows for multiple seismic events to occur on 

and around a fracture. The location, number and magnitude of seismic events are 

constrained in an effective physics-based, and conceptually rigorous manner.  

Several verification and illustrative simulations are carried out. The model is also applied 

to a field case at intermediate scale (EGS Collab Testbed Experiment 1). The results 

demonstrate the effectiveness of the coupled thermo-hydro-mechanical-seismic model 

with a dynamic 3D fracture network in fractured reservoir stimulation and shed light on 

stimulation mechanisms and potential permeability creation and induced seismicity. 
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The spatial distribution of natural fracture roughness which plays a significant role in the 

patterns of seismic and aseismic slip on the fractures is considered in this dissertation. A 

novel approach is used to account for the spatial distribution of roughness on natural 

fractures. The approach utilizes the concept of Joint Roughness Coefficient (JRC) to 

obtain a shear stiffness distribution on the fracture surface. The spatial variability of the 

JRC is obtained through the concept of stochastic partitioning of the fracture plane which 

can be calibrated using laboratory and field data. The spatial distribution of JRC is then 

used to map the spatial distribution of fracture shear stiffness. A critical velocity as a 

function of fracture shear stiffness is defined to distinguish between the seismic/aseismic 

states. The technique is employed to simulate acoustic emission (AE) distribution during 

shearing of a rough fracture at laboratory scale. 

To represent a large-scale real fracture roughness, synthetic anisotropic roughness is used. 

The synthetic anisotropic roughness is described by three parameters, including two 

fractal dimensions in perpendicular directions along the fracture, and amplitude elevation 

of scanning points on the fracture surface. These parameters are used as input for 

estimating JRC of a synthetic anisotropic roughness. A quadratic polynomial equation is 

derived to link the Hurst exponent with JRC covering its full spectrum (0-20). Such JRC- 

Hurst exponent relation is incorporated into the coupled thermo-hydro-mechanical-

seismic model with a dynamic 3D fracture network to simulate a field case at a large scale 

(Utah FORGE). Also, the impact of cyclic injection on the stimulation is studied. 

Finally, a Geomechanics-Based Stochastic Analysis of Microseismicity (GBSAM) is 

developed and applied to quantitatively estimate the natural fracture orientations in a 

reservoir from MEQs (induced seismicity) recorded during reservoir stimulation. This is 
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achieved by combining geomechanics and geostatistics to better constrain uncertainties 

in natural fracture orientations. The GBSAM is applied estimate the natural fracture 

orientations (dip and dip direction) in two case studies namely, the Newberry EGS and 

the Fenton Hill HDR. Results from the GBSAM are in very good agreement with results 

from boreholes image logs or previous studies in those case studies.
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Chapter 1 Introduction 

1.1 Background and Motivation  

Fractured reservoirs present tremendous challenges to water, hydrocarbon and heat 

extraction. The existence of fractures primarily or perhaps dominantly affects hydraulic-

mechanical properties of fractured reservoir and reservoir stimulation outcome. The 

effects of natural fractures on reservoir response is multiscale (i.e., fracture propagation, 

dilation and induced seismicity). Eight characteristics of natural fractures impact the 

success of reservoir stimulation at each scale: orientation, aperture, infilling, length, 

density, connectivity, planarity and roughness. Figure 1.1 shows a range of fracture 

characteristics that are addressed directly or indirectly by spatial scale (microscopic, 

mesoscopic, and macroscopic) (Interstate Technology & Regulatory Council 2017). Their 

relative importance for fluid flow varies depending on the scale of interest (Figure 1.1). 

In-situ sampling methods provide direct measurement of fractured rock, however, the 

mapped zone is limited. Subsurface and surface investigations consider the geophysical 

techniques to probe and measure the fracture characteristics at depth. Geophysical 

techniques offer unique opportunities to mitigate some limitations of in-situ sampling 

methods. In recent years, these techniques have emerged as valuable tools for site 

characterization because the spatial continuity of fractured rock data is contained in the 

geophysical investigation. Despite these advantages, one critical issue in the geophysical 

characterization of fractured rock which needs be addressed is the relationship between 

geophysical properties of a rock mass and its hydro-mechanical parameters which is not 

unique. Furthermore, geophysical surveys rarely cover the details of fracture 

characteristics because of the low resolution. Therefore, geophysical techniques should 



2 

be strategically adopted in combination with in-situ measurements, numerical modeling, 

and mechanic learning. The value of a numerical model corresponds to the quality of the 

input parameters, and how well those parameters reflect the practical setting. Therefore, 

the synergistic coupling of geophysical technologies, in-situ measurements, machine 

learning and numerical modeling offers the greatest potential for advancing the 

comprehensive characterization of fractured reservoir stimulation.  

The development of numerical models for fractured reservoir stimulation typically focus 

on the realistic representation of reservoir heterogeneity (e.g., fracture network). The 

generation of fracture network can be classified into two categories: a deterministic 

fracture network and a stochastic fracture network. In practice, details of the individual 

fractures are not always available so that various probabilistic frameworks have been 

utilized to stochastically characterize the distribution of fracture geometric features, such 

as asperity and length. This means that the results in each run can be different because of 

the variation in fracture properties. In addition, the degree of realism of synthetic fracture 

network in representing the realist fracture network remains an unresolved issue. Once 

the reservoir data is assessed, robust numerical simulation of reservoir stimulation at field 

scale, including the evolution of in-situ stress, fracture network behavior and induced 

seismicity are carried out. Numerical models applied to simulate fracture networks 

include generalized finite element, displacement discontinuity method, and the phase 

field model. Recent modeling of reservoir stimulation consider more physics to solve the 

problem (See e.g., Kumar and Ghassemi 2018, Kamali and Ghassemi 2020). Those works 

require less computation effort compared to FEM but still can be challenging for large-

scale problems.  
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Figure 1.1  Range of fracture characteristics and their relative importance for fluid flow over the 

scale of interest (After Interstate Technology & Regulatory Council 2017).  

 

1.2 Objectives and Significance of Research  

The overall objective of this dissertation is to improve the state-of-the-art of fractured 

reservoir stimulation by developing an advanced numerical model with multiscale 

characteristics, and to apply the model to field-scale operations. The dissertation provides 

advancement in the following:  

1. Estimating natural fracture orientation from MEQs recorded during stimulation 

The natural fracture orientations are a critical feature that exerts a large control over 

network permeability tensor. Moment tensor inversion is widely employed to characterize 

natural fracture orientations in-situ away from the wellbore. However, the estimated 

fracture orientation is doubtful because of the low signal-to-noise ratio (SNR) of MEQs 

(induced seismicity) signal. 

2. Consideration of the effects of fracture roughness on MEQs generation  

The quasi-static model of simulating MEQs is by far the simplest and less time-

consuming practical approach. In quasi-static models each failed fracture is assumed to 
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generate one seismic event which is always located at the center of the fracture. But in 

practice, a single slipped fracture may have multiple MEQs on/off the fracture. 

Furthermore, shear slip on a single fracture can have seismic and aseismic phases, which 

can be distributed both spatially and temporally. Thus, the location, number, and 

magnitude of MEQs generated by a slipped fracture are still not well constrained. The 

quantitative relationship between fracture roughness and the spatial distribution of 

seismic and aseismic slip on fracture has not been addressed. The transition between 

aseismic and seismic slip is still in debate.  

3. Effective simulation of fracture network propagation  

Most numerical methods applied to simulate fracture network propagation are based on 

generalized finite element, displacement discontinuity method, and phase field model. 

Recent studies on the modeling of fracture propagation consider more physics to solve 

the problem. Those works require less computational effort than FEM but still can be 

challenging for large-scale problems in an industrial setting. To date, all fracture network 

models are static.  

4. Determination of Joint Roughness Coefficient (JRC) by fractal dimension of the 

fracture surface 

Mechanisms of fracture shear slip strongly depends on the fracture roughness. In the rock 

mechanics discipline, fracture roughness is typically represented by the concept of Joint 

Roughness Coefficient (JRC). The JRC of fracture is commonly determined by using 

fractal dimension of the fracture surface. However, the connection between JRC and the 

fractal dimension of fracture surface is still in debate because of the calculation of fractal 

dimension and the fractal nature of the fracture surface. 
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1.3 Review of Literature and Previous Work  

1.3.1 Coupled Thermo-Hydro-Mechanical-Seismic Model with a Dynamic 3D 

Fracture Network 

The development of enhanced geothermal system (EGS) design must rely on effective 

stimulation of the hot fractured reservoir rock mass. Fluid injected into reservoir is 

intended to reactivate pre-existing fractures and create new ones to form a fracture 

network. This process is often manifested as multiple seismic events or micro-

earthquakes (MEQs). Complications from reservoir heterogeneity and complexity of flow 

path may lead to channeling (Rawal and Ghassemi 2014), short-circuiting, and premature 

thermal breakthrough so that fracture network behavior is critical to the success of EGS. 

But there are still large uncertainties regarding the direct and indirect diagnostic 

technologies for imaging the flow path and fracture network. In general, geophysical 

surveys are the commonly used for probing the subsurface structures. However, imaging 

resolution is not high enough to identify the individual fracture. Numerical solutions 

provide a complementary method to predicate flow path and fracture network behaviors 

(e.g., dilation and propagation) and induced seismicity. Further, numerical solutions 

combined with field observations and geophysical surveys further elucidate the 

fundamental processes critical to EGS development. 

EGS design typically needs to focus on: (1) description of the rock mass (rock matrix and 

3D fracture network), (2) a representation of flow paths and rates in the reservoir, (3) 

geomechanical modeling to assess the fracture network responses to injection/production, 

and (4) seismic modeling to forecast the induced seismicity. An important challenge in 

modeling of EGS is whether to represent the fracture network explicitly (e.g., discrete 
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fracture network) (Ucar, Berre et al. 2018, Cheng, Wang et al. 2019) or implicitly (e.g., 

equivalent continuum model) (Pruess 1992). Numerical models with explicit 

representation of the fracture network have advantages over others since they can more 

readily handle the fracture network propagation, induced seismicity and transport 

phenomena. Continuum models are desirable because they are well-suited for simulating 

the fractured reservoir at larger field/basin scale. However, the latter leads to an over-

simplistic fracture network response that is not representative of the realist reservoir. A 

hybrid method has been developed which combines the advantages from discrete fracture 

network and continuum model (Tezuka and Watanabe 2000, Cheng, Wang et al. 2019). 

Details of this hybrid method is presented in previous work (Cheng, Wang et al. 2019). 

The generation of fracture network can be classified into two categories: a deterministic 

fracture network and a stochastic fracture network. In practice, details of individual 

fractures are not always available so that various probabilistic frameworks have been 

utilized to characterize the stochastic distribution of fracture geometric features, such as 

asperity and length. This means that the results in each run can be different because of 

the variation in fracture properties. In this dissertation (presented in Chapter 2.2.1) we 

use a dual-scale semi-deterministic fracture network model that combines data derived 

from image logs, foliations/micro-fractures, core with fracture properties which follow a 

stochastic distribution. The variation of micro-fracture/foliations away from the fracture 

follow a stochastic distribution. An advantage of this fracture network model is that 

measurement data can be incorporated to constrain the uncertainties in the rock mass. 

At least, two different stimulation mechanisms may occur concurrently during the 

development of EGS: (1) fracture shear slip and dilation and (2) fracture propagation 
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(Min, Zhang et al. 2010, Kamali and Ghassemi 2018, Kumar and Ghassemi 2018, Sesetty 

and Ghassemi 2018). The concept of fracture shear dilation has been called upon for EGS 

design, and several simplified fracture network models have been developed and used 

(Willis-Richards, Watanabe et al. 1996, Tezuka, Tamagawa et al. 2005, Cheng, Wang et 

al. 2019). Experimental works (Ye and Ghassemi 2018, Ye, Ghassemi et al. 2020) have 

shown that shear dilation could enhance permeability by up to 2-3 orders of magnitude. 

Further, a recent experimental study (Ye and Ghassemi 2019) has conclusively shown 

that fracture propagation by shearing of natural fractures can play a role in the 

development of fracture networks and permeability. Most numerical methods applied to 

simulate fracture network propagation are based on generalized finite element, 

displacement discontinuity method, and phase field model. Recent studies on the 

modeling of fracture propagation consider more physics to solve the problem (See e.g., 

Kumar and Ghassemi 2018, Kamali and Ghassemi 2020). Those works require less 

computation effort compared to FEM but still can be challenging for large-scale problems 

in an industrial setting. To alleviate such computational bottlenecks, analytical or semi-

analytical approaches can be used. A major issue to be addressed in the framework of 

analytical approaches is the fracture propagation and the interaction between hydraulic 

fractures and natural fractures. In this context, the analytical methods with a sequential 

crack tip propagation algorithm can be adopted to model fracture propagation at much 

lower computation costs (Rahman, Hossain et al. 2000, Schwartzkopff, Xu et al. 2016). 

However, both of those works only considered single fracture propagation and did not 

address the interaction between hydraulic fracture and natural fractures. In this 

dissertation (presented in Chapter 2.2.3), we have mitigated these limitations and 
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developed a rapid analytical approach (Lu and Ghassemi 2019) to simulate the fracture 

propagation in a network of natural fractures. 

Considering fracture propagation including non-planar and planar responses, is complex 

and challenging within an analytical framework. For instance, the stress intensity factor 

(SIF) of a non-planar fracture cannot be obtained accurately. Further, the pressure in the 

non-planar fracture needs be extracted from the current configuration of the fracture 

system. So, a dynamic fictitious equivalent plane is utilized to approximate the non-planar 

and planar fractures (Schwartzkopff, Xu et al. 2016). This 3D fictitious plane is formed 

to best fit to the tips of the penny shaped fractures used to represent the newly created 

surface resulting from a mixed-mode (I+II) propagation. Thus, the geometry of the 

fictitious plane is changed according to the evolution of the fracture during the 

propagation process. The fictitious plane is initially penny shaped and approximates the 

original fracture and the newly created non-planar surfaces. This is acceptable since the 

dimension of the newly created non-planar surfaces is small and often can be neglected 

(Kamali and Ghassemi 2018, Kumar and Ghassemi 2018, Sesetty and Ghassemi 2018). 

However, the fictitious plane is changed to elliptical shape later in the planar propagation 

stage. This is the relatively larger planar dimension of the fracture segment that becomes 

parallel to the maximum stress. It is assumed that the newly created fracture surfaces 

formed by the propagation process are on the fictitious plane. Another approximation is 

that a certain number (e.g., 20) of small penny fractures are used to best represent newly 

created surface. While the ratio between the total areas of these small penny fractures and 

the area of the newly created surfaces is close to 1 because the newly created surface is 

approximated by discrete penny fractures. This can be enforced by scaling the diameter 
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of discrete penny fractures. In addition, a hydraulic fracture (newly created surface) is 

very closed to a natural fracture. The newly created surface is represented by discrete 

penny fractures. The ratio between the total areas of these small penny fractures and 

newly created surface is required as 1. Thus, those discrete fractures may intersect with 

natural fracture and the connection of fracture network is changed and contradict with the 

numerical simulation outcome. So, the diameter of these penny fractures is scaled to 

maintain the connection of fracture network. Therefore, the ration between total areas of 

these small penny fractures and newly created surface is not 1.  

Currently, the calculation of hydraulic and mechanical fields in the numerical system is 

only suited for penny shaped fractures. The kink angle is constant during the non-planar 

propagation stage which can reduce the complexity of simulation. A fracture starts to 

propagate in a planar fashion once the fictitious plane is perpendicular to the minimum 

principal stress direction and remains planar during the rest of the propagation stages as 

long as no stress perturbations are encountered. The stress changes caused by fracture 

propagation have limited effects on the propagation direction during the planar 

propagation stages as long as the fracture is in the opening mode (mode I). Most EGS 

testbeds consist of fractured rocks and a hydraulic fracture can be arrested when 

encroaching against a natural fracture during the stimulation. Multiple criteria (Gu and 

Weng 2010) can describe such complex interactions. In this dissertation (presented in 

Chapter 2.2.3), Renshaw and Pollard criterion (Renshaw and Pollard 1995) is utilized to 

evaluate the interaction between natural fractures and a hydraulic fracture.  

The other aspect of our fracture network stimulation modeling is the simulation of micro-

seismicity (induced seismicity). The generation of induced seismicity is believed to 
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evolve from shear slip on new or pre-existing fracture planes and rock failure and fracture 

propagation. The quasi-static model of simulating MEQ is by far the simplest and less 

time-consuming practical approach. The effective normal and shear stress on fractures 

are used to determine the occurrence of shear slip and potential seismic events. The 

magnitude of the seismic events is determined by the shear modulus, fracture slip distance, 

and the slip area. In quasi-static models each failed fracture is assumed to generate one 

seismic event which is always located at the center of the fracture. In practice, a portion 

of the fracture slip is aseismic, and one fracture may generate multiple seismic events 

located on or around the fracture. It is a major challenge to eliminate uncertainties in the 

number, magnitude and location of seismic events and the nature of the transition between 

aseismic and seismic slip is still unclear. However, the level of uncertainty can be reduced 

by using more realistic algorithms for MEQ generation as proposed herein. This issue is 

addressed by developing a new scheme for MEQ generation that can account for 

generation of multiple events and capturing the aseismic to seismic transition.  

The numerical model presented in this dissertation (presented in Chapter 2), consists of 

four sub-models: 1) a coupled thermo-poroelastic model describing the coupling between 

rock deformation, fluid flow and heat flow in the fractured rock mass; 2) a dual-scale 

semi-deterministic fracture network describing the fracture network geometry and fluid 

transport within the fractures; 3) a fracture slip/dilation and propagation model to analyze 

fracture network deformation; and 4) a seismicity simulation model describing the events 

distribution and magnitudes. The latter distinguishes the transition between the aseismic 

and seismic slip. These aspects are described below, and the model is applied to the field 

test namely Collab. In this part of the dissertation (presented in Chapter 4), the EGS 
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Collab Testbed Experiment 1 namely Stim-II HF@164 Notch (Kneafsey, Dobson et al. 

2018, Kneafsey, Dobson et al. 2018) carried out on May 24, 2018 is simulated. The 

simulations provide some insights on the mechanisms involved in the observed 

phenomena such as micro-seismicity, the resulting fracture network and the flow path as 

well as the injection pressure profile. 

1.3.2 The Effects of Fracture Roughness on Seismicity Patterns 

Numerical simulation of micro-seismicity is of significant to subsurface energy resource 

development and crustal dynamics. To date modeling approaches are inadequate and 

cannot capture many essential features of micro-seismicity which reflect the fracture/fault 

structure and surface characteristics. Also, laboratory and numerical studies have shown 

that the shear slip on a fracture can have seismic and aseismic phases, which can be 

distributed both spatially and temporally (Fournier and Morgan 2012, Ye and Ghassemi 

2020). Capturing the existence of seismic and aseismic slip on fractures is central to 

simulation of micro-seismicity. Here, seismic and aseismic slip is understood to 

distinguish unstable and stable slip, respectively. The nucleation zone is a portion of 

fracture where rupture velocity accelerates from quasi-static to dynamic (Iio 2009). A 

seismic event occurs when the unstable region reaches the nucleation length (Mclaskey 

and Yamashita 2017). Note that the evolution of such seismic event is primary controlled 

by the rock itself (Mclaskey and Yamashita 2017). A parameter space that describes the 

fracture stability behavior can be found in (Mclaskey and Yamashita 2017). It is also 

known from laboratory tests that AE (micro-seismicity) distribution on a rough fracture 

can be heterogeneous. It is known (based on laboratory work e.g., Goebel, Kwiatek et al. 

2017, Ye and Ghassemi 2020) that heterogeneous fracture roughness is essential to 
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aseismic to seismic transition and dynamic rupture. However, the quantitative 

relationship between fracture roughness and spatial distribution of seismic and aseismic 

slip has not been addressed. This is important in quantitative evaluation of the seismic 

potential of a given fracture, and in constraining the uncertainties in the relationship 

between shear slip and enhanced permeability. This issue is the focus of this dissertation 

(presented in Chapter 6).  

1.4 Organization  

This dissertation has nine chapters and each chapter contains its own focus, review of 

relevant literature, methodology, application, results, and discussion.  

Chapter 2 addresses problems 2 and 3 mentioned in Chapter 1.2. A fully coupled thermo-

hydro-mechanical-seismic (THMS) finite element model with a dynamic 3D fracture 

network is further developed which incorporates the processes of fracture flow, 

poroelastic deformation, shear dilation, fracture network propagation and induced 

seismicity. A dual-scale semi-deterministic fracture network is generated by combining 

the data from image logs, foliations/micro-fractures, core with properties of fractures (e.g., 

length and asperity) which follow a stochastic distribution. Fracture network propagation 

under injection is considered by an ultrafast analytical approach. The stress shadow 

caused by fracture pressurized is described by Eshelby solution. This model allows for 

multiple seismic events to occur on and around a fracture. The location, number and 

magnitude of seismic event clouds are constrained in an effective physics-based, and 

conceptually rigorous manner.  

Chapter 3 presents several verifications and general examples for the coupled thermo-

hydro-mechanical-seismic model (THMS) with a dynamic 3D fracture network. In 
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addition, the effects of poroelasticity on induced seismicity is examined by explicitly 

considering the poroelastic stress acting on a fracture subjected to injection. Also, the 

impact of thermal stress on the fracture network propagation is studied. 

Chapter 4 applies the THMS with 3D fracture network to simulate the EGS Collab 

Testbed Experiment 1 namely Stim-II HF@164 Notch carried out on May 24, 2018. 

Chapter 5 considers the fracture roughness in seismicity simulation. The numerical model 

proposed in Chapter 2 are extended to consider the effects of fracture roughness on 

reservoir stimulation. A JRC-Hurst exponents (H) relationship is derived by calculating 

the JRC values of synthetic roughness defined by Hurst exponents and root mean square 

(RMS) of height of the laser scan points. The linear Barton-Bandis model is employed to 

characterize the stability of the fracture. Therefore, problems 4 mentioned in Chapter 1.2 

are presented. In addition, the spatial distribution of fracture shear stiffness is estimated 

by the spatial distribution of JRC so that problems 2 mentioned in Chapter 1.2 are treated. 

Chapter 6 addresses the problem 2 mentioned in Chapter 1.2, i.e., studying the role of the 

spatial distribution of roughness on seismic events pattern on a fracture plane. The 

concept of joint roughness coefficient (JRC) is utilized to obtain a shear stiffness 

distribution on the fracture surface. The spatial variability of JRC is obtained through the 

concept of stochastic partitioning of the fracture plane. The spatial distribution of fracture 

shear stiffness as a function of the effective normal stress is mapped based on the spatial 

distribution of JRC. A critical velocity as a function of fracture shear stiffness is defined 

to distinguish between the seismic/aseismic states. The method is first applied to simulate 

acoustic emission (AE) distribution during shearing of a rough fracture at laboratory scale. 
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A case study of the Utah FORGE is presented in Chapter 7. The extended numerical 

model from Chapter 5 is employed to optimize the well trajectories in Utah FORGE EGS.  

Chapter 8 responds to the first problem mentioned in Chapter 1.2. A Geomechanics-

Based Stochastic Analysis of Microseismicity (GBSAM) is proposed to constrain the 

natural fracture orientations by combining a geomechanics and geostatistics model to 

interpret microseismic data. The GBSAM is applied to extract information about natural 

fracture orientations (dip and dip direction) in two case studies, i.e., the Newberry EGS 

and the Fenton Hill HDR. Results from GBSAM are in very good agreement with results 

from boreholes image logs or previous studies in those case studies.  

Finally, Chapter 9 includes a brief summary of this dissertation’s findings and provides 

recommendations for future research. 
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Chapter 2 Coupled Thermo-Hydro-Mechanical-Seismic Model 

with a Dynamic 3D Fracture Network 

2.1 Coupled Thermo-Poroelastic Model 

Coupled process involving poroelastic deformation, fluid flow and heat transfer occur in 

EGS where fractures are the primary pathways for fluid migration and production. Thus, 

convective heat transfer in the low permeable matrix is often insignificant (Delaney 1982) 

and is not considered. The heat transfer in the reservoir is assumed to occur via fracture 

flow and heat conduction between rock matrix and fracture fluid. The coupled thermo-

poroelastic processes in the rock matrix can be described in the following constitutive 

equations (McTigue 1986): 

𝜎𝑖𝑗̇ = 2𝐺𝜀𝑖̇𝑗 + (𝐾 −
2𝐺

3
) 𝜀𝑖̇𝑗𝛿𝑖𝑗 − 𝛼𝑝̇𝛿𝑖𝑗 − 𝐾𝛼𝑚𝑇̇𝛿𝑖𝑗                                                                      (2.1) 

𝜉̇ =  𝛼𝜀𝑘̇𝑘 + (
𝛼−𝜙

𝐾𝑠𝑘
+
𝜙

𝐾𝑓
) 𝑝̇ − [𝛼𝛼𝑚 + (𝛼𝑓 − 𝛼𝑚)𝜙]𝑇̇                                                                  (2.2) 

Where 𝜎̇𝑖𝑗  is the increment of the total stress components; 𝜀𝑖̇𝑗 is the increment of the strain 

components; 𝜉̇ is the change of fluid volume per unit reference pore volume; 𝑝 ̇ and 𝑇 ̇ are 

pore pressure change and temperature change, respectively; 𝛼 is the Biot’s coefficient; 

𝐾 is the bulk modulus; 𝐺 is shear modulus; 𝜙 is porosity; 𝐾𝑠𝑘 and 𝐾𝑓 are bulk modulus 

of rock skeleton and fluid and matrix, respectively. The conservation equations for 

momentum, mass and energy are shown as: 

𝜎𝑖𝑗,𝑗 = 0                                                                                                                                                                 (2.3) 

 
𝜕𝜉

𝜕𝑡
= 𝜅𝑝,𝑗𝑗                                                                                                                                                                (2.4) 

𝜌𝑡𝐶𝑡
𝜕𝑇

𝜕𝑡
= −ℎ𝑖,𝑖 − 𝐶𝑓𝑇𝑞𝑖,𝑖                                                                                                                                   (2.5) 
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From the above constitutive equations and conservation equations, the coupled thermo-

poroelastic field equation can be derived (McTigue 1986): 

𝐺𝑢𝑖,𝑗𝑗 + (𝐾 +
𝐺

3
) 𝑢𝑗,𝑗𝑖 − 𝛼𝑝,𝑗 − 𝛾1𝑇,𝑗 = 0                                                                     (2.6) 

𝛼
𝜕𝜀𝑘𝑘

𝜕𝑡
+ 𝛽

d𝑝

d𝑡
− 𝜅𝑝,𝑗𝑗 − 𝛾2

d𝑇

d𝑡
= 0                                                                                    (2.7) 

𝜕𝑇

𝜕𝑡
− 𝑐𝑇𝑇,𝑗𝑗 − (𝜅

𝑇𝑇𝑝,𝑖),𝑖 = 0                                                                                          (2.8) 

A finite element method is developed for solving Equation 2.6, 2.7 and 2.8. The details 

of the mathematical formulation can be found in (Zhou and Ghassemi 2009). It can be 

shown (Cheng, Wang et al. 2019) that after spatial discretization using Galerkin method 

and Crank-Nicolson approximation in the time domain, the finite element matrix formula 

of the above equations is written as:  

[

𝐾𝑢 −𝐶𝑢𝑝 −𝐶𝑢𝑇
𝐶𝑝𝑢 𝐶𝑝𝑝 + Δ𝑡𝜃𝐶𝑝𝑝 −𝐶𝑝𝑇
0 0 𝐶𝑇𝑇 + Δ𝑡𝜃(𝐾𝑐𝑑𝑇 + 𝐾𝑐𝑣𝑇)

] [
Δ𝑢
Δ𝑝
Δ𝑇
] = [

Δ𝑡𝐹̇𝑢
∆𝑡𝐹𝑞𝑖𝑛 − ∆𝑡𝐾𝑝𝑝𝑡−∆𝑡

∆𝑡𝐹ℎ𝑖𝑛 − ∆𝑡(𝐾𝑐𝑑𝑇 + 𝐾𝑐𝑣𝑇)𝑇𝑡−∆𝑡

]               (2.9) 

Where ∆𝑢, ∆𝑝 and ∆𝑇 are the vectors of unknowns variables; ∆𝑡 = 𝑡𝑛 − 𝑡𝑛−1 is the time 

step size; 𝜃 is a scalar parameter and set to be 1.0 in this work; 𝐹𝑢, 𝐹𝑞 and 𝐹ℎ are the 

external load, fluid and heat source terms; 𝑝𝑡−∆𝑡  and 𝑇𝑡−∆𝑡  is the pore pressure and 

temperature of the previous time step. Other matrix are described in (Cheng, Wang et al. 

2019). By solving the Equation 2.9 with initial and boundary conditions, the primary 

unknowns of displacement 𝑢, pore pressure 𝑝 and temperature 𝑇 can be resolved directly. 

2.2 Fracture Network Model 

2.2.1 Fracture Network Generation 

A dual-scale semi-deterministic fracture network is generated by combining data from 

image logs, core and stochastic fracture properties (e.g., length and asperity). Fracture 

networks can be extremely variable and difficult to detect in the subsurface. As a result, 
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stochastic models are often used to describe the fracture network geometry (Willis-

Richards, Watanabe et al. 1996, Rahman, Hossain et al. 2002). In generating a stochastic 

fracture network, the fractures can be treated as penny-shaped and their radii are assumed 

to follow a log normal distribution (Long, Remer et al. 1982, Dershowitz and Einstein 

1988) which is also used in this work. Furthermore, fracture apertures are assumed to 

follow a power law distribution (Laubach, Hooker et al. 2014). Geophysical surveys, as 

well as core and outcrop studied, provide some valuable information to constrain the 

uncertainties in the generation of fracture network. For instance, fracture orientation can 

be extracted from the borehole image logs and core (Figure 2.1). Of course, some bias is 

introduced when the hole is parallel to a particular fracture set. The fracture network 

realizations are thus inherently non-unique and inevitably impact the results in each run. 

Although borehole imaging and core only map a small zone around the wellbore, they are 

still useful as a reference for fracture orientation. In the intermediate-scale (e.g., 

decameter scale) experiments, the number and location of detected fractures from image 

logs and core are considered the same as the real system (Ulrich, Dobson et al. 2018, 

Kneafsey, Dobson et al. 2019). However, there are still foliations/micro-fractures 

surrounding the fracture (Figure 2.1) which affect the rock mass response to injection 

(Cavailhes, Sizun et al. 2013). The micro-fracture density in the rock matrix increases 

dramatically toward the fracture surfaces (Moore and Lockner 1995, Sagy, Reches et al. 

2001) and can be fitted well by a power law relation (Anders, Laubach et al. 2014, Meng, 

Wong et al. 2019). Some studies suggest two specific formulas (e.g., 𝜌 =

0.953𝑑−0.391 for cracks where 𝑑 ranges from 1 to 10 mm, and 𝜌 = 47𝑑−0.214 for cracks 

where 𝑑 ranges from 10 to 100 m, where 𝜌 is the crack density and 𝑑 is the distance from 
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the natural fracture/fault center) (Meng, Wong et al. 2019). For instance, the density of 

micro-fractures and macro-fractures near Muddy Mountain fault has been shown to 

decrease with distance from the fault planes (Brock and Engelder 1977) and can be fitted 

by a power law relation. Further, micro-fracture density is higher in a shear dilatational 

zone than on a compressional zone (Moore and Lockner 1995).  

 

Figure 2.1 (a) Acoustic televiewer log showing the fracture orientation, foliation and micro fracture 

in borehole E1-P from EGS Collab. (b) Poorman Schist sample from E1-PDT 99.3~100.25 ft 

and CT scanning image of the sample (the sample was CT scanned at Berkeley Lab). The rock 

sample is from EGS Collab and diameter is 61 mm and length is 110 mm.  
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The distribution of foliation in the Collab rock mass is very irregular and may not follow 

a certain type of stochastic distribution. However, the micro-foliation density surrounding 

the fractures is considered to follow the same power law relation as the micro-fractures 

in this work to make it possible to construct a less complex numerical system. Thus, 

micro-foliation and micro-fractures are treated similarly in this work. The major 

foliations are accounted for by the heterogeneity in the reservoir properties (e.g., in Young 

modulus) or discrete fracture. So, to account for the natural fracture, micro/macro-

foliation, and microcrack populations we use a dual-scale approach. 

In our approach, the rock mass is viewed to consist of a population of large-scale facture 

(derived from the borehole image logs and core) and a population of small-scale fractures 

representing the micro-fracture/foliation population. Note that the major fractures and 

foliations are in the major fracture category. While micro-fractures and micro-foliations 

are in the micro-fracture group. Micro-fractures are assumed to accompany each major 

fracture and are located around them. The Young’s modulus of finite elements follows 

the Log Normal distribution to implicitly represent the distribution of micro-fractures. 

The mean and std of this Log Normal distribution can be determined by measuring 

Young’s modulus of multiple core samples. Further, micro-fractures are treated as mass 

points in the FEM for the purpose of stress calculations on them. The major fractures are 

explicitly represented in the model so that their deformation and pressure can be explicitly 

simulated. The micro-fracture density away from a major fracture is described by a power 

law. This is justified in view of the study in (Anders, Laubach et al. 2014). Specifically, 

the shortest distance between micro-fractures and the parent major fracture is described 
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by a power law. Here a simple method is used to generate desired micro-fractures 

population surrounding the major fracture.  

To generate the micro-fracture population, a density of micro-fracture N is assumed 

(500/m3) over the entire system. They are then distributed in a cubic around the major 

fractures. The length of the cubic is assumed as the three times radius of major fracture.  

Here major fracture PDT-114 is utilized to illustrate the generation of micro-fracture 

population. The information of PDT-114 can be found in EGS Collab site. In the first 

step, the radius of PDT-114 is 𝑅 = 3 m and the volume of this cubic contained PDT-114 

is 729 m3. The number of micro-fractures in this cubic is 729 m3 × 500/m3≈ 3.6 × 105. 

Note that field studies suggest that the density of micro-fracture can be larger than 

10,000/m3 (Anders, Laubach et al. 2014). Here the density of micro-fracture N of 500/m3 

is adopted to lower the computation costs. Figure 2.2 shows a histogram plot of the 

shortest distance between micro-fractures and the major fracture. So far, those micro-

fractures are randomly distributed.  
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Figure 2.2 The histogram plot of the shortest distance between micro-fractures and major fracture. 

 

 

Figure 2.3 The distribution of distances. (a) the distribution of desired distances generated by a power 

law (𝒌 = 𝟒 and 𝒂 = 𝟓 and 𝑻𝒎𝒊𝒄 = 𝟏𝟐𝟐𝟑). (b) the distribution of shortest distance between 

desired micro-fractures and the major fracture.  

 

In the second step, the number of accompanying micro-fracture of each major fracture is 

identified. Field data (Mitchell and Faulkner 2009, Anders, Laubach et al. 2014) 

suggested that most micro-fractures are located within a zone surrounding a major 

fracture which extends nearly 1 m from the major fracture. The volume of surrounding 

zone (ellipsoid shape) of this major fracture can be calculated as: 4/3 ∙ 𝜋 ∙ 1[m] ∙

(1 + 𝑅)[m] ∙ (1 + 𝑅)[m]  where 𝑅  is the radius of the major fracture. In this case, the 

total volume of surrounding zone (ellipsoid shape) of PDT-114 is 4 3⁄ ∙ 𝜋 ∙ 1[m] ∙

(1 + 3)[m] ∙ (1 + 3)[m] = 67 m3 . Therefore, the number of accompanying micro-

fractures of PDT-114 is 𝑁 × 67 m3 = 500/m3 ×  67 m3 = 33,500.  

The density of micro-fractures is usually identified by SEM for example. Thus, the 

minimum size of micro-fracture is very small (~1 m-mm). It is believed that detectable 

seismicity cannot occur on such small size micro-fracture in-situ. Here, we define an 

effective micro-fracture size for seismicity generation. In the third step, we require the 
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radius of the micro-fracture to be larger than a threshold value for Collab fracture (here 

we use 30 mm which is two orders less than the radius of major fracture). The micro-

fracture size commonly follows a power law distribution (Anders, Laubach et al. 2014, 

Laubach, Hooker et al. 2014).The cumulative power law distribution is (Laubach, Hooker 

et al. 2014) is given as 𝐹 = 𝑎 ∙ 𝑋−𝑏. F is the fracture cumulative frequency and 𝑋 is the 

fracture radius (mm). Here a = 2.4x10-2 and b=0.1 based on the observation of sandstone 

from field data (Laubach, Hooker et al. 2014). Therefore, the number of effective 

(following power law distribution with radius > 30 mm) micro-fractures around PDT-114 

is 1223.  

In the fourth step, a power law is determined based on field observations or estimation of 

micro-fractures density within the surrounding zone of each major fracture. Such power 

law (Pareto distribution, PDF = 𝑎 ∙ 𝑘𝑎/𝑥𝑎+1) could be described by two numbers: 𝑘 >

0, the location parameter and 𝑎 > 0, the shape parameter. Thus, the mean of power law 

distribution is 𝑘 ∙ 𝑎/(𝑎 − 1) and the variance is 𝑘2 ∙ 𝑎/((𝑎 − 2) ∙ (𝑎 − 1)2) and assume 

𝑘 = 4 and 𝑎 = 5. In this case, PDT-114 have 1223 micro-fractures which is defined in 

the third step. Figure 2.3a shows the power law distribution (𝑘 = 4, 𝑎 = 5 and 𝑇𝑚𝑖𝑐 =

1223.) of desired micro-fractures population in FEM. The micro-fractures generated in 

first step is selected when the shortest distance between this micro-fracture and major 

fracture is best to fit the power law. The shortest distance between selected micro-

fractures and major fracture is shown in Figure 2.3b. Such distribution of distance fits the 

power law very well. The selected micro-fractures will be considered in FEM (Figure 

2.4). In the fifth step, the selected micro-fractures around the major fractures are assigned 

orientations. Micro-fractures in granite exhibits no strongly preferred orientation (Tuttle 
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1949). It mostly depends on the its slip direction (Anders, Laubach et al. 2014). In this 

work, micro-fracture orientation is assumed to follow by lognormal distribution. For 

instance, the dip of the selected micro-fractures around PDT-114 is followed the 

lognormal distribution (mean is 58o and std is 10o) and the value of mean is the same as 

dip of PDT-114. While the strike of the selected micro-fractures is also followed the 

lognormal distribution (mean is 11o and std is 50o) and the value of mean is the same as 

the strike of PDT-114. Figure 2.4 shows the orientation of the selected micro-fractures 

surrounding of PDT-114.  

 

Figure 2.4 Orientation of selected micro-fractures. (a) the dip of selected micro-fractures and (b) the 

strike of selected micro-fractures. 

 

In the sixth step, the selected micro-fractures are submitted into FEM to calculate the 

Coulomb failure function (CFF). The stress and pore pressure fields of micro-fractures 

can be obtained by interpolating the stress and pressure distribution on the finite elements. 

The larger the CFF, the larger the event magnitude may occur on this micro-fracture. The 

CFF is defined as CFF = 𝜏𝑠 − 𝜇 ∙ 𝜎𝑛.  𝜏𝑠 and 𝜎𝑛 is the shear stress and normal stress on 
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fracture, respectively. 𝜇 is friction coefficient which is the same as the major facture. The 

cohesive strength is assumed as zero.  

2.2.2 Fluid Flow in Fracture 

After a 3D dual-scale semi-deterministic fracture network is generated, a fracture flow 

model is defined for the major fractures. The fracture permeability is defined using the 

cubic law and the overall rock mass permeability is calculated using the equivalent 

permeability concept. Here the contribution of micro-fractures is included in the rock 

matrix permeability. The intersection line between the fractures and finite elements 

(Hexahedrons) faces are calculated based on a geometric surface-surface intersection 

algorithm (Wang 2014, Cheng, Wang et al. 2019). The permeability tensor on a finite 

element can be calculate as (Wang 2014, Cheng, Wang et al. 2019)  

𝑘𝑖 = ∑
𝑎𝑗
3𝑙𝑖𝑗

12𝐴𝑖
, 𝑖 = 𝑥, 𝑦, 𝑧

𝑛𝑓𝑖
𝑗=1

                                                                                                (2.10) 

Where 𝑛𝑓𝑖  is the total number of fractures in the volume (finite) element;  𝑎𝑗  is the 

aperture of the 𝑗𝑡ℎ fracture; 𝑙𝑖𝑗  is the length of intersection line on the element interface; 

𝐴𝑖  is the cross-section area in the corresponding 𝑖 direction (Figure 2.5). 𝑘𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) is 

represent the permeability of a finite element in 𝑥, 𝑦 and 𝑧 direction (local coordinate 

system), respectively.   
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Figure 2.5 The contribution of one fracture permeability to equivalent permeability of a finite 

element (reproduced from Wang and Ghassemi 2013)    

 

During injection, the effective normal stress on a fracture can change so that its aperture 

and permeability would also change and would influence the variation of permeability 

tensor in the finite element. Therefore, the fluid pressure, displacement and temperature 

of the fractures has to be integrated with those of the equivalent porous medium. The pore 

pressure, displacement and temperature within the equivalent medium are calculated by 

the thermal-hydrological-mechanical model (Chapter 2.1) at each time step. The fluid 

pressure within a fracture is approximated by averaging the pressure values of all finite 

elements intersected by it. The heat transport within the fracture network is obtained by 

utilizing the method from (Bruel and Cacas 1992). Fluid flow and heat transfer occurs in 

the connected fracture network. The fluid and heat transfer within the fracture network is 

simulated by assuming a 3D flow channel consists of 1D flow pipes (Cheng, Wang et al. 

2019). Such 1D pipes link the fracture centers with the mid-point of intersection line of 

adjacent fractures. The temperature of fluid in the fracture and rock matrix are assumed 

continuous at the fracture well (Cheng, Wang et al. 2019). Thus, the heat transfer model 

of fracture network is assumed as 1D steady state. The energy conservation of each 

fracture should be balanced so the convective heat transport from fluid flow should equal 

the sum of the heat conduction between adjacent rock matrix and fluid in the fracture, and 

the change of energy retained by the volume of the fluid within the fractures. Details of 

the energy conservation in each fracture can be found in (Cheng, Wang et al. 2019). The 

changes of fluid pressure and temperature within the fracture network are substituted into 

the Equation 2.9 for next time step. Thus, the stress changes around the fractures due to 
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the changes in fracture network are considered. The normal and shear stress, 𝜎𝑛, 𝜏𝑛 on a 

fracture are calculated depending on the pore pressure and in-situ stress. Patton’s saw 

tooth fracture model is used to estimate the fracture shear strength, 𝜏𝑝 (Patton 1966): 

 𝜏𝑝 = 𝜎𝑒𝑓𝑓 tan(𝜙𝑏𝑎𝑠𝑖𝑐 + 𝜙𝑑𝑖𝑙
𝑒𝑓𝑓
)                                                                                          (2.11) 

 𝜙𝑑𝑖𝑙
𝑒𝑓𝑓
=

𝜙𝑑𝑖𝑙

1+9𝜎𝑒𝑓𝑓 𝜎𝑛𝑒𝑓𝑓⁄
                                                                                                         (2.12) 

Where 𝜎𝑒𝑓𝑓 = 𝜎𝑛 − 𝑝  is the effective normal stress on fracture; 𝜙𝑏𝑎𝑠𝑖𝑐 is the basic 

friction angle; 𝜙𝑑𝑖𝑙
𝑒𝑓𝑓
 is the effective shear dilation angle; 𝜙𝑑𝑖𝑙  is the experimentally 

measured dilation angle and 𝜎𝑛𝑒𝑓𝑓 is the effective normal stress required to cause 90% 

reduction in the natural fracture aperture. Once the Mohr-Coulomb failure criterion is met, 

the fracture will slip. The shear displacement 𝑈𝑠 of a fracture is given by (Hicks, Pine et 

al. 1996): 

𝑈𝑠 =
𝜏𝑛−𝜏𝑝

𝐾𝑠
                                                                                                                     (2.13) 

Where 𝐾𝑠 is the fracture shear stiffness (e.g., 𝐾𝑠 = 7𝜋 24 ∙ 𝐺 𝑟⁄⁄  for penny shaped crack 

(Eshelby and Peierls 1957), 𝑟 is the fracture radius and 𝐺 is shear modulus); The total 

stimulated fracture aperture is written as (Willis-Richards, Watanabe et al. 1996):  

𝑎 =
𝑎0

1+9𝜎𝑒𝑓𝑓 𝜎𝑛𝑟𝑒𝑓⁄
+ 𝑎𝑠 + 𝑎𝑟𝑒𝑠                                                                                            (2.14) 

Where 𝑎0 is the initial effective aperture; 𝑎𝑠 is the aperture change due to shear 

displacement; In general, 𝑎𝑠 is proportional to the fracture shear displacement 𝑈𝑠 (e.g., 

𝑎𝑠 = 𝑈𝑠 tan(𝜙𝑑𝑖𝑙
𝑒𝑓𝑓
)). 𝑎𝑟𝑒𝑠 is the residual aperture at high effective stress which can cause 

90% reduction in fracture aperture; The residual aperture 𝑎𝑟𝑒𝑠  is assumed to be zero in 

this work. If the effective normal stress 𝜎𝑒𝑓𝑓 is become negative, fracture will be fully 

open. The fracture aperture is given by the aperture-to-length scaling law: 
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𝑎 =
𝐾𝐼𝑐(1−𝑣

2)

𝐸√𝜋 8⁄
√2𝑟                                                                                                                (2.15) 

Where 𝐾𝐼𝑐 is the fracture toughness; The fluid leak-off rate 𝑣𝐿 can be described by the 

Darcy’s law as (Valko and Economides 1995):  

𝑣𝐿 = −
𝑘

𝜇

𝜕𝑃𝑓

𝜕𝑛
                                                                                                                        (2.16) 

where k is the matrix permeability, µ is the fluid viscosity,  𝜕𝑃𝑓 𝜕𝑛⁄  is the fluid pressure 

gradient normal to the fracture surface. The fracture aperture can be calculated by 

Equation 2.14 or 2.15 and used as input for the next time step. Induced stress caused by 

fractures also affect the fluid flow and induced seismicity. Since fracture network are 

embedded into mesh of rock matrix, the induced stress may not comprehensively consider. 

Thus, the induced stress is calculated based on the Sneddon solution (Sneddon 1946) or 

Eshelby solution (Eshelby and Peierls 1957). The total induced stress field is obtained as 

the superposition of induced stress of each fracture. The total induced stress field caused 

by fracture network are substituted into the Equation 2.9 for next time step.  

2.2.3 Fracture Propagation 

The processes of fracture propagation when the fracture is not parallel to a principal stress, 

usually has two stages: a non-planar stage and a planar propagation. The geometry of the 

initial fracture is circular so that the stress intensity factors for mode I, II and III for an 

internally pressurized by a fluid pressure 𝑃𝑓 is (Schwartzkopff, Xu et al. 2016):  

𝐾𝐼(𝜑) = 2√
𝑟

𝜋
𝜎𝑛(𝑒𝑓𝑓)                                                                                                      (2.17) 

𝐾𝐼𝐼(𝜑) = −
4 cos(𝜑−𝜔)

2−𝑣
√
𝑟

𝜋
𝜏𝑒𝑓𝑓                                                                                          (2.18) 

𝐾𝐼𝐼𝐼(𝜑) =
4(1−𝑣) sin(𝜑−𝜔)

2−𝑣
√
𝑟

𝜋
𝜏𝑒𝑓𝑓                                                                                 (2.19) 
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Where 𝑟 is the radius of the initial fracture; 𝜎𝑛𝑒𝑓𝑓 and 𝜏𝑒𝑓𝑓 are the effective normal stress 

and shear stress. 𝜔 is the shear angle (form by the angle between shear stress direction 

and reference direction) and 𝜑 is the fracture front angle (Figure 2.6); the edges of each 

fracture can have multiple tips and 20 tips are used in this work. Note that 20 tips on the 

edges can ensure the effective and accurate of the program. Those tips are uniformly 

located on the edges of fracture and are used to extend a fracture. 

 

Figure 2.6 The definition of tips, fracture radius, shear angle 𝝎, fracture front angle 𝝋 and shear 

stress 𝝉𝒆𝒇𝒇 . The direction of dot arrow is obtained by projecting the dip direction on the 

fracture (Schwartzkopff, Xu et al. 2016). 

The method for calculating the above parameters (e.g., shear angle 𝜔) can be found in 

(Schwartzkopff, Xu et al. 2016). The kink angle 𝜃0(𝜑) at the non-planar propagation 

stage can be evaluated by:  

𝜃0(𝜑) =

{
 

 
0𝑜                                                      if 𝐾𝐼𝐼(𝜑) = 0

2 tan−1 [
𝐾𝐼(𝜑)∓√𝐾𝐼

2(𝜑)+8𝐾𝐼𝐼
2 (𝜑)

4𝐾𝐼𝐼(𝜑)
]        if 𝐾𝐼𝐼(𝜑) ≠ 0      

                                                                             (2.20) 

In order to simplify the complexity of the computation, the kink angle 𝜃0(𝜑) during the 

non-planar propagation stage is assumed to remain constant. According to the maximum 
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tensile stress criterion, a fracture propagates along 𝜃0(𝜑)  during the non-planar 

propagation stage if: 

𝐾𝑒𝑞 = cos
𝜃0(𝜑)

2
(𝐾𝐼(𝜑) cos

2 𝜃0(𝜑)

2
−
3

2
𝐾𝐼𝐼(𝜑) sin 𝜃0(𝜑)) ≥ 𝐾𝐼𝑐                                   (2.21) 

Where 𝐾𝑒𝑞 is the equivalent stress intensity factors; For a fracture not aligned with the 

maximum stress, the newly created crack tips will not be the on the same plane after 

fracture propagation because of the different kink angle 𝜃0(𝜑) value for a new different 

𝜑. To represent the newly formed fracture segment, a certain number of penny fractures 

is inserted to best represent the newly created surface (Figure 2.7). The number of inserted 

penny fractures is assumed the same as the number of propagating tips “nodes.”  

 

Figure 2.7 The representation of newly created surface and updated tips. (a) the newly created 

surface. (b) the newly created surface is represented by 20 discrete penny fractures. 

 

Penny-shaped fractures are used because the calculation of the hydraulic field in current 

numerical system assumed penny shape fractures. Also, if the subsequent fracture front 

is nonplanar, the SIF for the next step cannot be calculated analytically for other shapes 

aside from elliptical. It is, therefore, necessary to consider a dynamic “fictitious” penny 

shape plane which best fits the updated tips because the dimension of non-planar 
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propagation is usually small compared to the original fracture (Figure 2.8). 𝑙  is the 

diameter of “fictitious” plane. It is a plane fitted by the updated tips using least squares 

method. The pressure in the fictitious plane is considered the same as that of the 

propagated fracture because those two are very close. The normal and shear stress of 

fictitious plane is calculated based on the procedures in Chapter 2.1 using its geometric 

properties.  

 

Figure 2.8 The definition of the fictitious plane (grey), the kink angle 𝜽𝟎 and the propagation 

increment, ∆𝒅. 𝒍 is the length of the fictitious plane. 𝒐 is the center of initial fracture center. 

The fictitious plane is bested fitted by the updated tips.        

 

The SIF of the “fictitious” penny plane can be calculated by the Equation 2.17-2.19. As 

the fracture continues to propagate, the fictitious plane becomes perpendicular to the 

direction of minimum principal stress and tends to propagate in a planar manner. Here, 

during the planar propagation stage (usually a few steps), an elliptical fictitious plane is 

used to best fit the fracture tips by least-squares criterion because the crack tips are usually 

distributed in a wing manner (for mechanical analysis). The propagation length of the 

planar propagation would be larger than those of non-planar propagation because fracture 
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is more likely to propagate in mode I. Once the fictitious plane is propagated, the pressure 

drop, ∆𝑃𝑓 in the fictitious plane can be calculated (Rahman, Hossain et al. 2002):  

 
∆𝑃𝑓

∆𝑙
=
64𝜇𝑞

𝜋𝑙𝑎3
                                                                                                                           (2.22) 

Where ∆𝑙 = 𝑙𝑗+1 − 𝑙𝑗 and 𝑗 is the 𝑗th iteration step. 𝑞 is the flow rate in this fracture and 

𝑎 is the fracture aperture and 𝜇 is the fluid viscosity; The SIF of a fictitious elliptical 

fracture during the planar propagation stage determined by as (Kachanov, Shafiro et al. 

2013):  

𝐾𝐼(𝜑) =
𝜎𝑛(𝑒𝑓𝑓)√𝜋

𝐸(𝑘)
(
𝑏

𝑎
)
0.5
(𝑎2 sin2𝜑 + 𝑏2 cos2 𝜑)                                                        (2.23) 

𝐾𝐼𝐼(𝜑) = 0                                                                                                                          (2.24) 

Where 𝑎 and 𝑏 are the major and minor axis of the fictitious plane. The newly created 

surface should be perpendicular to the minimum principal stress direction. Thus, the shear 

stress on this fictitious plane is zero and 𝐾𝐼𝐼(𝜑) and kink angle are also zero. Equation 

2.23 and 2.24 are substituted into Equation 2.21 to calculate the equivalent stress intensity 

factors, 𝐾𝑒𝑞 which are defined by Equation 2.21. The magnitude of fracture propagation 

at tips can be given by scaling law (Mastrojannis, Keer et al. 1980): 

∆𝑑𝑖 = {

0                                               𝐾𝑒𝑞
𝑖 < 𝐾𝐼𝑐

∆𝑑max (
𝐾𝑒𝑞
𝑖 −𝐾𝐼𝑐

𝐾𝑒𝑞
max−𝐾𝐼𝑐  

)
𝑚

            𝐾𝑒𝑞
𝑖 ≥ 𝐾𝐼𝑐

                                                                                   (2.25) 

Where ∆𝑑𝑖 is the growth rate of the 𝑖th tip, 𝑚 is the index and is generally assumed as 1, 

∆𝑑max is the maximum propagation length (e.g., 10% of initial fracture radius); In this 

work, the propagation scheme is based on the suggestion from (Rahman, Hossain et al. 

2000, Rahman, Hossain et al. 2002, Schwartzkopff, Xu et al. 2016). An algorithm 

describing the propagation scheme is given below.  
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Algorithm 1. An algorithm for fracture network propagation.  

while current time step < total time step do 

 Current time step size  ∆𝑡 

 Compute primary variables (e.g., displacement, pressure using FEM)  

 for each fracture do  

  Outline fictitious plane  

  Determine 𝜃0 and 𝐾𝐼
𝑒𝑞

 (Equation 2.20 and 2.21)  

  
while 0 <

𝐾𝐼
𝑒𝑞
−𝐾𝐼𝑐

𝐾𝐼𝑐
< 𝜀𝑆𝐼𝐹 = 10%  do  

    Propagate the fracture by ∆𝑑 (Equation 2.25) in direction 𝜃0 (fracture tips are 

updated) 

    Outline fictitious plane based on newly created tips 

    Calculate the pressure drop by Equation 2.22. 

    Calculate SIF and 𝐾𝐼
𝑒𝑞

 (Equation 2.17-2.19/2.23-2.24, 2.21) 

  end 

  
if  
𝐾𝐼
𝑒𝑞
−𝐾𝐼𝑐

𝐾𝐼𝑐
≥ 𝜀𝑆𝐼𝐹 = 10% then 

   Redefine time step size ∆𝑡 ≔ ∆𝑡/2 

   return (Re-run current time step) 

  end  

  if 𝐾𝐼
𝑒𝑞
− 𝐾𝑐 < 0 then 

   continue (Skip to next fracture) 

  end  

 end  

Insert penny fractures to represent newly created surfaces of propagated fractures. 

End 
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2.2.4 Eshelby Solution for Fracture Pressure Induced Stress Field (Stress Shadow)  

Eshelby solution was first introduced to formulate the elastic stress field surrounding and 

insider an inclusion in an isotropic elastic infinite medium (Eshelby and Peierls 1957, 

Eshelby and Peierls 1959). Since 1960’s, Eshelby solution has been applied to solve 

complicate problems, such as faulting (Rudnicki 1977), deformation in reservoir 

undergoing production (Guido, Antonellini et al. 2015). The details of Eshelby solution 

for induced stress field can be found in (Meng, Heltsley et al. 2012) or Appendix A. Note 

that the solution only describes the induced stress field of an inclusion. The superposition 

principle is applied to calculate the total stress field of fracture network. However, 

because in most applications the number of fractures in our applications is more than 

several thousands and the density of fracture is relatively high, there are two limitations 

in the analysis: (1) the magnitude of total induced stress field may exceed the matrix 

strength (i.e., tensile strength); (2) the computational cost is generally high. Thus, some 

assumptions are adopted for addressing these two limitations. The induced stress field of 

the region close to a fracture is considered which can save lots of computational time. 

The distance between this region and fracture is less than 0.25 times the fracture radius. 

For example, for areas beyond 0.25 times the fracture radius, the induced stress field is 

ignored, because the magnitude of induced stress is relatively small. In addition, the 

magnitude of total induced stress filed may exceed the rock matrix strength at crack tips. 

Thus, the magnitude of total induced stress filed should not exceed the threshold values 

(i.e., rock tensile strength). Therefore, the excess portion of total induced stress field is 

not considered.  
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2.2.5 Simulation of Induced Seismicity  

Slip on fractures is believed to induce seismic events. In-situ (Scotti and Cornet 1994, 

Amann, Gischig et al. 2018) and lab experiments (Ye and Ghassemi 2018, Ye and 

Ghassemi 2019, Ye and Ghassemi 2020) indicate that injection-induce fracture slip can 

enhance the permeability by up to 2-3 orders of magnitude, and a large portion of slip can 

be aseismic. We argue that aseismic-seismic transition exhibits a dependence on the slip 

rate and slip distance. Motion (e.g., aseismic-seismic transition) can be described by the 

dynamic equations of motion where velocity/slip rate and displacement/slip distance are 

the primary variables. Some studies have attempted to employ the spring system (Figure 

2.9a) to represent the instability of faults (Marone 2019, Scholz 2019) and a threshold 

velocity was derived (Im, Marone et al. 2019). Such a spring system can be exactly 

described by the dynamic equations of motion. When either the fracture slip distance, or 

the fracture slip rate, or both are larger than threshold values in a cycle, slip will become 

unstable (seismic). Or, when the critical stiffness, 𝐾𝑐 , is larger than fracture shear 

stiffness, 𝐾, slip will become unstable (seismic) (Scholz 2019): 

𝐾𝑐 =
(𝑏−𝑎)∙𝜎𝑛

𝐷𝑐
[1 +

𝑀∙𝑉2

𝜎𝑛∙𝑎∙𝐷𝑐
]                                                                                                    (2.26) 

𝐾 =
7𝜋

24

𝐺

𝑟
                                                                                                                       (2.27) 

Where 𝑎, 𝑏 and 𝐷𝑐  are the experimentally measured parameters of rate-state friction law 

(Figure 2.9b). 𝑀 is the mass per unit area of fracture (kg/m2). 𝜎𝑛 is the effective normal 

stress and 𝑉 is the slip rate; 𝐷𝑐  is a distance for the evolution to steady state. Equation 

2.26 can be found in (Gu, Rice et al. 1984, Im, Marone et al. 2019). In practice, 

𝐾 represents elastic properties of the rock surrounding the fracture/fault and the size of 
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the latter. Equation 2.27 describes the penny shape fracture shear stiffness (Eshelby and 

Peierls 1957); 𝑟 is the fracture radius.  

 

Figure 2.9 Schematic diagram shows the definition of spring system and rate and state friction law. 

(a) is spring system, 𝝈𝒏 is the effective normal stress, 𝑲 is the stiffness of spring, 𝑭 is loading 

force and 𝑽 is the slip rate. 𝑴 is the mass of system. (b) is the rate and state friction law. 𝝁𝒅 is 

the experimentally measured dynamic friction coefficient. (c) is Force-displacement diagram 

in the vicinity of the fracture. 

 

By submitting Equation 2.27 into Equation 2.26 (𝐾𝑐 = 𝐾), the threshold slip rate 𝑉𝑐 for 

penny fracture is given by:  

𝑉𝑐 = √
𝜎𝑛∙𝑎∙𝐷𝑐

𝑀
(

7𝜋∙𝐺∙𝐷𝑐

24(𝑏−𝑎)∙𝜎𝑛∙𝑟
− 1)                                                                                          (2.28) 

For example, if fracture radius 𝑟 = 10 m , rock mass per unit area of fracture 𝑀 =

5600 kg/m2, Young’s modulus 𝐸 = 40 GPa, Poisson’s ratio is 0.22, 𝑎=0.003, 𝑏=0.006, 

𝐷𝑐 = 10 μm , effective normal stress is 𝜎𝑛 = 2 MPa , the threshold slip rate is 𝑉𝑐 =

4 mm/s  according to Equation 2.28. The rate-state friction parameters are defined 

according to the (Im, Marone et al. 2019). Note that very few works can reliably and 

explicitly present the threshold slip rate for penny fracture. It suggests that if the loading 

slip rate of fracture is larger than 𝑉𝑐 = 4mm/s, fracture slip is eventually unstable. If the 

spring reaches a tangent point (point B), 𝜕𝐹 𝜕𝑢 ⁄ will decrease faster than 𝐾 (Figure 2.9c). 

It suggests that the surrounding rock is no longer capable of absorbing the energy released 
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during deformation on the fracture and seismic slip occurs on the fracture. Seismic slip 

may occur after sufficient aseismic slip is accumulated (Dobroskok and Ghassemi 2005). 

Some previous self-weight sliding tests indicated that if the shear slip distance is larger 

than the peak displacement 𝛿𝑝, the fracture becomes unstable (Barton and Bandis 1982, 

Barton, Bandis et al. 1985):  

𝛿𝑝 = 
𝑙

500
(
𝐽𝑅𝐶

𝑙
)
0.33

                                                                                                                (2.29) 

Where 𝑙 is the length of fracture; 𝐽𝑅𝐶 is the joint roughness coefficient. The fractures 

length in the experiments was in the range of 0.3 m to 12 m. Equation 2.29 is an empirical 

formula based on the analysis of 650 tests at low normal stress. However, Equation 2.29 

is not dependent on normal stress which is not always realistic. Recently, another 

empirical formula was derived based on 358 direct shear tests where the length of fracture 

are range from 0.05 to 3 m. (Asadollahi, Invernizzi et al. 2010, Rashidian and Chang 

2012):  

𝛿𝑝 = 1.925 ∙ 𝑙
0.09 ∙ 𝐽𝑅𝐶−0.97 ∙ 𝐽𝐶𝑆−1.19 ∙ 𝜎𝑛

0.24                                                                  (2.30) 

Where 𝐽𝐶𝑆 is the joint compressive strength and 𝜎𝑛 is the normal stress acting on it; 

Equation 2.30 describes the peak displacement of rough (𝐽𝑅𝐶 > 5)  and hard 

(𝐽𝐶𝑆 > 50 MPa) fractures. For example, if fracture (e.g., granite) length 𝑙 = 10 m , 

𝐽𝑅𝐶 = 6 , 𝐽𝐶𝑆 = 230 MPa , 𝜎𝑛 = 45 MPa , the peak displacement is 𝛿𝑝 = 0.017 m 

according to Equation 2.29. The peak displacement is 𝛿𝑝 = 0.0016 m  according to 

Equation 2.30. It seems that the Equation 2.30 is more realistic for calculating the peak 

displacement of fractures in our application. Equation 2.29 and 2.30 attempts to scale 

𝛿𝑝 from laboratory to field and so they may not map the full nonlinear features of the rock 

mass. But it still provides a straightforward method to distinguish between the seismic 
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and aseismic slip. So, we use them as a convenient modeling approach, i.e., if the slip rate 

is larger than the threshold slip rate (from Equation 2.28) or the slip distance is larger than 

the threshold slip distance (from Equation 2.30), shear stiffness 𝐾 is less than the critical 

stiffness 𝐾𝑐. So, the threshold slip displacement and slip rate are utilized to distinguish 

between the aseismic and seismic slip. In our simulation, the slip rate is more likely to 

reach the threshold slip rate. 

It is generally accepted that fracture failure and the onset of slip is governed by the Mohr-

Coulomb failure criterion. Commonly, one event is then generated at failure on the 

fracture faces. In practice, one fracture may generate multiple events (Ye and Ghassemi 

2019) on or in the fracture surrounding volume. Numerical generation of induced 

seismicity has been intensely studied (Hazzard and Young 2004, Baisch, Vörös et al. 

2010, Segall and Lu 2015), yet few models exist capable of achieving induced seismic 

events with realistic quantitative output. Those simulations cannot resolve the number 

and location and magnitude of multiple seismic events caused by fracture failure. Other 

studies (McClure 2012, McClure 2015) also use one event whenever the slip rate of an 

element is larger than an arbitrarily chosen value. Event hypocenters were defined as the 

location of failure elements and the event hypocenters were relocated randomly to 

approximate the effect of relocation error. Failed elements were randomly assigned a 

certain number of events. However, in these works, the seismic energy of the event cloud 

is not consistent with the seismic energy of the failed element, i.e., energy conservation 

is not enforced. It is known that most seismic events in the fields are made up of many 

smaller-scale ruptures of one major fracture and surrounding micro-fractures (Ye and 

Ghassemi 2019, Hu, Ghassemi et al. 2020). Those multiple events occur close to each 
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other in space and time. In this work, we propose a new model of seismic generation. A 

micro-fractures population is defined following Chapter 2.2.1 and is used to generate 

multiple events. Multiple micro-fractures (Figure 2.10b) are located on or around the 

major fracture (Figure 2.10a). The contour of Figure 2.10b shows the shortest distance 

between micro-fractures and a major fracture. Micro-fractures located on the major 

fracture are treated as the contact points between the top and down surfaces of major 

fractures. The shear slip of the major fracture is assumed to be reflected on the shear slip 

of micro-fractures, because the micro-fractures are located in the perturbed region of the 

major fracture. Thus, seismic events may occur on a major portion of the fracture area as 

well as in its surroundings (e.g., Figure 2.10d).  

The seismic source parameter such as the magnitude, location and number of events in 

the cloud needs to be defined properly. Here a new method is proposed to constrain the 

uncertainties of the events cloud. In the first step, the major fracture will slip during the 

injection based on Mohr-Coulomb failure criterion and one fictitious event occurs at the 

center of the major fracture (e.g., Figure 2.10c). The seismic moment of this fictitious 

event is calculated as (Hanks and Kanamori 1979, McGarr, Spottiswoode et al. 1979): 

(𝑀0)1 = ∫ 𝐺𝑈𝑠d𝐴Σ
                                                                                                             (2.31) 

Where  (𝑀0)1(N ∙ m) is the seismic moment; 𝐺 is the shear modulus and 𝑈𝑠 is shear 

displacement (seismic). 𝐴 is the slip area and here is treated as the area of the fracture. In 

simulation, the seismic moment from Equation 2.31 consists of the seismic moment from 

all the slip events (on/off a fracture). Because those events are all associated with this 

major fracture slip. Thus, the fictitious event should be representative of the events cloud 

(e.g., Figure 2.10d) from energy conservation perspective.  
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Figure 2.10 Schematic diagram shows the procedures of events cloud generation. (a) is major 

fracture. (b) is the distribution of micro-fractures. (c) is the fictitious event. (d) is the events 

cloud.  

 

The moment magnitude of the fictitious event  (𝑀𝑤)1(N ∙ m) generated by shear slippage 

can be estimated as: 

(𝑀𝑤)1 = 
2

3
log10(𝑀0)1 − 6.07                                                                                                            (2.32) 

The seismic energy of the fictitious event  (𝐸𝑅)1(Joule) can be calculated as:  

log10(𝐸𝑅)1 = 4.8 + 1.5 ∙ (𝑀𝑤)1                                                                                     (2.33) 

The seismic energy (𝐸𝑅 )1 is the lumping of all seismic energy. Next, we calculate the 

shear stress and normal stress on the micro-fractures (the orientation of micro fractures 
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may follow a randomly distribution or a certain stochastic distribution (e.g., Log normal 

distribution). In this work, the orientation of micro-fractures follows the Log normal 

distribution. The mean of Log normal distribution is the same as the orientation of major 

fracture and standard deviation is set to zero. The micro-fractures friction angle is treated 

the same as the major fracture and micro-fractures cohesion is set to zero in this work. 

There is one potential seismic event on each failed micro-crack based on the Mohr 

Coulomb failure criterion. Thus, there may have an event cloud surrounding a major 

fracture (e.g. Figure 2.10d). However, the number of seismic events on or surrounding a 

major fracture has to be constrained. It is known that Gutenberg-Richter law expresses 

the relationship between the magnitude and the total number of events in any given region. 

Thus, events should follow the Gutenberg-Richter law suggesting that event clouds have 

the same b-value as the fictitious events because those events occur in the same region. 

Here a-value is used as a fitting constant. The Gutenberg-Richter law on a failure fracture 

can be represented as:  

log10𝑁 = 𝑎 − 𝑏 ∙ 𝑀                                                                                                     (2.34) 

Where 𝑁 is the number of events having a magnitude larger or equal to the magnitude 𝑀; 

𝑏 value can be obtained from the field observation; 𝑎 is the fitting number, and is 

calculated based on the information of numerically generated fictitious event:  

𝑎 = 𝑏 ∙ (𝑀𝑤)1                                                                                                                 (2.35) 

Where (𝑀𝑤)1 the moment magnitude of fictitious event and obtained from Equation 2.32; 

The event cloud is assumed to be exactly fitted by the Gutenberg-Richter law (i.e., R-

squared is equal to one). The moment magnitude of 𝑛th event is calculated as: 

(𝑀𝑤)𝑛 =
𝑎−log10 𝑛

𝑏
                                                                                                                (2.36) 
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Where (𝑀𝑤)𝑛 is the moment magnitude of 𝑛th event and 𝑎 is from Equation 2.34; The 

seismic energy of 𝑛th event (𝐸𝑅)𝑛 is calculated as:  

(𝐸𝑅)𝑛 = 10
(4.8+1.5∙(𝑀𝑤)𝑛 )                                                                                                   (2.37) 

If 𝑛 is equal to one, Equation 2.36 attempts to calculate the seismic energy of fictitious 

events. Equation 2.37 can theoretically be used to generate an infinite number of events 

and some constrains are needed to limit the number of events. The first prescribed 

condition is the energy conservation i.e., the total seismic energy of the real event cloud 

should be less than the seismic energy of the fictitious event. While the seismic energy of 

fictitious event is defined according to Equation 2.31. In practical, Equation 2.31 can 

describe the seismic moment from all the slip events (on/off a fracture). Thus, Equation 

2.31 in numerical model is supposed to already consider seismic moment from all the slip 

events (on/off a fracture): 

∑ (𝐸𝑅)𝑗 ≤ (𝐸𝑅)1 
𝑛
𝑗=2                                                                                                              (2.38) 

Where ∑ (𝐸𝑅)
𝑛
𝑗=2 𝑗

 is the total seismic energy of the event cloud; (𝐸𝑅)1 is the seismic 

energy of the fictitious event defined in Equation 2.33. Another condition is that the 

receivers cannot detect very small-magnitude events. So, there is a threshold magnitude 

imposed. Such a threshold on moment magnitude of event 𝑀𝑡ℎ  is set as -3 in this work 

which is the same as the magnitude of the background seismicity in the regions of our 

application: 

(𝑀𝑤)𝑛 ≥ 𝑀𝑡ℎ = −3                                                                                                          (2.39) 

These two conditions (Equation 2.38 and 2.39) constrain the number of generated events 

in the model. The stress and pore pressure fields of micro-fractures can be obtained by 

interpolating the stress and pressure distribution on the finite elements. The contribution 
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of micro-fracture to matrix permeability have been contained through the concept of the 

equivalent matrix permeability. Micro-fractures failure is assessed based on the Mohr-

Coulomb failure criterion. In general, the number of failing micro-fractures is larger than 

the number of events. Each failing micro-fracture is assumed to have one event. Multiple 

events can occur on the same location over time on fracture. But we only consider the 

cumulated MEQs at the same location. Therefore, the CFF of each selected micro-fracture 

is calculated. The large CFF, the larger of magnitude of event occurred on this micro-

fracture. While other failing micro-fractures could be considered as aseismic. 

 

Figure 2.11 The evolution of slip rate, displacement and magnitude of events occurred on fracture 

101 (of Collab) over time. Slip rate, time step =100s (red line), slip displacement, time step=100 

s (green line), magnitude of events, time step=100s (black line). Slip rate, time step =200s (blue 

line), slip displacement, time step=200 s (pink line), magnitude of events, time step=200s (cyan 

line). 

 

In addition, the time step in FEM may have effects on the generation of MEQs, specially 

on the transition between aseismicity and seismicity. For instance, if the time step is large 

and the increases of stress on fracture is large, the increases of slip rate is thus large and 

the transition from aseismicity to seismicity will not be reflected in FEM and only the 

seismic phase will be observed. For example, the threshold slip rate and threshold slip 
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displacement is 1x10-7 m/s and 1x10-5 m, respectively. Such threshold slip rate and 

threshold displacement is employed to distinguish between aseismic and seismic state. 

The simulation settings can be found in Chapter 4. The time step is 100 second and 200 

second, respectively. Figure 2.11 shows the evolution of slip rate, displacement and 

magnitude of events occurred on fracture 101 over the times. There is a transition zone 

from aseismic to seismic when the time step of simulation is 100 second. It is in the range 

from 1500 second to 1600 second. While none of transition zone from aseismic to seismic 

when the time step of simulation is 200 second. A good time step could be set based on 

the maximum slip velocity of fracture. But this suggestion is not working well in field 

case (e.g., Utah FORGE). Because 64 fractures are slipped in Utah FORGE. Each slipped 

fracture has a maximum slip velocity. Therefore, a good time step is set based on the 

minimum value of those 64 maximum slip velocities. So, the only effective way of 

mapping the transition between aseismicity and seismicity is by reducing the time step.  

2.3 Integration of the 3D Fracture Network with the Coupled FEM 

The dual-scale semi-deterministic fracture network model is integrated with the coupled 

thermo-poroelastic FEM by linking the permeability change, responding to fracture shear 

dilation and propagation. Fracture network geometry (i.e., aperture and radius) are 

submitted to FEM for equivalent permeability calculations at each time step. The stress 

and fluid pressure of fracture are calculated from the FEM solutions. According to the 

failure criterion, fracture may experience the transition between aseismic and seismic 

state during the stimulation. If fluid pressure is high enough to make the fracture network 

propagate, an ultrafast analytical approach is utilized to simulate fracture propagation. 

Once fractures deform and extend (i.e., dilation and propagation), the geometry of the 
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fracture network are updated, the solution proceeds to the next time step. The flowchart 

of the integrated model is shown in Figure 2.12 and Appendix B.  

 

 

Figure 2.12 The flowchart of the integrated model. 

 

2.4 Conclusions 

In this chapter, a coupled Thermo-Hydro-Mechanical-Seismic Model with 3D fracture 

network has been further developed to simulate the response of EGS to water injection. 

The coupling process between behavior of fracture network, fracture flow, fracture 

dilation and propagation, and induced seismicity is described using a hybrid EPM/DFN. 

A dual scale semi-determinist fracture network generated by combining data derived from 
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imaging logging and core with fracture properties which follow a stochastic distribution. 

An advantage of this semi-determinist fracture network model is that measurement data 

can be incorporated to constrain the uncertainties in the rock mass. Another advantage of 

this network model is that micro-fractures are also considered. Integration between the 

coupled finite element model and the dual scale semi-determinist fracture network model 

is achieved by linking permeability change with fracture deformation (e.g., dilation and 

propagation). A stress dependent fracture deformation model with a shear dilation model 

is utilized to account for shear dilation. An ultrafast analytic approach for fracture 

propagation is applied using the maximum tensile stress criterion. Stress shadow caused 

by fracture pressurized is described by Sneddon solution or Eshelby solution. The induced 

seismicity during injection process are also evaluated. A seismic model is developed 

which allow for multiple seismic events to occur on and around a fracture. Two conditions 

are imposed to constrain the number and magnitude of events. The switching conditions 

between aseismic slip and seismic slip are also resolved. 
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Chapter 3 Verifications and General Examples for Coupled 

Thermo-Hydro-Mechanical-Seismic Model with a Dynamic 3D 

Fracture Network 

3.1 Introduction 

This Chapter presents several comparison studies between the predications from Coupled 

Thermo-Hydro-Mechanical-Seismic model with 3D fracture network and published 

results. In addition, several general examples are also presented. 

3.2 The Distribution of Pore Pressure Surrounds Fracture 

The first considers the pore pressure surrounding a fracture. A penny shape fracture is 

suddenly pressurized by a 25 MPa for 10 hours. The radius of this fracture is 10.5 m. The 

permeability of rock matrix is 0.01 mD and initial pore pressure is 20 MPa. The numerical 

domain is 100 × 100 × 100 m. The results of the pore pressure distribution are shown in 

Figure 3.1a. A comparison of the numerical results for pore pressure (𝑋, 𝑍 = 0 m) 

surrounds fracture with the analytical solution from (Warpinski, Wolhart et al. 2004). The 

red zone in Figure 3.1a is asymmetrical because the meshes cut by fracture is 

asymmetrical. A very good agreement between numerical results and analytical solution 

is observed (Figure 3.1b). 
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Figure 3.1 The distribution of pore pressure surrounds fracture. (a) is the pore pressure distribution 

after 10 hours pressurization. (b) is the comparison between the numerical results from 

current method and analytical solution. 

 

3.3 Frictional Slip of a Single Fracture  

For another comparison, frictional slip of a penny fracture is considered. The dip direction 

of fracture is zero and dip angle of the fracture are 60o and 75o, respectively. The fracture 

diameter 𝐿 is 10 m. The friction coefficient of the fracture is 0.6. The numerical domain 

is subjected to remote uniaxial compression (Figure 3.2a). The value of uniaxial stress 

𝜎 is 41.8 MPa. Young’s modulus is 71 GPa and Poisson's ratio is 0.219. Figure 3.2b and 

3.2c shows compare numerical results with analytical solution (Phan, Napier et al. 2003, 

Kaven, Hickman et al. 2012). An acceptable difference (24.4% at the location of 

maximum slip distance) is observed between the slip distance from current method and 

analytical solution (Figure 3.2b). The slip distance of fracture in current method is 

uniformly distributed because normal and shear stresses on fracture are uniformly 

assigned in the model. Figure 3.2c indicates that the normal stress on fracture from current 

method and analytical solution match very well.  

 

Figure 3.2 Frictional slip of a single fracture. (a) is the boundary conditions and fracture geometry 

in numerical model. (b) is the dimensionless slip distance alone the fracture width. (c) is the 

dimensionless normal traction along the fracture width.  
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3.4 Fracture Propagation 

The next comparison study is to investigate the fracture propagation aspect of the model. 

The geometric and mechanical properties of fracture in this comparison are from 

(Rahman, Hossain et al. 2000, Schwartzkopff, Xu et al. 2016). The fracture only twists 

in the vertical direction (𝑧 − axis) and realigns to the horizontal plane (𝑥𝑦 − plane). 

Figure 3.3a is the fracture (dip=45𝑜 , dip direction=0𝑜) propagation surface. One must 

keep in mind that the newly created surface is approximated by one continuous surface 

rather than discrete fracture (e.g., Figure 2.7b) when post-processing to more readily 

display the geometry. The propagation profile in 𝑥𝑧 cross section follows the same trend 

as that of published results (Figure 3.3b, 3.3c, 3.3d). Figure 3.3b indicates that the fracture 

(dip=15𝑜 , dip direction=0𝑜) propagation path from current method is lower than others 

because the calculation of the kink angle in the current method is based on an initial 

fracture (penny-shape). The value of kink angle is kept constant during the non-planar 

propagation stage in current method. The kink angle from published results is updated in 

each step and this is more realistic to represent the actual situation, but higher 

computational power is required. Figure 3.3c suggests that fracture (dip= 30𝑜 , dip 

direction=0𝑜) propagation paths defined by the current method are lower than the results 

from published works, the differences are not significant. It suggests a trend where the 

difference is smaller for fractures with higher dip. For the fracture (dip= 45𝑜 , dip 

direction=0𝑜) with a higher dip, the results from the current method align closely with 

the published results (Figure 3.3d). Further, the height of the fracture (the distance 

between x-axis and fracture tip) propagation is underestimate, especially for fractures 

with lower dip (Figure 3.3b).  
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Figure 3.3 Comparison between current results and published results. 𝑳 = 𝟎. 𝟏 𝐦 is the initial 

fracture radius. (a) is the fracture (dip=𝟒𝟓𝒐 , dip direction=𝟎𝒐 propagation surface. (b) is the 

cross section along 𝒀 = 𝟎  of fracture (dip=𝟏𝟓𝒐 , dip direction=𝟎𝒐 ) propagation surface 

compare with published results. (b) is the cross section along 𝒀 = 𝟎 of fracture (dip=𝟑𝟎𝒐 , dip 

direction=𝟎𝒐) propagation surface compare with published results. (b) is the cross section 

along 𝒀 = 𝟎  of fracture (dip=𝟒𝟓𝒐 , dip direction=𝟎𝒐 ) propagation surface compare with 

published results. 

 

3.5 Seismicity Generation 

The next study is to explore the generation of event cloud surrounding a fracture. Fracture 

radius is 5 m and dip is 61o and strike is 89o, friction coefficient of fracture is 0.61. This 

fracture is subjected to constant injection rate of 4.5 ∙ 10−5 m3/s. The injection time is 

510 seconds. The permeability of rock matrix is 0.1 mD. The vertical stress is 41.8 MPa 

and the maximum, and minimum horizontal stresses are 35.5MPa  and 21.7MPa  , 

respectively. The b-value is given as 0.8. Figure 3.4 shows the distribution of events. At 

the final time step, 147 events are generated. Those events are located on or around the 
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fracture (Figure 3.4a), the black spheres are considered as aseismic while the others are 

seismic. The magnitude of the events (Figure 3.4a) ranges from -0.66 to -3. Such events 

cloud can be well fitted (𝑅2 = 1) by Gutenberg-Richter law with a= -0.23 and b=0.8.  

 

Figure 3.4 The events cloud and magnitude of events. (a) the events cloud is located on/surround the 

fracture. The black spheres are considered as aseismic while others are seismic. (b) indicates 

that the events cloud can be well fitted by Gutenberg-Richter law (a=-0.23 and b=0.8). 

 

3.6 Eshelby Solution for Fracture Pressure Induced Stress Field (Stress Shadow) 

The next comparison study is to explore the fracture pressure induced stress field using 

Eshelby solution. In this study, the length of fracture is 2 m and the inner pressure is 

loaded as 1 MPa. Both dip and strike of the fracture is zero. Figure 3.5 indicates that the 

stress field from Eshelby solution used in this work can match the publish results.  
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Figure 3.5 The stress field within the zone surrounding the fracture. (a) the 𝝈𝒛𝒛 and 𝝈𝒙𝒙 comparison 

between Eshelby method and Sneddon solution. 𝑫 is the fracture length. (b) the distribution 

of 𝝈𝒙𝒙. The unit is Pa.  

 

3.7 The Effects of Thermal Stress on Fracture Propagation  

In this study, the effect of thermal stress on fracture propagation is examined. A low 

temperature water is injected into the high temperature rock to stimulate the reservoir. 

The thermal stress resulted by the temperature gradient influences the fracture network 

propagation. It is known that the increasing temperature gradient can reduce the 

breakdown pressure. Here a numerical simulation is designed to map interaction between 

temperature gradient and fracture propagation. The numerical setting is the same as the 

numerical setting in Chapter 4 except the injection fluid and reservoir temperature. Here 

the injection fluid temperature is fixed as 50𝑜C and reservoir temperature is 150𝑜C. The 

other numerical settings can be found in Chapter 4. Figure 3.6b shows the distribution of 

matrix temperature at 2600 seconds injection. It seems that the cooling zone is relatively 

large. Fracture 100 and 101 of Collab testbed) are propagated at 2600 seconds injection 

but the fracture initial pressure is decreased approximately 8% as compared to results 

from Chapter 4 (fracture initial pressure is 4289 psi). The propagation length for fracture 

101 at 2600 seconds injection is approximately 0.62 m (Figure 3.6a) while the 
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propagation length of fracture 101 at 2600 seconds injection is approximately 0.50 m 

(caused by fluid injection) without considering the effects of thermal stress. The fracture 

pressure at 2600 seconds injection is shown in Figure 3.6a. In this example, the influence 

of thermal stress on fracture propagation is generally large because the cooling zone is 

generally large (Figure 3.6b). The thermal stress can cause the development of fracture 

network when the injection time is large (e.g., order of weeks to years) (Tarasovs and 

Ghassemi 2011). The cooling zone could be large enough to stimulate reservoir because 

of the thermal stress during the EGS development. 

 

Figure 3.6 The distribution of fracture pressure and matrix temperature after 2600 second injection. 

(a) distribution of fracture pressure after 2600 seconds injection time and (b) distribution of 

matrix temperature after 2600 seconds injection. 

 

3.8 The Effects of Poroelasticity on Induced Seismicity 

Fluid injection can cause seismicity via pore pressure increase, and total stress changes 

due to poroelasticity. Increasing the pressure in a fracture lowers the effective normal 

stress reducing the fracture shear strength and increasing slip potential (e.g., Mohr 

Coulomb). The poroelastic stresses due to the pore pressure change can result in total 

stress variations on the fractures. The magnitude of the direct pressure effect is controlled 
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by the rock diffusivity (involving elastic stiffness, matrix and fracture permeability, fluid 

viscosity) and the injection rate. The magnitude of the poroelastic stress due to pore 

pressure change is controlled by Biot’s coefficient 𝛼 and bulk modulus (Cheng 2016). 

However, there appears to be some level of opacity in the literature regarding the role of 

poroelastic stress on induced seismicity. A recent paper (Alghannam and Juanes 2020) 

describes the impact of poroelastic stress in the mass-spring system for rate-state friction 

law. We re-examine this issue by explicitly considering the poroelastic stress acting on a 

fracture subjected to injection.  

The Coupled Thermo-Hydro-Mechanical-Seismic Model with the 3D fracture network 

(with rate state friction law) is used to assess the effects of fluid diffusion and poroelastic 

stress on induced seismicity. Two types of injection scenarios are designed in the 

numerical simulations to distinguish and to underscore the contributions of fluid diffusion 

and poroelastic stress to the fracture stability and induced seismicity.   

We consider a circular fracture of radius 3 m. The fracture dip and strike are 81o and 66.2o, 

respectively. A rate-state friction law is employed to describe the evolution of the fracture 

friction coefficient (𝐷𝑐 = 20 × 10
−6 m , a=0.011, b=0.015 and 𝑉0 = 1 × 10

−12m/s). 

The reservoir rock properties are listed in Table 3.1 and represent a sandstone. The 

injection rate and injection time are also found in Table 3.1. 

In the first scenario, water is injected at entire surface of the fracture and two numerical 

simulations are carried out with different Biot’s coefficient (e.g., 0.0 and 1.00). Therefore, 

any element intersected with entire surface of the fracture is considered as injection 

elements. The injection rate at every nodes of injection elements have the same value and 

total injection rate is 3 × 10−5 (m3/s) (Table 3.1). The sphere represents the center of the 
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fracture (Figure 3.7a). The second scenario involves fluid injection some distance away 

from the fracture (Figure 3.7b). The grey sphere represents the injection points located at 

[𝑥, 𝑦, 𝑧]= [817.6142 m, 1296.63 m, 105.2805 m] and distance between injection points 

and fracture center is 6 m. Three numerical simulations are carried out with different 

Biot’s coefficient (e.g., 0.1, 0.90 and 1.00) in the second injection scenario. These two 

injection scenarios are designed to investigate the effects of poroelastic and fluid 

diffusion on induced seismicity. The fracture pressure, effective normal stress, shear 

stress and magnitude of numerically generated seismic events are monitored during the 

simulation.  

 

Figure 3.7 The set-up of two different injection scenarios. Both injection scenarios have the same 

fracture geometry. The coordinate of center of fracture is [811.6142, 1296.63, 105.2805]. 

fracture radius is 3 m. Fracture dip and strike is 81 and 66.2 degree, respectively. The grey 

sphere represents the injection points in both two simulations. (a) fluid injection occurs on 

entire surface of fracture. (b) fluid injection occurs away from the center of fracture. Here the 

coordinate of injection point is [𝒙, 𝒚, 𝒛] = [817.6142, 1296.63, 105.2805]. In case (b) an 

instantaneous poroelastic stress and late time pore pressure effect is active. 
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Table 3.1  Rock and Fluid Data Used in Simulation (Chang and Segall 2016) 

Parameter value Values Source/Comments 

Young’s Modulus  25.5 GPa Assumed 

Drained Poisson’s Ratio 0.22 Assumed 

Undrained Drained Poisson’s 

Ratio 

0.46 Assumed 

Biot’s Coefficient 0.0/1.0, 

0.1/0.9/1.0 

Three different Biot’s coefficient are 

tested. 

Vertical stress 𝑆𝑉 22.0 MPa Z-axis  

Maximum horizontal stress 

𝑆h𝑚𝑎𝑥 

39.0 MPa X-axis  

Minimum Horizontal stress 𝑆h𝑚𝑖𝑛 13.0 MPa Y-axis  

Initial pore pressure 3.0 MPa Assumed 

Matrix Permeability  1 mD Assumed   

Dilation angle 0.035 rad Assumed 

Fracture radius  3 m Assumed 

Cohesive  0 Assumed 

Frictional angle  0.6 Assumed 

Fracture aperture 0.1 mm Assumed 

Injection rate  3 × 10−5 (m3/s)  Assumed. Constant injection rate. 

Injection time  4000 seconds Injection shut in at 4000 seconds. 
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Figure 3.8 The evolution of fracture slip rate and friction coefficient at first injection scenario with 

different Biot’s coefficient. (a) the evolution of fracture slip rate due to the injection occurs on 

the fracture. (b) the evolution of friction coefficient due to the injection occurs on the fracture.  
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Figure 3.9 The evolution of fracture pressure, effective normal stress, shear stress at first injection 

scenario with different Biot’s coefficient. (a) the evolution of fracture pressure; (b) effective 

normal stress, (c) shear stress due to the injection occurs on the fracture.  
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Figure 3.10 The evolution of magnitude of event due to the injection occurs on the fracture in the 

first scenario with different Biot’s coefficient. (a) the evolution of magnitude of event due to 

the injection occurs on the fracture in the first scenario with different Biot’s coefficient. (b) the 

distribution of event at 4100 seconds in the first scenario with Biot’s coefficient is 0.0. The 

number of MEQs is 49. (c) the distribution of event at 4100 seconds in the first scenario with 

Biot’s coefficient is 1.0. The number of MEQs is 35.  

 

Figure 3.8 shows the fracture slip rate and friction coefficient in the first injection scenario. 

Fracture pressurization reduces the effective stress on the fracture causing shear slip. 

Injection has stopped at 4000 seconds. The maximum slip rate is reached at 4100 seconds 

and is equal to 2.039x10-6 m/s and 1.072x10-6 m/s for Biot’s coefficient of 0.0 and 1.0, 

respectively. At 4000 seconds shut-in, the slip rate is 2.037x10-6 m/s and 1.070x10-6 m/s 

when the Biot’s coefficient is 0.0 and 1.0, respectively. Therefore, the slip rate increased 
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at 4100 seconds i.e., shut-in by approximately 0.1% of the slip rate at 4000 seconds. 

Figure 3.9 shows the evolution of fracture pressure, effective normal stress and shear 

stress due to the injection into the fracture for the two different Biot’s coefficients. As the 

fracture is pressurized by fluid injection, the fluid diffuses into the rock matrix cause the 

expansion of zone surrounding the fracture. Note that fracture is mechanically closed 

during the injection (i.e., a closed natural fracture) and the fracture aperture is 0.1 mm 

(Table 3.1).  

As the fluid diffuses into the rock matrix, the poroelastic effect causes the total normal 

stress acting on the fracture to increase, contributing to fracture stability. This is because 

the surrounding zone of the fracture experiences compression due to the poroelastic effect 

in response to pore pressure buildup. In contrast, fracture pressure significantly increases 

when injecting into the fracture. Therefore, the effective normal stress is decreased 

(Figure 3.9b). The total normal stress will go down when the injection is shut-in because 

the poroelastic stress is reduced. However, the fracture pressure is also significantly 

decreased, so the effective normal stress increases as time increases after injection shut 

in.  

Figure 3.10a shows the evolution of magnitude of event. Injection has stopped at 4000 

seconds. The maximum magnitude of the simulated event is reached at 4100 seconds and 

is -0.562 and -0.7622 when Biot’s coefficient is 0.0 and 1.0, respectively. As the 4000 

injection seconds, the magnitude of simulated event is -0.5624 and -0.7626, respectively. 

Therefore, the increases of magnitude of simulated event at 4100 seconds is 

approximately 0.07% of magnitude of simulated event at 4000 seconds.  
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Figure 3.10b and 3.10c show the distribution of seismic events for injection in the fracture. 

Figure 3.10b is the distribution of seismic events after 4100 seconds injection for Biot’s 

coefficient of 0.0, and the number of events is 49. The magnitude of events ranges from 

-1.4 to -3.0. Figure 3.12c is the distribution of seismic events after 4100 seconds of 

injection with Biot’s coefficient of 1.0, and the number of events is 35. The event 

magnitudes range from -1.6 to -3.0. Strong compression develops within a zone 

surrounding the fracture due to poroelastic effects. Such poroelastic compression leads to 

the stability of the fracture. Therefore, the number of events in the simulation with Biot’s 

coefficient of 0.0 is larger than the number of events in the simulation with Biot’s 

coefficient of 1.0.  

Figure 3.11 shows the fracture slip rate and friction coefficient for the second injection 

scenario. In this case, the fracture stability is also affected by the poroelastic stress in 

addition to pore pressure. Injection is continued for 4000 seconds and is then shut-in. The 

maximum slip rate is reached at 4100 seconds and is 3.036x10-6 m/s and 3.568x10-6 m/s 

when Biot’s coefficient is 0.9 and 1.0, respectively. Note that no fracture shear slip 

occurred on the fracture for Biot’s coefficient of 0.1. As the 4000 injection seconds, the 

slip rate is 3.029x10-6 m/s and 3.560x10-6 m/s when the Biot’s coefficient is 0.9 and 1.0, 

respectively. Therefore, the increases of slip rate at 4100 seconds due to injection shut-in 

is approximately 0.2% of the slip rate at 4000 seconds. 

Figure 3.12 shows the evolution of fracture pressure, effective normal stress, shear stress 

in the second injection scenario with different Biot’s coefficient. Figure 3.13a shows the 

evolution of event magnitudes. Injection has stopped at 4000 seconds. The maximum 

magnitude of the simulated events is reached at 4100 seconds and the maximum 
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magnitude of simulated event is -0.7772, and -0.7290 when Biot’s coefficient is 0.9 and 

1.0, respectively. At 4000 seconds, the magnitude of the simulated event is -0.7778, and 

-0.7296, when Biot’s coefficient is 0.9 and 1.0, respectively. Therefore, the increases in 

magnitude of the simulated event at 4100 seconds is approximately 0.07% of the 

magnitude of simulated event at 4000 seconds.  

Figure 3.13b, 3.13c show the distribution of seismic events. Figure 3.13b is the 

distribution of seismic events after 4100 seconds injection with Biot’s coefficient is 0.9; 

the number of events is 34. The event magnitudes range from -1.6 to -3.0. Figure 3.13c 

is the distribution of seismic events after 4100 seconds injection with Biot’s coefficient 

is 1.0; the number of events is 37. The magnitude of events ranges from -1.5 to -3.0. The 

poroelastic effects can perturb the stress field in the vicinity of the injection location and 

gives rise to extension/compression zones. The distribution of extension and compression 

stress state will be determined by the fracture location, orientation, injection location, as 

well as permeability and fracture connectivity in reservoir. Therefore, the number of 

events in the simulation with Biot’s coefficient of 1.0 are larger than the number of events 

in the simulation with Biot’s coefficient of 0.9.  

In addition, the effect of fluid diffusion on induced seismicity depends on the diffusion 

time. In the first injection scenario, the diffusion time is very small, and the seismic event 

occurs at 200 and 500 seconds when Biot’s coefficient is 0.0 and 1.0, respectively (Figure 

3.12a). In the second injection scenario (Figure 3.15a), the diffusion time is relatively 

large, and the seismic events occur at 1200 seconds (Biot’s coefficient=0.9) and 600 

seconds injection (Biot’s coefficient=1.0), respectively. Because fracture is favored to 

slip due to increased tensile stress because of poroelastic effects. Further, the magnitude 
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of events in the first injection scenario is larger than the magnitude of events in the second 

injection scenario. 

In a recent work (Alghannam and Juanes 2020), applied the spring-slider model 

considering fluid flow to investigate the effects of the injection rate on induced seismicity. 

In their work, the poroelastic stress was not included and the contributions because in the 

1D spring-slider model the diffusion length is zero and stress perturbation zone in the 

vicinity of the injection cannot be developed. In addition, the ‘1D poroelastic spring-

slider model’ in their work cannot consider the influence of poroelastic effects on induced 

seismicity. In general, the poroelastic response to injection depends on the distance 

between injection and fracture, facture location and orientation, stress regimes (e.g., 

normal faulting), as well as the matrix permeability and fracture hydraulic connectivity. 

Therefore, 1D model (e.g., spring-slider model) is not well suited for investigating the 

poroelastic effects on induced seismicity. However, a critical stiffness as the function of 

pore pressure rate is derived, and this critical stiffness may be useful since current critical 

stiffness does not consider the pressure rate.  
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Figure 3.11 The evolution of fracture slip rate and friction coefficient at second injection scenario 

with different Biot’s coefficient. (a) the evolution of fracture slip rate due to the injection occurs 

far from the center of fracture. (b) the evolution of friction coefficient due to the injection 

occurs far from the center of fracture.  
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Figure 3.12 The evolution of fracture pressure, effective normal stress, shear stress at second 

injection scenario with different Biot’s coefficient. (a) the evolution of fracture pressure; (b) 

effective normal stress, (c) shear stress due to the injection occurs far from the center of the 

fracture.  
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Figure 3.13 The evolution of magnitude of event due to the injection occurs far from the center of the 

fracture in the second scenario with different Biot’s coefficient. (a) the evolution of magnitude 

of event due to the injection occurs far from the fracture in the second scenario with different 

Biot’s coefficient. Note that none of MEQs are generated when Biot’s coefficient equal to 0.1. 

(b) the distribution of event at 4100 seconds in the second scenario with Biot’s coefficient is 0.9. 

The number of MEQs is 34. (c) the distribution of event at 4100 seconds in the second scenario 

with Biot’s coefficient is 1.0. The number of MEQs is 37.  

 

3.9 Conclusions 

In this Chapter, several comparison studies and general examples are presented. The 

results from coupled thermo-hydro-mechanical-seismic model with 3D fracture network 

matches the published results. It demonstrates the effectiveness of our coupled thermo-
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hydro-mechanical-seismic model with 3D fracture network in fractured reservoir 

stimulation (e.g., EGS development).  
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Chapter 4 An Application for EGS Collab 

4.1 Introduction 

EGS Collab Project has been launched by DOE-GTO to simulate a decameter scale 

reservoir to enhance the understanding of rock mass respond to stimulation. The focus of 

the EGS Collab Project is to control the permeability enhancement under complex in-situ 

stress conditions and heterogeneous rock mass properties. The EGS Collab site is hosted 

in the Sanford Underground Research Facility (SURF). Four rock formations are present 

in this location: the Poorman Formation, the Yates amphibolite, the Homestake 

Formation, and the Tertiary Rhyolite dikes (Figure 4.1a). EGS Collab testbed 1 is entirely 

located within the Poorman Formation which shows intense multiscale fold. The rock 

consists of graphitic sericite-biotite phyllite/schist with local interlayers of quartz, and 

calcite veins. The detailed geologic descriptions of those formations can be found 

elsewhere (Stanton W. Caddey, Richard L. Bachman et al. 1992).  

The EGS Collab consists of eight HQ-diameter holes (hole diameter is 96 mm and core 

diameter is 63.5 mm) with approximately equal lengths (about 61.0 m) (Figure 4.1b). 

Each hole is steel-cased from the top (collar) to a depth of 6.1 m. Six of the holes (E1-

OT/OB, E1-PST/PSB and E1-PDT/PDB) are monitoring wells, while other two holes 

(E1-I and E1-P) are injection well and production well, respectably. Geophysical 

monitoring is via a dense 3D sensor array including 24 hydrophones (Sensor 1), 18 

accelerometers (Sensor 2), 4 geophones (Sensor 3), 17 continuous active sources seismic 

monitoring (Sensor 4), 96 thermistors (Sensor 5), 123 seismic shot (Sensor 6)  and 96 

ERT electrode (Sensor 7) (Figure 4.1b). Six radial notches (~ 8.89 mm radially from the 

hole) were created along the injection well E1-I as marked in Figure 4.1b. The coordinate 
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system used in this work is the local Homestake Mine Coordinate system from an old 

gold mine that was in operation for over 100 years.  

The purpose of the layout of the holes is to create connected flow path (connector) 

between the injection well E1-I and production well E1-P. The E1-I and E1-P were drilled 

(azimuth = 356˚ and inclination = 12˚) approximately parallel with the trend of minimum 

horizontal stress (azimuth = 2o and plunge = 9.3˚). The distance between injection well 

E1-I and production well E1-P is approximately 10 m. Stress measurements as part of 

kISMET have indicated the 𝑆ℎ𝑚𝑖𝑛 is about 21.7 MPa, and the 𝑆𝐻𝑚𝑎𝑥 is about 35.5 MPa. 

The vertical stress is lithostatic and equal to 41.8 MPa. The initial pore pressure is set to 

zero in this work since no direct measurements are available and there are no observed 

major flows from the rock matrix. E1-OT and E1-OB are intended to intersect with 

potential hydraulic fracture. Other four holes (E1-PST/PSB, and E1-PDT/PDB) are 

designed to be paralleled with the potential hydraulic fracture.  

 

Figure 4.1 Geological model and layout of holes of EGS Collab testbed. (a) EGS Collab testbed is 

entirely located within Poorman Formation at 4850 ft depth. (b) Six holes (E1-OT/OB, E1-

PSB/PST and E1-PDT/PDB) are used as monitoring wells. E1-I and E1-P are injection well 

and production well, respectively. The six pink spheres along E1-I are notches. The contour 

represents different types of sensor. For example, Sensor 1 is the 24 hydrophones, Sensor 2 is 

the 18 accelerometers, Sensor 3 is the 4 geophones, Sensor 4 is the 17 continuous active sources 

seismic monitoring, Sensor 5 is the 96 thermistors, Sensor 6 is the 123 seismic shot and Sensor 

7 is the 96 ERT electrode.  
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Three multi-test experiments were planned and performed: (1) a hydraulic fracturing test 

at Notch@142 occurred during May 21-22, 2018 and Notch@164 occurred during May 

22-24, 2018 referred to as Stim-II HF@164 Notch; (2) hydraulic characterization test at 

Notch@164 conducted from October 24 to November 20, 2018; and (3) hydraulic 

characterization tests at Notch@164 conducted in February-March 2019. The experiment 

1 was intended to induce controlled fracture propagation (presumably a penny-shaped 

one) to connect the injection well E1-I with the production well E1-P. Figure 4.2 shows 

the injection profile of the Stim-II HF@164 Notch in Experiment 1. As shown in Figure 

4.2a, pressure drop was very small and indicated that the length of hydraulic fracture was 

very small and hydraulic fracture have intersected natural fractures (Kneafsey, 

Blankenship et al. 2020). Figure 4.2b is the injection profiles of the test on May 24 and 

the pressure drop was very small. However, the injection rate was relatively high, and it 

suggested that fracture propagation started from natural fractures.  

 

Figure 4.2 Injection profiles and induced seismicity of Stim-II HF@164 Notch. (a) the injection 

profiles of the test on May 23, 2018. The green dots represent the micro-seismic events triggers 

per minutes. The pink dots represent the distance between events and the Notch@164. (b) the 

injection profiles (SNL14) of the test on May 24, 2018.  

 

Two direct observations of the first hydraulic fracture’s (Stim-II HF@164 Notch) 

manifestations have been suggested by the Collab team to be: (1) temperature anomalies 
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at T22:43 of 2018/05/24 in well E1-OT (Figure 4.3a) and (2) visible fluid flow out of the 

production well E1-P in fluid test on 2018/05/25 (Figure 4.3b). Figure 4.3 illustrates a 

hydraulic connection between the E1-I and E1-P. Most studies of the data have speculated 

that the propagation length of the hydraulic fracture in Stim-II HF@164 Notch is 

approximately 12 m and more (Wu, Fu et al. 2019, Fu, Wu et al. 2020, Makedonska, 

Jafarov et al. 2020), concluding that the outflow in the production well E1-P is due to an 

interesting hydraulic fracture(s). On the other hand, it seems that the pressurized fluid is 

jetting into the hole via veins (Ye and Ghassemi 2019) from a pressurized zone or natural 

fractures in the vicinity of the production well. It is worth noting that two natural fractures 

namely I-164a/b (at 164.4 and 164.6 ft depths along E1-I, respectively) are very close to 

the Notch@164 (164.24 ft depth) (Figure 4.4). The length of isolated zone is 64.8 inches 

and is located from 163.918 ft to 169.318 ft depths along E1-I. Thus I-164a/b is in this 

isolated zone. The injection rate in the May 22 test was small (maximum flow rate of 0.2 

L/min and duration was 10.5 minutes) during the early stage “breakdown” and 

propagation so that it likely yielded only a very small hydraulic fracture at Notch@164. 

The length of hydraulic fracture is only 0.25 m based on the model described in the 

previous sections. Therefore, it is more likely that the hydraulic fracture linked up with 

either or both natural fractures I-164a/b (Figure 4.5) prior to extending far into the rock 

mass towards the production well. The injection rate in the test of May 23 was small 

(maximum flow rate of 0.4 L/min and duration was 65.2 minutes) during the early stage 

of breakdown and propagation and may have resulted in limited propagation. And it is 

likely that the hydraulic fracture intersected one or both natural fractures observed near 

the notch (Kneafsey, Blankenship et al. 2020) (Figure 4.5). The pressure decay following 
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the test of May 23 indicates that the fluid may have leaked from natural fractures I-164a/b 

to the rock matrix or other small cracks and void (Figure 4.2). The injection rate in the 

test of May 24 was later increased to a much higher value (maximum flow rate is 5 L/min 

and duration was 31.7 minutes). A higher injection rate likely dilated natural fractures I-

164a/b intersected by the hydraulic fracture and propagated them to intersect E1-P. This 

is supported by the fact that a temperature increase was detected at E1-OT at T22:53 

(Figure 4.3a) and water was produced in E1-P in fluid test on May 25 (Figure 4.3b). In 

this work, we provide simulation results to assess the likelihood of this sequence of events 

and to suggest that the pressurization and/or propagation of I-164a/b is responsible for 

the observed water jets rather than a direct hydraulic fracture from Notch@164 

connecting with the E1-I with E1-P. In essence, we provide a fracture network conceptual 

model of the Experiment 1. 
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Figure 4.3 Field observation at E1-OT and E1-P caused by injection. (a) the temperature 

perturbations along E1-OT on May 24. (b) water jet occurs in E1-P at 126 ft and 129 ft depth.  

The water jetting was detected at May 25.   

 

 

Figure 4.4 Core and acoustic televiewer log showing the fractures in E1-I (at 164 ft to 169 ft depth). 
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Figure 4.5 A schematic of hydraulic fracture intersecting NFs I-164a/b. The generation of the 

hydraulic fracture is assumed to be due to the injection into Notch@164. Note that the 

hydraulic fracture almost overlaps with I-164b.   

 

Figure 4.6 The configuration of major fractures and orientation of fracture. (a) There are 101 major 

fractures in this configuration. Most fractures are steeply dipping. (b) Some major fractures 

surround the Notch@164. An OT-PDT-P connection can be extracted: E1-OT → OT-

161→PDT-114→E1-PDT→P-122/126 →E1-P or E1-OT→OT-161→P-126/127 →E1-P. Such 

connection partly matches the field observation during the fracture mapping exercise 

(Ghanashyam, Robert et al. 2019). 
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In this work, Stim-II HF@164 Notch is simulated using the model described in the 

previous sections. The injection began on May 24, 21:00 and ended on May 24, 22:53. 

The detailed injection profile is illustrated in Figure 4.2b. Image logs and core data have 

shown 101 major fractures in the EGS Collab Testbed 1 and most of the fractures steeply 

dip (see stereographic plot in Figure 4.6a) (EGS Collab Team 2020). There are likely 

small-sized fractures and micro-cracks present near major fractures, but they are not 

shown in the Figure 4.6a. The color represents the major fractures index as described in 

the geological survey of the site. For example, the name of fracture 44 is OT-132, 

denoting the location of the center of fracture 44 (OT-132) at 132.4 ft along the hole E1-

OT. Two main natural fractures I-164a/b intersects the E1-I at 164 ft (Figure 4.6b). The 

centers of fractures I-164a/b and the Notch@164 nearly share the same location. Thus, it 

is likely that NFs I-164a/b are the primary connections from 164@Notch to the rest of 

the reservoir rock mass because of the low permeability of the rock matrix. An OT-PDT-

P connection can be extracted from Figure 4.6b: E1-OT→OT-161→PDT-114→E1-

PDT→P-122/126 →E1-P or E1-OT→OT-161→P-122/126 →E1-P. Such connection 

partly matches the field observation during the fracture mapping exercise (Ghanashyam, 

Robert et al. 2019). 

The rock mechanical properties have been measured by various groups including the 

University of Oklahoma and various compilations can be found in (Kneafsey, Dobson et 

al. 2019, Ye and Ghassemi 2019, EGS Collab Team 2020, Ye, Ghassemi et al. 2020). 

The temperature of injection and rock matrix is 20𝑜C and 30𝑜C, respectively. In the 

current modeling we disregard the difference between the injected water temperature and 

rock temperature. This is because as shown in (Ghassemi and Zhang 2006) thermal 
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stresses develop much slower than the fracture propagation time scale. Although, there 

could be some impact on the injection temperature at the wellbore, however, in view of 

the small temperature differences the impact is likely small. Here, the initial time step in 

the finite element model is 100 seconds. Such time step may be changed during the 

iteration of fracture propagation (see Algorithm 1 in Chapter 2.2.3). Thus, the time step 

size may impact the quasi-static behavior (e.g., transition between aseismic and seismic 

state). In this work, Crank-Nicolson method is applied to discrete the time domain and it 

is unconditionally stable. The wellbore boundary condition is rate control. All unknowns 

and induced micro-seismicity are calculated at the end of each time step. The input 

parameters are shown in Table 4.1.  

Table 4.1  Reservoir properties used in the model. 

Parameter value Values Source/Comments 

Young’s Modulus (Lognormal 

distribution) 

𝑚𝑒𝑎𝑛 = 71GPa 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 5 Oldenburg et al. 2016 

Drained Poisson’s Ratio 0.22 Oldenburg et al. 2016 

Undrained Drained Poisson’s Ratio 0.46 Assumed 

Biot’s Coefficient 0.52 Assumed 

Vertical stress 𝑆𝑉 41.8 MPa Oldenburg et al. 2016 

Maximum horizontal stress 𝑆h𝑚𝑎𝑥 35.5 MPa Oldenburg et al. 2016 

Minimum Horizontal stress 𝑆h𝑚𝑖𝑛 21.7 MPa Oldenburg et al. 2016 

Initial pore pressure 0.0 MPa EGS Collab 2020 

Matrix Permeability  0.05 mD Ye, Ghassemi et al. 2016 

Dilation angle 0.035 rad Assumed 
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Fracture radius (Lognormal 

distribution) 

𝑚𝑒𝑎𝑛 = 3(m)  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 0.75 Estimating from Oldenburg et al. 

2016 

Fracture asperity (Lognormal 

distribution) 

𝑚𝑒𝑎𝑛 = 4 ∙ 10−5(m)  

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 10−9 

Assumed 

Cohesive (Lognormal distribution) 𝑚𝑒𝑎𝑛 = 0 MPa 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 0 Assumed 

Frictional angle (Lognormal 

distribution) 

𝑚𝑒𝑎𝑛 = 0.6(rad) 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

0.01 

Assumed 

Mode I fracture toughness 2 MPa√m Morris et al. 2016 

4.2 Numerical Results 

Based on the natural fracture data, E1-I and other wells are not connected prior to 

stimulation. Fracture PDT-142, OT-132 and P-129 are close to I-164a/b, but they do not 

intersect each other (Figure 4.6b). The zone surrounding the 164@Notch is isolated prior 

to injection. In our simulation, I-164a/b and the Notch@164 share the same location. 

Thus, I-164a/b are the primary conduits from the 164@Notch to the reservoir (i.e., HF 

not involved). Water enters the system at Notch@164 in E1-I and then flows to I-164a/b, 

pressurizing them. In the simulation, none of the natural fractures (I-164a/b and OT-132) 

show any propagation before T22:43. But field observations (Figure 4.3a) indicate a 

temperature change at T22:43 along a short section of E1-OT. This hydraulic 

communication signature in E1-OT is likely caused because I-164b is very close to OT-

132 so the former can feed the latter. So, numerical results (Figure 4.9c/d) seem to match 

the field observations. The calculated fluid pressure distribution within the reservoir and 

the fracture network at time steps T22:36 and T22:43 are shown in Figure 4.7. The natural 

fractures surrounding I-164a/b are pressurized, and weeps zones may be activated during 

the injection.  
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As injection continues, fracture I-164a/b start to open and propagate (non-planar) at 

approximately T22:44. The natural fractures (e.g., PDT-142, OT-132) surrounding I-

164a/b continue to be pressurized likely by matrix diffusion because fractures I-164a/b 

are isolated. Figure 4.8a/b shows the calculated fluid pressure distribution within the 

reservoir and the fracture network at T22:44 and the propagation length is only 

approximately 0.5 m (Figure 4.9a/b). Such a small propagation of natural fractures I-

164a/b is not sufficient to yield an effective flow path between E1-I and E1-P because I-

164b only intersects with OT-132 and the length at intersection is only 0.1 m (Figure 

4.9b). 

 

Figure 4.7 Fracture and matrix pressure at different times. Unit: MPa. (a) and (b) show the fracture 

and matrix pressure at time T22:36, respectively. (c) and (d) show the fractures and matrix 

pressure at time T22:43. The slices locations in (b) and (d) are X=823 m and Y=-1296.5 m, 

respectively.  
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The geometry of fracture propagation from numerical results seems to reflect the 

variation of temperature in E1-OT from the field observation (Figure 4.3a). Because field 

observation indicates a temperature changed at T22:44 detected in a large zone 

surrounding the E1-OT which suggest injection fluid flowing to E1-OT by hydraulic 

fracture (Figure 4.3a). But the values of temperature changes in E1-OT was not high, 

suggesting that E1-I and E1-OT are partially connected.  

 

Figure 4.8 The results from numerical simulation. Unit: MPa. (a) and (b) show the fractures and 

matrix pressure at T22:44. (c) and (d) show the fractures and matrix pressure at T22:45.  

 

As the injection continues, I-164b starts to propagate along the maximum stress direction 

fashion while I-164a remains stationary (Figure 4.9a/b). The propagation length of I-164b 

at T22:45 is approximately 0.6 m. Figure 4.8c/d show the calculated fluid pressure 
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distribution within the reservoir and the fracture network. Fracture I-164b starts to 

intersect with P-129 at T22:45, however the intersection length is approximately 0.1 m 

(Figure 4.9c/d). The planar propagation length of I-164b at T22:52 becomes relatively 

large (~9 m) which is shown in figure 4.10c/d. Figure 4.10a/b shows the calculated fluid 

pressure distribution within the reservoir and the fracture network. The natural fractures 

surrounding I-164a/b is pressurized and yet show no propagation (Figure 4.10c/d) in the 

model. Few fractures (e.g., PDT-114) will slip after injection shut in. The newly created 

fractures segment of I-164b form an effective flow path which tends to connect E1-I, E1-

OT, E1-PDT and E1-P. The length of the planar propagation segment is larger than the 

length of non-planar propagation segment, and I-164b fully intersects with the OT-132, 

P-122/126/127/129 and E1-P.  

Several potential connection paths can be envisioned from the fracture network after 

propagation and intersection, such as, injection well E1-I to production well E1-P, 

monitoring well E1-PDT to monitoring well E1-PST and production well E1-P to 

monitoring well E1-PST. The first potential connection path (Figure 4.11a): from 

injection well E1-I to Notch@164, from Notch@164 to fracture I-164b, from I-164b to 

OT-132, from OT-132 to P-122/126/127/129, from P-122/126/127/129 to production 

well E1-P. Thus, E1-I and E1-P are effectively connected. The second potential 

connection path (Figure 4.11b): from monitoring well E1-PDT to PDT-142, from ODT-

142 to I-164a/b, from I-164a/b to OT-132, from OT-132 to monitoring well E1-OT/PST-

56, from PST-56 to monitoring well E1-PST. The third potential connection path (Figure 

4.11b): from monitoring well E1-P to P-126/129, from P-126/129 to I-164b, from I-164b 

to OT-132, from OT-132 to PST-56, from PST-56 to E1-PST. The uncertainties in 
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connection paths will need be reduced with additional data. The pressure and rate of 

Notch@164 (SNL14) is recorded during the injection. Figure 4.12 shows the comparison 

between numerical results at Notch@164 and field data. It seems that numerical results 

and field data show a reasonable match.  

 

Figure 4.9 The results from numerical simulation. (a) and (b) show the propagation of I-164a/b at 

T22:44. The length of intersection between I-164b and OT-132 is relatively small (0.1 m). (c) 
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and (d) is the propagation of I-164b at T22:45. The length of intersection between I-164b and 

P-129 is relatively small (~0.1 m). Injection well E1-I partly connect with production well E1-

P. (e) and (f) is the transparent view of fracture network.  

 

 

Figure 4.10 The results from numerical simulation. (a) and (b) show the fracture and matrix pressure 

at T22:52. (c) and (d) is the propagation of I-164b at T22:52. I-164b fully intersect with the 

OT-132, P-122/126/127/129 and E1-P. Injection well E1-I fully connect with production well 

E1-P.  
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Figure 4.11 Three connectors are yielded during the injection. (a) show the connector between E1-I 

and E1-P. (b) show the connector between E1-PDT and E1-PST and the connector between 

E1-P and E1-PST.  

 

 

Figure 4.12 The pressure and injection rate at 164@notch (SNL14). The resulting pressure trend 

generally agrees with field measured values.   

 

In this simulation, three factures slipped namely, I-164a/b and PDT-114. The number of 

simulated MEQ events was numerically obtained and is plotted in Figure 4.13 for 

comparison with the field-observed events.  The number of the simulated events and field 

observed events are 298 and 245, respectively. Figure 4.13d is the magnitude-frequency 

distributions of the simulated events. The b-value is model predefined based on the field 

studies, and the a-values is fitting number. The evolution of effective principal stress is 

shown in Figure 4.14. 

Most field-observed events are distributed in the zone between the E1-I and E1-P. The 

location of simulated events matches the field-observed events in this zone very well 
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because the newly create fractures I-164b penetrates this zone and perpendicular with 

𝑆𝐻𝑚𝑎𝑥. It suggests that the geometry of newly created fractures from numerical model 

may match the realist hydraulic fractures. In addition, the differences between the 

distribution of field-observed MEQs and simulated MEQs may provide valuable 

information about the geometry of foliation. 

 

Figure 4.13 Comparison between simulated events with field-observed events. Black sphere 

represents field-observed MEQs and grey cube represent the simulated MEQs. (a)~(c) the 

distribution of simulated events and field-observed events. (d) The magnitude-frequency 

distributions and seismic b-values for simulated MEQs.  b-values is predefined, and a-values 

is a fitting number.    
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These differences can be attributed to the activation of foliation which are not included 

in dual scale semi-determinist fracture network (Figure 4.15). The four foliations can be 

estimated from field observations (e.g., seismicity, ERT).  
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Figure 4.14 The evolution of effective principle stress over times. Unit: MPa. (a) and (b) show the 

effective minimum principle stress distribution at T22:43 and T22:53, respectively. (c) and (d) 

show the effective intermediate principle stress distribution at T22:43 and T22:53, 

respectively. (e) and (f) show the effective maximum principle stress distribution at T22:43 and 

T22:53, respectively. 

 

 

Figure 4.15 Four foliations are estimated from field observation (e.g., seismicity and ERT). Black 

sphere represents the field-observed MEQs. Pink cube represents the simulated MEQs. 

Foliation 3&4, I-164-a/b and PDT-114 are slipped. The simulated MEQs generally match the 

field-observed MEQs.  

 

Further, the detail of reactivated foliations can be treated as complementary data to 

constrain the uncertainties in dual scale semi-determinist fracture network. Those four 

foliations are inserted into the fracture network and numerical simulations are performed 
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while numerical parameters are not changed.  The results show that I-164a/b, foliation 

3/4 and PDT-114 are slipped. The distribution of simulated and field-observed MEQs are 

shown in Figure 4.15. It seems that the simulated MEQs generally match the field-

observed MEQs. Thus, the heterogeneity of reservoir may not capture by those four 

foliations. Further studies need to constrain the uncertainties.  

4.3 Conclusions 

In this chapter, the Coupled Thermo-Hydro-Mechanical-Seismic Model with 3D fracture 

network is used to simulate EGS Collab. The simulation results (e.g., injection profiles, 

induced seismicity and fracture propagation) of the Stim-II 164@notch on May 24 show 

match with field observations.  
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Chapter 5 Considering Fracture Roughness in Seismicity 

Simulation 

5.1 Introduction 

Conventional simulation of micro-seismicity does not account for the fracture roughness. 

In addition, Mohr-Coulomb failure criterion is commonly employed to characterize the 

stability of fracture. However, fracture roughness is not considered in Mohr-Coulomb 

failure criterion. These limitations are relaxed in this chapter by developing advanced 

techniques for their consideration.  

5.2 The Effects of Spatial Distribution of Fracture Roughness on Seismicity 

Patterns 

The spatial distribution of seismic and aseismic slip on a fracture can be hypothetically 

correlated with the spatial distribution of fracture roughness. Both fracture roughness and 

distribution of seismic and aseismic slip are highly heterogeneous in a practical setting. 

The techniques of tectonic geodesy have been used to determine the distribution of 

seismic and aseismic slip (Avouac 2015), but it is not obvious how slip and roughness 

are manifested at depth. On the other hand, laboratory experiments that produce seismic 

and aseismic slip can be directly correlated with a quantified measure of fracture 

roughness. However, care should be practiced eliminating the effects of boundary 

conditions during the experiment. For example, direct shear tests are widely used to 

describe the fracture friction behavior while the distribution of stress along the fracture is 

not uniform. Also, the constant piston displacement loading condition more realistically 

captures the subsurface conditions and the stress drop (Ye and Ghassemi 2020) . 
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Numerical models can consider multiscale fracture roughness and non-linear frictional 

law (Tal and Hager 2018, Lu and Ghassemi 2019). However, the fully dynamic 

simulation of shear rupture on a fracture in 3D is computationally expensive. So that 

simplifications are often made which can result in some bias. For example, fracture 

roughness is implicitly represented in some numerical models by using a spatial 

distribution of the parameters of the rate-state friction law (Hillers, Ben-Zion et al. 2006, 

Richards‐Dinger and Dieterich 2012). And model calibration is difficult because of the 

absence of direct field observations. Another limitation is the difficulty in capturing the 

seismic and aseismic slip in a fully dynamic simulation. It is necessary to artificially 

predefine a critical velocity to distinguish seismic and aseismic slip (Tal, Hager et al. 

2018). In other words, a fully dynamic model would need to switch between quasi‐static 

and dynamic time integration schemes when the slip rate on nodes on the fracture 

becomes larger than the critical velocity. This is because aseismic slip only occurs during 

the quasi‐static stage of a fully dynamic model while seismic slip only occurs in dynamic 

stage. Thus, this type of fully dynamic model cannot reproduce seismic and aseismic slip 

on the fracture surface simultaneously.  

The unstable slip of fracture occurs when the elastic stiffness is less than critical stiffness 

(Rice and Ruina 1983). Slip at a certain velocity is aseismic when the elastic stiffness 

(fracture shear stiffness) is larger than the critical stiffness (Im, Marone et al. 2019). The 

critical stiffness corresponds to rate-state friction parameters (e.g., a and b), mass and 

velocity. Elastic stiffness is treated as fracture shear stiffness (Mclaskey and Yamashita 

2017). Therefore, it is of interest to establish how one can link the fracture shear stiffness 

with fracture roughness. This is because the Joint Roughness Coefficient (JRC) is well 
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accepted parameter to determine fracture shear behavior (e.g., fracture shear stiffness and 

aperture) in the rock mechanics discipline (International Society for Rock Mechanics 

1978). The ability to do so could be instrumental to numerical simulation of micro-

seismicity. While fracture roughness can be related to the JRC which accounts for the 

wavelength and frequency of the surface profile on the entire fracture surface. However, 

JRC can provide information on the spatial distribution of roughness, however, there is 

no effective way to measure the local roughness via JRC. The JRC is considered uniform 

on a natural fracture (or at least on a large portion of it).  

Thus, first a stochastic partition method is used to divide the contour of laser scan points 

into multiple patches. The details of stochastic partition method can be found in Appendix 

C. This provides a local measurement of roughness at every laser scan point on patches. 

The spatial distribution of JRC are usually heterogeneous on a fracture so the second step 

is to figure out a robust, physically sound quantitative correlation between the spatial 

distribution of JRC and the spatial distribution of fracture shear stiffness. This can be 

achieved by applying an empirical formula on every laser scan points to enable linking 

the JRC with fracture shear stiffness (Barton and Choubey 1977):  

𝐾𝑠 =
∆𝜏

𝑑
=
100

𝐿
∙ 𝜎𝑛 tan [𝐽𝑅𝐶 log10 (

𝐽𝐶𝑆

𝜎𝑛
) + 𝜙𝑟]                                                                      (5.1) 

 

Where 𝐿 is the equivalent length which can be considered as length of fracture or a patch 

of fracture; 𝜎𝑛 is the effective normal stress; 𝐽𝐶𝑆 is compressive strength of the fracture 

surface and 𝜙𝑟 is the residual friction angle. In this case, ∆𝜏 is the shear stress change 

from initial state to peak shear strength state and 𝑑 is the peak shear displacement of rock 

fracture. That is estimate the spatial distribution of fracture shear stiffness 𝐾𝑠 the spatial 

distribution of JRC.  
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A critical velocity is defined as (Im, Marone et al. 2019), 

𝑉𝑐 = √
𝜎𝑛𝑎𝐷𝑐

𝑀
(
𝐾𝑠𝐷𝑐

(𝑏−𝑎)𝜎𝑛
− 1)                                                                                                                        (5.2) 

 

Where 𝑎, 𝑏 and 𝐷𝑐  are rate state friction law parameters; 𝑀 is mass per unit area at facture 

depth (kg/m2 ); 𝜎𝑛 is the effective normal stress and 𝐾𝑠 is fracture shear stiffness. 

Because the critical velocity corresponds to a given effective normal stress and fracture 

shear stiffness, the spatial distribution of critical velocity is also not uniform on a fracture. 

As a result, different patches may experience aseismic and seismic slip simultaneously. 

The distribution of seismic and aseismic slip can be described by the spatial distribution 

of critical velocity and nucleation length (Dieterich 1992, Im, Marone et al. 2019). The 

effect of nucleation length is considered because seismic events only occur when the 

length of the unstable zone is larger than nucleation length. How the rate of loading (m/s) 

of fracture influence the moment magnitude of events and distribution of aseismic and 

seismic slip on fracture are also investigated.  

5.3 The Relation between Joint Roughness Coefficient (JRC)-Fractal Dimension 

In Chapter 5.2, the concept of JRC is employed to describe the spatial distribution of 

fracture shear stiffness. In the rock mechanics discipline, fracture roughness is typically 

represented by JRC (Barton 1973, International Society for Rock Mechanics 1978, 

Magsipoc, Zhao et al. 2020). The shear stress-shear displacement curve from millimeter-

scale direct shear tests provide an accurate way to calculate JRC. For instance, Barton 

1973 recommended that JRC could be determined from laboratory direction shear test 

with a constant normal stress. The JRC can be expressed as:  

JRC=
tan−1(𝜏 𝜎𝑛⁄ )−𝜙𝑏

log10(𝜎𝑐/𝜎𝑛)
                                                                                                                (5.3) 
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Where 𝜎𝑛 is the normal stress, 𝜏 is the peak shear strength for the normal stress; 𝜙𝑏 is the 

basic friction angle and 𝜎𝑐  is the rock compressive strength. While such procedure is 

neither feasible nor possible in EGS project. In practical, JRC is commonly determined 

by a visual comparison of fracture roughness and ten standard profiles (Barton and 

Choubey 1977). However, this framework is not practically feasible because biases are 

introduced in the process of the visual estimation of JRC (Beer, Stead et al. 2002, 

Grasselli and Egger 2003, Alameda-Hernández, Jiménez-Perálvarez et al. 2014). The 

visual estimation of JRC is strongly subjective and thus not suitable for engineering 

projects. In practical, roughness is likely anisotropic, which is rarely addressed by the 

visual comparison method (Barton and Quadros 2014).  

Since 1980’s, numerous studies attempted to correlate JRC against roughness parameters 

derived by statistical and fractal, and directional roughness methods (Grasselli 2006, Jang, 

Kang et al. 2014, Ünlüsoy and Süzen 2020). Note that fracture surface exhibit self-affine 

fractal properties instead of self-similar fractal properties (Mandelbrot 1985, Renard, 

Voisin et al. 2006, Candela, Renard et al. 2012, Magsipoc, Zhao et al. 2020). The fractal 

properties of self-similar surface are exactly or approximately like a part of itself. While 

the fractal properties of self-affine surface are different with a part of itself. The different 

between and self-affine and self-similar is scaled differently. The self-similar surface has 

the equal scales in both x and y direction of surface. The self-affine surface has different 

scales in different scales in different direction of surface.  

Pre-existing JRC-roughness parameters relationships have their own advantages and 

drawbacks. The JRC-statistical roughness parameters relationship (i.e., JRC-Z2) are the 

widely used in practical because of simplicity and efficiency (Myers 1962, Sayles and 
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Thomas 1978, Yu and Vayssade 1991). But the results are sensitive to the sampling 

interval because of the nature of self-affine fractals (Stigsson and Mas Ivars 2019). In 

addition, the sampling interval may influence the scale effects of JRC (Yong, Qin et al. 

2019) and the value of fracture roughness parameters (e.g., JRC, Z2) (Kulatilake and Um 

1999). The JRC-fractal dimension relationship (e.g., JRC-D, D is the fractal dimension) 

are attractive because this method requires less engineering judgement and practical 

experience (Lee, Carr et al. 1990). But the calculation of D may generate conflicting 

results because of the error in utilizing fractal concepts (Stigsson and Mas Ivars 2019). 

For example, divider method, compass walking and h-l method are applied to determine 

the 𝐷 of fracture roughness. However, those methods are only applicable to self-similar 

fracture roughness rather than self-affine fracture roughness. Therefore, the results from 

those works are very doubtful (Stigsson and Mas Ivars 2019). In addition, a positive 

correlation between JRC and D is not reflected in some JRC-D relationships. For example, 

a JRC-D(H) model (JRC~4.3𝐻) is developed to estimate JRC (Stigsson and Mas Ivars 

2019). 𝐻 is the Hurst exponent and 𝐻 = 2 − 𝐷 for curves or 𝐻 = 3 − 𝐷 for surface. This 

JRC-H model implies that JRC have a positive correlation with 𝐻, which contradicts with 

common sense. Because the higher value of H indicates the surface with a smoother trend, 

with less volatility and less roughness (Mandelbrot 1985). For example, the JRC of a 

smooth surface (H = 0.9 & 𝜎𝛿ℎ(1 mm) = 0.2) is 10.5 and JRC of rough surface (H=0.7 

& 𝜎𝛿ℎ(1 mm) = 0.2) is 9.6 according to (Stigsson and Mas Ivars 2019). 𝜎𝛿ℎ(1 mm) is 

the standard deviation of asperity difference of points 1 mm apart. 

In addition, the value of 𝐷 mostly range from 1 to 1.1 in those JRC-D relations (See Table 

5.1 or Li and Huang 2015). While the value of 𝐷 typically is in 1~1.5 for fracture profiles 
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and 2~2.5 for fracture surface (Brown 1987, Magsipoc, Zhao et al. 2020). Table 5.1 shows 

the previous relations of JRC-fractal dimension (D or H) (Li and Huang 2015). Note that 

C-W is compass walking and B-C is Box counting and PSD is power spectral density. St. 

profiles is the 10 standard profiles.  

Table 5.1  Literature review of relation between JRC-fractal dimension (After Li and Huang 2015). 

 

It seems that the empirical equations in Table 5.1 are only corrected over specific ranges 

of JRC and D/H. Thus, the full spectrum of fractal dimension is not covered. It is 

suspected that amplitude parameters (e.g., absolute height and RMS of height) of scan 

No. Equation Method D/H range  St. 

Profiles 

Reference 

T1 JRC=-1138.6+1141.6𝐷  

 

 

 

 

 

 

 

 

 

 

 

 

 

C-W 

1.0-1.0149 Y Turk et al, 1987  

T2 JRC=-1022.55+1023.92𝐷 1.0–1.0182 Y Carr and 

Warriner,1987 

T3 JRC=209.7517𝐷 − 204.1486 1.0–1.0686 N Qin et al,1993 

T4 JRC=172.206𝐷 − 167.2946 1.0–1.0876 Y Zhou and 

Xiong,1996 

T5 JRC=7811778.928𝐷3

− 23723041.6842𝐷2+24014672.3562𝐷
− 8103409.7809 

1.0–1.0144 Y Bae et al, 2011 

T6 JRC=1000(𝐷 − 1) 1.0–1.0200 Y Carr and 

Warriner,1987 

T7 JRC=1870(𝐷 − 1) 1.0–1.0107 Y Maerz and 

Franklin,1990 

T8 JRC=1647(𝐷 − 1) 1.0–1.0121 N Liu,1993 

T9 JRC=1195.38(𝐷 − 1) 1.0–1.0167 Y Lamas,1996 

T10 JRC=479.396(𝐷 − 1)1.0566  1.0–1.0495 Y Zhou and 

Xiong,1996  

T11 JRC=29.35(𝐷 − 1)1.0566  1.0–1.4343 N Jia et al.2011 

T12 JRC=150.5335(𝐷 − 1)0.46  1.0–1.0177 Y Wakabayashi, 

Fukushige,1992 

T13 JRC=-0.87804+27.7844(𝐷 − 1)/0.015
− 16.9304[(𝐷 − 1)
/0.015]2 

1.0005–1.0113 Y Lee et al,1990 

T14 JRC=28.5-33.18/[1 + 150(𝐷 − 1)] 1.0011–1.0194 N Xu et al,2012 

T15 JRC=100(𝐷 − 1)0.4[1

− 1/exp(300(𝐷 − 1))] 

1.0–1.0181 N Xu et al,2012 

T16 JRC=60(𝐷 − 1)12/[0.006 + (𝐷 − 1)] 1.0–1.0177 N  

T17 JRC=15179𝑊𝑑(𝐷 − 1)1.46  B-C - Y Chen,2012 

T18 JRC=53.7031(𝐷 − 1)0.3642  h-L 1.0–1.0664 N Askari and 

Ahmadi,2007 

T19 JRC=85.2671(𝐷 − 1)0.5679  h-L 1.0–1.0778 Y Xie and 

Pariseau,1994 

T20 JRC=50(𝐷 − 1)  

B-C 

1.0-2.0 N Ficker, 2017 

T21 JRC=1.319(1+2.862 tan𝛽)𝐷𝑓  2-3 N Wang et.al, 2017 

T22 JRC=-4.3+54.6𝜎𝛿ℎ(1 𝑚𝑚) + 4.3𝐻 PSD 0-1 N Stigsson and 

Ivars, 2019 
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points on fracture are not contained in those JRC-D relationships (Table 5.1). This is 

because a natural fracture surface has self-affine fractal properties fully defined by the 

fractal dimension and amplitude parameters of laser scan points on the fracture surface. 

Therefore, some researchers concluded that none of methods can accurately describe the 

JRC of fracture (Hsiung, Ghosh et al. 1993, Ünlüsoy and Süzen 2020) and there is still 

no universally accepted method for reliably and accurately estimating the JRC of a 

fracture (Ünlüsoy and Süzen 2020). The JRC-directional roughness parameters 

relationship  (Grasselli and Egger 2003) considers three-dimensional surface, which is 

rarely applied in practical.  

In Chapter 5.4, a self-affine anisotropic roughness is constrained by three parameters, 

including fracture dimension (Hurst exponent) in perpendicular directions (x 

direction/East and y direction/North) and amplitude parameter of scan points on fracture. 

Fractal dimension 𝐷 is directly connected to Hurst exponent 𝐻. In the case of our work, 

𝐻 is equal to 3 − 𝐷 for fracture surface and 𝐻 typically ranges from 0.5 to 1.0 because 𝐷 

is generally in 2~2.5 for surface. Therefore, H and JRC present a negative correlation. 

The amplitude parameter of scanning points on fracture can be complemented by the 

Root-mean-square (RMS) of height of scan points on fracture. The JRC-H relationship 

could be derived by calculating the JRC of synthetic anisotropic roughness which is 

defined by Hurst exponent and RMS. The advantage of synthetic anisotropic roughness 

compared to realist fracture in studying the relationship between the JRC-fractal 

dimension is that they allow the independent study of the effects of surface morphology 

on JRC. Note that the synthetic anisotropic roughness only captures the real fracture 
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roughness to a finite degree of accuracy within a finite range of scales (Candela, Renard 

et al. 2009). 

5.4 The JRC-Hurst Exponent (H) Empirical Relation 

The JRC-H empirical relation is used for characterization of a self-affine anisotropic 

surface, which is considered to be a realist fracture surface representation. In addition, 

the fracture samples from subsurface projects are limited and the full spectrum of fractal 

dimension (i.e., 𝐷 or 𝐻) may not be covered. The nature of generating a surface is to use 

equations to interpret the multiscale structures of fracture surfaces as mathematic-based 

structures. There are a number of ways to generate fractal surface, including random 

midpoint displacement (Fournier, Fussell et al. 1982), Fourier transform (Candela, 

Renard et al. 2009). The random midpoint displacement and Fourier transform could be 

the most common in practical settings. The random midpoint displacement method uses 

the modified fractal Brownian motion to generate a self-affine surface. This method is 

commonly applied because it is simple to generate a large fractal surface. The Fourier 

transform method is used to describe fracture profiles by an infinite superposition of sine 

functions and in practice the number of functions could be set to half the number of  points 

use to define the synthetic surface (Stigsson 2016). The method was further developed to 

be able to generate anisotropic surface with different fractal dimensions in two 

perpendicular directions (Candela, Renard et al. 2009). But the amplitude of height of 

laser scan points are not constrained. Because both fractal dimension and amplitude 

parameter of height of laser scan points are required for the definition of self-affine 

surface (Stigsson and Mas Ivars 2019).  
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In this work, extended Fourier transform method is developed with consideration of 

amplitude of height of laser scan points. The extended Fourier transform method uses two 

Hurst exponents and amplitude parameters (RMS) to constrain the self-affine anisotropic 

surface. The method first generates a mesh grid of desired dimension and a random 

Gaussian noise (vibration considered as asperities) is assigned to all coordinates of the 

grid. Such Gaussian noise field is decomposed using Fourier transform and the 

frequencies are scaled by the scaled anisotropic matrix 𝐸 to match the desired fractal 

dimension. The anisotropic matrix 𝐸 is defined as (Candela, Renard et al. 2009): 

𝐸 = [
1 𝐻𝑥⁄

1 𝐻𝑦⁄
]                                                                                                     (5. 4) 

In the next step, an inverse Fourier transform is performed to populate each coordinate of 

the surface. In the final step, the fracture surface is rescaled according to the value of 

𝑅𝑀𝑆 . Appendix D provides the MATLAB program for extended Fourier transform 

method. Self-affine surface can scale differently in different directions because of the 

decoupling of the different axis (Stigsson 2016). Therefore, self-affine surfaces can more 

realistically represent real fracture surfaces, underscoring the point that fracture 

roughness is scale dependent (because the self-affine surface is scaled differently in 

different direction of surface). Figure 5.1 shows the geometry of two synthetic self-affine 

surfaces. The Hurst exponent in x- and y-directions, 𝐻𝑥 and 𝐻𝑦 , are both 0.6 (isotropic- 

Figure 5.1a) and the RMS is 0.002 m in Figure 5.1a. Two representative fracture profiles 

are extracted in two perpendicular direction of the surface (Anisotropic- Figure 5.1b).  

Figure 5.1c shows the anisotropic surface with the Hurst exponent in x and y direction, 

𝐻𝑥 and 𝐻𝑦 , being 0.6 and 0.8, respectively with RMS of 0.002 m. Two representative 

fracture 1D profiles are extracted in two perpendicular directions of the surface (Figure 
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5.1d). This method is verified by comparison between the input parameters (𝐻𝑥=𝐻𝑦) of 

the synthetic isotropic surface and the evaluated 𝐻 of this isotropic surface obtained from 

power-spectral-density (PSD) analysis on this surface. The statistical properties of the 

surface can be extracted from power spectrum 𝐶(𝑞), 𝑞 is the wavevector obtained by 

PSD analysis over surface. The power spectrum 𝐶(𝑞) is the function of Fourier transform 

of the autocorrelation function of ℎ(𝑥) where ℎ(𝑥) is the height of surface (asperity) at 

position 𝑥. The effects of sampling interval (resolution) on the value of evaluated 𝐻 are 

considered.  

 

Figure 5.1 The geometry of two self-affine surface. (a) isotropic self-affine surface with 𝑯𝒙 = 𝟎. 𝟔 & 

𝑯𝒚 = 𝟎. 𝟔 and 𝑹𝑴𝑺 = 𝟎. 𝟎𝟎𝟐 𝐦. (b) the representative profiles extracted in 𝒙 = 𝟎. 𝟎 𝐦 and 

𝒚 = 𝟎. 𝟎𝟐𝟒 𝐦 direction of the surface (a). (c) An anisotropic self-affine surface with 𝑯𝒙 = 𝟎. 𝟔 

& 𝑯𝒚 = 𝟎. 𝟖  and 𝑹𝑴𝑺 = 𝟎. 𝟎𝟎𝟐 𝐦 . (d)  the representative profiles extracted in 𝒙 =

𝟎. 𝟑𝟔𝟔 𝐦 and 𝒚 = 𝟎. 𝟎𝟒𝟖 𝐦 direction of surface (c). The method can generate isotropic and 

anisotropic surface based on Hurst exponent and RMS. 
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Figure 5.2 shows the comparison between input parameters (𝐻𝑥=𝐻𝑦) and evaluated 𝐻 at 

different sampling intervals (distance between neighboring points, resolution), because 

the sampling interval has a large influence on the value of the fracture roughness (e.g., 

Z2, Rp and SF). If the sampling interval is less than 1 mm, the evaluated 𝐻 are very close 

to input parameters (𝐻𝑥=𝐻𝑦) (Figure 5.2). In this work, the sampling interval is regarded 

as 0.5 mm. Therefore, the extended Fourier transform method is effective to generate 

surface and PSD is robust and accurate to calculate H over the synthetic surface.  

 

Figure 5.2 The comparison between input parameters (𝑯𝒙=𝑯𝒚) of the synthetic isotropic surface and 

the evaluated 𝑯 of this isotropic surface. The slope of black line is 1. The green thin ×, blue 

triangle up, pink square and cyan triangle down are the evaluated 𝑯 from synthetic isotropic 

surface with sampling interval 2.00 mm, 1.00 mm, 0.50 mm and 0.25 mm, respectively.  

Sampling interval (the distance between scan points on fracture) have large influence on the 

value of fracture roughness (Z2, Rf, D, H, et.al). This plot shows that the sampling interval 

have less influence on the value of fracture roughness when the sampling interval is large than 

1 mm. 
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The JRC-H relations can be estimated by evaluating the JRC over a self-affine synthetic 

isotropic/anisotropic roughness described by two the Hurst exponents 𝐻𝑥 , 𝐻𝑦  and the 

RMS.  Based on previous work (Brown 1987, Akarapu, Sharp et al. 2011, Magsipoc, 

Zhao et al. 2020) the H value is assumed to be in the ranged of 0.5-1.0. Further, The JRC 

value is commonly in the range 0-20. H and JRC are negatively correlated, and the RMS 

of asperities elevation is chosen as 2x10-3 m. Because the JRC of synthetic surface (with 

𝐻𝑥 = 𝐻𝑦 = 0.5 , RMS=2x10-3 m) is 19.9 (approximately 20). The JRC of synthetic 

surface (with 𝐻𝑥 = 𝐻𝑦 = 1.0, RMS=2x10-3 m) is 0.3 (approximately 0.0). Therefore, the 

value of RMS (equal to 2x10-3 m) is reasonable because the limit values of Hurst exponent 

and JRC are mapped during the analysis of self-affine surface. Those two conditions act 

as input for estimating the JRC-H relations. Note that the effects of distribution of 

elevation of laser scan points on JRC is not included and would be considered in future 

work. Thus, the self-affine synthetic anisotropic surface could be fully constrained by the 

two Hurst exponents and RMS because of the nature of self-affine surface (Stigsson 2016). 

The measurement of JRC is based on the value of 𝑍2 over a synthetic surface and details 

can be found in some previous works (Jang, Kang et al. 2014). In most previous work, 

the JRC-H (D) relation is derived by the standard profiles (the ten profile types from 

(Barton and Choubey 1977)). One limitation of those works is that each trace (1D) is 

regarded as the representative trace of the fracture surface (2D). However, the 

uncertainties of this procedure cannot be justified. For example, ten type traces from 

(Barton and Choubey 1977) and seven type traces from (Bakhtar and Barton 1984) are 

analyzed by power spectral density (PSD) and Hurst exponent calculated from the slope 

of the PSD in a log-log coordinate system. Note that the slope of PSD in log-log 
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coordinate system equals (−2 − 2𝐻) for the fracture surface and (−1 − 2𝐻) for fracture 

profiles. Figure 5.3a shows the distribution of H with JRC for those seventeen fracture 

traces and the relation between H and JRC is not clear. For example, H positively 

correlates with JRC when JRC is in the range from 1 to 5, while H negatively correlates 

with JRC when JRC is in the range from 15 to 19. Common sense would indicate the 

higher values of H correspond to a smoother surface and smaller JRC. This expected 

phenomenon is also found in (Stigsson and Mas Ivars 2019).  

 

Figure 5.3 The distribution of JRC and H for the ten type traces from Barton and Choubey 1997 and 

seven type traces from Bakhtar and Barton 1984. (a) the distribution of JRC and H with the 

lower and upper bound of 95% of CI. (b) the PSD plot for the Trace 8-10 from Barton and 

Choubey 1977. The dots and triangles in represent the upper and lower bound of 95% CI of 

the linear regression line respectively. 

 

In addition, the slope of PSD in log-log coordinate system is also highly uncertain. Figure 

5.3b shows the PSD plot for the Trace 8-10 from Barton and Choubey 1977. The dot and 

triangle in Figure 5.3b represent the upper and lower bound of 95% CI of the linear 

regression line, respectively. The variation of slope of linear regression line could result 

in high uncertainties in the relation between JRC-H (Figure 5.3a). It is speculated that the 

ten type-traces from Barton and Choubey 1997 may not be suitable for the derivation of 

JRC-H relation. Thus, it is better to derive the relation between JRC-H by calculating the 



101 

JRC of a synthetic surface defined by Hurst exponents and RMS of height of the scan 

points on fracture (asperity heights).  

The processes of deriving JRC-H relation in this work follow four steps: (1) generate self-

affine synthetic surface by extended Fourier transform method with the value of 𝐻𝑥 & 

𝐻𝑦 (0.5 to 1.0) and RMS; RMS is fixed as 0.002 m; Here the length of surface is 0.5x0.5 

m; (2) evaluate the surface asperity height at a length scale of 10 cm and use it to calculate 

the distribution of JRC for the synthetic surface. Note that the JRC is determined by a 

widely acceptable empirical formula (JRC=51.16∙(Z2)
0.531 − 11.44 ) (Jang, Kang et al. 

2014). A bias will be introduced because such JRC-Z2 empirical formula is not suited for 

determining the JRC of an anisotropic surface. A lognormal distribution is recommended 

to fit the distribution of JRC. The mean of the lognormal distribution is considered the 

JRC of this entire synthetic surface at 10 cm scale; (3) repeat step (1) and (2) multiple 

times (i.e., 1000 times in this work) by keeping the 𝐻𝑥 and 𝐻𝑦 are the same as before 

while changing the geometry of synthetic surface by the random Gaussian noise 

(vibration considered as asperities) used to assign asperities to all the points on the entire 

surface. Note that each time will generate a different JRC values. Therefore, there are 

1000 JRC values are generated because we repeat step (1) and (2) 1000 times. (4) a 

Lognormal distribution is applied to fit the 1000 JRC values generated in Step 3. The 

mean of this Lognormal distribution is the taken as the final JRC value of the self-affine 

synthetic surface for the given 𝐻𝑥 and 𝐻𝑦  and RMS. (5) change the value of 𝐻𝑥 and 

𝐻𝑦 and repeat step (1), (2), (3) and (4). So, the full spectrum of JRC-H relations is covered 

(because JRC is in 0-20 range and H is in 0.5 to 1 are utilized to describe the JRC-H 

relation). Figure 5.4 shows the results. Because we use RMS=0.002 m and Hx=Hy=0.5 to 
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generate a synthetic surface (JRC=20). we use RMS=0.002 m and Hx=Hy=1 to generate 

a synthetic surface (JRC=0). In addition, H is located [0.5, 1] and JRC is located [0,20]. 

Figure 5.4 shows the evolution of JRC with the variation of 𝐻𝑥 and 𝐻𝑦 with RMS is fixed 

as 0.002 m. A quadratic polynomial equation is employed to fit the simulation results. 

The empirical JRC-H relation is given as:  

 

Figure 5.4 JRC-H relationship. The color dots are the results from evaluation of JRC over a self-

affine synthetic surface. The color contour is the quadratic polynomial equation function 

(Equation 5.5) which fits the values of color dots.  

 

JRC(𝐻𝑥, 𝐻𝑦) = 61.32 − 50.73𝐻𝑥 − 50.73𝐻𝑦 + 68.01𝐻𝑥
2 − 95.81𝐻𝑥𝐻𝑦 + 68.01𝐻𝑦

2          (5.5) 

Where 𝐻𝑥 and 𝐻𝑦 is the Hurst exponent along the x- and y-axis, respectively. Both 

𝐻𝑥 and 𝐻𝑦 are in the ranged from 0.5 to 1.0. Note that Equation 5.5 has a predefined 

condition of RMS fixed at 0.002 m. Further, Equation 5.5 is formulated at the decimeter 

scale (~10 cm) and upscaling law is necessary for field studies. For example, 𝐻𝑥 = 0.6 

and 𝐻𝑦 = 0.7 are measured over the fracture surface at 10 cm scale. The JRC of this 

surface is 13 according to Equation 5.5. The JRC of large-scale fracture at 100 m scale 

can be obtained from (Barton and Bandis 1982) scaling: JRC0(𝐿𝑛 𝐿0⁄ )−0.02JRC0 =
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13(100 0.1⁄ )−0.02∙13= 2.2. A brief introduction on elementary upscaling law can be found 

in Chapter 7.1. Figure 5.4 implies that JRC and H are negatively correlated which match 

previous studies (Li and Huang 2015, Ficker 2017) and common sense. The advantage of 

Equation 5.5 over others is that the full spectrum of H with JRC are covered and effects 

of anisotropic roughness on JRC are also considered. Note that the direction angle of self-

affine synthetic anisotropic surface is 90𝑜  in this work. The direction angle, different 

from 90𝑜  would be considered by rotated surface upon. The synthetic JRC-H relation can 

accelerate our numerical model for fracture network simulation.  

5.5 The Linear Barton-Bandis Model 

In our previous work (Chapter 2), fracture failure was evaluated by Mohr-Coulomb 

failure criterion with Patton’s saw-tooth fracture model (Cheng, Wang et al. 2019, Lu and 

Ghassemi 2019). Patton’s model is very simple, however the effects of increasing normal 

stress in changes of shear strength and fracture roughness are not fully reflected. While 

Barton-Bandis model can capture the most realist of fracture nonlinear shear behavior. 

The parameters in Barton-Bandis model have physical background and is easily 

determined by simple lab tests. In the reality, Mohr-Coulomb failure criterion is widely 

used for fracture stable analysis. Our fracture network model can be benefitted from the 

link between existing Mohr-Coulomb failure criterion and Barton-Bandis model. This 

can be achieved by calculating Mohr-Coulomb failure criterion parameters by “multi-

linearization” Barton-Bandis model (Prassetyo, Gutierrez et al. 2017). A linearized of 

Barton-Bandis model is given as (Prassetyo, Gutierrez et al. 2017):  

𝜏𝑡 = 𝑐𝑡 + 𝜎𝑛 tan(𝜙𝑡)                                                                                                          (5.6) 
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Where 𝜏𝑡  is equivalent peak shear strength, 𝑐𝑡 is the equivalent peak cohesion, 𝜎𝑛 is the 

normal stress on fracture, 𝜙𝑡  is the equivalent peak friction angle; The 𝜙𝑡  and 𝑐𝑡  are 

given by the slope and intersect of the tangent to the failure surface at the current normal 

stress, respectively. 𝜙𝑡  is the equivalent peak friction angle gave as:  

𝜙𝑡 = 𝜓𝑡 + 𝜙𝑟 =  𝐽𝑅𝐶 log10 (
𝐽𝐶𝑆

𝜎𝑛
) + 𝜙𝑟                                                                                   (5.7) 

In Equation 5.7, 𝐽𝑅𝐶 , 𝐽𝐶𝑆 and 𝜙𝑟  are the parameters of Barton-Bandis model. 𝜓𝑡  is the 

equivalent dilation angle and 𝜙𝑟 is residual angle; The details of the linearized of Barton-

Bandis model can be found in (Prassetyo, Gutierrez et al. 2017).  

5.6 Integration of the JRC-H Relation with FEM with 3D Fracture Network 

Fracture roughness have large influence on fracture deformation. In the rock mechanics 

discipline, JRC is commonly applied to describe the fracture roughness. However, the 

calculation of JRC is still in debated because of the measurement of JRC and scaling 

effects of JRC. Since only rock samples with small size (~10 cm) are available in projects. 

Here we propose a new method to relax these limitations. The flowchart of this method 

is shown in Figure 5.5. The details of this flowchart can be found in Appendix E.  



105 

 

Figure 5.5 The flowchart of integration of the JRC-H relation with FEM with 3D fracture network 

 

5.7 Conclusions 

In this chapter, several techniques are introduced to investigate the effect of fracture 

roughness on micro-seismicity and fracture failure criterion. This can be achieved by 

applying the concept of stochastic partition and JRC to the reservoir simulation. The 

spatial distribution of fracture shear stiffness can be described. The occurrence of micro-

seismicity depends on the ratio between critical stiffness and fracture shear stiffness. Our 

previous fracture network model is extended to consider the fracture roughness and 

fracture pressure induced stress field. A framework of synthetic anisotropic surface is 

developed, and the geometrical structures of synthetic roughness is fully controlled by 
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two Hurst exponents in perpendicular direction and RMS of height of scan points on 

fracture. A JRC-Hurst exponent relation is proposed by calculating the JRC value of 

synthetic anisotropic surface which is defined by two Hurst exponents and RMS. 

Therefore, the linear Barton-Bandis model can be used in numerical simulation.  
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Chapter 6 An Application for Triaxial Injection Laboratory Tests 

6.1 Introduction  

Ye and Ghassemi 2020 studied the effects of fracture roughness on the distribution of AE 

(seismic events) during frictional slip due to injection. The rock sample was a cylindrical 

(length are 106 mm and diameter are 50 mm) Sierra White granite with a tensile rough 

fracture (of elliptical shape with major axis of 43 mm and minor axis of 24 mm). The 

inclination angle of fracture is 36𝑜 and this work focus on the top fracture surface because 

the top and bottom fracture surfaces are fully mated (Figure 6.1a) and would be the same. 

The geometrical properties of the rock sample are shown in Figure 6.1a. The initial axial 

load is 170 MPa . A 3D laser scan system (B&H Machine Company) with 0.5 mm 

resolution laser beam was used to measure the topography of the top fracture surface 

before test. Figure 6.1b shows the asperity height of the top fracture surface and the AE 

events distribution due to shear slip by injection. The asperity height is defined relative 

to the lowest plane of the fracture surface. Laboratory observations of the triaxial shear 

test (Ye and Ghassemi 2020) suggest that the fracture is in the seismic stage when the slip 

rate of fracture is larger than 1.9x10-5 m/s (at an effective normal stress of 44 MPa). The 

loading (increasing injection pressure) time was approximately 400 seconds and in view 

of the smallness of fracture surface area, the slip velocity and normal stress can be 

considered to be uniform on the fracture plane. The effects of heterogeneous variables 

(i.e., slip velocity and normal stress) on AE are not considered in this work to enable 

comparison with analytical treatment (the 1D mass-spring system). Further, 1D mass-

spring system is not a necessary part of our framework and it is only used here to show 

that the numerical model can produce similar results (Chapter 6.2). Most seismic events 
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are clustered and located in a specific zone. It suggests that seismic slips occur in that 

zone, while aseismic slips occur on other zone of the fracture. A question that arises is 

why AE (seismic events) occur on that zone and how roughness impacts the partition of 

seismic slip and aseismic slip zones. 

 

Figure 6.1 The geometry and partition of fracture surface. (a) the geometry of rock sample. (b) profile 

line, fracture asperity height and black sphere represent the seismic events from the lab test 

(Ye and Ghassemi 2020). (c) and (d) is one of partition of fracture and JRC, respectively. The 

JRC at point A is 18.5. (e) and (f) is another partition of fracture and JRC, respectively. The 

JRC at point A is 17.2. 

 

There are a variety of roughness measurements (e.g., maximum height, autocorrelation 

length and root mean square gradient), partly because there are many geometric features 

to describe surface characteristics. The measurements can be categorized into three 

groups: statistical (e.g., RMS, Z2, SF, Rp, PSD), fractal (fractal dimension), and 



109 

directional roughness methods (𝐴0𝜃max
∗ /(𝐶 + 1)) (Magsipoc, Zhao et al. 2020). RMS 

(root mean square) deviation corresponds to the standard deviation of the height 

distribution. 𝑍2 is the RMS of the average local slope. Power spectral density (PSD) 

represents the amplitude of roughness as a function of the spatial frequency of the 

roughness. 𝐴0 is the total area fraction facing queried analysis direction which provides 

a measure of contact area and 𝜃max
∗ /(𝐶 + 1) is directional roughness metric; The details 

of roughness parameters can be found in (Magsipoc, Zhao et al. 2020). The roughness in 

the statistical methods is measured either along a single line profile or along a set of 

parallel line profiles or area on the surface (Figure 6.1b). The statistical methods are 

standardized by the International Standardization Organization (ISO).  

The fractal dimension suggests the complex nature of surface topography; the degree of 

variation of a  curve/surface from its topological ideal (Mandelbrot 1967, Brown 1987). 

The obtained values from fractal methods (e.g., roughness-length method, PSD and root-

mean-square correlation function) are very sensitive to the methods used in characterizing 

the fractal. The source of such limitation is from the inaccurate surface measurement or 

errors in utilizing fractal concept (Kulatilake, Shou et al. 1995).   

The directional roughness methods (𝐴0𝜃max
∗ /(𝐶 + 1)) are kind of 3D methods to measure 

the roughness. It starts with the geometry of triangular mesh which are formed by the 

laser scan points and considers the magnitude of potential contact area. It has is still 

limited in industry because directional roughness methods are far complex than statistical 

methods and fractal methods. The directional roughness methods are far complex than 

statistical methods and fractal methods. The detail of those methods can be checked in 

the review (Magsipoc, Zhao et al. 2020).  
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In this work, Z2, SF and Rp are selected to characterize the roughness because they are 

standardized by the ISO and have greater relevance to the industry. The 𝑍2, SF and 

𝑅𝑝 correspond with roughness slope, degree of change in roughness height and actual 

length of the profile, respectively (Jang, Kang et al. 2014). It should be notes that Z2, SF 

and Rp are measured along a single line profile. Z2, SF and Rp on a fracture are calculated 

using the following equations (Jang, Kang et al. 2014):  

𝑍2 == [
1

𝐿
∫ (

d𝑍

d𝑋
)

𝑋=𝐿

𝑋=0

2

d𝑋]
1 2⁄

= [
1

𝐿
∑

(𝑍𝑖+1−𝑍𝑖)
2

𝑋𝑖+1−𝑋𝑖

𝑛−1
𝑖=1 ]

1 2⁄

                                                   (6.1) 

 

 

SF=
1

𝐿
∫ [𝑓(𝑋 + d𝑋) − 𝑓(𝑋)]2d𝑋
𝑋=𝐿

𝑋=0
=
1

𝐿
∑ (𝑍𝑖+1 − 𝑍𝑖)

2(𝑋𝑖+1 − 𝑋𝑖)
𝑛−1
𝑖=1                       (6.2) 

 

Rp =
∑ [(𝑍𝑖+1−𝑍𝑖)

2+(𝑋𝑖+1−𝑋𝑖)
2]𝑛−1

𝑖=1

𝐿
                                                                                       (6.3) 

 

Where 𝑍𝑖  is the height of a single line profile at 𝑋𝑖 and L is the length of the line profile; 

Each row and column of the laser scan points are located on a line profile. The final values 

of Z2, SF and Rp of the fracture are the average of the values of Z2, SF and Rp from all the 

line profiles. Previous works reported that the Z2, SF and Rp correlated well with the JRC 

and have proposed multiple empirical formulas between these variables (Tatone and 

Grasselli 2010, Jang, Kang et al. 2014):  

JRC=51.16∙(Z2)
0.531 − 11.44                                                                                         (6.4) 

 

JRC=121.13∙√SF − 3.28                                                                                                (6.5) 

 

JRC=92.07∙√Rp − 1 − 3.28                                                                                           (6.6) 

 

Note that the derivation of Equations 6.4-6.6 is based on the experimental data. The major 

barriers in surface contact mechanics stems from the multiscale nature of phenomena 
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occurring during the fracture deformation. This is partly attributed to a larger number of 

asperities over a wide range of length scales. For example, it is widely recognized that 

fracture roughness contains a large-scale waviness component and a small-scale 

unevenness component (International Society for Rock Mechanics 1978). Such 

multiscale properties of fracture roughness need to be considered during the calculations. 

Based on the literature review, none of formulas can be applied to measure the multiscale 

properties of fracture roughness. Current analysis of Z2, SF and Rp are usually sufficient 

to measure the entire surface rather than spatial variation of roughness.  

In this work, a stochastic graph partition method (Gilbert, Miller et al. 1995) is utilized 

to partition the meshed fracture surface into multiple patches (i.e., Figure 6.1c or 1e). The 

details of such graph partition method can be found in (Gilbert, Miller et al. 1995) or 

Appendix C. After dividing the fracture surface into a number of patches assumed to have 

a uniform JRC, Z2, SF and Rp are measured in each patch according to Equation 6.1-6.3. 

Then JRC of each patch is obtained based on the Equation 6.4-6.6. This provides a local 

measurement of JRC at every point on the surface and multiscale nature of fracture 

roughness could be accessed. In the case of a patch, the JRC of a point depends on the 

geometry of the rest of the points of this patch. This is very important since in previous 

work consideration of ‘surrounding points’ at local scale was not reasonably included 

(Fardin, Stephansson et al. 2001, Tatone and Grasselli 2013). In their works, fracture 

surface was artificially divided into multiple squares of desired windows sizes. The 

measurements of local roughness were performed on the points in each square and thus, 

JRC of a point depend on the geometry of the rest points of this square. Such windowing 

strategy rarely map the possible range of geometry of surrounding points. In our work, it 
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is obvious that JRC of a point is different in different runs because of the variation of 

geometry of surrounding points of this point on a patch as different patching scheme is 

simulated. Thus, the surrounding points of a point at local scale are stochastically defined. 

For example, Figure 6.1c/e show two realizations of the partition form in two different 

runs, respectively. Each realization has eight patches and area of each patch is 

approximately 405 mm2  (equivalent length scale is approximately 20 mm ). The 

equivalent length of a patch is defined as the square root of area of a patch. The Z2 of 

each patch is measured by Equation 6.1 and JRC of each patch is obtained according to 

the Equation 6.4. The JRC of point A is 18.5 in the first realization (Figure 6.1d). The 

JRC of point A is changed from 18.5 to 17.2 in the second realization (Figure 6.1f). This 

is because the patch contains point A in different runs has a different shape covering an 

area that is different.  

If a vest number of runs (greater than 1000 in this work) are performed to partition the 

fracture surface at the same equivalent length scale (the same number of patches), each 

point will have multiple JRC values. It is supposed that the stochastic properties of JRC 

at each point can be outlined after multiple runs are performed at the same equivalent 

length scale by fitting the JRC values of each point by a normal distribution. The mean 

of the normal distribution is then assumed to represent the true JRC of the point. In 

addition, fracture surfaces exhibit roughness at all scales and Equation 6.1-6.3 (Equation 

6.4-6.6) are not designed to measure the multiscale roughness. Those formulas measure 

the roughness over different length scales according to average strategy. Figure 6.2a 

shows the JRC at point B with coordinate [𝑋, 𝑌] = [65.12 mm, 25.12 mm] are measured 

over a wide range of equivalent length scales (57~ 5 mm,  1~128 patches) after 1000 runs 
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are performed. The JRC are calculated by the Z2, SF and Rp through the Equation 6.4-6.6. 

Those calculations may show multiscale nature of the fracture roughness. As the 

equivalent length scale decreases (or the number of patches increases), the JRC value at 

point B derived from Equation 6.4-6.6 decrease by ~12% and the multiscale effects of 

roughness are not pronounced in this case. The length of error bars is very small and 

slightly increases when the equivalent length decreases from 57 mm to 5 mm (1 to 128 

patches). The error bar represents the variation in JRC values after 1000 runs are 

performed. The multiscale nature of fracture roughness leads to the variation of JRC over 

the length scales (number of patches). It seems that the Equation 6.4-6.6 both captures 

the trend of roughness over the length scales. The histogram in Figure 6.2a shows the 

distribution of JRC (based on Equation 6.4) at point B after 1000 runs over the length 

scale (5 mm, 128 patches). The normal distribution curve show that the mean is 15.7 and 

std is 2.0. The std is relatively small and it suggests that our method can effectively 

capture the true JRC at point B at the equivalent length scale of 5 mm.  

The results from Figure 6.2a demonstrate the effectiveness of our method to determine 

the JRC at different length scale because the JRC values of points after 1000 runs can be 

well fitted by a stochastic distribution (normal distribution). The focus of this dissertation 

is not the effects of the multiscale nature of roughness on seismicity. The roughness 

measurements are performed at equivalent length of 5 mm and are assumed to cover the 

mechanical properties of interest. Further, equivalent length is only 5 mm which is much 

smaller than the nucleation length (24.2 mm in this case which is defined by Equation 

6.9). Figure 6.2b shows the distribution of JRC (mean of normal distribution) after 1000 

runs are performed according to Equation 6.4 at the equivalent length scale of 5 mm. 
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Figure 6.2c is the distribution std (std of normal distribution). Each point on the fracture 

has a JRC and the std is relatively small. The local zones with high asperity height have 

large JRC which match the observations from visual inspection. It suggests that our 

method can map the spatial variation of fracture roughness and spatial distribution of JRC 

at equivalent length of 5 mm. Figure 6.2d is the relation between distribution of seismic 

events from lab test (Ye and Ghassemi 2020) and spatial distribution of JRC. It seems 

that most events are located over the smoother zone of fracture (lower JRC).  

Fracture shear stiffness can be experimentally measured but and the spatial variability of 

fracture shear stiffness has not been investigated well. Some experiments tried to map the 

spatial distribution of fracture shear stiffness by acoustic methods (Acosta-Colon, Pyrak-

Nolte et al. 2009). The transmission of P- and S- waves (of each sensor pair-source and 

receiver) across a fracture were recorded and fracture shear stiffness can be determined 

from seismic wave attenuation and velocity. Although, the fracture shear stiffness of the 

zones under sensors are mapped, it still demonstrates that fracture shear stiffness spatially 

changes across the fractures. It is found that local fracture roughness influences the 

magnitude of the local shear stiffness (Choi 2013). In this work, the spatial distribution 

of JRC are determined (Figure 6.2b) and it reflect the distribution of local fracture 

roughness. Thus, the spatial distribution of fracture shear stiffness can be derived from 

the spatial distribution of JRC.  

For most practical purposes, fracture shear stiffness 𝐾𝑠 can be estimated by Δ𝜏 𝑑⁄  where 

∆𝜏 is the shear stress change and 𝑑 is the shear displacement (Mclaskey and Yamashita 

2017). Note that this calculation includes the contribution of stiffness of loading machine. 
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Empirical Equation 6.7 from JRC-JCS strength model is adequate as a basis for 

calculating the fracture shear stiffness (Barton and Choubey 1977):  

𝐾𝑠 =
∆𝜏

𝑑
=
100

𝐿
∙ 𝜎𝑛 tan [𝐽𝑅𝐶 log10 (

𝐽𝐶𝑆

𝜎𝑛
) + 𝜙𝑟]                                                               (6.7) 

 

Where 𝐿 is the equivalent length; 𝜎𝑛 is the effective normal stress and is fixed at 44 MPa 

based on the our experiment data (Ye and Ghassemi 2020); 𝐽𝐶𝑆 is compressive strength 

of the fracture surface and 𝜙𝑟  is the residual friction angle. In this case, ∆𝜏 is the shear 

stress change from initial state to peak shear strength state and 𝑑 is the peak shear 

displacement of rock fracture. The parameters in Equation 6.7 are fixed at  𝐽𝐶𝑆 =

173MPa and  𝜙𝑟 = 30
𝑜C which generally typify granite surface (Grasselli and Egger 

2003). Figure 6.3a shows the distribution of fracture shear stiffness 𝐾𝑠 and local zones 

with high JRC value have large fracture shear stiffness. A critical velocity is defined as 

(Im, Marone et al. 2019):    

𝑉𝑐 = √
𝜎𝑛𝑎𝐷𝑐

𝑀
(
𝐾𝑠𝐷𝑐

(𝑏−𝑎)𝜎𝑛
− 1)                                                                                                (6.8) 

 

where 𝑎, 𝑏 and 𝐷𝑐  are the rate state friction law parameters; RSF parameters are set at 

𝑎 = 0.004, 𝑏 = 0.006 and 𝐷𝑐 = 0.15 μm which analog the values from (Im, Marone et 

al. 2019). 𝑀 is mass per unit area at facture depth (kg/m2 ); In this case, 𝑀 can be 

approximately defined as 𝜌 ∙ 𝜋 ∙ 𝑟2 ∙ ℎ/(𝜋 ∙ 𝑟2) = 1.8 × 107 ( kg/m2 ) where 𝜌 =

2800 kg/m3 is the density of granite and 𝑟 is the half of equivalent length and ℎ =

6300 m is the depth of fracture which derived from laboratory settings (the magnitude of 

axis load) (Ye and Ghassemi 2020).  Lab work suggest that the critical velocity is 

19 μm/s, therefore, the critical JRC is 16.5 according to Equation 6.7-6.8 so that, if the 
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JRC of the point is less than 16.5 and the friction of this point will be eventually unstable 

at the loading velocity (critical velocity). Conversely, if the JRC of this point is large than 

16.5, the friction of this point will be eventually stabilized at the loading velocity (critical 

velocity). Thus, the unstable laser scan points form clusters and there are six clusters in 

Figure 6.3b. While the rest of the points (blue color in Figure 6.3b) are stable. The 

unstable length in Figure 6.3b is defined as the square root of the area of each cluster. The 

unstable length of zero represent those points that are stabilized during the fracture slip. 

Seismic events occur on the unstable clusters when the unstable length of this cluster is 

larger than the nucleation length. The nucleation length ℎ∗ is defined as (Harbord, Nielsen 

et al. 2017):  

ℎ∗ = 𝐶
𝐺𝐷𝑐

𝜎𝑛(𝑏−𝑎)
= 24.2 mm                                                                                             (6.9) 

 

Where 𝐶 is the dimensionless shape factor (Rubin and Ampuero 2005) and is assumed as 

0.56, 𝐺 = 25.4 GPa is the shear modulus according to the lab data (Ye and Ghassemi 

2020); In this case, seismicity occur on one unstable clusters because its unstable length 

is larger than ℎ∗ and the unstable length is 24.2 mm (Figure 6.3c). The AE events from 

the laboratory are also plotted in Figure 6.3c; it seems that most events are located in the 

seismicity zone (green zone in Figure 6.3c) which is the relatively smoother (lower JRC) 

portions of the fracture (Figure 6.2d). We claim that seismic slip on this zone (green zone 

in Figure 6.3c) set in motion the process of AE generation. In contrast, slip on the rougher 

portions of fracture may results in large area of newly created surface and fracture energy 

would be very high but the radiated seismic energy may be low from energy conservation 

perspective. This case study shows that our simulation results match the lab data and the 

modeling framework can capture the slip pattern of realist fracturs.  
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6.2 Model Verification 

In order to verify the numerical approach and the model calculation, the spring slider 

model is simulated to check the effects of JRC on the instability of laser scan points under 

the same lab observed loading velocity (Ye and Ghassemi 2020). Each laser scan point is 

considered as a spring slider with the same rate and state friction law (RSF). The RSF 

parameters are defined in previous calculations and are homogenous over the fracture 

plane. The mechanical interaction between each laser scan points are ignored. Note that 

spring slider model can only be applied conceptually to nature and can span the full 

inertial spectrum from stable sliding to unstable motion. Previous works (Im, Marone et 

al. 2019) established the spring slider model to mimic earthquake occurrence and 

mechanisms realistically. In a one-dimensional spring-slider system, the Newtonian force 

balance governing motion is defined as:  

𝑀𝑢̈ = 𝐾𝑠(𝑢𝑙𝑝 − 𝑢) − 𝜇𝜎𝑛                                                                                              (6.10) 

 

Where 𝑢𝑙𝑝 is the displacement of a load point, 𝑢 is the displacement of the slider and 𝜇 is 

the friction coefficient; The evolution law of the state variable 𝜃 is defined as: 

d𝜃

d𝑡
= 1 −

𝑉𝜃

𝐷𝑐
                                                                                                                   (6.11) 

 

Where 𝜃 is the state variable and 𝑉 is slip velocity; Rate and state friction law is defined 

as: 

𝜇 = 𝜇0 + 𝑎 ln (
𝑉

𝑉0
) + 𝑏 ln

𝑉0𝜃

𝐷𝑐
                                                                                        (6.12) 

 

Where 𝜇0 is a reference friction coefficient which defined at reference slip velocity 𝑉0; 

The stick slip motion on each laser scan points can be captured by Equation 6.10~6.12. 

The numerical details can be found in (Im, Marone et al. 2019) or Appendix F. Two 



118 

simulations are performed but the loading velocity are both 20 μm/s which slightly larger 

than critical velocity (19 μm/s). The numerical simulation time is 10 seconds which is 

obtained from the Lab test (Ye and Ghassemi 2020). Other parameters (e.g., RSF) are all 

the same. Therefore, the effects of JRC on velocity and friction evolution over time and 

displacement are checked. The velocity, displacement and friction coefficient from the 

simulations are shown in Figure 6.3e and 6.3f. In the first simulation, Figure 6.3e shows 

that the velocity variation of point (with JRC=16.5) as the displacement is increased. In 

addition, the variation of the friction coefficient of point (with JRC=16.5) is shown with 

time (Figure 6.3f). Therefore, the point (JRC=16.5) is in unstable state (oscillating states) 

in the first simulation which match our previous calculation. In the second simulation, 

Figure 6.3e shows that the velocity of point (with JRC=20.0) becomes eventually constant 

with increasing the displacement. In addition, the friction coefficient of point (with 

JRC=20.0) becomes constant with increasing the time (Figure 6.3f). Therefore, the point 

with JRC=20.0 is in a stable state in the second simulation which matches our previous 

calculation. It can be concluded that numerical results from these two simulations match 

our previous calculations so that the calculations are verified using the spring-slider 

model. In previous works, fracture shear stiffness in spring-slider model are artificially 

defined (Im, Marone et al. 2019). Fracture shear stiffness were derived by shear stress-

shear displacement curve in lab tests (Mclaskey and Yamashita 2017) or simple plane 

strain analysis (Tal, Goebel et al. 2020). To the author’s knowledge, none of these works 

can give the spatial distribution of fracture shear stiffness on fracture.  
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Figure 6.2 The spatial distribution of JRC. (a) JRC are measured by Z2, SF and Rp over a wide range 

of equivalent length scale (5 mm ~ 57 mm). The JRC from all the runs is fitted by a normal 

distribution (inserted histogram). The mean of this normal distribution is considered as the 

true JRC at this point. (b) the spatial distribution of JRC at equivalent length scale (5mm). (c) 

the spatial variation of std of normal distribution at equivalent length scale (5mm). (d) The 

relation between spatial distribution of JRC and seismic events from the lab test (Ye and 

Ghassemi 2020). Most events are located in the smoother zone (low JRC). 
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Figure 6.3 The seismicity pattern on fracture surface.  (a) the fracture shear stiffness at equivalent 

length scale (5 mm). The inset plot indicates the distribution of shear stiffness. (b) the 

distribution of unstabilized clusters on fracture surface. Stable zone (blue) and unstable zone 

(every color except for blue). (c) seismic pattern on fracture surface and black sphere 

represents the events from lab test (Ye and Ghassemi 2020). Seismic (green) and aseismic 

(blue). (d) and (e) are the evolution of friction coefficient and slip velocity of two points. The 

JRC of those two points are 16.5 and 20, respectively.  

 

6.3 The Effects of Loading Rate on Moment Magnitude and Seismicity Patterns 

In Chapter 6.2, the effects of fracture roughness on seismicity pattern have been 

investigated. The loading rate (m/s) in Chapter 6.2 was kept constant. While the loading 

rate can significantly affect seismicity (Mclaskey and Yamashita 2017). In this section, 

the effects of loading rate on the distribution of aseismic and seismic slip on fracture and 

moment magnitude of seismic event at different nucleation lengths will be investigated 

and other settings are the same as in the Chapter 6.2. The seismic slip displacement 𝐷 is 

0.63 mm which can be derived from our lab test (Ye and Ghassemi 2020). The seismic 



121 

moment can be calculated as 𝑀𝑤 = 𝐺 ∙ 𝐷 ∙ 𝐴. 𝐴 is the source area (seismic area) and 𝐺 is 

shear modulus; Three simulation tests are performed to investigate the effects of loading 

rate on moment magnitude of seismic event and the distribution of aseismic and seismic 

slip on fracture with different nucleation lengths. The nucleation length in the first, second 

and third simulation are 0.000 m, 0.008 m and 0.015 m, respectively.  

The loading rate in those three simulations is increased from 1.40x10-5 m/s to 2.69x10-5 

m/s. The processes of simulation follow three steps.  In the first step, the critical velocity 

of every points (laser scan points) on fracture surface is calculated according to Equation 

6.7 and 6.8. If the loading velocity is larger than the critical velocity of points, those points 

are in an unstable state. In the second step, the distribution of unstable clusters on the 

fracture surface is reconstructed. In the third step, if the length of unstable clusters is 

larger than nucleation length, those clusters (patches) are considered as seismic patches. 

Figure 6.4a shows the moment magnitude is increase as the loading rate increase under 

different nucleation length. As the loading rate increases, the seismic area also increases. 

therefore, the magnitude also increases. When the loading rate is less than 1.53x10-5 m/s, 

seismicity does not occur on the fracture in any of the three simulations because the 

fracture shear stiffness is larger than the critical stiffness. In the first simulation, 

seismicity would occur on the fracture when the loading rate reaches 1.56x10-5 m/s. In 

the second simulations, seismicity will occur on the fracture when the loading rate reach 

1.70x10-5 m/s. In the third simulations, seismicity will occur on the fracture when the 

loading rate reaches 1.80x10-5 m/s. If the loading rate continues to increase, the moment 

magnitude in three simulations increase rapidly until the loading rate reach 2.37x10-5 m/s 

because the entire fracture surface is in seismic state. Figure 6.4b/c/d shows the seismic 
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areas (distribution) at different loading late in the second simulations. Figure 6.4b shows 

the loading late is 1.72x10-5 m/s and seismic area is 82.40 mm2. Figure 6.4c shows the 

loading rate is 1.78x10-5 m/s and seismic area is 311.48 mm2. Figure 6.4d shows the 

loading late is 1.91x10-5 m/s and seismic area is 1827.20 mm2. The topological evolution 

of seismic patches under the increasing loading rate may reflect the transition from 

aseismic to seismic phase on fracture surface.  
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Figure 6.4 Three simulations are performed while the nucleation length are 0.000 m, 0.008 m and 

0.015 m, respectively. The other settings are all the same. (a) the moment magnitude is 

increased as the loading velocity is increased. (b), (c) and (d) are shown the seismic pattern 

under loading velocity 𝟏. 𝟕𝟐 × 𝟏𝟎−𝟓 m/s, 𝟏. 𝟕𝟖 × 𝟏𝟎−𝟓m/s and 𝟏. 𝟗𝟏 × 𝟏𝟎−𝟓  m/s in test 2, 

respectively. Seismic slip (green) and aseismic slip (blue). The seismic area in (b), (c) and (d) 

are 82.40 𝐦𝐦𝟐, 311.48 𝐦𝐦𝟐 and 1827.20 𝐦𝐦𝟐, respectively. 

 

6.4 Conclusions 

By setting the stochastic partition on laser scan points and mass spring model, the effects 

of fracture roughness on seismicity has been investigated. Our previous laboratory 

injection test is conceptually simulated, and the simulated seismicity generally matches 

laboratory observations. Previous methods only cover the fracture roughness over the 

entire surface rather than the spatial distribution of fracture roughness. This limitation is 

relieved here by applying a stochastic partition on the laser scan points and relating the 

roughness to JRC. Each laser scan points have a JRC based on the patch it falls on. Further, 

an empirical formula is employed to link the JRC with fracture shear stiffness. Spring 

slider model is implemented to study the effects of JRC on the instability of laser scan 

points on a fracture surface. Such framework is applied to a current laboratory test and 

the simulated seismicity generally matches the lab observation. The simulated results 

show that the lower JRC (roughness), the higher opportunity seismicity occurs on fracture 

when the length of unstable zone is larger than nucleation length. Finally, the effects of 

loading rate on seismic pattern are also investigated with different nucleation length. It 

indicates that the lower nucleation length, the seismicity occur on fracture is earlier. But 

the nucleation length cannot affect the moment magnitude if the loading rate is large 

enough.  
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Chapter 7 Application to Utah FORGE 

7.1 Introduction  

Chapter 5 propose a fractured network model which include the effects of fracture 

roughness on fracture deformation and stress shadow caused by fracture pressurization. 

Specifically, the stress shadow caused by fracture pressurization is described by Eshelby 

solution. The JRC of lab rock fracture is determined by the proposed JRC-Hurst exponent 

relation. The linear Barton-Bandis model is employed to characterize the stability of 

fracture in this fracture network model. In this Chapter, such fracture network model is 

applied to the Utah FORGE to identify the best potential well trajectories in terms of the 

potential SRV.  

The optimal well trajectories are assumed to correspond to the maximum SRV. The Utah 

FORGE (Frontier Observatory for Research in Geothermal Energy) is the testbed for 

enhancing the EGS technologies that significantly accelerate renewable energy 

production. The Utah FORGE site is located 322 km south of Salt Lake City and 16 km 

north-northeast of Milford, Utah, the area of this site is about 5 km2 (Figure 7.1a/b).  Utah 

FORGE reservoir consists of crystalline (granitic) rocks of > 1 km3, with temperature 

ranging from 175o C to 225o C at the depth of 1.5-4 km (Simmons, Kirby et al. 2019, 

Moore, McLennan et al. 2020). The geothermal gradients of Utah FORGE site at shallow 

(~<500 m) is 200𝑜C/km and 70𝑜C/km at depth (~>1500 m) (Allis, Gwynn et al. 2018) 

(Figure 7.2). The granitoid typically includes all plutonic rocks, ranging from diorite to 

granite. Utah FORGE site have four faults and faults system that are detected by 

geological survey, seismic migration and logs (Simmons, Kirby et al. 2019). They are 

Mineral Mountains West fault system, Opal Mound and Negro Mag faults and unnamed 
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fault.  While Opal Mound and Negro Mag faults are the primary faults in this region 

(Figure 7.1c/d). The opal mound fault act as a hydraulic barrier separating the Roosevelt 

Hot Springs geothermal system from the low permeability thermal region. The subsurface 

structures of Utah FORGE site are shown in Figure 7.1c/d. Note the Utah FORGE EGS 

reservoir is located between 175o and 225o isothermal surface 

 

Figure 7.1 The location of geological map of Utah FORGE SITE. (a) and (b) Land surface in the 

region surrounding the Utah FORGE site. (c) and (d) Geological map of the Utah FORGE site. 

Opal mound and Negro mag fault are the primary faults in this region. The contour represents 

the depth.  
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Figure 7.2 Temperature distribution at depths for different application. Geothermal gradient of Utah 

FORGE site is 𝟐𝟎𝟎𝒐C/km at shallow and 𝟕𝟎𝒐C/km at depth (Adapted from Moore and 

Simmons 2013).  

 

During Phase 2b of the Utah FORGE project, well 58-32 was drilled, completed and 

stimulated to measure reservoir properties, including temperature, fracture, rock type, 

permeability and in-situ stress at depths. The vertical stress gradient is found from the 

density log while both minimum and maximum horizontal stress gradient were obtained 

by microhydraulic fracturing and DFIT (Moore, McLennan et al. 2020). The orientation 

of horizontal stress is measured by FMI log. Figure 7.3 shows the distribution of in-situ 

stress, pore pressure in Utah FORGE site. Utah FORGE team generated the discrete 

fracture network in a stochastic manner according to the observation of outcrop and 

fracture data measured by the FMI in well 58-32 (Finnila, Forbes et al. 2019, Nadimi, 

Forbes et al. 2020).  

 



127 

The number of discrete fractures is 6184 and fracture radius is ranged from 80 m to 150 

m. Thus, such discrete fracture network is assumed to be a good representation of the 

fracture network in Utah FORGE site.  

In this work, a sample from the core extracted from the well 58-32 (at 7443.78 ft depth) 

is used to measure the fracture roughness (Figure 7.4a). This core is split in tension, and 

its roughness is then evaluated. Fracture roughness (with length is ~0.06 m) rarely display 

anisotropic properties by visual estimation in Figure 7.4b, thus, fracture is regarded as 

isotropic. The Hurst exponent is 0.61 obtained by performing a PSD analysis on the real 

fracture surface (Figure 7.4c). Note that the slope of PSD in Figure 7.4c is much easier to 

calculate than the slope of PSD in the Figure 5.3b because a radially averaged technique 

is employed for PSD analysis on fracture surface. Here, ‘radially averaged’ means that 

power spectrum for equal lengths of the wavevector are averaged over a length from the 

fracture center (Maus and Dimri 1996). The JRC0 is 14.6 at the scale of (~0.06 m) 

according to the Equation 5.5. Further, the JRC of the fracture network at centimeter scale 

(JRC0) are assumed to follow the lognormal distribution with a mean 14.6 and std of 1. In 

addition, the JCS of the fracture network at centimeter scale (JCS0) are assumed to follow 

the lognormal distribution with mean 173 MPa and std 10 MPa which are from the lab 

test data (Asadollahi 2009). Residual angle 𝜙𝑟 is also followed the lognormal distribution 

with mean 27𝑜 and std 1𝑜 which are also from the lab test data (Asadollahi 2009). The 

JRC and JCS of large-scale fracture (i.e., 100 m) are rarely measured because field 

fracture roughness is limited and laboratory direct shear test for large scale fracture is 

neither feasible nor possible.  
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The scaling law should be applied for identifying the realist fracture JRC𝑛  and JCS𝑛 

because both JRC and JCS are scale dependent parameters. Barton and Bandis proposed 

a widely used scaling law:  

JRC𝑛 = JRC0 (
𝐿𝑛

𝐿0
)
−0.02JRC0

                                                                                                     (7.1) 

JCS𝑛 = JCS0 (
𝐿𝑛

𝐿0
)
−0.03JRC0

                                                                                                        (7.2) 

Where JRC𝑛 is the JRC value of fracture at length scale 𝐿𝑛 . JRC0 is the JRC value of 

fracture at length scale 𝐿0 (~0.01 m). The generalized scaling law for JRC and JCS can 

be expressed as follow (Du, Gao et al. 2015) 

JRC𝑛 = JRC0 (
𝐿𝑛

𝐿0
)
−𝐷𝐽𝑅𝐶

          and         JCS0 (
𝐿𝑛

𝐿0
)
−𝐷𝐽𝐶𝑆

                                                                (7.3) 

𝐷𝐽𝑅𝐶 is the fractal dimension of JRC scale effect, which is defined the velocity rate of 

JRC𝑛 decreases as increasing 𝐿𝑛 . The concept of 𝐷𝐽𝐶𝑆 is defined in the same manner as 

𝐷𝐽𝑅𝐶 . The 𝐷𝐽𝐶𝑆  is 1.5𝐷𝐽𝑅𝐶  according to the Equation 7.1 and 7.2. The processes of 

generally deriving 𝐷𝐽𝑅𝐶 follow four steps: (1) synthetic a large scale fracture (~100 m) 

based on 𝐻𝑥, 𝐻𝑦 and RMS. The details of synthetic surface can be found in section 5.1. 

(2) perform the measurement of JRC0  at length scale 𝐿0 = 0.1 m. (3) perform the 

measurement of JRC𝑛 at different length scale  (i.e., 𝐿𝑛 = 0.15 m, 0.5 m,1 m,10 m,100 m). 

(4) the fractal dimension 𝐷𝐽𝑅𝐶  can be defined as (Du, Gao et al. 2015)  

𝐷𝐽𝑅𝐶 =
lg(JRC𝑛 JRC0⁄ )

1−lg(𝐿𝑛)
                                                                                                                (7.4) 

In this work, 𝐷𝐽𝑅𝐶  is assumed as 0.292 which is an analogy to the lab test data from (Du, 

Gao et al. 2015).  
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In phase 3, an injection well will be developed and used for EGS research. The Utah 

FORGE team provided three potential wells and required us to determine which well is 

the best for injection. Those three potential wells 3-1a, 3-1b and 3-1c are shown in Figure 

7.3. Both three wells have 60 m open hole from the toe. Thus, the injection occurs on the 

open hole section. In this work, numerical simulation is performed to test the injection of 

each well. The injection rate is 20 BPM and injection time is 6900 seconds.  Reservoir 

properties in numerical model are shown in Table 7.1. The pressure of fracture 806, 361 

and 1520 are monitored during the simulation when the injection occurs on wells 3-1a, 

3-1b and 3-1c, respectively.  

7.2 Numerical Simulation for Optimizing Wellbore Trajectories  

Figure 7.5a shows the evolution of MEQs during the numerical simulation. The number 

of MEQs increases as the injection continues and the number of MEQs still increases 

when the injection is stopped at 6900 seconds. This is because pressure continues to 

propagate even if the injection is shut down. Thus, fracture network continues to be 

stimulated. Both injection of well 3-1a, 3-1b and 3-1c are generated the largest number 

of MEQs at 7200 seconds. For example, the maximum number of MEQs for well 3-1a 

injection is 2058, for well 3-1b injection is 2260 and for well 3-1c injection is 3401. While 

the number of MEQs at 6900 seconds is 1991, 2179, and 3358, for well 3-1a, well 3-1b, 

and well 3-1c, respectively (Figure 7.5c). The increases in MEQs due to shut in is not 

large because the fracture network is fully connected, and the increased pressure can 

easily diffuse into other fractures. The magnitude distribution of MEQs can be found in 

Figure 7.10. 
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Table 7.1  Reservoir properties are used in numerical model  

 

Parameter value Values Source/Comments 

Young’s Modulus  61 GPa OU lab test 

Drained Poisson’s Ratio 0.26 OU lab test 

Undrained Poisson’s Ratio 0.35 Assume  

Biot’s coefficient 0.5 Assumed 

Porosity 0.005 OU lab test 

Initial pore pressure  22.0 MPa Field observation 

Matrix permeability  0.001 mD OU lab test 

Vertical stress, 𝜎𝑉 25.5 KPa/m Density log 

Maximum horizontal stress, 𝜎𝐻𝑚𝑎𝑥 13.1-14.2 KPa/m FMI data. Orientation: Trend - 30𝑜 

Plunge - 2𝑜 

Minimum horizontal stress, 𝜎ℎ𝑚𝑖𝑛 15.6-18.3 KPa/m FMI data. Orientation: Trend - 120𝑜 

Plunge - 2𝑜 

Vertical stress at toe, 𝜎𝑉  58.0 MPa Stress in east and north direction are 

obtained by rotating maximum and  

minimum horizontal stress. 

horizontal stress in east (X-axis) direction at toe, 

𝜎𝑥 

36.8 MPa 

horizontal stress in North (Y-axis) direction at toe, 

𝜎𝑥 

38.8 MPa 

Fracture asperity (Lognormal) 𝜇 = 1 ∙ 10−4 m, 𝑠 = 10−8 m Assumed 

Cohesion (Lognormal) 0 MPa Assumed 

JRC0 at scale (~0.06 m) (Lognormal) 𝜇 = 14.6, 𝑠𝑡𝑑 = 1 OU lab test 

JCS0 at scale (~0.06 m) (Lognormal) 𝜇 = 173 MPa , 𝑠𝑡𝑑 =

10 MPa 

JCS0 is analogy to the JCS of typical 

granite.  

Mode I fracture toughness 1.5 MP√m OU lab test 
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Figure 7.3 Reservoir properties of Utah FORGE site. (a) in-situ stress in vertical direction. (b) and 

(c) are the 𝝈𝑯𝑴𝑨𝑿 and 𝝈𝒉𝒎𝒊𝒏 , respectively. (d) the distribution of pore pressure. Well 58-32 is 

the test well. Discrete fracture network is calibrated by Utah FORGE team. 3-1a, 3-1b and 3-

1c are the potential well trajectories.   

 

 

Figure 7.4 Fracture roughness. (a) core from well 58-32 (at 7443.78 ft). the length of core is 3.25 inch 

and diameter are 1.5 inch. (b) fracture elevation. (c) the PSD analysis on fracture surface. 
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Thus, Hurst exponent 𝑯 is 0.61 and 𝑯𝒙 = 𝑯𝒚 = 𝟎. 𝟔𝟏 because fracture surface rarely shows 

the anisotropic properties by visual inspection.  

 

Figure 7.5 The evolution of MEQs, pressure and SRV during the numerical simulation for well 3-1a, 

3-1b and 3-1c. (a) injection rate (cyan), the temporal evolution of MEQs for 3-1a (red), the 

temporal evolution of MEQs for 3-1b (blue), the temporal evolution of MEQs for 3-1c (pink). 

(b) injection rate (cyan), the temporal evolution of pressure (fracture 806) for 3-1a (red), the 

temporal evolution of pressure (fracture 361) for 3-1b (blue), the temporal evolution of 

pressure (fracture 1520) for 3-1c (pink). the temporal evolution of SRV for 3-1a (square-line), 

the temporal evolution of SRV for 3-1b (sphere-line), the temporal evolution of SRV for 3-1c 

(upper triangle-line).  
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After 7200 seconds, the number of MEQs is reduced for both well 3-1a, 3-1b and 3-1c 

injection. Because the pressure of the fracture network is decreased, and fracture network 

trend to gradually become stable. It seems that well 3-1c could be the best one because 

the number of MEQs is larger than others. Figure 7.5b shows the evolution of SRV and 

fracture pressure during the simulation. The pressure of fracture 806, 361 and 1520 is 

monitored during the simulation. Both fracture 806, 361 and 1520 pressure increase as 

the injection continues and decrease as the injection shut down. While the maximum 

pressure within fractures does not exceeded the in-situ minimum stress (36.8 MPa). The 

SRV increases as the injection continues and interestingly, it continues to increase for 

some time after shut-in at 6900 seconds. This is because the pressure continues to 

propagate.  After 7200 seconds, the fracture network pressure is decreased and the 

increases of SRV become smaller. The increases of SRV due to shut in is approximately 

3% for both three wells (Figure 7.5d).  

Figure 7.6 shows the pore pressure distributions after 1500 and 6900 seconds of well 3-

1a, 3-1b and 3-1c injection. In general, the pore pressure distribution is mostly controlled 

by the fracture network connectivity. In the case, the number of fractures is 6,184 and the 

fracture radii ranged from 80 m to 150 m. Thus, those fracture are fully intersected, and 

the pore pressure distribution depends on the distance between fracture and open hole 

section of injection wells. The injection fluid mainly pressurizes the fractures that 

intersect the open hole section of wells and the nearby fractures. Figure 7.7 show the 

fracture pressure distributions after 1500 and 6900 seconds of well 3-1a, 3-1b and 3-1c 

injection.  
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During injection, some fractures tend to slip and have increased aperture and permeability. 

Figure 7.8 and 7.9 show the evolution of equivalent permeability and fracture 

permeability at 1500 seconds and 6900 seconds of injection, respectively. Some fractures 

have experience shear slip to enhance the fracture and equivalent permeability during the 

well 3-1a, 3-1b and 3-1c injection. For example, 36 fractures slip for the well 3-1a 

injection, 37 fractures for the well 3-1b injection, and 64 fractures for the well 3-1c 

injection. After shut-in well 3-1a injection, two fractures (fracture 272 and 618) start to 

slip. After shut-in well 3-1b injection, two fractures (fracture 635 and 1182) start to slip.  

However, none of fractures start to slip after shut-in well 3-1c injection. The equivalent 

permeability increases approximately 20 times the initial equivalent permeability while 

the fracture permeability increases approximately 15 times that of the initial fracture 

permeability. Figure 7.10 shows the simulated injection induced MEQs at 7200 seconds. 

During the well 3-1a injection, 2058 MEQs are generated and the magnitude of those 

events ranges from -3 to 1.2. During well 3-1b injection, 2260 MEQs are generated with 

magnitude ranging from -3 to 1.2. During well 3-1c injection, 3401 MEQs are generated 

with magnitude ranging from -3 to 1.2. In the case of this work, the principal stress tensor 

is also monitored due to the well 3-1a, 3-1a and 3-1c injection. Figure 7.11 indicates that 

the direction of the principal stress tensor is not changed much because the pore pressure 

is less than minimum principal stress (36.8 MPa) during the injection and differential 

stress is more than 20 MPa and the maximum increases of pore pressure is 14 MPa (Figure 

7.12). In conclusion, the well 3-1c should be the best one for Utah FORGE EGS because 

of the largest SRV and maximum number of MEQs.  
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Figure 7.6 The evolution of pore pressure within reservoir due to the well 3-1a, 3-1b and 3-1c 

injection. (a) and (b) pore pressure due to well 3-1a injection at 1500 seconds and 6900 seconds, 

respectively. (c) and (d) pore pressure due to well 3-1b injection at 1500 seconds and 6900 

seconds, respectively. (e) and (f) pore pressure due to well 3-1c injection at 1500 seconds and 

6900 seconds, respectively.  
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Figure 7.7 The evolution of fracture pressure due to the well 3-1a, 3-1b and 3-1c injection. (a) and (b) 

fracture pressure due to well 3-1a injection at 1500 seconds and 6900 seconds, respectively. (c) 

and (d) fracture pressure due to well 3-1b injection at 1500 seconds and 6900 seconds, 

respectively. (e) and (f) fracture pressure due to well 3-1c injection at 1500 seconds and 6900 

seconds, respectively.  
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Figure 7.8 The evolution of matrix permeability during the injection. (a) and (b) matrix permeability 

due to well 3-1a injection at 1500 seconds and 6900 seconds, respectively. (c) and (d) matrix 

permeability due to well 3-1b injection at 1500 seconds and 6900 seconds, respectively. (e) and 

(f) matrix permeability due to well 3-1c injection at 1500 seconds and 6900 seconds, 

respectively. 
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Figure 7.9 The evolution of fracture permeability during the injection. (a) and (b) fracture 

permeability due to well 3-1a injection at 1500 seconds and 6900 seconds, respectively. (c) and 

(d) fracture permeability due to well 3-1b injection at 1500 seconds and 6900 seconds, 

respectively. (e) and (f) fracture permeability due to well 3-1c injection at 1500 seconds and 

6900 seconds, respectively. 
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Figure 7.10 The distribution of MEQs during the injection. (a) and (b) distribution of MEQs due to 

well 3-1a injection at 7200 seconds. (c) and (d) distribution of MEQs due to well 3-1b injection 

at 7200 seconds. (e) and (f) distribution of MEQs due to well 3-1c injection at 7200 seconds.  
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Figure 7.11 The evolution of minimum effective principle stress during the injection. (a) and (b) 

minimum effective principle stress due to well 3-1a injection at 3600 seconds and 6900 seconds, 

respectively. (c) and (d) minimum effective principle stress due to well 3-1b injection at 3600 

seconds and 6900 seconds, respectively. (e) and (f) minimum effective principle stress due to 

well 3-1c injection at 3600 seconds and 6900 seconds, respectively. 
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Figure 7.12 The direction of minimum effective principal stress during the injection. (a), (b) and (c) 

is the minimum effective principle stress due to well 3-1a, 3-1b and 3-1c injection at 6900 

seconds, respectively. 

 

7.3 Cyclic Hydraulic Stimulation of Utah FORGE 

Hydraulic stimulation is necessary to create a connected fracture network for extracting 

geothermal energy by fluid circulation. A challenge in the EGS reservoir stimulation is 

creating a large stimulated volume without risk of seismic evets. In addition, often it is 

necessary in practice to stimulate “uncritical” zones which would require higher than 

expected pressures challenging available packer technology. The concept of cyclic 

injection has been used to help increase fracture complexity and lower the short-circuiting 

potential. The main idea is to inject the intended volume using several injection cycles of 

different duration to increase rock damage near and away from the wellbore (Figure 7.13). 

The concept of increasing fracture complexity by cyclic injection has been suggested in 

the past (Kiel 1977) and was believed to yield long, branching fractures in naturally 

fractured formations. Cyclic injection is known to reduce breakdown pressure (as well as 

lower the level of induced seismicity) via progressive rock fatigue. Hence some authors 

have called this procedure Fatigue Hydraulic Fracturing (Zang, Yoon et al. 2013). The 

approach has been recently attempted in Pocheon EGS site in Korea where a 𝑀𝑤  5.4 

earthquake occurred in November 2017 (Grigoli, Cesca et al. 2018). The cyclic injection 
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schemes has been suggested as an alternative  to lower seismicity risk (Zang, Yoon et al. 

2013, Zang, Stephansson et al. 2016, Hofmann, Zimmermann et al. 2019). Studies have 

suggested that cyclic injection schemes can effectively reduce breakdown pressure and 

magnitude of the largest events and enhance the EGS reservoir (Hofmann, Zimmermann 

et al. 2018). Laboratory experiments were performed to investigate the effects of cyclic 

hydraulic stimulation on magnitude of induced seismicity (AE) and breakdown pressure 

(Patel, Sondergeld et al. 2017, Zhuang, Kim et al. 2017). They showed that the breakdown 

pressure and maximum magnitude of induced seismicity is decreased by 20% for a cyclic 

hydraulic stimulation compared to injection with constant rate, respectively. However, 

the effects of natural fracture network on breakdown pressure and induced seismicity has 

not been considered. Numerical modeling of the cyclic hydraulic stimulation could be a 

valuable tool for studying the injection designs.  

In this section, we present two injection scenarios for the well 3-1c in Utah FORGE EGS. 

These injection scenarios are presented in Figure 7.13. The first injection scenario is a 

cyclic injection rate and the second injection scenario is a constant injection rate. The 

total injection volume of those two injection scenarios are both 3051 m3 over a period of 

35.8 hours. The maximum injection rate in cyclic injection and constant injection cases 

is 20 BPM and 9.1 BPM, respectively. The reservoir parameters in the simulations can be 

found in the previous section. Figure 7.14 shows the evolution of the fracture pressure 

during the two injection scenarios. The maximum pressure during the cyclic injection and 

constant injection is 38.6 MPa and 35.4 MPa, respectively. The value of the maximum 

pressure likely depends on the ratio between maximum injection rate and minimum 

injection rate in a cycle and the geometry of the fracture network. However, none of the 
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fractures start to propagate during those two injection scenarios. Figure 7.15 shows the 

evolution of SRV during the two injection scenarios. It seems that the SRV in the cyclic 

injection is larger than the SRV in constant injection during the first 1000 minutes of 

injection. After 1000 minutes, the SRV in both injection scenarios are almost the same 

because the entire fractured reservoir is stimulated in both scenarios. In addition, the 

number of MEQs from cyclic injection is larger than constant injection because of the 

high fracture pressure in cyclic injection (Figure 7.16). For instance, the maximum 

number of MEQs from the cyclic injection and constant injection cases is 3389 and 3115, 

respectively. Figure 7.17 shows the distribution of MEQs at injection 2125 minutes. The 

maximum magnitude of MEQs during the cyclic injection and constant injection is 1.2 

and 1.3, respectively. Therefore, the cyclic injection scenario can reduce the maximum 

magnitude of MEQs and increase the SRV. Figure 7.18 shows the evolution of the fracture 

pressure during the cyclic injection and constant injection at 500 minutes and 2125 

minutes, respectively. Figure 7.19 shows the evolution of matrix pressure during the 

cyclic injection and constant injection at 500 minutes and 2125 minutes, respectively. 

Figure 7.20 shows the evolution of fracture permeability during the cyclic injection and 

constant injection at 500 minutes and 2125 minutes, respectively. Figure 7.21 shows the 

evolution of matrix permeability during the cyclic injection and constant injection at 500 

minutes and 2125 minutes, respectively. 
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Figure 7.13 The summary of two injection scenarios. The first injection scenario is cyclic injection 

rate (red line) and the second injection scenario is constant injection rate (blue line). The total 

injection volume of those two injection scenarios are both 3051 m3.  

 

Figure 7.14 The evolution of fracture pressure during the two injection scenarios.  
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Figure 7.15 The evolution of SRV during the two injection scenarios. The SRV in the cyclic injection 

is larger than SRV in constant injection during the first 1000 minutes injection. After 1000 

minutes, the SRV in those injection scenarios are almost the same because the entire fractured 

domain is pressurized in both scenarios. 

 

Figure 7.16 The evolution of number of MEQs during the two injection scenarios.  
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Figure 7.17 The distribution of MEQs during the two injection scenarios. (a) the distribution of 

MEQs during under cyclic injection at 2125 minute. (b) the distribution of MEQs during under 

constant injection at 2125 minute. 
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Figure 7.18 The evolution of fracture pressure during the two injection scenarios. (a) and (b) is the 

fracture pressure under cyclic injection at 500 minute and 2125 minute, respectively. (c) and 

(d) is the fracture pressure under constant injection at 500 minute and 2125 minute, 

respectively. 

 

Figure 7.19 The evolution of matrix pressure during the two injection scenarios. (a) and (b) is the 

matrix pressure under cyclic injection at 500 minute and 2125 minute, respectively. (c) and (d) 

is the matrix pressure under constant injection at 500 minute and 2125 minute, respectively. 
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Figure 7.20 The evolution of fracture permeability during the two injection scenarios. (a) and (b) is 

the fracture permeability under cyclic injection at 500 minute and 2125 minute, respectively. 

(c) and (d) is the fracture permeability under constant injection at 500 minute and 2125 

minute, respectively. 
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Figure 7.21 The evolution of matrix permeability during the two injection scenarios. (a) and (b) is 

the matrix permeability under cyclic injection at 500 minute and 2125 minute, respectively. (c) 

and (d) is the matrix permeability under constant injection at 500 minute and 2125 minute, 

respectively.  

 

7.4 Conclusions 

In this Chapter, the extended fracture network model is applied to Utah FORGE EGS to 

identify the best injection well trajectories. After comparison between the numerical 

results from well 3-1a, 3-1b and 3-1c, well 3-1c could be the best one for injection well 

of Utah FORGE EGS. Because the injection of well 3-1c generate the largest SRV and 

the maximum number of MEQs. Such extended fracture network model could be useful 
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in analyzing the EGS development. However, one limitation of this extended fracture 

network model is the fracture network pressure induced stress filed. The stress shadow is 

described by Eshelby solution which is currently not mapped induced stress field of 

fracture network. Advance methods need to propose to accurately calculate induced stress 

field of fracture network. 
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Chapter 8 Natural Fracture Orientations Using Geomechanics 

Based Stochastic Analysis of Microseismicity Related to Reservoir 

Stimulation 

8.1 Introduction  

Natural Fractures have a significant effect on the fluid transport capability of a reservoir. 

Properties commonly used to characterize natural fractures encompass frequency, 

persistence, size and orientation. The natural fracture orientations are a critical feature 

that exerts a large control over network permeability tensor. Despite their essential role 

in reservoir development, there are still large uncertainties regarding direct and indirect 

diagnostic technologies for characterizing natural fracture orientations in-situ away from 

the wellbore. In the last several decades, considerable effort has been made by researchers 

to refine many methods to constrain the uncertainty in measuring natural fracture 

orientations from seismic data (National Research Council 1996, Willis, Burns et al. 

2006, de Figueiredo, Schleicher et al. 2012). In general, geophysical methods are 

expensive and tend to have a poor ability to spatially resolve the fracture network 

geometry resulting from stimulation (National Research Council 1996). Image logging is 

an attractive tool for detecting the orientations, however, coupled with the effects of stress 

redistribution around borehole, and spatial heterogeneity may lead to erroneous log 

interpretation (Fernández-Ibáñez, DeGraff et al. 2018). Furthermore, the description of 

natural fracture geometries obtained from local field surveys has to be scaled up to the 

entire reservoir, which can cause loss of geometric characteristics of the natural fractures. 

The question of how to establish the natural fracture pattern away from the borehole 

remains a challenging issue. Thus, natural fracture patterns in numerical analysis are 
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commonly treated in a stochastic framework (Bruel, Cacas et al. 1994, Willis-Richards, 

Watanabe et al. 1996, Rahman, Hossain et al. 2002, Tezuka, Tamagawa et al. 2005, 

Dershowitz, Cottrell et al. 2010, Wang and Ghassemi 2012, Rinaldi and Nespoli 2017). 

The uncertainties in natural fracture orientations challenge the reliability of numerical 

tools for optimizing completions, design and production assessment.  

A source of data on the nature of the reservoir fracture network is microseismic data or 

microearthquakes (MEQs) generated during stimulation. Fluid injection perturbs the pore 

pressure and the in-situ stress state within the reservoir and leads to natural fracture 

reactivation, shear slip and possibly their propagation, which is often manifested as 

multiple MEQs. Interpretation of MEQs can illustrate the natural fracture geometry, 

stimulated volume distribution and also can provide data on the in-situ stress state (Pine 

and Batchelor 1984, Shapiro, Huenges et al. 1997, Warpinski, Wolhart et al. 2004, Kuang, 

Zoback et al. 2017). The generation of MEQs is believed to evolve from rock failure in 

shear, and shear slip on new or pre-existing fracture planes (Raleigh, Healy et al. 1976, 

Pearson 1981, Pine and Batchelor 1984) and fracture propagation (Kamali and Ghassemi 

2017, Ye, Janis et al. 2017, Ye and Ghassemi 2018). Some reservoir properties such as 

permeability have been estimated using inverse modeling of microseismic observations. 

This inverse modeling is commonly referred to as seismicity based reservoir 

characterization (SBRC) and has been used to estimate the rock mass permeability that 

results from stimulation (Pearson 1981, Shapiro, Huenges et al. 1997, Ghassemi, 

Jafarpour et al. 2013). Also, a diagnostic technique has been proposed to estimate the 

reservoir permeability from MEQs (Shapiro, Huenges et al. 1997).  A pore pressure 

diffusion model was used to link MEQs to equivalent permeability at the reservoir scale, 
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assuming the rock was in the limiting state. The hydraulic diffusivity was determined 

using the diffusion length-occurrence time curve fit for the onset of seismicity. However, 

this approach has limited application to hydraulic fracturing because the natural fractures 

are not considered explicitly in such diagnostic techniques (Shapiro, Patzig et al. 2003, 

Lee and Ghassemi 2011, Carcione, Currenti et al. 2018). This approach also lacks 

quantitative analysis of the relation between the field-observed MEQ distribution and the 

simulated MEQ distribution. This framework was therefore  improved by combining a 

geomechanics model and Ensemble Kalman filter (EnKF) to infer reservoir permeability 

and geomechanical properties from field-observed MEQ distribution (Tarrahi and 

Jafarpour 2012, Ghassemi, Jafarpour et al. 2013, Tarrahi, Jafarpour et al. 2015). A Kernel 

Density Estimation (KDE) was used to smooth the MEQs as continuous seismicity 

density since EnKF is designed to integrate continuous data. However, a noticeable 

limitation of KDE is that it cannot capture the discrete quality of MEQs and compromises 

the value of discrete MEQs. There are also several other limitations for the EnKF as a 

tool for interpreting MEQs, including (a) EnKF in large data results in severe ensemble 

spread underestimation due to the model nonlinearity and model error (Nester, Komma 

et al. 2012, Rainwater and Hunt 2013).  (b) EnKF is less likely to handle a highly 

nonlinear relation between the observations and unknown parameters that it may not 

converge (Sætrom and Omre 2011, Sarma and Chen 2011, Yang, Kalnay et al. 2012).  

Other existing MEQs interpretations have relied on grouping MEQs based on graph 

operations that depend on the locations of the MEQs hypocenters (Fehler, House et al. 

1987, Fehler and Johnson 1989, Fehler 1990, Jones and Stewart 1997). Another approach 

is to first group the MEQs within similar waveforms (e.g., focal mechanisms, ratio of S 
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wave to P wave amplitudes) and then search for self-similar MEQ clusters to define the 

fractures (Aster and Scott 1993, Roff, Phillips et al. 1996, Kuang, Zoback et al. 2017). 

So, sets of clusters are grouped into fault planes that can be defined as the best fit for each 

cluster. An objective function which is depending on the ratio of S wave to P wave 

amplitudes and maximum separation distance is used to measure the matching level 

between different MEQs (Roff, Phillips et al. 1996). A previous study suggests a 

multiple-term objective function that is much more complex (Kuang, Zoback et al. 2017). 

In these approaches, the optimized focal mechanism solution is associated with the 

extremum of the objective function. However, due to arbitrariness of the objective 

function and low magnitude of MEQs, those methods seem to be poorly constrained and 

contains large errors (Kuang, Zoback et al. 2017). In conclusion, these methods suffer 

from three limitations: (a) the objective function is complex and results in convergence 

difficulties; (b) the waveform of MEQs is probably disorganized and the amplitude is 

very low, so only very strong MEQs can be selected; (c) there is no general theoretical 

framework to quantitatively measure the matching level between the simulated MEQ 

distribution and the field-observed MEQ distribution. 

In this work an alternative method is developed that can help in characterizing the natural 

fractures orientations in the reservoir. We use the concept of similarity measure to 

develop a stochastic framework called Geomechanics-Based Stochastic Analysis of 

Microseismicity (GBSAM) to integrate field-observed MEQ distribution as prior 

information to infer natural fracture orientations. The concept of similarity measure is 

commonly used in data sciences and is applied to quantify the similarity between two 

objects. The core of the similarity measure is to build the distance metrics between two 
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objects (Jarvis and Patrick 1973, Frey and Dueck 2007). For instance, the distance metrics 

are calculated from the center of one object to the center of another object. A forward 

model is used to generate a simulated MEQ distribution when the shear stress at the center 

of natural fractures is larger than the shear strength according to the Mohr-Coulomb 

failure criterion. When one natural fracture slips, the shear energy is calculated, and it is 

supposed that a certain part of the shear energy will be released as seismic energy. If the 

released seismic energy is larger than the threshold energy of MEQs, additional MEQs 

are generated on the natural fracture plane. This assumption may affect the distribution 

of simulated MEQs while having little effect on the final estimation of orientation of 

fracture network. The threshold seismic energy of MEQs can be defined as the minimum 

detection capacity of the sensors which is interpreted as minimum seismic moment 

magnitude inferred from the sensors. Mahalanobis distance (Mahalanobis 1936, De 

Maesschalck, Jouan-Rimbaud et al. 2000, Huberty 2005), a type of similarity measure 

technique, is then applied to measure the similarity between the simulated MEQ 

distribution and the field-observed MEQ distribution. Finally, the GBSAM is applied to 

a data sets of MEQs recorded during Phase 2.2 of the Newberry Volcano EGS 

demonstration project and the Fenton Hill HDR. 

8.2 Methodology 

8.2.1 Forward Model for Natural Fracture Slip  

The reservoir is assumed to contain a number of natural fractures. The objective of the 

forward model is to analyze the natural fractures responses to pore pressure increase and 

stress variations associated with injection to generate simulated MEQ distribution. As a 

first approach, the injection problem can be approximated via a line injection source in a 
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porous rock without considering poroelastic effects, which is bounded by two semi-

infinite impermeable layers (Figure 8.1). In the Newberry and Fenton Hill projects, often 

a long open interval is used for injection. Thus it is reasonable to adopt the line source to 

simulate pore pressure redistribution resulting from an injection. Point sources can also 

be easily implemented. The line injection source (𝑟 = 0) extends over the thickness of 

the permeable layer  2ℎ , and fluid is injected into the surrounding rock masses at a 

constant volumetric rate Q over the finite time interval. The natural fractures are 

stochastically distributed throughout the permeable layer with an assigned effective 

permeability. The permeability of the layer is assumed to be the effective permeability of 

the matrix/natural fracture system and thus fracture flow in fractures (Safari and 

Ghassemi 2016, Cheng and Ghassemi 2017))  is not explicitly considered. All these 

simplifications can be relaxed, however, the objective here is to test the inversion concept 

rather than to capture detailed physics of the process. Poroelastic and thermal effects 

(Ghassemi and Tao 2016) are neglected at this stage of our work. Initially (𝑡 = 0), all 

hydraulic and mechanical fields are assumed to be in equilibrium.  

 

Figure 8.1 Geometry of the problem: a line injection source in a fractured zone. 
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This problem can be simplified by introducing the following dimensionless parameters.  

                                        𝑟∗ =
𝑟

ℎ
,   𝑧∗ =

𝑧

ℎ
,   𝑡∗ =

𝑡

𝑡𝑐
 ,   𝑝∗ =

𝑝

𝑝𝑐
                                    (8.1) 

Where 𝑝𝑐 = 𝑄 8𝜋𝜅ℎ ⁄ is the characteristic pressure, 𝜅 is the permeabilityk[L2] divided by 

fluid viscosity 𝜇𝑓[Pa ∙ s], 𝑝  is the pore pressure[Pa], 𝑡𝑐 = ℎ
2 4𝑐 ⁄ is the characteristic 

time, 𝑡𝑠
∗ is the time when injection shut in and 𝑐 is the diffusivity coefficient. The pore 

pressure field 𝑝∗(𝑟∗, 𝑡∗, 𝑡𝑠
∗, 𝑧∗) at a certain point in time 𝑡∗ and position in the reservoir 

(𝑟∗, 𝑧∗)  is given as (Marck, Savitski et al. 2015):  

                                    𝑝∗(𝑟∗, 𝑡∗, 𝑡𝑠
∗, 𝑧∗) = {

𝑝𝑟
∗(𝑟∗, 𝑡∗, 𝑡𝑠

∗, 𝑧∗),       |𝑧∗| ≤ 1

0,                                  |𝑧∗| > 1
                  (8.2) 

𝑝𝑟
∗(𝑟∗, 𝑡∗, 𝑡𝑠

∗, 𝑧∗) is the pore pressure field in the reservoir and the gravity effects are 

neglected. To drive the analytical solutions for pore pressure generated by a uniform line 

source density over the thickness of the reservoir, the diffusion equation is:  

                                      
𝜕𝑝

𝜕𝑡
= 𝑐∇2𝑝                                                   (8.3) 

The diffusion equation (8.3) can be re-written as:   

                                                    
𝜕𝑝𝑟
∗

𝜕𝑡∗
−
𝜕2𝑝𝑟

∗

𝜕(𝑟∗)2
−
1

𝑟∗
𝜕𝑝𝑟
∗

𝜕𝑟∗
= 0,         𝑡∗ > 0                       (8.4) 

Equation (8.4) can be solved with the initial conditions and boundary conditions to get 

the pore pressure field  𝑝𝑟
∗(𝑟∗, 𝑡∗, 𝑡𝑠

∗, 𝑧∗) in which  𝑡𝑠
∗ is equal to  𝑡∗ . The solution for 

equation (8.4) is 𝑝𝑟
∗ = 𝐸1((𝑟

∗)2 𝑡∗⁄ ) (Theis 1935) and this solution is also given in (Jacob 

1940, Carslaw and Jaeger 1959). 𝐸1 is the exponential integral defined as given in 

equation (8.5). 

                                                            𝐸1(𝑥) = ∫
𝑒−𝑡

𝑡
d𝑡

∞

𝑥
                                            (8.5) 
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In this work, we consider constant volumetric rate 𝑄 over the finite time interval 𝑡𝑠
∗ > 0. 

This is simply achieved by superimposing the solution for injection rate 𝑄 starting at 𝑡∗ =

0 with the solution for withdrawal rate 𝑄 beginning at 𝑡∗ = 𝑡𝑠
∗ :  

                                    𝑝𝑟
∗(𝑟∗, 𝑡∗, 𝑡𝑠

∗, 𝑧∗)  = {
𝐸1 (

(𝑟∗)2

𝑡∗
) ,                0 < 𝑡∗ < 𝑡𝑠

∗

𝐸1 (
(𝑟∗)2

𝑡∗
) − 𝐸1 (

(𝑟∗)2

𝑡∗−𝑡𝑠
∗),   𝑡𝑠

∗ ≤ 𝑡∗
           (8.6)  

where 𝐸1 is the exponential integral. Figure 8.2 shows a plot of equation (8.6) with 𝑡𝑠
∗ =

10.  The pore pressure of the entire reservoir could be increased a short time period after 

shut-in before decreasing. The magnitude of the modified pore pressure Δ𝑝𝑟
∗  increases 

with distance 𝑟∗ away from the injection source. After fluid injection is completed, the 

pore pressure in the neighborhood of the source remains higher and diffuses through the  

reservoir, which suggest that if  Δ𝑝𝑟
∗    is sufficient large, then additional simulated 

MEQs may also be generated after cessation of injection.  

 

Figure 8.2 Pore pressure field 𝒑𝒓
∗  in the reservoir during finite duration injection at a constant 

volumetric rate, at 𝒓∗ = 𝟏, 𝟐, 𝟑, 𝟒. Dotted vertical line indicates the shut-in time 𝒕𝒔
∗ = 𝟏𝟎. ∆𝒑𝒓

∗  is 
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modified pore pressure due to shut-in. Note that the pore pressure still increases in a short 

time period after shut-in. 

 

8.2.2 Generation of Simulated MEQ Distribution 

In this work, the simulated MEQ distribution is generated when the natural fractures fail 

in shear. To determine fracture slip, the effective normal stress 𝜎𝑛 and shear stress 

𝜎𝑠  acting on the plane whose unit normal is [𝑛𝑥 , 𝑛𝑦, 𝑛𝑧 ] at the center of natural fracture 

(red point in Figure 8.1) are calculated. From the Cauchy’s equation, the traction vector 

𝒕𝑛 on fracture is 𝜎𝑖𝑗
′ 𝑛𝑗 , with 𝜎𝑖𝑗

′  as the effective stress. The normal stress on the natural 

fracture is  𝜎𝑛 = 𝒕
𝑛 ∙ 𝑛 and shear stress 𝜎𝑠 is √|𝒕𝑛|2 − 𝜎𝑛2 . The Coulomb failure function 

(CFF) which describes the proximity of natural fracture to frictional slip is  

                                                       CFF=𝜎𝑠 − 𝜇𝑠𝜎𝑛 − 𝑐
′                                             (8.7) 

where 𝜇𝑠 is the friction coefficient and 𝑐′ is the cohesive strength. In this study of failure, 

the geometry of the natural fracture is treated as a mass point which inherits all the 

geometrical and mechanical properties of the natural fracture and is located at the center 

of the natural fracture. Each mass point has a theoretical fracture plane with a given 

orientation. The mechanics of the mass point represent the mechanics state of the entire 

natural fracture which can be derived from equation (8.7). Recently, different numerical 

methods such as discrete element method (Al-Busaidi, Hazzard et al. 2005, Zhao and Paul 

Young 2011), hybrid boundary element/finite element (Lee and Ghassemi 2011, Safari 

and Ghassemi 2016, Rinaldi and Nespoli 2017) are applied to generate simulated MEQ 

distribution. An essential limitation in current MEQ generation algorithms from 

aforementioned numerical methods is that if any physical point (e.g., element, node, seed 

or grain) on the fracture fails, exactly one simulated MEQ is generated. Thus, the 
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processes of generating simulated MEQ distribution have severe mesh-dependency issues 

in most numerical methods. Another limitation is that usually some heuristics are used to 

control the number of simulated MEQ distribution (Hazzard and Young 2004, Rinaldi 

and Nespoli 2017).  From this aspect, numerical methods do not necessarily provide a 

significant advantage. To remedy the scale mismatch between the model elements and 

the natural fracture due to implicit fracture representation, we propose a new simple 

method to outline the location and the number of simulated MEQs that are generated on 

a fracture plane upon slip. If the Coulomb failure function (CFF) is larger than zero and 

the natural fracture is slipping, one simulated MEQs will be induced at the center of the 

natural fracture. In this configuration, the shear energy of the natural fracture is calculated 

by 𝜏2 ∙ 𝐴 2𝐺⁄  where 𝜏 is the shear stress on the fracture and 𝐺 is the shear modulus and 

𝐴 is the area of fracture plane. Stress drop varies from micro-earthquake to micro-

earthquake and the stress drop estimation depends on the slip displacement on the fracture 

and corner frequency of the source spectrum. Previous studies (Allmann and Shearer 

2007, Yamada, Mori et al. 2007, Goertz-Allmann, Goertz et al. 2011, Ye and Ghassemi 

2018) suggested that the average stress drop is from 4 MPa to 10 MPa, approximately 

one third of the shear stress in our cases. So, due to the high uncertainty in stress drop 

estimation, we hypothesize that one third of the shear energy in the fracture surface is 

released in the form of seismic wave during the fracture slipping processes. If the seismic 

energy is larger than the threshold seismic energy of MEQs, additional simulated MEQs 

are generated. The threshold seismic energy of MEQs can be defined as the minimum 

detection capacity of the sensors, which is interpreted as the minimum seismic moment 

magnitude inferred from the sensors. There is an empirical formula to estimate the seismic 
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energy from seismic moment magnitude (Kanamori 1978, Goodfellow, Nasseri et al. 

2015)  

                                                     log10(𝐸𝑅) = 4.8 + 1.5 ∙ 𝑀𝑤                                   (8.8) 

𝐸𝑅 is the seismic energy and 𝑀𝑤 is the seismic moment magnitude. In this study, the 

minimum seismic moment magnitude inferred from the sensors 𝑀𝑤 is set to zero. Thus 

the threshold seismic energy of MEQs in this study is:  

                                       𝐸𝑅 = 10
4.8+1.5∙𝑀𝑤 = 104.8+1.5∙0 = 63096(𝐽)                      (8.9) 

The number of additional simulated MEQs is the integer part of the ratio of the released 

seismic energy to the threshold seismic energy of MEQs. The released seismic energy 

is (∆𝜏)2 ∙ 𝐴/(2𝐺), where ∆𝜏 is the stress drop and 𝐺 is shear modulus and 𝐴 is the area 

of fracture slip area (assumed to equal the fracture surface). Specially, the locations of 

additional simulated MEQs are randomly distributed on the fracture plane.  

8.2.3 Mahalanobis Distance 

The concept of similarity is essential to pattern recognition problems and is applied to 

data classification and clustering in data sciences (Cha 2007). From the data scientist’s 

perspective, similarity quantifies the degree (or the extent) to which two discrete or 

continuous objects are. Hence, the concept of similarity is appropriate for measuring the 

matching level between the simulated MEQ distribution and the field-observed MEQ 

distribution.  

The natural fracture orientations in the forward model that have the smallest value of 

similarity would most likely be the best and will be considered to be the same as the true 

reservoir natural fracture orientations. Here, the Mahalanobis distance (MD), a concept 

of similarity, is used to quantify the matching level between the simulated MEQ 
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distribution and the field-observed MEQ distribution. MD is defined in terms of both the 

mean and variance of the variables (e.g., MEQ data) and the covariance matrix of all the 

variables, and therefore it takes advantage of the covariance among variables. For 

instance, suppose we have two data groups of MEQs and they are all two dimensional 

(Figure 8.3). Group 1 is 𝑋(𝑥𝑖
1, 𝑦𝑖

1) and group 2 is  𝑌(𝑥𝑗
2, 𝑦𝑗

2) where 𝑖, 𝑗 is the object 

number and superscripts 1,2 are group index of MEQ data (Table 8.1).   

Table 8.1  The two data group and the same data after centering 

 

The number of MEQs in each group need not be the same. Prior to the analysis, data are 

often pre-processed which involves transforming the data into a suitable form for the 

inverse analysis. One of the most common operations is centering. The centered data 

matrix of each data group can be calculated as 𝑋̂ = 𝑋 −𝑚𝑒𝑎𝑛(𝑋) = X − 𝑋̅ and 𝑌̂ = 𝑌 −

𝑚𝑒𝑎𝑛(𝑌) = 𝑌 − 𝑌̅, respectively. The covariance matrix of each group is computed using 

the centered data matrix as follow:  

Object Number (𝑖, 𝑗) 𝑥1 𝑦1 𝑥2 𝑦2 𝑥1  𝑦1  𝑥2  𝑦2  
1 3.5 2 2 3.5 1.2 -0.025 -2.8 0.4 

2 3 2 4.5 3 0.7 -0.025 -0.3 -0.1 

3 2 4 4.5 2 -0.3 1.975 -0.3 -1.1 

4 3 3 7 3 0.7 0.975 2.2 -0.1 

5 4 2 6 4 1.7 -0.025 1.2 0.9 

6 2 1.5   -0.3 -0.525   
7 1 1.5   -1.3 -0.525   
8 3 1.25   0.7 -0.775   
9 1 2   -1.3 -0.025   

10 0.5 1   -1.8 -1.025   
𝑋̅, 𝑌̅ 2.3 2.025 4.8 3.1     

 1 
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Figure 8.3 Mahalanobis distance 𝒘 and the center of each group. 

 

                                 𝑆1 =
1

𝑛1
𝑋̂ ∙ 𝑋̂ =

1

𝑛1
[
𝑥1 ∙ 𝑥1 𝑥1 ∙ 𝑦1 

𝑦1 ∙ 𝑥1 𝑦1 ∙ 𝑦1 
] = [

1.26 0.22
0.22 0.71

]            (8.10) 

                                 𝑆2 =
1

𝑛2
𝑌̂ ∙ 𝑌̂ =

1

𝑛2
[
𝑥2 ∙ 𝑥2 𝑥2 ∙ 𝑦2 

𝑦2 ∙ 𝑥2 𝑦2 ∙ 𝑦2 
] = [

2.86 0.02
0.02 0.44

]            (8.11) 

Where 𝑛1 and 𝑛2 represent the number of data in groups 1 and 2, respectively. (𝑥1 ∙ 𝑦1) is 

the dot product of two vectors. The pooled covariance matrix (integration of two 

covariance matrix into one covariance matrix of all data)  𝑆 is calculated as:  

                                                 𝑆 =
𝑛1

𝑛1+𝑛2
𝑆1 +

𝑛2

𝑛1+𝑛2
𝑆2                                            (8.12) 

The value of MD, 𝑤(𝑋, 𝑌), is calculated as:  

                                       𝑤(𝑋, 𝑌) = √(𝑋̅ − 𝑌̅)𝑇𝑆−1(𝑋̅ − 𝑌̅) = 2.172                      (8.13) 
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where 𝑆−1 is the inverse of the pooled covariance matrix. The value of 𝑤 is larger than 

zero and represents the matching level between those two groups. If the value of 𝑤 is 

smaller, the simulated data have higher matching level with the observed data.  

8.2.4 Inverse Analysis GBSAM 

To interpret field-observed MEQ distribution for natural fracture orientations, we propose 

a general inverse analysis named GBSAM. The main components of GBSAM include a 

forward model for pore pressure e.g., the finite duration line injection model, simulated 

MEQs generation model, and Mahalanobis distance. To simplify the analysis to estimate 

the natural fracture orientations from a highly complex reservoir system, the variables of 

the problem need to be reduced. Specifically, the number of natural fractures and their 

location, the natural fracture sets, as well as the shape of the natural fractures and their 

radius need be estimated to constrain the uncertainty before the inverse analysis starts. A 

field-observed seismic event is assumed to represent a natural fracture in the reservoir 

because the spatial distribution of field-observed MEQs are scattered in the reservoir 

(Fang, Elsworth et al. 2018). Thus the number of natural fractures in GBSAM is assumed 

to equal to the number of field-observed MEQs and the natural fractures in GBSAM have 

the same location as the field-observed MEQ distribution. The reservoir may have 

multiple natural fracture sets. In each iteration of the solution procedure, the natural 

fracture at the field-observed MEQ location could be from any of the multiple sets 

assumed. Before an iteration starts, the fracture at a point is randomly chosen from the 

total sample population (including all natural fracture sets).  Each natural fracture set has 

the same number of the natural fractures. The natural fractures are assumed to be penny-

shaped and their radii are pre-defined based on field studies. In each natural fracture set, 
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natural fracture orientations are assumed to be normal (other distributions can be 

considered but both groups should have identical distributions) (Long, Remer et al. 1982, 

Gutierrez and Youn 2015). These assumptions preserve the GBSAM characteristics while 

optimizing the inverse analysis. Here we need to point out that GBSAM is not intended 

to predict the orientation of individual natural fractures in a large set. It intends to find 

the likely orientation of each set. 

The goal of this study is to identify the unknown natural fracture orientations 𝑛 =

{𝑛𝑥, 𝑛𝑦, 𝑛𝑧} or {𝑑𝑖𝑝, 𝑑𝑖𝑝 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛} by performing inverse analysis.  𝑛  is the normal 

direction of a fracture plane. It is more convenient to use a vector normal to the fracture 

plane in the computations. Here a simple example with synthetic data is used to illustrate 

the main steps of GBSAM.  In this example, the reservoir has two sets of natural fractures 

and the fracture sets have identical distributions.  

Step 1. Define all parameters, but the natural fracture orientations. In this example, all 

fractures in a set have the same orientation (although one could consider other distribution 

of orientations). The initial orientations of each set are the same and can be given by any 

value and we arbitrarily choose: {𝑛𝑥
1 , 𝑛𝑦

1 , 𝑛𝑧
1} =

{0.01, 0.01, √1 − 0.012 − 0.012}  and {𝑛𝑥
2, 𝑛𝑦

2 , 𝑛𝑧
2} = {0.01, 0.01, √1 − 0.012 − 0.012}. 

The number of natural fractures in each set is identical so as to exclude the influences of 

the difference between natural fractures density of each set. In the first solution step, we 

let the two sets be identical to ascertain if a single set of fractures fits the data.  

Step 2. Compute the distribution of stress and pore pressure and shear energy on the 

fracture planes. The shear energy is 𝜏2 ∙ 𝐴/(2𝐺) , where 𝜏 is shear stress and 𝐺 is shear 

modulus and 𝐴 is the area of fracture plane. Step 2 is the start point of an iteration.  
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Step 3. Check whether the Coulomb failure function (CFF) of each fracture is larger than 

zero. If CFF is positive, frictional sliding occurs on a fracture and a simulated MEQs are 

generated at the center of the fracture. One third of shear energy is supposed to be released 

in the form of seismic waves during fracture slipping processes. If the seismic energy is 

larger than the pre-defined threshold energy of MEQs, additional simulated MEQs will 

be generated. The number of additionally generated MEQs is the integer part of the ratio 

of the released seismic energy to pre-defined threshold energy of MEQs. Those additional 

simulated MEQs are randomly distributed on the fracture plane.  

Step 4. Compare the simulated MEQ distribution with the field-observed MEQ 

distribution via MD (for the overall sets). Calculate the value of MD 𝑤𝑖 using equation 

(8.13) where 𝑖 is the 𝑖 th iteration.  The calculation of MD 𝑤𝑖 is dependent on the 

simulated MEQ distribution generated by the entire natural fracture population. Thus, 

MD is calculated for all natural fracture populations.  

Step 5. Store the value of MD  𝑤𝑖 , fracture orientations and the current number of 

iteration 𝑖 . Calculate the average value of MD 𝑣𝑖 =
∑𝑤𝑖

𝑖
  (for all sets) and the sum (∑𝑤𝑖) 

is for the number of iteration. Step 5 is the end point of an iteration. 

Step 6. Repeat calculation from step 2 to step 5 until the |𝑣𝑖 − 𝑣𝑖−1| ≤ 𝜀 (𝜀 is a small 

number) to ensure stability. Store the average value of MD  𝑣𝑖  and the number of 

iteration 𝑖. In each iteration the natural fracture at an MEQ location could belong to a 

different set than in the previous iteration so that 𝑣𝑖   will change from iteration to iteration.  

Step 7. Update the natural fracture orientations by increasing  𝑛𝑦
2  from 0.01 to 0.02. The 

strategy for updating the orientations is to try to test any combination of fracture 

orientations. Thus the fracture orientations starts from 𝑛𝑦 or 𝑛𝑧 or 𝑛𝑥 without affecting 
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the final results. Now, the fracture orientations are: {𝑛𝑥
1 , 𝑛𝑦

1 , 𝑛𝑧
1} =

{0.01, 0.01, √1 − 0.012 − 0.012}  and {𝑛𝑥
2, 𝑛𝑦

2 , 𝑛𝑧
2} = {0.01, 0.02, √1 − 0.012 − 0.022}. 

The number of iteration 𝑖 is restarted from one. Furthermore, there are formulas for 

converting from a fracture normal to dip and dip direction (Allmendinger, Cardozo et al. 

2011).  

Step 8. Repeat calculations from step 2 to step 7, i.e., the process of considering every 

combination of orientations exactly once via tree search algorithm.  

Step 9. The natural fracture orientations yielding the minimum average value of MD 𝑣 is 

assumed to represent the true reservoir conditions.  

One needs to check whether the GBSAM has converged during the solution process. For 

instance, Figure 8.4(a) shows the evolution of the value of MD 𝑤, with the number of 

iteration when {𝑛𝑥
1 , 𝑛𝑦

1 , 𝑛𝑧
1} = {0.1, 0.95,0.31}  and {𝑛𝑥

2, 𝑛𝑦
2 , 𝑛𝑧

2} = {0.1, 0.96,0.27}. The 

value of MD 𝑤 seems disorganized, yet they still are distributed around a certain 

value 0.208. Figure 8.4(b) shows that, the average value of the MD 𝑣 becomes smooth 

and constant when the number of iteration is larger than 600. Figure 8.4(c) is an error bar 

analysis which shows that the maximum value of the standard deviation is only 0.0002 

when the number of iteration is 600. Thus GBSAM is considered to be stable and unique.  
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Figure 8.4 Results analysis of GBSAM: (a) the evolution of value of MD 𝒘 with iterations with 𝒏𝒛
𝟏 =

𝟎. 𝟑𝟏 and  𝒏𝒛
𝟐 = 𝟎. 𝟐𝟕 ; (b) the evolution of average value of MD 𝒗 with iterations 𝒏𝒛

𝟏 =
𝟎. 𝟑𝟏 and 𝒏𝒛

𝟐 = 𝟎. 𝟐𝟕; (c) the error bar analysis for GBSAM with 𝒏𝒛
𝟏 = 𝟎. 𝟑𝟏 and 𝒏𝒛

𝟐 from 0 to 

1.    

From the above analysis, one needs to select an appropriate maximum iteration number 

to ensure GBSAM stability during the process.  

8.3 Newberry EGS Example 

In this section, GBSAM is applied to estimate the natural fracture orientations of 

Newberry Volcano EGS demonstration. Phase 2.2 of Newberry EGS stimulation lasted 

from September 23, 2014 to November 21, 2014. During this time period, about 2.5 

million gallons (9464 m3) of water were injected. A fall-off test was carried out from 

October 15 to November 10. During phase 2.2 stimulation, 344 field-observed MEQs 

were located and recorded. Borehole televiewer (BHTV) was used to map the natural 
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fractures and 399 fractures were recorded. Those fractures are intersecting the wellbore 

and do not necessarily correlate with the 344 field-observed MEQs. In order to predicate 

the natural fracture orientations of Newberry EGS, further assumptions are needed. The 

orientation of the natural fracture system is supposed to follow a normal distribution 

(Long, Remer et al. 1982, Gutierrez and Youn 2015). The standard deviation 𝜎  is kept 

constant while the mean 𝜇 varies during the inverse analysis.  

In this example, we use a line source of length equal to the length of the open hole section 

of well NWG 55-29, with the same average inject rate 𝑄 =
0.063𝑚3

𝑠
. The length of the 

open section of well NWG 55-29 is 906 m. The reservoir properties in GBSAM used are 

shown in Table 8.2. The permeability used in this example is the estimated value for the 

John Day formation (Cladouhos, Petty et al. 2015).  

Table 8.2  Parameters used in this work for Newberry simulations. 

Parameter Variable Value and unit 

Vertical Stress (z direction) 𝜎𝑧 67𝑀𝑃𝑎 

Maximum Horizontal Stress(x direction) 𝜎𝑥 46𝑀𝑃𝑎 

Minimum Horizontal Stress(y direction) 𝜎𝑦 30𝑀𝑃𝑎 

Injection time 𝑡 58 𝑑𝑎𝑦𝑠 

Injection rate 𝑄 0.0063 𝑚3/𝑠 

Shear modulus 𝐺 10𝐺𝑃𝑎 

Fluid Viscosity 𝜇𝑓 0.40 ∙ 10−3𝑃𝑎 ∙ 𝑠 

Permeability 𝑘 1 ∙ 10−15𝑚2 

Hydraulic diffusivity 𝑐 19 ∙ 10−2𝑚2/𝑠 
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Cohesive strength 𝑐′ 0 

Friction coefficient 𝜇𝑠 0.52 

Total number of iterations  600 

Permeability zone of thickness 2ℎ 906𝑚 

Standard deviation for dip Degree √80 

Standard deviation for dip direction Degree √160 

Natural fracture radius  60𝑚 

 

We carry out the invers analysis which was mentioned in the chapter 7.2. The results from 

the GBSAM show that the fractures average dip is {𝜇, 𝜎} = {60𝑜 , √80
𝑜
} and the fracture 

dip direction are {𝜇, 𝜎} = {100𝑜 , √160
𝑜
} and {𝜇, 𝜎} = {270𝑜 , √160

𝑜
}. Figure 8.5 shows 

the results from GBSAM and the results from BHTV. As can be observed from Figure 

8.5(a), fracture dips from GBSAM are in good agreement with observations from BHTV 

while BHTV is not always available and it only represents the near wellbore region which 

may or may not reflect the reservoir. Figure 8.5(b) shows that the natural fractures dip 

directions from GBSAM are also in good agreement with observation from BHTV. The 

total number of simulated MEQ distribution is 370 indicating that some natural fractures 

may generate multiple MEQ events under the given conditions. For instance, if the 

fracture orientations are appropriately assigned and released seismic energy is high, 

hundreds of simulated MEQs may occur on the same natural fracture planes. As shown 

in Figures 8.5(c)-(e), the simulated MEQ distribution has a good match with the field-
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observed MEQ distribution so that the fracture orientations in GBSAM have a good 

match with the fracture orientations in the reservoir.  
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Figure 8.5  (a) Comparison between fracture dip from GBSAM and fracture dip from BHTV. (b) 

Comparison between fracture dip direction from GBSAM and fracture dip direction from 

BHTV. (c)~ (e) Map view of the simulated MEQ distribution and the field-observed MEQ 

distribution. 

Note that the MEQ locations from the simulations and the data are not exactly the same 

since the model allows for multiple MEQs on a fracture. The figures only show that the 

overall populations are similar. 

8.4 Fenton Hill HDR Example 

The Fenton Hill HDR project was carried out from 1970 to 1995 at Fenton Hill, New 

Mexico. During this time period, the Los Alamos National Laboratory created and tested 

two reservoirs at depths in the range of 2.8-3.5 km.  The first reservoir, named the Phase 

I reservoir, was created at a depth interval of 2800-2950m. The second reservoir, named 

the Phase II reservoir, was created at a depth of around 3500m.  Figure 8.6 shows the 

location map of Fenton Hill HDR and a simplified geological map of the Jemez volcanic 

field and the Espanola Basin of the Rio Grande Rift in north-central New Mexico.  
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Figure 8.6  Location map of the Fenton Hill HDR site and simplified geological map of the Jemez 

volcanic field and the Espanola Basin of the Rio Grande Rift in north-central New Mexico 

(after Baldridge et al., 1995). 

Downhole and surface geophones were installed in the vicinity of the experimental site 

for seismic monitoring. An on-line system for recording and locating 3886 field-observed 

MEQ distribution was developed and deployed. Table 8.3 lists the input parameters for 

GBSAM. Figure 8.7(a) and (b) show the results from the GBSAM. These results show 

that the natural fracture’s dip is {𝜇, 𝜎} = {60𝑜 , √80
𝑜
}  and the natural fracture dip 

directions are {𝜇, 𝜎} = {80𝑜 , √160
𝑜
} . Figure 8.7(a) shows that the fracture dips from 

GBSAM are in good agreement with observations from the results in (Roff, Phillips et al. 

1996) and Figure 8.7(b) shows that the fracture dip directions from GBSAM are also in 

good agreement with observation from Raff’s results (Roff, Phillips et al. 1996). The total 

number of simulated MEQs is 4816 indicating that some natural fractures may generates 

multiple MEQ events under the given conditions. From Figure 8.7 (c)-(e), simulated 

MEQ distribution has a good match with field-observed MEQ distribution so that it is 
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likely that the fracture orientations in GBSAM reflect the fracture orientations in the 

reservoir. 

Table 8.3  Parameters used in Fenton Hill HDR (Brown, Duchane et al. 2012) 

Parameter Variable Value and unit 

Vertical Stress (z direction) 𝜎𝑧 90𝑀𝑃𝑎 

Maximum Horizontal Stress(x direction) 𝜎𝑥 45𝑀𝑃𝑎 

Minimum Horizontal Stress(y direction) 𝜎𝑦 30𝑀𝑃𝑎 

Injection time 𝑡 2.5 𝑑𝑎𝑦𝑠 

Injection rate 𝑄 0.0097 𝑚3/𝑠 

Shear modulus 𝐺 21𝐺𝑃𝑎 

Fluid Viscosity 𝜇𝑓 0.47 ∙ 10−3𝑃𝑎 ∙ 𝑠 

Permeability 𝑘 0.9 ∙ 10−15𝑚2 

Hydraulic diffusivity 𝑐 21 ∙ 10−2𝑚2/𝑠 

Cohesive strength 𝑐′ 1𝑀𝑃𝑎 

Friction coefficient 𝜇𝑠 0.50 

Total number of iterations  600 

Permeability zone of thickness ℎ 1000𝑚 

Standard deviation for dip Degree √80 

Standard deviation for dip direction Degree √160 

Natural fracture radius  60𝑚 
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Figure 8.7 (a) Comparison between fracture dip from GBSAM and fracture dip from previous results 

(Roff et al., 1996). (b) Comparison between fracture dip direction from GBSAM and fracture 

dip direction from Raff’s results. (c)~ (e) Map view of simulated MEQ distribution and field-

observed MEQ distribution. 

8.5 Discussion and Conclusion 

Constraining the natural fracture orientations in reservoirs is of high interest to 

geothermal and petroleum industry. Natural fracture orientations are typically estimated 

from 1-D scan lines in outcrops and boreholes imaging logging, or 2D circular sampling 

in outcrops. Boreholes image logging provides critical data for measuring fracture 

orientations at applicable operational temperature of the tool. However, image logs 

provide fracture orientations at the wellbore scale and difficulties and uncertainties exist 

in upscaling the results to the field scale.  
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An effective method has to integrate tools from geology, geophysics, and geomechanics 

geostatistics to characterize the natural fracture orientations. In this work, we propose 

GBSAM to constrain the natural fracture orientations by combining a geomechanics and 

geostatistics model to interpret microseismic data. The pore pressure changes are 

modeled using a finite duration line source rather than a point source. The distribution of 

the simulated MEQ can be affected by the properties of the source model. The diffusion 

path of the pore pressure generated by a point source model is different from the diffusion 

path of the pore pressure generated by a line source model. The shape of MEQ cloud from 

those two can therefore be also different. This would depend on the reservoir structure 

and given such significant level of uncertainty and heterogeneity in geothermal reservoir 

permeability, the point source model is not pursued. The core steps in GBSAM are 

handling with discrete MEQs data and measuring similarity between the field-observed 

MEQ distribution and the simulated MEQ distribution.  Here we have applied 

Mahalanobis distance, a common tool from data sciences to measure similarity between 

field-observed MEQ distribution and simulated MEQ distribution. The mechanism of 

generating simulated MEQ distribution has also been improved, allowing fracture to have 

multiple simulated MEQs. The number of additional simulated MEQs on a fracture is 

defined as the integer part of the ratio of released seismic energy to threshold seismic 

energy. In order to verify the model, GBSAM is applied to extract information about 

natural fracture orientations (dip and dip direction) in two case studies, Newberry EGS 

and the Fenton Hill HDR. Results from GBSAM are in good agreement with results from 

boreholes image logging or previous studies in those case studies. This inverse analysis 
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is the first of its kind and enables us to estimate natural fracture orientations using 

microseismic data.     
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Chapter 9 Conclusions and Future Work 

9.1 Summary of the Dissertation and Original Contributions 

A fully coupled thermo-hydro-mechanical-seismic (THMS) finite element model with a 

dynamic 3D fracture network has been developed. The model can consider fracture 

propagation and induced seismicity. Several verifications and general examples are 

presented for the THMS with a dynamic 3D fracture network. The fractur network model 

is applied to simulate the Collab testbed 1 (May 24, Stim-II HF@164 Notch). Numerical 

simulations show that the simulated fracture pressure profiles reasonably follow the trend 

observed in the field test. The simulations support the concept that a natural fracture was 

propagated from the injection well connecting with the production well via intersection 

and coalescence with other natural fractures consistent with plausible flow paths observed 

on the field. The distribution of simulated MEQs have good agreement with the field-

observed MEQs.  

Then the Coupled Thermo-Hydro-Mechanical-Seismic Model with the 3D fracture 

network (with rate state friction law) is used to assess the effects of fluid diffusion and 

poroelastic stress on induced seismicity. Two types of injection scenarios are designed in 

the numerical simulations to distinguish and to underscore the contributions of fluid 

diffusion and poroelastic stress to the fracture stability and induced seismicity. The 

poroelastic effects can perturb the stress field in the vicinity of the injection location and 

gives rise to extension/compression zones. The distribution of tensile and compressive 

stress state will be determined by the fracture location, orientation, injection location, as 

well as matrix diffusivity and fracture connectivity in the reservoir. In one injection 

scenario water is injected on the entire surface of the fracture and the diffusion time is 
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very small. As the fluid diffuses into the rock matrix, the poroelastic effect causes the 

total normal stress acting on the fracture to increase, contributing to fracture stability. 

This is because the surrounding zone of the fracture experiences compression due to the 

poroelastic effect in response to pore pressure buildup. In contrast, fracture pressure 

significantly increases when injecting into the fracture. Therefore, the effective normal 

stress is decreased. In a second scenario fluid is injected some distance away from the 

fracture and the diffusion time is relatively large. In this case, the poroelastic effect favors 

fracture slip due to increased poroelastic tensile stress ahead of the compression zone. 

The model has the capability to consider the effects of fracture roughness on fracture 

failure and induced seismicity. The role of the spatial distribution of fracture roughness 

on seismic events pattern on the fracture plane is investigated. Such model is applied to 

a current laboratory test and the simulated seismicity generally matches the lab 

observation. The simulated results show that the lower JRC (roughness), the higher the 

likelihood seismicity occurs on the fracture when the length of unstable zone is larger 

than the nucleation length. The model is also applied to simulate the stimulation of a 

planned wellbore in the Utah FORGE EGS to help optimize the wellbore trajectory for 

best stimulation outcome. Finally, a Geomechanics-Based Stochastic Analysis of 

Microseismicity (GBSAM) method is developed to estimate fracture orientation from 

seismicity data. This GBSAM is applied to the Newberry EGS and Fenton Hill HDR 

experiment to characterize the natural fracture network. The results agree well with field 

data.  

In summary, the original contributions of this dissertation are:  
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1. Mahalanobis distance, a type of similarity measure technique, is used to measure the 

similarity between the simulated MEQs distribution and the field-observed MEQs 

distribution to find the best natural fracture distribution that fits the field-observed MEQs 

data. The natural fractures orientations which correspond to the best simulated MEQs 

distribution in the GBSAM is a realistic realization of the subsurface conditions.  

2. A dual-scale semi-deterministic fracture network model is developed that can combine 

data derived from image logs, foliations/micro fractures, core with fracture properties 

which follow a stochastic distribution. The variation of micro fracture/foliations away 

from the fracture follow a stochastic distribution (Lognormal distribution). An advantage 

of this fracture network model is that measurement data can be incorporated to constrain 

the uncertainties in the rock mass.  

3. An ultrafast analytic approach for fracture propagation is presented using the maximum 

tensile stress criterion and the concept of dynamic fictitious plane. Both non-planar and 

planar propagation are considered in this approach. The fictitious plane is best fitted by 

the updated fracture tips and fracture process of propagation is performed on this fictitious 

plane.  

4. Two prescribed conditions (threshold slip rate and threshold slip distance) are proposed 

to distinguish between the seismic and aseismic slip on a fracture. The Gutenberg-Richter 

law is employed to constrain the number and magnitude of MEQs by two prescribed 

conditions (energy conservation and magnitude of the background seismicity).  

5. The spatial variability of JRC is obtained through the concept of stochastic partitioning 

of fracture plane. The spatial distribution of the fracture shear stiffness as a function of 

the effective normal stress is mapped based on the distribution of JRC. A critical velocity 
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as a function of fracture shear stiffness is defined to distinguish between the 

seismic/aseismic states. The effects of load rate on the transition between aseismic and 

seismic can be explored.  

6. The extended Fourier transform method is presented to use two Hurst exponents in x- 

and y-directions, and the amplitude parameters (RMS) of scan points on the fracture are 

used to generate a self-affine anisotropic surface. The JRC- Hurst exponent relations can 

be estimated by performing the calculation of JRC over the self-affine synthetic 

isotropic/anisotropic roughness derived by two Hurst exponents 𝐻𝑥, 𝐻𝑦 and RMS. The 

advantage of JRC- Hurst exponent relation over others is that the full spectrum of H with 

JRC are covered and effects of anisotropic roughness on JRC are also considered. 

9.2 Recommendations for Future Work 

The future work may include the flowing aspects:  

1. Accurate numerical simulation of fracture network deformation and fluid flow is 

crucial to the assessment of the evolution of in-situ stress at field scale during the 

fractured reservoir stimulation. A linear complementarity problem (LCP) with regularized 

friction can be introduced for robustly handling the fracture network friction contact 

problems. Therefore, the friction contact problem can be set up as an LCP and the stability 

and accuracy of numerical program are enhanced.  

2. The multiscale nature of the fracture surface on seismicity patterns, fracture 

deformation and fluid flow can be further studied. Roughness and planarity are the 

primary components of the fracture surface at small scale and large scale, respectively. 

At small scale, fracture roughness significantly contributes to the fracture shear strength. 

As the fracture size increases, both roughness and planarity components provide the shear 
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resisting during the fracture shear slip. Specifically, fracture planarity may cause the 

fracture to climb during the processes of shear slip. Fracture surface’s gradual separation 

and shear strength should be decreased. As the fracture size continues to increase, both 

roughness and planarity components enter the problem, and the shear strength tend to 

stable over the fracture size. Therefore, fracture planarity needs to be considered in the 

procedure of upscaling JRC.  

Additional model applications: 

1. The evolution of in-situ stress at field scale during the fractured reservoir stimulation 

is of interest. Geomechanical modeling of 3D in-situ stress at field scale is essential 

to study the relative importance of stress source and assess the fault slip potential. 

However, the magnitude of maximum horizontal stress is needed to constrain to 

calibrate the geomechanical model. This can be achieved by combining the 

geomechanical model with source mechanisms of seismicity. 

2. Integrated geomechanical modeling and distributed acoustic sensing can be used to 

advance the characterization of fractured reservoir stimulation. Distributed acoustic 

sensors (DAS) installed in boreholes provide continuous data on fracturing processes 

and induced seismicity. These sensors measure strain (or strain rate) with high spatial 

resolution (~ 1 m) along the fiber and can survive extreme conditions. DAS data must 

be well understood to avoid potential errors and inaccurate description. 

Geomechanical model is recommended to integrate the DAS measurement to better 

interpret the DAS data.  
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Appendix A 

The Eshelby solution was first introduced to formulate the elastic stress field surrounding 

and inside an inclusion in an isotropic elastic infinite medium (Eshelby and Peierls 1957, 

Eshelby and Peierls 1959). Since 1960’s, Eshelby solution has been applied to solve 

complicate problems, such as faulting (Rudnicki 1977), deformation in reservoir 

undergoing production (Guido, Antonellini et al. 2015). An inclusion is defined as 

subdomain Ω in a domain 𝐷. Eigenstrain 𝜀𝑘𝑙
∗  is load on the inclusion while is zero in 𝐷 −

Ω . Both inclusion  Ω  and the matrix 𝐷 − Ω  are the same elastic moduli 𝐶𝑖𝑗𝑘𝑙 . The 

displacement 𝑢𝑗  , strain 𝜀𝑖𝑗 and stress 𝜎𝑖𝑗  for both the inclusion and matrix are expressed 

as (Mura 1987):   

𝑢𝑖(𝑋) = −𝐶𝑘𝑗𝑚𝑛 ∫ 𝜀
∗(𝑥)𝐺𝑖𝑗,𝑘(𝑋 − 𝑥)d𝑥Ω

                                                                                  (A1) 

𝜀𝑖𝑗(𝑋) = −
1

2
∫ 𝐶𝑘𝑙𝑚𝑛𝜀𝑚𝑛

∗ (𝑥)
Ω

(𝐺𝑖𝑘,𝑙𝑗(𝑋 − 𝑥) + 𝐺𝑗𝑘,𝑙𝑖(𝑋 − 𝑥)) d𝑥                                     (A2) 

𝜎𝑖𝑗(𝑋) = −𝐶𝑖𝑗𝑘𝑙 (∫ 𝐶𝑝𝑞𝑚𝑛𝜀𝑚𝑛
∗ (𝑥)𝐺𝑘𝑝,𝑞𝑙(𝑋 − 𝑥)d𝑥 + 𝜀𝑘𝑙

∗ (𝑋)
Ω

)                                (A3) 

For isotropic matrix, Green’s function 𝐺𝑖𝑗(𝑋 − 𝑥) is given by 

𝐺𝑖𝑗(𝑋 − 𝑥) =
1

16𝜋𝜇(1−𝑣)|𝑋−𝑥|
((3 − 4𝑣)𝛿𝑖𝑗 +

(𝑋𝑖−𝑥𝑖)(𝑋𝑗−𝑥𝑗)

|𝑋−𝑥|2
)                                      (A4) 

The induced strain in the inclusion 𝜀𝑖𝑗 is uniform and can be linearly connected with 

eigenstrain 𝜀𝑘𝑙
∗  

𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜀𝑘𝑙
∗         for 𝑋 ∈  Ω                                                                                       (A5) 

Where 𝑆𝑖𝑗𝑘𝑙 is the Eshelby tensor and 𝜀𝑘𝑙
∗  is the eigenstrain which is regarded as internal 

strains caused by various mechanisms, including poroelastic and thermal changes in a 

body free from external force and surface constraint (Guido, Antonellini et al. 2015). The 
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Eshelby tensor is the function of inclusion shape and elastic properties of the matrix. The 

expressions of Eshelby tensor 𝑆𝑖𝑗𝑘𝑙 can be expressed as:  

𝑆𝑖𝑗𝑘𝑙 = 𝑆𝑗𝑖𝑘𝑙 = 𝑆𝑖𝑗𝑙𝑘                                                                                                      (A6) 

𝑆1111 =
3

8𝜋(1−𝑣)
𝑎1
2𝐼11 +

1−2𝑣

8𝜋(1−𝑣)
𝐼1                                                                               (A7) 

𝑆1122 =
1

8𝜋(1−𝑣)
𝑎2
2𝐼12 −

1−2𝑣

8𝜋(1−𝑣)
𝐼1                                                                               (A8) 

𝑆1133 =
1

8𝜋(1−𝑣)
𝑎3
2𝐼13 −

1−2𝑣

8𝜋(1−𝑣)
𝐼1                                                                               (A9) 

𝑆1212 =
𝑎1
2+𝑎2

2

8𝜋(1−𝑣)
𝐼12 +

1−2𝑣

16𝜋(1−𝑣)
(𝐼1 + 𝐼2)                                                                     (A10) 

Where 𝑣 is Poisson’s ration; 𝐼𝑖 and 𝐼𝑖𝑗 are the given by integrals 

𝐼1 = 2𝜋𝑎1𝑎2𝑎3 ∫
d𝑠

(𝑎1
2+𝑠)∆(𝑠)

∞

0
                                                                                      (A11) 

𝐼11 = 2𝜋𝑎1𝑎2𝑎3 ∫
d𝑠

(𝑎1
2+𝑠)

2
∆(𝑠)

∞

0
                                                                                  (A12) 

𝐼12 = 2𝜋𝑎1𝑎2𝑎3 ∫
d𝑠

(𝑎1
2+𝑠)(𝑎2

2+𝑠)∆(𝑠)

∞

0
                                                                          (A13) 

Where ∆(𝑠) = (𝑎1
2 + 𝑠)1/2(𝑎2

2 + 𝑠)1/2(𝑎3
2 + 𝑠)1/2; 𝑠 is the integration variable. 𝑎1, 𝑎2 

and 𝑎3  is the semi-axis of ellipsoid. For 𝑎1 > 𝑎2 > 𝑎3 , the 𝐼𝑖  can be expressed by 

standard elliptical integrals, 

𝐼1 =
4𝜋𝑎1𝑎2𝑎3

(𝑎1
2−𝑎2

2)(𝑎1
2−𝑎3

2)
1/2 (𝐹(𝜃, 𝑘) − 𝐸(𝜃, 𝑘))                                                               (A14) 

𝐼3 =
4𝜋𝑎1𝑎2𝑎3

(𝑎2
2−𝑎3

2)(𝑎1
2−𝑎3

2)
1/2 (

𝑎2(𝑎1
2−𝑎3

2)
1/2

𝑎1𝑎3
− 𝐸(𝜃, 𝑘))                                                        (A15) 

Where  

𝐹(𝜃, 𝑘) = ∫
d𝑤

(1−𝑘2 sin2𝑤)1/2

𝜃

0
                                                                                       (A16) 

𝐸(𝜃, 𝑘) = (1 − 𝑘2 sin2𝑤)1/2d𝑤                                                                              (A17) 
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𝜃 = sin−1 (1 −
𝑎3
2

𝑎1
2)
1/2

                                                                                               (A18) 

𝑘 = (
(𝑎1
2−𝑎2

2)

(𝑎1
2−𝑎3

3)
)
1/2

                                                                                                        (A19) 

Here 𝐹 and 𝐸 is the incomplete elliptic integrals of the first and second kind, respectively. 

The definition of 𝜃 in 𝐹 can be found in Figure A1.  

                      

Figure A1 The definition of 𝜽 in 𝑭. 𝒂𝟏 , 𝒂𝟐, 𝒂𝟑 is the semi-axis of ellipsoid and  𝒂𝟏 >
𝒂𝟐 > 𝒂𝟑.   
 

Among 𝐼𝑖 and 𝐼𝑖𝑗  we have relations  

𝐼1 + 𝐼2 + 𝐼3 = 4𝜋                                                                                                       (A20) 

3𝐼11 + 𝐼12 + 𝐼13 = 4𝜋/𝑎1
2                                                                                         (A21) 

3𝑎1
2𝐼11 + 𝑎2

2𝐼12 + 𝑎3
2𝐼13 = 3𝐼1                                                                                  (A22) 

𝐼12 = (𝐼2 − 𝐼1)/(𝑎1
2 − 𝑎2

2)                                                                                         (A23) 

Mura 1987 provides the formulation for the exterior elastic strain due to eigenstrain  

𝜀𝑖𝑗(𝑋) = 𝐷𝑖𝑗𝑘𝑙(𝑋)𝜀𝑘𝑙
∗       for 𝑋 ∈ 𝐷 − Ω                                                                    (A24) 

Where 𝐷𝑖𝑗𝑘𝑙(𝑋) is the function of the location vector 𝑋 relative to the inclusion center;  

𝐷𝑖𝑗𝑘𝑙(𝑋) are calculated as follows: 
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8𝜋(1 − 𝑣)𝐷𝑖𝑗𝑘𝑙(𝑋) = 8𝜋(1 − 𝑣)𝑆𝑖𝑗𝑘𝑙(𝜆) + 2𝑣𝛿𝑖𝑗𝑋𝑖𝐼𝐼,𝑗(𝜆) + (1 − 𝑣) (𝛿𝑖𝑙𝑋𝑘𝐼𝐾,𝑗(𝜆) + 𝛿𝑗𝑙𝑋𝑘𝐼𝐾,𝑖(𝜆) +

𝛿𝑖𝑘𝑋𝑙𝐼𝐿,𝑗(𝜆) + 𝛿𝑗𝑘𝑋𝑙𝐼𝐿,𝑖(𝜆)) − 𝛿𝑖𝑗𝑋𝑘(𝐼𝐾(𝜆) − 𝑎1
2𝐼𝐾𝐼(𝜆)),𝑙 − (𝛿𝑖𝑘𝑋𝑗 + 𝛿𝑗𝑘𝑋𝑖) (𝐼𝑗

(𝜆) − 𝑎1
2𝐼𝐼𝑗(𝜆))

,𝑙
−

(𝛿𝑖𝑙𝑋𝑗 + 𝛿𝑗𝑙𝑋𝑖) (𝐼𝑗(𝜆) − 𝑎1
2𝐼𝐼𝑗(𝜆))

,𝑘
− 𝑋𝑖𝑋𝑗 (𝐼𝐽(𝜆) − 𝑎1

2𝐼𝐼𝐽(𝜆))
,𝑙𝑘

                                                            (A25) 

Where 𝜆 is the largest positive root of following equations: 

𝑋1
2

𝑎1
2+𝜆
+

𝑋2
2

𝑎2
2+𝜆
+

𝑋3
2

𝑎3
2+𝜆
= 1                                                                                             (A26) 

To solve 𝐷𝑖𝑗𝑘𝑙(𝑋), the 𝐼𝑖(𝜆) and 𝐼𝑖𝑗(𝜆) and their first and second derivatives with respect 

to 𝑋𝑖 are given as:  

𝐼1(𝜆) =
4𝜋𝑎1𝑎2𝑎3

(𝑎1
2−𝑎2

2)(𝑎1
2−𝑎3

2)
1/2 (𝐹(𝜃(𝜆), 𝑘) − 𝐸(𝜃(𝜆), 𝑘))                                               (A27) 

𝐼3(𝜆) =
4𝜋𝑎1𝑎2𝑎3

(𝑎2
2−𝑎3

2)(𝑎1
2−𝑎3

2)
1/2 (

(𝑎2
2+𝜆)(𝑎1

2−𝑎3
2)
1/2

∏ (𝑎𝑘
2+𝜆)

1/2
𝑘

− 𝐸(𝜃(𝜆), 𝑘))                                      (A28) 

𝐼2(𝜆) =
4𝜋𝑎1𝑎2𝑎3

∏ (𝑎𝑘
2+𝜆)

1/2
𝑘

− 𝐼1(𝜆) − 𝐼3(𝜆)                                                                         (A29) 

𝐼𝑖𝑗(𝜆) = −
𝐼𝑖(𝜆)−𝐼𝑗(𝜆)

𝑎𝑖
2−𝑎𝑗

2   for 𝑖 ≠ 𝑗                                                                                   (A30) 

𝐼𝑖𝑖(𝜆) =
4𝜋𝑎1𝑎2𝑎3

3(𝑎𝑖
2+𝜆)∏ (𝑎𝑘

2+𝜆)
1/2

𝑘

−
∑ 𝐼𝑖𝑗(𝜆)𝑗

3
                                                                        (A31) 

𝜃 = sin−1 (
𝑎1
2−𝑎3

2

𝑎1
2+𝜆
)
1/2

                                                                                                 (A32) 

𝐼𝑖,𝑗 =
−2𝜋𝑎1𝑎2𝑎3

(𝑎𝑖
2+𝜆)∏ (𝑎𝑚

2 +𝜆)
1/2

𝑚

𝜆,𝑗                                                                                       (A33) 

𝐼𝑖𝑗,𝑗 =
−2𝜋𝑎1𝑎2𝑎3

(𝑎𝑖
2+𝜆)(𝑎𝑗

2+𝜆)∏ (𝑎𝑚
2 +𝜆)

1/2
𝑚

𝜆,𝑘                                                                           (A34) 

𝐼𝑖,𝑗𝑘 =
−2𝜋𝑎1𝑎2𝑎3

(𝑎𝑖
2+𝜆)∏ (𝑎𝑚

2 +𝜆)
1/2

𝑚

(𝜆,𝑗𝑘 − (
1

𝑎𝑖
2+𝜆
+
1

2
∑

1

𝑎𝑛
2+𝜆𝑛 ) 𝜆,𝑗𝜆,𝑘)                                  (A35) 

𝐼𝑖𝑗,𝑘𝑙 =
−2𝜋𝑎1𝑎2𝑎3

(𝑎𝑖
2+𝜆)(𝑎𝑗

2+𝜆)∏ (𝑎𝑚
2 +𝜆)

1/2
𝑚

(𝜆,𝑘𝑙 − (
1

𝑎𝑖
2+𝜆
+

1

𝑎𝑗
2+𝜆
+
1

2
∑

1

𝑎𝑛
2+𝜆𝑛 ) 𝜆,𝑘𝜆,𝑙)            (A36) 
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We have the first and second order derivatives of 𝜆(𝑋):  

𝜆,𝑖 =
2𝑋𝑖

𝑎𝐼
2+𝜆

𝑋𝑖𝑋𝑗

(𝑎𝐽
2+𝜆)

2⁄  , 𝜆,𝑖𝑗 =
𝐹𝑖,𝑗−𝜆,𝑖𝐶,𝑗

𝐶
                                                                          (A37) 

Where  

𝐹𝑖 =
2𝑋𝑖

𝑎𝐼
2+𝜆

, 𝐶 =
𝑋𝑖𝑋𝑗

(𝑎𝐼
2+𝜆)

2                                                                                              (A38) 

The 𝐷𝑖𝑗𝑘𝑙(𝑋) can be calculated by submitting the Equation A27~A37 into Equation A25. 

The displacement field 𝑢𝑖(𝑋) can be obtained by:  

𝑢𝑖(𝑋) =
1

8𝜋(1−𝑣)
(𝜓,𝑗𝑙𝑖𝜀𝑗𝑙

∗ − 2𝑣𝜀𝑚𝑚
∗ 𝜙,𝑖 − 4(1 − 𝑣)𝜀𝑖𝑙

∗𝜙,𝑙)                                         (A39) 

Two integrals 𝜙 and 𝜓 are given as:  

𝜙(𝑋) = ∫ |𝑋 − 𝑋′|d𝑋′
Ω

                                                                                            (A40) 

𝜓(𝑋) = ∫
1

|𝑋−𝑋′|
d𝑋′

Ω
                                                                                                (A41) 

Where Ω is the inclusion region; The function 𝜙 and 𝜓,𝑖  can be expressed in terms of 

𝐼𝑖(𝜆) and 𝐼𝑖𝑗(𝜆),  

𝜙 =
1

2
(𝐼(𝜆) − 𝑋𝑛𝑋𝑛𝐼𝑁(𝜆))                                                                                        (A42) 

𝜓,𝑖 =
1

2
𝑋𝑖 (𝐼(𝜆) − 𝑋𝑛𝑋𝑛𝐼𝑁(𝜆) − 𝑎𝐼

2(𝐼𝐼(𝜆) − 𝑋𝑛𝑋𝑛𝐼𝑙𝑁(𝜆)))                                     (A43) 

Where  

𝐼 =
4𝜋𝑎1𝑎2𝑎3𝐹(𝜃(𝜆),𝑘)

(𝑎1
2−𝑎3

2)
1/2                                                                                                    (A44) 

Finally, we express 𝜙,𝑖 and 𝜓,𝑖𝑗𝑙 in terms of 𝐼𝑖, 𝐼𝑖𝑗 and their first-order derivatives 

𝜙,𝑖 = −𝑋𝑖𝐼𝑙(𝜆)                                                                                                           (A45) 

𝜓,𝑖𝑗𝑙 = −𝛿𝑖𝑗𝑋𝑙(𝐼𝐿(𝜆) − 𝑎𝐼
2𝐼𝐼𝐿(𝜆)) − 𝑋𝑖𝑋𝑗 (𝐼𝐽(𝜆) − 𝑎𝐼

2𝐼𝐼𝐽(𝜆))
,𝑙
− (𝛿𝑖𝑙𝑋𝑗 + 𝛿𝑗𝑙𝑋𝑖) (𝐼𝐽(𝜆) − 𝑎𝐼

2𝐼𝐼𝐽(𝜆))               (A46) 
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The displacement fields 𝑢𝑖(𝑋) is calculated by substituting Equations A27~A37 and A46 

into A39.  

In our case, the elastic moduli of inclusion and matrix are different, for example, 

𝐶𝑖𝑗𝑘𝑙
∗  within inclusion Ω and 𝐶𝑖𝑗𝑘𝑙 with matrix 𝐷 − Ω. Eshelby 1957 suggested that the 

induced stress field due to an ellipsoidal inhomogeneity can be calculated by an inclusion 

problem when the eigenstrain is chosen properly. Such fictitious eigenstrain 𝜀𝑚𝑛
∗  can be 

calculated as (Meng, Heltsley et al. 2012): 

(∆𝐶𝑖𝑗𝑘𝑙𝑆𝑘𝑙𝑚𝑛 − 𝐶𝑖𝑗𝑘𝑙)𝜀𝑚𝑛
∗ = −∆𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

∞ − 𝐶𝑖𝑗𝑘𝑙
∗ 𝜀𝑘𝑙

𝑃                                                   (A47) 

Where ∆𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙 − 𝐶𝑖𝑗𝑘𝑙
∗  and remote strain 𝜀𝑖𝑗

∞ and remote stress 𝜎𝑖𝑗
∞  and their 

relationship :  

𝜎𝑖𝑗
∞ = 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗

∞                                                                                                             (A48) 

𝜀𝑘𝑙
𝑃  is the initial eigenstrain of inhomogeneity. The stress and strain fields are given as:  

𝜎𝑖𝑗(𝑋) = {
𝜎𝑖𝑗
∞ + 𝐶𝑖𝑗𝑘𝑙(𝑆𝑘𝑙𝑚𝑛𝜀𝑚𝑛

∗ − 𝜀𝑚𝑛
∗ ),   interior

𝜎𝑖𝑗
∞ + 𝐶𝑖𝑗𝑘𝑙𝐷𝑘𝑙𝑚𝑛(𝑋)𝜀𝑚𝑛

∗ ,            exterior
                                                 (A49) 

𝜀𝑖𝑗(𝑋) = {
𝜀𝑖𝑗
∞ + 𝑆𝑘𝑙𝑚𝑛𝜀𝑚𝑛

∗ ,                 interior

𝜀𝑖𝑗
∞ + 𝐷𝑘𝑙𝑚𝑛(𝑋)𝜀𝑚𝑛

∗ ,          exterior
                                                           (A50) 

The first step is to construct the stiffness matrix 𝐶𝑖𝑗𝑘𝑙 and 𝐶𝑖𝑗𝑘𝑙
∗  for given elastic moduli 

and Poisson ratio. We use Equation A48 to calculate 𝜎𝑖𝑗
∞ or 𝜀𝑖𝑗

∞, respectively. For example, 

remote strain 𝜀𝑖𝑗
∞ is calculated by 𝜎𝑖𝑗

∞/𝐶𝑖𝑗𝑘𝑙 where 𝜎𝑖𝑗
∞ could be considered as applied far-

field stress. In the next step, Equations A6~A23 are applied to construct the Eshelby 

tensor 𝑆𝑖𝑗𝑘𝑙 for a given ellipsoid (Poisson’s ratio 𝑣 and three semi-axis of ellipsoid 

𝑎1, 𝑎2 and 𝑎3). In the next step, the fictitious eigenstrain 𝜀𝑚𝑛
∗  is calculated by Equation 

A47 with 𝐶𝑖𝑗𝑘𝑙 and 𝐶𝑖𝑗𝑘𝑙
∗ , 𝜀𝑖𝑗

∞ . In the next step, the tensor 𝐷𝑖𝑗𝑘𝑙(𝑋) is constructed by 
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Equation A25~A38 with the given modulus of matrix, semi-axis and the coordinate of 

observer points. 𝑋𝑖. In the final step, the external strain and stress can be calculated by 

Equation A49 and A50. In general, the inhomogeneity problem (with different matrix and 

inclusion materials) can be solved by Equations A1~A50. The modulus and Poisson ratio 

of the inclusion is set as zero for representing the crack. Therefore, this is the limit of 

inhomogeneity problem. As for crack, 𝐶𝑖𝑗𝑘𝑙
∗  is zero and then submit it to Equation A47 

and fictitious eigenstrain 𝜀𝑚𝑛
∗  is calculated. So, the external stress field is given by 

Equation A49 and A50.  

In this method, cracks is regarded as the limits of Eshelby inclusions and the elastic 

moduli inside the inclusion are set to zero. So, the inclusion is actually a hole and the 

strains and displacement on the boundary of the hole are useful for some problems. The 

crack is formed by collapsing one of the semi-axes of the ellipsoid to zero so that the 

crack opening displacement may be deduced from the displacement on the surface of the 

ellipsoid. However, it appears that the displacement filed of crack represented by an 

empty inclusion is not accurate; the issues occurs in the calculation of 𝐷𝑖𝑗𝑘𝑙  using 

Equation A25. Also, during the calculation of 𝐷𝑖𝑗𝑘𝑙, the elliptical integrals A16 and A17 

require much computation time. Therefore, the parallel algorithm is needed to be 

considered in future work. The pore pressure filed within the surrounding zone of a 

fracture is calculated by (Warpinski, Wolhart et al. 2004). 
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Appendix B 

Here we give a detail describe of the flowchart (Figure B1) of our fully coupled thermo-

hydro-mechanical-seismic (THMS) finite element model with 3D discrete fracture 

network.  

 

Figure B1 The flowchart of the integrated model. 

 

In box 1, the focus of reservoir characterization is to define the mesh size and initial time 

step, the stochastic distribution of reservoir properties (e.g., modulus and permeability). 

In most cases, the mesh size and initial time step will be adjusted based on simulation 

results. For example, the time step will be reduced to capture the transition between 

aseismic and seismic. The time step is also reduced to possibly reflect the fracture 
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propagation. The best time step could be identified by try and error method. The mesh 

size in FEM need to be carefully addressed because our fracture network is embedded on 

mesh of FEM. However, we cannot dramatically refine the FEM mesh because our 

workstation cannot sustain it.  

In box 2, the reservoir parameters are prepared in box 1. So those parameters are 

submitted into THM finite element method (Equation 2.9).  

In box 3, core and outcrop from field project are examined. What is the foliation/micro-

fracture distribution? In most cases, we do not know the distribution of foliation/micro-

fracture at field scale. For example, the information of foliation/micro-fracture in Figure 

2.1 is commonly available in lab. It seems that the density of foliation/micro-fracture is 

generally high, and those foliation/micro-fractures need to be considered into FEM. The 

major fracture can be obtained by the geophysical survey in small scale project (e.g., 

Collab). But other parameters of major fracture (e.g., aperture) is not available and is 

assumed to follow certain stochastic distribution. In large scale project (e.g., Utah 

FORGE), the fracture orientation in the surrounding zone of wellbore can be measured 

by imaging logs. Other parameters (e.g., aperture, fracture radius) are assumed to follow 

certain type of stochastic distribution.  

In box 4, the geometry of major fracture and micro-fracture are defined by combining the 

data from imaging log, core and outcrop and stochastic distribution of fracture properties 

(e.g., aperture and location). Here the distribution of micro-fracture follows the power 

law (Pareto distribution, PDF = 𝑎 ∙ 𝑘𝑎/𝑥𝑎+1  and 𝑎 and 𝑘  are predefined based on 

estimation from box 3). Therefore, the distribution of micro-fracture population are 

defined in this box. The aperture of major fracture is followed the lognormal distribution.  
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In box 5, we use Equation 2.10 to calculate the equivalent permeability and solve the 

FEM model use Equation 2.9.  

In box 6, pressure, stress distribution and temperature in FEM can be obtained based on 

the results from Equation 2.9.  

In box 7, major fracture pressure, stress on fracture are calculated by interpolating the 

stress and pressure distribution on the finite elements.  

In box 8, the induced stress field due to a fracture is measured by Eshelby solution 

(Appendix A). The total induced stress filed is obtained by superposition principle. The 

updated stress tensor is obtained by the sum of initial stress tensor and total induced stress 

field.  

In box 9, the normal and shear stress of fracture are recalculated based on the updated 

stress tensor.  

In box 10, check the fracture slippage.  

If fracture is not slipped based on the failure criteria (Equation 2.11 and 2.12) and fracture 

deformation is not considered.  

If fracture is slipped based on the failure criteria (Equation 2.11 and 2.12) and the slip 

rate (slip distance/time step) or slip distance (Equation 2.13) is not exceed the threshold 

slip rate (from Equation 2.28) and threshold slip distance (from Equation 2.30), 

respectively. Therefore, there is aseismic slip occurred on this fracture. Fracture aperture 

is updated by using Equation 2.14.  

If fracture is slipped based on the failure criteria (Equation 2.11 and 2.12) and the slip 

rate (slip distance/time step) or slip distance (Equation 2.13) is exceed the threshold slip 

rate (from Equation 2.28) and threshold slip distance (from Equation 2.30), respectively. 
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Therefore, there is seismic slip occurred on this fracture. Fracture aperture is updated by 

using Equation 2.14. The number and magnitude of MEQs is constrained by using 

Equation 2.31~2.39. The CFF of each micro-fracture is calculated. The large CFF of 

micro-fracture, the larger magnitude of event occurs on this micro-fracture. Aseismic 

events occur on others failure micro-fractures.  

In box 11, the distribution of MEQs is obtained in box 10. Fracture propagation is checked 

by using Equation 2.21. The equivalent stress intensity factor 𝐾𝑒𝑞  is calculated using 

Equation 2.21.   

The properties of newly inserted penny fracture are assumed as the major fracture. Update 

the fracture network geometry for next time step.  
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Appendix C 

A fracture surface is constructed from the scanning points using triangular mech. Previous 

works only calculate the JRC of the entire surface. However, the distribution of JRC on 

a fracture surface has a large influence on seismic patterns. In this appendix, a graph 

partition method is introduced to divide a surface into multiple patches. In this meshed, 

the fracture surface can be considered a graph and the fracture surface is subdivided into 

multiple patches by using the graph partition method and JRC values are calculated on 

each patch. Therefore, JRC is calculated locally. Graphs are often defined geometrically. 

Figure C1 shows a mesh of elements in 2D Euclidean space. The graph partitioning 

method partitions a d-dimensional mesh into multiple patches by finding a suitable sphere 

in d-space and dividing the vertices of the triangles mesh zone into those interior and 

exterior to the sphere. The cutting sphere is found by a randomized algorithm that 

involves a conformal mapping of the points on the surface of a sphere in d+1-space.  

 

Figure C1 2D triangle mesh and points. 
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This graphs method generally involves six steps. Here a 2D example is introduced to 

illustrate how this method works.  

Step 1. Project Up. Project the mesh points 𝑝 stereographically from ℝ𝑑 to the unit sphere 

centered at the origin in ℝ𝑑+1. In the case of this example, 𝑑 is 2. A point 𝑝 ∈ ℝ2 is 

projected to the sphere centered at the origin in ℝ3 along the line through 𝑝 and the (z) 

north direction [0 0 1] (Figure C2). 

 

 

Figure C2 Projected mesh points. The large dot is the center points. 

 

Step 2. Find CenterPoint. Computer a CenterPoint of the projected points in ℝ𝑑+1. This 

is a special point in the interior of the unit sphere. A CenterPoint of a given set of points 

is a point such that every hyperplane through the CenterPoint divides the given points 

approximately evenly (Figure C2). 

Step 3. Conformal map: rotate and dilate. Move the projected points in ℝ𝑑+1 . The surface 

of the unit sphere in two steps. First, rotate the projected points about the origin in ℝ𝑑+1 

so that the CenterPoint becomes a point (0,0, r) on the 𝑑 + 1-st axis. Second, dilate the 
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points on the surface of the sphere so that the CenterPoint becomes the origin. The dilation 

can be described as a scaling in ℝ𝑑: project the rotated points stereographically down to 

ℝ𝑑  ; scale the points in ℝ𝑑  by a factor of √(1 − 𝑟)/(1 + 𝑟) ; and project the scaled points 

up to the unit sphere in ℝ𝑑+1 again (Figure C3). 

 

Figure C3 Conformally mapped points, with separating great circle. The CenterPoint is now at the 

origin. 

 

Step 4. Find great circle. Choose a random great circle (i.e., 𝑑-dimensional unit sphere) 

on the unit sphere in ℝ𝑑+1 (Figure C3).  

Step 5. Unmap and project Down. Transform the great circle to a circle in ℝ𝑑 by undoing 

the dilation, rotation, and stereographic projection (Figure C4). 
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Figure C4 The separating circle projected back to the plane.  

Step 6. Convert circle to separator. The vertex separator 𝐶 is the vertices whose disks in 

the neighborhood representation (in ℝ𝑑) either (i) intersect the separating circle, or (ii) 

are smaller than the separating circle and would intersect it if magnified by a factor of 𝛼. 

The two sets 𝐴 and 𝐵 are the remaining vertices whose disks lie inside and outside the 

circle respectively (Figure C5).  
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Figure C5 The edge separator induced by the separating circle. A vertex separator can also be 

extracted.   
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Appendix D 

In this appendix, the MATLAB code for generating anisotropic surface is given as:    

Main.m  
% input: sigma, RMS of height of points on surface. Unit: m 

%        H1, Hurst exponent in x direction 

%        H2, Hurst exponent in Y direction 

%        N, the number of points lay on an edge of surface is 2^(N+1)+1. 

%        Lx, the length of edge of surface (square shape), unit: m 

% output: F, the elements of meshed dimension anisotropic surface 

%         V, the nodes of meshed dimension anisotropic surface, unit: m 

%         nV, number of nodes of meshed dimension anisotropic surface 

%         Z, the asperity of points on surface, unit: m 

%         PixelWidth, samping interval or resolution, unit: m 

%         Tapir, adjancy matrix for graph partition 

 
sigma  = 2e-3; % m, RMS 

H1     = 0.80; % Hurst exponent in x direction.  

H2     = 0.60; % Hurst exponent in y direction. 

N      = 9;     % the number of points lay on an edge of surface is 2^(N+1)+1. 

Lx     = 0.5; % length of surface, unit: m 

[F,V,nV,Z,PixelWidth,Tapir] = Anisurfmatrix(N,H1,H2,Lx,sigma); 

 
function [F,V,nV,Z,PixelWidth,Tapir] = Anisurfmatrix(N,H1,H2,Lx,sigma) 

% generate a dimension anisotropic surface (meshed surface) 

% input: H1, Hurst exponent in x direction 

%        H2, Hurst exponent in Y direction 

%        N, the number of points lay on an edge of surface is 2^(N+1)+1. 

%        Lx, the length of edge of surface (square shape), unit: m 

%        sigma, RMS of height of points on surface. Unit: m 

% output: F, the elements of meshed dimension anisotropic surface 

%         V, the nodes of meshed dimension anisotropic surface, unit: m 

%         nV, number of nodes of meshed dimension anisotropic surface 

%         Z, the asperity of points on surface, unit: m 

%         PixelWidth, sampling interval or resolution, unit: m 

%         Tapir, adjancy matrix for graph partition 

  

Z = Synthetic2DFault(N,H1,H2); % generate a dimensionless anisotropic surface 

  

m = length(Z); 

n = length(Z); 

x = linspace(0,Lx,m); 

y = linspace(0,Lx,n); 

PixelWidth = Lx/(m-1); 

[X,Y] = meshgrid(x,y); 

Z = Z(:); 

error = 1e-5; 

scalefactor = 10; 

id = 1; 

temp = 1e10; 

  

% re-scale the dimension anisotropic surface to enfore the RMS. 

while abs(temp) > error 

     Z_temp = rescale(Z,-scalefactor,scalefactor); 



218 

     temp = rms(Z_temp)-sigma;      % or RMS(Z) = sqrt(mean(Z.^2));    

     if temp>0 

         scalefactor = scalefactor/2; 

     else 

         scalefactor = scalefactor + error*2; 

     end 

     id = id + 1; 

     if id>1000 

         break 

     end 

end 

% 

Z = Z_temp; 

Z = reshape(Z,m,n); 

V = [X(:) Y(:) Z(:)]; 

nV = size(V,1); 

% from point cloud to triangle mesh 

F = delaunay(V(:,1),V(:,2)); %nodes(:,3) are elevation 

% % partition mesh 

% % adjancy matrix 

edges = [F(:,1) F(:,2) ; F(:,2) F(:,3); F(:,3) F(:,1); ]; 

edges = sort( edges,2 ); 

edges = unique(edges,'rows'); 

edges = [edges(:,1) edges(:,2); edges(:,2) edges(:,1);(1:nV)' (1:nV)']; 

values = ones(size(edges,1),1); 

Tapir = sparse(edges(:,1),edges(:,2),values); % adjancey matrix 

end 

 
function RoughSurf = Synthetic2DFault(N,H1,H2) 

% generate a dimensionless anisotropic surface 

% input: H1, Hurst exponent in x direction 

%        H2, Hurst exponent in Y direction 

%        N, the number of points lie on an edge of surface 

% output: RoughSurf, dimensionless anisotropic surface, RoughSurf(2^N+1,2^N+1). 

  

l1 = 1/H1;  

l2 = 1/H2; 

x = (-2*2^N:2:2*2^N)/(2^(N+1)); 

x(2^N+1) = 1/2^N; 

y = (-2*2^N:2:2*2^N)/(2^(N+1)); 

y(2^N+1) = 1/2^N; 

[X,Y] = meshgrid(x,y); % mesh grid 

% 

rho = sqrt(abs(X).^(2/l1)+abs(Y).^(2/l2)); 

phi = rho.^(1 + (l1 + l2)/2); % scaled anisotropic matrix 

  

Z=randn(2*2^N+1,2*2^N+1);   % random Gaussian noise 

W=fftshift(fft2(Z))./phi;   % Gaussian noise is decomposed by Fourier transform 

clear Z 

T=real(ifft2(ifftshift(W))); % inverse Fourier transform is carried out to populate each coordinate of 

surface. 

RoughSurf = T -T(2^N+1,2^N+1); 

End 
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Appendix E 

Here we give a detail describe of the flowchart (Figure E1) of JRC-Hurst exponent 

relation and its application in our fully coupled thermo-hydro-mechanical-seismic 

(THMS) finite element model with 3D discrete fracture network.  

 

Figure E1 Flowchart of the integrated model. 

 

In box 1, the range of Hurst exponent 𝐻𝑥 and 𝐻𝑦 is from 0.5 to 1.0 and 𝑅𝑀𝑆 of height of 

points on surface is fixed at 0.002 m.  

In box 2, the 𝐻𝑥 and 𝐻𝑦 and RMS are submitted into extend Fourier transform method 

(Chapter 5.2) to synthetic anisotropic surface.  
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In box 3, the JRC of entire synthetic anisotropic surface is calculated by JRC-Z2 

relationship. 

JRC=51.16∙(Z2)
0.531 − 11.44                                                                                     (E1) 

We repeat the box 1 to box 3 with changing the value of 𝐻𝑥 and 𝐻𝑦 . RMS is fixed. Now 

multiple pairs of JRC and Hurst exponents are generated.  

In box 4, the JRC-H relationship is formed by fitting the multiple pairs of JRC and Hurst 

exponents.  

JRC(𝐻𝑥, 𝐻𝑦) = 61.32 − 50.73𝐻𝑥 − 50.73𝐻𝑦 + 68.01𝐻𝑥
2 − 95.81𝐻𝑥𝐻𝑦 + 68.01𝐻𝑦

2        (E2) 

In box 5.1 and 5.2, measure 𝐻 of laboratory rocks (~10 cm scale) at different fracture set. 

It is supposed that there are many rock samples from each set. For example, Figure E2 is 

one of laboratory rock sample from Utah FORGE site. The Hurst exponent is 0.61 based 

on Figure E2c.  

 

Figure E2 Rock sample in laboratory scale. The Hurst exponent is calculated by PSD analysis.  

 

In box 6.1 and 6.2, we use Equation E2 from box 4 to calculate JRC of the laboratory 

rock (e.g., Figure E2). Therefore, the JRC of the laboratory rock (e.g., Figure E2) is 16.1 

based on the Equation E2 from box 4. It is supposed that each fracture site may have 
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many rock samples (e.g., 5) and each rock sample have a JRC value. So, stochastic 

distribution (e.g., Lognormal) is applied to fix those JRC values. The mean and std of the 

Lognormal distribution could be treated as the JRC distribution of this fracture set at ~10 

cm scale.  

In box 7, assume individual fracture in the same set following the same JRC distribution 

(Lognormal) at ~10 cm scale. Such Lognormal distribution is derived in box 6.1 and 6.2. 

In box 8, upscaling he JRC of each fracture (~100 m). Here we use approach from Barton 

1983.  

JRC𝑛 = JRC0 (
𝐿𝑛

𝐿0
)
−0.02JRC0

                                                                                                        (E3) 

JCS𝑛 = JCS0 (
𝐿𝑛

𝐿0
)
−0.03JRC0

                                                                                                        (E4) 

Where JRC𝑛 is the JRC value of fracture at length scale 𝐿𝑛. JRC0 is the JRC value of 

fracture at length scale 𝐿0 (~10 cm).  

In box 8, we submit the fracture with JRC into the THMS with a dynamic 3D fracture 

network to calculate the stress, pressure, temperature and fracture deformation.  
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Appendix F 

In general, fracture rupture can be simulated by spring-slider system. Further, the rate-

state friction law can be included in spring-slide system. In this model, fracture or even 

large-scale fault could be represented by a 1D slider. In a one-dimensional spring-slider 

system, the Newtonian force balance governing motion is defined as:  

𝑀𝑢̈ = 𝐾𝑠(𝑢𝑙𝑝 − 𝑢) − 𝜇𝜎𝑛                                                                                            (F1) 

Where 𝑢𝑙𝑝 is the displacement of a load point, 𝑢 is the displacement of the slider and 𝜇 is 

the friction coefficient between the slider and the surface; 𝑀 is mass per unit area at 

facture depth (kg/m2); 𝐾𝑠 is fracture shear stiffness. The evolution law of state variable 

𝜃 is defined as:  

d𝜃

d𝑡
= 1 −

𝑉𝜃

𝐷𝑐
                                                                                                                   (F2) 

Where 𝑉 is slip velocity. Rate and state friction law is defined as:  

𝜇 = 𝜇0 + 𝑎 ln (
𝑉

𝑉0
) + 𝑏 ln

𝑉0𝜃

𝐷𝑐
                                                                                        (F3) 

Here, the initial displacement is 𝑢𝑖𝑛𝑖  and velocity 𝑉𝑖𝑛𝑖. The solution of Equation F1 is 

given as  

𝑢(𝑡) =  (𝑢𝑖𝑛𝑖 − 𝐹) cos(𝜔𝑡) +
𝑉𝑖𝑛𝑖

𝜔
sin(𝜔𝑡) + 𝐹                                                          (F4) 

Where 𝜔 = √𝐾𝑠 𝑀⁄  is angular velocity and 𝐹 = 𝑢𝑙𝑝 − 𝜇𝜎𝑛/𝐾𝑠. The solution Equation 

F4 can be discretized in time ∆𝑡 by updating 𝑢 and 𝑉 in each time step as 

𝑢𝑖+1 = [𝑢𝑖 − (𝑢𝑙𝑝
𝑖+1 − 𝜇𝑖+1𝜎𝑛/𝐾𝑠)] cos(𝜔∆𝑡) +

𝑉𝑖

𝜔
sin(𝜔∆𝑡) + (𝑢𝑙𝑝

𝑖+1 − 𝜇𝑖+1𝜎𝑛/𝐾𝑠)         (F5) 

The acceleration between time steps 𝑖 and 𝑖 + 1/2 is:  

𝑎 =
𝑉𝑖+1/2−𝑉𝑖

∆𝑡/2
                                                                                                                 (F6) 
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Where 𝑉𝑖+1/2 = (𝑢𝑖+1 − 𝑢𝑖) ∆𝑡⁄ . Thus, the velocity at time steps 𝑖 + 1 is given as:  

𝑉𝑖+1 = 𝑉𝑖 + 𝑎∆𝑡 = 2
𝑢𝑖+1−𝑢𝑖

∆𝑡
− 𝑉𝑖                                                                              (F7) 

The evolution law of state variable 𝜃 can be discretize as:  

𝜃𝑖+1 = 𝜃𝑖 + (1 −
𝑉𝑖+1𝜃𝑖

𝐷𝑐
) ∆𝑡                                                                                        (F8) 

Rate and state friction can be discretized as:  

𝜇𝑖+1 = 𝜇0 + 𝑎ln (
𝑉𝑖+1

𝑉0
) + 𝑏ln (

𝑉0𝜃
𝑖+1

𝐷𝑐
)                                                                         (F9) 

The Equation F8, F9, F5 and F7 are coupled and need be solved by Newton-Raphson 

method until the velocity 𝑉𝑖+1 converges. The procedure of this approach could be 

followed:  

Step 1: define the initial friction using Equation F9 with 𝑖 = 0. Thus, the initial friction 

𝜇1 = 𝜇0 + 𝑎ln (
𝑉1

𝑉0
) + 𝑏ln (

𝑉0𝜃
1

𝐷𝑐
) = 𝜇0 + 𝑎ln (

𝑉1

𝑉0
) + 𝑏ln (

𝑉0𝜃
1

𝐷𝑐
). 

Here, 𝜇0, 𝑎, 𝑏, 𝑉0, 𝑉
1, 𝐷𝑐 and 𝜃1 are all predefined.  

Step 2: calculate the displacement of an initial load point: 𝑋𝑖 = 𝜇
1𝜎𝑛/𝐾𝑠.  As for a micro-

fracture, the load point is itself because micro-fracture is treated as mass point. For a 

major fracture. The load points are the scanned points on the surface. The mechanical 

interaction between the points are not considered.  

Step 3: The displacement of load point at time step 𝑖 + 1 : 𝑋𝑖+1 = 𝑋𝑖 + ∆𝑡 ∙ 𝑉𝑙 

Step 4: Use F8 to calculate the state variable 𝜃𝑖+1 

Step 5: With Equation F9 and 𝜃𝑖+1 and the current slip rate 𝑉𝑖+1  calculate the 𝜇𝑖+1.  

Step 6: With Equation F5, 𝑉𝑖+1, 𝜇𝑖+1  calculate the displacement 𝑢𝑖+1.  

Step 7: Update the current slip rate 𝑉𝑖+1 using Equation F7.  

Step 8: Recalculate the current slip rate 𝑉𝑖+1 using Equation F9, F5 and F7 
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Step 9: If the current slip rate 𝑉𝑖+1 during the iteration meets the convergence criterion 

 ((abs (𝑉𝑖+1 of previous iteration /𝑉𝑖+1 of current iteration)-1) < 1x10-7). The iteration 

has converged. 

Step 10: Start next time step. The input parameters for next time step are friction 

coefficient 𝜇𝑖+1, and slip rate 𝑉𝑖+1 and state variable 𝜃𝑖+1 and displacement of load point 

𝑋𝑖+1.  

 

 


