
UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

 

 

FULL WAVE-EQUATION BASED PASSIVE SEISMIC IMAGING AND 

MULTISPECTRAL SEISMIC GEOMETRIC ATTRIBUTES 

 

 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

By 

 

BIN LYU 

Norman, Oklahoma 

2020  



 

 

 

FULL WAVE-EQUATION BASED PASSIVE SEISMIC IMAGING AND 

MULTISPECTRAL SEISMIC GEOMETRIC ATTRIBUTES 

 

 

A DISSERTATION APPROVED FOR THE 

SCHOOL OF GEOSCIENCES 

 

 

 

 

 

BY THE COMMITTEE CONSISTING OF 

 

 

Dr. Kurt J. Marfurt, Chair 

 

 

Dr. Xingru Wu 

 

 

Dr. Nori Nakata  

 

 

Dr. Michael Behm 

 

 

Dr. Heather Bedle 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by BIN LYU 2020 

All Rights Reserved.



iv 

 

ACKNOWLEDGEMENTS 

     My PhD journey would not have been possible without the support from my advisor, 

my committee members, my family, colleagues, and friends. 

     I would like to express my deepest appreciation to Dr. Kurt Marfurt, who is my PhD 

advisor and the committee chair. Without his support, my PhD career would be impossible. 

Dr. Marfurt has been always supportive, encouraging, and patient for my research. I really 

appreciate the opportunity to be advised by Dr. Marfurt, not only for his profound 

knowledge in seismic exploration, but also his passion for research, his humor, and his 

optimistic spirit. It is my great honor to be his student, and he will always be an idol for 

my future life. 

     I would like to show my greatest gratitude to my committee members: Dr. Nori Nakata, 

Dr. Xingru Wu, Dr. Michael Behm, and Dr. Heather Bedle for their guidance, insights, and 

encouragement. I will thank Dr. Nakata for the cooperation on the research and publication 

of passive seismic imaging in Chapter 2. I would like to thank Dr. Wu for his insightful 

suggestion for my PhD study and career development. I will thank Dr. Behm for the support 

of my PhD research and insights of seismic processing. I would like to thank Dr. Bedle for 

her insightful knowledge of seismic attributes. It is my great honor to have them on my 

committee. 

     I want to show my great thanks to the support and collaboration from my current 

teammates in the AASPI consortium: Thang Ha, Saurabh Sinha, David Lubo Robles, 

Karelia LaMarca-Molina, Carl Buist, Alexandro Vera-Arroyo, and former teammates: Jie 

Qi, Fangyu Li, Tao Zhao, Bo Zhang, Sumit Verma, Bradley Wallet, Abdulmohsen AlAli, 

Gabriel Machado, Lennon Infante, Xuan Qi, Yuji Kim, Swetal Patel, and Rafael Pires de 



v 

 

Lima. I would like to thank my friends: Yichuan Wang, Jianjun Li, Hui Chen, Ying Hu, 

Emilio J. Torres, Raymond Ng, and Kui Zhang for support and helpful discussions. 

     I would show my great thanks to the staff of School of Geosciences: Rebecca Fay, 

Ginger Leivas, Leah Moser, Ashley Tullius, and Robert L. Turner for their help and 

supports. 

     I would like to express my deepest thanks to my family for everything they have done 

for me. Without their continued love, support, and understanding, it is impossible for me 

to finish my PhD journey. I would like to express my special thanks to my wife Yanju 

Chen. During my PhD study and my entire life, she has always been supportive and 

encouraging.  



vi 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................... iv  

TABLE OF CONTENTS ................................................................................................... vi  

LIST OF FIGURES ........................................................................................................... ix  

ABSTRACT ...................................................................................................................... xx  

CHAPTER 1: INTRODUCTION ........................................................................................1 

CHAPTER 2: ITERATIVE PASSIVE-SOURCE LOCATION ESTIMATION AND 

VELOCITY INVERSION USING GEOMETRIC-MEAN REVERSE-TIME 

MIGRATION AND FULL-WAVEFORM INVERSION ...................................................7 

Abstract ........................................................................................................................................ 7 

Introduction .................................................................................................................................. 8 

Methodology .............................................................................................................................. 11 

Passive-source imaging using GmRTM ................................................................................ 12 

Velocity optimization using passive-source FWI .................................................................. 14 

Numerical experiments ............................................................................................................... 16 

Experiment setup ................................................................................................................... 16 

Source location estimation and velocity inversion with single source .................................. 16 

Influence of seismic noise on velocity inversion ................................................................... 18 

Influence of source distribution and density.......................................................................... 19 

Influence of receiver density ................................................................................................. 20 

Discussions ................................................................................................................................. 21 

Conclusions ................................................................................................................................ 22 

Acknowledgments ...................................................................................................................... 23 

Appendix A: Structural imaging using passive-source RTM ..................................................... 23 

References .................................................................................................................................. 25 

Chapter 2 figures ........................................................................................................................ 33 

CHAPTER 3: MULTISPECTRAL COHERENCE: WHICH DECOMPOSITION 

SHOULD WE USE?   ........................................................................................................46 



vii 

 

Abstract ...................................................................................................................................... 46 

Introduction ................................................................................................................................ 47 

Method........................................................................................................................................ 50 

Multispectral coherence workflow ........................................................................................ 50 

Seismic spectral decomposition algorithms .......................................................................... 53 

Data description .......................................................................................................................... 56 

Data conditioning ....................................................................................................................... 57 

Which spectral voices to choose in multispectral coherence?: CWT experiments .................... 58 

Coherence on maximum entropy decomposed components ...................................................... 61 

Coherence on AVT data volume ................................................................................................ 62 

Coherence on spectral probes ..................................................................................................... 62 

Conclusions ................................................................................................................................ 63 

Acknowledgements .................................................................................................................... 64 

Appendix A: Coherence computation based on the energy-ratio method .................................. 64 

Appendix B: Continuous wavelet transform (CWT) theory ...................................................... 65 

Appendix C: Optimized AVT workflow .................................................................................... 66 

Appendix D: Spectral probe theory ............................................................................................ 67 

References .................................................................................................................................. 68 

Chapter 3 figures ........................................................................................................................ 74 

CHAPTER 4: IMPROVING FAULT DELINEATION USING MAXIMUM ENTROPY 

MULTISPECTRAL COHERENCE   ................................................................................91 

Abstract ...................................................................................................................................... 91 

Introduction ................................................................................................................................ 92 

Data description .......................................................................................................................... 97 

Data conditioning ....................................................................................................................... 98 

Data-adaptive windows in coherence computation .................................................................. 100 

Pseudo fault breakpoints due to alignment of similar reflections............................................. 101 

Reflector alignment at different spectral voices ....................................................................... 102 



viii 

 

Review of multispectral coherence theory ............................................................................... 103 

The role of spectral voice selection in multispectral coherence on fault imaging .................... 104 

The role of spectral decomposition algorithm on fault imaging ............................................... 105 

Improving lateral resolution of faults in multispectral coherence ............................................ 108 

Conclusions .............................................................................................................................. 109 

Acknowledgements .................................................................................................................. 110 

References ................................................................................................................................ 111 

Chapter 4 figures ...................................................................................................................... 118 

 CHAPTER 5: MULTISPECTRAL GRADIENT STRUCTURE TENSOR DIP   .........138 

Abstract .................................................................................................................................... 138 

Introduction .............................................................................................................................. 139 

Method of multispectral GST dip computation ........................................................................ 141 

Application to the Fort Worth Basin ........................................................................................ 144 

Data description ................................................................................................................... 144 

Multispectral GST dip attributes ......................................................................................... 145 

Application to the Taranaki Basin ............................................................................................ 147 

Data description ................................................................................................................... 147 

Multispectral GST dips........................................................................................................ 148 

Conclusions .............................................................................................................................. 149 

Acknowledgements .................................................................................................................. 150 

References ................................................................................................................................ 150 

Chapter 5 figures ...................................................................................................................... 154 

 CHAPTER 6: CONCLUSIONS   ...................................................................................177 

 APPENDIX CHAPTER: TOMOGRAPHIC VELOCITY ANALYSIS AND WAVE 

EQUATION DEPTH MIGRATION IN AN OVERTHRUST TERRAIN: A CASE 

STUDY FROM THE TUHA BASIN, CHINA   .............................................................180 

 



ix 

 

LIST OF FIGURES 

Figure 2.1. Iterative passive-source estimation and velocity inversion method using 

GmRTM and passive-source FWI. ................................................................................... 33 

Figure 2.2. (a) True Marmousi velocity model. (b) Initial velocity model. ..................... 34 

Figure 2.3. GmRTM result using the initial velocity model, behaving poor focusing and 

an obvious deviation between the focusing and the true source location (red dot). ......... 35 

Figure 2.4. (a) Observed recording, (b) predicted recording using the initial velocity model, 

and (c) predicted recording using the FWI-inverted velocity model. ............................... 36 

Figure 2.5. Normalized misfit function versus iteration numbers using single source. ... 37 

Figure 2.6. FWI-inverted velocity model using only one source located at lateral position 

2.00 km and depth 2.27 km. Note that the FWI-inverted velocity recovers more detailed 

features and improves the resolution over the initial velocity model. It is also noted that the 

improvement of the right part is minor due to the poor illumination caused by the sparse 

sources............................................................................................................................... 37 

Figure 2.7. GmRTM recalculated using the FWI-inverted velocity model, providing a 

better focusing and a reduced deviation between the focusing and the true source location 

(red dot) compared to the GmRTM result using the initial velocity model (Figure 2.3). 38 

Figure 2.8. (a) Noisy passive-source recording with S/N=20 db, and (b) the corresponding 

FWI-inverted velocity model, behaving more artifacts but recovering similar velocity 

features compared to the FWI-inverted velocity using the noise-free data (Figure 2.6). (c) 

Normalized misfit function versus iteration numbers using the noisy recording, showing 

similar convergence rate but relatively larger data residual compared to the result using 

noise-free recording (Figure 2.5). ..................................................................................... 40 

Figure 2.9. (a) Noisy passive-source recording with S/N=5 db, and (b) the corresponding 

FWI-inverted velocity model. ........................................................................................... 41 

Figure 2.10. FWI-inverted velocity model using three sources located in the left part with 

lateral positions 1.200 km, 2.000 km, and 2.800 km. Note the higher resolution in the left 

part and clearer fault features in the middle part compared to the inverted velocity model 



x 

 

using only one source (Figure 2.6). However, the improvement in the right part of the 

model is still not significant. ............................................................................................. 42 

Figure 2.11. FWI-inverted velocity model using three more uniformly distributed sources 

with lateral positions 2.00 km, 4.40 km, and 6.80 km. Note the higher resolution and clearer 

features of the faults and the anticline in the middle and right part over the inverted velocity 

model shown in Figure 2.10. However, it behaves more artifacts and lower resolution in 

the left part over the one generated using three sources all located in the left part (Figure 

2.10). ................................................................................................................................. 42 

Figure 2.12. (a) FWI-inverted velocity model using 15 sources with sparse receivers, 

indicating an obvious improvement over the results using fewer sources and revealing 

much clearer features. (b) Normalized misfit function versus iteration numbers using 15 

sources, indicating faster convergence rate compared to the result using single source 

(Figure 2.5). ...................................................................................................................... 43 

Figure 2.13. FWI-inverted velocity model using 15 sources with dense receivers, behaving 

higher resolution and revealing more small-scale features over the FWI-inverted model 

using 15 sources with sparse receivers (Figure 2.12a). .................................................... 44 

Figure 2.A-1. Structural image by passive-source RTM with 15 sources using (a) the initial 

velocity model, and (b) the FWI-inverted velocity model, providing higher resolution, 

better focusing, and clearer structures. ............................................................................. 45 

Figure 3.1. A workflow showing the computation of multispectral coherence from the 

original full-bandwidth seismic data. In this paper, we evaluate the impact of alternative 

decomposition algorithms, including CWT (continuous wavelet transform) of equal-space 

and exponential-space, and maximum entropy spectral decomposition, which can 

reconstruct the original seismic data. We also evaluate the impact of several nonlinear 

decomposition algorithms, including the AVT (amplitude volume technique) and spectral 

probe, which cannot reconstruct the original data. (Figure modified from Marfurt, 2017).

........................................................................................................................................... 74 

Figure 3.2. The location of Tui3D seismic survey (orange star) and the structural style of 

the offshore Taranaki Basin, New Zealand. After King et al. (1993), Infante-Paez and 



xi 

 

Marfurt (2017), and Lubo-Robles and Marfurt (2019). The data is acquired by Veritas DGC 

Australia Pty in 2003, covering approximately 352 km2. The acquisition parameters are: 

streamer separation 150 m, source separation 75 m, bin size 12.5 m by 12.5 m, and time 

sample rate 4 ms................................................................................................................ 75 

Figure 3.3. (a) A representative vertical slice AA ,́ and (b) time slice at t=2.16 s through 

the seismic amplitude volume at the level of several incised channels (green arrows in 

Figure 3.3b). ...................................................................................................................... 76 

Figure 3.4. Coherence attribute time slice at 2.16 s computed using the original full-

bandwidth seismic data, showing strong noises, which decrease its detectability of the 

incised channels. ............................................................................................................... 77 

Figure 3.5. Coherence image computed using the SOF processed full-bandwidth seismic 

data, showing better quality with less noise compared to the coherence computed using the 

original data (Figure 3.4). ................................................................................................. 77 

Figure 3.6. (a) The normalized spectrum of SOF processed data in target area form 1.8 s 

to 2.4 s, and (b) the wavelets used in equally-spaced CWT with a constant linear increment, 

including central frequencies 10 Hz, 25 Hz, 40 Hz, 55 Hz, 70 Hz, and 85 Hz, and (c) the 

wavelets used in exponentially-spaced CWT with a constant octave bandwidth. Note that 

the lateral axis in Figure 3.6c indicates the constant exponent increment, resulting in CWT 

spectral voices with central frequencies 10 Hz, 15 Hz, 24 Hz, 36 Hz, 55 Hz, and 85 Hz. 

........................................................................................................................................... 78 

Figure 3.7. Coherence images computed using six equally-spaced CWT spectral voices 

centered at: (a) 10 Hz, (b) 25 Hz, (c) 40 Hz, (d) 55 Hz, (e) 70 Hz, and (f) 85 Hz. Note that 

the boundaries of the thicker channels are much clearer in the coherence images using the 

lower-frequency spectral voices, while the thinner channels and the geologic details inside 

the thicker channels are more highlighted using the higher-frequency components. 

Artifacts associated with acquisition footprint (red arrows in Figure 3.7a, 3.7e and 3.7f) are 

stronger in the coherence images computed from several components. The quality seen in 

Figure 3.7f for the 85 Hz component is significantly lower resulting in a coherence image 

containing less useful information over other components. ............................................. 80 



xii 

 

Figure 3.8. Multispectral coherence computed using six equally-spaced CWT spectral 

voices (Figure 3.7), providing an image with less noise (especially red circles) and clearer 

channel boundaries (especially green arrows) over the full-bandwidth coherence (Figure 

3.5). ................................................................................................................................... 81 

Figure 3.9. Coherence images computed using exponentially-spaced CWT components 

with central frequencies at: (a) 10 Hz, (b) 15 Hz, (c) 24 Hz, (d) 36 Hz, (e) 55 Hz, and (f) 

85 Hz. The observations are similar with Figure 3.7, indicating that thicker channels are 

more highlighted in lower-frequency CWT spectral voices, while the higher-frequency 

components provide much clearer images of the thinner channels and small-scale geologic 

features. Noise in the 85 Hz component coherence (Figure 3.9f) is much stronger than other 

components. ...................................................................................................................... 83 

Figure 3.10. Multispectral coherence computed using six exponentially-spaced CWT 

components (Figure 3.9). Note that it exhibits fewer artifacts and clearer channel 

boundaries (green arrows) over the multispectral coherence using the equally-spaced CWT 

components (Figure 3.8). .................................................................................................. 84 

Figure 3.11. Coherence images computed using maximum entropy spectral voice 

components at: (a) 10 Hz, (b) 15 Hz, (c) 24 Hz, (d) 36 Hz, (e) 55 Hz, and (f) 85 Hz. Note 

that the coherence images from the lower-frequency maximum entropy spectral voices 

provide more details and exhibit higher resolution of the channel boundaries over the 

coherence images using the corresponding CWT components, such as the red circle area 

in Figure 3.11b compared with Figure 3.9b. ..................................................................... 86 

Figure 3.12. Multispectral coherence image computed using maximum entropy spectral 

voice components, exhibiting higher resolution of small-scale features (green arrows) 

compared with the multispectral coherence image computed from the corresponding CWT 

components (Figure 3.10). ................................................................................................ 87 

Figure 3.13. (a) Enlarged full-bandwidth vertical seismic amplitude slice. (b) 24 Hz 

spectral voice and (c) 36 Hz spectral voice after maximum entropy decomposition. 

Compared with the full-bandwidth data (red circles in Figure 3.13a), the boundaries of the 

thicker channels are much sharper in the 24 Hz component (red circles in Figure 3.13b), 

while the thinner channel boundaries are sharper and clearer in the 36 Hz spectral voice 



xiii 

 

(red circles in Figure 3.13c). The channels with different scales are more highlighted in 

specific spectral voices, resulting in improved images of channel boundaries in the 

multispectral coherence. ................................................................................................... 88 

Figure 3.14. (a) AVT time slice, showing less noise and weaker reflections compared with 

the original seismic amplitude time slice (Figure 3.3b). (b) Coherence attribute computed 

using the AVT volume, appearing much clearer with less noise over the coherence 

computed using the SOF full-bandwidth seismic data (Figure 3.5). Note the more 

continuous boundaries of the thicker channels (green arrows in Figure 3.14b) compared 

with the coherence images computed from other spectral decomposition methods. 

However, the imaging of some small-scale features inside the thicker channels are 

decreased due to the lack of the higher-frequency components in the AVT data. ........... 89 

Figure 3.15. Vertical slice of spectral probe component using period 36 Hz, which is 

insensitive to the amplitude variation and the energy is much more balanced than other 

spectral decomposition methods, especially the channels indicated by red circles. ......... 90 

Figure 3.16. Multispectral coherence image computed using six spectral probes. It appears 

more balanced than the multispectral coherence images from other spectral decomposition 

methods, but noisier due to the equal weight for the noise in the shorter-period components 

when we build the covariance matrix (red circles). .......................................................... 90 

Figure 4.1. A well-known pitfall in auto-tracking of a seismic horizon. If the auto-picker 

correlation window is too short, or if the faults are not somehow flagged by the interpreter, 

the auto-picker (or inexperienced human interpreter!) can miss pick the seismic event 

across the fault (after Figure 17a in Chapter 7 of Herron (2011)). ................................. 118 

Figure 4.2. The location of Opunake 3D seismic survey (red rectangle) in the south-eastern 

part of offshore Taranaki Basin, New Zealand (after Kumar and Mandal, 2017). The 

Opunake 3D covers approximate 215 km2 with bin sizes 6.25 m × 25.0 m, 60-fold coverage, 

and a 4 ms time sample. .................................................................................................. 118 

Figure 4.3. (a) A representative vertical slice AA’, and (b) time slice at t=0.40 s through 

the original seismic amplitude dataset. Note that the original seismic data suffer from a 

small amount of random and migration aliasing noise, which decreases the detectability of 



xiv 

 

faults. Note the N-S trending acquisition footprint in the sail (inline) direction on the 

amplitude time slice (Figure 4.3b), which will generate undesired artifacts in subsequent 

coherence computation. .................................................................................................. 119 

Figure 4.4. (a) Coherence vertical slice and (b) time slice at t=0.4 s computed using the 

original full-bandwidth seismic amplitude dataset, appearing seriously noisy, which 

challenges the identification of faults. ............................................................................ 120 

Figure 4.5. (a) Vertical slice AA’ and (b) time slice at t=0.4 s through the coherence 

volume after acquisition footprint suppression, which effectively suppress the footprint 

artifacts compared to the coherence images computed using the original seismic data 

(Figure 4.4a and 4.4b). .................................................................................................... 121 

Figure 4.6. (a) Vertical slice AA’, and (b) time slice at t=0.4 s through the coherence 

volume computed after both footprint attenuation and SOF (structure-oriented filtering), 

further suppressing the random noise and improving the quality of fault imaging, helping 

the identification of minor faults. .................................................................................... 122 

Figure 4.7. Coherence vertical slices computed with (a) a constant 8 ms analysis window, 

(b) a constant 24 ms analysis window, and (c) a data-adaptive analysis window using the 

same noise attenuated full-bandwidth seismic data. Note that larger constant window 

provides a coherence image with better continuity, but smears the minor faults. Smaller 

constant window improves the resolution of the coherence image, but appears noisier. The 

data-adaptive analysis window provides coherence result with both good continuity and 

high resolution. ............................................................................................................... 123 

Figure 4.8. Enlarged coherence vertical slices computed using (a) the full-bandwidth 

original and (b) noise attenuated seismic data co-rendered with seismic amplitude. The 

noise attenuation workflow effectively improves the quality of fault imaging, but the noise 

attenuated full-bandwidth coherence image still appears pseudo fault segmentations due to 

the existence of relatively similar seismic reflections juxtaposing the faults (especially the 

red arrows in Figure 4.8b), challenging the accurate extraction of fault geometric attributes.

......................................................................................................................................... 124 



xv 

 

Figure 4.9. (a) Enlarged full-bandwidth seismic vertical slice indicates obvious alignment 

effect (red arrows). However, (b) the 36 Hz and (c) 55 Hz spectral voices appear 

significantly decreased alignment effects around the faults indicated by the yellow ellipses.

......................................................................................................................................... 126 

Figure 4.10. Coherence images computed using the corresponding (a) full-bandwidth 

seismic data, (b) 36 Hz spectral voice, and (c) 55 Hz spectral voice in Figure 4.9. Note the 

obvious pseudo fault segmentations in the full-bandwidth coherence (red arrows in Figure 

4.10a), and the significant continuity improvement of different faults in the coherence 

images computed using different spectral voices indicated by the green ellipses in Figure 

4.10b and 4.10c. .............................................................................................................. 128 

Figure 4.11. Multispectral coherence time slice computed using the exponentially-spaced 

spectral voices (b) appears better continuity of fault imaging compared to the coherence 

attribute computed using the equally-spaced spectral voices (a) indicated by the red arrows.

......................................................................................................................................... 129 

Figure 4.12. Multispectral coherence vertical slices computed using the spectral voices 

decomposed by (a) band-pass filtering, (b) CWT, (c) spectral probes, and (d) maximum 

entropy algorithm. ........................................................................................................... 130 

Figure 4.13. Multispectral coherence time slices computed using the spectral voices 

decomposed by (a) band-pass filtering, (b) CWT, (c) spectral probes, and (d) maximum 

entropy algorithms. ......................................................................................................... 132 

Figure 4.14. Enlarged multispectral coherence vertical slices computed using (a) band-

pass filtering, (b) CWT, (c) spectral probes, and (d) maximum entropy algorithms co-

rendered with seismic amplitude. Note the improvement of fault continuity by the 

maximum entropy based multispectral coherence. ......................................................... 134 

Figure 4.15. Coherence vertical slices of a single fault computed using (a) 10 Hz, (b) 24 

Hz, and (c) 55 Hz maximum entropy spectral voices appear different continuity and lateral 

resolution. The display using RGB blending (d) shows the lateral resolution smearing if we 

combine coherence volumes of different spectral voices. In multispectral coherence, more 



xvi 

 

spectral voices are included in the computation, which further decreases the lateral 

resolution of fault imaging. ............................................................................................. 136 

Figure 4.16. (a) Fault enhancement vertical slice and (b) time slice further reduce other 

stratigraphic discontinuity artifacts and improve the lateral resolution of fault imaging, 

which especially help identify the minor faults. ............................................................. 137 

 Figure 5.1. (a) The seismic amplitude spectrum of a data volume acquired over the Eagle 

Ford Shale play of south Texas. Note the strong response (and implied higher signal-to-

noise ratio about 16.5 and 31.5 Hz). Time slices at the target level through the dip 

magnitude volumes computed from the (b) original broadband seismic amplitude volume 

and from the (c) 16.5 Hz and (d) 31.5 Hz spectral voice volumes. Yellow arrows indicate 

improved clarity of some of the larger faults in the 16.5 Hz volume and of smaller faults 

and (in black ellipse) stratigraphic edges in the 31.5 Hz image. (After Jones and Roden, 

2012).. ............................................................................................................................. 155 

 Figure 5.2. Workflow of multispectral GST dip computation. We first apply the spectral 

balancing and structure-oriented filtering (SOF)on the original full-bandwidth seismic 

amplitude volume. We then decompose the noise-attenuated full-bandwidth seismic 

amplitude volume into spectral voices and build the multispectral covariance matrix. Next, 

we compute the eigenvectors and eigenvalues from the multispectral gradient structure 

tensor matrix, followed by the generation of inline and crossline dip volumes. We can 

output the broadband, spectrally-limited, and multispectral GST dip volumes... .......... 156 

 Figure 5.3. 3D seismic survey location in the index map of Fort Worth Basin and major 

tectonic units (modified after Khatiwada et al., 2013).. .................................................. 157 

 Figure 5.4. A representative (a) vertical slice and (b) time slice at t=0.70 s of the seismic 

amplitude in the 3D seismic survey in the Fort Worth Basin. The target Barnett Shale falls 

between the Marble Falls and Ellenberger hydraulic fracture barriers (indicated by the 

arrows in Figure 5.4a). Note the faults (orange arrows), larger karst (red arrows), and 

smaller karst (green arrows) features in Figure 5.4b... ................................................... 158 

 Figure 5.5. Inline dip vertical slices through the volumes of (a) broadband GST dip and 

(b) multispectral GST dip. Note that the multispectral GST inline dip appears higher quality 



xvii 

 

with fewer artifacts, better continuity, and improved stability compare to the broadband 

inline dip. ........................................................................................................................ 159 

 Figure 5.6. Vertical slices through the (a) broadband and (b) multispectral inline 

component of reflector dip corendered with the seismic amplitude volumes. Note that the 

multispectral GST inline dip is vertically more continuous and is less contaminated by 

artifacts than the broadband inline dip, especially inside the yellow and orange boxes. 160 

 Figure 5.7. Enlarged images of corendered seismic amplitude with the (a) broadband and 

(b) multispectral inline dip of the area within the yellow boxes shown in the previous figure 

and (c) broadband and (d) multispectral inline dip of the area within the orange boxes 

shown in the previous figure... ........................................................................................ 161 

 Figure 5.8. Crossline dip vertical slices through the volumes of (a) broadband GST dip 

and (b) multispectral GST dip. Note the imaging quality improvement in the multispectral 

GST dip. .......................................................................................................................... 162 

 Figure 5.9. Crossline vertical slices through the (a) broadband and (b) multispectral 

crossline component of reflector dip corendered with the seismic amplitude volumes. Note 

that the multispectral GST crossline dip shows better continuity and fewer artifacts than 

the broadband crossline dip... ......................................................................................... 163 

 Figure 5.10. Vertical slices through the spectral voice components centered about (a) 10 

Hz, (b) 30 Hz, (c) 50 Hz, (d) 70 Hz, and (e) 90 Hz. Note the 10 Hz and 90 Hz spectral 

voices appear noisy, while 30 Hz and 50 Hz show better signal-to-noise ratio... .......... 165 

 Figure 5.11. Time slices at t=0.7 s through dip magnitude volumes computed from 

spectral voices centered about (a) 10 Hz, (b) 30 Hz, (c) 50 Hz, (d) 70 Hz, and (e) 90 Hz. 

There is increasing lateral detail as well as increasing noise with increased frequency. (f) 

Co-rendered spectral magnitude by mapping the 10 Hz dip magnitude volume against cyan, 

the 50 Hz dip magnitude volume against magenta, and the 90 Hz dip magnitude volume 

against yellow. Anomalies that appear as black occur on all three input volumes. The 

circular collapse features that appear as blue exhibit anomalies at 10 Hz and 50 Hz, but not 

at 90 Hz. Features that appear as green exhibit anomalies at 50 Hz and 90 Hz, but not at 10 



xviii 

 

Hz. Features that appear as yellow (and are mostly noise) exhibit anomalies only on the 90 

Hz dip magnitude component.. ....................................................................................... 168 

 Figure 5.12. Time slices at t=0.7 s through dip magnitude volumes of (a) broadband GST 

dip and (b) multispectral GST dip. We can notice the improvement in the multispectral 

GST dip magnitude with fewer artifacts and better continuity over the broadband GST dip 

magnitude. Especially, the red ellipses indicate an improved S/N whereas the yellow 

arrows indicate improved delineation of smaller karst collapse features in multispectral 

GST dip magnitude.... ..................................................................................................... 169 

 Figure 5.13. The Parihaka 3D seismic survey (purple star) is located in the Northwest part 

of the offshore Taranaki Basin, New Zealand (modified after Kumar and Mandal, 2017)....

......................................................................................................................................... 170 

 Figure 5.14. A representative (a) vertical slice BB’ and (b) time slice at t=1.08 s of the 

PSTM seismic amplitude data in the Parihaka 3D seismic survey. The red lines indicate 

the corresponding locations of the vertical and time slices. The complex fault zone and 

channel system can be observed. .................................................................................... 171 

 Figure 5.15. Vertical slice BB’ through the (a) broadband and (b) multispectral GST 

estimates of the crossline dip volume. We can observe the high dips (green ellipses) along 

the major faults. It is noted that the multispectral GST crossline dip appears better vertical 

continuity (green ellipses) and higher S/N with fewer artifacts (blue and red rectangles) 

compared to the broadband GST crossline dip. .............................................................. 172 

 Figure 5.16. The seismic amplitude corendered with (a) broadband GST crossline dip and 

(b) multispectral GST crossline dip. Note the better stability and consistency with the 

seismic amplitude profile using multispectral GST dip (especially in the red and blue 

rectangles). ...................................................................................................................... 173 

 Figure 5.17. Enlarged images of corendered seismic amplitude with the (a) broadband and 

(b) multispectral crossline dip of the area within the red rectangles shown in the previous 

figure, and (c) broadband and (d) multispectral crossline dip of the area within the blue 

rectangles shown in the previous figure. In this Figure, we change the display approach to 

highlight the dips during the corendering. ...................................................................... 174 



xix 

 

 Figure 5.18. Time slices at t=1.08s through (a) broadband and (b) multispectral GST 

crossline dip volumes. Note that the multispectral GST crossline dip appears fewer artifacts 

(yellow arrows), improved fault continuity (green arrows), and better delineation of 

channels (yellow ellipses) over to the broadband GST crossline dip image. It is also noted 

that multispectral GST dip shows fewer artifacts inside the red ellipses, but the thin 

channels are a little smeared... ........................................................................................ 175 

 Figure 5.19. Time slices at t=1.08 s through the (a) broadband, and (b) multispectral GST 

dip magnitude volumes. Red arrows indicate zones that exhibit less noise in the 

multispectral GST dip magnitude volume.  The multispectral GST dip magnitude appears 

more continuous imaging of the fault zone, and provides better delineation of the channel 

system (green arrows). Note that multispectral GST dip magnitude shows fewer artifacts 

in the green ellipses, but some thin channels are smeared.... .......................................... 176 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xx 

 

ABSTRACT 

     Both passive (e.g., microseismic) and active seismic methods are used for the 

hydrocarbon exploration. For example, microseismic data analysis provides helpful 

information in not only mapping hydraulic fracture initiation, but also reservoir monitoring 

and even structural imaging. In 3D seismic interpretation, geometric attributes provide 

effective tools to map structure and stratigraphy. However, current microseismic events 

locating method faces challenge due to the poor resolution of passive-seismic imaging 

result and the dependency of the subsurface velocity model. Further, some stratigraphic 

features are buried in the conventional seismic geometric attributes. Focusing on these 

challenges, I develop new passive seismic imaging method and multispectral geometric 

attributes in this dissertation to provide more effective tools for hydrocarbon exploration. 

     To improve the quality of passive seismic imaging, I have constructed an iterative 

approach to locate the passive source locations and estimate the background overburden 

velocity based on full wave-equation methods. Specifically, I use a high-resolution 

geometric-mean reverse-time migration (GmRTM) to provide source locations that are 

better focused compared to conventional time-reversal imaging method. I also use the 

passive-source full-waveform inversion (FWI) to optimize the overburden velocity model. 

Given this accurate velocity, I use passive-source reverse-time migration to provide a 

structural image. Numerical experiments on the Marmousi model dataset indicate that the 

proposed approach can handle complicated structures and noisy seismic recordings.  

     Recent developments in multispectral coherence based on simple band-pass filters show 

improvements in fault and stratigraphic edge delineation. To further improve this 

technology, I evaluate several different spectral decomposition algorithms to determine 
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which, if any provide superior coherence images, I find that exponentially-spaced spectral 

voices provide better coherence images than linearly-spaced spectral components for the 

same computation cost. I also find that multispectral coherence computed from generated 

using the high-resolution maximum entropy algorithm provides reduced noise and better 

resolution of thinner channels than the other spectral decomposition algorithms.  

     Equally important, I analyze why multispectral coherence provides more continuous 

fault images where conventional coherence images often exhibit gaps in areas where a 

human interpreter would draw a single, unbroken fault.  These coherence fault occur when 

the displacement across the fault aligns different stratigraphic reflectors, resulting in what 

appears to be a continuous reflector. This same alignment also confounds auto-pickers.   

Although two different broadband seismic reflectors may be aligned across faults, in 

general, the corresponding spectral voices are not, thereby reducing their cross-correlation, 

and for multispectral coherence, elements in their covariance matrices, across the fault.   

     Considering that multispectral coherence provides a better delineation of the seismic 

discontinuities due to data quality, thin-bed tuning, or non-stratigraphic alignments, I 

further investigate multispectral dip attributes, which try to combine the benefits from 

different spectral voices. I illustrate the multispectral gradient structure tensor (GST) dip 

method, which helps improve the quality of dip attributes in the conventional broadband 

dips. Multispectral GST dip is performed by computing the eigenvectors and eigenvalues 

from the multispectral gradient structure tensor matrix. I use two 3D seismic surveys to 

indicate the improvement using the multispectral GST dip over conventional broadband 

dip attributes. 
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CHAPTER 1: INTRODUCTION 

     Both passive (typically microseismic) and active seismic methods are used for the 

hydrocarbon exploration. Locating microseismic events is routinely used to monitor 

hydraulic fracturing completion processes (e.g., Maxwell, 2014), understand the reservoir 

depletion (e.g., Dohmen et al., 2014), and monitor seismically active faults (e.g., Wessels 

et al., 2011). Seismic geometric attributes (such as volumetric dip, coherence, curvature, 

and aberrancy) computed from the active source 3D seismic volumes provide effective 

tools to delineate structural and stratigraphic features in the subsurface such as faults, 

channels, karst collapse, and other subtle tectonic and sedimentary features which might 

be overlooked on the conventional seismic amplitude volumes (e.g., Chopra and Marfurt, 

2007). 

     However, current microseismic events locating faces challenge due to the poor 

resolution and noise of the passive-seismic imaging result (Nakata and Beroza, 2016), and 

dependency of the subsurface velocity model. Seismic geometric attributes are generally 

computed using full-bandwidth seismic amplitude volume. First, due to the thin-bed tuning 

phenomena, the discontinuities in a stratigraphic feature with a specific thickness could be 

tuned and illuminated at a specific frequency (Marfurt and Kirlin, 2001). Further, whether 

due to the seismic data quality or the subsurface geology, certain spectral components 

exhibit higher S/N (signal-to-noise ratio), which will result in correspondingly higher 

quality attribute images. Especially, when we use full-bandwidth coherence attribute to 

detect faults, the non-stratigraphic alignments of similar reflections juxtaposing across the 

faults will result in pseudo fault breakpoints, challenging accurate fault delineation. 
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     In this dissertation, I focus on two primary research topics, which are relatively 

independent but both are centered to develop effective tools for hydrocarbon exploration. 

Focusing the challenges of passive seismic imaging, I proposed an iterative passive-source 

estimation and velocity inversion method using geometric-mean reverse-time migration 

(GmRTM) and passive-source full-waveform inversion (FWI). To further improve the 

quality of seismic attribute, I optimized the multispectral seismic geometric attributes 

workflow by evaluating which spectral voices to choose and which spectral decomposition 

algorithm works best.  

     This dissertation is organized as follows: 

     In Chapter 2, I first illustrate the proposed iterative passive-source estimation and 

velocity inversion method using GmRTM (Nakata and Beroza, 2016) and FWI. In each 

iteration, I first estimate the source location using the high-resolution GmRTM method, 

which provides better focusing of passive-source imaging compared to conventional time-

reversal imaging results. Next, I use the passive-source FWI to optimize the velocity model 

with the estimated source location. Then I construct a subsurface structural imaging using 

the passive-source RTM with the optimized source locations and velocity model. 

Numerical experiments on the Marmousi model, indicate that the proposed approach can 

handle not only complex structures but also noisy seismic recordings. This chapter has 

been published in Geophysical Journal International as Lyu and Nakata (2020). 

     In Chapter 3, I expand earlier work on multispectral coherence originated by Li et al. 

(2018) who combined the information content of bandpass-filtered versions of the seismic 

amplitude data using a simple short time window Fourier transform (STFT). I evaluate the 

multispectral response of spectral voices computing using the continuous wavelet 
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transform (CWT), maximum pursuit, maximum entropy, amplitude volume technique 

(AVT), and spectral probes to determine if any provide superior images of the TUI-3D 

seismic data volume from the Taranaki Basin, New Zealand. The CWT experiments 

indicate that the exponentially-spaced components provide sharper coherence images than 

linearly-spaced components in multispectral coherence for the same computation cost. My 

experiments further indicate that the coherence from AVT dataset provides continuous 

images of thicker channel boundaries, but poor images of the small-scale architectural 

elements inside the thicker channels. Spectral probes are defined by their period rather than 

by their frequency. Multispectral coherence computed using spectral probes exhibits more 

balanced and reveals clear small-scale geologic features inside the thicker channel, but 

appears much noisier than other spectral decomposition algorithms due to the equal 

weights for all components. The multispectral coherence computed using maximum 

entropy spectral voices provides the best imaging quality among these spectral 

decomposition algorithms with improved resolution of the thinner channels and other 

small-scale features. This chapter has been published in the AAPG-SEG journal 

Interpretation as Lyu et al. (2020a). 

     In Chapter 4, I address the limitation of fault delineation using coherence attributes 

when the offset across a fault aligns two similar looking but stratigraphically different 

reflectors.  As with autopicking of reflector horizons, such alignment of different 

stratigraphic reflectors with similar waveforms across a fault will algorithmically appear 

to be continuous. In this situation, an autopicker will start to track the wrong stratigraphic 

horizon and the fault will appear as high coherence, resulting in a broken fault image. These 

coherence gaps provide an inaccurate fault images and negatively impact subsequent 
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processes such as edge-preserving structure-oriented smoothing/ Building on the findings 

of Chapter 3 that examined a complex turbidites, I use maximum entropy spectral voices 

as input to only multispectral coherence. Because the aligned by stratigraphically 

independent horizons occur for only a few spectral components, multispectral coherence 

fills most of the previously identified “fault gaps”. I also note and analyze the increased 

lateral smearing when using multispectral coherence and find that part of the cause is the 

different spectral response to stairstep anomalies (Lin and Marfurt, 2017) seen on the 

vertical seismic data. I address this smearing issue using a fault enhancement workflow 

described by Qi et al. (2019) and obtain improved results of minor faults and reduced stair-

step artifacts on the larger faults. I show the effectiveness of the proposed workflow using 

the highly faulted Opunake 3D seismic dataset from the offshore Taranaki Basin, New 

Zealand. This chapter has been published in the AAPG-SEG journal Interpretation as Lyu 

et al. (2020b). 

     In Chapter 5, I generalize the concept of multispectral coherence that stacks the 

covariance matrices computed from each spectral voice to multispectral dip that stacks the 

gradient structure tensor (GST) for each spectral voice. After applying the structure-

oriented filtering (SOF) and spectral balancing to improve the data quality of the original 

full-bandwidth seismic amplitude volume, we compute the multispectral GST dip attribute. 

I first built the multispectral covariance matrix using the decomposed spectral voices. Then 

I compute the eigenvectors and eigenvalues from the multispectral gradient structure tensor 

matrix, followed by the generation of inline and crossline dip volumes. I indicate the 

quality improvement of the multispectral GST dip over conventional broadband dip using 

3D seismic surveys acquired over the Barnett Shale gas reservoir of the Fort Worth Basin, 
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Texas, and the offshore Taranaki Basin, New Zealand. This chapter will be submitted for 

journal publication at the end of 2020. 

     In Chapter 6, I show brief conclusions by summarizing my research work from Chapter 

2 to Chapter 5. Finally, I provide an appendix Chapter focusing on tomographic velocity 

analysis and wave equation depth migration in overthrust terrain. In this chapter, after 

analyzing the seismic imaging challenges in the overthrust plays, I have developed the 

workflow to improve the seismic imaging quality for the overthrust terrain, especially the 

application of tomographic velocity analysis and optimized one-way wave equation depth 

migration. This chapter has been published in the AAPG-SEG journal Interpretation as Lyu 

et al. (2018). 
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CHAPTER 2: ITERATIVE PASSIVE-SOURCE LOCATION ESTIMATION AND 

VELOCITY INVERSION USING GEOMETRIC-MEAN REVERSE-TIME 

MIGRATION AND FULL-WAVEFORM INVERSION 

Abstract 

      Passive-seismic provides useful information for reservoir monitoring and structural 

imaging; for example, the locations of microseismic events are helpful to understand the 

extension of the hydraulic fracturing. However, passive-seismic imaging still faces some 

challenges. First, it is not easy to know where the passive-seismic events happened, which 

is known as passive-source locating. Additionally, the accuracy of the subsurface velocity 

model will influence the accuracy of the estimated passive-source locations and the quality 

of the structural imaging obtained from the passive-seismic data. Therefore the velocity 

inversion using the passive-seismic data is required to provide the velocity with higher 

accuracy. Focusing on these challenges, we develop an iterative passive-source location 

estimation and velocity inversion method using geometric-mean reverse-time migration 

(GmRTM) and full-waveform inversion (FWI). In each iteration, the source location is 

estimated using a high-resolution geometric-mean reverse-time migration method, which 

provides a better focusing of passive-source imaging compared to conventional wavefield 

scanning method. The passive-source full-waveform inversion is then followed to optimize 

the velocity model using the estimated source location provided by GmRTM. The source 

location estimation and velocity inversion are implemented sequentially. We evaluate this 

iterative method using the Marmousi model dataset. The experiment result and sensitivity 

analysis indicate that the proposed method is effective to locate the sources and optimize 

velocity model in the areas with complicated subsurface structures and noisy recordings. 
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Introduction 

     The subsurface reservoir properties could be identified using both the active and/or 

passive-seismic methods. A proven application of the passive-seismic method for oil and 

gas exploration is the microseismic due to hydraulic fracturing (e.g., Maxwell, 2014; 

Witten & Shragge, 2017). We generally use fracturing to extract the oil and gas from the 

subsurface rocks with low permeability such as shale (Maxwell, 2014). To make the oil 

and gas flow more freely, a high-pressure liquid is then injected into the well to create 

fracture openings, which will result in microseismic events. We can use the locations of 

these seismic events to help understand the hydraulic fracturing. Locating microseismic 

events has also been used in understanding reservoir depletion (e.g., Dohmen et al., 2014) 

and monitoring seismically active faults (e.g., Wessels et al., 2011). Additionally, passive 

seismic provides useful information for subsurface structural imaging. For example, 

Dueker & Sheehan (1997) used a common conversion point (CCP) stacking technique to 

image the interfaces in the crust and mantle. Shang et al. (2012) decoupled the multi-

component recorded data and then extrapolated the P- and S-wavefields for passive-source 

imaging. 

However, we still face several challenges in the passive-seismic. The first one is how 

to accurately locate these passive-seismic events, which is known as passive-seismic 

source imaging. We can use the arrival-time differences between pairs of the events to 

estimate the passive-source-location, which is known as double-difference technique 

(Waldhauser & Ellsworth, 2000). Later, waveform information is used for source-location 

estimation (Kao & Shan, 2004), instead of simple the arrival times. Receiver wavefields 

are extrapolated in the reverse-time direction (McMechan, 1982; Rietbrock & 
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Scherbaum,1994; Gajewski & Tessmer, 2005; Steiner et al., 2008; Duncan & Eisner, 2010; 

Li et al., 2019, 2020), which generate a 4D wavefield volume. Then scanning or threshold 

methods are used to find the focusing and estimate the source location. P- and S-waves 

could be simultaneously extrapolated using this time-reverse wave propagation method to 

locate passive sources (e.g., Artman et al., 2010; Yang & Zhu, 2019). Zhu (2014) further 

improved the imaging quality by compensating for attenuation. To collapse the time axis 

and improve the resolution of the passive-source imaging, Sun et al. (2015) and Nakata & 

Beroza (2015, 2016) developed a geometric-mean reverse-time migration (GmRTM) 

method, which is implemented by a zero-lag cross-correlation among all the independently 

back-propagated receiver wavefields.  

Further, the precision of the subsurface velocity model is a key factor which will affect 

the estimation of the passive-source location. A velocity model with high precision and 

resolution is expected for the passive-seismic source imaging. The velocity model is also 

critical for the seismic structural imaging. Traveltime tomography (Aki et al., 1977; Pratt 

& Chapman, 1992; Williamson & Worthington, 1993) is commonly employed to estimate 

the subsurface velocity model but usually provides results with low resolution due to the 

limitation of the ray theory, which is based on the high-frequency assumption. To improve 

the resolution, wave-equation based velocity inversion approaches have been developed, 

which involve full-waveform information, not only the traveltime. Full-waveform 

inversion (FWI) (Tarantola, 1984) provides a powerful tool to estimate the subsurface 

model with much higher spatial resolution over the traveltime tomography. FWI represents 

a series of methods to search for a model which best fits the observed waveforms (e.g., 

Virieux & Operto, 2009).  
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FWI has been used in both active-seismic data (Virieux & Operto, 2009; Xu et al., 2012; 

Warner et al., 2013) and passive-seismic data (Kamei & Lumley, 2014, 2017; Zhu et al., 

2015). For the active-seismic FWI, we usually know the source-locations and only need to 

estimate their signatures. But for the passive-seismic FWI, the unknown source information 

makes the FWI more challenging. A natural approach of passive FWI is to update the 

velocity model and source parameters simultaneously (Sun et al., 2016; Igonin & Innanen, 

2018; Wang & Alkhalifah, 2018). However, the cross-talk between the velocity model and 

the source properties challenges the inversion, which is a common difficulty in all multi-

parameter FWI algorithms (Brossier et al., 2010; Operto et al., 2013; Innanen, 2014; Pan 

et al., 2016; Wang et al., 2016).  

       In this paper, we develop an iterative passive-source estimation and velocity inversion 

method using GmRTM and FWI. In each iteration, we first estimate the source location 

using the high-resolution GmRTM method, which provides a better focusing of passive-

source imaging compared to conventional wavefield scanning method. Next, the passive-

source FWI is followed to optimize the velocity model using the estimated source location 

provided by GmRTM. The iterations are repeated until convergence, providing the 

optimized source imaging and velocity model. In this proposed method, the source location 

estimation and velocity inversion are implemented sequentially, which could partly relax 

the cross-talk limitation in the simultaneous FWI inversion. 

      This paper is organized as follows. We begin with this introduction. Next, we illustrate 

the detailed theory and method of the iterative passive-source estimation and velocity 

inversion. We then show the numerical results of the Marmousi model. Finally, we provide 

discussions and conclusions.  
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Methodology 

      Focusing on the above three challenges in passive-seismic, we develop an iterative 

passive-source estimation and velocity inversion method using GmRTM and FWI, which 

is shown in Figure 2.1. We first input the observed passive-seismic data, and the initial 

background velocity model, which could be provided by the ray-based tomography 

methods.  

Next, we optimize the passive-source locations and velocity model in an iterative way. 

In each iteration, we first numerically propagate all the independent receiver or receiver-

group wavefields in the reverse-time direction, followed by a zero-lag cross-correlation 

among all these wavefields, to provide passive-source imaging. This method is known as 

GmRTM, which provides passive-seismic source estimation with better focusing over 

conventional time-reversal imaging (Nakata & Beroza, 2016). Further, we perform a 

passive-source FWI with these estimated source locations, to optimize the velocity model. 

In the next iteration, we repeat these two sequential steps using the optimized source 

locations and velocity model from previous iteration until convergence. 

     In this paper, we focus on this iterative approach of passive-source estimation and 

velocity inversion. Additionally, we can provide subsurface structural imaging using the 

optimized source locations and velocity model (see Appendix A). It is implemented by 

passive-source RTM using both the source- and receiver-side wavefields with a squared 

excitation-amplitude imaging condition. GmRTM and passive-source FWI are the key 

techniques used in the proposed iterative passive-source estimation and velocity inversion 

method. 
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Passive-source imaging using GmRTM 

We start with the wave equation in isotropic acoustic media from a point source with 

location sx : 

 
     

2

2

22

1
, 

 
   

 
su t f t

tv
x x x

x
,                             (1) 

where  v x  represents the medium velocity,  ,u t x is the wavefield at time t  and 

location  = , ,x y zx , 2
  represents the Laplacian operator, and  f t  is the wavelet 

function.  

In equation 1,  ,u t x  could represent both the forward-propagated wavefield  ,su t x  

and the backward-propagated wavefield  ,ru t x . For the time-reverse wave propagation 

method (e.g., Steiner et al., 2008), if the onset time is known, a passive source could be 

represented by the focusing of all backward-propagated events at the origin time. However, 

the time information is usually not available. We generally perform a scanning on the 4D 

receiver wavefields  ,ru t x , to find the time when the wavefields show the maximum 

amplitude and provide a focused image.  

If we consider each receiver or receiver group independently, we can perform a cross-

correlation between two or more receiver wavefields, for example the ones with different 

time lags, to provide another imaging condition. Because the recordings at these receivers 

are generated by the same seismic source, their corresponding wavefields pass the source 

location at the same time. We only need to consider the situation when the time lag equals 
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zero (Claerbout, 1971), which provides a new imaging condition known as GmRTM 

(Nakata & Beroza, 2016), 

   ,  ir

t i

u tx x .                                                (2) 

In GmRTM, we first extrapolate the wavefields at the desired receivers, to generate a 

4D data volume  ,
ir

u t x . Next, we multiply all these independent receiver wavefields at the 

whole space and time, and then sum them over the time axis, which is equivalent to the 

zero-lag cross-correlation. We can notice that the time axis is collapsed in equation 2 after 

the summation, which means that GmRTM reduces the dimensions of wavefields scanning 

method from 4D to 3D. The multiplication in GmRTM will produce images with non-zeros 

only at the focuses, while in the wavefields scanning method the summation over all the 

receiver wavefields will lead to images with non-zeros along the wave propagation path. 

This explains why the GmRTM provides source imaging results with higher spatial 

resolution. 

To compute  ,
ir

u t x  in equation 2, we need to perform wavefield extrapolation 

independently for each receiver or receiver group, which could be computationally 

expensive. A practical solution is to use the same Green's function for different time steps 

at each receiver (Nakata et al., 2016), to reduce the computational cost, which is due to the 

linear relationship between the Green's function and the recorded data. This idea is based 

on the fact that the length of our continuous seismic data is often days to years. This is 

much longer than the wave propagation time from the source to the receiver, which is 

typically in seconds. If we directly apply numerical wavefield extrapolation to the 

continuous data, we need to compute extrapolation for the entire data. Instead, Nakata et 
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al. (2016) proposed that we first calculate the Green's function for each receiver, and then 

convolute between this Green’s function and the recorded data in the image domain. 

Although we need to store each Green's function, the computational cost is much smaller 

than extrapolation of the entire records. 

       Since we do summation over the time axis as a part of cross-correlation, the source 

onset time is not a problem in GmRTM. If we are interested in that time, we can find it by 

selecting the summing time carefully. The source function is another important parameter 

and varies for different events. In this study, we used a known Ricker wavelet as the source 

function. We focus on estimating the source location in this paper. Similar to active-source 

cases (Pratt, 1999), we can invert the source wavelet as well by updating the proposed 

method. 

Velocity optimization using passive-source FWI 

     FWI uses a non-linear data-fitting procedure to provide detailed estimation of 

subsurface properties. Here, we primarily focus on the subsurface velocity variations. The 

general steps of FWI started from an initial velocity model, which could be obtained using 

a ray-based tomography method. We compute predicted data from this initial model by 

solving the wave equation. We then update the velocity model, in order to decrease the 

misfit between the predicted data and the observed data. This optimization procedure is 

repeated in an iterative way, until the misfit is small enough to meet this criterion.  

For passive-source FWI, the source-location is required to perform forward modeling, 

which is more challenging than active-seismic data. We optimize the passive-source 

locations and velocity model in an iterative way. In one iteration, an initial estimation of 
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the source location 
0sx  is provided by the GmRTM using equation 2, which is used to 

implement forward modeling using equation 1, to generate the predicted data. The 

objective function is defined as the data misfit between the predicted data pred  and the 

observed data 
obsd  at each receiver location gx  measured by the 

2L  norm: 
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To solve the above nonlinear problem, local optimization methods are usually preferred 

due to their computational efficiency. The computation of the gradient with respect to the 

velocity model is important for FWI. Using the adjoint-state method (Plessix, 2006), we 

calculate the gradient through the zero-lag cross-correlation between the forward-

propagated source wavefields and the backward-propagated wavefields of the data 

residuals, 
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where  0v x  is the velocity model to be updated,  0,f su tx x  denotes the forward-

propagated wavefield, and  0, f su tx x represents the backward-propagated wavefields of 

the data residuals.  

     After calculating the gradient with equation 4, we use the conjugate gradient (CG) 

method (Mora, 1987; Tarantola, 1987) to update the velocity model. The step length is 

estimated by a line-search optimization scheme in each iteration. In the next iteration, we 

repeat GmRTM and passive-source FWI using the optimized source locations and velocity 

model from the previous iteration until convergence.  
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Numerical experiments 

Experiment setup 

     We perform a numerical test on the Marmousi model to indicate the effectiveness of the 

full wave-equation workflow for the passive-seismic imaging and velocity inversion. The 

true velocity model is shown in Figure 2.2a, with 576 lateral and 188 vertical samples both 

at 16 m cell size. However, the receivers are usually sparse in microseismic monitoring. In 

our experiment, the receivers are placed sparsely on the surface with 100 m interval.  

The initial velocity model is shown in Figure 2.2b, which is seriously smoothed and 

relatively far from the true velocity model (Figure 2.2a). This initial velocity model could 

be generated using a ray-based tomography method. We start with one source located at 

lateral position of 2.00 km and depth of 2.27 km (black dot in Figure 2.2b). A 2D acoustic 

finite-difference (FD) modeling method (e.g., McMechan, 1983) is used to generate the 

synthetic recording. 

Source location estimation and velocity inversion with single source 

     Using the initial velocity model (Figure 2.2b), we first implement GmRTM using 5 

receivers to estimate the source location. The enlarged display of GmRTM result is shown 

in Figure 2.3, which has no time axis. We only need to scan the space axis to find the source 

location. The source location estimation is provided by finding the focusing in the imaging 

result (Figure 2.3). However, there is an obvious deviation between the focusing and the 

true source location (red dot in Figure 2.3) due to the velocity errors. The best focusing is 

found at the lateral location 1.93 km and depth 2.21 km. It is also noted that the focusing 

is poor, which also challenges the source location estimation. 
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Next, we perform passive-source FWI on the recording of the single source in an 

iterative way, to optimize the initial velocity model (Figure 2.2b). The forward modeling 

in FWI is implemented using equation 1, starting from the estimated source location 

(Figure 2.3) using the initial velocity model (Figure 2.2b). The predicted recording using 

the initial velocity model is shown in Figure 4b, which is far away from the observed 

recording (Figure 2.4a). In Figure 2.4c, we show the predicted data using the FWI-inverted 

velocity model after 50 iterations, which reveals most of the details in the observed 

recording (Figure 2.4a).  

Figure 2.5 shows the normalized misfit function versus iteration numbers. Fast 

convergence rate is observed in the first 17 iterations, and then the convergence becomes 

slower in the remaining iterations. The inverted velocity model after 50 iterations is shown 

in Figure 2.6. The source location is indicated by the black dot. The source imprints are 

observed especially around the source. At present, we are using a smoothing method to 

reduce this source imprint artifact. More advanced technique is worthy for future research 

to better eliminate the source imprint and further improve the quality of FWI inverted 

velocity. Compared with the initial velocity (Figure 2.2b), the FWI-inverted velocity 

(Figure 2.6) recovers more detailed features and improves the resolution. We can also 

notice that the improvement of the right part is minor due to the poor illumination caused 

by the sparse sources, which will be discussed later. 

The GmRTM image using the FWI-inverted velocity model is shown in Figure 2.7. It 

provides a better focusing and a reduced deviation between the focusing and the true source 

location (red dot in Figure 2.7). The best focusing in Figure 2.7 is found at the lateral 

location 1.99 km and depth 2.26 km, which effectively improves the prediction precision 
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of the source location compared to the GmRTM result using the initial velocity model 

(Figure 2.3). 

In simultaneous inversion of passive source location and velocity model, the inversion 

result depends seriously on the initial velocity model. If the initial velocity is too far away 

from the true velocity, it is easy to fall into local minima in the simultaneous inversion. In 

the proposed method of this paper, we use a sequential method for passive source imaging 

and velocity inversion. Since the source location estimation is performed by finding the 

best focusing provided by high-resolution GmRTM, which is separate from the passive 

FWI. This could relax the dependency on the initial velocity model.  

Influence of seismic noise on velocity inversion 

     The field microseismic data are generally noisy, which causes additional challenges for 

the source location estimation and velocity inversion. To evaluate the influence of seismic 

noise on passive FWI, we use Madagascar software to generate seismic random noise with 

broadband spectral, and add it to the noisy-free seismic recording (Figure 2.4a). We use a 

pseudo-random algorithm for random noise generation, which is realized by setting an 

initial “seed” for the random number generator. In our research, we use a nearly uniformly 

distributed sequence for random noise generation. In Figure 2.8a, we show the generated 

noisy recording with S/N (signal-to-noise ratio) = 20 dB (decibel). The inverted velocity 

model (Figure 2.8b) after 50 iterations using this noisy recording contains some artifacts 

but recovers similar velocity features compared to the FWI-inverted velocity using the 

noise-free data (Figure 2.6). In Figure 2.8c, we show the normalized misfit function versus 

iteration numbers using the noisy recording. Similar convergence rate is observed 
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compared to the misfit function curve using noise-free recording (Figure 2.5), but it is noted 

that there is relatively larger data residual due to the existence of random noise. 

      If we further increase the level of noise and generate much noisier recording with S/N=5 

dB (Figure 2.9a) for inversion, the inverted model (Figure 2.9b) can still recover most of 

the velocity features compared to the model using the noise-free data (Figure 2.6), but 

much more artifacts are introduced, especially in the shallower part. 

Influence of source distribution and density 

     The velocity structures and resolution of the FWI-inverted model (Figure 2.6) in the 

right part are improved over the initial velocity model (Figure 2.2b), but are not good 

enough due to insufficient illumination, as only one source located in the left part is used 

for inversion. A practical way to improve the illumination is to increase the number of 

passive-sources used. This is easy to achieve in field surveys; for example, we record 

numerous microseismic events during hydraulic fracturing. 

We first increase the source number to three and still place them in the left part with 

lateral positions 1.20 km, 2.00 km, and 2.80 km. The receivers are still distributed sparsely, 

which are the same with our previous experiments. The FWI-inverted velocity model using 

these three sources are shown in Figure 2.10, which provides higher resolution in the left 

part and clearer fault features in the middle part over the inverted velocity model using 

only one source (Figure 2.6). However, the improvement in the right part of the model is 

still not significant. Next, we still use three sources and sparse receivers for inversion, but 

place the sources more uniformly in the subsurface with lateral positions 2.00 km, 4.40 km, 

and 6.80 km. The FWI-inverted velocity model (Figure 2.11) using these more uniformly 

distributed sources indicates higher resolution and reveals clearer features of the faults and 



20 

 

the anticline in the middle and right part of the Marmousi model over the inverted result 

shown in Figure 2.10. However, it is also noted that the inverted velocity model using more 

uniformly distributed sources (Figure 2.11) behaves more artifacts and lower resolution in 

the left part over the one generated using three sources all located in the left part (Figure 

2.10). 

We further use 15 uniformly distributed sources for inversion, which are located in the 

subsurface with starting lateral location 1.200km and 0.480 km interval. We use the same 

receiver distribution with the previous experiments. The FWI-inverted velocity model 

using 15 sources is shown in Figure 12a (source locations indicated by black dots), which 

indicates an obvious improvement of the velocity precision over the results using fewer 

sources (Figure 2.6, 2.10, and 2.11). Especially, the FWI-inverted velocity model using 15 

sources (Figure 2.12a) reveals more and clearer features of the entire Marmousi model, 

such as the faults, the anticline, and some other small-scale features, compared to the initial 

velocity model (Figure 2.2b). Figure 2.12b shows the normalized misfit function versus 

iteration numbers using 15 sources, indicating faster convergence rate compared to the 

result using single source (Figure 2.5). 

Influence of receiver density 

     We use sparse receivers with the same distribution for all the previous experiments. We 

also investigate the influence of the receiver density on the inversion, even though the 

dense receivers are not common in microseismic monitoring.  The inversion is performed 

using 15 uniformly distributed sources at the same locations with the sources used in Figure 

2.12a. However, the receiver space is reduced to 16 m. The FWI-inverted velocity model 

using 15 sources with dense receivers are shown in Figure 2.13. It behaves higher 
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resolution and reveals more small-scale features over the inverted velocity model using 15 

sources with sparse receivers (Figure 2.12a). It is also noted that the influence of source 

distribution and density play a more important role for inversion over the receiver density. 

Discussions 

     Since we estimate the source location and optimize the velocity model sequentially in 

the proposed method, the cross-talk limitation in the simultaneous FWI inversion could be 

partly relaxed. Especially, we use the high-resolution GmRTM to provide a better focusing, 

which helps to estimate the passive-source location more accurately. However, there is a 

demanding requirement of the data storage and computation cost of this iterative passive-

source estimation and velocity inversion approach.  

       Both the GmRTM used in passive-source estimation and passive-source FWI used in 

velocity inversion are time-consuming. For GmRTM, if we perform wavefield 

extrapolation independently for each receiver or receiver group, it could be 

computationally expensive. In our research, we first compute and storage the Green’s 

function for each receiver, and then convolute between this Green’s function and the 

recorded data in the image domain, similar to Nakata et al. (2016). This will increase the 

storage to some extent but will effectively reduce the computation cost. Other effective 

approaches to reduce the storage and computation cost in the proposed iterative passive-

source estimation and velocity inversion method remains an interesting future research 

topic.  

       Cycle-skipping challenges both active-source and passive-source FWI. Several theory-

based approaches are developed to relax the limitation of cycle-skipping problem in FWI, 
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but most of the researches focus on the active-source, such as starting FWI with super-low-

frequency data (e.g., Wu et al., 2014; Li & Demanet, 2016), separating the tomographic 

and migration components (e.g., Mora, 1989; Alkhalifah, 2015), or introducing additional 

dimensions to increase the convexity in waveform inversion (e.g., Sava & Fomel, 2003; 

Biondi & Almomin, 2014; Warner & Guasch, 2014). For passive-source FWI, since we 

need to consider the influence of source-locations besides the velocity model, the cycle-

skipping problem is more severe than active-source case. In the proposed method, we 

perform the source location estimation and velocity inversion in a sequential way. GmRTM 

provides an improved estimation of the source location with high-quality focusing, which 

helps relax the limitation of cycle-skipping in the simultaneous passive seismic inversion. 

However, further research is necessary to avoid the cycle-skipping problem in passive 

imaging and inversion more effectively. A potential solution is to bring the methods used 

in active-source FWI into passive-source FWI. 

Conclusions 

     We have developed an iterative approach for passive-source estimation and velocity 

inversion based on full wave-equation methods. In each iteration, we first use the high-

resolution GmRTM to estimate the source location. Then passive-source FWI is followed 

to update the velocity model using the estimated source locations by GmRTM. Passive 

source location estimation and velocity inversion are implemented sequentially. This 

iteration is indeed the key for the passive-seismic imaging with velocity estimation, 

because this iteration allows us to have better focusing of source locations compared to 

conventional wavefields scanning method, better sensitivity to structural velocities, and the 

fact that we do not need to rely on the initial source location for the inversion. 
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The numerical experiments on the Marmousi model indicate that the proposed iterative 

passive-source estimation and velocity inversion method could be adapted to complicated 

structures and noisy passive recordings. Increasing source density plays an important role 

to improve the imaging illumination and inversion quality. This passive-source estimation 

and velocity inversion is naturally extendable to 3D datasets.  
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Appendix A: Structural imaging using passive-source RTM 

     Besides passive-source estimation and velocity inversion, we provide the structural 

imaging using passive-source data in Figure 2.1. The passive-source RTM using multi-

component recorded data is performed by a zero-lag cross-correlation between the 

decoupled P- and S-wavefields (Shang et al., 2012). Only the receiver-side wavefields are 

used, which is different from the active-source case, which uses both the source- and 

receiver-side wavefields. Multi-component seismic recordings are needed to perform the 

cross-correlation, but sometimes we only have vertical-component data. In our research, 

we adopt a similar idea borrowed from the active-source RTM (McMechan, 1983; Baysal 

et al., 1983; Whitmore, 1983), to implement the passive-source RTM, which only uses the 

vertical-component data.  

      With the estimated source location 
sx  and the inverted velocity model  v x  from the 

iterative approach using GmRTM and passive-source FWI, we first generate the source-
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side P-wavefield 
SPu , followed by the application of imaging conditions with the receiver-

side back-propagated P-wavefield 
RPu , to provide the structural imaging results. There are 

several different imaging conditions for RTM, such as amplitude-ratio (Claerbout,1971), 

zero-lag cross-correlation (Claerbout,1971), source-normalized cross-correlation 

(Claerbout, 1971; Kaelin & Guitton, 2006), excitation time (Chang & McMechan, 1986; 

Loewenthal & Hu, 1991), excitation amplitude (Nguyen & McMechan, 2013), and squared 

excitation amplitude (Lyu et al., 2017, 2018).  

     In this paper, we implement the squared excitation-amplitude imaging condition on the 

passive-seismic data to provide structural images with high-resolution and fewer migration 

artifacts. The squared excitation-amplitude imaging condition is expressed as 

 
     

   
RP RP

0
SP_max SP_max

, , ,

, ,


 

T e

e e

u t u t t
I dt

u t u t

x x x
x

x x
                            (A1) 

where 
et  is the excitation time defined as the maximum source amplitude arrival time, and 

this amplitude is known as the excitation amplitude SP_maxu .   represents the delta function 

of 
et . Equation A1 means that the imaging is only performed at the locations that satisfy 

the excitation-time. The squared excitation-amplitude imaging condition is actually 

performed non-linearly, but available to be used for structural imaging. We only need to 

save the excitation-time and excitation-amplitude during wave propagation, which 

sidesteps the large storage requirement in the cross-correlation RTM. The imaging is only 

implemented at the locations that satisfy the excitation-time, which improves the resolution 

and reduces the migration artifacts. 

       Following Figure 2.1, we provide the subsurface structural imaging using the passive-

source RTM: we first perform the forward modeling of the source wavefields using the 
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optimized source locations and velocity model, followed by an application of imaging 

condition with the back-propagated receiver wavefields. We use the high-resolution 

squared excitation-amplitude imaging condition for passive-source RTM. It faces the 

multipathing challenge in areas with complicated subsurface structures, as only the most 

energetic parts of the wavefields are used for imaging. For the left structures of the 

Marmousi model with relatively small dipping angles, we only need to save one amplitude 

arrival for imaging. However, it doesn’t work in other areas with complicated structures, 

such as faults and steep reflectors. To deal with this multipathing issue, we save three 

amplitude arrivals for RTM imaging. It does not require additional wavefield extrapolation, 

but requires additional three times storage cost of excitation-time and excitation-amplitude. 

However, the storage cost of three amplitude arrivals is even much smaller than the one in 

cross-correlation method which saves all the extrapolated wavefields. 

We then compute the structural imaging using 15 sources with sparse receivers and 

show the RTM images in Figure 2.A-1. Compared with the RTM image using the initial 

velocity model (Figure 2.A-1a), the RTM image using the FWI-inverted (Figure 2.A-1b) 

provides higher resolution and better focusing. It is also noted that the faults, anticline and 

some other structures are better imaged in the RTM result using the FWI-inverted velocity 

model. 
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Chapter 2 figures 

 

 

 

 

 

 

 

Figure 2.1. Iterative passive-source estimation and velocity inversion method using GmRTM and 

passive-source FWI. 
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Figure 2.2. (a) True Marmousi velocity model. (b) Initial velocity model. 
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Figure 2.3. GmRTM result using the initial velocity model, behaving poor focusing and an obvious 

deviation between the focusing and the true source location (red dot). 
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Figure 2.4. (a) Observed recording, (b) predicted recording using the initial velocity model, and (c) 

predicted recording using the FWI-inverted velocity model. 
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Figure 2.5. Normalized misfit function versus iteration numbers using single source. 

 

 
Figure 2.6. FWI-inverted velocity model using only one source located at lateral position 2.00 km and 

depth 2.27 km. Note that the FWI-inverted velocity recovers more detailed features and improves the 

resolution over the initial velocity model. It is also noted that the improvement of the right part is minor 

due to the poor illumination caused by the sparse sources. 

 

 

 



38 

 

 

 

 

 

Figure 2.7. GmRTM recalculated using the FWI-inverted velocity model, providing a better focusing 

and a reduced deviation between the focusing and the true source location (red dot) compared to the 

GmRTM result using the initial velocity model (Figure 2.3). 
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Figure 2.8. (a) Noisy passive-source recording with S/N=20 db, and (b) the corresponding FWI-inverted 

velocity model, behaving more artifacts but recovering similar velocity features compared to the FWI-

inverted velocity using the noise-free data (Figure 2.6). (c) Normalized misfit function versus iteration 

numbers using the noisy recording, showing similar convergence rate but relatively larger data residual 

compared to the result using noise-free recording (Figure 2.5). 
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Figure 2.9. (a) Noisy passive-source recording with S/N=5 db, and (b) the corresponding FWI-inverted 

velocity model. 
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Figure 2.10. FWI-inverted velocity model using three sources located in the left part with lateral 

positions 1.200 km, 2.000 km, and 2.800 km. Note the higher resolution in the left part and clearer fault 

features in the middle part compared to the inverted velocity model using only one source (Figure 2.6). 

However, the improvement in the right part of the model is still not significant. 

 

Figure 2.11. FWI-inverted velocity model using three more uniformly distributed sources with lateral 

positions 2.00 km, 4.40 km, and 6.80 km. Note the higher resolution and clearer features of the faults 

and the anticline in the middle and right part over the inverted velocity model shown in Figure 2.10. 
However, it behaves more artifacts and lower resolution in the left part over the one generated using 

three sources all located in the left part (Figure 2.10). 
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Figure 2.12. (a) FWI-inverted velocity model using 15 sources with sparse receivers, indicating an 

obvious improvement over the results using fewer sources and revealing much clearer features. (b) 

Normalized misfit function versus iteration numbers using 15 sources, indicating faster convergence 

rate compared to the result using single source (Figure 2.5). 
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Figure 2.13. FWI-inverted velocity model using 15 sources with dense receivers, behaving higher 

resolution and revealing more small-scale features over the FWI-inverted model using 15 sources with 

sparse receivers (Figure 2.12a). 
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Figure 2.A-1. Structural image by passive-source RTM with 15 sources using (a) the initial velocity 

model, and (b) the FWI-inverted velocity model, providing higher resolution, better focusing, and 

clearer structures.  
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CHAPTER 3: MULTISPECTRAL COHERENCE: WHICH DECOMPOSITION 

SHOULD WE USE?   

Abstract 

Seismic coherence is commonly used to delineate structural and stratigraphic 

discontinuities. We generally use full-bandwidth seismic data to calculate coherence. 

However, some seismic stratigraphic features may be buried in this full-bandwidth data, 

but can be highlighted by certain spectral components. Due to thin-bed tuning phenomena, 

discontinuities in a thicker stratigraphic feature may be tuned and thus better delineated at 

a lower-frequency, while discontinuities in the thinner units may be tuned and thus better 

delineated at a higher-frequency. Additionally, whether due to the seismic data quality or 

underlying geology, certain spectral components exhibit higher quality over other 

components, resulting in correspondingly higher quality coherence images. Multispectral 

coherence provides an effective tool to exploit these observations. We evaluate the 

performance of multispectral coherence using different spectral decomposition methods: 

continuous wavelet transform (CWT), maximum entropy, amplitude volume technique 

(AVT), and spectral probe. Applications to a 3D seismic data volume show that 

multispectral coherence images are superior to full-bandwidth coherence, providing better 

delineation of incised channels with less noise. From the CWT experiments, we find that 

providing exponentially-spaced CWT components provides better coherence images than 

equally-spaced components for the same computation cost. The multispectral coherence 

image computed using maximum entropy spectral voices further improves the resolution 

of the thinner channels and small-scale features. The coherence from AVT dataset provides 

continuous images of thicker channel boundaries, but poor images of the small-scale 
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features inside the thicker channels. Additionally, multispectral coherence computed using 

the nonlinear spectral probes exhibits more balanced and reveals clear small-scale geologic 

features inside the thicker channel. However, because amplitudes are not preserved in the 

nonlinear spectral probe decomposition, noise in the noisier shorter-period components 

have an equal weight when building the covariance matrix, resulting in increased noise in 

the generated multispectral coherence images.  

Introduction 

Seismic coherence is a measure of the similarity between the waveforms or traces in 

seismic data volumes. It is a powerful tool to delineate seismic discontinuities such as faults 

and stratigraphic edges, incoherent zones such as the karst collapse and mass transport 

complexes, as well as areas contaminated by seismic noise. Bahorich and Farmer (1995) 

evaluated 3D seismic discontinuity coherence by calculating the maximum cross-

correlation value with neighboring traces. Marfurt et al. (1998) developed a more robust 

coherence estimation method, which is based on a multi-trace semblance algorithm, to 

improve the noise reduction ability. Gersztenkorn and Marfurt (1999) introduced another 

coherence calculation method, which is realized by calculating the energy-ratio between 

the dominant eigenvalues and the sum of all eigenvalues of the covariance matrix, to 

improve the lateral resolution. Marfurt et al. (1999) further improved the algorithm, which 

considers the structural dip effect on the coherence estimation, to provide better results.  

Coherence is generally calculated from the full-bandwidth seismic data. The quality 

of the coherence images is dependent on the quality of the input seismic data, which could 

be improved using the structural-oriented filtering (SOF), spectral balancing, and other 

post-migration data conditioning methods (Chopra and Marfurt, 2007). Furthermore, 
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different spectral components often illuminate different geologic features (Partyka et al., 

1999), where Peyton et al. (1998) found that the 36 Hz spectral component image among 

the results between 20 Hz and 50 Hz could best delineate the edges of incised valleys in a 

Red Fork, Oklahoma formation. Marfurt and Kirlin (2001), and Laughlin et al. (2002) 

showed that the thickness of the channels is strongly related with their spectral amplitude 

due to the thickness tuning: a lower peak frequency indicating thicker formations while a 

higher peak frequency indicating thinner formation. Zeng (2014) interpreted the spatial 

geometry and stacking pattern of seismically thin-beds using seismic sedimentology-based 

approach. An observation was obtained from a synthetic model that one can characterize a 

thin-bed depositional system by a seismic-geomorphologic pattern of the same spatial 

shape on sequential relative geologic time slices, but the amplitude, phase, and polarity 

would vary depending upon the estimated seismic wavelet. Hardage (2009), and Lyu et al. 

(2018) reported that certain spectral components of the seismic data provide higher quality 

results over the other components. 

Alaei (2012), and Li and Lu (2014) computed coherence from different spectral 

components and co-rendered them using RGB blending to illuminate channels, caves, and 

karsts. Wang et al. (2018) developed a 3D geosteering coherence attribute and used it to 

detect deep-formation discontinuities. Wang et al. (2019) further used the multispectral 

phase information to combine the geosteering coherence and displayed the result using 

RGB blending. Noticing that such analysis was limited to only three spectral coherence 

volumes, Marfurt (2017), and Li et al. (2018) generalized these concepts by introducing 

what they called multispectral coherence, where the covariance matrices from each 

bandpass filtering bank are added prior to computing the coherence attribute. The case 
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studies of channel boundary highlighting (Li et al., 2018) and fault enhancement (Lyu et 

al., 2019) indicate the effectiveness of this multispectral coherence method. Qi et al. (2019), 

and Chopra and Marfurt (2019) generalized this concept further to compute coherence not 

only from multiple spectral components, but also from multiple azimuth and offset 

components.  

There are several popular seismic spectral decomposition algorithms including the 

continuous wavelet transform (CWT) (Sinha et al., 2005), matching pursuit (Castagna et 

al., 2003; Liu and Marfurt, 2007), and a technique based on maximum entropy called 

constrained least-squares spectral analysis (Puryear et al., 2012). This later approach has 

superior time and frequency resolution. Other techniques are similar to spectral 

decomposition in that they enhance certain window spectral components to facilitate the 

identification of lateral discontinuities and vertical unconformities, but do not attempt to 

reconstruct the original data. Gao (2013) introduced a spectral probe technique, which 

simply cross-correlates sines and cosines with the seismic data, and outputs the cross-

correlation coefficient as an attribute. A related (also nonlinear) technique is called the 

amplitude volume technique (AVT) (Bulhões, 1999; Bulhões and Amorin, 2005), which 

enhances the low-frequency information in the seismic data. 

Although more expensive than computing coherence from a single full-bandwidth 

seismic volume, multispectral coherence provides significantly enhanced images. In this 

paper, we first examine which multispectral coherence provides better images: computed 

using equally or exponentially sampled frequencies. We further examine whether 

multispectral coherence computed from the high-resolution maximum entropy spectral 

decomposition provides higher resolution images. Besides the CWT and maximum entropy 
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decomposition methods, we augment this relatively long list of decomposition algorithms 

with the nonlinear spectral probe and AVT methods. 

We begin our paper by illustrating the generalized workflow used to compute the 

multispectral coherence from the original full-bandwidth seismic data. We then discuss the 

theory of seismic spectral decomposition methods. Next, we evaluate these methods using 

a 3D seismic data volume with a complex suite of incised channels, acquired over the 

southwest coast of the North Island, New Zealand. Finally, we conclude with summary 

comments and recommendations. 

Method 

Multispectral coherence workflow 

In Figure 3.1, we show the workflow to compute the multispectral coherence attribute 

on the decomposed spectral components from the original full-bandwidth seismic data. The 

quality of the coherence images is dependent on the quality of the input seismic data. 

Chopra and Marfurt (2007) gave suggestions to improve the seismic data quality using 

some post-migration data conditioning methods.  

There are different types of noise in the coherence images. Marfurt and Alves (2014) 

discussed the pitfalls in seismic interpretation caused by seismic noise and processing 

errors. The coherence images may suffer from two categories of noise: seismic noise and 

“geology” noise. 

Seismic noise, for example acquisition footprint, random noise, and migration aliasing, 

plays a negative role in delineating geologic features. The quality of the coherence images 
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is definitely decreased in presence of such noise, which is expected to be suppressed before 

coherence computation. 

Another type of noise in coherence images is from chaotic geology features such as 

fault damage zones, or condensed sections, etc. These features also exhibit discontinuities 

in the coherence images, which should always be preserved. They are considered as 

geology “noise” if we try to delineate the incised channel boundaries, but they may be 

geologic indicators for other geology purposes (Marfurt and Alves, 2014).  

In our workflow, we first perform the structure-oriented filtering (SOF) on the input 

full-bandwidth seismic amplitude volume, to suppress the seismic noise and improve the 

data quality. SOF is a robust filtering method, avoiding the smearing of faults, fractures, 

and other seismic discontinuities.  

Next, we decompose the full-bandwidth seismic data after SOF into different spectral 

components. We evaluate several different spectral decomposition methods, including not 

only the CWT and maximum entropy decomposition, but also the AVT and spectral probe 

methods.  

We then build the covariance matrix, to combine multiple coherence attributes 

together into a single volume. Dewett and Henza (2015) used a self-organizing map method 

for combination. Sui et al. (2015) computed coherence using only the spectral magnitudes 

without the phase information, which couldn’t handle the complicated structures. To 

improve the adaptability, we follow the idea of Marfurt (2017) to build the covariance 

matrix using the spectral voices, considering both the spectral magnitude and phase 

information.  
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The spectral voices are defined as 

        , , , , , , exp , , ,l k m m l k m m l k m mu f t x y a f t x y i f t x y                (1) 

where u  represents the spectral voice of frequency f , a  is the magnitude component,   

denotes the phase component, and l  is the component number. 
kt  denotes the structurally 

interpolated time sample at a distance  ,m mx y  from the coordinate origin point. 

     The spectral voice u  in equation 1 and the corresponding analytic trace Hu  are used to 

compute each element mnC  of the covariance matrix C  along the structures, which 

considers both the magnitude and phase components: 

       
1 

   , , , , , , , , , , , ,
L K

H H
mn k l m m k l n n k l m m k l n n

l k K

C u t f x y u t f x y u t f x y u t f x y      (2) 

We use equation 2 to build the covariance matrix from different spectral components, 

which adapts to complicated geologic structures. For a specific spectral component, we can 

improve the quality of particular structures in the coherence image because the signal 

appears stronger than noise, further resulting in an improvement in the combined coherence 

attribute. 

       The final step is to compute the coherence attributes on the generated covariance 

matrix. The fact that coherence should be computed along structural dip has been known 

for some time (Marfurt et al., 1999). In our research, we used a Gradient Structure Tensor 

(GST) method to compute the inline and crossline dip attributes for the following 

coherence computation. We can output both the coherence volumes from each spectral 

component and the combined multispectral coherence dataset. In our research, we use the 
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energy-ratio method of Gersztenkorn and Marfurt (1999) for coherence computation, 

which is also used to provide the input for the fault skeletonization (Qi et al., 2016, 2019). 

This coherence computation method is realized by calculating the energy-ratio between the 

dominant eigenvalues and the sum of all eigenvalues of the covariance matrix. The details 

of the energy-ratio method are shown in Appendix A. 

Seismic spectral decomposition algorithms 

Seismic spectral decomposition (Partyka et al., 1999) is an important step in the 

multispectral coherence computation workflow (Figure 3.1). We can decompose the full-

bandwidth seismic data into different spectral components using linear or nonlinear 

decomposition methods. In our research, we first evaluate the application of CWT and 

maximum entropy decomposition methods for multispectral coherence computation, 

which could reconstruct the original full-bandwidth seismic data. 

CWT (continuous wavelet transform) is defined based on the scaled and shifted 

versions of a “mother wavelet”, which is a complex exponential of a frequency within a 

Gaussian temporal window (Grossmann and Morlet, 1984). We perform CWT by first 

cross-correlating the library of these wavelets with seismic trace then followed by 

summation over time (Appendix B). CWT is widely used in seismic interpretation, for 

example, Matos et al. (2011) indicated that we can use the Morlet complex wavelet 

transform to detect the phase discontinuities, and Davogustto et al. (2013) used the spectral 

ridges and phase residues to correlate with subtle stratigraphic features. 

CWT provides time-scale maps instead of the time-frequency spectrum produced by 

the short-time Fourier transform over a chosen time window. The “mother wavelet” 

selection is critical for CWT decomposition. Some factors should be considered during the 
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selection procedure, such as the vertical resolution reduction due to the side lobes of the 

wavelet (Castagna and Sun, 2006), even though there is not an optimum wavelet among 

the commonly used ones. The short-time Fourier transform uses a window with predefined 

length to produce time-frequency spectrum, which has a fixed time-frequency resolution. 

On the contrary, there is no requirement of predefining window length in the CWT method, 

resulting in a better time resolution at higher-frequencies and a better frequency resolution 

at lower-frequencies. 

However, the application of a sliding temporal window in CWT limits the temporal 

and frequency resolutions. Puryear et al. (2012) analyzed this fundamental issue in spectral 

decomposition using a thin-layer model surrounded by strong reflections. They observed 

that a short window is required to avoid the interference, but a long enough window is 

preferable to avoid the incorrect estimation of the notch location due to the window-

smearing effect on the spectrum. If we try to improve the frequency resolution, a longer 

window length is desirable, but resulting a poor time resolution. 

To further improve the time and frequency resolution of the CWT spectral analysis, 

we use a maximum entropy implementation of the short-time Fourier transform to 

decompose the full-bandwidth seismic data and compute the multispectral coherence. To 

reduce this window effect in seismic spectral analysis, the maximum entropy algorithm 

solves an inverse problem using an objective function to fit the data with the minimum of 

sines and cosines. Different empirical criteria can be used in the inversion based spectral 

analysis, for example, Portniaguine and Castagna (2004) used an iteratively reweighted 

least-squares regularization algorithm to invert the normal equations for approaching the 

seismic wavelet decomposition problem. We follow the constrained least-squares spectral 
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analysis method of Puryear et al. (2012), to compute the Fourier series coefficients as a 

function of time, which is inverted based on a basis of truncated sinusoidal kernels for a 

moving time window. It reduces the window smearing and provides a better resolution 

over the short-time Fourier transform and CWT. An important parameter in this iterative 

spectral analysis method is the number of iterations. A larger number of iterations provides 

more accurate least-squares approximations, but consumes more computation time. 

Besides the CWT and maximum entropy decomposition methods, we further evaluate 

two nonlinear spectral decomposition methods: AVT (amplitude volume technique) and 

spectral probe. Ten Kroode et al. (2013) indicated the benefits of the super-low-frequency 

information of seismic data. First, it could reduce the side lobes of the wavelet to improve 

the resolution. Second, it suffers less from the attenuation and scattering, which helps the 

waves to penetrate deeper in the earth. Further, it could assist the background model 

building for seismic inversion and migration velocity analysis. Additionally, the low-

frequency seismic data could help identify some geologic features, such as faults (Hardage, 

2009). Bulhões (1999), and Bulhões and de Amorin (2005) developed an AVT method to 

extract the super-low-frequency information from the original seismic data. Vernengo and 

Trinchero (2015), and Vernengo et al. (2017) showed several case studies, to indicate that 

the AVT data volume could help highlight geological features. AVT is realized by a 

nonlinear conversion of the full-bandwidth seismic data. The steps of the conventional 

AVT workflow (Bulhões, 1999) include calculation of the rms (root-mean-square) of the 

seismic amplitude, and then followed by the inverse Hilbert transform. In our research, we 

develop an optimized workflow using the envelope instead of the seismic amplitude. The 

details are illustrated in Appendix C. 
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We further evaluate another nonlinear spectral probe algorithm to decompose the full-

bandwidth seismic data and produce the multispectral coherence images. Gao (2013) 

originally computed a new attribute using a spectral probe process to improve the precision 

and resolution of the conventional seismic amplitude profiles for geometric interpretation. 

It is implemented by considering a full wavelength of a cosine wave as a wavelet probe 

and then cross-correlating with the seismic data (Appendix D). The spectral probe result 

can be considered as an approximation of a spectral voice subjected to a short-window 

automatic gain control in a mathematically loose sense. The outputs of the cross-correlation 

are normalized coefficients, ranging from -1.0 to +1.0. The generated components using 

spectral probe method are insensitive to the amplitude variation and are acceptable for 

geometric attributes computation. The wavelet spectral probe analysis has a higher 

computational efficiency compared to other Fourier transform based decomposition 

methods. 

Data description 

We perform a case study on a 3D field seismic data to evaluate the multispectral 

coherence computation workflow (Figure 3.1) using different spectral decomposition 

methods. The Tui3D seismic survey is located in the southwest coast of the North Island, 

New Zealand (Figure 3.2, after King et al. (1993), Infante-Paez and Marfurt (2017), and 

Lubo-Robles and Marfurt (2019)). The data is acquired by Veritas DGC Australia Pty in 

2003, which covers approximately 352 km2 offshore of the Taranaki Basin. The streamer 

separation is 150 m, and the source separation is 75 m, and the bin size is 12.5 m by 12.5 

m. The time sample rate of the original seismic data is 4 ms. 
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The Taranaki Basin is located above the subduction zone where the Pacific Plate is 

subducting beneath the Australian Plate (Yagci, 2016). The basin contains two primary 

structural elements: The Eastern Taranaki Graben Complex and the Western Platform. 

Tui3D survey is located on the Western Platform, which is affected by the normal block 

faulting during the Late Cretaceous-Eocene, but remains relatively stable during most of 

the Tertiary (Pilaar and Wakefield, 1984; Lubo-Robles and Marfurt, 2019).  

The Moki A sands unit is the target in our research, which is deposited as a base of 

the slope turbidite and characterized by major submarine meandering channel complex 

(Bussell, 1994). A geophysical challenge is how to clearly delineate the boundaries of the 

incised sinusoidal channels, such as the ones shown in a representative vertical slice AA’ 

(Figure 3.3a) and time slice at 2.16 s (Figure 3.3b) indicated by the green arrows in Figure 

3.3b. 

Data conditioning 

Libak et al. (2017) observed that coherence attribute has the potential to identify the 

small-scale displacement in the case of noise free in synthetic data, but the detectability 

will be decreased in the field seismic data due to the presence of noise. This motivates us 

to perform a noise attenuation process prior to coherence computation to improve the 

quality of coherence images. 

There are several different types of noise attenuation methods. We need to preserve 

the subtle geologic features such as the minor channels, which are indicated by the small-

scale edges in seismic data. We apply a structure-oriented filtering (SOF) on the post-stack 

full-bandwidth seismic data, following the suggestion of Chopra and Marfurt (2007). SOF 
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is robust to suppress the incoherent noise and coherent footprint artifacts, but preserves the 

subtle geologic features. 

The original full-bandwidth seismic data (Figure 3.3a and 3.3b) are good quality with 

relatively high S/N ratio but still have some random noise, which result in artifacts in the 

coherence attribute (Figure 3.4), decreasing its detectability of the incised channels. We 

performed SOF on the original data to suppress the noise. The coherence image computed 

using the SOF processed data (Figure 3.5) exhibits better quality with less noise over the 

result from the original seismic data (Figure 3.4). 

Which spectral voices to choose in multispectral coherence?: CWT experiments 

We first use the CWT method to decompose the full-bandwidth seismic data after 

SOF into different spectral voices, followed by the computation of the energy-ratio 

coherence for each component. An important issue in multispectral coherence is how to 

choose the appropriate components for computation among tens of decomposed spectral 

voices. In Figure 3.6a, we show the normalized spectrum of the SOF processed data in our 

target area from 1.8 s to 2.4 s. It is noted that the effective frequency bandwidth ranges 

from about 8 Hz to 95 Hz. We choose six CWT spectral voices within the effective 

bandwidth, starting from central frequency 10 Hz and ending with 85 Hz. We can use 

different spacing method for choosing the spectral voices between the starting and ending 

frequencies. A natural option is to choose equally-spaced CWT spectral voices with 

constant linear bandwidth. In Figure 3.6b, we show the series of wavelets used in equally-

spacing method with a constant 15 Hz increment, including central frequencies 10 Hz, 25 

Hz, 40 Hz, 55 Hz, 70 Hz, and 85 Hz. Another alternative to choose the CWT spectral voices 

is to use the exponentially-spaced components with constant octave bandwidth. We show 
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the wavelets used in the exponentially-spacing method in Figure 3.6c, using the same 

starting and ending frequencies with the equally-spacing case. The lateral axis in Figure 

3.6c indicates the constant exponent increment in exponentially-spacing method, resulting 

in the spectral voices with central frequencies 10 Hz, 15 Hz, 24 Hz, 36 Hz, 55 Hz, and 85 

Hz. 

In Figure 3.7, we show the coherence images computed using equally-spaced CWT 

spectral voices. It is noted that the channels with different scales are highlighted in the 

coherence images from different components. The boundaries of the thicker channels are 

much clearer in the coherence images using the lower-frequency voices, such as the 10 Hz 

(Figure 3.7a) and 25 Hz (Figure 3.7b) components, while the thinner channels and the 

geologic details inside the thicker channels are much clearer using the higher-frequency 

voices, such as the coherence images from 40 Hz (Figure 3.7c) and 55 Hz (Figure 3.7d) 

components. Artifacts associated with acquisition footprint (red arrows in Figure 3.7a, 3.7e 

and 3.7f) are stronger in the coherence images computed from several spectral voices. The 

quality seen in Figure 3.7f for the 85 Hz component is significantly lower, resulting in a 

coherence image containing less useful information.  

We then combine these different coherence volumes into one single coherence dataset 

using the workflow in Figure 3.1, which is shown in Figure 3.8. It is noted that this 

multispectral coherence computed using the equally-spaced spectral voices (Figure 3.8) 

has less noise (red circles) and clearer channel boundaries (green arrows) over the 

coherence image computed using the full-bandwidth seismic data (Figure 3.5). 

Additionally, the multispectral coherence image reveals more abundant structural details, 

such as the geologic features inside the thicker channels. 
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We further use six exponentially-spaced CWT spectral voices to compute coherence 

volumes, which are centered at 10 Hz (Figure 3.9a), 15 Hz (Figure 3.9b), 24 Hz (Figure 

3.9c), 36 Hz (Figure 3.9d), 55 Hz (Figure 3.9e), and 85 Hz (Figure 3.9f). The observations 

from Figure 3.9 are similar with the coherence images computed using the equally-spaced 

spectral voices (Figure 3.7). The thicker channels are more highlighted in the coherence 

images using the lower-frequency CWT spectral voices, while the higher-frequency 

components provide much clearer images of the thinner channels and small-scale geologic 

features.  

In Figure 3.10, we show the multispectral coherence image combined using the 

coherence volumes computed from the exponentially-spaced CWT spectral voices using 

the workflow in Figure 3.1. We can observe that it appears higher quality over the full-

bandwidth result (Figure 3.5). Especially, it is noted that the multispectral coherence image 

using the exponentially-spaced CWT components (Figure 3.10) exhibits fewer artifacts and 

clearer channel boundaries (green arrows in Figure 3.10) over the multispectral coherence 

using the equally-spaced CWT components (Figure 3.8). We recommend to compute 

multispectral coherence using the exponentially-spaced spectral voices. 

      Octave is defined in electronics as a logarithm unit for the ratio between frequencies, 

and in music an octave can express a musical interval. In terms of physics, we can consider 

an octave as the distance between one musical note and another note. Similarly, if we use 

the exponentially-spaced components with constant octave bandwidth, it will potentially 

provide clearer physical meaning of seismic signals in multispectral coherence compared 

to equally-spaced components. Deeper understanding of spacing methods in spectral voice 

selection still remains an interesting research topic. 
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Coherence on maximum entropy decomposed components 

We further use the maximum entropy method to improve the resolution of the CWT 

spectral voices by reducing the window smearing effect in the spectral analysis (Puryear et 

al., 2012). We choose the exponentially-spaced maximum entropy spectral voices to 

compute multispectral coherence.  

 The coherence images computed from each maximum entropy spectral voice are 

shown in Figure 3.11, using the same starting and ending frequencies with the ones in the 

CWT experiments. We take the 15 Hz spectral voice component for example to compare 

the coherence images computed using the maximum entropy (Figure 3.11b) and CWT 

(Figure 3.9b) spectral voices. It is noted that the coherence from the maximum entropy 

spectral voice (Figure 3.11b) provides much more details and exhibits higher resolution 

(red circle) of the channel boundaries over the coherence using the corresponding CWT 

component (Figure 3.9b). We can get similar observations from the comparison of other 

lower-frequency spectral voice components. We then generate the multispectral coherence 

(Figure 3.12) using the maximum entropy spectral voices, which exhibits higher resolution 

of small-scale features (green arrows in Figure 3.12) over the multispectral coherence 

image computed from the corresponding CWT components (Figure 3.10). 

In Figure 3.13, we use an example of the enlarged vertical amplitude slice to illustrate 

the reason why the multispectral coherence works. Figure 3.13b and 3.13c show the 24 Hz 

and 36 Hz spectral voice components using the maximum entropy decomposition from the 

full-bandwidth seismic amplitude (Figure 3.13a). Compared with the full-bandwidth data 

(red circles in Figure 3.13a), the boundaries of the thicker channels are much sharper in the 

24 Hz component (red circles in Figure 3.13b), while the thinner channel boundaries are 
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sharper and clearer in the 36 Hz spectral voice (red circles in Figure 3.13c). The channels 

with different scales are more highlighted in specific spectral voices, resulting in improved 

images of channel boundaries in the multispectral coherence. 

Coherence on AVT data volume 

We use an optimized nonlinear AVT algorithm (Appendix C) to extract the super-

low-frequency information (window length 16 ms), which helps delineate the large-scale 

geologic features. AVT produces only one data volume, not several different spectral 

components, which requires a relatively low computation cost and small storage of the 

following energy-ratio coherence calculation over other spectral decomposition methods. 

The AVT time slice is shown in Figure 3.14a, which contains less noise and weaker 

reflections compared with the original seismic amplitude time slice (Figure 3.3b). We then 

use this AVT dataset to compute the energy-ratio coherence attribute, which is shown in 

Figure 3.14b. It is clearer with less noise over the coherence computed using the SOF full-

bandwidth seismic data (Figure 3.5). Especially, it provides more continuous boundaries 

of the thicker channels (green arrows in Figure 3.14b) compared to the coherence images 

computed from other spectral decomposition methods. However, the imaging of small-

scale features inside the thicker channels are decreased due to the lack of the higher-

frequency components in the AVT data. 

Coherence on spectral probes 

The wavelet spectral probe analysis produces spectral voice components from the full-

bandwidth seismic data with high computational efficiency. In Figure 3.15, we show an 

example of the decomposed spectral voice using period 36 Hz. It is noted that the spectral 
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probe is insensitive to the amplitude variation. In a mathematically loose sense, the result 

approximates a spectral “voice” that has been subjected to a short-window automatic gain 

control. The energy is much more balanced than other spectral decomposition methods. 

The spectral probe components are available for the seismic geometric attribute calculation, 

such as coherence.  

      We decompose the full-bandwidth seismic data into six spectral probes using period 10 

Hz, 15 Hz, 24 Hz, 36 Hz, 55 Hz, and 85 Hz. We then use these spectral probes to compute 

the multispectral coherence (Figure 3.16). Besides the improvement over the full-

bandwidth coherence image (Figure 3.5), the multispectral coherence computed using 

spectral probes (Figure 3.16) exhibits more balanced over the multispectral coherence 

images from other spectral decomposition methods. However, because amplitudes are not 

preserved in the spectral probes, we use an equal weight for the noise in the noisier shorter-

period components when we build the covariance matrix. This increases the noises in the 

shorter-period component coherence images, and further decreases the quality of the 

multispectral coherence image using spectral probes (red circles in Figure 3.16). 

Conclusions 

We use a 3D seismic data volume to evaluate four different spectral decomposition 

methods in multispectral coherence computation. We recommend computing multispectral 

coherence using the exponentially-spaced spectral voices, as it provides better coherence 

images over the results using equally-spaced components for the same computation cost. 

The resolution of thinner channels and small-scale features is further improved in the 

multispectral coherence image computed using the maximum entropy spectral voices over 

the CWT results. The images of the thicker channel boundaries are the most continuous in 
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the coherence computed using the AVT dataset, but the quality of small-scale features 

inside the thicker channels is decreased. Further, multispectral coherence computed using 

the nonlinear spectral probes appears more balanced to help reveal the small-scale geologic 

features inside the thicker channel. However, because amplitudes are not preserved in the 

nonlinear spectral probe decomposition, we use an equal weight for the noise in noisier 

shorter-period components to build the covariance matrix, resulting in increased noise in 

the multispectral coherence images. Based on the observations in these experiments, we 

recommend computing multispectral coherence on the spectral voices decomposed using 

the maximum entropy method. The window length in spectral decomposition plays an 

important role in the generated coherence images. If we use a longer window, the geology 

features such as the incised channels are more averaged with greater geologic 

“overprinting”. The influence of window length in different spectral decomposition 

methods on the channel morphology remains an interesting research topic. 
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Appendix A: Coherence computation based on the energy-ratio method 

Each element of the covariance matrix is calculated using the analytic trace, to avoid 

the artifacts due to the small windows over the zero-crossings: 
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where d  denotes the original seismic data, Hd  is the corresponding Hilbert transform, mnC  

represents the element of the covariance matrix, and 
kt  denotes the structurally interpolated 

time sample at a distance  ,m mx y  from the coordinate origin point.  

We then generate the energy-ratio coherence by computing the ratio of the coherent 

energy 
cE  and the total energy 

tE  within an analysis window: 

                             
2




c

t

E
s

E
                                                                       (A-2) 

where   is a small positive value to avoid division by zero. We define the Karhunen-Loève 

(KL)-filtered coherent energy and the total energy as 
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Appendix B: Continuous wavelet transform (CWT) theory 

Grossmann and Morlet (1984) formally introduce that a function with zero mean is 

called a “wavelet”, which has finite energy concentrated in time and satisfies certain well-

established conditions. We can generate a family of the wavelet functions from a “mother 

wavelet”   t , which is centered about 0t , scaled using a dilation factor s , and shifted 

by time  : 
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CWT is performed by cross-correlating the library of wavelets of equation B-1 with a 

seismic time series: 
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where ( , )W s  is the time scale map,  d t  represents the seismic time series, and 
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 is the complex conjugate of 


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t

s
. The local spectrum is defined by the 

cross-correlation coefficients at each time sample.  

Appendix C: Optimized AVT workflow 

The optimized AVT workflow is implemented using the following three steps: 

1) Envelope calculation from the analytic transform of the seismic data, 

     H= i i iD t d t id t                                                       (C-1) 

where D  is the analytic signal, which is composed by the seismic amplitude d  and its 

Hilbert transform Hd . The envelope is then calculated by taking the magnitude of this 

analytic signal, 

       
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 2) Calculation of the rms envelope within a defined window, 
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  3) Inverse Hilbert transform of the rms envelope, 
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Appendix D: Spectral probe theory 

In spectral probe technique, we generate the normalized cross-correlation coefficients 

between a wavelet  w t  and the seismic amplitude  d t : 
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We set the wavelet probe using a cosine wave, 

                  ( ) cos 2  w j t fj t                                                                (D-2) 

where f is the frequency, t is the sample increment, and j is the sample index. If we 

choose the correlation range 12  J t
f

, which means exactly one period, equation D-1 

could be simplified to be  
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We produce different data volumes of cross-correlation coefficients with different 

periods (or corresponding frequencies) using equation D-3. 
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Chapter 3 figures 

 

 

 

 

Figure 3.1. A workflow showing the computation of multispectral coherence from the original full-

bandwidth seismic data. In this paper, we evaluate the impact of alternative decomposition algorithms, 

including CWT (continuous wavelet transform) of equal-space and exponential-space, and maximum 

entropy spectral decomposition, which can reconstruct the original seismic data. We also evaluate the 

impact of several nonlinear decomposition algorithms, including the AVT (amplitude volume 

technique) and spectral probe, which cannot reconstruct the original data. (Figure modified from 

Marfurt, 2017). 
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Figure 3.2. The location of Tui3D seismic survey (orange star) and the structural style of the offshore 

Taranaki Basin, New Zealand. After King et al. (1993), Infante-Paez and Marfurt (2017), and Lubo-

Robles and Marfurt (2019). The data is acquired by Veritas DGC Australia Pty in 2003, covering 

approximately 352 km2. The acquisition parameters are: streamer separation 150 m, source separation 

75 m, bin size 12.5 m by 12.5 m, and time sample rate 4 ms. 
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Figure 3.3. (a) A representative vertical slice AA ,́ and (b) time slice at t=2.16 s through the seismic 

amplitude volume at the level of several incised channels (green arrows in Figure 3.3b).  
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Figure 3.4. Coherence attribute time slice at 2.16 s computed using the original full-bandwidth seismic 

data, showing strong noises, which decrease its detectability of the incised channels. 

 

 

 

 

 

Figure 3.5. Coherence image computed using the SOF processed full-bandwidth seismic data, showing 

better quality with less noise compared to the coherence computed using the original data (Figure 3.4). 

 

 

 

 

 

 

 



78 

 

 
 

 
 

 

Figure 3.6. (a) The normalized spectrum of SOF processed data in target area form 1.8 s to 2.4 s, and 

(b) the wavelets used in equally-spaced CWT with a constant linear increment, including central 

frequencies 10 Hz, 25 Hz, 40 Hz, 55 Hz, 70 Hz, and 85 Hz, and (c) the wavelets used in exponentially-

spaced CWT with a constant octave bandwidth. Note that the lateral axis in Figure 3.6c indicates the 

constant exponent increment, resulting in CWT spectral voices with central frequencies 10 Hz, 15 Hz, 

24 Hz, 36 Hz, 55 Hz, and 85 Hz. 
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Figure 3.7. Coherence images computed using six equally-spaced CWT spectral voices centered at: (a) 

10 Hz, (b) 25 Hz, (c) 40 Hz, (d) 55 Hz, (e) 70 Hz, and (f) 85 Hz. Note that the boundaries of the thicker 

channels are much clearer in the coherence images using the lower-frequency spectral voices, while the 

thinner channels and the geologic details inside the thicker channels are more highlighted using the 

higher-frequency components. Artifacts associated with acquisition footprint (red arrows in Figure 3.7a, 

3.7e and 3.7f) are stronger in the coherence images computed from several components. The quality 

seen in Figure 3.7f for the 85 Hz component is significantly lower resulting in a coherence image 

containing less useful information over other components. 
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Figure 3.8. Multispectral coherence computed using six equally-spaced CWT spectral voices (Figure 

3.7), providing an image with less noise (especially red circles) and clearer channel boundaries 

(especially green arrows) over the full-bandwidth coherence (Figure 3.5). 
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Figure 3.9. Coherence images computed using exponentially-spaced CWT components with central 

frequencies at: (a) 10 Hz, (b) 15 Hz, (c) 24 Hz, (d) 36 Hz, (e) 55 Hz, and (f) 85 Hz. The observations 

are similar with Figure 3.7, indicating that thicker channels are more highlighted in lower-frequency 

CWT spectral voices, while the higher-frequency components provide much clearer images of the 

thinner channels and small-scale geologic features. Noise in the 85 Hz component coherence (Figure 

3.9f) is much stronger than other components. 

 

 



84 

 

 

 

 

 

 

 

 

 

Figure 3.10. Multispectral coherence computed using six exponentially-spaced CWT components 

(Figure 3.9). Note that it exhibits fewer artifacts and clearer channel boundaries (green arrows) over the 

multispectral coherence using the equally-spaced CWT components (Figure 3.8). 
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Figure 3.11. Coherence images computed using maximum entropy spectral voice components at: (a) 

10 Hz, (b) 15 Hz, (c) 24 Hz, (d) 36 Hz, (e) 55 Hz, and (f) 85 Hz. Note that the coherence images from 

the lower-frequency maximum entropy spectral voices provide more details and exhibit higher 

resolution of the channel boundaries over the coherence images using the corresponding CWT 

components, such as the red circle area in Figure 3.11b compared with Figure 3.9b.  
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Figure 3.12. Multispectral coherence image computed using maximum entropy spectral voice 

components, exhibiting higher resolution of small-scale features (green arrows) compared with the 

multispectral coherence image computed from the corresponding CWT components (Figure 3.10). 
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Figure 3.13. (a) Enlarged full-bandwidth vertical seismic amplitude slice. (b) 24 Hz spectral voice and 

(c) 36 Hz spectral voice after maximum entropy decomposition. Compared with the full-bandwidth data 

(red circles in Figure 3.13a), the boundaries of the thicker channels are much sharper in the 24 Hz 

component (red circles in Figure 3.13b), while the thinner channel boundaries are sharper and clearer 

in the 36 Hz spectral voice (red circles in Figure 3.13c). The channels with different scales are more 

highlighted in specific spectral voices, resulting in improved images of channel boundaries in the 

multispectral coherence. 
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Figure 3.14. (a) AVT time slice, showing less noise and weaker reflections compared with the original 

seismic amplitude time slice (Figure 3.3b). (b) Coherence attribute computed using the AVT volume, 

appearing much clearer with less noise over the coherence computed using the SOF full-bandwidth 

seismic data (Figure 3.5). Note the more continuous boundaries of the thicker channels (green arrows 

in Figure 3.14b) compared with the coherence images computed from other spectral decomposition 

methods. However, the imaging of some small-scale features inside the thicker channels are decreased 

due to the lack of the higher-frequency components in the AVT data. 

 

 

 

 

 

 

 

 



90 

 

 

 

 

Figure 3.15. Vertical slice of spectral probe component using period 36 Hz, which is insensitive to the 

amplitude variation and the energy is much more balanced than other spectral decomposition methods, 

especially the channels indicated by red circles.  

 

 

 

Figure 3.16. Multispectral coherence image computed using six spectral probes. It appears more 

balanced than the multispectral coherence images from other spectral decomposition methods, but 

noisier due to the equal weight for the noise in the shorter-period components when we build the 

covariance matrix (red circles).  
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CHAPTER 4: IMPROVING FAULT DELINEATION USING MAXIMUM 

ENTROPY MULTISPECTRAL COHERENCE 

Abstract 

The knowledge of fault geometry plays an important role in reservoir modeling and 

characterization. Seismic attributes, such as volumetric dip, coherence, and curvature, 

provide an efficient and objective tool to extract the fault geometric attributes. Traditionally, 

we use the noise-attenuated full-bandwidth seismic data to compute coherence followed 

by smoothing, sharpening, and skeletonization. However, different stratigraphic reflectors 

with relatively similar waveforms and amplitudes juxtaposing across a fault will 

algorithmically appear to be continuous, with the resulting fault image being broken. This 

leads to pseudo fault breakpoints and challenges the accurate extraction of other fault 

geometric attributes. Because the phase of the similar reflections across the faults varies 

with different spectral components, such non-stratigraphic alignments occur for only a few 

spectral components such that a multispectral coherence algorithm produces more 

continuous fault images. We evaluate the influence of spectral voice selection and spectral 

decomposition algorithm on the quality of fault imaging in multispectral coherence images 

using a 3D seismic survey acquired in the Taranaki Basin, New Zealand. Of the algorithms 

evaluated, we find the high-resolution maximum entropy based multispectral coherence 

method provides better result than those based on other spectral decomposition algorithms, 

which especially improves the fault continuity. However, the lateral resolution of fault 

imaging in multispectral coherence is decreased compared to the full-bandwidth coherence, 

because the fault image is smeared when we combine the coherence volumes computed 

using different spectral voices. We perform a fault enhancement workflow on the 
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maximum entropy based multispectral coherence volume to improve the lateral resolution 

of fault imaging, which helps delineate the minor faults.  

Introduction 

A geologic fault is defined as an approximately planar fracture or discontinuity in a 

rock volume across which there is visible displacement caused by rock mass movement. 

There are three basic types of faults: normal faults, reverse faults, and strike-slip faults. 

Identification and visualization of faults have indicated important applications in petroleum 

geology (e.g., Rotevatn and Fossen, 2011).  

How to accurately delineate the fault geometric attributes still remains a big challenge, 

especially in the areas with complicated structures and poor data quality. Fault height is 

defined as the fault dimension measured along the dip direction, while the fault length is 

the fault dimension estimated along the strike. In seismic scale, a large fault often appears 

as a suite of smaller fault segments (Libak et al., 2017). The locations of the breakpoints 

for each fault segment determine the height and length of these fault segments. 

The traditional fault interpretation approach is to hand-pick a suit of coarsely spaced 

lines perpendicular to the fault strike, which is a time-consuming task and can be highly 

dependent on the interpreters’ experience. Additionally, this traditional approach faces the 

potential risk of ignoring subtle details along the faults that falls between the picked lines. 

Seismic attributes provide a more modern workflow for fault identification and 

visualization (Chopra and Marfurt, 2007). Here, the interpreter examines time slices 

through fault-sensitive seismic attribute volumes, such as coherence, volumetric dip, and 

curvature, to confirm whether the faults seen on vertical amplitude images are laterally 
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continuous or disjoint. Curvature is excellent for visualizing faults but not necessarily for 

picking them. The most common situation is a most-positive and most-negative curvature 

anomaly pair that brackets the exact location of fault (Bhattacharya and Verma, 2019). For 

this reason, picking a curvature anomaly is biased to one side of the fault (Qi and Marfurt, 

2018). However, when multiple faults cross-cut each other, Jahan et al. (2017) found that 

curvature anomalies become overly complex. Variations of seismic coherence attribute 

family are routinely used to detect faults, which could be computed using algorithms based 

on maximum cross-correlation (Bahorich and Farmer, 1995), Sobel filter (Luo et al., 1996), 

semblance (Marfurt et al., 1998), eigen-decomposition (Gersztenkorn and Marfurt, 1999), 

gradient structure tensor (Randen et al., 2000), or energy-ratio (Chopra and Marfurt, 2007). 

Unlike a human interpreter, all of these coherence algorithms operate in a small window 

consisting of perhaps 5 or 9 traces and 3 to 15 time samples, and therefore measure the 

local continuity of the seismic data. For this reason, all of these algorithms suffer from the 

alignment effect of different stratigraphic horizons with similar seismic waveforms across 

a fault, leading to holes in the subsequent coherence images.  

Especially, these coherence gaps due to similar seismic reflections play a negative 

role in the interpretation of segmented faults. A segmented fault is composed of two or 

more fault segments arranged in echelon patterns (Davison, 1994; Schultz et al., 2010), 

compared to an isolated fault with no major mechanical interaction with nearby faults. A 

fault can be segmented vertically, horizontally, or in 3D. Fault segments can be hard-linked 

by fault splaying, or soft-linked by ductile strain of the rock volume between them (Walsh 

et al., 2003). In seismic profiles, if different stratigraphic reflectors with relatively similar 

waveforms juxtapose across the faults, the generated coherence image appears 
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discontinuous, which results in pseudo fault breakpoints. We face the risk of 

misinterpreting other faults to be segmented faults using this coherence attribute with poor 

fault continuity.  

The seismic data come to the interpreter from the processing shop as a broadband, 

often spectrally whitened single volume. Depending on the data quality, the interpreter may 

use footprint suppression and structure-oriented filtering (SOF) to precondition the data to 

improve the quality of the subsequent coherence result (e.g., Chopra and Marfurt, 2007). 

Libak et al. (2017) observe that a larger temporal window in coherence computation can 

increase the fault continuity and reduce the noise content, but will overestimate the height 

of smaller faults. If the faults are not vertical, a large vertical analysis window can lead to 

lateral smearing of the discontinuities and even to small lateral shifts in the fault trace as 

seen on time slices. This latter artifact, along with the annoying stair-step artifacts (Lin and 

Marfurt, 2017) leads to misties when picking faults on coherence time slices and faults 

picked on vertical slices through the seismic amplitude data. 

Fault breakpoints on seismic profile can be misinterpreted due to different reasons. 

For example, migration velocity analysis is sometimes performed to increase the continuity 

of reflectors while the actual geology is not continuous. Additionally, transition from 

competent to incompetent beds and improper selection of seismic migration algorithm for 

complicated structures can also lead to misinterpretation of fault breakpoints. Especially, 

the pitfalls associated with different horizons with similar waveforms aligned across a fault 

are well known by interpreters using auto-pickers (Figure 4.1, after Herron, 2011). The 

same problem leads to holes in coherence images that a human interpreter would manually 

pick through using a geologic model of sedimentary processes and tectonic deformation 
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(Libak et al., 2017; Lyu et al., 2019). In addition to increasing the size of temporal analysis 

window in the coherence computation (Libak et al., 2017), we can filter the coherence 

image using swarm intelligence (Pedersen et al., 2002), moment tensors and eigen-

decomposition followed by image dilation and image erosion (Barnes, 2006), dynamically 

warping the seismic images using windows larger than a single event (Hale, 2013), or 

constructing a linked data structure (Wu and Hale, 2016). 

Alaei (2012), Dewett and Henza (2016), Marfurt (2017), Li et al. (2018), Lyu et al. 

(2018), and Chopra and Marfurt (2019) show that multispectral coherence can improve the 

quality of coherence images compared to conventional full-bandwidth coherence. In some 

cases, this improvement is linked to certain spectral component exhibiting a higher S/N 

(signal-to-noise ratio) than other components, sometimes due to seismic data quality 

(Hardage, 2009) and sometimes due to the geologic features such as tuning (Zeng, 2015) 

and reflector alignment. In other cases, multispectral coherence measures the lateral change 

in phase across faults for different spectral components. Whatever the reason, multispectral 

coherence has been proven to be an effective tool to delineate the channel boundaries (Li 

et al., 2015; Li et al., 2018; Lyu et al., 2018) and detect the faults (Alaei, 2012; Dewett and 

Henza, 2016; Marfurt, 2017; Lyu et al., 2019; Qi et al., 2019).  

Multispectral coherence is implemented by combining the coherence volumes 

computed using different spectral voices. There are two important issues for the 

computation of multispectral coherence: How to choose appropriate spectral voices, and 

which spectral decomposition algorithm to use. Dewett and Henza (2016) chose their 

components interactively. Lyu et al. (2020) evaluated both alternative spectral voice 

spacing methods and spectral decomposition algorithms as input to multispectral coherence. 
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When applied to a 3D volume with incised channels, their analysis showed that 

multispectral coherence images computed from exponentially spaced rather than equally 

spaced spectral voices better delineate the incised channel boundaries, and that high-

resolution maximum entropy spectral decomposition algorithm further improves the 

resolution and quality of thinner channels and small-scale features than spectral 

decomposition methods. 

Additionally, because the coherence images computed using different spectral voices 

depict different lateral resolution, the generated multispectral coherence image is smeared 

with lower lateral resolution after combination, which challenges the identification of 

minor faults. To address this issue, a directional skeletonization (Qi et al., 2016) after a 

Laplacian of a Gaussian filtering (Machado et al., 2016) is performed on the coherence 

volume to improve the lateral resolution.  

In this paper, we extend the analysis of multispectral coherence by Lyu et al. (2020) 

for incised channels to determine the best workflow to fill the coherence gaps caused by 

relatively similar reflectors juxtaposed across the faults, improving the fault continuity. 

Because the phase of seismic reflections appears different in various spectral components, 

the alignment effects occur for only a few spectral voices but not for all spectral voices. 

This is the reason why we can improve the fault continuity and minimize the pseudo fault 

breakpoints using multispectral not full-bandwidth coherence images. We further evaluate 

that if the high-resolution maximum entropy spectral decomposition algorithm improves 

the resolution and quality of fault imaging in multispectral coherence volume. Additionally, 

we compute a fault enhancement workflow on the multispectral coherence volume to 

further improve the lateral resolution, which helps identify the minor faults.  
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We begin with a description of the 3D seismic data volume. Next we precondition the 

data for fault detection by applying footprint suppression and SOF, and illustrate the gaps 

in the faults due to alignment of similar reflectors on the full-bandwidth data volume. Then 

we attempt to ameliorate these shortcomings through the use of different spectral voice 

computation algorithms and multispectral coherence. A 3D case study in offshore Taranaki 

Basin is shown to indicate that maximum entropy based multispectral attributes effectively 

improve fault continuity and minimize pseudo fault breakpoints. Finally, we conclude with 

a summary of our findings and recommendations. 

Data description 

We illustrate the problem and our proposed solution using the highly fault Opunake 

3D seismic dataset, located in the south-eastern part of the offshore Taranaki Basin, New 

Zealand (Figure 4.2). The Taranaki Basin is characterized as an extension from the 

Taranaki Fault Zone along the eastern margin (Smith et al., 1989) and exhibits complex 

subsurface geology with thick sedimentary sequences (Reilly et al., 2015). All of the 

structural elements within the Taranaki Basin are developed by the continuous tectonic 

activities and clockwise movement of the plate boundaries (King and Thrasher, 1992; 

Kumar and Mandal, 2017).  

The study area (Figure 4.2) is characterized by a complex fault system between the 

Western Platform and the Taranaki Graben (Nodder, 1993), which is cut by the Cape 

Egmont Fault Zone and its splay. Seismic imaging and interpretation of this highly 

deformed fault system remain big challenges. 
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The 215 km2 60-fold 3D seismic data were prestack time migrated, into bin sizes 6.25 

m × 25.0 m with a time sample increment of 4 ms. Figure 4.3 shows a representative 

vertical slice AA’ and time slice at t=0.40 s of the original seismic data exhibiting complex 

faulting. Note that the seismic data are contaminated by random noise, which decreases the 

detectability of the faults. We can also observe serious acquisition footprint in the 

amplitude time slice (Figure 4.3b), which will generate unexpected artifacts in the 

following coherence attribute computation.  

Data conditioning 

Coherence should always be computed along structural dip (Marfurt et al., 1999). 

Gradient structure tensors (GST) (Bakker, 2002; Luo et al., 2006) provide one of the most 

computationally efficient means of computing structural dip. In our implementation, we 

generalize the more commonly used algorithms by using an analytic versus the measured 

seismic trace, a short-window filter to minimize amplitude changes and maximize phase 

changes within the window, followed by a Kuwahara filter (Kuwahara et al., 1976; Marfurt, 

2006) that assigns the dip to be that of the overlapping window with the greatest alignment. 

We then use the generated structural dip to guide the coherence computation using an 

energy-ratio method described in Appendix A of chapter 3. 

The quality of the input seismic data is critical for the quality of the coherence images. 

The coherence vertical slice (Figure 4.4a) and time slice (Figure 4.4b) computed using the 

original full-bandwidth seismic are quite noisy, hindering identification of faults.  

In addition to seismic noise, chaotic reflectors or “geologic” can also mask the 

coherence fault signature (Marfurt and Alves, 2014). Although the stronger reflectors are 
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relatively noise free, zones of lower reflectivity caused by subtle variations in the acoustic 

impedance of two layers exhibit a much lower S/N, giving rise to coherence anomalies 

parallel to local dip. Careful inspection will show some of these anomalies are geologic in 

nature and correspond to areas a geologist would define as possible condensed section. 

Mass transport deposits that sometimes appear as small rotated blocks and sometimes as 

chaotic reflectors also give rise to low coherence anomalies in this data volume. Gouges 

with apparent outrunner blocks and scours provide still more stratigraphic anomalies. In 

general, we want to preserve geologic features and suppress anomalies due to seismic noise.  

There are several different types of methods to suppress the seismic noise before 

coherence computation (Chopra and Marfurt, 2007). In this data volume, we observe 

acquisition footprint on the original seismic amplitude (Figure 4.3b) and coherence (Figure 

4.4b) time slices. To suppress these footprint artifacts, we use kx-ky filters followed by 

adaptive subtraction (Falconer and Marfurt, 2008), resulting in the vertical and time slices 

shown in Figure 4.5. Note that some “geologic” noise is suppressed by this footprint 

attenuation workflow, such as the noise in coherence vertical slices (Figure 4.4a and 4.5a) 

caused by the strong reflections, because some of these noises appear periodic. 

In addition to acquisition footprint, random noise in the seismic amplitude volume 

also decreases the detectability of faults in the coherence images. We therefore apply SOF 

(structure-oriented filtering) to the seismic amplitude volume after footprint attenuation 

and obtain the coherence images shown in Figure 4.6 that further improve the quality of 

fault images.  
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Data-adaptive windows in coherence computation 

The analysis window plays an important role in delineating the fault geometric 

attributes in the coherence images. On coherence images, the fault height and length can 

depend on size of the analysis window, with larger windows potentially smearing a fault 

anomaly beyond its true extent. We generally use an analysis window with constant size in 

the coherence computation. A constant sized large analysis window “vertically stacks” the 

discontinuities which may improve the S/N of near vertical faults, but smears the lateral 

resolution more gently dipping faults, and artificially extends the limits of small faults. In 

contrast, a constant-sized small analysis window preserves high resolution events but may 

provide inferior images in areas with low S/N.  

Marfurt et al. (1998) recognized that for moderate quality data the optimum window 

size is a function of the spectral content. For example, if the dominant frequency is 50 Hz, 

and dominant period 20 ms, significantly increasing the window size beyond 20 ms adds 

little to the coherence anomaly at the target level but risks mixing discontinuities at 

different stratigraphic levels into the result. Like coherence, spectral decomposition is 

routinely used in seismic interpretation. Lin et al. (2014) therefore defined a data-adaptive 

coherence analysis window based on the laterally and vertically smoothed spectrum of the 

data. In their implementation, the window size is defined to be the inverse of the frequency 

at a user defined percentile (e.g. 50 or 80 percent).  

In Figure 4.7, we show the coherence vertical slices computed with a constant ±8 ms 

analysis window (Figure 4.7a), a constant ±24 ms analysis window (Figure 4.7b), and a 

data-adaptive analysis window (Figure 4.7c) using the same noise attenuated full-

bandwidth seismic data. Note that the larger ±24 ms constant window provides a coherence 
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image with better continuity than that using the smaller ±8 ms, but smears the minor faults. 

The smaller constant window improves the resolution of the coherence image, but appears 

noisier. The data-adaptive analysis window provides coherence result with both good 

continuity and high resolution. 

Pseudo fault breakpoints due to alignment of similar reflections 

The coherence images computed using the noise attenuated seismic data (Figure 4.6) 

provide a significant improvement over the coherence results computed using the original 

seismic amplitude volume (Figure 4.4). However, if we zoom in the right part of the 

coherence vertical slices and co-render them with seismic amplitude (Figure 4.8), we 

observe multiple gaps and stair-step artifacts in the faults seen on the vertical slices 

computed using both the original and noise attenuated seismic data, especially the ones 

indicated by red arrows in Figure 4.8b. Unlike a human interpreter who looks at the entire 

seismic section and draws a fault through such “continuous” zones using discontinuities 

above and below as a guide, algorithms like coherence are purely local, using only the 

information available in the analysis window.  

The coherence algorithms are all based on measuring the waveform similarity. 

Relatively similar reflections across the faults are common in our survey, which challenges 

the detection of waveform dissimilarity around the faults. Although different coherence 

algorithms exhibit different sensitivity to areas where similar reflections juxtapose across 

a fault, they all show high coherence values (Libak et al., 2017), such as the obvious gaps 

in coherence image (red arrows in Figure 4.8b). The fault breakpoints will be 

misinterpreted on this coherence image, further resulting in inaccurate measurement of 

fault height and length. 
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Reflector alignment at different spectral voices 

As with the failure of auto-pickers shown in Figure 4.1, algorithmic gaps that suggest 

segmented rather than continuous faults can lead to inaccurate estimates of the fault height, 

length, and style. We can observe obvious alignment effects in the zoomed full-bandwidth 

seismic vertical slice (Figure 4.9a) indicated by the red arrows. To avoid such fault gaps, 

we will want to compute the coherence attribute for a version of the seismic data exhibiting 

a weaker alignment effect.  

Spectral decomposition has been widely used in seismic exploration (e.g., Peyton et 

al., 1998; Partyka et al., 1999; Castagna et al., 2003; Hu et al., 2020; Liu et al., 2020), 

which transforms a single full-bandwidth seismic amplitude volume into multiple 

frequency component volumes. Because of thin-bed tuning and other phenomena, a 

specific spectral component may show the edges of stratigraphic features such as channels 

and carbonate buildups better than others. For example, a thicker channel is better 

delineated at a lower frequency, while a narrower channel is highlighted at a higher 

frequency (Marfurt and Kirlin, 2001; Laughlin et al., 2002; Li et al., 2018; Lyu et al., 2020).  

Gao (2013) found that spectral probe based on a specific frequency better delineated 

faults than the original full-bandwidth data. There are several kinds of spectral 

decomposition algorithms, such as simple band-pass filtering, continuous wavelet 

transform (CWT) (Grossmann and Morlet, 1984), maximum entropy spectral analysis 

(Puryear et al., 2012), and spectral probes (Gao, 2013), etc.  

 Although a full-bandwidth seismic signal may provide false alignment across a fault, 

the phase of each spectral component will exhibit different alignments from each other, 

that together provide a means to map the fault. Figure 4.9 shows the aligned reflectors 
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around the faults indicated by red arrows in Figure 4.9a are less aligned in the 36 Hz 

(yellow ellipses in Figure 4.9b) and 55 Hz (yellow ellipses in Figure 4.9c) spectral voices. 

Figure 4.10 shows the corresponding coherence images computed using the full-

bandwidth seismic data (Figure 4.10a), 36 Hz (Figure 4.10b), and 55 Hz spectral voice 

(Figure 4.10c). Obvious gaps in what a human interpreter would determine to be a 

continuous fault appear in the full-bandwidth coherence (red arrows in Figure 4.10a). The 

coherence images computed using spectral voices provide a significant improvement of 

different faults indicated by the green ellipses in Figure 4.10b and 4.10c. 

Review of multispectral coherence theory 

Based on the physical explanation why certain spectral voice provides better imaging 

for specific faults in the previous subsection, we try to minimize pseudo fault breakpoints 

and improve fault continuity by combining coherence images computed using various 

spectral voices.  

A traditional way is to co-render the coherence volumes from different spectral voices 

using RGB (red-green-blue) blending. It has been applied to help delineate channels, caves, 

and karsts (Alaei, 2012; Li and Lu, 2014; Wang et al., 2019). However, this combination 

approach is limited to only three coherence volumes, which is not available if we want to 

combine more spectral voices’ results. To relax the limitation of RGB blending, Dewett 

and Henza (2016) combined the coherence volumes using a self-organizing map method. 

Sui et al. (2015) used only the spectral magnitude without phase information to generate 

the combined coherence volume.  
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To adapt to more complicated subsurface structures, Marfurt (2017) introduced 

multispectral coherence considering both the spectral magnitude and phase information 

through the use of spectral voices. Unlike RGB blending, there is no limit of the number 

of input spectral voices that can be used. For simplicity, Marfurt (2017) used a suite of 

filter banks (equivalent to CWT voice components) as input to multispectral coherence; 

here we will examine alternative decomposition algorithms as input. The details of 

multispectral coherence theory are provided in chapter 3. 

The role of spectral voice selection in multispectral coherence on fault imaging 

There are two important factors in multispectral coherence that affect the quality of 

the fault imaging: spectral component selection and spectral decomposition algorithm. We 

first estimate the effective frequency bandwidth by analyzing the noise-attenuated full-

bandwidth seismic dataset, defining the starting and ending spectral voices in multispectral 

coherence. We then sample the bandwidth using two methods - equal spacing and 

exponential spacing (constant number of components per octave) to determine if one is 

better than the other for fault delineation. 

Equal-spacing method means that we choose spectral voices with a constant linear 

increment, while exponential-spacing method provides the spectral voices with a constant 

octave bandwidth. In our survey, we divide the bandwidth from 10 to 85 Hz into six CWT 

spectral voices using the equally spaced (10, 25, 40, 55, 70, 85 Hz) and exponentially 

spaced (10, 15, 24, 36, 55, 85 Hz) components and show the corresponding multispectral 

coherence time slices in Figure 4.11.  
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Although these two coherence images exhibit comparable imaging quality of the 

primary faults. However, more detailed analysis indicates that the coherence image using 

the exponentially-spaced spectral voices (red arrows in Figure 4.11b) exhibits better 

continuity over the result using the equally-spaced spectral voices (red arrows in Figure 

4.11a). We therefore recommend computing multispectral coherence for fault imaging 

using the exponentially-spaced spectral voices. 

The role of spectral decomposition algorithm on fault imaging 

Spectral decomposition algorithm is another important factor on the quality of 

multispectral coherence images. Band-pass filters (equivalent to CWT filter banks) are 

easy to incorporate internally to a multispectral coherence algorithm and were used by 

Marfurt (2017), Li et al. (2018), Lyu et al. (2019), and Qi et al. (2019).  

 A library of CWT filter banks (Grossmann and Morlet, 1984) are cross-correlated 

with each seismic trace, thereby constructing a CWT spectral voice. The temporal 

resolution of the CWT results depends on the size of the center frequency of the filter 

(Castagna and Sun, 2006; Puryear et al., 2012). High frequency components can be 

computed in a short window, while the low frequency components require a longer window, 

where the window size is approximately two times the period of the center frequency.   

Maximum entropy algorithms provide a least-squares estimate of the contribution of 

a given spectral component (Puryear et al., 2012), which does not require the analysis 

window to contain a full period. We solve an inverse problem using the objective function, 

which tries to fit the data with the minimum of sines and cosines. The Fourier series 

coefficients are considered as a function of time and inverted using the truncated sinusoidal 
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kernels for a moving time window. For this reason, maximum entropy based spectral 

decomposition can reduce smearing and provide superior time and frequency resolution 

over CWT methods.  

We can decompose the full-bandwidth seismic data into different spectral voices using 

either linear methods (e.g. band-pass filtering, CWT, and maximum entropy based 

algorithm) or nonlinear method (e.g. spectral probe algorithm (Gao, 2013)). The linear 

spectral decomposition algorithms can preserve amplitude information and try to 

reconstruct the original full-bandwidth seismic data. However, the nonlinear spectral 

decomposition does not preserve the amplitude information and could not be used to 

reconstruct the original seismic data. 

In Figure 4.12 and 4.13, we show the multispectral coherence vertical and time slices 

computed using the spectral voices decomposed by band-pass filtering (Figure 4.12a and 

4.13a), CWT (Figure 4.12b and 4.13b), spectral probes (Figure 4.12c and 4.13c), and 

maximum entropy based method (Figure 4.12d and 4.13d). All multispectral coherence 

images provide significantly improved fault imaging compared to the coherence results 

computed using the full-bandwidth seismic data (Figure 4.6).  

If we further compare the multispectral coherence images computed using different 

spectral decomposition algorithms, the band-pass filtering results (Figure 4.12a and 4.13a) 

exhibit relatively poor continuity. The CWT (Figure 4.12b and 4.13b) results improves the 

continuity, but the resolution is not good enough to identify the minor faults. The 

multispectral coherence images computed using spectral probes (Figure 4.12c and 4.13c) 

appear more comparable energy comparison between the fault imaging and noise. Due to 

amplitude insensitivity of spectral probes, an equal weight is assigned to noisy and less 
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noisy components during the construction of the covariance matrix, which decreases the 

quality of fault imaging in the generated multispectral coherence attribute. Similarly, the 

multispectral coherence images computed using cosine of instantaneous phase or small-

window AGC (automatic gain control) dataset appear noisy due to the application of very 

similar weights for various spectral voices with different S/N. We recommend to avoid 

computing multispectral coherence using the decomposed spectral voices without 

amplitude information. The multispectral coherence results computed using the maximum 

entropy spectral voices (Figure 4.12d and 4.13d) show good continuity of the primary faults, 

and provide higher resolution image to help identify the minor faults. 

Fault segmentation is a phenomena taking place in faults, such as strike slip faults. 

Accurate estimation of the real fault breakpoints vertically and laterally is important to 

characterize the faults. However, the pseudo fault breakpoints caused by relatively similar 

reflections juxtaposing faults in coherence image will lead to misinterpretation of faults. 

Focusing on the fault gaps due to non-stratigraphic alignments, we show the zoomed 

multispectral coherence vertical slices co-rendered with seismic amplitude in Figure 4.14. 

Note that all multispectral coherence images (Figure 4.14) improve the fault continuity 

over the full-bandwidth coherence (Figure 4.8b), allowing us to better estimate fault 

breakpoints and further fault height and length.  

Of the alternative spectral decomposition algorithms, it is observed that the maximum 

entropy based multispectral coherence (Figure 4.14d) provides the best fault continuity 

with minimum gaps compared to other spectral decomposition algorithms (Figure 4.14a, 

4.14b and 4.14c). Based on the preceding observations, we recommend to compute 
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multispectral coherence attribute for fault detection using this high-resolution maximum 

entropy spectral decomposition algorithm to further improve the fault imaging quality. 

Improving lateral resolution of faults in multispectral coherence 

Multispectral coherence, especially the maximum entropy based multispectral 

coherence images (Figure 4.12d, 4.13d, and 4.14d), optimizes the imaging quality of faults 

over the corresponding full-bandwidth coherence slices (Figure 4.6a, 4.6b, and 4.8b). 

Especially, the pseudo fault breakpoints caused by non-stratigraphic alignments of similar 

seismic reflections are effectively minimized in the maximum entropy based multispectral 

coherence images. 

However, it is further noted that the multispectral coherence images appear lower 

lateral resolution compared to the full-bandwidth coherence results. To illustrate the reason 

why multispectral coherence decreases the lateral resolution, we show the vertical 

coherence slices of a single fault computed using 10 Hz (Figure 4.15a), 24 Hz (Figure 

4.15b), and 55 Hz (Figure 4.15c) maximum entropy spectral voices. The 10 Hz coherence 

image (Figure 4.15a) appears good continuity but low lateral resolution of the fault imaging. 

The 24 Hz coherence slice (Figure 4.15b) appears both good continuity and acceptable 

lateral resolution of the fault. The 55 Hz coherence image (Figure 4.15c) shows high lateral 

resolution but appears poor imaging quality. In Figure 4.15d, we co-render the coherence 

vertical slices computed using these maximum entropy spectral voices (Figure 4.15a, 4.15b, 

and 4.15c) and use RGB blending method for display. It is noted that when we combine 

these coherence volumes computed using different spectral voices, the fault imaging in the 

co-rendered display (Figure 4.15d) is smeared with decreased lateral resolution. In 
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multispectral coherence, more spectral voices are included in the computation, which 

further decreases the lateral resolution of the fault imaging in the coherence volume. 

In order to further suppress other structural discontinuity artifacts and improve the 

lateral resolution of the fault imaging, we apply a fault enhancement workflow (Qi et al., 

2019) on the maximum entropy based multispectral coherence volume. We first implement 

a structure-oriented median filter on the multispectral coherence dataset, which aims to 

reject the steeply dipping faults but reserve the stratigraphic anomalies. Next, we subtract 

these stratigraphic anomalies parallel to the reflector dip, generating a residual volume with 

the remaining discontinuities correlated to the faults and stratigraphic edges. Finally, the 

generated residual volume is input to compute an energy-weighted directional LoG 

(Laplacian of a Gaussian) filter, sharpening and smoothing the faults through an iterative 

approach. The fault enhancement vertical (Figure 4.16a) and time (Figure 4.16b) slices 

further reduce other stratigraphic discontinuity artifacts and improve the lateral resolution 

of fault imaging compared to the maximum entropy based multispectral coherence images 

(Figure 4.12d and 4.13d). 

Conclusions 

     Accurate fault detection and delineation faces the challenge of pseudo fault breakpoints 

due to the non-stratigraphic alignments of similar reflections juxtaposing across the faults, 

even though we use the full-bandwidth coherence attribute computed from carefully noise-

attenuated seismic dataset. The 3D case study in offshore Taranaki Basin indicates that 

multispectral coherence effectively minimizes the pseudo fault breakpoints and improves 

the fault continuity, because different spectral voices appear different phase information of 

the similar reflections, resulting in alignment effect in only a few but not all spectral voices. 
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Based on the observations in the experiments, we suggest to avoid computing multispectral 

coherence using a transformed dataset without amplitude information, which will introduce 

more noise in coherence image. We further recommend to improve the quality of fault 

imaging in multispectral coherence using a high-resolution maximum entropy spectral 

decomposition algorithm with exponentially-spaced spectral voices. We further perform a 

fault enhancement workflow on the maximum entropy based multispectral coherence 

volume, improving the lateral resolution of the fault imaging. In this paper, we focus on 

improving coherence algorithm to minimize the pseudo fault breakpoints due to relatively 

similar reflections juxtaposing across the faults. This is not the only reason for 

misinterpreting fault breakpoints. Other potential reasons (e.g. migration velocity analysis, 

transition from competent to incompetent beds) should also be considered in your given 

research survey. Additionally, how to determine which spectral voice represents the best 

for a specific fault remains an interesting future research topic. 
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Chapter 4 figures 

 

 

 

Figure 4.1. A well-known pitfall in auto-tracking of a seismic horizon. If the auto-picker correlation 

window is too short, or if the faults are not somehow flagged by the interpreter, the auto-picker (or 

inexperienced human interpreter!) can miss pick the seismic event across the fault (after Figure 17a in 

Chapter 7 of Herron (2011)). 

 

 

 

Figure 4.2. The location of Opunake 3D seismic survey (red rectangle) in the south-eastern part of 

offshore Taranaki Basin, New Zealand (after Kumar and Mandal, 2017). The Opunake 3D covers 

approximate 215 km2 with bin sizes 6.25 m × 25.0 m, 60-fold coverage, and a 4 ms time sample. 
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Figure 4.3. (a) A representative vertical slice AA’, and (b) time slice at t=0.40 s through the original 

seismic amplitude dataset. Note that the original seismic data suffer from a small amount of random and 

migration aliasing noise, which decreases the detectability of faults. Note the N-S trending acquisition 

footprint in the sail (inline) direction on the amplitude time slice (Figure 4.3b), which will generate 

undesired artifacts in subsequent coherence computation. 
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Figure 4.4. (a) Coherence vertical slice and (b) time slice at t=0.4 s computed using the original full-

bandwidth seismic amplitude dataset, appearing seriously noisy, which challenges the identification of 

faults. 
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Figure 4.5. (a) Vertical slice AA’ and (b) time slice at t=0.4 s through the coherence volume after 

acquisition footprint suppression, which effectively suppress the footprint artifacts compared to the 

coherence images computed using the original seismic data (Figure 4.4a and 4.4b). 
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Figure 4.6. (a) Vertical slice AA’, and (b) time slice at t=0.4 s through the coherence volume computed 

after both footprint attenuation and SOF (structure-oriented filtering), further suppressing the random 

noise and improving the quality of fault imaging, helping the identification of minor faults. 
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Figure 4.7. Coherence vertical slices computed with (a) a constant 8 ms analysis window, (b) a constant 

24 ms analysis window, and (c) a data-adaptive analysis window using the same noise attenuated full-

bandwidth seismic data. Note that larger constant window provides a coherence image with better 

continuity, but smears the minor faults. Smaller constant window improves the resolution of the 

coherence image, but appears noisier. The data-adaptive analysis window provides coherence result 

with both good continuity and high resolution. 
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Figure 4.8. Enlarged coherence vertical slices computed using (a) the full-bandwidth original and (b) 

noise attenuated seismic data co-rendered with seismic amplitude. The noise attenuation workflow 

effectively improves the quality of fault imaging, but the noise attenuated full-bandwidth coherence 

image still appears pseudo fault segmentations due to the existence of relatively similar seismic 

reflections juxtaposing the faults (especially the red arrows in Figure 4.8b), challenging the accurate 
extraction of fault geometric attributes. 
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Figure 4.9. (a) Enlarged full-bandwidth seismic vertical slice indicates obvious alignment effect (red 

arrows). However, (b) the 36 Hz and (c) 55 Hz spectral voices appear significantly decreased alignment 

effects around the faults indicated by the yellow ellipses. 
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Figure 4.10. Coherence images computed using the corresponding (a) full-bandwidth seismic data, (b) 

36 Hz spectral voice, and (c) 55 Hz spectral voice in Figure 4.9. Note the obvious pseudo fault 

segmentations in the full-bandwidth coherence (red arrows in Figure 4.10a), and the significant 

continuity improvement of different faults in the coherence images computed using different spectral 

voices indicated by the green ellipses in Figure 4.10b and 4.10c. 
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Figure 4.11. Multispectral coherence time slice computed using the exponentially-spaced spectral 

voices (b) appears better continuity of fault imaging compared to the coherence attribute computed using 

the equally-spaced spectral voices (a) indicated by the red arrows. 
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Figure 4.12. Multispectral coherence vertical slices computed using the spectral voices decomposed by 

(a) band-pass filtering, (b) CWT, (c) spectral probes, and (d) maximum entropy algorithm.  
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Figure 4.13. Multispectral coherence time slices computed using the spectral voices decomposed by (a) 

band-pass filtering, (b) CWT, (c) spectral probes, and (d) maximum entropy algorithms. 
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Figure 4.14. Enlarged multispectral coherence vertical slices computed using (a) band-pass filtering, 

(b) CWT, (c) spectral probes, and (d) maximum entropy algorithms co-rendered with seismic amplitude. 

Note the improvement of fault continuity by the maximum entropy based multispectral coherence. 
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Figure 4.15. Coherence vertical slices of a single fault computed using (a) 10 Hz, (b) 24 Hz, and (c) 55 

Hz maximum entropy spectral voices appear different continuity and lateral resolution. The display 

using RGB blending (d) shows the lateral resolution smearing if we combine coherence volumes of 

different spectral voices. In multispectral coherence, more spectral voices are included in the 

computation, which further decreases the lateral resolution of fault imaging. 
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Figure 4.16. (a) Fault enhancement vertical slice and (b) time slice further reduce other stratigraphic 

discontinuity artifacts and improve the lateral resolution of fault imaging, which especially help identify 

the minor faults. 
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CHAPTER 5: MULTISPECTRAL GRADIENT STRUCTURE TENSOR DIP 

Abstract 

     The surprising improvement in coherence images provided by multispectral 

computation motivates the reexamination of other filtering and geometric attributes to 

individual spectral voices in addition to the best version of the broadband seismic 

amplitude data volume. Due to either the seismic data signal-to-noise ratio or to the 

underlying geology, certain spectral components of the seismic amplitude volume often 

appear higher quality than others, which further result in higher quality geometric attributes. 

This observation provides the motivation to compute seismic geometric attributes using 

multiple spectral voices to determine if they provide additional insight into the underlying 

geology. We generalize the concept of multispectral coherence that stacks the covariance 

matrices computed from each spectral voice to multispectral dip that stacks the gradient 

structure tensor (GST) for each spectral voice. We apply the structure-oriented filtering 

(SOF) and spectral balancing to improve the data quality of the original full-bandwidth 

seismic amplitude volume, followed by the computation of the multispectral GST dip 

attribute. We indicate the quality improvement of the multispectral GST dip over 

conventional broadband dip using a land 3D seismic survey acquired over the Barnett Shale 

gas reservoir of the Fort Worth Basin, Texas, and a marine survey acquired in the offshore 

Taranaki Basin, New Zealand, and find the improved dip estimates in noisier parts of the 

seismic data volume. 
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Introduction 

     Spectral decomposition is widely used in seismic interpretation. Whether because of the 

seismic data quality or the underlying geology, specific spectral components exhibit a 

higher S/N (signal-to-noise) ratio compared to other spectral components. Typically, the 

thickness and the fill of an incised channel is different than that of the geologic layer that 

it cuts, giving rise to lateral changes in tuning thickness resulting in stronger signal. Similar 

lateral changes in waveform occur for lateral changes associated with mass transport 

complexes, karstification, and the deposition of fans, shoals, and bars. For this reason, 

coherence computed from some spectral components will delineate such stratigraphic 

edges better than others. Alaei (2012) showed how coherence computed from a 52 Hz 

bandpass-filtered (spectral voice component) version of the seismic data provided images 

of small faults that were not seen on coherence computed from the original broadband 

seismic data volume acquired in the North Sea. Li and Lu (2014) took this idea further and 

showed how coherence images computed from three different spectral voices can be 

corendered to delineate karst collapse and channels in a Tarim Basin survey using an RGB 

(red-green-blue) color model. Dewett and Henza (2016) showed how more than three 

coherence images can be used to delineate subtle faults in the Eagle Ford Shale resource 

play using self-organizing maps. Marfurt (2017), Li et al. (2018), Chopra and Marfurt 

(2019), and Lyu et al. (2019) computed covariance matrices for each spectral voice, and 

then summed the covariance matrices to compute a multispectral coherence volume. 

Multispectral coherence has been successfully used to map channel boundaries (Lyu et al., 

2020a) and enhance faults (Lyu et al., 2020b; Qi et al., 2019). 
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     Similar strategies can be adopted to estimate volumetric dip and curvature. Jones and 

Roden (2012) found that volumetric dip estimates computed from spectral voices provide 

information that is not seen in dip estimates computed from the original broadband data 

volume (Figure 5.1).  Picking two frequencies exhibiting a high S/N ratio for an Eagle Ford 

Shale survey, they found that the dip computed from the 32.4 Hz spectral component 

showed much greater detail than those computed from the 15.3 Hz and broadband data 

volumes. In contrast, the dip computed from the 15.3 Hz volume showed more continuous, 

longer faults than the other two volumes. Furthermore, they showed that curvature volumes 

computed from the 32.4 Hz volume provided detailed lineation that correlated with the 

orientation of microseismic event clusters. Instead of stacking covariance matrices 

computed from different spectral voice components to compute multispectral coherence, 

we can stack the GST matrices computed from different spectral voice components of 

compute multispectral dip. Chopra and Marfurt (2020) showed the benefit of not only 

multispectral dip estimates, but also of multispectral curvature, but they did not provide 

any algorithmic details.  

      In this paper, we provide not only the algorithm details, but also the interpretational 

value of multispectral estimates of reflector dip. We first introduce the theory and 

workflow of the multispectral GST dip computation method. Next, we evaluate the method 

using two 3D seismic surveys acquired in the Fort Worth Basin and the offshore Taranaki 

Basin, and show how the improvement occur in areas of lower signal-to-noise ratio, 

providing the interpretation value of the multispectral dip algorithm. 
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Method of multispectral GST dip computation 

     There are several ways of computing volumetric dip, with the most popular algorithms 

involving crosscorrelation of seismic events in four directions (Aarre, 2010) and those 

based on instantaneous dip (Barnes, 2000), semblance search (Marfurt et al., 1998), and 

gradient structure tensor algorithms (Bakker, 2002). All of these methods can be applied 

to spectral voices, resulting in a suite of dip estimates.  

     To compute multispectral GST dip, we first define the spectral voices after spectral 

decomposition as 

                     rklm r klm r klm ru f a f i f   exp                                                         (1) 

where u  denotes the spectral voice of the rth frequency fr, a  is the spectral magnitude 

component, and   is the spectral phase component. where the subscripts k, l, and m, 

indicate a data value at (kΔt, lΔx, mΔy) about an analysis point with local indices (k=0, l=0, 

m=0). 

     For each spectral voice, we optimize the GST computation using the gradients of both 

the original amplitude data and of its Hilbert transform, which a generalization of the 

method described by Luo et al. (2006) computed only from the amplitude. The vector 

gradient for the rth spectral voice, gr, is the derivative of the seismic amplitude, u, in each 

of the three Cartesian directions. We approximate the gradient using central differences:   
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     In general, gradient estimates about zero crossings in the seismic wavelet exhibit a lower 

S/N ratio than about peaks and troughs. We can partially address this instability by 

augmenting the conventional estimate of the GST by including the gradient, (gklm)H, of the 

Hilbert transform of the seismic amplitude data, uH.  We then define the gradient structure 

tensor at grid location (kΔt, lΔx, mΔy) to be: 
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where erklm is the envelope or reflection strength at each sample. The average gradient in 

the analysis window is expressed as 
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and the corresponding Hilbert transform is written as 
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      We then average the gradient structure tensor Crklm given by equation 3 for all 

frequencies r=1,2,…,R over their values at each of the (2K+1)(2L+1)(2M+1) voxels 

falling within the analysis window:   
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     The multispectral GST matrix in equation 6 measures the change of seismic amplitude 

in each of the three Cartesian directions. To determine the direction of the maximum 

change, we decompose the multispectral GST matrix into its eigenvectors and eigenvalues: 
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where (λn, vn) is the nth eigenvalue-eigenvector pair and the superscript T denotes the vector 

transpose. Since we compute the multispectral GST by quantifying the 3D change in 

amplitude, its first eigenvector v1 represents the direction of most change in amplitude. For 

a constant amplitude, planar reflector, 
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where n̂ is the unit normal to a hypothesized reflector. We partially compensate for lateral 

changes in amplitude along reflector dip by applying a short-window (2K+1)Δt AGC 

algorithm to the data prior to computing the GST. The multispectral GST apparent dips, p 

and q, are then 
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     Figure 5.2 summarizes the workflow described in the previous equations.  Because the 

quality of geometric attributes depends on the quality of the input seismic amplitude 

volume, we apply edge-preserving structure-oriented filtering (e.g. Marfurt, 2006) to 

improve the S/N ratio and spectral balancing to improve the data quality. 
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     After structure-oriented filtering and spectral balancing, we decompose the broadband 

seismic amplitude into different spectral voices. Next, we compute the GST for the 

broadband data and for each spectral component and compute volumetric estimates of dip 

as described by the equations. We also stack the GSTs from the spectral components and 

compute multispectral estimates of volumetric dip.  

     All volume-based estimates of dip provide an inaccurate apparent dip when crossing 

discontinuities. To avoid this shortcoming, we follow Marfurt (2006) and employ a multi-

window search algorithm originally defined by Kuwahara et al. (1976),    

Application to the Fort Worth Basin 

Data description 

     We perform the first case study on a 3D seismic survey (Figure 5.3) acquired in the Fort 

Worth Basin, which is a shallow, north–south-elongated foreland basin in northcentral 

Texas (Montgomery et al., 2005). The structures in the Fort Worth Basin include major 

and minor faulting, local folding, fracturing, and karst-related collapse features (Qi et al., 

2014). Thrust-fold structures are more common in the easternmost parts of the basin. The 

major faults in the basin play an important role on controlling the depositional patterns and 

thermal history of the Barnett Shale. The karstification in the basin is controlled by the 

faulting, some of which is basement controlled (Khatiwada et al., 2013). 

       The 3D wide-azimuth seismic survey was acquired by the Marathon Oil Company in 

2006 using 16 live receiver lines with a nominal 16 × 16 m (55 × 55 ft) CDP bin size for 

seismic acquisition (Roende et al., 2008). We show a representative vertical slice AA’ 

(Figure 5.4a) and time slice at t=0.70 s (Figure 5.4b) through the seismic amplitude volume. 
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Red lines indicate the locations of corresponding slices. The target Barnett Shale falls 

between the Marble Falls and Ellenberger hydraulic fracture barriers (indicated by the 

arrows in Figure 5.4a). Block arrows indicate faults (orange arrows), larger karst (red 

arrows), and smaller karst (green arrows) features in Figure 5.4b.  

Multispectral GST dip attributes 

      Using the workflow in Figure 5.2, Figures 5.5 shows vertical slices through the inline 

dip computed directly from the original broadband data (Figure 5.5a) and by using the 

multispectral dip workflow (Figure 5.5b). The multispectral GST results are more 

continuous, and exhibit fewer artifacts than those computed directly from the broadband 

data. To understand whether this improvement is geological or simply due to smearing, 

Figure 5.6 corenders the seismic amplitude with the two dip estimates. Note that the 

multispectral GST inline dip is vertically more continuous and is less contaminated by 

artifacts than the broadband inline dip, especially inside the yellow and orange boxes. 

Figure 5.7 shows the enlarged images within the boxes in Figure 5.6, indicating that 

multispectral GST inline dip provides better stability and consistency with the seismic 

amplitude profile over the broadband inline dip. 

       In Figure 5.8, we further compare another GST crossline vertical slices through the 

broadband crossline dip (Figure 5.8a) and the multispectral crossline dip (Figure 5.8b), 

which also indicates the imaging quality improvement by multispectral GST dips with 

optimized vertical continuity. In Figure 5.9, we further corender the seismic amplitude with 

the crossline vertical slices through the broadband (Figure 5.9a) and multispectral crossline 

component (Figure 5.9b) of reflector dip. Note the similar conclusion with the comparison 



146 

 

of inline dips. Multispectral GST algorithm provides crossline dip with fewer artifacts and 

better vertical continuity over the broadband crossline dip. 

       In Figure 5.10, we show the spectral voice vertical slices through the components 

centered at 10 Hz (Figure 5.10a), 30 Hz (Figure 5.10b), 50 Hz (Figure 5.10c), 70 Hz (Figure 

5.10d), and 90 Hz (Figure 5.10e). It is noted that different geology features are illuminated 

in different spectral voices. Note that both 10 Hz and 90 Hz spectral voices appear noisier 

than other spectral voices, which will decrease the quality of the subsequent dip attributes. 

       In Figure 5.11a-5.11e, we show the time slices through five dip magnitude volumes 

computed from different spectral voices during the multispectral GST dip computation. 

These volumes show slightly different illumination of the linear faults and the elliptical 

karst collapse features. The dip estimates within the red ellipses exhibit a high signal-to-

noise ratio for the 30 and 50 Hz components, but not for the 10, 70, and 90 Hz components. 

Likewise, the small karsts indicated by the yellow arrows are better delineated by the 30 

and 50 Hz spectral components. The signal-to-noise ratio of the 70 Hz component is 

marginal, and that of the 90 Hz component is poor and provides little interpretational value. 

To better understand why there is more noise one some of the volumes, we need to examine 

the spectral voices themselves. 

       Following the workflow shown in Figure 5.2, we plot three of the dip magnitude 

anomalies against cyan, magenta and yellow to generate the composite multispectral dip 

magnitude volume shown in Figure 5.11f. In this image, the resulting colors indicate which 

spectral components contribute to the anomaly. Because there are 84 Ways to combine the 

nine computed spectral components, finding the optimum color blend can consume 

considerable interpreter time. For this reason, we next evaluate the multispectral GST dip 
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magnitude time slice and compare the result to the broadband dip magnitude time slice in 

Figure 5.12. Note the improvement in the multispectral GST dip magnitude (Figure 5.12b) 

that exhibits fewer artifacts, better continuity, and better stability over the broadband dip 

magnitude (Figure 5.12a). Especially, the red ellipses indicate an improved S/N whereas 

the yellow arrows indicate improved delineation of smaller karst collapse features.  

Application to the Taranaki Basin 

Data description 

     The 3D seismic survey of our second case study on multispectral GST dip is located in 

the offshore Taranaki Basin, New Zealand (Figure 5.13, modified after Kumar and Mandal, 

2017). The continuous tectonic activities and the clockwise movement of the plate 

boundaries have developed all the structural elements within the Taranaki Basin (King and 

Thrasher, 1992; Kumar and Mandal, 2017), which is characterized as an extension from 

the complex Taranaki Fault Zone along the eastern margin and complex subsurface 

geology with thick sedimentary sequences (Reilly et al., 2015). 

     The Taranaki Basin can be tectonically divided into three major structural units: the 

Western unit, the Southern unit, and the Northern unit (Knox, 1982). The Parihaka 3D 

seismic survey (purple star in Figure 5.13) is located in the Northwest part of the offshore 

Taranaki Basin, which is primarily characterized as a series of major faults and complex 

channel system (Kumar, 2016; Amonpantang et al., 2019). 

      In Figure 5.14, we show a representative vertical slice BB’ (Figure 5.14a) and time 

slice at t=1.08 s (Figure 5.14b) through the prestack time migration (PSTM) seismic data 

of the Parihaka 3D survey. The red lines indicate the corresponding locations of the vertical 
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and time slices. This PSTM seismic data is provided by the New Zealand Crown Minerals, 

which was acquired with a bin size of 25.0 m × 12.5 m and 60 folds. From the seismic 

amplitude slices (Figure 5.14), we can observe the complex fault zone and channel system.  

 

Multispectral GST dips 

      Using the multispectral GST dip workflow (Figure 5.2), we output both the broadband 

and multispectral GST dip volumes. We first compare the broadband and multispectral 

GST crossline dip vertical slices in Figure 5.15. High dips are observed (green ellipses in 

Figure 5.15) along the major fault. Multispectral GST crossline dip (Figure 5.15b) appears 

better vertical continuity (green ellipses) and higher S/N with fewer artifacts (blue and red 

rectangles) compared to the broadband GST crossline dip (Figure 5.15a). We then corender 

the crossline dip vertical slices with the seismic amplitude (Figure 5.16), which indicates 

that the multispectral GST dip provides better stability and consistency with the seismic 

amplitude profile over the broadband GST dip, especially the areas in the red and blue 

rectangles (Figure 5.16). Figure 5.17 shows the enlarged images of corendered seismic 

amplitude with the broadband and multispectral crossline dip of the area within the red and 

blue rectangles in Figure 5.16. In this Figure, we change the display approach to highlight 

the dips during the corendering. Note the improvement of stability and consistency with 

seismic amplitude in the multispectral GST dip. 

      The broadband and multispectral GST crossline dip time slices at 1.08s are shown in 

Figure 5.18. In the GST dip time slices, it is clear that the fault zone divides the survey into 

two major parts: the hanging wall part (upper left in Figure 5.18) towards the western part 

and the footwall part (low right in Figure 5.18) towards the eastern part. We can further 
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observe obvious fault scarps along the major faults due to heavy faulting and high 

deformation. The multispectral GST crossline dip (Figure 5.18b) appears fewer artifacts 

over the broadband GST crossline dip (Figure 5.18a), especially the areas indicated by the 

yellow arrows. Additionally, the faults appear more continuous in the multispectral GST 

dip result (green arrows in Figure 5.18). Further, the multispectral GST crossline dip 

provides better delineation of the channels (yellow ellipses in Figure 5.18a and 5.18b) 

compared to the broadband GST inline dip image. It is also noted that multispectral GST 

dip shows fewer artifacts inside the red ellipses, but the thin channels are a little smeared.  

      Broadband and multispectral GST dip magnitude time slices are shown in Figure 5.19. 

It is noted that there are fewer noises in the entire multispectral GST dip magnitude (Figure 

5.19b) over the broadband GST dip magnitude (Figure 5.19a), especially the areas 

indicated by the red arrows. The multispectral GST dip magnitude appears more 

continuous imaging of the fault zone, and it provides a better delineation of the channel 

system over the broadband GST dip magnitude (green arrows in Figure 5.19). It is further 

noted that multispectral GST dip magnitude shows fewer artifacts in the green ellipses, but 

some thin channels are a little smeared, which is similar to the observation in Figure 5.18. 

Conclusions 

     In general, the signal-to-noise ratio varies with different bandpass-filtered versions (or 

spectral voice components) of the seismic amplitude data. Because this variation in the 

signal-to-noise ratio directly influences the quality of volumetric dip estimates, 

improvements in dip estimation can be achieved by eliminating noisier components. 

Inspired by my previous success with multispectral coherence computed by stacking the 

covariance matrix corresponding to different spectral components, I hypothesized that a 
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multispectral dip estimation computed by stacking the GST matrices for different spectral 

voices would lead to still further improvement in volumetric dip. When applied to a Fort 

Worth Basin wide-azimuth land survey, I find the improvement in delineating karst 

collapse features and suppression of noise to be minimal and not worth the increase in 

computational effort by a factor of six. When applied to a Taranaki Basin narrow azimuth 

marine survey, I find a decrease in noise, but also an increase in smearing and a decrease 

in lateral resolution of the turbidites channels of interest. In summary, restricting the dip 

computation to those spectral components exhibiting a good signal-to-noise ratio can 

significantly improve the resulting dip estimation, but unlike multispectral coherence, the 

success of multispectral dip estimates appears to be data dependent and in many cases, not 

worth the increased computational effort. 
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Figure 5.1: (a) The seismic amplitude spectrum of a data volume acquired over the Eagle Ford Shale 

play of south Texas. Note the strong response (and implied higher signal-to-noise ratio about 16.5 and 

31.5 Hz). Time slices at the target level through the dip magnitude volumes computed from the (b) 

original broadband seismic amplitude volume and from the (c) 16.5 Hz and (d) 31.5 Hz spectral voice 

volumes. Yellow arrows indicate improved clarity of some of the larger faults in the 16.5 Hz volume 

and of smaller faults and (in black ellipse) stratigraphic edges in the 31.5 Hz image. (After Jones and 

Roden, 2012). 
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Figure 5.2: Workflow of multispectral GST dip computation. We first apply the spectral balancing and 

structure-oriented filtering (SOF)on the original full-bandwidth seismic amplitude volume. We then 

decompose the noise-attenuated full-bandwidth seismic amplitude volume into spectral voices and build 

the multispectral covariance matrix. Next, we compute the eigenvectors and eigenvalues from the 

multispectral gradient structure tensor matrix, followed by the generation of inline and crossline dip 

volumes. We can output the broadband, spectrally-limited, and multispectral GST dip volumes. 
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Figure 5.3: 3D seismic survey location in the index map of Fort Worth Basin and major tectonic units 

(modified after Khatiwada et al., 2013). 
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Figure 5.4: A representative (a) vertical slice and (b) time slice at t=0.70 s of the seismic amplitude in 

the 3D seismic survey in the Fort Worth Basin. The target Barnett Shale falls between the Marble Falls 

and Ellenberger hydraulic fracture barriers (indicated by the arrows in Figure 5.4a). Note the faults 

(orange arrows), larger karst (red arrows), and smaller karst (green arrows) features in Figure 5.4b. 

 

 



159 

 

 

 

 

 

 

 

 

Figure 5.5: Inline dip vertical slices through the volumes of (a) broadband GST dip and (b) multispectral 

GST dip. Note that the multispectral GST inline dip appears higher quality with fewer artifacts, better 

continuity, and improved stability compare to the broadband inline dip. 
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Figure 5.6: Vertical slices through the (a) broadband and (b) multispectral inline component of reflector 

dip corendered with the seismic amplitude volumes. Note that the multispectral GST inline dip is 

vertically more continuous and is less contaminated by artifacts than the broadband inline dip, especially 

inside the yellow and orange boxes. 
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Figure 5.7: Enlarged images of corendered seismic amplitude with the (a) broadband and (b) 

multispectral inline dip of the area within the yellow boxes shown in the previous figure and (c) 

broadband and (d) multispectral inline dip of the area within the orange boxes shown in the previous 

figure. 
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Figure 5.8: Crossline dip vertical slices through the volumes of (a) broadband GST dip and (b) 

multispectral GST dip. Note the imaging quality improvement in the multispectral GST dip. 
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Figure 5.9: Crossline vertical slices through the (a) broadband and (b) multispectral crossline 

component of reflector dip corendered with the seismic amplitude volumes. Note that the multispectral 

GST crossline dip shows better continuity and fewer artifacts than the broadband crossline dip. 
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Figure 5.10: Vertical slices through the spectral voice components centered about (a) 10 Hz, (b) 30 Hz, 

(c) 50 Hz, (d) 70 Hz, and (e) 90 Hz. Note the 10 Hz and 90 Hz spectral voices appear noisy, while 30 

Hz and 50 Hz show better signal-to-noise ratio. 
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Figure 5.11: Time slices at t=0.7 s through dip magnitude volumes computed from spectral voices 

centered about (a) 10 Hz, (b) 30 Hz, (c) 50 Hz, (d) 70 Hz, and (e) 90 Hz. There is increasing lateral 

detail as well as increasing noise with increased frequency. (f) Co-rendered spectral magnitude by 

mapping the 10 Hz dip magnitude volume against cyan, the 50 Hz dip magnitude volume against 

magenta, and the 90 Hz dip magnitude volume against yellow. Anomalies that appear as black occur on 

all three input volumes. The circular collapse features that appear as blue exhibit anomalies at 10 Hz 

and 50 Hz, but not at 90 Hz. Features that appear as green exhibit anomalies at 50 Hz and 90 Hz, but 

not at 10 Hz. Features that appear as yellow (and are mostly noise) exhibit anomalies only on the 90 Hz 

dip magnitude component. 
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Figure 5.12: Time slices at t=0.7 s through dip magnitude volumes of (a) broadband GST dip and (b) 

multispectral GST dip. We can notice the improvement in the multispectral GST dip magnitude with 

fewer artifacts and better continuity over the broadband GST dip magnitude. Especially, the red ellipses 

indicate an improved S/N whereas the yellow arrows indicate improved delineation of smaller karst 

collapse features in multispectral GST dip magnitude. 
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Figure 5.13: The Parihaka 3D seismic survey (purple star) is located in the Northwest part of the 

offshore Taranaki Basin, New Zealand (modified after Kumar and Mandal, 2017). 
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Figure 5.14: A representative (a) vertical slice BB’ and (b) time slice at t=1.08 s of the PSTM seismic 

amplitude data in the Parihaka 3D seismic survey. The red lines indicate the corresponding locations of 

the vertical and time slices. The complex fault zone and channel system can be observed. 

 

 

 



172 

 

 

 

 

 

 

 

 

Figure 5.15: Vertical slice BB’ through the (a) broadband and (b) multispectral GST estimates of the 

crossline dip volume. We can observe the high dips (green ellipses) along the major faults. It is noted 

that the multispectral GST crossline dip appears better vertical continuity (green ellipses) and higher 

S/N with fewer artifacts (blue and red rectangles) compared to the broadband GST crossline dip. 
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Figure 5.16: The seismic amplitude corendered with (a) broadband GST crossline dip and (b) 

multispectral GST crossline dip. Note the better stability and consistency with the seismic amplitude 

profile using multispectral GST dip (especially in the red and blue rectangles). 

 

 

 

 

 

 

 



174 

 

 

 

 

        

 

       

Figure 5.17: Enlarged images of corendered seismic amplitude with the (a) broadband and (b) 

multispectral crossline dip of the area within the red rectangles shown in the previous figure, and (c) 

broadband and (d) multispectral crossline dip of the area within the blue rectangles shown in the 

previous figure. In this Figure, we change the display approach to highlight the dips during the 

corendering. 
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Figure 5.18: Time slices at t=1.08s through (a) broadband and (b) multispectral GST crossline dip 

volumes. Note that the multispectral GST crossline dip appears fewer artifacts (yellow arrows), 

improved fault continuity (green arrows), and better delineation of channels (yellow ellipses) over to 

the broadband GST crossline dip image. It is also noted that multispectral GST dip shows fewer artifacts 

inside the red ellipses, but the thin channels are a little smeared.  
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Figure 5.19. Time slices at t=1.08 s through the (a) broadband, and (b) multispectral GST dip magnitude 

volumes. Red arrows indicate zones that exhibit less noise in the multispectral GST dip magnitude 

volume.  The multispectral GST dip magnitude appears more continuous imaging of the fault zone, and 

provides better delineation of the channel system (green arrows). Note that multispectral GST dip 

magnitude shows fewer artifacts in the green ellipses, but some thin channels are smeared. 
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CHAPTER 6: CONCLUSIONS 

The primary contribution of this dissertation is that I have developed new passive 

seismic imaging method and multispectral seismic geometric attributes, which helps relax 

the limitation of current approaches and provides more effective tools for hydrocarbon 

exploration. 

In passive seismic modeling, where the seismic sources consist of natural or induced 

microseismic events in the subsurface, in Chapter 2, I construct an iterative full wave-

equation algorithm to not only locate the microseismic sources, but also a means to better 

estimate the subsurface velocity model. The passive source location estimation using 

GmRTM and the velocity inversion using passive-source FWI are implemented 

sequentially. The iterations used in the GmRTM algorithm to estimate the source location 

and the FWI algorithm to estimate the velocity model allow us to better focus the source 

locations compared to conventional time-reversal imaging method. This workflow not only 

increases their sensitivity to the subsurface velocities, but also does not need the initial 

source location for the inversion. Given an improved passive source location and velocity 

model, I can generate more accurate structural images using passive-source reverse time 

migration. In the future research, I wish to examine the algorithmic sensitivity to different 

source wavelets and ignition times, as well as develop a method to minimize cycle-skipping 

problem in the passive-source full waveform inversion. 

 3D active source seismic acquisition is the most commonly used geophysical technique 

to map structure and stratigraphy in the subsurface. First developed 25 years ago, seismic 

coherence is the most widely used attribute to map faults and stratigraphic edges. However, 

these edges sometimes fail to appear when similar-looking but stratigraphically different 
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reflectors align across a fault. In this dissertation, I determine why the recently developed 

multispectral coherence algorithm better delineates such faults and stratigraphic edges.  

In Chapter 3, I study the response of different spectral voices (bandpassed filtered 

versions of the original seismic data) to a turbidites system in the Teranaki Basin, New 

Zealand. Because of the manner in which different spectral voice components respond to 

the tuning thickness of the sometimes thin, sometimes thick architectural elements of the 

turbidites system, these elements are easier delineated at some frequencies rather than 

others. I find that by combining the information content provided by exponentially-spaced 

rather than equally-spaced spectral voices provides superior multispectral coherence 

images for the same computation cost. I also find that computing multispectral coherence 

on the spectral voices decomposed using the maximum entropy method provides clearer 

images and better resolution of thinner channels and small-scale features than other spectral 

decomposition algorithms.  

In Chapter 4, I address gaps in coherence fault images that occur when stratigraphically 

different reflectors with relatively similar waveforms and amplitudes juxtapose across a 

fault, and appear to be a locally continuous event. I first improved the signal-to-noise ratio 

of the seismic amplitude data volume using footprint suppression and structure-oriented 

filtering.  Then I applied the same multispectral coherence workflow parameters obtained 

in the previous turbidites application and obtained improved fault continuity, filling the 

coherence gaps caused by the alignment of stratigraphically distinct horizons. Finally, I 

performed a fault enhancement workflow on the maximum entropy based multispectral 

coherence to improve the lateral resolution of fault imaging, helping delineate the minor 

faults.  
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In Chapter 5, I further illustrate the multispectral GST dip attribute to improve the quality 

of conventional broadband dip attribute, which is beneficial for the subsequent seismic 

geometric attributes computation, such as curvature, aberrancy, and reflector rotation. 

Careful examination on different spectral voices in the 3D field case study showed that the 

dip estimates computed for the low-frequency and high-frequency spectral voices were 

contaminated by noise, whereas the middle-frequencies provided good dip images. To 

further improve the quality of multispectral GST dip attribute, how to enhance the S/N of 

the low- and high-frequency components and effective analysis approach to select the most 

appropriate spectral voices in computation remain an interesting research topic. 
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APPENDIX CHAPTER: TOMOGRAPHIC VELOCITY ANALYSIS AND WAVE 

EQUATION DEPTH MIGRATION IN AN OVERTHRUST TERRAIN: A CASE 

STUDY FROM THE TUHA BASIN, CHINA 

Abstract 

Although the structures associated with overthrust terrains form important targets in 

many basins, accurately imaging remains challenging. Steep dips and strong lateral 

velocity variations associated with these complex structures require prestack depth 

migration instead of simpler time migration. The associated rough topography, coupled 

with older, more indurated, and thus high velocity rocks near or outcropping at the surface 

often lead to seismic data that suffer from severe statics problems, strong head waves, and 

backscattered energy from the shallow section, giving rise to a low signal-to-noise ratio 

that increase the difficulties in building an accurate velocity model for subsequent depth 

migration.   

We apply a multi-domain cascaded noise attenuation workflow to suppress much of 

the linear noise. Strong lateral velocity variations occur not only at depth but near the 

surface as well, distorting the reflections and degrading all deeper images. Conventional 

elevation corrections followed by refraction statics methods fail in these areas due to poor 

data quality and the absence of a continuous refracting surface. While a seismically derived 

tomographic solution provides an improved image, constraining the solution to the near 

surface depth-domain interval velocities measured along the surface outcrop data provides 

further improvement. Although a one-way wave equation migration algorithm accounts for 

the strong lateral velocity variations and complicated structures at depth, modifying the 

algorithm to account for lateral variation in illumination caused by the irregular topography, 
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significantly improves the image, preserving the subsurface amplitude variations. We 

believe our step-by-step workflow of addressing the data quality, velocity model building, 

and seismic imaging developed for the Tuha Basin of China can be applied to other 

overthrust plays in other parts of the world.  

Introduction 

Although the structures associated with overthrust terrains form important targets in 

many basins, accurate seismic imaging remains challenging. There are often serious lateral 

velocity variations in overthrust belts, which lead to ray bending, resulting in time migrated 

seismic images that are poorly focused images and mispositioned reflectors and diffracting 

edges. Depth migration is required to image complex overthrust structures with strong 

lateral velocity variations. Unfortunately, the imaging problems are not confined to the 

deeper structures. Rough topography and outcropped older, high velocity rocks in 

overthrust belts (Alfonso and Guevara, 2004) often lead to seismic data contaminated by 

headwaves and coherent backscattered noise resulting in a low signal-to-noise (S/N) ratio 

and serious statics problems, which complicate the velocity model building process critical 

to accurate depth migration. Alfonso (2001) identifies three major challenges in overthrust 

imaging: topography and its correction, the lower signal to noise ratio associated with 

structure outcropping on the surface, and complex subsurface structures. 

Other authors have addressed the rough topography and change in elevation 

encountered in overthrust belt imaging. Reshef (1991), Gray and Marfurt (1995), and 

Shragge (2005) found that depth migration directly from topography provided more 

accurate images compared to those computed from a flat datum after static corrections. 



182 

 

However, the velocity model building difficulty remains, with a key challenge being how 

to integrate the near surface velocity model computed from refracted waves with the deeper 

velocity model computed from reflected waves. Static correction plus migration from a 

floating datum provides a practical, but only partial solution to this difficult problem. 

Yilmaz (2001) summarizes several static correction solutions, including field statics, 

refraction statics (Schneider and Kuo, 1985; Taner et al., 1998), and tomostatics (Zhu et al., 

1992; Bell et al., 1994; Osypov, 1998). Accurate refraction statics computation requires 

continuous refractors and good data, but often fails when the data are poor or when the 

refracting horizons are discontinuous. Overthrust belts exhibit different types of 

topography, with weathering zone occurring at lower elevations and outcrops at higher 

elevations, with no continuous refractor running across the entire survey. Such near surface 

problem cannot be solved well with only one static correction method. 

Wang et al. (2012) and others have identified several types of noise common to 

overthrust belts. Older and more indurated rocks outcrops give rise to high amplitude 

headwaves, backscattered energy and other linear noise which overprints the reflections of 

interest. Such noise makes velocity model building much more difficult, as the linear noise 

masks the reflections in common-image gathers and gives rise to semblance anomalies that 

may introduce incorrect velocity picks.   

Ritchie (2005) and others have noted the significant structural distortion due to severe 

thrusting or compression in overthrust belts. The structures in these areas are often very 

complicated and give rise to serious lateral velocity variations. Compared with lower cost 

Kirchhoff migration and higher cost reverse-time migration, one-way wave equation 

migration (Claerbout, 1971; Stoffa et al., 1990; Ristow et al., 1994) provides a practical 
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solution to overthrust imaging, providing the multipathing benefits of a wave equation 

method but at a reduced cost and somewhat reduced sensitivity to velocity errors than 

reverse-time migration. While Jiao et al. (2005) have applied this technique to synthetics 

and Shragge (2005) to field data, one-way wave equation solutions face challenges in 

accurately accounting for topography and high velocities near the surface overlying slower 

velocities at depth, thereby filtering out shorter wavelength components representing 

steeper dips in order to make the algorithm stable.  

Constructing an accurate velocity model is key to accurate depth imaging in an 

overthrust belt. For the areas with relatively simple structures and high S/N ratio data, 

layer-based coherency inversion (Yilmaz, 2001) or simple conversion of stacking velocities 

(Dix, 1955) can provide an initial interval velocity model. After constructing the first pass 

of (approximately flattened) migrated gathers, one can use tomography to update the 

velocity model (Etgen,1988; Stork, 1992). However, these methods often fail where rocks 

outcrop at the surface and where the signal-to-noise ratio is low. In this case, geologic 

information needs to be incorporated as well to build a more accurate depth-domain 

velocity model. 

We begin our paper by building a synthetic wave equation model to better evaluate 

the quality of the seismic images from the prestack time and depth migration methods. We 

then introduce the depth imaging workflow to be used in the overthrust belt. Next, we 

indicate the benefit of tomography in addressing statics issues associated with near surface 

or outcrop high velocity rocks. We address the signal-to-noise ratio through a multi-domain 

noise attenuation workflow. We then apply an amplitude-preserved one-way depth 

migration that compensates for lateral variation in wave illumination. Finally, we integrate 
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additional velocity information from geologic outcrops to constrain our depth-domain 

velocity model, thereby improving our images. We conclude with summary comments and 

recommendations for further analysis. 

Time imaging or depth imaging? 

Although laterally variable from image point to image point, the velocity model for 

time migration at a given image point is either constant or a simple gradient of the form 

v=v0+kz such that there is no ray kinking. In contrast, the velocity model for depth 

migration attempts to approximate the true layer by layer interval velocities with ray 

bending and kinking at each abrupt change in the velocity-depth model (Gray et al., 2001). 

In time migration, the imaging velocity model often begins with the RMS velocity 

computed from unmigrated CMP gathers, which is then scaled to obtain the best focusing 

at every output location (Gray et al., 2001). Because there are no lateral velocity variations 

to focus the energy at a given image point, there is no need for explicit ray-tracing, such 

that time migration is much faster than depth migration. If there are significant lateral 

velocity variations that give rise to ray bending, time migration not only laterally 

mispositions a given dipping seismic event, but may separate or overlap adjoining parts of 

what should be a continuous reflector.  

The velocity model used in depth migration is a smoothed representation of the true 

interval velocity, where for Kirchhoff migration the smoothness is on the order of a 

wavelength (Gray et al., 2001), but can be less for one-way wave equation and reverse-

time migration algorithms. All three of these implementations (ray-based, one-way wav-

equation, or hyperbolic two-way wave equation) algorithms accurately bend the rays at 

each location in the subsurface where the velocity changes, such that depth migration can 
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image complicated subsurface structures much more accurately than time migration.  

In our study, we perform the numerical tests on a land survey with overthrust 

structures of the Tuha Basin. The survey exhibits both complicated subsurface structures 

and rugged topography. Figure A.1 shows the geology map and the near surface condition 

of our survey. There are plenty of faults and steeping dipping reflectors which lead to 

complex structures (Figure A.1a). There is significant variation in the near surface of our 

survey (Figure A.1b), including the relatively flat Gobi Desert covered with coarse gravels, 

a mountain front transition zone, and a mountain area with high velocity carboniferous 

rocks. The elevation of the survey varies from 500 m to 1700 m above sea level. 

While some pitfalls of the time migration such as velocity pull up/push down (e.g. 

Fagin, 1996) are well known to interpreters working on overthrust terrains, we reveal these 

phenomena by constructing the model shown in Figure A.2b based on the depth-domain 

structural interpretation (Figure A.2a) of a typical line in the overthrust belt shown in Figure 

A.1. There are a shallow overthrust structure and some underlying faults in the model. We 

then generate a suite of common shot synthetics using a 2D finite difference scalar wave 

equation algorithm. The time processing steps prior to migration are similar with those 

applied to the field data. Figures A.2c and A.2d show the resulting prestack time- and 

depth-migrated images. Note the improved fidelity of the depth-migrated image compared 

to the true model. Faults are accurately imaged to their correct location in depth migration 

but are distorted and mispositioned by time migration. There are strong fault shadow effects 

on the deepest two reflectors (yellow arrows) in the prestack time migration image, which 

is caused by the rapidly varying lateral velocity contrast across the dipping faults. These 

reflections are non-hyperbolic around the faults, resulting in weak time-migrated images. 
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It is difficult to image these dipping fault zones with prestack time migration (Figure A.2c), 

due to its inability to handle lateral velocity variations. The fault-plane reflection is also 

mispositioned with prestack time migration (blue arrows). In contrast, prestack depth 

migration images these fault zones much better (Figure A.2d). There are fewer migration 

artifacts in depth imaging, with the pull-up artifacts removed. Multiples are more coherent, 

but easier to identify as being multiples on the prestack time-migrated volume, indicated 

by the red arrows in Figure A.2c. On the depth migrated data, the multiples are weaker, but 

are no longer periodic, and may be misidentified as primaries on the prestack depth-

migrated data volume (red arrow in Figure A.2d).  

The primary processing steps of the workflow are shown in Figure A.3. Other steps, 

such as geometry definition, first break picking, muting, and velocity picking also affect 

the imaging quality. There are four key steps for depth imaging in the overthrust belt: static 

corrections, noise attenuation, the prestack depth migration algorithm, and the depth-

domain velocity model building. Each will be discussed in detail in the following sub-

sections. 

Computing the near surface velocity model 

Properly accounting for elevation and weathering zone effects is critical for land 

processing (Yilmaz, 2001), and is more challenging in areas with rough topography, such 

as in overthrust terrains. The Tuha Basin expresses variable topography including flat 

plains and desert, the mountain front, and the mountains themselves. In most land surveys, 

the seismic data are recorded by geophones deployed on the surface of a low velocity 

weathering zone. Energy impinging the base of the weathering zone at shallow angles are 

refracted towards the normal, which for relatively flat topography and weathering zones, 
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towards the vertical, such that the weathering zone correction can be approximated by a 

vertical (static) shift of the seismic trace. In the case of rough topography, the surface and 

the base of the weathering zone may not be flat. In some cases, such as in the Tuha Basin 

overthrust belt, there is no weathering zone at all, but rather the folded rocks outcrop at the 

surface. In this case, there is no bending of ray paths towards the vertical as they approach 

the surface. Tanner et al. (1974) shows that correcting these measurements to a flat datum 

requires a “dynamic” rather than a “static” correction, whereby each reflection event needs 

to be corrected to the data by its angle of incidence back to the datum along the ray path, 

rather than vertically. Reshef (1991), Gray and Marfurt (1995) and Shragge (2005) showed 

that migration directly from topography implicitly computes such a dynamic correction, 

providing significantly more accurate images than the migration of data previously 

corrected to a flat datum using static corrections.  

While migration from topography has been available for decades, estimating an 

accurate velocity in the low-fold shallow section is still difficult in the Tuha Basin survey, 

refraction statics velocity analysis based on smooth, continuous refractors fails. 

Furthermore, the velocity field estimated from shallow refractions and that estimated from 

deeper reflections have different scales, making their integration into a unified velocity-

depth model difficult.   

Rough topography can be considered to have low-frequency and high-frequency 

components. The floating datum represents the low-frequency component, which could 

also be considered to be a smoothed version of topography. For the Tuha Basin overthrust 

data, we use a two-step correction: first, we correct the high-frequency component to a 

floating data, followed by migration from the floating datum. By this, the inaccurate 
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vertical correction to a flat datum is minimized, while the data can be regularized to a grid 

where the one-way wave equation solutions can operate.  

Yilmaz (2001) summarizes several different static correction methods to correct the 

high-frequency component of topography, including field statics, refraction statics 

(Schneider and Kuo, 1985; Taner et al., 1998), and tomostatics (Zhu et al., 1992; Bell et al., 

1994; Osypov, 1998). Refraction statics works well for continuous refractors and good 

quality data but may fail in the presence of discontinuous refractors and poor quality data.  

The Tuha Basin overthrust belt is represented by significant lateral variations in the 

near surface structures. In our research area, the near surface changes from Gobi Desert 

through a mountain front transition zone, followed by the mountain outcrop area (Figure 

A.1b). Figure A.4 shows the near surface model of the line in Figure A.2a, which is built 

using a tomographic method. The elevations vary from 500 m to 1700 m above sea level. 

The Gobi Desert (blue arrow) is relatively flat with small elevation variations. In the 

mountain front transition zone (red arrow), the elevation variation become larger, but there 

is still a stable refraction layer. The mountain outcrop area (orange arrow) exhibits serious 

lateral variations, and there are no stable refraction layers. 

Given these heterogeneity, no single static correction technique works for the entire 

line. We illustrate our hybrid static correction workflow using a representative line drawn 

from the survey shown in Figure A.5. Three different static correction methods, including 

field statics, refraction statics and tomostatics, are used for numerical tests. Figure A.5a, 

A.5d and A.5g show the imaging results in the Gobi Desert area after static correction with 

these three different methods. In this area, the topographic variation is relatively small and 

there are abundant micro logging and shallow refraction data in our survey, resulting in an 
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accurate image using the conventional field static correction method (Figure 5a).  

The comparative results for the mountain front transition belt are indicated in Figure 

A.5b, A.5e and A.5h. There are stable refraction layers (Figure A.4) in this area and the 

data quality is relatively high, which satisfy the requirement of the refraction method. The 

resulting image using refraction statics (Figure A.5e) is better those using the other two 

methods (Figure A.5b, A.5h).  

Figure A.5c, A.5f and A.5i show the three results in the mountain area with outcropped 

structures. Refraction layers are absent and data quality is relatively poor. In this area, the 

refraction method fails to produce a good image (Figure A.5f). In contrast, a tomographic 

solution provides a significantly improved image (Figure A.5i) over the two other methods.  

Because tomographic statics provides a more continuous shallow reflector (yellow 

arrow) and higher resolution deeper reflector (orange arrow), and refraction statics 

provides a more continuous reflector at depth for the mountain front example (red arrow), 

and field statics provides more continuous reflectors in the Gobi Desert example (blue 

arrow), we construct a hybrid method that use each static correction where they work best. 

We integrate the three solutions using co-kriging interpolation to obtain an optimum static 

correction spanning the different types of topography.   

Multi-domain seismic noise attenuation 

      Wang et al. (2012) reported that land surveys acquired over overthrust structures such 

as those of the Tuha Basin are contaminated by multiple types of noise including 

backscattered ground roll and high velocity shallow refractions. The signal-to-noise ratio 

is exacerbated when older, more indurated rocks outcrop, giving rise to high velocity, 
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poorly attenuated ground roll and high amplitude headwaves that exhibit similar velocities 

to the vertically traveling reflections. If aliased, such noise overprints subsequent depth 

imaging with artifacts, masking reflections and diffractions of interest (Marfurt and Duquet, 

1999). When stronger than the reflections, the noise renders velocity analysis more difficult 

and prone to event mispicks, resulting in an inaccurate velocity-depth model.   

For the Tuha Basin survey discussed here, noise could not be adequately suppressed in 

either the common midpoint or common shot domain. For this reason, we follow the 

workflow described by Vermeer (1991) that suggests cascaded filtering, first in the 

common shot domain (which allows suppression of noise radiating away from the shot) 

followed by the common receiver domain (which allows suppression radiating towards the 

receivers). The latter noise trains include not just remnants of the previously suppressed 

shot to receiver ground roll and headwaves, but also backscattered energy from surface 

topography and irregular weathering zones.  

Figure A.6a shows a representative common shot gather where strong linear noise 

masks the underlying signal. This noise leaks through the stack array indicated by the 

yellow arrows in Figure 6e. In our research, the linear noise is suppressed with an f-k 

filtering method (Yilmaz, 1987; Zhou and Greenhalgh, 1994). The linear event function u 

in the t-x domain can be expressed as 

     , tan( )    u x t s t t x b
 

where s(t) is a band-limited wavelet, b is the intercept of the linear event on t axis, and α is 

the angle between the linear event and x axis. We transform the input seismic data u(x,t) 

from the t-x domain to the f-k domain : 

             , exp tan( ) = exp cos( )            U k S i b k S i b k  
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where U(k,ω) and S(ω) are the Fourier transform of u(x,t) and s(t). The linear noise will be 

suppressed according to their dips in the f-k domain. Figure A.6b shows the same shot 

gather after linear noise attenuation using the f-k filter. Although there is little noise on the 

resulting gather, after stack the linear noise reappears indicated by orange arrows in Figure 

A.6f. Resorting the f-k filtered common shot gathers to common receiver gathers shows 

that significant linear noise remains (Figure A.6c). Application of a second pass of f-k 

filtering in the common receiver domain suppress this noise component (Figure A.6d). Two 

passes of f-k filtering, first in the common shot and then in common receiver domain results 

in the stacked section shown in Figure A.6g where one sees that the cascaded filter 

significantly reduces the noise in the stack, allowing the reflectors to show through. 

Figure A.7 shows how multi-step linear noise attenuation works. There are several 

families of linear noise events, each with a different velocity seen on the raw common shot 

gather (Figure A.7a). The linear noise with low and high velocities exhibit different 

amplitudes. In principle, if one can identify all noise events, one can suppress them 

simultaneously in the f-k domain. In practice, this is difficult, with high amplitude noise 

masking the low amplitude noise. We therefore apply an f-k filter to suppress the stronger 

low velocity linear noise indicated by the yellow arrows (Figure A.7b) first. Next, we 

applied a second f-k filter to suppress the higher velocity noise indicated by the blue arrows 

(Figure A.7c). While the high velocity linear events are effectively suppressed, aliased 

components of the low velocity events, including ground roll (red arrows), have leaked 

through the filter. These remnant “shingled” events indicated by the green arrow exhibit a 

high apparent velocity and will be migrated as “signal” into the final image, damaging the 

overall signal-to-noise ratio and interpretability of the section. 
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Wave equation depth migration with illumination compensation 

Etgen et al. (2009) divide depth migration into ray-based and wave equation-based 

methods. Kirchhoff depth migration (Schneider,1978; Bleistein,1987) is the most popular 

ray-based method and still plays an important role in seismic imaging and migration 

velocity model building. Ray theory, and therefore Kirchhoff depth migration is based on 

a high frequency approximation, where the seismic wavelength is much shorter than the 

scale of velocity changes. One can either sum events in depth along diffraction traveltime 

curves or distribute events along deformed ellipsoids to generate an output image. Because 

Kirchhoff depth migration is based on a high frequency, asymptotic solution of wave 

equation, it does not accurately account for low frequency phenomena such as geometric 

scattering and dispersion, caustics, and tunneling in the downgoing and upcoming ray paths. 

A larger limitation is due to implementation rather than theory. For reasons of algorithmic 

complexity, most software allows only a single ray path, and hence computes only one 

traveltime, to represent the path from a surface source or receiver to the subsurface image 

point. Nevertheless, Kirchhoff depth migration has several benefits. First, compared to 

wave equation methods, the computation cost of Kirchhoff depth migration is less, 

comprising precomputation of a suite of traveltime tables which can be generated either by 

a simple ray shooting method, wavefront extrapolation, or finite-differences solutions of 

the Eikonal equation, followed by summation of the data along the two-way traveltime 

curves. Second, Kirchhoff depth migration has great flexibility. One can migrate directly 

from topography and limit the output to a subset number of laterally or vertically targeted 

subset of the earth. This latter capability is critical for migration velocity model building, 

where one wishes to iterate only those parts of the model that need velocity updating. While 
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the ability to image sources and receivers where they are deployed is an advantage, it is 

also a disadvantage if the processor naively ignores operator aliasing resulting in artifacts 

overprinting reflectors of interest (Gray et al., 2001). 

In contrast, wave equation depth migration algorithms implicitly include multipathing 

between any surface location and the image point of interest. Imaging through caustics and 

through more rugose interfaces requires no extra software; rather wave phenomena are 

implicitly accounted for. Wave equation solutions require the data to be resampled on a 

regular grid, typically with constant “receiver” spacing, requiring premigration data 

sampling and interpolation. This extra layer of complexity forces the processor to deal 

directly with the seismic aliasing problem that may be overlooked when using the more 

flexible Kirchhoff depth migration algorithm. 

Wave equation migration includes one-way and two-way methods. The two-way RTM 

(reverse-time migration) method (Hemon, 1978; Baysal et al., 1983; McMechan, 1983; 

Whitmore, 1983) is based on the full two-way wave equation solution, rather than on an 

asymptotic solution, which leads to higher imaging precision compared with other 

migration methods. However, it is much more time-consuming, requires greater computer 

memory, and it exhibits greater sensitivity to velocity errors compared with other depth 

migration methods (Shan et al., 2008). In contrast, the computationally more efficient one-

way wave equation depth migration method (Claerbout, 1971; Stoffa et al., 1990; Ristow 

et al., 1994) has the advantages of multipathing and imaging through caustics of a wave 

equation solution, but at cost that allows for multiple iterations to determine the final 

velocity. In one-way wave equation depth migration, the full wavefield is divided into a 

downgoing wavefield and an upgoing wavefield. These two wavefields are extrapolated 
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downward in depth rather than forwards and backwards in time as in RTM, thereby 

reducing the computer storage requirements to the solution the current and next depth level. 

The accuracy of the one-way wave equation depth migration falls between that of 

Kirchhoff depth migration and RTM. The one-way wave equation accounts for multiple 

paths, so long as they are going in the direction of wavefield extrapolation, and exhibits a 

lower sensitivity to velocity errors than RTM.  

 The key challenges of wave equation depth migration on land data include data 

regularization, amplitude preservation, and velocity model building. Seismic data from 

land surveys sometimes are not well sampled in different domains, with shot spacing often 

coarser than receiver group spacing. Prestack seismic gathers often exhibit “holes” due to 

surface “obstacles”, which add additional artifacts to the subsurface image. In our research, 

seismic data regularization is carefully handled before migration in the F-X domain (Spitz, 

1991). In this paper, we mainly focus on amplitude preservation and depth-domain velocity 

model building.  

Older, more indurated rocks outcropping at or near the surface in overthrust terrains 

may have significantly higher velocities than the underlying strata. Unless they have flat 

interfaces, waves propagating through these zones may be strongly refracted away from 

the deeper target, leading to irregular subsurface illumination, giving rise to lateral changes 

in amplitude. After correction for spherical spreading and surface consistent amplitude 

corrections, we follow Zhang et al. (2005) and add amplitude recovery terms to the one-

way wave equation depth migration algorithm that compensate for the lateral variation of 

illumination in depth. Figure 8 shows the comparison of different depth migration methods 

on the synthetic data previously shown in Figure A.2. Low frequency artifacts creep into 
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the Kirchhoff depth migrated image indicated by yellow arrows in Figure A.8a, but are 

largely suppressed in the one-way wave equation image (Figure A.8b). The underlying 

reflectors are poorly imaged due to the overlying high velocity structures in the Kirchhoff 

migration (Figure A.8a), but are well imaged by the one-way wave equation migration, 

indicated by the red arrow (Figure A.8b). The amplitude-preserving algorithm (Figure A.8c) 

more accurately represents the correct amplitude, especially for the deep reflectors 

indicated by the green arrow. 

Figure A.9 shows the prestack depth migration workflow in the overthrust belt, 

including the tomographic velocity updating procedure. Migration aperture plays an 

important role in depth migration, especially for the structures with steeply dipping 

reflectors and faults, such as overthrust structures. A much larger migration aperture is 

needed to image steep reflectors than flat reflectors. The larger migration aperture makes 

prestack depth migration more time-consuming. The migration aperture (14 km) used in 

the survey shown in Figure A.9 is much larger than the maximum source-receiver offset of 

5.5 km, in order to image the steeply dipping structures. Figure A.10 compares images 

from three different prestack depth migration methods, including Kirchhoff (Figure A.10a), 

one-way wave equation (Figure A.10b), and amplitude-preserved one-way wave equation 

(Figure A.10c). The underlying faults are better imaged by the one-way wave equation 

migration (Figure A.10b, A.10c) indicated by the red circle and arrow. The amplitude-

preserving algorithm further compensates the imaging energy of the deep reflectors. 

Depth-domain velocity model building 

Gray et al., (2001) report that if the velocity is correct and gives rise to ray bending, 

depth migration provides superior images than time migration. In contrast, if the velocity 
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model is inaccurate, time migration may provide a more focused (though laterally 

mispositioned) subsurface image.   

For the Tuha Basin survey, the shallowest component of the velocity model uses the 

previously described co-kriging static correction to a floating datum. The reflection events 

are then used to construct the velocity model below the floating datum.  

For the areas of the survey with relatively simple structures, no outcrops, and a high 

S/N ratio, an initial model based on layer-based coherency inversion (Yilmaz, 2001) works 

well. This initial model is then updated using tomography of the migrated gathers, iterating 

until the residual moveout approaches zero (i.e. the events are “flat”). The tomographic 

velocity updating workflow is included in Figure A.9. In this study, we use a layer-based 

tomography method. Figure A.11 shows the results of this workflow from the Gobi Desert 

area of the Tuha Basin survey. The shallower part of Figure A.11a shows the interpretation 

of a prestack time migrated result, exhibiting relatively simple structures and high data 

quality. The deeper part of Figure A.11a was computed using coherency inversion, focusing 

the area interpreted by the light blue horizon. This workflow provides a good initial 

velocity model with few artifacts. Figure A.11b shows the residual about the light blue 

layer horizon before tomography. After three iterations using the tomography method, the 

residual is better focused, converging towards zero, which is shown in Figure A.11c. In 

Figure A.12, we show the depth-domain common-image gathers located at x=14.0 km on 

Figure A.10. The reflections are overcorrected on the common-image gather without 

tomography, and there are obvious vertical residuals (Figure A.12a). After tomography 

iterations, the reflections are aligned along the offset axis on the common-image gather and 

the vertical residuals are almost zero (Figure A.12b). 
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There are plenty of faults and steeply dipping reflectors in our research survey, as 

shown in a representative geologic model in Figure A.13. The underlying structures 

(orange arrow) are important exploration targets in Tuha Basin. However, the imaging of 

these structures is difficult due to the overlying outcropped rocks with very high velocities. 

Depth-domain interval velocity model building is critical for the imaging of these 

structures. Due to the complexity in these areas, the workflow for velocity model building 

in Figure A.9 fails. The deeper part of Figure A.14a shows the coherency inversion result 

of one layer in the overlying outcropped area. It is chaotic, making it difficult to pick 

accurate initial velocities. The simpler conversion of RMS stacking velocities to interval 

velocities also fails. If the initial velocity model is too far from the correct velocity, the 

tomographic velocity updating workflow also fails.  

Coherency inversion indicates three candidate velocity ranges. The lowest range is 

tightly clustered around 2000 m/s. We consider this velocity to be unreasonably low for the 

older rocks in the Tuha Basin. Figure A.14a shows the velocity model built with the middle 

range of velocities, without any geologic constraints. However, Figure A.14b shows that 

the corresponding depth migration is of poor quality with crossing events, even after 

several iterations of tomography. The overlying outcropped rocks in Figure A.13 were 

measured directly and found to exhibit a very high velocity around 5000 m/s. Based on this 

outcrop analysis, we choose the highest range of velocities to be the initial velocity model. 

After several tomographic iterations (Figure A.14c), we obtain an improved, better focused 

subsurface image (Figure A.14d). Black arrows indicate better illuminated shallow, steeply 

dipping reflectors. The green arrow indicates a suite of previously poorly illuminated 

horizontal reflectors. The blue arrow shows that the shallow high velocity part of the model 
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significantly changes the depth and structural orientation of the deeper anticlinal target. 

With the workflow presented in this paper, we evaluate the prestack depth migration 

result in our research survey. Figure A.15 shows the comparison of prestack time and depth 

migration. The prestack time migration image (Figure A.15a) is displayed in time and the 

prestack depth migration image (Figure A.15b) in depth. Note the superior quality of depth-

migrated (Figure A.15b) compared to time-migrated result (Figure A.15a). Specifically, 

depth migration (Figure A.15b) better images the faults and the steeply dipping strata more 

clearly than time migration. There are also fewer migration artifacts (unfocused ellipses) 

in the depth imaging result. Examining differences in the strata underneath the overthrust 

structure, the time migration shows them dipping up to the right (Figure A.15a), while the 

depth migration shows them dipping down to the right (Figure A.15b). This velocity pull-

up pitfall is common in time imaging beneath high velocity overlying structures.  

Conclusions 

Imaging overthrust geologic structures is difficult for several reasons. First, overthrust 

terrains exhibit high lateral variations in velocity, requiring depth migration, and in turn an 

accurate velocity-depth model. Second, this lateral variation in geology occurs near the 

surface as well as at depth; the shallow section is often poorly illuminated, potentially 

resulting in erroneous estimates of the shallow velocity, thereby degrading all deeper 

images. In our example, we found that incorporating outcrop measurements provided a 

more accurate velocity-depth model and better subsurface images. Third, because older, 

more indurated rocks may lie near the surface, the seismic data may be contaminated by 

high amplitude headwaves and other linear noise. Cascaded linear noise attenuation 

performed first on common shot and then on common receiver gathers effectively 
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suppresses much of this noise but leaves aliased low velocity components in the filtered 

images. These aliased components have shallow apparent dip and will overprint the 

subsequent migrated image. Overthrust terrains can exhibit rugose topography. We find 

that tomographic statics solutions provide significantly improved images over simple 

elevation corrections and conventional refraction statics solutions in the mountain area. 

Finally, tomographic velocity updating provides improved images over simpler residual 

velocity analysis techniques. The numerical tests on the synthetic overthrust model data 

and the field data in Tuha Basin indicate that this paper’s method could provide high-

quality seismic images for the overthrust structures.  

      In summary, there is no simple solution to imaging overthrust geology. Appropriate 

modification and significant care at each step of the processing and imaging workflow to 

account for these particularly challenging imaging problem is necessary. 
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Appendix chapter figures 

 

 

 

 

 

Figure A.1. The geology map (a) and surface condition (b) of our research survey in the overthrust belt 

of Tuha Basin, China. (after Wang et al., 2012). 
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Figure A.2. A synthetic model built from the image of Tuha Basin to quantify any limits in imaging the 

overthrust structures. (a) Depth-domain structural interpretation of a typical line of our research survey. 

(b) Velocity-depth model used to generate acoustic wave equation synthetic shot gathers using a finite-

difference algorithm. Resulting images from (c) prestack time migration, and (d) prestack depth 

migration. Note the strong fault shadow effects on the deepest two reflectors (yellow arrows) on the 

prestack time migration. Prestack depth migration could image these fault zones much better. The fault-

plane reflection is also mispositioned with prestack time migration (blue arrows). There are less 

migration artifacts in depth imaging, and the pull-up pitfall is also removed in depth imaging. In contrast, 

the multiples are more coherent, but easier to identify as being multiples on the prestack time-migrated 

volume. While the multiples are weaker, but may be misidentified as being structures on the prestack 

depth-migrated data volume (red arrows). 
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Figure A.3. The seismic processing workflow in the overthrust belt indicate the four key steps for 

seismic imaging in the overthrust belt, including static correction, noise attenuation, prestack depth 

migration algorithm, and depth-domain velocity model building. 
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Figure A.4. The near surface model built with tomography method shows that the elevations vary from 

500 m to 1700 m above sea level. The Gobi Desert (blue arrow) is relatively flat with small elevation 

variations. In the mountain front transition zone (red arrow), the elevation variation become larger, but 

there is still stable refraction layer. However, the mountain outcrop area (orange arrow) exhibits serious 

lateral variations, and there are not stable refraction layers. 
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Figure A.5. The effect of alternative statics solutions on the final depth-migrated images for the 

overthrust belt, Gobi Desert, and mountain front field data examples. Tomographic statics provides a 

more continuous shallow reflector (yellow arrow) and higher resolution deeper reflector (orange arrow) 

than the other two solutions for the overthrust belt. Refraction statics provides a more continuous 

reflector at depth for the mountain front example (red arrow). In contrast, field statics provides more 

continuous reflectors in the Gobi Desert example (blue arrow). 
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Figure A.6. The results of multi-dimensional suppression of linear noise in the overthrust example. A 

representative common shot gather (a) before and (b) after linear noise attenuation. (c) The rejected 

linear noise reappears when sorting the previously filtered data into common receiver gathers. (d) The 

same common receiver gathers shown in (c) after a second pass of linear noise attenuation on common 

receiver gathers. Stacked images of (e) the original unfiltered data, (f) after linear noise suppression 

only in the common shot domain, and (g) after linear noise suppression in both the common shot and 

common receiver domain. Note the linear noise in both directions leaks through the stack array (yellow 

arrows). While it is suppressed, linear noise still leaks through after filtering common shot gathers 

(orange arrow). Sequential filtering of common shot followed by common receiver gathers significantly 

reduces the noise in the stack shown in (g). 
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Figure A.7. Multi-step linear noise attenuation for the overthrust belt example. (a) A representative 

common shot gather exhibiting high velocity noise (blue arrows), low velocity noise (yellow arrows) 

and ground roll (red arrows). The same gather after linear noise suppression of the (b) the low velocity 

linear events and (c) low and high velocity linear events. While the high velocity linear events are 

effectively suppressed, aliased components of the lower velocity events, including ground roll, have 

leaked through the filter. The shallow apparent dips (green arrow) of these events will be migrated as 

“signal” into the final image, damaging the overall signal-to-noise ratio and interpretability of the 

section. 
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Figure A.8. Comparison of different depth migration methods on the overthrust synthetic data of Figure 

A.2. (a) Kirchhoff depth migration, (b) conventional one-way wave equation depth migration, (c) 

amplitude-preserved one-way wave equation depth migration. Low frequency artifacts creep into the 

Kirchhoff depth migrated image indicated by yellow arrows, but are largely suppressed in the one-way 

wave equation image. The underlying reflectors have poor images due to the overlying high velocity 

structures in the Kirchhoff migration, but are effectively improved by the one-way wave equation 

migration indicated by the red arrow. The amplitude-preserving algorithm more accurately represents 

the correct amplitude, especially for the deep reflectors indicated by the green arrow. 
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Figure A.9. The prestack depth migration workflow in the overthrust belt, including the tomographic 

velocity updating procedure. Note that large migration aperture is needed to image the steeply dipping 

reflectors and faults in overthrust belt. 

 

 

 

 

 



213 

 

 

 

 

Figure A.10. Comparison of different depth migration methods on the field data with overthrust 

structures. (a) Kirchhoff depth migration, (b) conventional one-way wave equation depth migration, (c) 

amplitude-preserved one-way wave equation depth migration. The underlying faults are better imaged 

by the one-way wave equation depth migration (red circle). The amplitude-preserving algorithm further 
compensates the imaging energy of the underlying reflectors. 
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Figure A.11. A comparison of alternative depth-domain velocity model building methods as measured 

by computing semblance scans across the migration gathers. For accurately migrated data, the gathers 

should be flat, showing a misalignment of 0. In contrast, areas that are overcorrected will have negative 

residual moveout while those that are undercorrected will have positive residual moveout. Residual 

moveout computed from seismic images migrated using (a) Yilmaz’s coherent event conversion result 

and (b) before and (c) after tomographic residual velocity correction. 
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Figure A.12. Comparison of common-image gathers located at lateral distance 14.0 km of Figure 10 (a) 

before and (b) after tomography. Note that the reflections behave upward with residuals before 

tomography, and they are aligned after tomography. 
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Figure A.13. A typical geologic model in our research survey. The overlying outcropped rocks behave 

very high velocities. 

 

          

          

Figure A.14. The importance of adding geologic constraints in building the velocity depth model for 

the overthrust example. (a) Velocity-depth model and (b) corresponding seismic image built using the 

seismic data alone. Seismically derived velocities are more accurate for intermediate depths where the 

fold (more accurately, the number of illuminating ray paths) is high. Considering the geologic model in 

Figure A.13, the overlying outcropped rocks behave very high velocity. The range of velocities that we 

choose are too low, and make the initial velocity model far from the correct one, so it is difficult for the 

tomography algorithm to converge. Incorporating this geologic information into the (c) update velocity 

depth model generates (d) an improved, better focuses subsurface image. Black arrows indicate better 

illuminated shallow steeping dipping reflectors, the green arrow a suite or previously poorly illuminated 

horizontal reflectors, while the blue arrow shows that the higher shallow velocity significantly changes 

the depth and structural orientation of the deeper anticlinal target. 
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Figure A.15. Comparison between prestack (a) time and (b) depth migration of the land survey with 

overthrust structures. Note the superior quality of the depth-migrated image compared to the time-

migrated result. Specifically, the depth migration better images the faults and the steep dipping strata 

more clearly than time migration. There are also fewer migration artifacts (unfocused ellipses) in the 

depth imaging result. Examining differences in the strata underneath the overthrust structure, the time 

migration shows them dipping up to the right, while the depth migration shows them dipping down to 

the right, to avoid the velocity pull-up pitfall in time migration. 

 


