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Abstract 

   The study of parent-child well interactions in unconventional shales has generated high 

interest both in the industry and academia over the last decade. This is largely because of the 

growing number of child wells and their immediate impact on the parent well production owing to 

several dynamic factors, one of them, including well spacing. Evaluating the impact of well 

spacing on parent and child well production performance is challenging. Several studies have 

resorted to geomechanical stress and fracture modeling combined with dynamic simulation 

techniques while a few operators have chosen field trials to evaluate optimal well spacing. Several 

data-driven approaches to address the well-spacing problem have also become popular.  One such 

commonly used data-driven approach simply calculates the difference in cumulative production 

over a specified period of time for parent and child wells grouped by spacing. This approach has 

been the method of choice for several different recent analyses of well spacing; however, given 

that the method of simple averages does not account for formation properties or completion design, 

the results may be compromised and can lead to counterintuitive results.   

In this thesis, I introduce a new data-driven approach leveraging the power of causal inference 

as seen in clinical trials for multivariate observational studies. The causal approach addresses the 

problem behind the routinely used simple averages approach by providing a formalism to control 

for reservoir and completion variables when evaluating the impact of well spacing on production 

performance. I apply the causal inference workflow to a dataset from a prolific oil basin in Texas 

with over 700 wells in the analyses. It includes the formation properties, fluid volume, proppant 

weight, landing zones and the downhole locations of the wells. Using the causal inference 

workflow, I evaluate the effect of well spacing on well performance at different parent-child 

spacing ranges. The optimal well spacing is then estimated for this shale play based on the 
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magnitude of the causal effects. These estimates are then compared with the simple averages 

approach to demonstrate the power and utility of causality. 

In the second part of the thesis, I transition into a discussion on anomaly detection approaches 

applied in the oil and gas industry. I discuss current anomaly detection methods for a widely used 

artificial lift method – the Sucker Rod Pump (SRP). Today, there is a growing need for fast and 

accurate anomaly detection systems given the emergence of Internet of Things (IoT) and access to 

Big Data. Anomaly detection using human operators can be expensive, is often subject to bias and 

experience-levels and does not scale very well with the need to monitor more than a few tens of 

wells. With SRPs, the problem of anomaly detection becomes a problem of image classification 

where dynamometer cards are evaluated for signatures of failure. While this has been the mainstay 

of anomaly detection for pumpjacks, in this thesis, I automate this task of monitoring and detecting 

the anomalies from the SRP pump cards.  

Several thousand synthetic pump cards specific to pump failures modes are generated from the 

literature and fed to a deep learning model. This deep learning model is a Convolutional Neural 

Network (CNN) which is commonly used in image classification tasks, speech recognition tasks 

as well as many other modern-day technology applications including smart phones, self-driving 

cars, aerospace etc. The CNN used in this work offers a very high accuracy for detecting a variety 

of pump failures modes thereby offering the potential to save costs, time and unnecessary 

workovers for the operator. 
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Chapter 1: Introduction 

The cumulative US production per day from shale plays as of August 2020 is approximately 7 

MMbbl of crude oil per day and 68 Bcf of gas per day (EIA 2020). The number of wells drilled 

and completed in the US since 2014 is over 100,000 and continues to rise despite the recent 

downturn and a global health pandemic clouding the industry’s near future, signifying the 

importance of unconventional shales in securing the nation’s energy supply. 

The success of shale plays owes a lot to advancements in horizontal drilling and hydraulic 

fracturing. Shales are typically tight rock formations with very low permeability and porosity. In 

order to extract hydrocarbons from these formations, wells are first drilled vertically up to a certain 

depth and then deviated to drill a horizontal section which is then perforated in stages from the toe 

to the heel along the lateral length. Fluid mixtures mainly comprising of water, sand and chemical 

additives are then pumped under high pressure to create additional fractures in the formation. The 

sand or the proppant keep the fractures open, allowing oil and natural gas trapped inside the tight 

rocks to flow into wellbore. 

As oil and gas operators continue to exploit these hydrocarbon rich resources through horizontal 

drilling and hydraulic fracturing, the density of the wells per acre also increases with time. The 

wells which are drilled, completed and put on production following lease acquisition are called the 

“Parent” wells. After a period of time, the operator drills more wells in order to continue to legally 

hold the lease economically by production. These newer infill wells are called the “Child” wells. 

Of course, with time factored in, some Child wells can become Parent wells to other newer infill 

wells.  

Miller et al. (2016) and Xu et al. (2019) compare the number of parent and child wells brought 

on production between years 2005 to 2018 for 5 different unconventional basins. The trends 
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observed in Fig. 1.1 obtained from their analysis show a definite increase in the number of child 

wells with respect to the number of parent wells. A larger number of child wells compared to the 

number of parent wells indicates decreasing well spacing with time. Well spacing cannot decrease 

indefinitely. This leads to the question of optimal spacing for maximizing recovery and what are 

the optimal number of wells per section. 

The answer to the above question is certainly not easy. Closely spaced wells tend to recover 

more hydrocarbons but suffer from well interference at some point in the future. If the well spacing 

is too large, operators end up with stranded resources that will require additional infill wells at 

some point in the future. Therefore, if the goal is to maximize the oil recovery, then it is imperative 

that we find the optimal well spacing.  

 

Fig. 1. 1—Percentage of child and parent wells between years 2011 and 2018 (Xu et al. 2019). 

There are multiple ways to determine optimal well spacing. Studies which consider well spacing 

optimization can largely be classified into two groups. The first group is the physics-driven 

approach. This approach is the classical approach combining fracture modeling integrated with 

dynamic reservoir simulation modeling. The second group is the data-driven approach. This 

approach has seen more applications in recent times as operators hope to leverage the information 

content of the data they have acquired. Powerful machine learning and artificial intelligence 
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algorithms have now become a part of this data-driven approach. In the next few paragraphs, I 

provide a comprehensive literature review on well-to-well spacing considerations using both 

approaches as mentioned above. 

Well spacing considerations are closely tied to well-to-well interference. Closely spaced wells 

suffer increased pressure and production interference. Ajani and Kelkar (2012) were among the 

first to assess production interference in shale wells. They use a data-driven approach to analyze 

fracture and initial 60-day production normalized to lateral length for gas wells in the Woodford 

shale play. They quantify the production interference seen in the parent wells as newer child wells 

are put on production. If there is any change in the production trends for the parent well as a result 

of addition of new child wells within a certain distance from the parent, then that is considered as 

interference impact. This is done through manual inspection of production data changes for the 

parent well when the child well is brought on production. In general, they observe that child wells 

closer to the parent well have a significant negative impact on parent well performance compared 

to wells placed farther away. The negative impact was also seen to be proportional to the age of 

the parent well because of higher levels of depletion. Since there may be multiple impacts on 

parent wells as more child wells come online, the quantification of optimal spacing becomes very 

difficult using this manual inspection method. 

Well interference and frac-hits are both technically different phenomena but are used 

interchangeably for shale wells. Well interference is seen when there is an overlap between the 

drainage volume of the wells through the matrix but there is no overlap between the fracture 

networks of the wells. The term frac-hit or fracture driven interaction (FDI) is a parent-child intra 

well communication when the child well is hydraulically fractured in the vicinity of a pre-existing 

parent well. Frac-hits usually occur when there is an intersection between the fracture-networks of 



4 

 

the parent-child wells which is sometimes aided through pre-existing natural fracture systems 

between the wells (Daneshy and King 2019; Yu et al. 2017). Sometimes even if the new child well 

is placed at more than 3000 ft apart from the parent, there may be production interference. In this 

case, the parent-child wells are primarily connected through the pre-existing natural fractures or 

faults and not the hydraulic generated fractures (Yaich et al. 2014).  

The above-mentioned forms of inter-well communication through hydraulic fractures, matrix 

and natural fractures systems in unconventional shales are shown through a simple cartoon in      

Fig. 1.2 (Gupta et al. 2020). It is important to note that there could be combinations of two or all 

three forms of inter-well communication occurring at the same time. Gupta et al. (2020) provide a 

detailed literature review of factors controlling frac-hits in unconventional shale plays. They divide 

these factors into controllable and uncontrollable factors from an operator’s perspective. 

Uncontrollable factors are related to geological features, in situ stress environment, petrophysical 

and geomechanical properties. Controllable factors include choice of well placement or well 

spacing, selection of completion design parameters and control over the well depletion.  

 

Fig. 1. 2—(a) Inter-well communication in shales through hydraulic fracture network (b) Inter-well communication in shales 

through the matrix with no connected hydraulic fractures (c) Inter-well communication between parent and child wells 

through a natural fracture system (Gupta et al. 2020). 
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In another study, Esquivel and Blasingame (2017) study frac-hit events in the Haynesville shale. 

They report that parent well depletion creates pressure sinks or pressure depleted zones that are 

identified as a cause as well as a necessary condition for a frac-hit to occur. Typically, during the 

hydraulic fracture treatment of the child well, the parent well is shut down. The authors show that 

the after the parent well shut down period, child to parent well frac-hits are correlated with the 

inter-well spacing, in-situ principal stress re-orientations and completion design size (proppant per 

foot, frac fluid per foot). Fig. 1.3 illustrates a case of a frac-hit between a parent well and child 

well in Haynesville shale. In this case, the parent well production is boosted after the child well is 

completed. 

 

Fig. 1. 3—Example showing the effect of a positive frac-hit (dotted black line) in Haynesville Shale. The parent well gets an 

uplift in its gas production rate (shown in red) after the child well gets completed in late 2014 (Esquivel and Blasingame 

2017). 

There have been other approaches to diagnose frac-hits. Sani et al. (2015) and Schertz et al. 

(2019) interpret chemical tracer data to diagnose fracture propagation and analyze frac-hits in two 
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different unconventional shale plays. Schertz et al. (2019) report that depletion plays an important 

role in fracture driven interactions between the parent and child wells. Delays in bringing child 

wells on production are reported to increase the chances of fracture communication between the 

wells. This can potentially lead to asymmetric fracture growth from the child well towards the 

parent well. The above observations are corroborated by Xu et al. (2019) who show that the child 

well placed nearest to a parent well underperforms. The production performance of the remaining 

child wells positioned farther away from the parent is seen to be less compromised. They also 

report that the time period between start of production for the parent and the child well is critical 

and longer intervals worsens child well performance.  This again is due to the asymmetric fracture 

growth from the child well towards the parent wells into its depleted drainage area. Kumar et al. 

(2020) report similar observations in their fracture and geomechanics simulation study stating that 

the child well fracture asymmetry is directly proportional to reservoir diffusivity.  

Portis et al. (2013) provide a case study from the Eagle Ford where they test well spacing 

strategies using chemical and radioactive tracers along with pressure interference tests for 3 single 

pad child wells spaced  500 ft from each other with a parent well located 1500 ft away from the 

nearest child well. They report that field tests coupled with seismic and well log data can provide 

a better understanding of complex fracture geometry and pressure communication between the 

wells. Use of chemical tracers and pressure monitoring throughout the field development cycle 

give an idea about the fracture conductivity, pressure communication and mobility of fluids 

transported across large distances through the reservoir. All this information along with production 

responses aid in reaching the optimal well spacing. 

Kurtoglu and Salman (2015) apply decline curve analysis (DCA) to get the difference in 

estimated ultimate recovery (EUR) before and after well-to-well frac interference. The authors 
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mention that geological features like pre-existing natural fractures, heterogeneity in reservoir 

properties and size of completion designs play an important role in this interference. High internal 

energy reservoirs possess a high GOR and initial reservoir pressure therefore any interference due 

to fracture hits for parent-child wells will likely be positive. However, the reservoir which has low 

internal energy and is marked through a low GOR and initial pore pressure, any interference due 

to fracture hits is most likely to be negative. This phenomenon is also seen in Fig. 1.4a. where the 

older parent well on left is depleted with low internal reservoir energy. The child well fractures on 

the right fractures grow in a preferentially asymmetric manner towards the pressure depleted 

region of the parent well on the left resulting in a negative frac-hit. This case is worsened by closely 

spaced wells and bigger child well completion sizes.  

 

(a)                                                                           (b) 

Fig. 1. 4—(a) Negative frac-hit from the child well on right with fractures growing in preferential manner towards the 

pressure depleted region of the parent well on left (b) Positive frac-hit between the child well on right and the parent well 

on left. Here the parent well has higher reservoir pressure and has not depleted as much in comparison (Kurtoglu and 

Salman 2015). 

                                                                                        

Similar behavior is observed in a field study of wells in the Midland basin by McDowell et al. 

(2019). According to their study, horizontal parent wells experience higher fracture driven 

interference than vertical parent wells. They divide the wells into five categories based on fracture 
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driven interaction (FDI) intensity and perform a qualitative analysis of the frac-hits in the study 

area. Also, they find a negative correlation between the intensity of the fracture driven interference 

and a 2-dimensional well spacing. The parent wells received a frac-hit after the child well was 

hydraulically fractured for all well spacings at less than 1000 ft. Water hits in general were 

observed to be stronger for tighter well spacing configurations. Cao et al. (2017), however, report 

that FDIs directly indicate the required well spacing configuration. If the operator does not see any 

frac-hits, the wells are spaced farther apart than optimal leaving behind unrecovered hydrocarbon.  

As indicated in the data analyses conducted by Miller et al. (2016) and Xu et al. (2019), frac-hits 

can create positive or negative impacts for the parent wells. However, it is seen that the child wells 

usually perform poorly whenever there are frac-hits. 

Ajisafe et al. (2017) also study the impact of well spacings (660 ft and 1320 ft) on production 

interference in parent-child wells for the Avalon shale in the Delaware Basin. They build a discrete 

fracture network (DFN) model integrated with seismic data and geophysical logs. At the 600 ft 

well spacing scenario, the parent well after 1 year of depletion develops a pressure sink around the 

wellbore. This pressure sink then alters the stress regime between wells and helps the fractures 

from the child well navigate towards the parent well. Ma and Zoback (2016) report that this is 

because of the in-situ poroelastic stress changes between the parent and child wells induced due to 

depletion of the parent well. This in turn had a negative impact on the child well production 

performance at the 660 ft spacing. Daneshy (2018) explains this in terms of reduction in the 

magnitude of the principal stresses for the parent well due to production which then attracts the 

hydraulic fractures from the child wells. The magnitude of principal stresses on the two sides of 

the child lateral are not equal and tend to slowly decrease in the direction of the parent well and 

increase away from it (Daneshy 2018). 
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In another work by Gupta et al. (2020), a data-driven approach is used to quantify the impact 

(positive or negative) of frac-hits on the affected parent-child wells in the Woodford, Wolfcamp 

and Meramec formations. Parent wells are shut down prior to the child well hydraulic fracturing. 

The authors identify frac-hit wells that are characterized by a specific signature in oil, gas and 

water production rates post shut-down period of the parent well. This signature is marked by an 

increase in the gas-oil ratio (GOR), initial decrease in oil production rate and high water cut 

percentage. The difference in production as a function of time between the estimated decline pre- 

and post frac-hits is quantified as the overall impact of the frac-hit. Also, based on predictive 

multilinear regression models for EUR regressed on several production data and completion design 

parameters, they propose a recommendation chart for minimum well spacing with zero impact on 

EUR for a given completion size and a cumulative production of the parent well.  

Rafiee and Grover (2017) also study the well spacing problem in the Eagle Ford shale. Their 

study combines fracture modeling, dynamic reservoir simulation and data analytics. They report 

that wells spaced at a wider distance with a sparse cluster spacing are characterized by a 30 percent 

more EUR compared to a densely spaced configuration.  

Chu et al. (2020) describe the use of downhole pressure gauges which measure well bottomhole 

pressures continuously throughout the life of the well. At different well spacings, these bottomhole 

pressure measurements are then used to quantify the measured pressure interference (MPI). MPI 

is derived from the Chow Pressure Group (CPG) (Engle and Buswell 1952). Their methodology 

can be also used as a guide to determine the optimal well spacing needed. They also observed that 

tighter spacings yielded stronger MPI values between the wells. As many have observed, stronger 

interference between the wells lead to temporary or permanent loss in production (King et al. 

2017).  
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Along with different approaches discussed so far for finding optimal spacing, there are a few 

mitigation procedures also suggested in the literature for minimizing losses when the spacing is 

not optimal. Whitfield et al. (2018) through field trials discuss the success of pre-loading or re-

pressurizing the parent well through water injection prior to and during the hydraulic fracture job 

at an adjacent well. Another option is refracturing the parent well to increase the magnitude of the 

surrounding principal stresses. Manchanda et al. (2018) report that refracturing the parent well 

alters the stress regime around it inhibiting the asymmetric fracture growth from the child well to 

the parent. Sani et al. (2015) suggest the use of a “stress barrier” to stimulate the child well such 

that it does not lose its deliverability to a nearby parent well. Another proven field trial conducted 

by Zhang et al. (2020) pumps far-field diverters during the child well hydraulic fracture treatment. 

These field diverters as their name suggests divert the fluids at the fracture tips. An application of 

the far-field diverter is illustrated in Fig. 1.5. This stops the flow of proppant and hydraulic 

fracturing fluid heading in the direction of the preferential planes of connected fractures thus 

offering less resistance near the parent well depleted zones (Esquivel and Blasingame 2017).  

 

 

 

Fig. 1. 5—Example showing the application of far-field diverters bridging the gap between a parent and child hydraulic 

fracture. This is used for preventing a frac-hit (Zhang et al. 2020). 
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With proper field development and planning, frac-hits can be prevented ahead of time. For this 

to happen, one would need to optimize the controllable factors like completion design size, 

schedule of drilling, fracture treatments, production of child wells and more importantly inter-well 

spacing. Almost all the physics-driven modelling approaches to solve the well spacing problem 

are associated with a certain degree of uncertainty for each of modeling parameters. Modelling 

inputs for permeability, fracture half length, number of fractures, fracture conductivity, cluster 

spacing etc. have a direct influence on the results. Field well spacing trials offer a more reliable 

solution for optimizing well spacing, but these methods are capital intensive and may not be always 

practical given the current market conditions and economy (Yaich et al. 2014). 

On the other hand, data-driven approaches are gaining increasing acceptance. Access to reliable 

and good quality field data can allow meaningful interpretation. However, the traditional and 

routine method of comparing simple averages of cumulative normalized well production numbers 

for parent wells and child wells, while useful for a preliminary analysis, can provide inaccurate 

results because there is little to no consideration for the year of completion, completion design and 

reservoir and petrophysical properties. 

In this thesis, I describe a more sophisticated data-driven approach using causal inference 

applied to solving well spacing problems. To the best of my knowledge, this is the first application 

of formal causal inference in petroleum engineering and the geosciences.  

This study evaluates the impact of well spacing on 180-day and 360-day cumulative oil 

production normalized to lateral length (bbl/ft) for four different ranges of parent-child well 

spacing. By controlling for the parent-child well completion and formation properties and 

establishing a statistical balance between the wells, the causal impact of well spacing on production 
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is estimated. This effect is compared with the routinely used simple averages approach. For all the 

four spacing ranges considered, the causal effect quantifies the overall production loss per lateral 

length between the parent and the child wells. Based on the magnitude of this effect, I determine 

an optimal well spacing strategy for the parent and child wells. 

For the second portion of this thesis, I introduce the reader to the concept of a process anomaly, 

anomaly detection and some of its applications using different methods in the rapidly developing 

field of data analytics. Although the anomaly detection algorithms are widely used in aerospace, 

healthcare, manufacturing and finance related applications, most of the applications as seen in the 

literature that are discussed in the thesis are viewed from the perspective of the oil and gas industry.  

Any complex process, irrespective of the industry, with measurable parameters over a time 

period is subject to certain specification limits beyond which the process goes out of control. The 

data points which lie outside the process specification limits are called anomalies. The mechanism 

to find such process anomalies or data patterns which tend to deviate from the normal or standard 

expected value is called as Anomaly Detection. Sometimes an anomaly may have an overall 

positive impact but most often, it has negative connotations which are indicators of an impending 

process failure. Therefore, many researchers in industry and academia have utilized the power of 

anomaly detection algorithms to identify these abnormalities to save potential downtime, enhance 

safety and increase productivity.  

The use of anomaly detection algorithms spans upstream, midstream and downstream oil and 

gas operations. One of the biggest benefits of automated anomaly detection is the elimination of 

the need for continuous human monitoring.  However, a process expert is definitely warranted to 

ensure that the detected anomalies are not merely false positives.  
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In this section, I discuss a few algorithms used for anomaly detection. One of the most 

promising approaches is detecting change points in time-series data. Change points can be defined 

as abrupt variations in a time series of sequential data (Adams and MacKay 2007). These change 

points are anomalies if they represent a deviation from the normal patterns. Truong et al. (2020) 

provide an extensive review of offline change point detection algorithms for multivariate time 

series data. The methods discussed are mainly applicable to offline change detection. Adams and 

MacKay (2007) introduce a Bayesian method for online change detection which is an improvement 

from other retrospective Bayesian change detections proposed earlier. This online change 

detection method can be used on a variety of time series data observed in any oil and gas industry 

applications. One such example of this method is shown in Fig. 1.6 where change points are 

detected in the nuclear magnetic response of a well during drilling. 

 

Fig. 1. 6—(Top) Change point detection applied to a nuclear magnetic response during drilling of a well. (Bottom) Linear 

increase in run length and its reset to zero indicates the time until a change point occurs. Darker regions show high 

probability of a change (Adams and MacKay 2007). 

In machine learning, there are two main methods of anomaly detection known as Supervised 

and Unsupervised classification. The Supervised method is based on labelling univariate or 

multivariate observations with normal and abnormal tags. This method necessitates careful 
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labelling of normal operations and dysfunctional modes by the subject matter expert. The training 

process requires huge amounts of data and therefore supervised methods can be time-consuming 

and laborious. Some examples of popular supervised machine learning methods for anomaly 

detection are Decision Trees, Support Vector Machines, Random Forest, Linear Regression and 

Ensemble methods (Liu et al. 2013; Pennel et al. 2018; Boguslawski et al. 2018). 

The unsupervised method works with unlabeled data. Anomalies are reported for data points 

that are far away using some distance-metric from the majority of the points. However, this method 

still necessitates human intervention to avoid reporting false positives. Some examples of such 

unsupervised methods for anomaly detection are K-means clustering, Isolation Forests and 

Principal Component Analysis (Gupta et al. 2016; Cadei et al. 2020). 

Deep learning methods are extensions of machine learning algorithms which are designed to 

discover complex data structures or patterns which can then be used for anomaly detection. Deep 

learning algorithms have proven to be popular for anomaly detection in the oil industry (Yan and 

Yu 2015). Here, I discuss some of recent applications of anomaly detection specific to the oil and 

gas industry. 

An application of anomaly detection for power plants flags abnormal operating modes for gas 

turbines. Yan and Yu (2015) build an unsupervised deep learning model designed to detect 

dysfunction in the gas combustion process using a stacked denoising autoencoder (SDAE) for 

feature learning and a Neural Network classifier called Extreme Learning Machine (ELM) for 

detecting anomalies.   

Marti et al. (2015) discuss anomaly detection for oil platform turbomachines used at the rig site. 

High speed turbomachines which generate power near the well head are equipped with multiple 

sensors to monitor performance. The authors also describe this as a big data problem because the 
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sensors provide more than 43 million measurements daily. They use a low computational 

segmentation method along with an unsupervised one-class super vector machine classifier (SVM) 

to detect anomalies in the turbomachines. One-class SVM classifier assumes that all the training 

data belongs to one label or class. The model uses the data to learn a boundary such that the normal 

data points are separated from the abnormal ones. Any data point which lies outside the boundary 

is considered an anomaly (Marti et al. 2015). 

Sidahmed and Bailey (2016) develop an anomaly detection approach based on sliding windows 

to detect sand entry events into the wellbore. They take acoustic signal measurements and 

reconstruct them into a new signal using an unsupervised deep-learning model. The reconstructed 

signal error rate is then used with a selected threshold to detect anomalous events in the system. 

They also examine these events using a probabilistic Finite Gaussian Mixture model for clustering 

the observations into normal and abnormal events. Romanenkova et al. (2019) use a combination 

of machine learning and change point detection algorithm to detect rock type changes in North 

Western Siberian oil wells. They build a supervised classifier using Gradient Boosting Decision 

Trees to predict probabilities for the rock type corresponding to each drill bit position. This 

information is fed to a change point detection algorithm to detect changes in 2 rock types – the 

productive sand zone and non-productive shale zone.  

Gurina et al. (2019) demonstrate an anomaly detection method applied to directional drilling 

data accidents like stuck pipe, drill string wash outs, mud loss and fluid shows. They compare 

measuring while drilling (MWD) data in a 2-hour time windows of a test well with another 2-hour 

time window of a pre-existing well from a database of MWD drilling accidents history records. 

For each time window, sample statistics are calculated. These aggregated statistics are then fed to 

a gradient boosting classification model which computes a similarity score for the two classes of 
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wells. If the similarity score is higher than a certain assigned threshold value, then it is classified 

as a drilling accident.  

Kuesters et al. (2020) apply another change point detection algorithm for drill string washout 

prevention. Typically, a pressure change is observed when there is a drill string washout. If the 

washout condition is not identified early, then there could be potential twist-off in the drill string. 

Therefore, detection of the start to a washout is necessary so the drill string can be retrieved without 

severe damage. The variables used here were pump pressure and flow rate. In this study, the 

authors successfully used a change point algorithm based on the difference between the Z scores. 

First Z score is computed for a smaller window of data points leading up to the change and a 

second Z score is computed for a wider window of data points leading up to the change point. If 

the difference in the two Z scores goes beyond a fixed threshold, then it is regarded as an anomaly. 

Saghir et al. (2019) use time series data from Coal Seam wells and convert it into images to 

gauge abnormal Progressive Cavity Pump behaviors due to production of coal fines. This is 

accomplished through a Symbolic Aggregation Approximation (SAX) applied to the PCP time 

series for flow, speed and torque data. Conversion in SAX is the generation of symbols 

corresponding to the time series followed by transformation of the symbols to heat maps. Each 

heat map corresponding to each variable (flow, speed and torque) is converted into a multivariate 

heat map with a 1 day-time window. A change in the shape and color of heat map corresponds to 

an anomaly for the PCP. An example of SAX heat maps is shown in Fig. 1.7 (Saghir et al. 2019). 

They further use K-mean clustering to cluster and label the anomaly heat maps for each time series 

variable considered. However, they could have easily accomplished anomaly detection using K-

means directly. The motivation for using SAX is not presented.  
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Fig. 1. 7—Example of a multivariate heat map for PCP flow, speed and torque plotted over a period of 24 hours. Heat maps 

are shown for each 1-hour time window (Saghir et al. 2019). 

For an oil and gas central processing facility which serves five production lines of multiphase 

flow, Cadei et al. (2020) develop an anomaly detection method using plant sensor data. Fig. 1.8 

shows the architecture of their digital oil field connecting field sensors to the data center for 

monitoring and reporting. Plant sensors are flowmeters, pressure and temperature transmitters fed 

to an unsupervised Isolation forest algorithm and a trained Ridge regression model to predict 

anomalies in the future. Akinsete and Oshingbesan (2019) detect natural gas pipeline leaks using 

5 different models including Random Forests, Decision Trees, Support Vector Machines, Gradient 

Boosting and Artificial Neural Networks. Each of the model predicts the flow rate based on 

operational parameters. The authors define a leak index formula which is dependent on the number 

of flowrate residuals. There is a pipe leak if the leak index is over a predefined threshold based on 

Mean Absolute Errors from the model. They observe that Random Forests and Decision Trees 

models are the most sensitive to detect leaks in pipelines. 
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Fig. 1. 8—Example of the architecture in a digital oil field (Cadei et al. 2020). 

Bello et al. (2018) use a distributed temperature sensing (DTS) data analytics system for online 

anomaly detection for gas lift valves. The authors use a combination of statistical feature extraction 

based on the position of gas lift valve, unsupervised K-means clustering and a supervised Support 

Vector Machines classifier. Snyder et al. (2019) provide an anomaly detection solution for plunger 

lifts. They take over 50 input features including gas rate, pressure, plunger arrival times etc. Their 

methodology is a self-adjusting detection system which comprises of a model statistic and a 

dynamic threshold. The authors, however, do not explain the model statistic as well as the dynamic 

threshold used in any detail. An example of this system on plunger lifted gas well is shown in     

Fig. 1.9. This advanced detection system according to the authors not only reduces the overall 

downtime due to plunger lift failures but also saves more than $2 million per year overall for the 

operator. 
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Fig. 1. 9—Self-adjusting detection system using a dynamic threshold and a model statistic (Snyder et al. 2019). 

An application of natural language processing and artificial intelligence is seen in anomaly 

detection from drilling and completion reports. Zhang et al. (2020) use natural language processing 

to convert words from drilling and completion reports into vectors. Neural Networks then use the 

numerical vectors as inputs for a classification task between normal and abnormal. Jansen van 

Rensburg (2019) uses deep neural networks to detect anomalous behavior in Electrical 

Submersible Pumps (ESP). Several ESP’s in an oilfield are connected remotely to a cloud server 

through a Supervisory Control and Data Acquisition (SCADA) system. Neural networks hosted 

on the SCADA system build an autonomous field surveillance system which identify severe 

anomalies and prevent occurrence of critical ESP failures.  

In this thesis, I also apply a deep learning network called as the Convolutional Neural Network 

(CNN) for anomaly detection in sucker rod pumps.  

This thesis is organized as follows: Chapter 2 discusses the application of a data-driven 

approach using causal inference applied to solving well spacing problems. This chapter explains 
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the history behind causality, its assumptions and a detailed workflow for estimating the effect of 

well spacing on well performance. The causal inference workflow is applied to a dataset from a 

prolific oil basin in Texas with over 700 wells in the analyses. It includes the formation properties, 

fluid volume, proppant weight, landing zones and the downhole locations of the wells. The results 

of the case study show the optimal well spacing decision for this specific shale play. Chapter 3 

discusses applications of anomaly detection for the oil and gas industry and how machine learning 

methods have been applied to solved problems related to the most widely used artificial lift in the 

world – sucker rod pump. Then, I explain the dataset used for the case study and discuss the chosen 

CNN model’s architecture more generally. I dive into how the CNN works for a supervised 

classification task. Finally, the chapter finishes with the results and conclusions for the sucker rod 

pump failure anomaly detection.  
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Chapter 2: Causality and Well Spacing Decisions 

2.1 History of Causal Inference  

Causal inference is a growing field of study and has increased relevance today. Questions in many 

disciplines such as the efficacy of new vaccines against COVID-19, the impact of a new corporate 

tax law on the growth of GDP or quantifying the impact of a new marketing campaign has on the 

sales of a product can be answered through causal inference (Pearl and Mackenzie 2017). 

In statistics, one is taught “Correlation is not Causation” with very good convincing examples 

but it does not tell us what causation really is. There are, however, spurious correlations prevalent 

in real data where two completely unrelated variables are highly correlated with each other. In   

Fig. 2.1, the per capita consumption of Margarine (black curve) correlates with the divorce rate 

(red curve) in Maine, but we know that consuming margarine does not cause a divorce.  

 

Fig. 2. 1— Divorce rate in Maine and per capita consumption of margarine plotted versus time between years 2000 and 

2009 https://blogs.ams.org/blogonmathblogs/2017/04/10/divorce-and-margarine/ (accessed 11 October 2020) (Vigen 2014). 

In Fig. 2.2, a rooster’s crow at sunrise but does it cause the sun to rise? (Pearl and Mackenzie 

2017). These are cases with obvious correlation with a lack of causation.  

https://blogs.ams.org/blogonmathblogs/2017/04/10/divorce-and-margarine/
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Fig. 2. 2—Rooster’s crow heralds the sunrise https://www.trialrun.us/roosters-crow-causes-sun-rise-eat-chocolate-win-

nobel-prize-statements-not-make-sense-blog-will/ (accessed 11 October 2020) (Trial Run 2020). 

However, in some cases there might be a correlation statistically and the existence of any 

causality is not that obvious. In the 1950’s, such an example was the effects of smoking on lung 

cancer. Sir Ronald Fischer who created and designed the randomized experiment in 1935 believed 

the association between smoking and lung cancer was spurious. Fischer (1958) claimed that in 

order to understand the effects of cigarette smoking on lung cancer, other common causes such as 

genotypes should be investigated before implying causation. Interestingly here, the doctors could 

not hold randomized control trials to ascertain causation simply because they were unable to 

randomly select individuals and ask them to smoke cigarettes in order to gauge the effect on their 

health decades later. An advertisement using doctors as an advertising aid for cigarettes is shown 

in Fig. 2.3. Eventually, the US surgeon general in 1964 declared that “Cigarette Smoking is 

causally related to lung cancer in men” which then resulted in decline of cigarette smoking among 

the US population in the years to follow and has increased life expectancy (Pearl and Mackenzie 

2017). 

https://www.trialrun.us/roosters-crow-causes-sun-rise-eat-chocolate-win-nobel-prize-statements-not-make-sense-blog-will/
https://www.trialrun.us/roosters-crow-causes-sun-rise-eat-chocolate-win-nobel-prize-statements-not-make-sense-blog-will/
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Fig. 2. 3—Controversial advertisement in 1948 reassures the public that smoking is not injurious to health (Pearl and 

Mackenzie 2017). 

In the field of medicine where randomized clinical trials are used to determine the effect of a 

treatment on the prevention of a disease, a large group of people given the drug are allocated to 

the “Treatment” group and another large group of people who are not given the treatment or given 

a placebo are allocated to the “Control” group. However, just like the smoking-lung cancer 
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example, randomized control trials which are considered the gold standard in determining casual 

relationships are not always feasible for designing a statistical experiment. Fortunately, if we have 

a lot of observational data available to us, then one could still identify a causal effect if there is 

one. Cochran (1972) writes “Observational studies are an interesting and challenging field which 

demands a good deal of humility, since we can claim only to be groping toward the truth”.  

There is a clear distinction between randomized control trials (RCT) and observational studies 

which are both aimed at finding causal effects. A randomized control trial is an experiment where 

the study is under the complete control of the investigator in the sense that the people or subjects 

and the treatments assigned to those subjects are selected by the investigator. In the observational 

studies, the selection of the subjects to treatment groups are outside the controls of the investigator 

(Cox and Reid 2000; Morgan and Winship 2014). Therefore, the main design criteria which 

separates randomized control trials from the observational studies is the randomized allocation of 

subjects to treatment and control groups.  

Although the English statistician, Sir Ronald Fischer was the first to propose the randomized 

control trials in 1925, Jerzy Neyman conducted a completely randomized control trial for his Ph.D. 

dissertation in Mathematics in 1923. More importantly, he used a different notation for a 

randomized agricultural experiment called as potential outcomes. Here his subjects were units of 

land, the treatment was type of manure used and potential outcomes were the crop yields from the 

land units. Neyman’s notation is given by the expression in Eq. 2.1. Here the causal effect in a 

randomized controlled experiment is the difference of sample means between the treatment group 

𝑌1̅ and the control group 𝑌0̅ (Rubin 2005). 

 

𝑌1̅ − 𝑌0̅ = ∑
𝑌𝑖(1)−𝑌𝑖(0)

𝑁

𝑁
𝑖=1 ………………………………………………………………… (2.1) 



25 

 

Almost half a century later in 1974, Donald Rubin expanded Neyman’s potential outcome 

notations for defining casual effects into non-randomized or observational studies. Hence his 

model of potential outcomes framework is popularly known as the Neyman-Rubin model. The 

potential outcomes framework today is used in many fields including social sciences, economics, 

epidemiology, medicine, computer science and mathematics.  

Suppose we are interested in the causal effect of treatment, T on some outcome, Y. Table 2.1 

shows the potential outcomes Y (1) (treatment), which is the outcome that would be observed 

when the treatment status, T=1 at time t and Y (0) (control) which is the outcome that would be 

observed when the treatment, T=0 at time t, for both treatment and control groups for all units 

ranging from 1 to N. These potential outcomes can be compared at the unit-level and at the group 

level. Covariates given by X are those variables which cannot be affected by the treatment status 

or take a fixed value before the treatment assignment. I refer to these outcomes as potential 

outcomes because one cannot observe both the outcomes when treatment status, T=0 or T=1 for a 

unit i at time t (Rubin 2005). 

 

Table 2. 1— Potential Outcomes (Rubin 2005). 
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2.2 Potential Outcomes and the Fundamental Problem of Causal Inference  

The assignment of the treatment to the subjects in RCTs is essentially random. Therefore, from 

Table 2.1. assuming we have conducted the RCT, we can compute the unbiased estimate of the 

average treatment effect or the causal effect directly from the experimental data. This estimate is 

given by the expression by Eq. 2.2. As one can notice, this is same as the important observation 

from Neyman’s seminal work in 1923. For RCTs, we can take the difference between the means 

of the treatment group and the control group to arrive at the unbiased causal effect (Austin 2011). 

𝐸[𝑌𝑖(1) − 𝑌𝑖(0)] = 𝐸[𝑌(1)] − 𝐸[𝑌(0)]………………………………………………… (2.2) 

This, however, is not the case for the observational studies. The subjects in observational studies 

in the treatment group and control group are different from each other as the assignment of 

treatment itself is not random to begin with. Hence, we have the expressions in Eq. 2.3 and Eq. 2.4 

considering T as the treatment status (1=given, 0=not given). So, we cannot obtain an unbiased 

estimate for the causal effect by taking the difference in the means of the treatment and control 

group (Austin 2011).  

𝐸[𝑌| 𝑇 = 1] ≠  𝐸[𝑌(1)]…………………………………………………………………. (2.3) 

𝐸[𝑌| 𝑇 = 0] ≠  𝐸[𝑌(0)]…………………………………………………………………. (2.4) 

Therefore, 𝐸[𝑌| 𝑇 = 1] −  𝐸[𝑌| 𝑇 = 0] is not the average causal effect here because we are 

considering two different sub-sets of the subject population with different treatments and 

covariates. Unfortunately, this has been the basis of several published papers (Miller et al. 2016; 

Lindsay et al. 2018; Xu et al. 2019) that discuss parent-child well performance. 

  𝐸[𝑌(1)] − 𝐸[𝑌(0)] is the true causal effect that we seek to find since it is comparing and 

taking the difference in potential outcomes for the same population (Roy 2019). 
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This leads us to the discussion of the fundamental problem in causal inference. In order to 

illustrate this problem, I will take the following example from day-to-day life. In Fig. 2.4, suppose 

a person has a strong headache and as a quick remedy or treatment he or she takes 2 pills of 

Ibuprofen. Let us assume the headache is gone in an hour. So, can we say that treatment- Ibuprofen 

for the headache worked and that was the causal effect of taking Ibuprofen on the headache? That 

claim is incorrect because we do not know what would have happened had the person not taken 

Ibuprofen at all.  

This is the fundamental problem of causal inference that we can never ever really observe a 

causal effect because we cannot have both outcomes at the same time for one person. Such 

outcomes as aforementioned are called “Potential Outcomes”. In this case, where we do not know 

the outcome when the person has not taken Ibuprofen, is considered as a potential outcome. 

Instead, we should ask the question, “What would be the rate of headache remission be if everyone 

took Ibuprofen when they had a headache versus if no one did?”.  

We deal with the fundamental problem of causal inference by looking at a group level rather 

than on an individual level. Similarly, in multivariate observational studies like the one discussed 

in this thesis; I conduct the causal inference analysis at the group level. Only when there is a 

difference between the two potential outcomes taken at the group level, there is a causal effect of 

the treatment on the outcome (Morgan and Winship 2014). 

 



28 

 

 

Fig. 2. 4—Example of potential outcomes illustrating the fundamental problem of causal inference (Sakhardande and 

Devegowda 2021). 

2.3 Assumptions behind Causal Inference  

Since we do not always have the capability to conduct a randomized control trial in most cases and 

are often left with data to infer about causality, observational studies must be accompanied with 

certain assumptions. These assumptions are called causal assumptions. The causal assumptions 

will be made regarding the observed outcome, Y, some treatment, T and a set of pre-treatment 

covariates, X (Roy 2019). Here I am listing the casual assumptions here as follows:  

1. Stable Unit Treatment Value Assumption (SUTVA) 

a. SUTVA is simply the a priori assumption that the value of outcome, Y for a unit u when 

exposed to treatment, T will be the same no matter what mechanism is used to assign 

treatment, T to unit u and no matter what treatments the other units receive (Rubin 1986 

; Morgan and Winship 2014). 

b. There is only one version of the treatment (Morgan and Winship 2014). 

2. Ignorability  

Given the pre-treatment covariates, the treatment assignment is said to be ignorable or 

independent from the potential outcomes. In other words, the knowledge of a unit’s treatment 

assignment yields no information whatsoever about the unit’s potential outcomes conditional on 
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its covariates (Rosenbuam and Rubin 1983a; Morgan and Winship 2014). This can be expressed 

as follows in Eq. 2.5: 

𝑌(1), 𝑌(0) ⫫ 𝑇|𝑿 ………………………………………………………………………… (2.5) 

Thus, the ignorability assumption is satisfied if some units across the treatment and the control 

group have similar covariates which means that their treatment assignment is essentially random. 

The ignorability is achieved using a method called propensity score matching which I will discuss 

later in the methodology section. 

3. Positivity 

Every unit has a non-zero probability of being in the treatment or the control group conditional 

on the unit’s covariates, X (Rosenbuam and Rubin 1983a; Austin 2011). This is given by the 

expression in Eq. 2.6 where I assume that treatment, T is binary: 

0 < 𝑃(𝑇 = 𝑡|𝑿 = 𝒙) < 1 ∀ 𝑡, 𝒙………………………………………………………… (2. 6)  

2.4 Confounding Bias and Directed Acyclic Graphs   

To explain the bias due to confounding, first I define the term “Confounders”. Confounders are 

those variables or a set of pre-treatment covariates which affect both the outcome and the treatment 

assignment. To understand the variables which can be considered as confounders and which cannot 

be considered as confounders, I will give a couple of examples: 

1. Let us assume if the treatment assignment is random and it is based on a coin toss. Then the 

toss of a coin affects the treatment status, but it does not affect the outcome which is a head 

or a tail. Therefore here, the coin toss cannot be considered as a confounder. 

2. Let us assume that people with high levels of cholesterol have a high chance of developing 

a heart disease. If cholesterol levels in blood is considered as a factor which influences the 
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type of treatment given, then cholesterol levels in this population would affect the treatment 

status as well as the outcomes. Therefore here, the blood cholesterol level is a confounder. 

We want to be able to find such confounders or covariates, X such that the ignorability 

assumption holds true. If we find such covariates or set of pre-treatment variables, then it said to 

be sufficient for controlling the bias due to confounding. This bias stems from the fact that the 

confounder or the covariates, X have an association with the treatment variable, T and the outcome, 

Y. In other words, we cannot observe the true causal effect of the treatment, T on the outcome, Y 

unless we have controlled for this bias due to the presence of common cause variables, that are, 

covariates, X. This is also known as the bias due to confounding. In order to achieve the goal of 

controlling this bias, I now introduce the concept of directed acyclic graphs (DAGs) which will 

help us in finding those set of covariates, X such that ignorability assumption is achieved (Pearl 

2009; Roy 2019). 

We can express our assumed causal relationships in the form of directed acyclic graphs (DAGs). 

Specially in the case, where there is confounding (there are common cause variables/covariates 

present), DAGs are useful in explaining how we can achieve ignorability. To start off, let us 

consider this simple directed graph in Fig. 2.5. 

 

Fig. 2. 5— An example of a simple directed graph 

Here, I am assuming that there is a treatment, T which affects the outcome, Y. There is a belief 

that T causes Y and the assumed cause and effect relationship is expressed by the blue arrow 

directed from T to Y. Now, let’s consider another directed graph in Fig. 2.6. 
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Fig. 2. 6— An example of a directed acyclic graph (DAG) 

Here I am assuming that T affects Y and X affects T and Y. This graph is also called as a 

directed acyclic graph because every variable in it has a direction or an arrow associated with it 

and it has no cycles present ,that is, if we start at one variable and follow the direction of the arrows 

we won’t end up back on the same variable. There are more complicated DAGs that we can draw 

based upon the complexity of relationships between the variables in the study. I will mention the 

DAG from Fig. 2.6 later when I discuss the design of the experiment.  

In Fig. 2.6., there is also a path going from Y to T indirectly through X. Now in Fig. 2.7, if we 

condition on levels or some values of X, then this would block the path carrying the association 

between X and Y and X and T. This would essentially mean that we are able to remove all other 

association between T and Y (through X) which is not through a direct effect of T on Y. This path 

blocking by conditioning on a common cause in a directed acyclic graph eliminates the bias due 

to confounding.  

 

Fig. 2. 7— Conditioning on a confounder X. 
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For example, let us assume that treatment, T is a heart treatment and outcome, Y was heart 

attack and there is only one common cause blood pressure, X. If we think that there are people in 

the population with abnormal blood pressure and they have a higher chance of getting the heart 

treatment, then the treatment assignment, T is not random to begin. Conversely, we can say that 

people with normal blood pressure are less likely to get the treatment. Thus, the ignorability 

assumption does not hold here.  

In order to achieve the ignorability assumption then, we must condition on a certain sub-set of 

population with only abnormal blood pressure or only normal blood pressure. Then within that 

sub-set of population, everyone has an equal chance of getting treatment thereby making the 

treatment assignment mechanism random satisfying the ignorability assumption. So, if we 

condition on levels of population with a similar range of abnormal blood pressure, X as per Fig. 

2.7., we block any association between heart treatment, T and heart attack, Y which is not due to 

direct effect of heart treatment, T on heart attack, Y. This eliminates the confounding bias. 

With this brief history and some background in causality, I will now transition to the problem 

at hand which is quantifying the causal effect of well spacing on well performance. Before I discuss 

the methodology used, first I will describe the dataset used for the causal inference workflow.  

2.5 Dataset Description 

For this study, a multivariate observational data from 725 wells is used. These wells are in the 

Permian Basin, West Texas. The dataset includes location of these wells in latitudes and longitudes 

for the well head as well as the bottomhole locations, true vertical depths (TVD) and reservoir and 

completion design variables. The reservoir properties, completion design variables and TVD are 

defined as covariates because together they impact the well spacing decision and well 

performance. The dataset has over 400 covariates, which are known to impact the well 
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performance and the well spacing. There are 2 completion variables which are the fracture fluid 

volume and proppant weight. The TVD was another variable and the remaining were 

petrophysical/reservoir properties.   

As explained earlier by Gupta et al. (2020) and Rafiee and Grover (2017), completion size and 

reservoir properties have a direct influence on the long term well EUR. Also, any lease 

development requires careful study of the complex interplay between reservoir properties, the 

choice of completion design, landing zones and geomechanical properties (Shahkarami and Wang 

2017) as they all influence the well placement decision and economics behind it.  

In order to understand the importance of the completion variables in the causal analyses, in Fig. 

2.8 and 2.9 , I plot the actual cumulative 360-day production normalized to lateral length from the 

dataset for all wells versus the proppant weight normalized to lateral length, fracture fluid volume 

normalized to lateral length and TVD respectively. Fig. 2.8 and 2.9 show that well performance 

has an overall weak but positive relationship with respect to both completion variables, proppant 

weight and fracture fluid volume normalized to well lateral length. This relationship makes 

assessing the impact of well spacing on performance quite challenging.  
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Fig. 2. 8— A plot of actual 360-day cumulative production normalized to lateral length (bbl/ft) for all wells versus proppant 

weight normalized to lateral length (lb/ft). 

 

Fig. 2. 9— A plot of actual 360-day cumulative production normalized to lateral length (bbl/ft) for all wells versus fracture 

fluid volume normalized to lateral length (bbl/ft). 
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As mentioned earlier, this dataset has over 400 covariates. In order to minimize the number of 

covariates, I use a dimension reduction technique called Principal Component Analysis (PCA).  

PCA is used to combine the highly correlated variables together to form a smaller number of 

uncorrelated variables which are called “Principal Components” (Pearson 1901; Hotelling 1933; 

Jolliffe 2002). These principal components account for or explain most of the variance from the 

original data. After conducting principal component analysis on the reservoir variables, I choose 

the first 5 principal components which explain about 80% of variance in the data as shown in     

Fig. 2.10. These 5 principal components become the new set of covariates which represent the 

original 400+ reservoir variables. 

 

Fig. 2. 10— A Scree plot showing that 80% of cumulative variance (y-axis) is represented by 5 Principal components (x-

axis). 

Using TVD and bottomhole latitudes and longitudes, a 3-dimensional well distance for each 

well with respect to the rest of the wells is computed. Then taking the 3D well distance and time 

criteria based on well production start dates, the wells were divided into parent wells and child 

wells groups.  
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In this case study, four well spacing options for parent-child wells groups are considered. These 

were 500 ft, 600 ft, 700 ft and 800 ft. The distance and time criteria used for separating the wells 

into a parent well and a child well group is explained in the next section. Well spacing options 

outside this range, from 500 ft to 800 ft, were not considered because the parent-child well search 

criteria led to insufficient number of wells to carry out the causal inference workflow. The well 

performance was estimated by normalizing cumulative 180-day and 360-day well production 

numbers by their lateral length for each well in the dataset. 

2.6 Design of the Experiment 

For this dataset, the treatment variable is chosen to be well spacing to evaluate the impact of 

spacing decisions on well performance. The child wells are placed in the treatment group and the 

parent wells are placed in the control group. The outcome is set to either cumulative 180-day or 

360-day production normalized to lateral length. If the outcome is cumulative 360-day production 

normalized to lateral length, then we are interested in seeing the difference in the potential 

outcomes at the group level. As mentioned earlier, 5 principal components representing the 

reservoir variables, 2 completion variables (proppant and fracture fluid volumes normalized to 

lateral length) and true vertical depths form the set of covariates or the confounding variables. 

For each well pair, a 3-dimensional distance is computed from the true vertical depth, 

bottomhole latitude, and longitude. The wells get assigned to either the parent wells group or child 

wells group based on the 3-dimensional distance and time criteria. Using an example, I describe 

the criteria to assign wells to a treatment (child) group or control (parent) group. Let us consider 

the group with 700 ft spacing and an outcome of 360-day cumulative oil normalized to lateral 

length: 
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1. If the 3-dimensional distance between a well pair is greater than 700 ft, then both wells are 

placed in parent well group. The assumption is that over a period of one year, the impact 

of interference between the wells is negligible. 

2. If the 3-dimensional distance is less than 700 ft, then the well production start dates for the 

well pair is considered. If well 2 is put on production within 1-year of well 1 start date, 

both wells are placed in the child well group. The assumption is that within a period of one 

year due to their proximity to each other, there is well interference impacting production 

of both wells. 

3. If well 2 is put on production more than 12 months of well 1 being on production, then 

well 1 goes into the parent well group and well 2 goes into child well group. The 

assumption is over a period of 1 year, the impact of interference is negligible for well 1 but 

not for well 2 as well 2 may not have access to virgin reservoir pressure and undrained 

volume unlike well 1 when it started production. 

4. Using the same logic, wells are allocated into the parent and child well groups at all other 

well spacing options considered, that are, 500 ft, 600 ft and 800 ft.  

Also, the well spacing status is binary with parent wells denoted by “0” and child wells by “1”.  

As mentioned earlier, other spacing options outside the 500 ft to 800 ft range were not considered 

because the parent-child well search led to insufficient number of wells to carry out the causal 

inference workflow.  

In Fig. 2.11, I use a directed acyclic graph just as shown in Fig. 2.6 to explain the association 

between the covariates, the well spacing decision and the outcome, that is, well performance. Here 

the covariates are denoted by X, the well spacing decision is denoted by T and the well 

performance denoted by Y. The direction of the arrows indicates the assumed cause and effect 
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relationship between the variables. In order to estimate the impact of well spacing on well 

performance, it is necessary to decouple the effect of well spacing on the well performance from 

the variations that we see in the heterogenous completion designs, reservoir properties and well 

landing zones.  

If we select candidate wells in the parent and child wells groups with covariates that lie in a 

similar range like Fig. 2.6 shown earlier, we block any association between well spacing and well 

performance arising due to the covariates, or we eliminate the impact of reservoir properties or 

completion design on well spacing decisions. This eliminates the confounding bias. In other words, 

the aim is to search for child and parent wells in both groups that have similar covariates before 

comparing their performance over a certain period. The workflow that would enable such a parent-

child well production performance comparison over time is described in the next section. 

 

Fig. 2. 11—Association between well spacing, covariates and well performance (Sakhardande and Devegowda 2021). 

2.7 Methodology 

Here I explain the causal inference workflow in five steps as follows: 

1. Propensity score estimation 

The first step here is to estimate a probability score on each well if it is placed in either of parent 

or child well groups given their covariates. I will refer to this probability estimate as the propensity 



39 

 

score. The assumption for the well spacing status here is binary, that is, after the search for the 

parent and child wells is complete. Parent wells are placed in the group assigned status “0” and the 

child wells are placed in the group assigned status “1”.  

The estimation of the propensity score is carried out through a logistic regression model of the 

treatment variable (well spacing) on the covariates (reservoir properties, completion design and 

TVD).  Here I assign these variables as letters for simplicity. The treatment variable ,that is, well 

spacing is denoted by T, the set of covariates denoted by X and the outcome ,that is, 180-day or 

360-day cumulative  production normalized to lateral length denoted by Y. Mathematical 

expression given in Eq. 2.7 shows the probability of getting treatment 𝜋𝑖  and the binary regression 

model is given by Eq. 2.8. This is the propensity score estimate for each child well and parent well 

given their covariates. 

 𝜋𝑖 = 𝑃(𝑇 = 1|𝑿𝑖) ………………………………………………………………………… (2.7) 

The binary logistic regression model for 𝜋𝑖is given by the expression: 

𝜋𝑖 = 𝑃(𝑇 = 1|𝑿𝑖 = 𝒙𝒊) =
𝑒𝛽0+𝛽1𝑥𝑖

1+𝑒𝛽0+𝛽1𝑥𝑖
……………………………………………………… (2.8) 

where X is the set of j discrete and/or continuous covariates such as (𝑿1, 𝑿2, 𝑿3…, 𝑿𝑗). Each 𝒙𝑖 

is the observed value for each observation 𝑖 covariate in set X. 𝛽0 and 𝛽1 are model coefficients 

which are estimated using a maximum likelihood estimator. 

Table 2.2 shows the analysis of variance output for the logistic regression considering all the 

covariates. The last column shows the level of significance based on the P-value for each 

covariate. P-values of less than 0.05 are considered as statistically significant. 
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Degrees 

of 

freedom Deviance 

Residual 

Degrees of 

Freedom 

Residual 

Deviation Pr(>Chi) 

NULL     604 824.36   

P1  1 7.4 603 816.95 6.00E-03 

P2  1 59.6 602 757.29 1.12E-14 

P3  1 1.14 601 756.14 2.85E-01 

P4  1 6 600 750.14 1.40E-02 

P5  1 31.56 599 718.58 1.93E-08 

Proppant weight  

normalized to 

lateral length 

(lb/ft) 1 34.9 598 683.68 3.46E-09 

Fracture fluid 

volume 

normalized to 

lateral length 

(bbl/ft) 1 6.28 597 677.4 1.20E-02 

TVD (ft) 1 7.39 596 670 6.00E-03 
 

Table 2. 2—Analysis of Variance (ANOVA) for the logistic regression model with respect to all covariates. 

As an example, if proppant weight normalized to lateral length is the only covariate, then we 

can determine the probability of a well belonging to a parent well or child well group for a given 

normalized proppant weight. In Fig. 2.12, we can see the range of the propensity scores on the y-

axis for parent wells and child wells plotted versus their proppant weight normalized to lateral 

length on the x-axis. Fig. 2.12a shows child well scores in blue and Fig. 2.12b shows parent well 

scores in red.  

For the child and parent wells, we can notice that the value of the propensity scores is lower for 

higher proppant weight (lb/ft). Comparing both graphs together, we also see that few parent wells 

have proppant weight higher than 2700 lb/ft whereas none of the child wells have proppant weight 

over this value. This indicates the variability in the normalized proppant weight in both child and 

parent groups. 
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  (a) 

 

                                                                                                          (b) 

Fig. 2. 12—(a) Plot of propensity score versus proppant weight normalized to lateral length (lb/ft) for unmatched child wells 

(b) Plot of propensity score versus proppant weight normalized to lateral length (lb/ft) for unmatched parent wells 

(Sakhardande and Devegowda 2021).   
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Similarly, if we had only normalized fracture fluid volumes (bbl/ft) as the only covariate, we 

can determine the propensity scores for the child and parent well groups. This is shown in Fig. 

2.13. Fewer parent wells in Fig. 2.13b. have propensity score between 0.7 and 0.8 (shown in red) 

whereas for the child wells in Fig. 2.13a. propensity score density (shown in blue) is higher in that 

specific range. This again indicates the variability in the range of the propensity scores between 

the parent and child wells with respect to the covariate, fracture fluid volume normalized to lateral 

length (bbl/ft).   

If we consider TVD as the only covariate in Fig. 2.14, we see a similar trend of lower propensity 

scores for wells with deeper landing zones. In general, by looking at the density of the propensity 

scores in Fig. 2.14b, we notice that a greater number of parent wells have TVD values exceeding 

9750 ft compared to the child wells in Fig. 2.14a.  

The main takeaway from Fig. 2.12, 2.13 and 2.14 is that we still need to find wells with similar 

propensity scores density considering both parent and child wells groups which is not the case 

currently. This dissimilarity can be also verified when all the covariates are considered together 

by looking at the balance between the parent-child groups. This leads us into the second step of 

workflow which is the balance computation. 
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     (a) 

 

                                                                                                            (b) 

Fig. 2. 13—(a) Plot of propensity score versus fracture fluid volume normalized to lateral length (bbl/ft) for unmatched child 

wells (b) Plot of propensity score versus fracture fluid volume normalized to lateral length (bbl/ft) for unmatched parent 

wells. 
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       (a) 

 

      (b) 

Fig. 2. 14—(a) Plot of propensity score versus true vertical depth (ft) for unmatched child wells (b) Plot of propensity score 

versus true vertical depth (ft) for unmatched parent wells.     
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2.Balance computation 

The second step in this workflow is computing the statistical balance between child or treatment 

and parent or control well groups. This is to be done at every spacing option (500 ft, 600 ft, 700 ft 

and 800 ft) and outcome (180-day or 360-day cumulative production normalized to lateral length) 

considered. To find if there is a statistical balance between the parent and child well groups, we 

use the distribution of propensity score as a measure. Eq. 2.9  states that probability distribution of 

being in the child or treatment wells group should be the same as probability distribution of being 

in the parent or control wells group if we condition on a similar set of covariates X for each group  

(Hirano et al. 2003; Imbens and Rubin 2015) 

𝑃(𝑿 = 𝒙|𝜋(𝑿) = 𝑝, 𝑇 = 1) =𝑃(𝑿 = 𝒙|𝜋(𝑿) = 𝑝, 𝑇 = 0)………………………………... (2.9) 

The expression in Eq. 2.9 holds true only if we take the propensity score as a balance measure. 

By using this score, we can restrict the analysis to a smaller subset of the wells in both groups. Our 

goal is to search for the parent and wells where the difference in their propensity scores is very 

small or it is almost close to zero (Rosenbaum and Rubin 2006; Roy 2019). At the 600 ft well 

spacing option and the outcomes set to normalized Cumulative 360-day production, Fig. 2.15 

shows the propensity score distribution for both child Fig 2.15a and parent well groups Fig. 2.15b. 

I observe that the of the propensity scores are different and therefore for a given set of covariates 

(5 principal components, proppant weight normalized to lateral length, fracture fluid volume 

normalized to lateral length and TVD), the probability of being in the parent or child group is 

unequal. As a result, wells in parent and child groups currently have statistically dissimilar 

completion designs, reservoir and landing zone properties.  
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                                             (a)                                                                                                      (b)                       

Fig. 2. 15—(a) Distribution of propensity score for unmatched child wells (b) Distribution of propensity score for 

unmatched parent wells (Sakhardande and Devegowda 2021). 

 

Fig. 2.16, 2.17 and 2.18 show box plots for TVD, proppant weight normalized to lateral length 

(lb/ft) and fracture fluid volume normalized to lateral length (bbl/ft) respectively. From the box 

plots, one can easily spot that there is variation in the range of the landing zones and completion 

size properties between parent and child well groups.   
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Fig. 2. 16—True vertical depth (ft) box plots for parent (0) and child (1) well group. 

 

Fig. 2. 17—Proppant weight normalized to lateral length (lb/ft) box plots for parent (0) and child (1) well group. 
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Fig. 2. 18—Fracture fluid volume normalized to lateral length (bbl/ft) box plots for parent (0) and child (1) well group. 

Another way one can check for the balance is by computing the standardized mean differences 

(SMD) for all the individual covariates. Standardized mean differences are given by the expression 

in Eq. 2.10: 

𝑆𝑀𝐷 =
�̅�𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  −�̅�𝑐𝑜𝑛𝑡𝑟𝑜𝑙

√(𝑠𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
2 −𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙

2 )

…………………………………………………………… (2.10) 

Here we are simply taking the difference in the covariate means (�̅�𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 , �̅�𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ) between 

child/treatment and parent/control groups and dividing them by the square root of difference in the 

squared standard deviations of the covariates (𝑠𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
2 , 𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙

2 ) between the treatment and 

control groups.  
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In the Table. 2.3, the standardized mean differences between the two groups (child wells 

denoted by “1” and parent wells denoted by “0”) are shown in the last column for all the covariates 

used in this study at well spacing of 700 ft.  SMD is measure of how different the covariates are 

between both groups. As rule of thumb from the literature (Lanza et al. 2013; Stuart et al. 2013), 

SMD values over 0.2 are considered bad, between 0.1 and 0.2 are good and anything less than 0.1 

is great. In the first column of the Table 2.3, the five principal components are denoted from P1 

through P5 along with the 3 other covariates, that are, proppant weight, fracture fluid volumes both 

normalized to lateral length and true vertical depth. The 2nd and 3rd columns show the mean and 

the standard deviation for the parent well group and 4th and 5th column show the mean and standard 

deviation for child well group for each covariate. SMD values are shown in the last column. 

As highlighted by red rectangles, we see that the SMD values for P2 and the proppant weight 

are over 0.4 which indicate significant differences at the individual covariate level between the 

child and parent wells groups. Therefore, there is a statistical dissimilarity seen not only at the 

individual covariates level but also in the overall propensity scores distribution considering all 

covariates together as seen in Fig. 2.15. In order to improve from this current state, I perform one 

to one matching which is explained in the next step. 
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Covariates 

256 Parent Wells (0) 349 Child Wells (1) 

SMD Mean  

Standard 

Deviation Mean  

Standard 

Deviation 

P1  1.5 12.92 -1.1 10.4 0.222 

P2  3.78 8.6 -2.77 11.32 0.651 

P3  0.3 7.6 -0.22 6.05 0.077 

P4  0.5 4.48 -0.37 5.29 0.178 

P5  1.08 4.74 -0.79 4.22 0.417 

Proppant weight 

normalized to 

lateral length 

(lb/ft) 1639.98 462.95 1466 307.6 0.444 

Fracture fluid 

volume 

normalized to 

lateral length 

(bbl/ft) 42.65 9.55 39.6 0.74 0.317 

TVD (ft) 9311.9 433.85 9171 357.03 0.355 
 

Table 2. 3— Standardized mean differences (SMD) between parent (0) and child wells (1) groups at individual covariate 

levels (before matching). 

3. One to One Matching  

The third step is to find the way to improve the statistical balance shown in Fig. 2.15. I can do this 

by limiting the analysis to a smaller subset of parent and child wells with similar propensity scores. 

This process is known as matching. Here the aim is to discard wells from both groups that do not 

have statistically similar covariates. In order to do this, a one-to-one match is conducted on the 

propensity score based upon the covariates in X.  

The expression in Eq. 2.11 signifies that we are taking the difference in the propensity score as 

a measure of distance between the wells used for one-to-one matching. The wells which do not 

find a match in this iterative matching process are eliminated. We start this process by taking the 

difference in propensity scores given by ∥(𝜋(𝑿))
𝑗
− (𝜋(𝑿))

𝑖
∥ between a parent well j (T=0) and a 

child well i (T=1) for all wells in the parent and child well group (Olmos and Govindasamy 

2015).Pairs with the smallest difference are considered a good match and retained for subsequent 
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causal analyses. Once the wells are matched to each other, they are not considered for subsequent 

iterations in the matching process.  

argminj:Tj≠Ti ∥(𝜋(𝑿))
𝑗
− (𝜋(𝑿))

𝑖
∥, 𝑗 ∈ 𝑇 = 0, 𝑖 ∈ 𝑇 = 1…………………………………(2.11) 

    Let us now look at the plots of propensity scores versus a single covariate such as proppant 

weight, fracture fluid volume normalized to lateral length or true vertical depth, after we have 

performed the 1:1 matching process. In Figs. 2.19, 2.20 and 2.21, we can see that the density of 

the propensity scores between the parent and child well groups look very similar or almost identical 

with regards to each of 3 covariates. The reason behind this is that we have discarded the wells in 

either group that do not have a matching well in the other group leading to improved balance 

between the two groups. In order to verify this finding, we move to step 4 in the workflow to 

reassess the balance.      
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(a) 

 

          (b) 

Fig. 2. 19—(a) Plot of propensity score versus proppant weight normalized to lateral length (lb/ft) for matched child wells 

(b) Plot of propensity score versus proppant weight normalized to lateral length (lb/ft) for matched parent wells. 
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           (a) 

 

      (b) 

Fig. 2. 20—(a) Plot of propensity score versus fracture fluid volume normalized to lateral length (bbl/ft) for matched child 

wells (b) Plot of propensity score versus fracture fluid volume normalized to lateral length (bbl/ft) for matched parent wells.              



54 

 

      

        

 

        (a) 

 

       (b) 

Fig. 2. 21 —(a) Plot of propensity score versus true vertical depth (ft) for matched child wells (b) Plot of propensity score 

versus true vertical depth (ft) for matched parent wells. 
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4. Reassessing the Balance 

The fourth step is to compare the propensity score distributions for the parent and child wells 

groups after the process of one-to-one matching is complete. Fig. 2.22 shows the density of the 

propensity scores between the matched and unmatched parent and child well groups at 600 ft 

spacing. As the propensity score is a probability estimate, the density clusters are bounded between 

0 and 1. We can easily observe that the propensity score cluster density, in the center of Fig. 2.22, 

for the matched parent and child well groups look similar to each other. The wells for which a 

match was not obtained are called unmatched treatment units or control units at the top and bottom 

of Fig. 2.22. These wells are the ones to be discarded from the causal inference workflow. 

In Fig. 2.23, after the matching is performed, we can check and compare the propensity score 

distributions for the matched child wells group as seen in Fig. 2.23a and matched parent wells 

group as seen in Fig. 2.23b. Since both distributions look the same or are identical, there is a great 

balance between the parent and child well groups with statistically similar parent and child well 

pairs.  Thus, I have controlled for the variations in heterogenous reservoir properties, different 

fluid volume, proppant weight and landing zones for both well groups.  

The propensity density plots and propensity score distributions for 500 ft, 600 ft, 700 ft and 800 

ft spacing options, before and after matching, are shown in the Appendix from Fig. A1 to Fig. 

A16. 
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Fig. 2. 22—Plot illustrating the density of propensity scores for wells after matching. 

 

 

                                 (a)                                                                                                                 (b)     

Fig. 2. 23—(a) Distribution of propensity score for matched child wells (b) Distribution of propensity score for matched 

parent wells (Sakhardande and Devegowda 2021).                                
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Here again, we can check for the balance after matching by computing the standardized mean 

differences (SMD) for all the individual covariates for both child and parent well groups. In the 

Table. 2.4, the standardized mean differences between the two groups (Child wells denoted by “1” 

and Parent wells denoted by “0”) after matching are shown in the last column for all the covariates 

used in this study at well spacing of 700 ft.   

As we can see in Table 2.4, the SMD values are below 0.1 which indicates that we have 

achieved a much better balance within the covariates of both groups at the individual covariate 

level. Another point to notice is that the number of wells in both groups at the 700 ft well spacing 

option is now 139 which shows the fact that we have discarded some statistically dissimilar wells 

from both groups through the matching process. 

Covariates 

139 Parent Wells (0) 139 Child Wells (1) 

SMD Mean  

Standard 

Deviation Mean  

Standard 

Deviation 

P1  1.77 12.53 1.17 11.54 0.049 

P2  2.92 8.77 2.31 8.42 0.071 

P3  0.4 7.6 0.37 7.02 0.004 

P4  0.06 4.66 0.2 5.77 0.028 

P5  0.01 4.66 -0.07 4.59 0.015 

Proppant weight 

normalized to 

lateral length 

(lb/ft) 1513.92 349.39 1529 317.94 0.045 

Fracture fluid 

volume 

normalized to 

lateral length 

(bbl/ft) 40.49 9.4 41.4 9.33 0.101 

TVD (ft) 9226.38 434.44 9254 402.07 0.065 
 

Table 2. 4— Standardized mean differences (SMD) between parent (0) and child wells (1) groups at individual covariate 

levels (after matching). 

 



58 

 

The number of wells with 180-day and 360-day of production history in the parent well and the 

child well groups before and after matching can be seen in Table 2.5 and 2.6. Before matching, 

the number of wells in each group is decided based on the 3-dimensional distance and time criteria 

explained earlier. For the outcome of 180-day cumulative production normalized to lateral length, 

I had 725 wells initially and 605 wells that had 360-day cumulative production data normalized to 

lateral length. 

As we can see in Table 2.5 and 2.6 after matching, a few wells in both parent and child groups 

are discarded or eliminated through the matching process. Lunt (2014) showed that the use of a 

“caliper” for the matching process is essential for achieving great balance between treatment and 

control groups. A caliper is a measure of tolerance that can be allowed for the propensity score 

distance measure. The value of a caliper or the maximum permitted difference between the 

matches is typically user-defined and often between 0.01 to 0.1. Therefore, tighter the tolerance, 

smaller is the value of the caliper which leads to closeness in the matches obtained. A tighter 

tolerance can however significantly reduce the number of wells.  Here, I iteratively check the 

quality of the balance as seen in Fig. 2.23 by adjusting the caliper such that the best possible 

balance is obtained between the parent and child wells groups. Only when the best possible balance 

is achieved between the two groups, we can proceed to the final step in this workflow which is 

estimating the causal effect. 
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Well Spacing 

Options 

considered 

Number of 

Parent Wells 

(Before 

Matching) 

Number of 

Child Wells 

(Before 

Matching) 

Number of 

Parent Wells 

(After 

Matching) 

Number of 

Child Wells 

(After 

Matching) 

Choice of the 

Caliper value 

selected for 

Matching 

500 ft 501 224 157 157 0.02 

600 ft 346 379 168 168 0.0165 

700 ft 302 423 193 193 0.015 

800 ft 183 542 136 136 0.0175 

 
Table 2. 5— The number of parent wells and child wells before and after matching along with the choice of the caliper used 

for obtaining the best possible balance in the matching process for the 4 well spacing options considered with outcome 

cumulative 180-day production normalized to lateral length. 

 

Well Spacing 

Options 

considered 

Number of 

Parent Wells 

(Before 

Matching) 

Number of 

Child Wells 

(Before 

Matching) 

Number of 

Parent Wells 

(After 

Matching) 

Number of 

Child Wells 

(After 

Matching) 

Choice of the 

Caliper value 

selected for 

Matching 

500 ft 384 221 113 113 0.0125 

600 ft 306 299 137 137 0.05 

700 ft 256 349 139 139 0.0175 

800 ft 166 439 105 105 0.015 

 
Table 2. 6—The number of parent wells and child wells before and after matching along with the choice of the caliper used 

for obtaining the best possible balance in the matching process for the 4 well spacing options considered with outcome 

cumulative 360-day production normalized to lateral length. 
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5.Causal Effect Estimation 

The final step in the causal inference workflow is the estimation of the causal effect well spacing 

on well performance. As mentioned earlier, causal effects are differences in the means of potential 

outcomes for both groups (Morgan and Winship 2014; Imbens and Rubin 2015).  As a reminder, 

the potential outcomes are the calculated responses for treatment subjects if they did not receive 

the treatment and the calculated responses for control subjects if they received the treatment. 

In order to predict the potential outcomes, I build a random forest regression model (Ho 1995; 

Breiman 2001) between the outcomes: 180-day and 360-day cumulative production numbers 

normalized to lateral length for the matched child wells and their covariates. Then, I predict the 

potential outcome using matched parent well covariates. In a similar manner, I build another 

random forest regression model between the outcomes: 180-day and 360-day cumulative 

production numbers normalized to lateral length for the matched parent wells and their covariates. 

Then, I fit this model with child wells (matched) covariates. This model gives the predicted 

potential outcomes for the parent wells. The causal effect of well spacing on well performance is 

given by the group mean difference between these two predicted potential outcomes for the child 

and parent well groups (Ho et al. 2011).  

Fig. 2.24 shows the predicted potential outcomes of the matched child wells at 700 ft well 

versus their actual outcome.  
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Fig. 2. 24— Plot of child well potential outcome (bbl/ft) versus child well actual outcome (bbl/ft). 

Fig. 2.25 shows the predicted potential outcomes of the matched parent wells at 700 ft well 

versus their actual outcome.  

 

Fig. 2. 25—Plot of parent well potential outcome (bbl/ft) versus parent well actual outcome (bbl/ft). 
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In the next section, I discuss the results from the causal inference workflow comparing it to the 

naïve, simple averages approach at the four well spacing options considered in this study. 

2.8 Results and Discussion 

In this section, results with the simple averages approach or naïve approach of finding the well 

spacing effects are compared with the results from the causal inference workflow.  

Simple Averages Approach for 360-Day Cumulative Production Normalized to Lateral Length 

(bbl/ft) 

Fig. 2.26 shows the results from the simple averages approach where the outcomes are computed 

as the average of the 360-day cumulative production normalized to lateral length for each of the 

parent and child well groups shown in Table 2.7. Fig. 2.26 shows the outcomes on the primary y-

axis and the difference in outcomes for parent and child well groups on the secondary y-axis and 

the four well spacing options considered in this study are shown on the x-axis. Child well group 

average production in bbl/ft is shown by blue bars and the parent well group average production 

in bbl/ft is shown by red bars. The black error bars show their standard deviations at each well 

spacing (Sakhardande and Devegowda 2021). 

Well 

Spacing 

Options 

considered 

Number of 

Parent Wells 

(Unmatched) 

Number of 

Child Wells 

(Unmatched) 

500 ft 384 221 

600 ft 306 299 

700 ft 256 349 

800 ft 166 439 

 

Table 2. 7—The number of unmatched parent wells and child wells at the 4 well spacing options used in the simple 

averages approach for outcome cumulative 180-day and 360-day production normalized to lateral length. 
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Before discussing further, I make a note here emphasizing that an overlap in error bars does not 

let us conclude whether difference between the means of groups is statistically significant or not. 

In order to check the significance, one needs to conduct a paired t-test (Lanzante 2005). 

 

Fig. 2. 26— Bar chart comparing 360-day cumulative production normalized to lateral length of parent-child wells and 

difference estimates for each well spacing option from the routinely used simple average approach. 

We can observe that at all spacing values, parent wells appear to be doing better than the child 

wells. This is shown by the difference in these simple averages of 360-day cumulative production 

normalized to lateral length (bbl/ft) (the green dots corresponding to the secondary y-axis) in 

Fig.2.26. However, there is no appreciable difference between the performance of the parent wells 

at different well spacings nor is there a difference between child well performance at varying 

spacings. As an example, in Table 2.8, I show the output of a paired t-test conducted between a 

parent well at 500 ft well spacing and another parent well at 700 ft well spacing. The results show 
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a p-value of more than 0.05 indicating that a simple averages approach does not yield a statistically 

significant difference between parent well performance at different spacing levels. There is also 

no statistically meaningful difference in child well performance at less than 500 ft spacing and less 

than 700 ft spacing either.  

 

Well groups 

at 360-day 

cumulative 

production 

normalized to 

lateral length 

(bbl/ft) 

 

Degrees 

of 

Freedom 

 

 

P-value 

 

Mean of 

360-day 

cumulative 

production 

normalized 

to lateral 

length 

(bbl/ft) 

 

Mean of 

360-day 

cumulative 

production 

normalized 

to lateral 

length 

(bbl/ft) 

 

95 % 

confidence 

interval 

500 ft parent 

and 700 ft 

parent 

638 0.21 17.4 17.9 (-1.42, 0.3) 

500 ft child 

and 700 ft 

child 

568 0.72 16.73 16.57 (-0.71,1.3) 

 

Table 2. 8—Paired t-test output comparing the actual outcomes for 500 ft parent with 700 ft parent well group and 500 ft 

child well with 700 ft child well group using simple averages approach. 

These results show that the simple averages approach provides counter-intuitive results. We 

would expect that as well spacing increases, well performance metrics should show a 

corresponding increase because of the access to more undrained reservoir volume. 

To again illustrate that the naïve, simple averages approach is not an ideal way of calculating 

well spacing effects, consider Fig. 2.27. Boxplots for TVD and a scatter plot of 360-day cumulative 

production normalized to lateral length for the parent (shown in red) and child (shown in blue) 

wells are shown in Fig. 2.27a and b. respectively. The range of the landing zones for the parent 

wells is seen to be considerably different from the range for the child wells. Using the simple 

averages approach, we are considering wells completed in different landing zones. This can be 
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significant in multi-bench plays such as the Permian and the Meramec (Gaurav et al. 2017; Price 

et al. 2017). This is the motivation behind taking a more sophisticated causal inference approach 

where we would control for reservoir and completion variables before estimating the spacing 

impact. 

 

                  (a) 

 

               (b) 

Fig. 2. 27—(a) TVD boxplots of parent (0) and child wells (1)  (b) Scatter plot of Cum-360-day production normalized to 

lateral length (bbl/ft) versus TVD (ft) for parent (0) and child wells (1) at 500 ft spacing (Sakhardande and Devegowda 2021). 
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Also, in Fig. 2.27, we observe parent wells associated with a much wider TVD range and child 

wells in a narrower range. This, again, is to be expected. As we gain more knowledge of the 

reservoir, our well placement becomes more focused and optimized. However, if we were to use 

a simple-averages approach, we would be comparing wells from different benches/horizons and 

this can impact our spacing analyses. Although we are controlling for reservoir properties, it is 

also important to separately consider TVD. Different landing zones may be associated with 

different frac-barriers. Even if the reservoir properties and completions are similar for a parent and 

child well in 2 different benches, there may be different levels of fracture growth in both of them, 

based on the thickness of the zone and presence/absence of frac-barriers.  

Causal Inference Approach for 360-Day Cumulative Production Normalized to Lateral Length 

(bbl/ft) 

Given this background and the potentially compromised interpretations from a simple averages 

approach, I now show the results from the causal inference workflow in Fig. 2.28. The primary y-

axis and the x-axis in Fig. 2.28 are same as Fig. 26 shown earlier. The causal estimate is shown on 

the secondary y-axis in bbl/ft. The casual estimate is the difference between the potential outcomes 

of parent and child well groups. Blue bars and red bars show the potential outcome mean values 

of cumulative 360-day production numbers normalized to lateral length for child wells and parent 

wells respectively. Standard deviation is shown by black error bars.  

Considering the 800 ft well spacing in Fig. 2.28, the mean of the potential outcomes for the 

parent wells is around 19 bbl/ft and 16 bbl/ft for the child wells. The difference of 2.6 bbl/ft is the 

causal estimate which is shown by the green circles with the green error bars representing the 95% 

confidence interval. This implies that the parent well at 800 ft produces 2.6 bbl/ft of oil more than 

the child well. The results for all paired t-tests between the parent and child well group potential 
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outcomes, that is, the predicted cumulative 360-day production numbers normalized to lateral 

length (bbl/ft), at all well spacings (500 ft, 600 ft,700 ft and 800 ft) are summarized in the Appendix 

Table A2. All the differences can be seen to be statistically significant. 

 

Fig. 2. 28—Bar chart comparing potential outcomes for 360-day cumulative production normalized to lateral length (bbl/ft) 

of parent-child well groups and causal estimates for each well spacing option using causal inference (Sakhardande and 

Devegowda 2021). 

The parent well at 800 ft well spacing in Fig. 2.28 performs the best relative to the child well 

given that the magnitude of causal estimate is the largest. The difference in the causal estimates at 

the 500 ft, 600 ft and 700 ft well spacing levels are not as large as 2.6 bbl/ft. This result is expected 

because wells spaced farther than 800 ft will likely have more access to virgin reservoir pressure 

and undrained reservoir volume compared to wells with spacing more than just 500 ft. This 
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indicates that at the much tighter spacing levels of 500 ft, 600 ft and 700 ft, the inter-well 

interference problem is unavoidable even for the parent wells. 

Another paired t-test confirms that the 800 ft parent well performs significantly better than the 

500 ft parent well. An example output of this paired t-test comparing the potential outcomes for 

the parent-parent well groups is shown in Table 2.9. Here we can see that the difference is 

statistically significant based on the p-value and 95% confidence interval at the 360-day mark 

potential outcome. Other comparisons coupled with paired t-test outputs between the 800 ft 

spacing parent well group with the rest of well spacing parent well groups were also found to be 

statistically significant and are shown in the Appendix Table A4. Given the data in the study, 800 

ft well spacing would then be considered to be the optimal spacing where production interference 

is the least. 

Parent  

Well groups 

at 360-days of 

production 

Degrees 

of 

Freedom 

 

 

P-value 

Mean of 

Parent Wells 

Potential 

Outcome at 

500 ft spacing 

(bbl/ft) 

Mean of  

Parent Wells 

Potential 

Outcome at 500 

ft spacing 

(bbl/ft) 

95 % 

confidence 

interval 

500 ft and 800 

ft 

216 0.0084 17.39 18.7 (-2.29, -0.34) 

 

Table 2. 9— An example output of a paired t-test between the 500 ft parent well group and 800 ft parent well group with 

potential outcomes for 360-day cumulative production normalized to lateral length (bbl/ft).  

This is an important result of this work. A simple average-based approach does not work 

because an analysis of Fig. 2.26 shows no difference in parent well performance across all 4 

spacing groups indicating that there is no optimal spacing, which is an extremely counter-intuitive 

result. Well performance should be better at larger spacing levels (up to a point) given the access 

to larger, undrained reservoir volumes. This reiterates my assertion in Chapter 1 that the simple, 

average-based approach can potentially compromise quantitative interpretation. 
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Causal Inference Approach for 180-Day Cumulative Production Normalized to Lateral Length 

(bbl/ft) 

The same causal inference workflow was carried out with 180-day cumulative production 

normalized to the lateral length (bbl/ft) as the potential outcome and the results are shown in Fig. 

2.29.  The observation that parent wells do better than child wells is borne out even with the first 

180 days of production. The causal comparison of parent to child well performance is shown in 

green circles and are statistically significant at all 4 spacing options considered. The results from 

all the paired t-tests conducted for the causal estimates of parent-child groups with outcome as 

180-day cumulative production normalized to the lateral length (bbl/ft) are shown in the Appendix 

Table A1. 
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Fig. 2. 29—Bar chart comparing potential outcomes for 180-day cumulative production normalized to lateral length (bbl/ft) 

of parent-child well groups and causal estimates for each well spacing option using causal inference (Sakhardande and 

Devegowda 2021). 

In Fig. 2.29, it again appears that 800 ft spacing is the optimal spacing value. However, a paired 

t-test comparison between the 800 ft parent well performance with the 500 ft, 600 ft and 700 ft 

parent well performance does not show a statistically meaningful difference. Table 2.10 shows the 

results of the paired t-test for the 700 ft and 800 ft parent groups.  Paired t-tests for all parent-

parent well group 180-day performance comparisons are shown in the Appendix Table A3. 
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Parent well 

groups at 180-

day production 

Degrees 

of 

Freedom 

 

 

P-value 

Mean of 

Parent 

Wells at 

700 ft 

spacing 

(bbl/ft) 

Mean of 

Parent 

Wells at 

800 ft 

spacing 

(bbl/ft) 

 

95 % 

confidence 

interval 

700 ft and 800 

ft 

327 0.078 12.35 12.84 (-1.04,0.055) 

 

Table 2. 10— Output from a paired t-test comparing 700 ft well spacing parent wells with 800 ft spacing parent wells for the 

outcome 180-day cumulative production normalized to lateral length (bbl/ft). 

This is another important conclusion. If the parent well 180-day cumulative production 

normalized to lateral length at the 500 ft, 600 ft, 700 ft and 800 ft spacing levels are not statistically 

different, then it implies that at the 180-day point, wells spaced 500 ft apart are not seeing any 

appreciable interference over and above the interference for wells spaced at 800 ft apart. Because 

we now know that the 500 ft spacing is the least optimal when evaluating 360-day cumulative oil 

production, the interference is likely to begin only after the 6-month point, on average. It also 

indicates that the assumptions behind placing wells in parent or child well groups are validated by 

the data. 

Therefore, I cannot confirm that 800 ft spacing is optimal at 180-day mark of production. 

However, at the 360-day mark, the individual paired t-tests comparing the potential outcomes of 

the 800 ft parent well and the 500 ft, 600 ft and 700 ft parent wells show that the difference in the 

potential outcome means is statistically significant as mentioned earlier. Thus, from this case 

study, we can say that 800 ft well spacing indeed is optimal at the 360-day mark of production 

among parent and child wells (Sakhardande and Devegowda 2021). Although there may not be 

enough child wells on production at the same time when a parent well is on production at the 360-

day mark but for a parent well, there are enough other parent wells on production. So, the casual 

inference results with outcome 180-day and 360-day production are valid for the parent wells. 
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2.9 Conclusions 

In this case study, I have shown how the routinely used spreadsheet-based approaches of simple 

averages can lead to counter-intuitive results for estimating well spacing effects. The main reason 

is that the simple averages approach control for the complex interplay of reservoir properties, well 

completion designs and well landing zones. This study introduces a new, promising workflow 

known as causal inference which provides a more appropriate method to assess the well spacing 

effect on well performance. Through the casual inference workflow, one can control for the 

complex variations seen in all the measured variables known as covariates which influence the 

spacing decision as well as impact the parent and child well production performance. The 

conclusions from this chapter can be summarized as follows: 

1. The parent well at 800 ft spacing is considered as optimal. This is confirmed by paired t-

tests production performance comparisons between 800 ft spacing parent well and the rest 

of the spacing options considered. 

2. The statistically significant causal estimates at 180-day mark and 360-day mark of 

production confirm that parent wells perform better than the child wells with respect to 

normalized cumulative production numbers at all four well spacing options considered. 

3. The search and selection of wells, into the parent and child well groups, is subjective yet 

very crucial for the causal inference workflow (Sakhardande and Devegowda 2021). 

4. True vertical depth is found to be very important as a covariate for the finding causal effects 

of well spacing on well performance for this specific multi-bench shale play. 
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Chapter 3: Anomaly Detection in Sucker Rod Pumps 

3.1 Introduction 

Wells tend to flow naturally when the reservoir pressure is sufficient to overcome hydrostatic and 

frictional losses in the production piping. As reservoir pressure declines due to depletion, the 

natural drive of the well must be supplemented with additional energy to sustain production and/or 

prevent liquid loading. Artificial lift systems are designed to provide this additional energy in order 

to lift the fluids to the surface and maintain economically viable production rates.  

Of the over 2 million producing oil wells around the world, more than 50% are operated on 

artificial lifts (Lea 2007). This underscores the significance of artificial lift in the industry. The 

oldest and most widely used artificial lift method is the Sucker Rod Pumps (SRP). SRP’s are 

typically used for onshore wells with depths ranging from 1000 ft to 16000 ft with a moderate 

lifting capacity ranging anywhere between 1 to 1000 bbl/day. This chapter is focused on discussion 

of SRP’s basic working principle along with its major components, use of dynamometer pump 

cards and the application of various anomaly detection techniques to SRP failure modes. 

Fig. 3.1 shows a schematic of the basic components of a Sucker Rod Pump system. The surface 

equipment consists of a prime mover system, gear reducers, pumping unit and a polished rod. The 

prime mover system provides the driving force through an electric motor or combustion gas 

engine. The gear reducers enable the reduction of rotational motor speed of the prime mover and 

simultaneously increase the torque at the shaft. The pitman arm coverts the rotational energy from 

the gear reducers into a reciprocating movement needed for the pump operation.  

The polished rod connects the walking beam, which is a mechanical lever of the pumping unit, 

to the sucker rod string and provides a sealing surface at the wellhead. The equipment downhole 

are the rod string and plunger pump. The rod string which is enclosed inside the tubing transmits 
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the reciprocating motion from the polished rod to the pump. Main components of the subsurface 

pump are travelling valve, standing valve, working barrel (stationary part) and the plunger (moving 

part). The positive displacement pump allows fluids to move from the well to the working barrel 

which is connected to the bottom end of the rod string. 

 

Fig. 3. 1— Components of a Sucker Rod Pump (Golan and Whitson 1991; Takacs 2015). 
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A typical downhole pump cycle is as shown in Fig. 3.2. This cycle consists of an upstroke and 

downstroke corresponding to the direction of rod string movement and the position of the plunger. 

The traveling and standing valve are two ball valves and the alternating opening and closing events 

of these valves along with the reciprocating movement of the plunger enable the lifting of reservoir 

fluids up to the surface.  

Assuming an incompressible fluid, the plunger which is the moving part of the pump assembly 

reaches the bottom of the pump and the upstroke cycle begins. Owing to the hydrostatic pressure 

in the tubing above the plunger, the traveling valve closes and the reservoir fluids in the tubing 

above the traveling valve are carried up to the surface with the plunger moving up. There is a 

pressure drop between the standing and the traveling valve positions at this stage which keeps the 

standing valve open as the plunger goes to its topmost position. Due to the pressure differential 

between the bottomhole flowing pressure and area between the two valves, fluids from the 

formation enter through the standing valve into the working barrel. The formation fluids fill up the 

barrel until the upstroke cycle is completed. The fluid column weight is carried by the plunger and 

the rod string when the traveling valve is closed. This creates tension in the rod string causing it to 

stretch (Takacs 2015).  

At the beginning of downstroke, the plunger is at the top of the pump. As the rod string begins 

its movement downwards, the traveling valve opens and standing valve closes. The weight of the 

fluid column is transferred to the standing valve from the plunger. This means the load shifts to 

the tubing string during the downstroke while the traveling valve is still open. During the 

downstroke cycle, the pump barrel is filled with the formation fluid and as soon as the cycle ends, 

the direction of motion of the rod string is reversed. The fluid column weight is again transferred 
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back to the plunger. This stretches the rod string and releases the tension on the tubing string 

marking the beginning of another upstroke cycle (Takacs 2015). 

 

Fig. 3. 2—Typical Sucker Rod Pump cycle (Brown 1980; Apergy 2019).                               

Complete filling of the pump barrel for a single-phase fluid during the upstroke signifies an 

ideal pump condition. In the ideal condition, the plunger travels its full length and valves open and 

close instantaneously. The pump dynagraph or dynamometer card is derived from the surface 

dynamometer card. The surface dynamometer, which are basically load cells or strain gauges, 

record the variations in the polished rod loads during a pump cycle (Guo 2017). The surface card 

generated then is a plot of the polished rod load versus its position. However, the polished load is 

a function of all system components in the sucker rod pump system and the surface plots generated 
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are complex due to its non-standardized behavior. Therefore, it becomes very difficult to interpret 

for the production engineers.  

Fortunately, this problem was solved by Gibbs (1963). Dr. Sam Gibbs provided a linear second 

order hyperbolic partial differential equation which when solved numerically, using finite 

difference equations, mathematically models the elastic nature of the rod string and the forces that 

act on it during a pump cycle. Gibb’s equation shown in Eq. 3.1 is popularly known as the Wave 

Equation. It is used to convert the surface conditions to downhole pump conditions. Hence, these 

downhole dynamometer cards are also referred as pump cards (Takacs 2015). The pump cards 

exhibit a standardized behavior for each downhole pump condition and are used for pump 

diagnostics.  

The expression in Eq. 3.1 is the wave equation. 

𝜕2

𝜕𝑡2 𝑢(𝑥, 𝑡) = 𝑣𝑠
2 𝜕2

𝜕𝑥2 𝑢(𝑥, 𝑡) − 𝑐
𝜕𝑢(𝑥,𝑡)

𝜕𝑡
………………………………………………………3.1 

where 𝑢(𝑥, 𝑡)= rod displacement, ft.  

c=viscous damping factor, 1/s.  

𝑣𝑠 = √
144𝑔𝑐𝐸

𝜌
= velocity of sound in the rod material, ft/s. 

𝑥   = position of rods, ft. 

t = time, s. 
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An example of a pump card and surface card at normal operating conditions is shown in Fig. 

3.3. The pump card plot shows the rod string load (lbs) on the y-axis plotted versus the rod 

displacement (inch) on the x-axis.  

 

 

Fig. 3. 3—Pump card (bottom) and surface card (top) for a normal operating condition (Sharaf et al. 2019). 
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                                              (a)                                                 (b) 

 

                                                             (c)                                                                    (d) 

 

 (e)                                                                    (f) 

Fig. 3. 4—Pump Dynamometer cards (a) Ideal Pump Card (b) Fluid Pound (c) Gas Compression on Downstroke                          

(d) Vibration during Fluid Pound (e) Gas Expansion on Upstroke (f) Gas Lock (Nind 1964). 

A normal pump cycle is indicated by a pump dynamometer card in Fig. 3.4a. The rest of the 

figures in Fig. 3.4 highlight a few of the non-ideal downhole pump conditions. For example, Fig. 

3.4c shows a case of gas compression during the downstroke of the plunger. This typically occurs 

when there is free gas present in the pump during the upstroke. During the downstroke, this free 

gas undergoes compression and the traveling valve is closed temporarily. This is indicated by slight 

drop in the rod displacement. Here the pump performance stays erratic until the gas is completely 

displaced out to the surface.  

A much more severe case of gas interference is shown in Fig. 3.4f which is called a gas lock. 

Here the pump efficiency drops significantly as most of the energy is spent in compressing and 

expanding the gas phase and hardly any liquid is pumped up to the surface. Another non-ideal case 

is indicated in Fig. 3.4b where there is a pumped-off condition when the pump displacement is 

greater than the bottomhole fluid intake. This may result in the rod string hitting the bottom of the 
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pump barrel and damaging the traveling valve, rod string and the tubing due to the collision impact 

(Takacs 2015).  

There are several other undesirable downhole pump operating conditions. These cases require 

immediate attention, diagnosis and remedial actions to prevent equipment damage or loss in 

production. These malfunctions can be viewed as anomalies in the SRP system. It is imperative 

that the production engineer immediately identify these anomalies in day-to-day operations. With 

hundreds or even thousands of wells, tracking or monitoring dyno cards in real-time becomes 

tedious and even impossible. Additionally, human-based anomaly detection owes a lot to the 

experience of the operator and therefore can be subjective. This underscores the need for efficient 

and automated anomaly detection algorithms. Here, I discuss some of the work done by researchers 

in terms of anomaly detection specifically applied to SRP systems. 

Bangert (2019) discusses and groups the methods for sucker rod pump failure identification 

into three categories – library-based, model-based and segment-based methods. Library-based 

methods use a set of pump cards labelled by experts. Then a distance measure is computed between 

the card to be classified and the labelled pump cards. The choice of distance metric can vary. For 

example, Keating et al. (1991) compare two cards taking the sum of differences between the rod 

string load and displacement measurement. Another metric given by Dickinson and Jennings 

(1990) describe a pattern matching technique using differences in Fourier series representation 

between the pump cards.  

Model-based methods are used when simple features of the card are extracted using geometry 

like finding centroids from the card load and displacement coordinates, area over segments of the 

pump card etc. to diagnose failures. Examples of this method are given by Bezerra et al. (2009) 

and Gao et al. (2015).  
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Segment-based methods rely on the ability to detect changes within segments of the pump card. 

A good example of segmenting method is given by Reges et al. (2015) who use downhole 

dynamometer cards (DDC) from real field data and artificially generated DDCs from the literature 

to form a total of 16 pumping downhole conditions as classification labels. They identify anomalies 

in the pumping conditions using segmentation features related to the points between the opening 

and closing of traveling and standing valves on the DDC. Extracted features statistics from each 

segment of the DDC are given as input to a fuzzy logic model for the classification of failure modes 

on the new, incoming DDCs.  

Several of the more recent approaches in literature have adopted either a machine learning 

approach which have the capability of handling large real-time datasets combined with accurate 

classification of pump failures modes. Liu et al. (2011) describe a supervised machine learning 

model using 14 different measured parameters from Sucker Rod Pump surface data available from 

12 wells. Their model is based on two classification algorithms known as AdaBNet (AdaBoost 

and Bayesian Network) and AdaDT (AdaBoost and Decision Trees) which learn from the training 

data. This model is then tested on 456 new wells and is shown to provide more than 90% accuracy 

in terms of detecting failures.  

In another work by Liu et al. (2013), well data from 2000 rod pump pump-off controllers in 5 

different oil fields is used. The data includes surface card area, maximum surface load, minimum 

surface load and daily runtime ratio. Using historical data, the normal and failure modes of the 

pump are labelled using an automated clustering and rule-based filtering process. This labelled 

data is then fed to a Support Vector Machines classifier for training and then to predict failures for 

new well data from other oil fields.  
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Boguslawski et al. (2018) build an ensemble model comprising of 4 sub-models including 

supervised Convolutional Neural Network (CNN), supervised Siamese Neural Network (SNN), a 

self-supervised Autoencoder Neural Network and a histogram of oriented gradients (HOG). 

Images from the downhole pump cards serve as inputs for each sub-model. The authors mention a 

data augmentation technique to generate more labeled input card data from few manually labelled 

ones. The ensemble model employs a stacking technique that takes the weighted outputs from each 

sub-model as its input to combine the probability distributions from all the model output 

predictions to correctly identify failure mode. Fig. 3.5 shows the process behind their ensemble 

model. 

 

Fig. 3. 5—Ensemble of 4 machine learning models (Boguslawski et al. 2018). 

Pennel et al. (2018) use signal data from 800 wells in the Bakken where subject matter experts 

assign rule-based labels on pump failures. Signal data includes time-series pressure data in the 

tubing and casing, fluid load, minimum and peak loads, stroke cycle time and others. Labels are 

attached to those instances where pump dysfunction is seen.  The multivariate, time-series data 

along with the labels given as training data to machine learning models such as random forests, 

gradient boosted trees and neural networks are shown to provide high degree of accuracy in 

classification of failure.  
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Another pump card classification study by Sharaf et al. (2019) use data from a Supervisory 

Control and Data Acquisition (SCADA) system to acquire 5.3 million downhole pump cards from 

297 wells in a Bahrain oilfield. Fig. 3.6 shows an example of the instrumentation needed for a 

sucker rod pump. For this study, around 35,000 cards were manually labelled into 12 different 

pump conditions corresponding to normal as well as abnormal cases. 80% of the data is used for 

training 8 different machine learning algorithms and the remaining 20% of the data is used for the 

testing. They also report high accuracies of over 99% in the classification of failure modes.   

In another work, Abdalla et al. (2020) train artificial neural networks (ANN) along with a 

genetic algorithm using over 4400 dynamometer cards. 30% of these cards are operating in the 

normal pump conditions and 70% showing abnormal pump conditions. The model is tested on 

1915 new cards not seen by the ANN and achieves more than 99% accuracy.  
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Fig. 3. 6— Instrumentation for data acquisition and control on the Sucker Rod Pump (Boguslawski et al. 2018). 
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It is evident that the oil industry and academia are leveraging the power of high-level computing 

coupled with machine learning and artificial intelligence models. This has enabled solving 

complex problems where human intervention is not always feasible. Every well which is supported 

or lifted by a sucker rod pump generates hundreds of pump cards daily. Assuming there are more 

than 100 wells in an oil field, the number of pump cards generated can easily become 

overwhelming for manual inspection.  Therefore, the need for machine learning models, which 

can process a large number of cards in an efficient manner and correctly identify failure modes 

with low rates of false positives and false negatives.  

In this chapter, I describe the use of Convolutional Neural Networks (CNN’s) to predict pump 

malfunctions from pump dynamometer cards. CNNs are a relatively new development and belong 

to the class of deep learning algorithms because of their multi-layer architecture. The first reported 

work using CNN’s was done by Lecun et al. (1998) at Bell Labs to classify hand-written digits 

from 0 to 9 from the MNIST database. Their network is shown in Fig. 3.7 and it was used by the 

US Postal Services for recognizing digits in zip codes. Since then, the use of CNNs has rapidly 

grown to include visual image or face recognition, classification problems, self-driving cars and 

anomaly detection.  

 

Fig. 3. 7—Illustration of a Convolutional Neural Network (Lecun et al. 1998). 
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In 2012, image recognition in very large datasets experienced a breakthrough. AlexNET from 

Krizhevsky et al. (2012) was the first large scale CNN model to outperform all other non-deep 

learning models in the ImageNet Large Scale Visual Recognition Challenge competition 

(ILSVRC). ImageNet is an image database with over 14 million images from 22,000 categories 

labelled by humans. For the competition, a subset of ImageNet was used and AlexNet correctly 

classified 1.2 million images with a lower error rate compared to other models. After 2012, there 

has been ever growing interest in the area of deep learning CNN models for image recognition and 

many high-performance CNN models have won the ImageNet challenge (Russakovsky et al. 

2015). Fig. 3.8 show the winners of ILSVRC comparing their percent error rates (shown by 

numbers on the % error rate bars) by the corresponding number of layers. The figure shows that 

CNNs have dramatically increased in complexity with a corresponding decrease in error rates.  

 

Fig. 3. 8— Revolution of depth in CNN models between years 2010 and 2015 (He et al. 2016). 

 

http://www.image-net.org/challenges/LSVRC/
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In this thesis, I use a convolutional neural network (CNN) model known as VGG16, which won 

the 2014 ILSVRC, to identify and diagnose various cases of sucker rod pump failures. In the next 

section, I describe the architecture of VGG16 and explain its use for classification problems. 

3.2 Architecture of the VGG16 model 

The VGG16 model is a CNN model by Simonyan and Zisserman (2015) which won the first place 

in object localization and the second place for image classification for the 2014 ILSVRC. Object 

localization is a task of detecting objects inside images, while image classification is the task of 

identifying unseen test images. VGG16 achieved 92.7% top-5 image classification test accuracy 

in ImageNet, an improvement over AlexNet in 2012.  Two of the key features of the model are its 

relatively smaller filter sizes and the depth of the network. The number 16 in VGG16 indicates the 

number of layers in the model as shown in Fig. 3.9.  

 

Fig. 3. 9 —VGG16 Architecture https://medium.com/towards-artificial-intelligence/the-architecture-and-implementation-of-

vgg-16-b050e5a5920b (accessed 15 September 2020) (Khandelwal 2020). 



88 

 

1. Convolution Layers 

VGG16 has 13 convolution layers as shown by the blue cuboids in the Fig 3.9. The idea behind 

convolution is much like multiplying two signals elementwise (signal and filter) and then summing 

the result. For VGG16, we have the input image (signal) that needs to be of dimensions 224 x 224 

x 3 pixels. 

Fig. 3.10 shows an example of convolution. If the input image has dimensions 32 x 32 x 3 and 

we apply a filter of dimension 5 x 5 x 3, then convolving the filter over the image is the action of 

sliding the filter over every possible spatial location on the image, taking the dot product between 

the filter and the image where they overlap. Every convolution over the entire image then results 

in an activation map. Here in this example, the dimensions of the activation map become 28 x 28 

x 1.  

 

Fig. 3. 10— Example of Convolution https://cs231n.github.io/convolutional-networks (accessed 21 September 2020) (Li et 

al. 2017). 

There are however a few other details. Fig. 3.11 shows convolution with a stride. The stride 

refers to the number of locations skipped at each successive translation of the filter. Strides 

typically happen in the column- and row-direction. In Fig. 3.12, the stride length is seen to be 2. 

The formula for the output is given by (N-F+P)/S +1 where N is the dimension of input, F is size 

https://cs231n.github.io/convolutional-networks
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of filter, S is the number of strides used and P is the number of rows or columns added after 

padding. It is common practice to pad the first row, first column, last row and last column of the 

input with zeros during convolution. Padding allows us to capture the details surrounding the edges 

or corners of an input. In this case, the output size by taking the dot products between the input 

and the filter without any padding is 3 x 3.   

 

Fig. 3. 11—An illustration of a 2-dimensional input convolved with a 3 x 3 filter with a stride of 2 

https://cs231n.github.io/convolutional-networks (accessed 21 September 2020) (Li et al. 2017). 

Because VGG16 takes a 3-dimensional input, the filters used are extended to the full breadth 

of the input image and are also 3-dimensional in size. There are 64 filters in the 1st convolutional 

layer with dimensions 3 x 3 with stride and padding of 1. Output size = (N-F+P)/S +1 = (224-

3+2)/1+1=224. Therefore, the output dimension from the 1st convolution is again 224 x 224 x 3. 

The output with all 3 channels is then 224 x 224 x 64. 

Fig. 3.12 shows another example of two 3 x 3 x 3 filters working through a convolution on a 7 

x 7 x 3 size image. In terms of image recognition, the earlier convolution layers learn the low-level 

features like edges or curved areas on the image and as we go deeper into the network, the 

complexity of abstraction increases thereby enabling the model to learn high-level features within 

the image. 

 

https://cs231n.github.io/convolutional-networks
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Fig. 3. 12—Example of a 3-dimensional input image convolved with 3-dimensional filter                                                                                   

https://cs231n.github.io/convolutional-networks (accessed 21 September 2020) (Li et al. 2017). 

2. Activation or the Rectified Linear Unit (ReLU) Layer 

Every convolution layer in VGG16 is supplemented with a Rectified Linear Unit whose main 

function is to introduce non-linearity in the convolved output. The ReLU function is given by Eq. 

3.2 and an example is shown in Fig. 3.13. 

https://cs231n.github.io/convolutional-networks
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Fig. 3. 13—Example of Rectified Linear Activation Function                                                                                                      

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks (accessed 

September 21 2020) (Brownlee 2017).  

 

f(z)= max (0, z) ……………………………………………………………………………...3.2 

where z is the input image or in our case, z is the convolved output from the convolution layer. 

In other words, this is a normalization step where each negative value on the activation map 

generated after convolution becomes zero. This operation is illustrated in Fig. 3.14. This helps to 

keep the memory usage down while still maintaining and taking the vital information from the 

initial image forward. 

 

 

https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks
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Fig.3.14—Example of ReLU function indicated by the circled operator applied on an activation map  

https://e2eml.school/how_convolutional_neural_networks_work.html (accessed 15 September 2020) (Rohrer 2019). 

3. Pooling Layer 

The output from the ReLU activation maps are now shrunk down to a smaller dimension of 

maps using max pooling. VGG16 uses max pooling of size 2 x 2 with a stride of 2. Max pooling 

takes the maximum value within the region of filter overlap on the image. This filter window is 

spatially moved along the output from the previous layer and a maximum value of each window 

is stored. Fig. 3.15 shows an example of an image of size 224 x 224 x 64 which is spatially 

downsampled to a smaller size of 112 x 112 x 64 using a pooling layer. Fig. 3.16 shows the max 

pooling filter in action. The pooling layer therefore helps in shrinking down the size of stack of 

filtered images and yet manages to maintain the same of information at a high level. 

https://e2eml.school/how_convolutional_neural_networks_work.html


93 

 

 

Fig. 3. 15—Example of downsampling using the Pooling Layer https://cs231n.github.io/convolutional-networks (accessed 

21 September 2020) (Li et al. 2017). 

 

 

Fig. 3. 16—Example of Max Pooling using a stride of 2 https://cs231n.github.io/convolutional-networks (accessed 21 

September 2020) (Li et al. 2017). 

This process of convolution, ReLU activation and pooling occurs several times within the VGG 

architecture as shown in Fig. 3.9. 

4. Fully Connected Layer (FC) 

VGG16 has 3 fully connected layers at the end after the last pooling layer. Once the 16 

convolutional layers of VGG16 have learned about the high-level features of the input image, the 

https://cs231n.github.io/convolutional-networks
https://cs231n.github.io/convolutional-networks
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fully connected layer just stretches out the input from the last pooling layer into a 1-dimensional 

array. For example, if the input image is 32 x 32 x 3 in dimensions, then FC layer flattens it into a 

1 x 3072. As shown in Fig. 3.17, this array is multiplied with the weights of FC layer represented 

by W with the values from the last input layer.  

Essentially, a fully connected layer accepts all the high-level features learned from previous 

layers and computes probabilities for the class or label to be identified. 

 

 

Fig. 3. 17—Example of a Fully Connected Layer output https://cs231n.github.io/convolutional-networks (accessed 21 

September 2020) (Li et al. 2017). 

3.3 Training the CNN  

The CNN initially has randomized representation of the weights that the filters carry and hence 

after the first training image, it is likely that the prediction will be inaccurate. It is through a process 

called back propagation that every initial weight associated with each layer of the CNN is updated. 

For VGG16, the number of layers which carry weights are the 13 convolutional layers with filters 

and 3 fully connected layers.  

The process of backpropagation can be explained in its 4 stages. The first stage is called a 

forward pass. For example, the first training input image of size 32 x 32 x 3 goes through the entire 

VGG16 network. As mentioned earlier, the initial weights associated with each of the layers are 

https://cs231n.github.io/convolutional-networks
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randomized. With this limited information, the output from the CNN model can neither identify 

nor differentiate between the low-level and high-level features present in the input image.  

The second stage is the computation of the loss function. To begin with, since we have a training 

image and its label, we can define a suitable loss function associated with the error in the 

prediction. Examples of some commonly used loss functions are root mean squared error (L2 loss), 

categorical cross entropy loss, mean absolute error (L1 loss) etc. In this work, for VGG16 I have 

used the cross-entropy loss function which is mathematically represented as follows in Eq. 3.3:  

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 (𝐿) = − ∑ 𝑡𝑖
𝐶
𝑖 log (𝑓(𝑠)𝑖)  …………………………….3.3 

where t is the target class ground truth, C is the number of outputs in the last layer of the CNN, 

f(s) is a softmax activation function which takes the scores s for each class from the CNN model 

and converts them between 0 and 1. The softmax activation function is computed as follows in Eq. 

3.4. 

 𝑓(𝑠)𝑖 =
𝑒𝑠𝑖

∑ 𝑒
𝑠𝑗𝐶

𝑗

 ……………………………………………………………………………….3.4   

The elements 𝑠𝑖 in the vector s represents the ith class output score and 𝑠𝑗 are the scores 

computed by the CNN for each class in C. 

Generally, the loss is high for initial part of the training process. In order to improve the next 

prediction, the aim is to minimize the cross-entropy loss function value.  

To minimize the loss, we perform the third stage called the backward pass. Here we compute 

the derivative of the loss function with respect to the computed weights W,  
𝑑𝐿

𝑑𝑊
 .By performing a 

backward pass, we find the contribution of each weight corresponding to each layer to the loss 

function and adjust them through Eq. 3.5: 

𝑤𝑖+1 = 𝑤𝑖 − 𝛼
𝑑𝐿

𝑑𝑊
 ………………………………………………………………………….3.5   
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where 𝑤𝑖 are initial weights, 𝑤𝑖+1 is the newly computed weight for the next forward pass and 

𝛼 is the learning rate which is user-defined. This is the last step in the backpropagation algorithm 

where the weights are continually updated through the forward-backward pass process and 

recorded for each training image of every class such that we locate the global minimum of the loss 

function. After all iterations are completed, the weights of the layers in the CNN are now tuned or 

in the other words, our model has been trained for classification task.  

The process of tuning for the model weights is called gradient descent optimization. There are 

many variants of the gradient descent algorithms. Here in this work, I have used a gradient descent 

algorithm known as Adaptive Moment Estimation or Adam by Kingma and Ba (2015).  

Transfer Learning 

The previous section was essentially about how the convolutional neural network is trained 

from scratch using a variant of the gradient descent optimization and backpropagation. The CNN 

model chosen here, VGG16, was previously trained on a portion of the ImageNet database to 

recognize 1000 classes of high-resolution objects. I retain the weights of the initial 15 layers and 

only modify the final fully connected layer to suit our specific application of downhole 

dynamometer cards classification. This process of leveraging the power of a pre-trained CNN and 

customizing the last layer of the network specific to our application is called Transfer Learning. In 

this work, I have modified the final classifier layer to identify the 13 classes of sucker rod pump 

failure modes considered in this study.  

3.4 Dataset Description and Data Augmentation 

In this work, I generate synthetic dynamometer cards corresponding to different failure modes. 

With a large number of training images and transfer learning, the hypothesis is that our customized 

model should be able to correctly classify and detect the various modes of sucker rod pump 
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failures. There are 17 different cases of pump card failures considered and a few of them, belonging 

to the same class, were combined based on the levels of severity. For example, the different levels 

of severity of gas interference are grouped into one class. Following this reduction, the total 

number of failure modes to be detected is 13.  Fig. 3.18 shows few of cases of pump failure modes. 

 

Fig. 3. 18— Example of Rod Pump Failures modes through downhole dynamometer cards (Tan et al. 2015). 

 

In order to expand the diversity of images seen by the CNN, I rely on a process called ‘Data 

Augmentation’ for each dynamometer card. This was done by adding Gaussian white noise on 

both load and displacement data, as well as vertical and horizontal translation and shrinking and 

enlargement. These operations were performed on the base images from each case and a grand 

total of 8500 images belonging to 13 classes were generated. Table 3.1 list the 13 classes with 

their description and number of training/test images in each class. The base images pertaining to 

each class are shown in the Appendix from Fig. A17 to A29. 
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Pump Failure Type Label Failure Description Number of Images 

generated 

(Training, Test) 

Normal Two different cases of a 

good working pump 

condition. 

 

1000, 200 

Light Severe Fluid Pound Light and severe cases of 

fluid pounding. Light case 

of plunger not being filled 

completely, and severe 

case of plunger hardly 

being filled 

 

 

1000, 200 

Thick Oil Pump is working okay with 

high viscosity oil 

500, 100 

Sand Presence of sand inside the 

rod pump assembly 

500, 100 

Light Severe Gas Light and severe cases of 

gas interference 

1000, 200 

Leaking Inlet Valve Leaking standing valve 500, 100 

Leaking Outlet Valve Leaking traveling valve 500, 100 

Both Valves Leaking Standing and traveling 

valves leaking 

500, 100 

Delay Closing Valve Shorter and longer delays 

in closing of Standing 

valve 

1000, 200 

Collision Plunger Guide Ring Collision between the 

plunger and guide ring 

500, 100 

Resistance Flow Oil Resistance to flow of oil 

due to presence of paraffin 

wax 

500, 100 

 

Table 3. 1—13 different cases of pump cards comprising of normal and abnormal conditions (Tan et al. 2015). 
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Training and Testing Setup  

The 8500 images belonging to 13 different classes of pump failures were split into 2 groups. 

80% of the data was kept for training the CNN model and 20% were kept aside for the testing the 

model. The data selected for training and testing is fed to the network in batches and the weights 

are updated after each batch.  

There are 3 methods of feeding images to the CNN. One option is to have the CNN process 

each image one-by-one sequentially with the weights updated after every training image is 

processed through the network. Unfortunately, this contributes to prohibitively high processing 

time. The second option is to process the entire training set in one step, but this option necessitates 

a high memory usage. The third option trains the network in mini-batches where the batch size is 

of the order 2𝑛 where n typically ranges from 4 to 8. This method provides a good balance between 

memory use and computation time.  

The time for one cycle of training and testing is measured in epochs. One epoch is said to be 

complete when all the batches are processed for the entire training and test dataset. For example, 

in this work I have selected the batch size to be 32 (25) and fit the model for 40 epochs. For each 

epoch, the batches are reconstructed randomly from the entire image set. 
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3.5 Results and Conclusions  

In this study, the hyperparameters used during training the CNN are as follows:  

Learning rate = 0.0001, filter size = 3 x 3, number of filters used = 2944, batch size = 32, epoch 

step size = 212 and number of epochs=40. Epoch step size is calculated by dividing the total 

number of images in the dataset by the number of epochs. This step size is used to monitor the 

progress of training and test phases of the CNN. The model is run on a Google Colab Graphics 

Processing Unit (GPU) to reduce the computation time.  

Fig. 3.19a. and 3.19b. show the plot of model accuracy and loss on the y-axes versus epochs 

on x-axes respectively during training and testing. 
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              (a) 

 

            (b) 

Fig. 3. 19—(a) Plot of VGG16 model accuracy and (b) model loss during training and testing. 
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In the Fig. 3.20., I plot the confusion matrix for the test data. The y-axis represents the true, 

but unseen, labels and the x-axis represents the predicted labels. The colors indicate the number 

of images associated with each class.  

There are a few off-diagonal elements which denote either false positives or false negatives, 

but they are too few to be seen in Fig. 3.20. I show the numerical values within the confusion 

matrix in Fig. 3.21.  

   

Fig. 3. 20—Confusion Matrix showing True labels versus Predicted Labels. 

In Fig. 3.21, there are a few misclassified labels, but the confusion matrix is strongly diagonally 

dominant.  
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Fig. 3. 21— Confusion Matrix without normalization showing True labels versus Predicted Labels. 

Fig. 3.22 shows an example of a misclassified mode of failure. Fig. 3.22a shows the correct 

label on the left and Fig. 3.22b shows the incorrectly predicted label on the right by the model. 

The dyno card to be classified is from a failure mode indicating poor pump fillage, where the 

plunger is not being completely filled. The CNN model however predicts this one card as 

belonging to a moderate case of gas interference. This card can easily be seen as gas interference 

and perhaps need an expert to examine it with more information for proper prediction. 

 

 

(a)                                                                              (b) 

Fig. 3. 22—An example of model’s misclassification (a) True label related to the severe mode of pump fillage problem (b) 

Model Predicted label related to the moderate case of gas interference (Tan et al. 2015).          
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Fig. 3.23 shows another example of a misclassified mode of failure. Fig. 3.23a shows the correct 

label on the left and Fig. 3.23b shows the incorrectly predicted label on the right by the model. 

The dyno card to be classified is from a failure mode indicating the problem of leaking inlet or 

standing. The CNN model however predicts this one card as belonging to a case of time delay in 

the closing of the standing valve.  

(a)                                                                                               (b) 

Fig. 3. 23— An example of model’s misclassification (a) True label related to the leaking standing valve (b) Model Predicted 

label related to the delay in closing of the standing valve (Tan et al. 2015). 

In Fig. 3.24 and 3.25, I show two different test pump cards which the model had no problems 

predicting for all samples belonging to that class or label. Fig. 3.23a shows the correct label on the 

left and Fig. 3.23b shows the correctly predicted label on the right by the model. The dyno card to 

be classified is from a failure mode indicating the presence of sand inside the rod pump assembly. 

The CNN model correctly predicts this card as belonging to a case of sand interference.  
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                                                         (a)                                                                                             (b) 

Fig. 3. 24— An example of model’s accurate classification (a) True label related to presence of sand (b) Model predicted 

label related to the presence of sand (Tan et al. 2015).  

Fig. 3.25a. shows the correct label on the left and Fig. 3.25b shows the correctly predicted label 

on the right by the model. The dyno card to be classified is from a failure mode indicating a severe 

case of gas interference inside the rod pump assembly. The CNN model correctly predicts this card 

as belonging to a case of severe gas interference.  

 

(a)                                                                     (b) 

Fig. 3. 25— An example of model’s accurate classification (a) True label related to severe case of gas interference (b) 

Model predicted label related to the severe gas of gas interference (Tan et al. 2015). 
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Thus, we can conclude that using transfer learning, a CNN model like VGG16 can be 

customized as per the application required. Here the application was to identify and classify the 

rod pump failure cases. The model currently uses synthetic data for pump cards generated from 

the literature and the results shown can serve as a proof of concept. One can now extend this 

concept and apply it to real world oil field pump data. By training this model on several thousand 

downhole pump cards, it can be put to test for classifying online real time pump cards. This can 

potentially serve as a continuous surveillance system with pre-set alarms conditioned for abnormal 

failure modes. With the power of Internet of Things (IoT), machine learning algorithms and big 

data available from downhole sensors, a suitable time series anomaly detection model could be 

used in conjunction with the CNN model.  

A future work to extend this study would be to predict anomalies in real-time. This will prevent 

sucker rod pump failures in most cases, increase their efficiency and thus save the operator millions 

of dollars in potential downtime spent for root cause analysis, equipment repair and costly 

workovers at the well site.  
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Appendix 

 

Fig. A1—Propensity Score Distribution before and after matching at 500 ft well spacing with outcome 180-day cumulative 

production normalized to lateral length (bbl/ft). 
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Fig. A2—Density of the propensity scores at 500 ft well spacing across matched and unmatched parent-child well groups 

with outcome 180-day cumulative production normalized to lateral length (bbl/ft). 
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Fig. A3—Propensity Score Distribution before and after matching at 600 ft well spacing with outcome 180-day cumulative 

production normalized to lateral length (bbl/ft). 
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Fig. A4—Density of the propensity scores at 600 ft well spacing across matched and unmatched parent-child well groups 

with outcome 180-day cumulative production normalized to lateral length (bbl/ft). 
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Fig. A5—Propensity Score Distribution before and after matching at 700 ft well spacing with outcome 180-day cumulative 

production normalized to lateral length (bbl/ft). 
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Fig. A 6—Density of the propensity scores at 700 ft well spacing across matched and unmatched parent-child well groups 

with outcome 180-day cumulative production normalized to lateral length (bbl/ft). 
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Fig. A 7—Propensity Score Distribution before and after matching at 800 ft well spacing with outcome 180-day cumulative 

production normalized to lateral length (bbl/ft). 
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Fig. A 8—Density of the propensity scores at 800 ft well spacing across matched and unmatched parent-child well groups 

with outcome 180-day cumulative production normalized to lateral length (bbl/ft). 
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Fig. A 9—Propensity score distribution before and after matching at 500 ft well spacing with outcome 360-day cumulative 

production normalized to lateral length (bbl/ft). 
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Fig. A 10—Density of the propensity scores at 500 ft well spacing across matched and unmatched parent-child well groups 

with outcome 360-day cumulative production normalized to lateral length (bbl/ft). 
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Fig. A 11—Propensity Score Distribution before and after matching at 600 ft well spacing with outcome 360-day cumulative 

production normalized to lateral length (bbl/ft). 
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Fig. A 12—Density of the propensity scores at 600 ft well spacing across matched and unmatched parent-child well groups 

with outcome 360-day cumulative production normalized to lateral length (bbl/ft). 
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Fig. A 13—Propensity Score Distribution before and after matching at 700 ft well spacing with outcome 360-day cumulative 

production normalized to lateral length (bbl/ft). 
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Fig. A 14—Density of the propensity scores at 700 ft well spacing across matched and unmatched parent-child well groups 

with outcome 360-day cumulative production normalized to lateral length (bbl/ft). 
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Fig. A 15—Propensity Score Distribution before and after matching at 800 ft well spacing with outcome 360-day cumulative 

production normalized to lateral length (bbl/ft). 
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Fig. A 16—Density of the propensity scores at 800 ft well spacing across matched and unmatched parent-child well groups 

with outcome 360-day cumulative production normalized to lateral length (bbl/ft). 

 

 

Fig. A 17—Normal Pump card (Tan et al. 2015). 
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Fig. A 18—Severe case of fluid pound (Tan et al. 2015). 

 

 

Fig. A 19—Light case of fluid pound (Tan et al. 2015). 

 

 

Fig. A 20—Pump with high viscosity oil (Tan et al. 2015). 
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Fig. A 21—Sand interference inside the pump (Tan et al. 2015). 

 

 

Fig. A 22—Severe gas interference (Tan et al. 2015). 
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Fig. A 23—Light case of gas interference (Tan et al. 2015). 

 

 

Fig. A 24—Leaking inlet valve (Tan et al. 2015). 

 

 

Fig. A 25—Leaking outlet valve (Tan et al. 2015). 
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Fig. A 26—Both valves leaking (Tan et al. 2015). 

 

 

Fig. A 27—Delay in closing of Standing valve (Tan et al. 2015). 

 

 

Fig. A 28—Collision between plunger and guide ring (Tan et al. 2015). 
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Fig. A 29—Resistance to oil flow (Tan et al. 2015). 
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Well 

Spacing 

(ft) 

Child 

Wells Mean 

(Cum. 

180/Lateral 

Length) 

(bbl/ft) 

Parent 

Wells Mean 

(Cum. 

180/Lateral 

Length) 

(bbl/ft) 

Causal 

Estimate 

(Cum. 

180/Lateral 

Length) 

(bbl/ft) 

Lower 

95 % 

CI 

Upper 

95 % 

CI 

 

P-value 

Degrees 

of 

Freedom 

800 ft 11.37 12.85 -1.45 -1.93 -0.97 1.9E-9 135 

700 ft 11.52 12.36 -0.84 -1.23 -0.44 4.2E-5 192 

600 ft 11.57 12.4 -0.84 -1.25 -0.41 0.00013 167 

500 ft 11.7 12.5 -0.8 -1.25 -0.34 0.00074 156 

 

Table A1—Causal estimates for all well spacing options with 95% confidence intervals. Outcome is 180-day cumulative 

production normalized to lateral length (bbl/ft). 

Well 

Spacing 

(ft) 

Child 

Wells Mean 

(Cum. 

360/Lateral 

Length) 

(bbl/ft) 

Parent 

Wells Mean 

(Cum. 

360/Lateral 

Length) 

(bbl/ft) 

Causal 

Estimate 

(Cum. 

360/Lateral 

Length) 

(bbl/ft) 

Lower 

95 % 

CI 

Upper 

95 % 

CI 

 

P-value 

Degrees 

of 

Freedom 

800 ft 16.23 18.8 -2.51 -3.4 -1.63 1.5E-7 104 

700 ft 16.78 17.64 -0.87 -1.64 -0.1 0.026 138 

600 ft 16.31 17.19 -0.87 -1.67 -0.069 0.033 136 

500 ft 16.32 17.39 -1.07 -1.8 -0.33 0.004 112 

 

Table A2—Causal estimates for all well spacing options with 95% confidence intervals. Outcome is 360-day cumulative 

production normalized to lateral length production (bbl/ft). 
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Parent Well 

Group 

Comparison 

at different 

spacings. 

Parent 

Wells 

Group 

#1 Mean 

(Cum. 

180/Lateral 

Length) 

(bbl/ft) 

Parent 

Wells 

Group 

#2 Mean 

(Cum. 

180/Lateral 

Length) 

(bbl/ft) 

Lower 95 % 

Confidence 

Interval 

Upper 95 % 

Confidence 

Interval 

 

P-value 

Degrees of 

Freedom 

700 ft and 

800 ft 

12.36 12.85 -1.04 0.055 0.078     327 

600 ft and 

800 ft 

12.4 12.85 -1 0.12  0.125     302  

500 ft and 

800 ft 

12.5 12.85 -0.92 0.24  0.25     291  

 

Table A3 - Paired t-test outputs conducted between the parent well groups at 800 ft spacing and the parent well groups at 

the rest of spacings with outcome 180-day cumulative production normalized to lateral length production (bbl/ft). 
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Parent Well 

Group 

Comparison 

at different 

spacings. 

Parent 

Wells 

Group 

#1 Mean 

(Cum. 

360/Lateral 

Length) 

(bbl/ft) 

Parent 

Wells 

Group 

#2 Mean 

(Cum. 

360/Lateral 

Length) 

(bbl/ft) 

Lower 95 % 

Confidence 

Interval 

Upper 95 % 

Confidence 

Interval 

 

P-value 

Degrees 

of 

Freedom 

700 ft and 

800 ft 

17.65 18.7 -1.04 -2 0.029 242 

600 ft and 

800 ft 

17.19 18.7 -2.49 -0.53 0.0025 240 

500 ft and 

800 ft 

17.39 18.7 -2.39 -0.34 0.008 216 

 

Table A 4—Paired t-test outputs conducted between the parent well groups at 800 ft spacing and the parent well groups at 

the rest of spacings with outcome 360-day cumulative production normalized to lateral length production (bbl/ft). 

 

 

 

 

 

 

 

  

 


