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Abstract 

Present manufacturing systems often generate enormous amounts of data, that are 

often forgotten or lost. A major reason for ignoring such data is the heterogeneity of data. 

This research focuses on the heterogeneity between the manufacturing machine’s capacity 

parameters and part design. In manufacturing factories, the machine capacity data is 

available in form of machine specifications, while part data is stored in 2D or 3D-CAD 

models. In this thesis, a framework is proposed to provide guidelines and strategies for 

acquiring, pre-processing, and storing manufacturing capacity data in the form of 

structured table-oriented database systems. The framework also proposes the extraction, 

preprocessing, and storage of dimensional data of Computer-Aided Design (CAD) part 

models into feature-based-logical storage within XML files. Such a database storage 

system can improve vendor search using advanced predictive modeling. Such a system is 

beneficial for small-medium scale machine shops for quantifying their manufacturing 

capability and constraints and linking such with a prospective pool of manufacturing part’s 

designs. 
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Chapter 1: Introduction 

Industrial revolution 4.0 is bringing unprecedented changes to the manufacturing 

industry. The smart systems helping the industry in making intelligent decisions to increase 

productivity and quality and reduce cost and work redundancy. Smart grids are improving 

connectivity and transparency within organizations. As a result of the integration of such 

smart systems in the manufacturing industry, large amounts of data are being generated 

across the organizations. For instance, the design teams generate product specification and 

manufacturing process data, production departments generate process and capacity related 

data, order delivery deals with supplier’s specification data, and so on. The data generated 

from these various sources are not in the same format or structure. The data generated 

across these cross-functional teams of organizations are seen in various forms such as text 

and numerical, and this heterogeneous data is always hard to use across other disciplines 

within organizations (Patil et al., 2005). 

Today’s dynamic global market and extensively increasing product competition are 

making a rush towards collaborative and concurrent manufacturing systems (Verhagen, 

2015). Complex products are being manufactured in pieces around the globe. Various 

levels of manufacturing participants contribute to such products. As shown in figure 1 low-

level individual parts are manufactured from sheet metal or bar metal and such individual 

parts are assembled to form the sub-assemblies and such sub-assemblies are assembled 

further to manufacture the useful product. As the levels in collaborative manufacturing 

increases, the complexity of the process tends to increase. Each level has restricted mobility 

in-terms of design, production rate, and cost for manufacturing because each level output 

is input to the next level, and changes in any design can hamper further assemblies. Hence, 
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engineering change management plays an important and critical role in cost and time to 

market. Usually, the lower-level participants are small scale industries, and such industries 

are used to stimulate the process using their overheads and resources.  

 

Figure 1. Levels in Collaborative Manufacturing (3 – Level System) 

 

Figure 2 shows the process cycle in collaborative manufacturing. Assembly 

manufacturer issues design to the sub-assembly manufacturer. Further, this first level 

participant forwards the necessary part of information and design to the component 

manufacturer. The component manufacturer then checks feasibility and manufactures the 

part and supplies it to the sub-assembly manufacturer. The sub-assembly manufacturer in 

turn assembles the procured component and this sub-assembly is supplied to the assembly 

manufacturer for final assembly. In this process, significant data is generated and 

transferred between departments and organizations. 
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Due to market competition, organizations are reluctant to share their valuable data 

with other industries, suppliers, and sub-suppliers. But a need for a common information 

pool is equally important for small manufacturing businesses that are the backbone of 

larger organizations. Small businesses stimulate parallel manufacturing and bring down the 

time to market along with the cost. Small businesses are often the drivers of the 

manufacturing process. 

 

Figure 2. Process Cycle in Collaborative Manufacturing (3 – Level System) 

 

Due to such insecurity in data sharing, the small-scale manufacturers end up having 

very few connections with large organizations for supplying the part. This restricts the 

expansion of business of small-scale industries, and on other hand, the large-scale 
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manufactures often experience a shortage of proper capacity for manufacturing specialized 

or customized components for their assemblies. This in-turn costs largely to such large-

manufacturers for procuring complex parts from a known and less capable supplier. 

This thesis conceptualizes the framework for connecting small manufacturers using 

their manufacturing capability data and quantified manufacturing constraints, whenever a 

design of the desired part is available. The framework mainly discusses data acquisition 

and storage methods for manufacturing capability data of machines, and part design data. 

This thesis is divided into five chapters. The first chapter discusses the introduction, 

the second chapter explores the background and literature survey used for building the 

conceptual framework. The third chapter explores the research goals and boundaries. The 

fourth chapter proposes the framework model, and the fifth chapter explains the conclusion 

and recommends the future scope for the research. 
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Chapter 2: Background and Literature Survey 

This chapter discusses the background concepts to understand the proposed model, 

which includes a study of the STEP files, manufacturing machine characteristics, a brief 

introduction for engineering ontologies, existing part-process matching practice, and an 

active learning approach in training classification models. This chapter gives a summary 

of the literature survey for briefly understanding research work for supporting the proposed 

model. 

 

2.1 Manufacturing Design Data 

Design data is generated and maintained across the industries in various computer-

aided design (CAD) forms. Various types of CAD systems are being used for designing 

the part. Throughout a product’s lifecycle, CAD files store various product information 

such as geometrical dimensions and tolerances (Alemanni et al., 2011). The design data 

plays an important role during the manufacturing of the product. Design data provides 

insights and milestones during manufacturing (Fang et al., 2016).  

As discussed in the previous chapter, the modern manufacturing industry relies 

heavily on concurrent manufacturing (Verhagen, 2015). This has increased the data-

sharing aspects among manufacturers. CAD files are the primary source for sharing the 

part design between different elements of the manufacturing ecosystem. Sharing the design 

data entertains many challenges such as the data security and redundancy of design data. 

Mainly, the abundance of design data stored in the solid format often stimulates data 

redundancy. However, the CAD models are noncompatible for computer-aided process 
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planning (CAPP) tools. A feature-based data format is required for using the CAD models 

for CAPP applications (Gao et al., 2004). 

The majority of computer-aided designs exist in two formats: 2D CAD drawings 

and 3D CAD models. A design drawing with the design described in the two-dimensional 

drawing is called a 2D CAD drawing. The 2D drawings are the drawing files loaded with 

geometrical dimensioning and tolerancing (GD&T) information (Bijnens & Cheshire, 

2019). Such 2D drawing often shows three orthographic views or a single isometric view. 

The more complex the parts are, the more involved the drawings are, with additional 

(auxiliary and sectional) views. Three-dimensional design models are used for better 

representation of complex features in parts. Although one shortcoming of 3D models is 

that they do not include the GD&T information of part. Therefore, 3-dimensional CAD 

designs are often accompanied by 2D design drawings. But often the design files are 

generated and shared differently. 

CAD files are generated and shared in the following formats:(Bijnens & Cheshire, 

2019) 

• Generation of 2D design and sharing the 2D drawing of the product. 

• Generation of 3D model of design and sharing the 2D drawing of the model. 

• Generation of 3D model of design and sharing the 3D model of the product. 

 

Although various industries use one or more of the above formats for sharing their 

manufacturing information, this process is still not considered efficient. Each of the formats 

has some disadvantages as listed below (Bijnens & Cheshire, 2019). 
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• Generation and sharing a 2D CAD file can be ineffective when it comes to complex 

assemblies. As 2D drawing gives orthographic views and this is usually hard to 

interpret, this can be tackled by generating other projection views. But it tends to be 

time consuming and inefficient. 

• Generation of 3D model of design and sharing the 2D drawing of the model can 

overcome the above disadvantage as a small print of 3D design can be projected on the 

2D drawing that can help interpretation better. It can help generate multiple different 

projections from the 3D model. But if there is any change in the design then the original 

3D model has to be changed and the number of projections has to be generated again, 

and this revision should be updated, and all old versions should be discarded. 

Generally, in concurrent manufacturing change in design is a common factor, and 

changing or updating an entire set of 2D drawings every time is not so simple as these 

drawings are already been distributed to various participants within and outside the 

organizations. 

• Generation and sharing 3D model design can be much more effective for change 

management but it has a technological disadvantage that is, many low-level participants 

are small-scale industries and such industries sometimes do not have the luxury of 

accessing the 3D model. Also, on the shop floor, the technician or machine operators 

are not familiar with using CAD software. Moreover, if the end-user uses a different 

CAD software than the designer then it is difficult to load and access the CAD file. For 

instance, if the 3D model design is generated in AutoCAD and the end-user uses 

CATIA then accessing the design file will be difficult for the end-user. 
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For tackling these challenges, a native CAD format developed by the International 

Standards Organization can be used. In the upcoming sections, STEP AP203 native CAD 

format is explored and used for dimensional data extraction in the proposed model. 

 

2.1.1 Introduction to ISO STEP files 

The STEP file stands for Standard for the Exchange of Product Model Data. As the 

name suggests the STEP format is an international standard neutral CAD format developed 

by the International Organization for Standardization (ISO) for geometric data exchange. 

The STEP file is explained in ISO 10303-21 (Al-wswasi & Ivanov, 2019)(Industrial 

automation systems and integration product data representation and exchange—part 203, 

1994)(MALLESWARI, 2013).  The STEP file extensively stores dimensional and 

geometric data of the part. In the STEP file, a 3D CAD model is stored in the text form 

using EXPRESS data modeling language (Sateesh & P, 2017). Before the STEP file, 

International Graphics Exchange Specification (IGES) was used as a standard CAD 

exchange format (Ismail et al., 2002). 

The advantages of the STEP format are as follows: 

• STEP is a neutral file format that can be generated from various CAD software such as 

AutoCAD, SolidWorks, CATIA, etc. (Industrial automation systems and integration 

product data representation and exchange—part 203, 1994). 

• STEP format is both human and machine-readable and this can be viewed as a text file. 

• The CAD model is represented in borderline representation (B-line rep.) format. 

• The design surfaces are defined using specific predefined keywords (keys). 
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2.1.2 Structure of STEP AP203 File 

The main advantage of the STEP file is, that the STEP file is machine and human-

readable. To store design data in a logical order, STEP files are organized using a specific 

format. Understanding the structure of the STEP file is important for developing an 

algorithm for extracting the dimensions and feature information of the part. Moreover, 

STEP files are organized using various keywords, these keywords navigate the structure 

and part information throughout the file body. Broadly, the STEP file is organized into two 

separate sections (Al-wswasi & Ivanov, 2019). These sections are shown in figure 3 and 

explained below. 

 

Figure 3. Sections of A STEP File 
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i. Header Section: The header section is located at the top (starting) of the STEP file. 

This section includes meta-information of part and design file such as the type of 

STEP file, filename, software used to create the drawing, time, and date of file 

creation, etc. The section begins with the keyword HEADER and ends with 

ENDSEC. 

ii. Data Section: Data section is located under the header section. As shown in figure 

3, the Data section starts with the keyword DATA and ends with ENDSEC. This 

section stores part dimensional and geometrical information such as face numbers, 

edge numbers, coordinate points, and vertex points of each edge. The information 

in the data section is represented in a line-wise manner. Each line discloses certain 

information often called entity, and the type of information is identified using 

keywords present in each line called Entity Type. Each line begins with a unique 

integer. This unique integer acts as the line number of the entity in the DATA 

section. The line number begins with integer 1 and has ‘#’ as a prefix. The 

information representation format is given as follows. 

# LINE_NO = ENTITY_TYPE (ENTITY) 

 

The STEP file format stores part design data in a tree structure. The tree structure 

contains several predefined entity types, and each entity type has a predefined keyword 

called entity type. These entities and their predefined entity types are explained in the next 

section. Most types of entities store line numbers of the next consecutive entity type. Some 

entity types store dimensional information such as coordinate points or geometrical 

information of edge, these entities are nodes of a given STEP tree. 
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The entities of STEP files hierarchically store information. Each entity guides to 

the next lower entity and so on until the node of the hierarchical tree is reached. These 

nodes store various information, but information of principal interest are coordinate point 

locations. The part design information is organized randomly throughout the data section. 

However, the STEP file possesses an underlying structure that leads to extract the 

geometrical features. This extraction is possible by traversing the tree structure, which is 

explained in the following section (Ghorpade et al., 2020) (Al-wswasi & Ivanov, 2019).  

 

2.1.3 Data Layout in STEP AP203 file 

The tree structure of the STEP file is organized using keywords. These keywords 

describe the nature of data present in the line in the STEP file. While describing part design 

in a STEP file, each of these keywords navigates the information of the next hierarchical 

keyword using the line numbers. These keywords are defined below (Sateesh & P, 2017) 

(Al-wswasi & Ivanov, 2019). 

i. CLOSED_SHELL: Closed shell can be considered as a gateway for part design in 

a STEP file. This entity defines a component as a single closed shell. Each closed 

model in CAD space in the given STEP file is represented by one 

CLOSED_SHELL. All feature’s faces bind the CLOSED_SHELL together. 

Therefore, the CLOSED_SHELL incorporates details of all faces, edges, vertex 

points, and respective coordinate point locations. Further, CLOSED_SHELL 

divides the part into faces of the given part model. Each face gets one branch, and 

it expands further until the vertex point level of each of its edges. The line 



   

 

12 

 

containing CLOSED_SHELL as keyword discloses the line numbers of all the 

ADVANCE_FACEs which bounds the part together. 

ii. ADVANCED_FACE: The advanced face is a generic face of a given part. The 

number of advance faces depends on the number of faces that encloses the given 

part. The line with the keyword ADVANCE_FACE contains further line numbers 

of FACE_OUTER_BOUND/FACE_BOUND. Each Advance face contains one 

face outer bound. Hence, only one line number of respective face outer bound is 

given in this line. Moreover, this line also gives the surface type information such 

as “CYLINDER” for circular or curved face, “PLANE” for planar surfaces, 

“CONICAL” for a conical type of surfaces, and “TOROIDAL” for toroidal 

surfaces. 

iii. FACE_BOUND/FACE_OUTER_BOUND: Face outer bound, or face bound both 

discloses the information of edges that develops the respective face. Each face is 

formed with a loop of edges. The line with the keyword FACE_BOUND navigates 

to the EDGE_LOOP lines for further travel. 

iv. EDGE_LOOP: Each edge loop is the set of edges that forms the respective face. 

The line with the keyword EDGE_LOOP provides the line numbers for all the 

edges which disclose the represented surface. 

v. ORIENTED_EDGE: Each edge in a given face is represented by one oriented 

edge. The line with the keyword ORIENTED_EDGE directs to the line which 

contains EDGE_CURVE. These edges are shown in a line with the keyword 

“ORIENTED_EDGE”. 
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vi. EDGE_CURVE: EDGE_CURVE gives detailed information on 

ORIENTED_EDGE. Information such as vertex points and the type of edge curve 

is given. The type of EDGE_CURVE provides information about the type of the 

edge such as “CIRCLE” for curves, or “PLANE” for straight edges. This line can 

be representing different faces. The faces which share edges can be tracked down 

using EDGE_CURVEs. All entities from and below EDGE_CURVE in the STEP 

hierarchy are repeated for multiple faces that share the edges. 

vii. VERTEX_POINT: Each VERTEX_POINT represents one vertex of the edge. 

Further, the VERTEX_EDGE navigates to the entity type CARTESIAN_POINT 

in the STEP file. 

viii. CARTESIAN_POINT: The line with the keyword CARTESIAN_POINT is the 

lowest level entity in the hierarchical structure of the STEP file. These points define 

the position of each vertex point of edges in the three-dimensional space CAD 

space. The relative locations of vertexes of the same edge give the distance between 

the vertexes. 

As discussed above, the keywords are standard and have a fixed definition.  

 

Using the above-mentioned keywords, a part’s design can be organized in a 

hierarchal structure as shown in figure 4 (Sateesh & P, 2017) (Al-wswasi & Ivanov, 2019). 
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Figure 4. STEP 203 Tree Structure (Al-wswasi & Ivanov, 2019) 
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For understanding the structure of the STEP file, an example cylinder design with  

radius of 10 inches, and a length of 50 inches is considered for demonstration. The design 

of the cylinder is shown in figure 5 in the form of an engineering drawing. The example 

STEP file is exported from the SolidWorks CAD software system. 

 

Figure 5. Different Views of Example Cylinder Part 

 

The generated STEP file is shown in figure 7. STEP file stores design information 

in a scattered way. The snap shows data only to line number 38. From figure 4, the 

structural representation of part starts from a CLOSED_SHELL. Supposedly this closed 

line should come at the top of the data section in the STEP file. But the closed-shell is 

situated at line number 149. Therefore, to extract the exact design of a given part the tree 

structure needs to be followed. After carefully traversing through the STEP tree structure, 
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a sorted STEP file looks as shown in figure 8. The advanced face #85 shown in figure 6 

represents the semi-cylindrical face of the cylinder as shown in figure 9. 

 

Figure 6. Cylinder Faces Represented in STEP File 
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Figure 7. Unsorted STEP File for Cylinder Part 

 

 

Figure 8. Sorted STEP File of Cylinder Part 
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Figure 9. Semi-Cylindrical Face #85 

 

The example cylinder’s semi-cylindrical face STEP tree structure is shown in figure 

10. This cylindrical part is enclosed by the CLOSED_SHELL given in line number #149 

in the sorted STEP file as shown in figure 8. Within this CLOSED_SHELL, there are four 

advanced faces #145, #63, #75, and #11. Each of these advanced faces describes the faces 

of the cylinder. For instance, the tree structure of this STEP file shown in figure 10 

represents the semi-cylindrical ADVANCED_FACE #145. This face and its co-ordinate 

points are shown in figure 11. Within this ADVANCED_FACE, there are four edges #114, 

#3, #42, #6. Edge #3 represents the vertical edge of this face and edge #3 represents the 

semi-circular top edge of the same face. These edges are shown in figure 11. Each of these 

faces further contains their respective vertex points and their respective cartesian 

coordinates. For example, edge #3 contain two vertex points #41 and #107 with coordinate 

location (0, 50, 10) and (0, 0, 10) respectively. These three-dimensional points describe the 

distance between the points i.e 50 inches. Similarly, for edge #114, vertex points #41 and 

#2 are shown. Here, these two edges share the same vertex point (#41). Moreover, two 

ADVANCED_FACEs can share the same edge if there are adjacent to each other. This 

gives the orientation information of edges and further orientation information of faces.  
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Figure 10. STEP Tree Branch for Semi-Cylindrical Face of Cylinder Part 
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On the other hand, Edge #114 is a curve, which is represented under the type of 

edge in line #22. This entity gives the radius of the curved edge (10 inches). Hence, for 

such curved edge’s radiuses can be extracted using this entity. 

 

Figure 11. Semi-Cylindrical Advanced Face with Cartesian Coordinates 

 

Each face in the part is represented and can be tracked as illustrated above. 

Systematically traversing the STEP tree and storing appropriate data is extremely necessary 

for extracting dimensions of the given part. A face-based logical XML storage is used for 

storing the part which represents the structure and respective faces in the hierarchical 

model. 

 

2.2 Scope of XML Files 

Markup languages are being used rather extensively in recent years. These are 

systematic files for storing the content from electronic documents so that the machine can 

read and process it for further applications. The definite and retrievable content-based 

structure makes markup language a good fit for integrating with system and human 

interaction atmosphere (Schools of advanced study university of London, 2020). 
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Various types of markup languages are being used in different systems and 

applications. Some popular markup languages are listed below (Schools of advanced study 

university of London, 2020). 

• HTML (HyperText Markup Language) 

• XHTML (Extensible HyperText Markup Language)  

• MathML (Mathematical Markup Language) 

• KML (Key whole Markup Language) 

• SGML (Standard Generalized Markup Language) 

After the preliminary study, this research report focuses on the XML markup 

language. XML is used in the industries for various applications due to its compatibility 

and ability to boost the effectiveness of search engines as compared to other file storages 

(Gil & Ratnakar, 2002) (Abiteboul et al., 2014). 

 

2.2.1 Advantages of XML Files (Dimitrov, n.d.) 

i. XML file does not have generic predefined markup tags. The user can define new 

markup tags according to the application. In the proposed model, feature-based markup 

tags are defined. 

ii. XML files have an interpretable format. This makes XML files both human and 

machine-readable. This property is helpful in the application where data is accessed by 

both machines and humans. 

iii. XML possesses a strong syntax for data storage. This makes implementation more 

convenient along with preserving the structure of defined markup tags. The feature-
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based storage of part data ontology is feasible because the XML file syntax can 

accommodate the feature name and other meta information in its markup tags. 

iv. The data-oriented property of XML files helps in retrieving and reusing data at any 

point in the time 

 

Since a variety of tools are available and accessible to the user, Practically XML is 

simple for use and used in many applications across industries and different fields. 

(Ghorpade et al., 2020)(Gil, Y., & Ratnakar, V.; 2002). 

 

2.3 Manufacturing Capacity Parameters 

Manufacturing machines are the main elements in the manufacturing ecosystem. 

Different types of manufacturing machines carry out various operations during the 

manufacturing of a part. Manufacturing machines are selected for machining the part based 

on the part’s design, material, and level of complexity. Understanding these factors allows 

selecting the appropriate capable machines with enough capacity for the machine the 

required part. This section expands on the study of machine capacity parameters and their 

importance for the integrative system. 

According to the Kalpakjian and Schmid, the manufacturing capacity parameters 

of a machine are the specifications that describe the capacity of the machine to manufacture 

a part (Kalpakjian & Steven, 2014). The capability parameters virtually represent the 

physical manufacturing machine, such a set of information can be called a virtual copy or 

digital twin of manufacturing machines (Nikolas Theissen, Theodoros Laspas, Karloy 

Szipka, Andreas Archenti; 2018). Digital twins are widely analyzed and explored for their 
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potential use in cyber-physical manufacturing systems. Many production environments are 

simulated using the digital twins of physical machines (Theissen et al., 2018). Similarly, 

dimensioning the information required for creating a digital twin of a physical machine is 

a research question. An enormous amount of data can be found which is related to the 

manufacturing machines (Kutin et al., 2019). Currently, a portion of such data is used in 

applications such as production simulation, predictive maintenance, distance operating, 

smart manufacturing, etc. The next sections explore a parametric analysis of manufacturing 

machine capabilities for collecting and storing data to create digital twins. 

 

2.3.1 Capacity Parameters based on Machine Types  

Different types of machines carry out different operations. Each of these machines 

is used for a specific purpose. The turning and milling operations are the most basic 

subtractive processes that can be performed on raw material to machine a useful 

component. These processes are often performed on lathe and milling machines, 

respectively. Another common machine is the machining center which can perform 

operations of lathe and milling machines. The machining centers can work on multiple axes 

and along different orientations of the given part depending on the specific needs.  

The Lathes are primarily used for machining cylindrical parts. Turning operations 

are commonly performed on a bar material that rotates on the same axis. Along with the 

turning operations, a lathe machine can perform various other operations such as facing, 

cutting, boring, drilling, parting, threading, knurling, straight turning, taper turning, 

profiling, etc. According to Kalpakjian, the table data such as length and width of the table, 

chuck diameter capacity, the maximum distance between headstock and tailstock, and 
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tooling information commonly define the capacity of a lathe (Kalpakjian & Steven, 2014). 

These parameters parameterize the workspace available in the machine to carry out 

different processes. Moreover, other parameters such as given in Table 1 define the 

operability of the machine on the given part based on the surface finish requirements and 

material specifications  (Kalpakjian & Steven, 2014) (Ghorpade et al., 2020b). 

Table 1. Maximum Workpiece Dimensions for Lathe Machine (Kalpakjian & Steven, 

2014) 

 

 

Milling machines have diverse capabilities some of them which are similar to the 

lathes. Although, there is an overlap between lathe and milling machine’s operation 

performance spectrum, a major difference between these two types of machines is, the 

milling machine operates on non-cylindrical parts. Some of the important operations 

performed on a milling machine are peripheral milling, slab milling, face milling, end 

milling, etc. The 5-axis milling machines possess more variability in part manufacturing 

compared to a conventional 3-axis machine. Using higher axial movement, a 5-axis milling 

machine is capable of machining complex parts and features with cylindrical orientation. 

The workspace of a milling machine is defined using the dimensions of the table, tool 

swing movement, and axis configuration of the milling machine. Similar to the lathe 

machine, the milling machine contains a spindle that incorporates the power and torque 

Bench 0.3/1 <1 3,000

Engine 5-Mar 70 12,000

Turret 0.5/1.5 60 6,000

Automatic Screw 

Machines
0.1/0.3 20 10,000

Machine Tool Power (kW) 
Maximum 

Speed (rpm)

Lathes (swing/length)

Maximum 

Dimension (m)
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measures that define the operability of the milling machine. Furthermore, like the milling 

machine, the machining centers possess similar workspace parameters. (Kalpakjian & 

Steven, 2014). The effect of process parameters such as federates, spindle speed is 

discussed in the next section.  

 

2.3.2 Literature Review on Capacity Parameter’s Effect on Manufacturing 

Processes 

The manufacturing machine’s process parameters plays important role in the 

product formation and accuracy of machining. In milling operations, the important process 

parameters for the end milling process are cutting speed, depth of cut, and feed rate (Yusup 

et al., 2012) (Pawar & Rao, 2013) (Muruganandam & Pugazhenthi, 2010). The previous 

work has shown that these parameters affect the machining time, tool wear during the 

machining operations, and machining performance measurements (Manna & 

Bhattacharayya, 2005) (Zainal et al., 2016). Furthermore, during operations performed on 

a machining center and other milling operations such as slot milling and face milling; 

selection of cutting speed, depth of cut, and feed rate affects the accuracy and surface finish 

of the part (Hamdan et al., 2012) (Yusup et al., 2012). Similarly, in lathe operations, cutting 

speed, depth of cut, and feed rate affect the accuracy and performance of the machine 

during the machining process (Jasiewicz et al., 2018). The effects of manufacturing process 

parameters show the importance of these parameters in the machining process. An optimal 

value of these parameters increases the machining accuracy, surface finish, and reduces the 

tool wear and machining time. 
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The dimensional and workspace parameters of manufacturing machines, such as 

table dimensions, tool movements, and tool holding device dimensions such as chuck and 

table slots are important for understanding the fitment of the given part into the machine 

workspace. The compatibility of part and machine largely depends on the fitment of part 

within the range of machine workspace. For example, the lathe machine has a specified 

sized chuck and can hold a raw bar material within the limits of the chuck. Which restricts 

the manufacturing capacity of the machine concerning the part’s dimensions. The part and 

machine compatibility are depended on the part dimensions and machine workspace 

dimensions along with the range of power and torque ranges of the machine (Li et al., 

2016). 

For analyzing the availability of capacity parameters on open source websites for 

the populating machine capacity database, an analysis was conducted on a sample CNC 

machine manufacturing brand models and their product specifications. The information 

used to populate the below tables is obtained by examining product specifications from 

CNC machine brands like Haas, Mazak, and Doosan.  

Table 2. HAAS Machine Capacity Parameters (HAAS, 2020) 

 

Machine 

Model

Machine 

Type

Axis 

Travel

Spindle 

Size

Rating 

Info

Spindle 

Speed

Spindle 

Torque

Table 

Dimensions

Feedrate 

Info

Tooling 

Info

VF-2 Mill A A A A A A A A

VR-8 Mill A A A A A A A A

ST-15 Lathe A A A A A NA A NA

DS-30Y Lathe A A A A A NA A A

VM-3
Machining 

Center
A A A A A A A A

EC-1600 Mill A A A A A A A A

Availability of Open Source Information of HAAS CNC Machine Models
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Table 3. Mazak Machines Capacity Parameters (Mazak, 2020) 

 

 

Table 4. Doosan Machines Capacity Parameters (Doosan, 2020) 

 

 

In the above tables ‘A’ represents the model’s given information is available on the 

website and’ NA’ represents not available (Ghorpade et al., 2020). From the above tables, 

the product specifications available on open source websites are similar across all three 

brands. The study was conducted on a sample batch of different models of the mill, lathe, 

and machining centers. 

Machine 

Model

Machine 

Type

Axis 

Travel

Spindle 

Size

Rating 

Info

Spindle 

Speed

Spindle 

Torque

Table 

Dimensions

Feedrate 

Info

Tooling 

Info

FJV-200 Mill A A A A NA A NA A

Variaxis C-

600
Mill A A A A A A NA A

QTU-250 Lathe A A A A NA NA NA A

Quick Turn 

100 MS
Lathe A A A A NA NA NA A

Integrex e-

500H-S

Machining 

Center
A A A A NA A NA A

FF-5000/50 Mill A A A A NA A NA A

Availability of Open Source Information of Mazak CNC Machine Models

Machine 

Model

Machine 

Type

Axis 

Travel

Spindle 

Size

Rating 

Info

Spindle 

Speed

Spindle 

Torque

Table 

Dimensions

Feedrate 

Info

Tooling 

Info

DNM 

4500S
Mill A A A A A A A A

VC 

630/5AX
Mill A A A A A A A A

Lynx 

2100LB
Lathe A A A A A NA NA A

PUMA 

GT2600
Lathe A A A A A NA NA A

VCF 850L 

II

Machining 

Center
A A A A A A A A

NHP 5500 Mill A A A A A A A A

Availability of Open Source Information of Doosan CNC Machine Models
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2.4 Engineering Ontology 

 The product generates various types of information throughout its life-cycle. This 

information is generated from different entities of industries ranging from part design data 

to the product’s maintenance log. Such a wide range of knowledge is inter-related with 

other information generated during the product’s life-cycle. For storing this relational 

product’s life-cycle data is valuable for reuse. Moreover, storing and reusing this data often 

requires a standard methodology (Patil et al., 2005). This formal way is offered by an 

engineering ontology.  

An engineering ontology is a systematic method of storing different engineering 

entities, their types, and interrelation information for reusing in the next phases of the 

product’s life-cycle (Kathe, 2018). Previously, different research has been done on the 

engineering ontology. Patil and Dutta proposed Product Semantics Representation 

Language (PSRL). This proposed ontology provides formal data semantics for product data 

for PLM (Patil et al., 2005). Another work on ontology proposed by Ruijven defines an 

ontology for processes involved in systems engineering for establishing a standard 

environment for projects and information flow (Van Ruijven, 2013). 

  

2.5 Part Dimension and Machine Capability Mapping 

The part feature is a generic shape of a physical part element (Sateesh & P, 2017). 

According to Sormaz and Sarkar, advanced tools such as computer-aided process planning 

(CAPP) are capable of selecting the processes for the given part based on the part 

dimensions and the features. The manufacturing processes and sequence of these processes 
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mainly depend on the feature dimensions and the orientation in a given part. Moreover, the 

milling machine provides an extensive range of different machining operations as 

discussed in the above section. Hence, a part to be manufactured on a milling machine 

exhibit a more complex structure and process selection criteria. The automated process 

selection systems undertake two knowledge bases for deciding the processes to be 

performed. These criteria are (Sormaz et al., 2018).  

• Process selection rules: The process selection rules are based on the individual features 

of the part. Each feature generates a set of operations. Using these rules generated from 

such a set of features, a universal set of process sequence rules are finalized for the 

entire part (Sormaz et al., 2018). 

• Machine representation: The machine representations are the set of dimensions and 

tolerances that can be machined on the given machine (Sormaz et al., 2018). 

 

According to Sormaz and Sarkar, rule-based process selection (RBPS) examines the 

process capabilities of machines and the feature dimensions and tolerances of parts. The 

RBPS model maps the machine process capabilities with part features. Figure 9 shows a 

schematic diagram of part-machine mapping (Sormaz et al., 2018). The above selection 

criteria are generated based on the given are machine and part data. Each part feature 

defines the processes and the level of accuracy regarding the machine operation. Similarly, 

the machine exhibits a set of achievable dimensions and tolerances (Sormaz et al., 2018).  
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Figure 12. Part-Features and Machine Data Mapping (Sormaz et al., 2018) 

 

The above-specified technique for feature mapping undertakes an individual 

machine’s historic machining performance and the part feature for mapping the processes 

and part features. 

 

2.6 Active Learning 

Training the machine learning model requires a significant amount of data for 

understanding the hidden patterns and the correlation between predictors and predicting 

variables. Moreover, for enhancing the model performance, the training set should include 

the same class distribution as the population dataset. Often acquiring a sample dataset with 

traits and properties of the actual population is a challenging task. These population 

properties include predictor class and variable distributions, and predictor class balance. 

Moreover, even with enough amount of dataset, labeling the observations of the dataset is 

an expensive and labor-intensive task (Y. Liu, 2004). Hence, to overcome such challenges, 

an active learning method is being used (Kremer et al., 2014). 
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Figure 13. Data Flow in Active Learning Method (Settles, 2010) 

 

Active learning is a machine learning method, which is used for training the 

machine learning models where a labeled data set is hard and expensive to acquire. A 

schematic diagram of the active learning method is shown in figure 13. In the active 

learning approach, a small sample of data is manually labeled (annotated) for the predicting 

class. Further, this dataset is used as a training set for training a predicting model. Next, 

based on the performance, and the pattern observed in the training process, another sample 

is chosen from the data pool and manually labeled. This process is repeated until the 

machine learning model’s performance is improved to the level of acceptance. 

Previously, many classification models are trained using an active learning 

approach. Ying Liu trained the support vector machine (SVM) model on gene expression 
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dataset for cancer classification. The dataset with numerical variables was trained by 

formulating a binary classification problem. The class distribution in such classification 

algorithms plays a vital role. The ratio of the positive class (cancer detection) to the 

negative class (non-cancer detection) of the training set should be the same or significantly 

close to the population’s ratio. In this research, the SVM model trained using active 

learning outperformed the conventional passive SVM model trained on the same dataset 

(Y. Liu, 2004). 

A research article by Wensong Liu explains the application of active learning for 

training a random forest classification model for classifying polarimetric features from the 

Polarimetric SAR images. The image data captured in form of polarimetric SAR images 

need an intensive human workforce for manually classifying the features from a given 

image. The application of active learning improved the performance of the classifier along 

with reducing the manual labeled data requirement (W. Liu et al., 2018). 

 

2.7 Summary of Literature Survey 

The summary of the literature survey conducted for understanding the CAD file 

structure and feature-based storage schema is shown in table 5. In table 5, T1 denotes facial 

recognition based on CAD file, T2 denotes STEP file structure, and T3 denotes a survey 

for XML file structure and storage schema. 

Similarly, Table 6 shows a summary of the literature survey conducted for 

understanding the effects of process parameters on machining outcomes. In table 6 T1 

Milling machine and process parameters, and T2 Lathe and its process parameters. 
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Table 5. Summary of Literature Survey for CAD and XML Files 

Research Works T1 T2 T3 

Mathematical Representation of Feature 

Conversion for CAD/CAM System 

Integration (Gao et al., 2004) 

X     

A Novel and Smart Interactive Feature 

Recognition System 

for Rotational Parts Using a STEP File 

(Al-wswasi & Ivanov, 2019) 

X X   

A Methodology for feature extraction and 

recognition for CAD/CAM Integration 

using STEP File (Sateesh & P, 2017) 

X X   

A Comparison of (Semantic) Markup 

Languages (Gil & Ratnakar, 2002) 
    X 

XML Standards for Ontology Exchange 

(Dimitrov, n.d.) 
    X 

  

Table 6. Summary of Literature Survey for Machining Process Parameters 

Research Works T1 T2 

Evolutionary Techniques in Optimizing Machining 

Parameters (Yusup et al., 2012) 
X   

Parameter Optimization of Machining Processes 

using Teaching-Learning-Based Optimization 

Algorithm (Pawar & Rao, 2013) 

X   

Influence of Machining Parameters on the 

Machinability of Particulate Reinforced AI/SiC-

MMC (Manna & Bhattacharayya, 2005) 

X   

Assistance of Machining Parameters Selection for 

Slender Tools in CNC Control (Jasiewicz et al., 

2018) 

  X 

Glowworm Swarm Optimization (GSO) for 

Optimization of Machining Parameters (Zainal et 

al., 2016) 

X   

 

The literature survey conducted for understanding STEP file structure and the 

entity-based part representation helps in developing an algorithm for dimensional data 

extraction from STEP files using a feature-based approach. The research articles by Sateesh 
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and Al-wswasi give a significant description of the STEP file structure and the facial 

representation of the CAD model in the entity-based structure of STEP files. 

In the book “Manufacturing Engineering Technology” by Kalpakjian, the 

significance of machine workspace for machining and part orientation is explained. This 

explanation is helpful for understanding the importance of a machine’s workspace 

dimensions for part manufacturing and their effect on the capability for machining. Various 

research work conducted on manufacturing parameter optimization explains the 

importance and the effects of manufacturing process parameters on the machining quality 

and machining time. These references are useful for selecting manufacturing capability 

parameters. In the research articles by Yusup, Pawar, and Manna, the effects of milling 

parameters are discussed. Similarly, the research article by Jasiewicz discusses the process 

parameter selection and optimization for lathe machine. In chapter 4, the manufacturing 

secondary capacity parameters are selected based on the effect and the importance of these 

parameters discussed in the above articles. 

The research article by Sormaz and Sarkar, explains the rule based-process 

selection (RBPS) for automating the process selection for part manufacturing. In this 

article, a machine’s historical knowledge bases are used for understanding the machining 

pattern and therefore, quantifying the capability. In the proposed model, the machine’s 

capability is quantified using the capability parameters and the part features using an active 

learning approach. The pattern explained in this research article helps in understanding the 

applicability of pattern matching between part features and the machine’s capability 

parameters. 
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The previous implementation of active learning approaches can be found in articles 

by Yang Liu and Wensong Liu. Yang Liu used the active learning approach for classifying 

cancer genes. The dataset with gene expression data contains gene expression data and 

possess an internal pattern for detecting cancer. Such an out-of-field classification example 

is taken as a reference for proposing the active learning approach for classifying the part 

feature and machine capacity pair as manufacturable or non-manufacturable. In this 

research article, a combined approach of active learning and support vector machine is 

used. The support vector machine is a plane-based classifier and has given significant 

results for classification accuracy. In the research article by Wensong Liu, the active 

learning approach is combined with the random forest algorithm for polarimetric features 

from the Polarimetric SAR images. These images are expressed in the feature-based 

approach and it helps to build the bridge for the implementation of the active learning 

approach for feature-based part data, where each feature is used for deciding the 

compatibility with a given machine’s capability for manufacturing. 
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Chapter 3: Research Objective and Scope 

3.1 Research Goal 

The goal is to establish the process of data collection and storage for developing 

machine learning models for predictive matching of the manufacturing capabilities of 

machines with part dimensions. Virtual copies of machine shops are created using machine 

capacity parameters based on the machine type, brand, and model specifications. 

Manufacturing machines possess unique applications, each machine is used for a specific 

type of manufacturing and such information is crucial for selecting the machines for 

manufacturing the desired part. 

 

3.2 Scope of Peer to Peer Metrological Data Sharing Model 

Data is today’s oil, and information is power. With recent developments in 

technology, artificial intelligence (AI) has become an integral part of industries. From oil 

and gas to healthcare and from entertainment to weather, jobs have been shifting towards 

smart systems (Chollet, 2018). The manufacturing industry is no different, it is in high 

demand for high-tech savvy and smart information grids (Hirsch-Kreinsen et al., 2019). 

Much data is often wasted every moment across the manufacturing industries. This 

data contains information on manufacturing processes, lead times, capacity parameters, 

machine status, etc. The acquisition of such data could enable predictive analytics across 

the manufacturing sector if suitably analyzed and modeled. Based on a survey conducted 

for this research of small-medium businesses, most of the manufacturing-related data is not 

being collected. Hence, we are greatly limited in our ability to use any statistical and 

machine learning algorithms to make manufacturing more efficient (Waurzyniak, 2015). 
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Experienced machine operators can judge the machinability or feasibility of making 

a part on a given machine, based on their skill and experience developed over the years. 

This task could be comparable to any predictive machine learning task. In such tasks, a 

well-trained machine learning model identifies the patterns in the predictor variables. The 

proposed model enables the application of machine learning similarly on capacity 

parameters and the part design geometrical features. Each machine has parameters that 

describe its capacity for machining, including power, space, and efficiency. 

 

3.3 Research Boundary 

The proposed model for connecting manufacturing capability and part features 

relies on several data acquisition and storage methods. The manufacturing data needs to be 

collected and stored to process using advanced data mining techniques. 

This thesis research focuses on proposing a model for data collection, data 

preparation, storage, and methods for linking the manufacturing data and part features. The 

last section of linking different data utilizes a machine learning approach. Machine learning 

has shown significant applications in various fields in recent times. But the major drawback 

of this technique is that it requires a large amount of data for training the models. In this 

research, we are proposing a framework for collecting and creating a manufacturing 

database. This research focuses more on the data collection strategies, and less on the 

implementation of machine learning techniques. The future scope of the research expands 

on the real-time application of machine learning models and using predictive analytics on 

the developed database. 
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Chapter 4: Methodology and Example Implementation 

This chapter discusses the proposed model for peer to peer metrological data 

integration system. The system's operations are grouped into the steps. Each step is 

explained using examples. The integration of part data with manufacturing capability data 

is carried out using machine learning. This thesis does not focus on the training of the 

machine learning model, whereas more focus is given to the collection, storage, and 

processing of the data for the system integration. 

 

4.1 Proposed Model 

The preceding sections have discussed the fundamental need and background 

concepts for data collection and integration system from different manufacturing elements. 

Figure 14 shows the schematic model of the proposed data collection and integration of 

manufacturing capability with part CAD data. The specified data inherently possess 

different data types and the integration of these two attributes of manufacturing systems to 

create smart grids in manufacturing systems is a challenging task. The proposed model’s 

data flow is shown in figure 14. 

The proposed model has bidirectional data inflow. The manufacturing capability 

data is collected and stored in the form of a manufacturing database. Such a database gives 

the virtual copy of machine-shops representing the machine shop's manufacturing 

capability. On the other hand, part designs are abundantly available in various CAD 

formats. These CAD files vary in their format based on the CAD system used for design. 

For coherence of the CAD data, a universal CAD neutral file format is used as input for 

the system. 3D CAD models are represented in STEP AP203 native format. Using the 
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proposed algorithm, the part features are further extracted from STEP files and stored in 

the proposed format in XML documents. At last, a systematic data integration schema is 

proposed for training machine learning models to map the patterns between parts and 

machines. 

Based on the data inflow and processing, the research plan is divided into three 

independent sections. 

I. Manufacturing capability or virtual machine-shop section,  

II. CAD section, and 

III. Feature matching section. 
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Figure 14. Schematic Structure of Proposed Model for Peer to Peer Metrological Data 

Integration 
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Section i and ii are focused on the data acquisition and storage of manufacturing 

capability data and CAD data, respectively. On the other hand, the matching section deals 

with linking these two different data streams for recognizing the pattern of relationships 

between manufacturing capacity parameters and CAD features.  

The research study is more focused on the data acquisition and storage of the data. 

However, a conceptual pattern matching model is proposed in section iii. 

I) Manufacturing Capabilities 

The machines are the main elements in the manufacturing ecosystem. Hundreds of 

different machine types and thousands of different variants can be found across the stretch 

of the manufacturing industry. But each machine has its capability specifications to 

perform tasks. These capability parameters are important to decide the manufacturability 

of a given part on the given machine. The capacity of a machine is represented using several 

different parameters, and every parameter is important for understanding the compatibility 

of a part to be machined and the physical manufacturing machine. This set of machine 

capability parameters forms the manufacturing machine’s virtual copy. In figure 14. these 

parameters are generically denoted as “a” through “f”. The parameters are the machine 

specifications defined by the machine manufacturer. As seen in chapter 2, these parameters 

play a significant role in the part fitment in the machine’s workspace, machining process’s 

accuracy, and machining time. In this thesis, the machine’s capacity parameters are 

assumed to be mutually independent, operational wear, deformation of machine parts, and 

deviation of machine’s performance over the service period are assumed to be null. 

However, the inclusion of these effects is suggested in the last chapter for future study. 
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Chapter 2 reported the extensive study on Capacity parameters for lathes, milling 

machines, and machining centers. These capacity parameters are categorized into two 

classes. 

i) Primary parameters: 

The primary capacity parameters are the dimensional parameters of machines. The 

workspace of the machine is defined by its primary parameters. As shown in Table 7, each 

machine’s workspace is quantified using the possible maximum space of part holding and 

moving tooling capacities, and tool swinging dimensions. 

For example, the lathe machine’s primary workspace parameters contain axis travel 

space in X and Z direction, and Spindle parameters such as spindle nose type and bore 

diameter. Primary tool parameters of lathe machines are turret specification, max tool size, 

a tool to chip dimension, etc. Table 7 lists the primary parameters of three types of 

machines: Milling machine, Machining center, and Lathe. 

ii) Secondary parameters: 

The secondary parameters are the operational parameters of manufacturing 

machines. These parameters define the operational capacities of the machine such as 

mechanical power, feed rates, and lubrication. These parameters are important for defining 

the surface finish, machining time, and machine accuracy. Moreover, tool life largely 

depends on the selection of these parameters during machining. 

The summarization and classification of the capacity parameters of formerly 

analyzed machines help analyze the direct synchronization between capacity parameters 

and dimensions. In summary table 7, the field with text applicable represents the 

availability of the parameter in the specific machines, whereas NA indicates the 
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unavailability. Some of the parameters are only available in special cases, such as with the 

limited axis operations; such parameters and their machine type are represented by the 

yellow field.  

Table 7. Summary of Capacity Parameters 

 

 

 

 

Rotational 

Machines

Milling Machine Machining Center Lathe Machine

Axis Travel X, Y, Z Dimensional Data Applicable Applicable Only X, Z

Length Applicable Applicable Applicable

Width Applicable Applicable NA

Number of T-Slots Applicable Applicable NA

Max Weight Applicable Applicable NA

Chuck Size NA NA Applicable

Max Cutting Diameter NA NA Applicable

Max Cutting Length NA NA Applicable

Spindle Nose to Table Applicable Applicable NA

Spindle Bore Diameter NA NA Applicable

Spindle Nose Type NA NA Applicable

Turret Number of Tools Applicable Applicable Applicable

Type Applicable Applicable Applicable

Capacity Applicable Applicable Applicable

Max Tool Diameter Applicable Applicable Applicable

Max Tool Weight Applicable Applicable NA

Tool-to-Tool Applicable Applicable NA

Chip-to-Chip Applicable Applicable NA

Feedrates Max Cutting Applicable Applicable NA

Max Rating Applicable Applicable Applicable

Max Speed Applicable Applicable Applicable

Max Torque Applicable Applicable Applicable

Lubrication Applicable Applicable Applicable

Cooling Applicable Applicable Applicable

Category Sub-Category Machine Capacity Parameters

Machines

Non- Rotational Machines

Tool Data 

S
ec

o
n

d
a
ry

Spindle

Other

P
ri

m
a
ry

Table Data

Spindle and Chuck
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II) Computer-Aided Design (CAD) Files 

The part design files are stored in CAD formats. There are various formats available 

based on the software used to create the drawings. The proposed model uses a universal 

native CAD STEP AP203 format file for dimensional data extraction. The extracted 

dimensions are stored in an eXtensible Markup Language (XML) file format, using 

geometrical feature-based logic. The part’s feature is the generic shape of the part. In figure 

14. generically these features for each design are denoted. For example, design A has 

features (p, q, r, s, t), whereas design B has features (q, r, t). The part designs are made up 

of a combination of geometrical features or geometrical faces. As seen in chapter 2, the 

geometric features are important segments of any given design file. 

Chapter 2 reported an extensive study on STEP file structures by exploring a tree-

based hierarchical structure. The extraction of actual dimensions of any part can be carried 

using the explained structure of STEP files. The STEP file is compiled with two types of 

the part’s geometric information: face orientation information and face location coordinate 

points in the CAD workspace environment. For extracting the dimensions these two types 

of data need to be systematically processed. These extracted dimensions are specifically 

related to the faces (features) of the parts. These dimensions can be extracted using a 

specially developed algorithm. The proposed algorithm as shown in figure 15, takes the 

STEP file as input and outputs the face dimensions including radiuses of circular sections. 

The flowchart explaining the proposed dimension extraction algorithm is shown in figure 

15. Each advance face is to be processed to get the Cartesian points of the borders of the 

face. This involves the stepwise processing of each STEP file entity of the advanced face. 

The main STEP file entities as discussed in chapter 2, are FACE_OUTER_BOND, 
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EDGE_LOOP, ORIENTED_EDGE, and EDGE_CURVE. Each face has multiple edges, 

and these numbers of edges are equal to the number of Edge Curves in the STEP file for 

the given face. Each Edge Curve has three attributes, in which two are vertex points of a 

given edge, and the third attribute discloses the nature of the edge, which is either circular 

or linear.  

 

Figure 15. Flowchart of Data Extraction Algorithm 

 

The circular attribute discloses the radial dimension of the edge (radius). Since the 

linear edge often does not contain any important information within it, we can extract the 

linear dimensions of the edge using Cartesian points. Each vertex point contains the 
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Cartesian point of the edge. Hence, all vertex points of the edge are used to calculate the 

distance between them. 

For calculating the distance, the three-dimensional Euclidean distance formula as 

given below is used (ScienceDirect, 2020). If P1 and P2 be Cartesian points of two adjacent 

vertex points (V1, V2) of edge curve (Ec), then d(P1, P2) is the linear distance between vertex 

points. This linear distance between co-ordinate points (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) is given 

as: 

d(P1, P2) = √((𝑥2 − 𝑥1)2 +  (𝑦2 − 𝑦1)2 +  (𝑧2 − 𝑧1)2) 

The extracted dimensions are stored in an XML file using feature-based logic. 

 

III) Feature matching section 

The third section integrates the data stored in the XML file and manufacturing 

capability database. For feature matching active learning approach is proposed. The Active 

learning approach is fundamentally based on machine learning techniques. A supervised 

machine learning model is trained using known data for predicting the probability of 

manufacturability of a certain part at a given machine shop or machine. 

As discussed in chapter 2, active learning is a supervised or semi-supervised 

learning method. Active learning is trained on a small sample of the unlabeled dataset by 

labeling the sample with the respective class in case of a classification problem. This 

approach is suitable when the annotation for each observation in the dataset is expensive 

or not humanly possible (Settles, 2010). In the proposed framework, the data generated 

needs to be labeled as machinable or non-machinable and this is expensive for the industry. 

Hence, using an active learning approach is suitable for the proposed framework. 
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The trained model produces the probability of a given pair of part features and 

machine capacity observation to be machinable and non-machinable. Further, a cutoff 

probability point is used for distinguishing the classes. In this trainable data, each machine 

data is linked with several part data, and such pairs are further individually labeled as 

machinable or non-machinable. This pre-labeled data is used for training and tuning the 

machine learning model. Since each given pair of the machine and part features can be 

either machinable or non-machinable, therefore, each such pair is given one label. 

Therefore, in this approach, the pattern matching is considered as a binary classification 

single label problem. 

Since this approach requires training a machine learning model on the labeled pairs 

of part dimension data and manufacturing capacity data, the implementation of the 

approach is outside of the scope of current research. Chapter 6 discusses future research 

using this approach. 

 

4.2 Steps Involved in Data Extraction 

The data discussed in the above sections are not readily available, and if it is then 

often is not in a proper format for use. Hence, a rigid and general data extraction process 

needs to be defined. 

The following steps extensively collect, preprocess, and stores the data into a 

reusable format. 
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Figure 16. Steps in Proposed Framework 

 

4.2.1 Step 1. Collection of Manufacturing Capability data 

Across the manufacturing industries capability data is not stored in form of machine 

specification. The nearest easily available information about machines is their brand and 

model information. Moreover, as discussed in chapter 1, small-scale manufacturers are 

reluctant to share their data. But the generic information such as machine quantity, types, 
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brands, and model numbers can be collected. Other specific information of machines can 

be collected from open web-sources. In this thesis, using the brand and model name, 

capability data is collected from open websites. Many brands offer open information about 

machine capacities. The machine capacities vary based on the model; hence, the model 

number is used for collecting the specifications. 

Table 8. Arbitrary Machine Shop’s Machine Configurations 

  Mill Machine Lathe Machine 

Machine Shop 

A 

Haas VF3 Doosan Puma 4100LB 

Haas VF 2-TR Haas ST-35 

Haas Mini Mill  

 

For demonstration, as shown in Table 8; an arbitrary machine-shop with a set of 

machines is considered as an example. The data shown in table 8 is generic and can be 

made available from machine shops since it does not involve sensitive information of any 

specific machine shop or machines. The capability data is collected using web scraping 

from the given machine’s brand specifications. The machine specifications are available 

on the open-source websites of the respective manufacturers. The result of the survey done 

on the availability of specification data on the websites of three different CNC 

manufacturers; namely, HAAS, Mazak, and Doosan are shown in chapter 2. The data for 

the above-sampled machine shop is acquired from their respective manufacture’s 

specification sheets. As shown in table 8, the example machine shop has two types of 

manufacturing machines. In each type, different brands and models are installed. Using the 

machine specifications, a virtual copy of this machine shop in the terms of machine 

capability is generated. 
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Table 9. Representation of Arbitrary Machine Shop using Machine Capacity Parameter 

 

 

Table 9 shows the capability dataset extracted using web scraping using the model 

numbers of the machine. The virtual copy of machine shops is a virtual representation of 

the machine shop’s capability in terms of the machine’s capacity parameters. 

 

4.2.2 Step 2. Storage of manufacturing capability data for creating a virtual copy 

of machine shops 

The extracted data from manufacturing machines are further stored in respective 

data storage systems. A dedicated entity-based database storage system is designed for 

storing the manufacturing capability data. The attributes of the database vary based on the 

Haas VF 3 Haas VF 2-TR Haas Mini Mill Doosan Puma 4100L Haas ST 35

Axis Travel X, Y, Z Dimensional Data (in) 40x20x25 30x16x20 16x12x10 9.4x52.5 9.4x52.5

Length (in) 48 36 28.75

Width (in) 18 14 12

Number of T-Slots 5 3 3

Max Weight (lb) 3500 3000 500

Chuck Size (in) * 18 12

Max Cutting Diameter (in) * 21.7 15

Max Cutting Length (in) * 82.36 32.5

Spindle Nose to Table (in) min:4.2 / max: 29.2min:4.0 / max:24.0 min:4.0 / max:14.0

Spindle Bore Diameter * (in) 5.2 4.62

Spindle Nose Type * BMT-KEY A2-8

Turret Number of Tools 12 12

Type Carousel SMTC Carousel

Capacity 20 30+1 10

Max Tool Diameter (in) 3.5 2.5 3.5

Max Tool Weight (lb) 12 12 12

Tool-to-Tool (s) 4.2 2.8 4.2

Chip-to-Chip (s) 4.5 3.6 5

Feedrates Max Cutting (ipm) 650 650 500

Max Rating (hp) 30 30 7.5 50 40

Max Speed (rpm) 8100 8100 6000 2000 3200

Max Torque (ft-lbf) 90 90 33 2419 425

Lubrication Air/Oil Injection Air/Oil Injection Greased Packed

Cooling (gal) Liquid: 55 Liquid: 55 Air Cooled: 40 Liquid Liquid

P
ri

m
a

ry

Table Data

Spindle and 

Chuck

Tool Data 

S
ec

o
n

d
a

ry

Spindle

Other

Machine-Shop A

Category Sub-Category Machine Capacity Parameters

Machines

Non- Rotational Machine Type Rotational Machine Type

Milling Machine Lathe Machine
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type of machines. A schematic representation of the database for different machine types 

is given in figure 17. 

In the proposed model, an entity-relationship database is used for storing the 

parameters (Silberschatz et al., 2011). In this storage system, each machine with a unique 

machine ID is stored along with the machine shop ID. The unique ID helps in tracking 

appropriate machines and their respective machine shops. 

 

 

Figure 17. Entity-Relationship Storage Schema for Capacity Parameters 
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Moreover, each machine further contains meta-information such as machine type, 

machine brand, and machine model number. For an illustration of the manufacturing 

storage, the arbitrary machine shop data extracted (collected) in step 1 is stored in 

respective tables as shown in Figures 18 and 19. Each machine type has specified data 

fields according to the type of machine and respective capability data is stored in the 

database. The tables given in figure 17 shows the individual machine type database tables. 

As discussed earlier, the parameter considered is generic for each given machine type and 

all machines are considered non-customized. 

 

 

Figure 18. CNC Milling Machine Capacity Parameter SQL Table 

 

 

Figure 19.CNC Lathe Machine Capacity Parameters SQL Table 

 

The capability data of the sample machine shop described in step 1 is stored in 

Microsoft SQL (MSSQL) database as shown in Figures 18 and 19. Figure 18 shows the 

tabular storage of milling machine capacities and figure 19 shows the tabular storage of 

lathe in the SQL database system. In these tables, Model_Number acts as the primary key. 
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4.2.3 Step 3. Extraction of dimensions of Part from CAD file 

As discussed in previous sections, CAD data is available in various formats and the 

dimensional data is extracted in the model using the proposed algorithm. For the 

demonstration, an example part of the connector is shown in figure 20. The connector part 

is assumed to be made of metallic material. The study of specific material types of part is 

outside of the scope of this thesis. 

 

Figure 20. Connector Part Design 

 

A Python programming language-based application is developed for dimension 

extraction. Using the algorithm all dimensions of the part are extracted. A screenshot of 

the output is shown in figure 21. The face shown in output is a semi-cylindrical internal 

face of through-hole with a radius of 2.40 inches and a length of 3.00 inches. The face is 

highlighted in figure 22. Face outer bond 315 in figure 21, represents the unique integer of 

the given face in the STEP file. The proposed algorithm uses the same unique integer for 

representing the face in the extracted output. This numbering of the face helps in tracking 
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the dimensions down and linking the faces with adjacent faces for defining complete 

features. 

 

Figure 21. Output of Dimensional Data Extraction Algorithm for Connector Part 
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Figure 22. Internal Face of Connector Part 

 

The extracted dimensions are further stored into an XML file in feature-based logic. 

Feature-based logical data structure for storing dimensional data fulfills the application 

requirements. Since most face edges are shared with adjacent faces, face level hierarchy 

helps in reducing the redundancy of dimensional data. 

 

4.2.4 Step 4. Dimensional data storage into the XML file 

Extracted dimensional data from the CAD file as shown in Step 3, is stored into a 

feature-based logical structure in the XML file. The part storage structure for the XML file 

is explained in the following section. 

Discussion on XML Structure for Parts Ontology 

In the XML file syntax, elements are the basic components. These elements contain 

data bounded by the markup tags. The data stored in these elements are represented by the 



   

 

56 

 

markup tags and stored data can be numeric or text (Abiteboul et al., 2014). In the XML 

terminology, the information within each element is called content. Content can have again 

a sub-element or data stored in it. If the content of an element or sub-element contains 

again a sub-element, then such data storage can be called nested storage. This nested 

storage helps store data in a hierarchical structure. Figure 23 shows a proposed structure 

describing a part. 

 

Figure 23. Snapshot of XML Storage Schema 

 

The expression <Assembly_Name:> and </ Assembly_Name:> are the markup tags 

for main element. Each XML file represents one assembly. Assembly element further has 
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sub-elements named as <Component_1>, <Component_2>, <Component_3> and so on. 

These components are basic components of a given assembly. If the extracted dimensions 

represent a single component and not an assembly, then the main assembly element will 

contain only one component named as <Component_1>. Each component sub-element 

stores another sub-element named ‘Features’. Here, <Feature_1 :> and </Feature_1:> are 

start and end markup tags, respectively. These are also called markups. Each feature 

contains a unique and separate tag. The tag number is given based on the unique integer 

(line number) where the specific feature is represented in the STEP file. Further, feature 

sub-element stores, the dimensions of the given feature as sub-elements of features. The 

start and end tag for such sub-elements can be of two types <Dimensions_Linear Length 

= _____ /> and <Dimensions_Circular Radius = _____ />. The former sub-element 

represents linear dimensions. Whereas later represents radial dimensions. 

Each dimensional sub-element stores the data, this data can be numerical or text. In 

the proposed structure, numeric dimensional values are stored in the sub-elements. For 

example:  <Dimensions_Linear Length = 20 />. 

 

The data format for XML file 

Data storage in the XML file is an important factor in this model. An XML file is 

a document in which entire assembly data is being stored. Moreover, all future updates can 

take place through this XML file.  In the proposed database format, each assembly is 

considered as an object which is identified by the ‘assembly key’. This key encompasses 

entire assembly information. Under such assembly, various components can exist. Each 

component has a unique component key. This component key further has various features. 
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Each feature is recognized by a feature key and the feature key contains specific 

dimensioning information of the component. The features are automatically recognized by 

the above algorithm explained in step 3 and based on the feature the XML file creates a 

new element for respective features. 
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Figure 24. XML File Output of Connector Part 

 

For demonstrating the data structure and the storage schema, data extracted from 

Step 4 is used for creating an XML file. Figure 24 shows the snap of an XML file. The 

complete file is shown in the appendix. 

As seen in figure 20, the connector part is a single component and not an assembly. 

Hence, the XML file has the only component_1. Within component_1, various features are 

given. Each feature is represented by the faces that the feature is made of. For instance, the 

internal face has shown in figure 22 is represented in Feature_315. The hole (internal face) 

has a radius of 2.4 inches and a depth of 3 inches. Every feature is represented using a 

similar representation form. This XML file is generated using an extension for the 

algorithm. In this connector example, python language is used for generating the XML file 

after extracting the feature-based dimensions from the STEP file. 
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4.2.5 Step 5. Matching part dimensions and machine capacity parameters 

The fifth step is the integrative step for acquired manufacturing capacity parameter 

data and extracted part dimensional data. As discussed, an active learning approach is 

proposed to be used for matching the pattern between two distinct datasets. This step gives 

a method for creating structured data set using extracted dimensions and manufacturing 

capabilities. 

The manufacturing capability dataset is stored in numerical and categorical 

formats. Both of these are supported by machine learning algorithms and certain standard 

preprocessing may or may not be applicable depending on the machine learning algorithm 

chosen. Different machine learning algorithms can be used for training the data. As the 

scope of this thesis, two algorithms are discussed as given below. 

i) Random Forest: The random forest is a tree-based algorithm. A set of trees are 

trained for the given observation and the outcome of each tree is compared to give 

the final probability of the classes. Moreover, the random forest is a suitable 

classification algorithm for a dataset with outliers and categorical variables (Kuhn 

& Johnson, 2013). 

ii) Support Vector Machine: The support vector machine is another classifier 

commonly used for classification problems. The SVM algorithm helps in 

understanding the hidden pattern in the dataset. SVM performs well on 

classification algorithms. The hyperplane separates the classes with the objective 

function of maximizing the distance between classes (Kuhn & Johnson, 2013). 
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On the other hand, dimensions are put into the XML structure. As discussed in 

earlier steps, the XML file can have multiple features depending on the complexity of the 

part. This creates non-regularity in the dimensional space of part dimensional data. For 

instance, the connector example has 20 faces, whereas a simple cylinder may have only 4 

faces. This illustrates that every part has a different number of faces depending on the 

complexity of the part. This potentially limits the machine learning approach since this will 

create unbalanced dimensionality for a training set of different parts. Moreover, some of 

the part profiles (features) may not be as important. This is because the proposed data 

structure and storage system indulges in the direction of matching the dimensional 

constraints between part dimensions and machine workspace. Therefore, only the 

dimensions which are larger and create a discrepancy with the machine workspace plays 

an important role.  

To navigate the challenge of non-regular dimensionality, and considering the scope 

of the proposed dataset, a formatted, and compatible variable selection is done by only 

considering the largest features from the XML file. The fitment of the part into the machine 

workspace depends on the larger features compared to the smaller features of the part. Such 

as in the given connector part, the larger face has 30inches in length as shown in figure 20, 

and this feature is important for deciding the fitment of the given part into the machine. 
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Figure 25. Data Flow in Pattern Matching Section 
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Table 10. Sample Training Dataset 

 

 

 

Variables
Haas VF 

3

Haas VF 

2-TR

Haas 

Mini Mill

Doosan 

Puma 4100L

Haas 

ST 35

Axis Travel X 40 30 16 9.4 9.4

Axis Travel Y 20 16 12

Axis Travel Z 25 20 10 52.5 52.5

Table Length 48 36 28.75

Table Width 18 14 12

Number of T-Slots 5 3 3

Max Weight 3500 3000 500

Chuck Size 18 12

Max Cutting Diameter 21.7 15

Max Cutting Length 82.36 32.5

Max Spindle Nose to Table Length 4.2 4 4

Min Spindle Nose to Table Length 29.2 24 14

Spindle Bore Diameter 5.2 4.62

Spindle Nose Type BMT-KEY A2-8

Number of Tools Holding Capacity 12 12

Tooling Type Carousel SMTC Carousel

Capacity 20 30+1 10

Max Tool Diameter 3.5 2.5 3.5

Max Tool Weight 12 12 12

Tool-to-Tool 4.2 2.8 4.2

Chip-to-Chip 4.5 3.6 5

Max Cutting 650 650 500

Max Rating 30 30 7.5 50 40

Max Speed 8100 8100 6000 2000 3200

Max Torque 90 90 33 2419 425

Lubrication

Air/Oil 

Injection

Air/Oil 

Injection

Greased 

Packed

Cooling Liquid Liquid

Air 

Cooled Liquid Liquid

Feature 1_Dimension 1 28.91 28.91 28.91 28.91 28.91

Feature 1_Dimension 2 1.99 1.99 1.99 1.99 1.99

Feature 1_Dimension 3 28.91 28.91 28.91 28.91 28.91

Feature 1_Dimension 4 1.99 1.99 1.99 1.99 1.99

Feature 2_Dimension 1 10 10 10 10 10

Feature 2_Dimension 2 10 10 10 10 10

Feature 2_Dimension 3 10 10 10 10 10

Feature 2_Dimension 4 10 10 10 10 10

Manufacturability 1 1 0 0 0
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Figure 25 shows the schematic data flow for training machine learning models. A 

supervised machine learning model can be trained using the labels for each pair being either 

machinable or non-machinable. Upon training a model, the prediction will be the class 

probabilities. These class probabilities are important since further study can be done on the 

understanding significance of each feature and capacity parameters from a given pair. 

Table 10 shows the sample dataset created based on the sample machine shop 

considered in Step 1 and the connector part design’s dimensional data extracted in the 

previous step. The largest two features of the connector part are considered here for the 

creating dataset. The connector part is paired with each of the machines and labeled as 

manufacturable or non-manufacturable. 

The cumulative table created using machine capacity data and part feature 

dimensions help in bridging the connection between the part fitment and the machine’s 

workspace. As seen in chapter 2, the machine workspace constraints are important 

parameters to understand the fitment of the given part based on the feature dimensions. 

Moreover, the feature level extraction of dimensions from part design helps in choosing 

the features and understanding the pattern of each feature and the fitment. Furthermore, the 

training set with large training samples covering a significant amount of parts can train the 

classification models to distinguish between different machines. For instance, from table 

10, the milling machine does not have data regarding the chuck whereas the lathe machine 

does not contain any values in table data fields. These missing fields are the pattern of data 

of different lathe and milling machines. Any observations of similar missing fields help the 

model for understanding the type of machine. On the other hand, in the training set, the 

machinable label signifies the part and machine which can perform the machining. 



   

 

65 

 

Whereas, non-machinable denotes the non-compatibility of the part and the machine. Such 

patterns are important for understanding the pattern. Using these patterns, the proposed 

model gives the probabilities of both classes for each label. This probability is the 

compatibility measure of a given observation pair. Since the part data is represented in 

feature-based logic. These probabilities explain the compatibilities of given part features 

and the machines. In other words, suppose, a given part has two features and one can be 

machined on a lathe and the other on the milling machine. If the model is predicted using 

both the features, the probability of each class will be closer. Whereas, if the prediction is 

done using individual features, then the probabilities of being machinable will be larger 

compared to the class probability of being non-machinable. 

 

4.3 Discussion on Implementation 

 The example machines analyzed are of two types, i) lathe and ii) milling machine. 

Furthermore, different variants of these machines are also sampled. These variants vary in 

their respective manufacturing capacities. The variance in their capacity restricts the parts 

to be manufactured. The capacity data is extracted using web scraping from respective 

websites. This shows the feasibility of collecting the data for a large number of machine 

samples without physically inspecting the machines. The example connector part 

considered can be manufactured on a single machine type. More complex parts that require 

different processes are not considered in the sample. The dimensions extracted and stored 

in the XML file helps to understand the dimensions of each face. These faces are 

conventionally considered for defining the manufacturing processes. Creating a cumulative 
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database of part features and the manufacturing machine’s capacity parameters gives 

extensive data for understanding the manufacturability of a part on the given machine. 

 Feature matching involves training and testing the classification model. For training 

a classification model, a large number of data is required. Moreover, such a dataset needs 

to be labeled for the respective class label of machinable and non-machinable. The 

suggested active learning approach helps in reducing the number of labeled data, but still, 

the initial sample of the training set needs to be created using several different parts and 

machine pairs. The class probabilities do not define the processes involved in 

manufacturing the part but such probabilities help in understanding the compatibility of the 

machine and the part. The understanding of the probabilities of being machinable with a 

given machine reduces the pool of non-machinable machines. This helps the large-scale 

manufactures for scaling down the pool of machine shops with less capacity for machining 

the part. In this thesis, the sample machine shop and the connector part formed 5 

observations as shown in table 10. Such a small number of the training set is not sufficient 

for training and testing the performance of the classification model. 
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Chapter 5: Conclusion and Future Study 

The proposed model provides the framework and strategies for data extraction and 

storage of part design and manufacturing capability data. The model helps in designing, 

creating, and populating a database for data generated within manufacturing industries. 

Moreover, the proposed model can be treated as the framework for understanding the 

dimensionality of the data for use in predictive analytics. Currently, the part data are stored 

in 2d and 3d CAD models. The algorithm expands the storage methods into numerical and 

machine learnable format. Part designs mainly explore the geometrical relevance of the 

feature. Considering this the XML file format uses the geometrical-feature logic for storing 

the part dimensions. This helps in preserving the geometrical information of the parts. 

Moreover, the method also considers assemblies and provides single document storage for 

assemblies with parting into the components using XML tags. This has major application 

potential for complex assembly and part retrieval process. The XML storage of design data 

can be used for matching similar faces between the different parts. This can give rise to an 

index for understanding geometric symmetry between parts. 

The demand for new products and time to market are the key driving force for large-

scale manufactures. These manufacturers often need integrative and advanced vendor 

search systems for finding new suppliers for their critical requirements. Whereas small-

scale machine shop lacks in approachability for large manufacturers for new projects. This 

framework helps to connect the requirement-capacity-based market search for large-scale 

manufactures for enhancing supplier portfolio and provides a platform for small-medium 

scale manufacturers for seeking new projects. 
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The proposed framework establishes a connection between small-medium scale 

manufactures and large-scale manufactures. The linking of desired part features developed 

by large-scale manufactures and small-scale manufacturer’s machine capacity is matched 

using the data extracted from various manufacturing elements of the system. This mapping 

quantifies the probability of machining of a given part on the available machine of 

respective machine shops. 

 

Application of virtual copy of machine shops 

Virtual copies of machine shops represent the manufacturing capabilities of 

machine shops. The capability opens a wide range of applications regarding vendor 

matching and new product development predictions. As given in Chapter 2, the machine 

specifications directly imply the compatibility of desired part manufacturing. The 

capability parameters quantify the machine’s workspace and operability strength. The 

workspace mainly consists of tool holding and swinging dimensions, part holding 

dimensions, and other tooling parameters such as type of tool holder. Moreover, the 

operability parameters give extensive knowledge about ranges of spindle speed, feed rates, 

and torque measures. As seen in chapter 2, process parameters such as spindle speed, 

torque, and feed rates define the machining accuracy. Storing the data of the machine’s 

operability capacity helps in defining the processes which require higher ranges of process 

parameters. 

 

Application of part dimensional data 
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The proposed algorithm for dimensional data extraction serves a vast range of 

applications. Each part which is stored in 3D format can be stored and used into a 

dimension based numeric XML file. The part dimensions can be used for creating search 

engines and further storing the designs into machine recognizable format. The 3D CAD 

format stores the part design in a 3-dimensional model and often these files are not readable 

by CAPP tools. An XML file with feature-based dimensions gives a dimensional 

representation of the part data based on the features. The proposed algorithm reads and 

extracts the dimensions with respect to each face of the given part design. Such strategy 

preserves the dimensional and face relevance. 

 

Future Study 

The proposed model gives a major insight for creating a database for manufacturing 

data. As discussed in the model, the machine learning approach is important for matching 

the pattern between part data and the machine’s virtual copies. A dedicated database can 

be created for generating a significant amount of data for training and validating machine 

learning models for matching the patterns. Additional data of parts such as the bill of 

materials and standard information of the part can be added in the XML file of the given 

part. This will add additional dimensions for the part information and can be used for 

predictive analytics for new product development as well as for improving the existing 

product’s manufacturing process. This thesis undertakes single machine operations, more 

complex parts with the requirement of different machining processes on different types of 

machines are not considered. Additional complex parts and the feature-based machining 

match can be explored. 
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The proposed data extraction algorithm undertakes simple parts and more complex 

parts with curved and uneven special surfaces can be explored for extending the proposed 

algorithm. Moreover, tolerance data is represented in model-based definition (MBD) files. 

Instead of the 3D CAD model, MBD models can be used for extending the tolerance 

storages and enriching the part information storage schema. The tolerancing information 

of part data can be extracted with a certain extension to the proposed algorithm. The MBD 

file stores such information in a standard way. In STEP standard, MBD files are presented 

in separate and dedicated standard file format. Using such standard file format, the 

proposed algorithm can be extended for extracting type and tolerance values from each 

face and feature of the part. However, for storing the tolerancing information of the part, 

the XML schema needs to revise. As shown in this thesis, dimensional data is stored in a 

features-based logical order. By providing an extension for the proposed XML schema, 

tolerancing information of each feature, and the type of tolerancing can be stored in an 

XML file. 
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Appendix 

 

Appendix a. XML file for Connector part dimensional data 

As explained in section 4.2.4 
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