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Abstract

Moist convection frequently reaches the tropopause and alters the distribu-

tion and concentration of radiatively important trace gases in the upper troposphere

and lower stratosphere (UTLS), but the overall impact of convection on regional and

global UTLS composition remains largely unknown. To improve understanding of

convection-driven changes in water vapor (H2O), ozone (O3), and carbon monox-

ide (CO) in the UTLS, this study utilizes 13 years of observations of satellite-based

trace gas profiles from the Microwave Limb Sounder (MLS) aboard the Aura satel-

lite and convection from the operational network of ground-based weather radars in

the United States. Locations with and without convection identified via radar are

matched with downstream MLS observations through three-dimensional, kinematic

forward trajectories, providing two populations with unprecedented sampling of trace

gas observations for analysis. These populations are further classified as belonging

to extratropical or tropical environments based on the tropopause pressure at the

MLS profile location. Extratropical regions are further separated by tropopause type

(single or double), revealing differing impacts. Results show that convection typically

moistens the UT by up to 300% and the LS by up to 100%, largely reduces O3 by

up to 40%, and increases CO by up to 50%. Pronounced changes of H2O and O3 are

found, with LS O3 reduced more by convection within tropical environments, where

the median concentration decrease is 34% at ∼2 km above tropopause, compared to

24% in extratropical environments. Quantification of CO changes from convection

is less reliable due to differences being near the MLS measurement precision and

accuracy.

xii



Chapter 1

Introduction

Moist convection has the ability to facilitate rapid two-way transport of air across

the tropopause, a process referred to as stratosphere-troposphere exchange (STE)

(Holton et al., 1995). While there are many processes that can facilitate STE, deep

convection is the smallest in scale and is arguably the least understood. Convec-

tive transport and its associated STE have been observed in aircraft observations

in the tropics and extratropics, but its frequency, geographic distribution, vertical

extent, and large-scale significance have not been well characterized. Our limited

understanding of chemistry, transport, and STE in convection is due, in large part,

to limited capabilities of global observing systems and to the limited number of high-

resolution case studies of in situ measurements in storms (Gettelman et al., 2011).

Furthermore, most previous work focuses on upward transport (or troposphere-to-

stratosphere transport) in convection and its impact on the upper troposphere and

lower stratosphere (UTLS), while recent studies such as Pan et al. (2014), Frey et al.

(2015), Homeyer (2015), and Phoenix et al. (2020) indicate that stratosphere-to-

troposphere transport can also be extensive in these storms. The troposphere and

stratosphere are chemically distinct airmasses, and STE is critically important to the

climate system through its impact on the Earth’s radiation budget by changing the

vertical distribution and concentration of trace gases in the UTLS.

The vertical distribution of water vapor (H2O) is particularly susceptible to con-

vective influence. H2O is prevalent in the troposphere while the stratosphere (in the

absence of convective influence) is typically very dry, with H2O mixing ratios around

3–6 ppmv (e.g., Tilmes et al., 2010). When convection overshoots the tropopause,

it can inject H2O into the stratosphere via two pathways: air mass transport and
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ice particle detrainment (which subsequently sublimates in the subsaturated environ-

ment). H2O is a powerful greenhouse gas, and Solomon et al. (2010) have shown

that a sustained reduction of only 0.5 ppmv in global mean LS H2O leads to a 25–

30% decrease in the rate of decadal surface warming. Estimations of convective

contributions to stratospheric H2O vary widely in the literature, likely related to the

various methods implemented to examine this process despite observational limita-

tions. Hanisco et al. (2007) and Dessler and Sherwood (2004) suggest that up to

45% of H2O in the stratospheric overworld (where θ > 380 K) comes from convective

injection, while more recent studies suggest much smaller impacts (e.g., Schoeberl

et al., 2018; Ueyama et al., 2018). Additionally, there is some disagreement about the

role that convection plays in UTLS hydration in the tropics, as some studies indicate

that tropical tropopause-overshooting convection can both hydrate and dehydrate the

UT, depending on the humidity of the pre-convective environment (e.g., Jensen et al.,

2007; Hassim and Lane, 2010).

Convection can also significantly change the vertical distribution of ozone (O3)

in the UTLS, which is typically low in concentration in the troposphere and high in

the stratosphere. O3 has its greatest radiative forcing in the UT, with concentration

increases in the UTLS leading to surface warming (Lacis et al., 1990). In contrast

to H2O, convection impacts the vertical distribution of O3 in the UTLS primarily

through air mass transport. Both observational and modeling studies have shown

that convection-driven stratosphere-to-troposphere transport increases O3 concentra-

tion in the UT as O3-rich stratospheric air is wrapped underneath a storm anvil (Pan

et al., 2014; Phoenix et al., 2020). There has additionally been some evidence that

convection can increase LS O3 by mixing higher-O3 stratospheric air downward near

the overshooting top (Frey et al., 2015). Conversely, convectively-driven troposphere-

to-stratosphere transport has been shown to decrease LS concentrations of O3 (e.g.,

Dessler and Sherwood, 2004; Hegglin et al., 2004). It has been argued that decreases
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in stratospheric O3 may also occur if increases in H2O from convection are large

enough and the temperature is low enough to activate rapid O3-destruction chem-

istry (Anderson et al., 2012, 2017; Schwartz et al., 2013). Convective transport of

alternative trace gases that are mostly passive, such as carbon monoxide (CO), has

also been of interest in previous studies due to their utility as a tracer of boundary

layer air (e.g., Jiang et al., 2007).

Satellite- and aircraft-based studies have attempted to distinguish the overall

large-scale impact of convection on UTLS composition. Randel et al. (2012) used

satellite observations of isotopic composition of H2O and found that convection oc-

curring over the United States is uniquely capable of injecting copious amounts of

ice into the LS. Subsequent work has shown that a region over North America that

contains ∼1% of Microwave Limb Sounder (MLS) H2O observations accounts for

more than half of observations with concentrations greater than 11 ppmv at 100 hPa

(Schwartz et al., 2013). While those extreme values have not been explicitly tied

to convective sources, Smith et al. (2017) found that the frequency and location of

extreme stratospheric H2O concentrations are broadly consistent with the seasonal

and geographical distribution of tropopause-overshooting convection and Jensen et al.

(2020) further showed that convective hydration at 100 hPa and 82.5 hPa within the

LS over North America occurs primarily in the summer months during the monsoon

season. These previous efforts largely neglect UTLS impacts from convection in low

tropopause environments, for which overshooting is more common and extends fur-

ther into the LS over the contiguous United States (CONUS; Cooney et al., 2018).

Although to a lesser extent than H2O, MLS observations have also been used to in-

vestigate convection-related depletion of O3. Schwartz et al. (2013) showed that in

July-August, O3 concentrations at 100 hPa (82.5 hPa) are 3 ± 1% (6 ± 1%) lower

in regions that meet thresholds of chlorine activation regimes identified by Anderson

et al. (2012) than in similar, drier parcels. However, some proportion of the decreased
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O3 concentrations can likely be attributed to dilution by tropospheric air. The extent

to which chemical destruction of O3 occurs is still largely unknown and is a topic of

debate within the community (e.g., Robrecht et al., 2019).

Recent climatological studies of tropopause-overshooting convection do not pro-

vide information on its chemical impact, but can be used as an indicator of convection-

driven STE frequency. Regardless of region/environment (tropics or extratropics),

studies using observations from ground- and satellite-based precipitation radar and

cloud lidar show that tropopause-overshooting storms are most frequent over land

(e.g., Liu and Zipser, 2005; Pan and Munchak, 2011; Liu and Liu, 2016; Solomon

et al., 2016). Tropopause-overshooting convection can occur at any time through-

out the year, but there exists a strong annual cycle in occurrence that peaks in the

late spring/early summer, especially over land in the midlatitudes (Solomon et al.,

2016). In a 10-year analysis of hourly radar data over the United States, Cooney

et al. (2018) found an average of more than 44,000 warm season overshooting events

each year, though this is likely at least a factor of 4 underestimate due to the hourly

sampling interval of the study and typical overshoot lifetimes of 5-15 minutes (Fu-

jita, 1974). The vast majority of overshooting occurs over the central Great Plains,

with the monthly geographic distribution of overshoots gradually shifting poleward

throughout the warm season. Cooney et al. (2018) additionally showed that nearly

half of tropopause-overshooting convection reaches into the stratospheric overworld

where residence times of trace gases are longer and therefore convection can have a

larger impact on overall composition. The environment in which convection occurs

can impact its efficiency in facilitating such deep overshooting and STE. In particular,

if a double tropopause (a low-stability layer above the primary tropopause altitude)

is present at the location of convection, deeper convective overshooting is common

(Homeyer et al., 2014; Solomon et al., 2016).
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Various satellite-based identification methods have been developed to study deep

convection and the role it plays in STE. For example, Berendes et al. (2008) uses

visible and near-IR texture and reflectance to objectively identify overshooting con-

vection, but this method can only be used in the daytime and struggles with low

solar zenith angles. Alternatively, Bedka et al. (2010) uses infrared window chan-

nel brightness temperature gradients to detect tropopause-overshooting convection.

This method can be used both day and night, but it relies on large-scale analysis

for temperature profiles and therefore does not account for thermodynamic modifi-

cation of the environment by convection and has a substantial false-alarm rate (up

to 38.8%). Brightness temperatures are used in a number of other methods to infer

cloud top heights, but most fail to account for modification of the UTLS by convection

and potential mixing between the convective cloud top and the stratosphere. Recent

development of multispectral pattern recognition techniques (combining visible and

multiple IR imagery) has improved upon some of the limitations of these prior efforts,

achieving false alarm rates less than 20% (Bedka and Khlopenkov, 2016). An alterna-

tive method of observing overshooting convection from the ground was introduced by

Homeyer (2014), which merged observations from multiple ground-based radars into

volumes with high resolution in the vertical. This method has since been improved

and successfully used in a number of studies (e.g., Homeyer et al., 2014; Homeyer and

Kumjian, 2015; Solomon et al., 2016; Cooney et al., 2018).

In summary, it is well-known that deep convection frequently reaches the tropopause

(especially over land in the midlatitudes during summer) and impacts the distribution

and concentration of chemically and radiatively important trace gases in the UTLS.

However, the small-scale, rapid nature of convective transport and responsible dy-

namical and physical processes remain poorly understood and rarely sampled at fine

scales, thus hindering our ability to discern the overall impacts of convection on trace

gases in the UTLS. As such, there is a critical need for long-term regional and global
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observational studies of convective influence on UTLS composition. In order to im-

prove understanding of the large-scale impact of convection on UTLS composition

and to provide an assessment for its representation in simulations of past and future

climates, we seek to bridge past efforts using radar observations of convection and

satellite observations of composition by employing a trajectory-based matching tech-

nique. In particular, this study utilizes observations from 13 years of satellite-based

trace gas profiles from the MLS aboard the Aura satellite and ground-based weather

radars from the operational Next Generation Weather Radar (NEXRAD) network in

the CONUS to quantify the impact of convection on UTLS composition.
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Chapter 2

Data

2.1 Radar Data

The NEXRAD network consists of more than 140 Weather Surveillance Radar-

1988 Doppler (WSR-88D) systems over CONUS (Crum and Alberty, 1993). WSR-

88Ds observe volumes of clouds and precipitation in polar coordinates on a grid

defined by azimuth, range, and elevation relative to the radar site. These volumes are

obtained every ∼5 minutes when convection is occurring and contain radar reflectively

at horizontal polarization ZH, radial velocity VR, and velocity spectrum width σV at

a minimum.

For analysis, we use large-area mergers of the NEXRAD observations known as

Gridded NEXRAD WSR-88D Radar (GridRad) data (Bowman and Homeyer, 2017).

GridRad data are available hourly from 1995–2017 on a regular 0.02◦ longitude-

latitude and 1-km altitude grid (Homeyer and Bowman, 2017) and include ZH and

multiple variables that keep track of the number of single-radar observations merged

into the common data volume. As described in Homeyer and Bowman (2017), the

GridRad algorithm is a four-dimensional time- and space-weighted binning proce-

dure that merges individual radar data onto one large rectangular domain extending

from 115◦W to 69◦W longitude, 25◦N to 49◦N latitude, and 1 to 24 km in altitude.

Echo top altitudes, the highest point where ZH exceeds a specified threshold, are

the primary product used for analysis in this study as they help to indicate the lo-

cation and intensity (or lack thereof) of deep convection. Prior to identifying the

echo top altitudes at each 1-hour GridRad analysis time, quality-control methods are

employed as recommended in Homeyer and Bowman (2017), where low-confidence
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and infrequently-sampled echoes are removed. This process almost entirely elimi-

nates common sources of error (or artifacts) such as side-lobe contamination and sun

strobes.

2.2 Trace Gas Observations

Profiles of trace gases used to determine the influence of convection on the compo-

sition of the UTLS in this study are sourced from the Earth Observing System (EOS)

MLS v4.2x aboard the Aura satellite. The Aura spacecraft has existed within the

NASA Afternoon Constellation of satellites (the A-Train) since its launch in 2004.

The constellation follows a sun-synchronous orbital track, with equator-crossing times

of 0130 and 1330 Local Time. Quality-control recommendations for the MLS are pro-

vided in Livesey et al. (2020), all of which are employed here to prevent inclusion of

potentially biased trace gas observations in the analysis.

The instrument measures the concentrations of 16 different trace gases as well as

five atmospheric parameters by measuring thermal microwave emissions in five differ-

ent frequency ranges. The MLS vertically scans the atmospheric limb in the forward

direction of orbital motion and takes 240 scans per orbit with a 1.5◦ great circle

along-track separation (∼160 km) between scans (Waters et al., 2006). Retrievals of

constituents and additional parameters by the MLS occur at numerous frequencies

and altitudes, resulting in unique spatial resolution, precision, and accuracy of the

measurements for each observable. Version 4.2x level 2 MLS measurements of H2O,

O3, CO, and temperature (T) in the UTLS (300-50 hPa) are utilized in this study.

H2O is retrieved at twelve levels per decade of pressure, O3 at twelve (six) levels

per decade at pressures greater (less) than 215 hPa, and CO at six levels per decade.

The retrieval interval of temperature varies widely between ∼3–12 levels per decade of

pressure in the UTLS. The spatial resolution, precision, accuracy, and retrieval ranges
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Table 2.1: MLS v4.2x observation along-track horizontal resolution, vertical resolu-

tion, precision, accuracy, and retrieval ranges.

Observation ∆x (km) ∆z (km) Precision Accuracy Retrieval Range

O3 300–400 2.5–3.5 20–40 ppbv 20–50 ppbv ± 0–20% 261–0.02 hPa

H2O 175–200 1.4–3.1 5–40% 6–25% 316–0.002 hPa

CO 450–690 4.9–5.4 14–19 ppbv 20–30 ppbv ± 30% 215–0.0046 hPa

T 165–167 3.7–4.2 ± 0.6–0.8 K -2.5 to 1 K 261–0.001 hPa

of each are provided in Table 2.1. Only MLS profiles within the region confined by

120◦W to 60◦W and 20◦N to 55◦N are considered for analysis in this study.

The spatial resolution of the Aura MLS observations (Table 2.1) is coarse with

respect to the scales typical of individual storms and associated transport. However,

the primary objective of this study is to determine whether or not convection is a

significant contributor to changes in UTLS composition over relatively large spatial

scales, such that finer spatial resolution than what Aura MLS provides is not re-

quired. Past work has shown that while MLS sometimes underestimates the absolute

magnitude of extreme H2O concentrations due to horizontal and vertical averaging,

it generally captures extreme features that have been shown in previous flight cam-

paigns (Schwartz et al., 2013; Herman et al., 2017; Smith et al., 2017). A number

of studies have employed MLS observations and similar datasets to study regional

signatures of convective transport (e.g., Randel et al., 2012; Schwartz et al., 2013;

Smith et al., 2017).

2.3 Reanalysis

This study employs both 3-hourly assimilations of the global atmosphere from

the Modern-Era Retrospective analysis for Research and Applications, Version 2

(MERRA-2) and 6-hourly assimilations from the interim version of the European
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Center for Medium-Range Weather Forecasts Re-Analysis (ERA-Interim). Parame-

ters of interest include the height of the tropopause, the three-dimensional wind field,

and additional meteorological variables. In particular, the tropopause altitude is

critical for UTLS studies. Tropopause altitudes are computed at the native vertical

resolution of each reanalysis using the World Meteorological Organization (WMO)

temperature lapse-rate definition (World Meteorological Organization, 1957), which

is generally considered to be a good marker of the vertical discontinuities in static

stability and composition at the troposphere-stratosphere boundary (e.g., Gettelman

et al., 2011). MERRA-2 is available from years 1979-present at a horizontal resolution

of ∼0.6◦ longitude-latitude with 72 model levels, and a vertical resolution of ∼1100 m

in the UTLS (Gelaro et al., 2017). ERA-Interim output is available from 1979–2019

at a horizontal resolution of ∼0.75◦ longitude-latitude with 60 model levels, and a

vertical resolution between 750–1250 m in the UTLS (Dee et al., 2011).
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Chapter 3

Methods

As outlined in Chapter 1, this study examines a 13-year period of overlapping

GridRad and MLS data, from the first full year of MLS observations in 2005 to the

last available year of hourly GridRad data in 2017. Analysis is performed across

the entire year, but we present composition results here for the warm season (March-

August) only, since tropopause-reaching convection is relatively uncommon in the cool

season (Solomon et al., 2016). Unless otherwise noted, results by month are consistent

with the aggregated results for the entire warm season, which we focus on here to

maximize sample size at all altitudes. To analyze convection-driven changes in UTLS

composition, convectively impacted UTLS air identified using radar observations is

matched with downstream MLS observations through three-dimensional, kinematic

forward trajectories driven by 3-hourly MERRA-2 winds in the TRAJ3D trajectory

model (Bowman, 1993; Bowman and Carrie, 2002; Bowman et al., 2013). Namely,

trajectories are matched with individual MLS layers that are within specified time

and distance thresholds. Detailed steps of the trajectory initialization and calculation,

MLS matching, and profile analysis are provided below and illustrated in Figure 3.1.

3.1 Step 1 - Trajectory Initialization

To identify regions with and without convection for trajectory initialization, we

compute echo top altitudes and pressures every hour during the study period using

the GridRad and reanalysis datasets. First, ZH = 15 dBZ echo top altitudes are

determined in regions that are well sampled (at least 40 single-radar elevation scans

merged into grid volumes within a column, as informed by analyses from Cooney et al.

(2018) and Homeyer (2014)) by identifying the maximum altitude where at least three
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Figure 3.1: A step-by-step illustration of the trajectory initialization and calculation,

convection and composition data matching, and analysis procedure used in this study.

Trajectory particles and paths corresponding to those initialized in convection and

echo-free regions are colored in blue and red throughout, respectively. Blue and red

circles in step 2 (panel b) indicate the time-dependent search radius used to account

for expected horizontal displacement errors in the trajectory calculations.
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consecutive 1-km layers below exceed the ZH threshold (a continuity constraint). The

continuity constraint helps to mitigate contamination by spurious echoes that may not

be removed by the quality-control procedures. At each grid point, echo top altitudes

are then converted to pressures using the geopotential heights and pressures of the

nearest reanalysis grid column. Echo top pressures that occur at altitudes above

the lowest altitude observed by MLS (pressure of 316.228 hPa) are then identified

to initialize convective trajectory particles at the corresponding longitudes, latitudes,

and overlapping altitudes between the lowest MLS measurement and echo top (Fig.

3.1a).

For comparison with particles initialized in convection, an additional set of parti-

cles is initialized randomly throughout the GridRad domain in well-sampled regions

where no echo is found above an altitude of 4 km above sea level (about 50,000 par-

ticles per day). These echo-free trajectory particles are placed at every MLS pressure

level to facilitate comparison with convective particles.

3.2 Step 2 - Trajectory Calculation

All convective and echo-free trajectory particles are advected forward for three

days beyond initialization using the TRAJ3D model and reanalysis wind fields, with

positions saved hourly along the trajectory path (Fig. 3.1b). Following trajectory

calculation, the echo history along the paths of echo-free trajectories is examined

to ensure that these parcels have not been influenced by convection following their

initialization. Any echo-free trajectories that pass within a specified time-dependent

distance from convection are discarded. This time-dependent search radius R, in km,

increases with increasing time since particle initialization, given by:

R = 60× h

24
(3.1)
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where h is the number of hours elapsed. This approach accounts for expected hori-

zontal displacement errors in the trajectory calculations (60 km day−1 here), which

are dependent on the spatial and temporal resolution of the input wind fields. A

displacement error of 60 km per day is assumed for the reanalysis data used to drive

the trajectory model in this study based on prior trajectory sensitivity studies to

the spatiotemporal resolution of input wind fields (Stohl et al., 1995; Bowman et al.,

2013). All trajectories are additionally required to be well-observed by radar along

at least 80% of their paths to be retained for analysis.

3.3 Step 3 - MLS Matching and Classification

Following trajectory initialization and calculation, the resulting particle locations

are matched with individual altitude layers within MLS profiles (Fig. 3.1c). This

trajectory matching is accomplished by applying a similar time-dependent distance

criteria to a potential match, D = 80 + R, where the 80-km minimum distance is

approximately half of the MLS along-track sampling interval, which is comparable

to the along-track horizontal resolution of many of the retrieved quantities (Livesey

et al., 2020). Namely, for each MLS profile, the locations of all trajectory particles

initialized within the preceding 3-day period are compared to the MLS profile location

at the time the profile was retrieved. If a trajectory particle lies within D km of an

MLS profile location, it is matched with the layer it overlaps with closest in altitude

so long as it falls within the MLS layer depth (in log pressure). It is possible for a

trajectory particle to be matched with more than one MLS profile, but we do not

allow particles to be matched with more than one layer in a profile.

Following matching with trajectory particles, individual MLS layers are classified

as “convective” or “echo-free” based on the number and ratio of the matches. In

order to be classified as an echo-free layer for analysis, there must be no convective

trajectories matched with that layer. To be classified as a convective layer, at least
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50% of the matched trajectories must be convective. Only layers with ≥ 50 total

trajectory particle matches are analyzed in order to limit the analysis to layers where

there is a confident understanding of their recent history.

MLS layers that are determined to belong to an extratropical air mass (described

in Section 3.4) are further separated and classified by whether there was a single

tropopause (ST) or double tropopause (DT) present at the location of trajectory

initialization, as tropopause type can impact both background trace gas composition

and the overshooting depth of convection (Homeyer et al., 2014; Schwartz et al., 2015;

Solomon et al., 2016). For a layer classified as convective, if more than two thirds of

the convective trajectories were initialized in a DT environment, then it is classified

as a DT layer. For a comparison population, echo-free layers are also classified as DT

layers if more than two thirds of the matched echo-free trajectories were initialized in

a DT environment. Similarly, to be classified as a ST profile, more than two thirds

of the matched convective or echo-free trajectories must have been initialized in a ST

environment.

3.4 Step 4 - Profile Separation by Air Mass

Matched MLS profile layers are classified as belonging to tropical or extratropical

air masses based on the altitude of the tropopause at the MLS profile location (Fig.

3.1d). There exists a sharp discontinuity in the height of the lapse-rate tropopause

near the subtropical jet that is commonly referred to as the “tropopause break”, which

enables the tropopause pressure itself to be a suitable and commonly implemented

approach to delineate between extratropical and tropical environments (e.g., Randel

et al., 2007; Homeyer and Bowman, 2013; Boothe and Homeyer, 2017). Therefore, we

classify MLS layers in this study as extratropical where the pressure of the tropopause

is > 150 hPa (≤∼15 km altitude) and tropical where the tropopause pressure is ≤ 150

hPa (>∼15 km altitude).
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Geographic distributions for extratropical and tropical convective and echo-free

warm season matches are shown in Figure 3.2. As expected, tropical matches are

commonly located in the southern half of the domain and extratropical matches in

the northern half, though both populations can be found across most of the domain

since the corresponding environments meander north and south with the subtropical

jet stream. Differences between the locations of convective and echo-free matches

within each environment are largely longitudinal. Namely, convective matches in

extratropical environments are found at slightly greater distances off of the east coast,

likely due to predominately eastward advection by the subtropical jet. For tropical

environments, convective matches are found more often in the southeast United States

(where there is frequent convection in summer) and echo-free matches are found

more often in the southern Great Plains (commonly within the interior of the North

American monsoon anticyclone, where there is infrequent convection).

3.5 Step 5 - Tropopause-Relative Profile Analysis

To develop an adequate and reliable understanding of the impacts of STE on

UTLS composition, a well-utilized approach to analysis is to collect observations in

tropopause-relative altitude coordinates (Pan et al., 2004; Tilmes et al., 2010; Get-

telman et al., 2011). Tropopause-relative altitude coordinates help to preserve sharp

discontinuities in composition that exist and enable identification and evaluation of

the extent of STE above and below the tropopause. Thus, we conduct our analysis

of MLS layers in tropopause-relative space to enable reliable evaluation of convective

influence on UTLS composition (Fig. 3.1e). Tropopause heights used at the location

of the MLS profiles are sourced from the reanalyses. Trajectory-matched MLS layers

are placed into tropopause-relative logarithmic pressure (originally in hPa) bins. We

use two different bin resolutions to account for the differing vertical resolutions of

each variable by MLS. H2O, O3, and temperature (CO) observations are placed into
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(a) Extratropical Convective 
Max. Occurrence: 2862

(b) Extratropical Echo Free
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Figure 3.2: Normalized geographic distributions of MLS observations matched with

(left) convective and (right) echo-free trajectories in both (top) extratropical and (bot-

tom) tropical environments. Match locations are binned on a 5◦ latitude-longitude

grid, with the maximum occurrence of matches in any bin (used for normalization)

displayed in the top left corner of each panel.
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Figure 3.3: For MLS observations within extratropical environments only: pseudo-

profiles of trajectory-matched convection (blue) and echo-free (red) layers (left) at

native pressures and (right) in tropopause-relative pressure layers for (top) tempera-

ture and (bottom) water vapor. For each pseudo-profile, filled circles and solid lines

indicate median values as a function of pressure, while open circles and dashed lines

indicate the 10th to 90th percentile range of values at each level. Horizontal solid

lines in each panel indicate the average altitude of the tropopause for all trajectory-

matched layers analyzed, sourced from ERA-Interim in this example.
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(a) Extratropical ERA−Interim
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Figure 3.4: As in Fig. 3.3, but for MLS observations of temperature within (top)

extratropical and (bottom) tropical environments and in relative altitude to (left) the

ERA-Interim tropopause, and (right) the MERRA-2 tropopause. Horizontal dashed

lines in each panel indicate the average altitude of the tropopause for all trajectory-

matched layers, while solid blue (red) lines in each panel indicate average tropopause

altitude of convective (echo-free) trajectory-matched layers only.
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bins with a resolution of 0.075 (0.10) decades of pressure, hereafter referred to as

“fine resolution” (“coarse resolution”) bins. For context, the 0.075 resolution roughly

translates to ∼1-km altitude increments in the UTLS for an isothermal atmosphere

via the barometric equation. Once binned, the median concentration, 10th percentile,

and 90th percentile values of the four variables are computed for all convective and

echo-free MLS layers to evaluate distributions of each observable. This is done sepa-

rately for the extratropical and tropical MLS profiles, as well as the extratropical ST

and DT profiles. The tropopause-relative logarithmic pressure bins are then trans-

formed back into a pressure space to create pseudo-profiles for analysis. Only layers

with ≥ 100 matched observations are analyzed.

To demonstrate why a tropopause-relative method is preferred, analyses of tem-

perature and H2O performed both at native MLS pressure levels and in tropopause-

relative pressure bins are shown in Figure 3.3. The pressure level analysis of tem-

perature in Figure 3.3a shows large differences between the median convective and

echo-free profiles. The average tropopause height from all observations is shown near

200 hPa, but the minimum near-tropopause temperature of the echo-free profile in-

dicates the average tropopause of this population is closer to 215 hPa whereas the

average tropopause of convective profiles occurs between 178 and 147 hPa. Thus, at a

given pressure greater than ∼150 hPa, many of the MLS layers matched with convec-

tion are within the UT while similar layers matched with echo-free regions are often

within the LS. Figure 3.3c displays how large of an impact this can have on apparent

H2O differences between the two populations. Median convective H2O concentrations

are much larger than the echo-free concentrations throughout the profile. While some

convective moistening is expected, a large component of the differences shown is likely

a result of comparing a very dry LS from echo-free layers to a moist UT from convec-

tive layers. Thus, it is impossible to isolate the impact of convection on the UTLS in

native pressure coordinates. When the analysis is performed in a tropopause-relative
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coordinate, the differences between echo-free and convective profiles of temperature

and H2O better reveal the expected impact of convection on the UTLS found in prior

case studies. In Figure 3.3b, a tropopause-relative temperature analysis results in a

local temperature minimum consistent with the tropopause altitude that is aligned

between convective and echo-free populations, with a lower tropopause temperature

in convectively influenced air. This tropopause temperature difference is expected

given previous findings of convective lifting and cooling of the tropopause in extrat-

ropical environments (Homeyer et al., 2014; Maddox and Mullendore, 2018; Starzec

et al., 2020).

One important requirement for tropopause-relative analysis is an accurately iden-

tified tropopause. Temperature analyses for both extratropical and tropical air masses

relative to the ERA-Interim tropopause and the MERRA-2 tropopause are shown in

Figure 3.4. The pseudo-profiles are similar in their overall shape, but do have some

key differences. In Figure 3.4a, the extratropical ERA-Interim-based temperature

profile shows a local minimum occurs at the level of the tropopause with a weak in-

version in the LS. In Figure 3.4b, however, the MERRA-2-based convective profile has

its lowest temperature one layer above the tropopause and LS inversions have differ-

ent character than those diagnosed using ERA-Interim. The inconsistencies between

MLS retrieved temperature minima and tropopause altitude in the MERRA-2-based

profiles likely reflect known biases in tropopause altitude in MERRA-2. Recently,

Xian and Homeyer (2019) have shown that the MERRA-2 tropopause is often biased

∼100 m high and has a slightly higher (100-200 m) uncertainty than ERA-Interim

in the midlatitudes. ERA-Interim has an unbiased tropopause with an uncertainty

of ∼600 m, which would have a minimal effect on the analysis as it is well below the

vertical resolution of MLS observations near the tropopause. For these reasons, our

tropopause-relative analysis is conducted using the ERA-Interim tropopause. Note

that a sensitivity study of the analysis to the wind field used for trajectory calculation
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(MERRA-2 or ERA-Interim) was also carried out, but the results were insensitive to

this choice.
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Chapter 4

Results

4.1 Bulk composition differences

The number of MLS observations classified as extratropical or tropical for both

fine- and coarse-resolution variables at each tropopause-relative altitude are shown

in Figure 4.1. Both convective and echo-free air is well sampled in the extratropical

and tropical UT, with more than 10,000 (5,000) extratropical (tropical) observations

of each. Sampling of echo-free air increases in the LS, while the number of convective

layers decreases rapidly, reflecting the increasing rarity of convection reaching heights

well into the stratosphere.

Extratropical and tropical psuedo-profiles of temperature (Figs. 3.4a & 3.4c) and

H2O concentrations (Fig. 4.2) are largely consistent with previous work and provide

confidence that the trajectory-matched MLS method of analysis is working. As out-

lined in Section 3.5, local temperature minima occur at the altitude of the tropopause

for all populations and convective temperatures are lower at the tropopause and

throughout much of the UTLS in both tropical and extratropical environments. While

pseudo-profiles are created based on average tropopause height of all trajectory-

matched layers, Figure 3.4a shows the average extratropical tropopause associated

with convective layers is higher than the average tropopause from echo-free layers

and Figure 3.4c shows that the average tropical convective tropopause is actually

slightly lower than the echo-free tropopause. Tropical convective temperatures are

warmer at the bottom of the profiles, but become lower than echo-free temperatures

closer to the tropopause due to increased lapse rates. The convectively influenced tem-

perature profile is consistent with previous work that has shown that deep convective

clouds are associated with cold anomalies at the cloud top (near the tropopause) and
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Figure 4.1: As in Fig. 3.3, but for the number of MLS layers analyzed for (top) fine

resolution and (bottom) coarse resolution variables within (left) extratropical and

(right) tropical environments. The gray line indicates the total number of observations

(both convection and echo-free). Numbers along the gray line indicate the percentage

of total layers matched with convection at each level.
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Figure 4.2: As in Fig. 3.3, but for MLS observations of water vapor within (left)

extratropical and (right) tropical environments.

increased lapse rates below that often approach a moist adiabatic lapse rate and can

result in a lowered tropopause (See Figure 10 in Biondi et al., 2012).

As anticipated, the influence of convection on UTLS H2O is to moisten the layer

(Figs. 4.2a, 4.2b), regardless of bulk differences in environments and tropopause tem-

perature. The entire distribution of the convective observations is shifted to the right

of the echo-free observations, with an extratropical median convective H2O concen-

tration of 18 ppmv and an echo-free concentration of 10 ppmv at the height of the

tropopause. In the lowest layer of the LS, the echo-free median is ∼4.75 ppmv while

the convective median is 8.75 ppmv. Additionally, the distributions of convectively

influenced extratropical H2O reach higher values throughout the UTLS, with 90th

percentile concentrations more than doubling the median values throughout much of

the profile and the median profile approximately coincident with the 90th percentile

echo-free profile throughout the LS. Tropical H2O concentrations are also strongly
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enhanced by convection in the UTLS, especially in the UT. At the lowest UT level,

the median echo-free concentration is ∼30 ppmv, while the convective median is

∼150 ppmv. Strong convective moistening persists throughout the UTLS, with me-

dian convective concentrations in the LS more than double the median of and at or

above the 90th percentile concentration of the echo-free profile. In the LS, convective

H2O concentrations exceed echo-free concentrations by 1–2 ppmv. The 90th per-

centile concentrations of tropical LS distributions are found at lower concentrations

than those in extratropical environments, likely constrained by low saturation vapor

concentrations associated with the colder UTLS environments.

Pseudo-profiles of O3 and CO concentrations are shown in Figure 4.3. In both ex-

tratropical and tropical environments, convective O3 concentrations are smaller than

echo-free concentrations at the tropopause and throughout the LS (Figs. 4.3a, 4.3b).

Median extratropical convectively-influenced O3 concentrations are nearly 100 ppbv

lower than echo-free concentrations throughout much of the LS, while observations

in tropical environments show greater differences (up to ∼200 ppbv lower than echo-

free). The decreases in O3 throughout the LS from convection are also found to reach

lower concentrations within tropical environments. Differences in CO concentrations

between the convective and echo-free profiles are less apparent throughout most of

the LS, with the largest differences (increases) occurring in the UT. In Figure 4.3d,

there is a peak in convective CO concentration two levels below the tropopause that

may represent the level of maximum detrainment (LMD; Mullendore et al., 2009) for

tropical convection. The tropopause-relative level where this peak occurs is ∼3 km

below the tropopause. Starzec et al. (2020) found that the LMD occurs between 4

and 5 km below the tropopause in the southern United States in May and July. Our

study is based on the full warm season and is not fixed in geographic location, which

could explain why this CO peak is observed higher in the UT. The coarse vertical

resolution of CO observations by the MLS and limited extent of observations into
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Figure 4.3: As in Fig. 3.3, but for MLS observations of (top) ozone and (bottom)

carbon monoxide within (left) extratropical and (right) tropical environments.
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the UT could also be influencing the estimated height of this peak. A peak in CO

concentration representing the LMD may exist in the extratropical profile as well,

but since the tropopause exists at a higher pressure (lower altitude) the MLS is not

capable of observing far enough into the troposphere to confirm this. In the LS, the

convective influence on CO in both the extratropical and tropical profiles diminishes

as concentrations approach the precision and accuracy limits of MLS CO retrieval

(see Table 2.1).

4.2 Sensitivities of composition impacts to midlatitude

tropopause environment

In extratropical environments, poleward transport associated with rossby wave-

breaking events (as well as other processes) can lead to the formation of a DT, where a

high tropical tropopause overlaps with a lower extratropical tropopause (e.g., Home-

yer et al., 2011). The existence of a DT at the location of convection can have

significant implications on the background LS trace gas structure as well as the depth

of tropopause-overshooting convection (Homeyer et al., 2014; Schwartz et al., 2015;

Solomon et al., 2016). For this reason, extratropical MLS layers are further classified

as ST or DT profiles based on the environment where trajectories were initialized as

described in Section 3.3. Figure 4.4 shows the number of echo-free and convective ob-

servations in ST and DT environments for both fine-resolution and coarse-resolution

variables. Sampling of ST environments is comparable to the total extratropical en-

vironments shown in Figure 4.1, while DT sampling of both echo-free and convective

layers is comparitively low. For fine-resolution variables at the level of the tropopause,

there are ∼20,000 total ST layers, but only ∼7,000 total DT layers. As in Figure 4.1,

convective sampling decreases rapidly in the LS, with only two LS layers achieving
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Figure 4.4: As in Fig. 4.1, but for (left) single tropopause extratropical environments

and (right) double tropopause extratropical environments.
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Figure 4.5: As in Fig. 3.3, but for MLS observations of (top) temperature and

(bottom) water vapor within (left) single tropopause extratropical environments and

(right) double tropopause extratropical environments.

30



≥100 observations in DT environments. While this sampling is sufficient for meaning-

ful analysis of DT environments, it is important to contextualize the discussion with

this sampling in mind given that a wide variety of transport outcomes are possible.

Temperature and H2O pseudo-profiles for both ST and DT environments are

shown in Figure 4.5. The primary (lowest) tropopause in the DT environment is

lower in altitude than that in ST environments, at pressures of ∼225 hPa and ∼197

hPa, respectively, resulting in the temperature at the DT primary tropopause being

warmer than that of the ST. Convective temperature decreases are stronger in the

DT profile, indicating that convection occurring in a DT environment may displace

the tropopause upwards more than in a ST environment or alternatively that the

troposphere in non-convective DT environments is typically colder than that in ST

environments. The H2O concentrations are similar between the ST and DT profiles.

This is somewhat unexpected, as convection within DT environments typically reaches

farther into the stratosphere due to lower stratospheric stability and could arguably

result in higher H2O concentration increases than that common in a ST environment.

It is possible that higher concentrations of H2O occur at higher tropopause-relative

altitude than two levels above the tropopause in the DT convective profile and can

not be seen in our analysis due to limited sample size, but this seems unlikely. It

seems more plausible that the full distribution of changes within a DT environment

is not entirely captured by limited sampling (recall Figure 4.4).

ST and DT pseudo-profiles of convective and echo-free O3 and CO concentra-

tions are shown in Figure 4.6. ST convective O3 concentrations are smaller than

echo-free concentrations throughout the LS, with the magnitudes of the differences

exceeding those in the bulk extratropical profiles in Figure 4.3a. In the DT profiles,

however, convective O3 concentrations are effectively indistinguishable from the echo-

free concentrations as they fall well within the precision and accuracy limits of the

measurement. The ST and DT convective median concentrations of O3 are similar at
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Figure 4.6: As in Fig. 4.3, but for (left) single tropopause extratropical environments

and (right) double tropopause extratropical environments.
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each tropopause relative level (∼200 ppbv), but the echo-free values in the DT profile

are smaller than the echo-free values at the corresponding levels in the ST profile

(∼200 and ∼250 ppbv, respectively). Farther above the tropopause, the ST echo-free

O3 concentrations increase while DT concentrations remain low, likely because DT

environments are commonly driven by poleward transport of low-O3 tropical UT air

into the extratropical LS (e.g., Pan et al., 2009). In Figures 4.6c and 4.6d, convec-

tion in DT environments appears to result in greater increases in tropopause-level

and LS CO than in ST environments, though the differences are somewhat small (up

to ∼16 ppbv compared to ∼8 ppbv, respectively). The increased concentration of

stratospheric CO in the DT profile suggests that storms transport tropospheric air to

the UTLS more efficiently when there is a DT present. This is supported by previous

work that has shown that DTs allow storms to penetrate higher into the stratosphere

and detrain more lower troposphere air near the tropopause (Homeyer et al., 2014;

Solomon et al., 2016).

Convection-driven changes in H2O and CO concentrations are somewhat un-

expected and contradictory, with tropopause type making little difference in the

convective-influence on H2O concentrations, while CO concentrations see larger con-

vective increases in DT environments. Considering the sampling results in Figure 4.4,

tropopause-level fractions of total trajectory matches associated with convection are

nearly equal in ST and DT environments for both fine- (41.6% and 41.5%, respec-

tively) and coarse-resolution (40.4% and 40.6%, respectively) variables. Alternatively,

in the first two above-tropopause layers of the LS, convection accounts for a larger

fraction of trajectory matches in DT environments than ST environments. This is

especially pronounced in the first layer above the tropopause, where the convective

percentage of fine-resolution (coarse-resolution) ST observations is 16.7% (13.3%),

while for DT observations it is 20.0% (15.5%). This shows that although convec-

tion reaches the tropopause at similar rates in ST and DT environments, convection

33



reaches into the stratosphere at higher rates in the presence of a DT, which is consis-

tent with previous work. While this may partly be a result of the primary tropopause

in DT environments being lower in altitude than STs and thus easier for convec-

tion to reach, the similar rates of convection reaching the tropopause suggest that

decreased stability in the UTLS is a contributing factor. However, this difference

does not explain why there are minimal differences in H2O concentration changes

from convection in ST versus DT environments and measurable differences in CO

concentration changes. Once again, limited sampling of DT environments could be

playing a large role. Another possibility is that CO concentrations are sensitive to

the height of the primary (or only) tropopause. As the tropopause is higher in ST

environments, high-CO air originating from the boundary layer may be more diluted

by the time it reaches the tropopause, thus making increases appear more pronounced

in DT environments.

4.3 Seasonally-adjusted composition differences

The results presented thus far are based on a bulk analysis of the Northern Hemi-

sphere warm season. Using a 6-month period for analysis is beneficial due to the large

number of profiles available. However, examining the full season allows for seasonal-

ity to influence results and makes it difficult to distinguish what composition changes

are due to convection directly, and what may be partially influenced by background

changes in trace gas concentration. In addition to seasonal changes in trace gases, the

average tropopause height changes throughout the year which can also impact the

tropopause-relative concentrations of trace gases. The fractions of MLS layers that

are classified as convective or echo-free are not constant throughout the year which

further allows seasonality to impact results. In order to mitigate these issues, an ad-

ditional analysis technique is used here to evaluate composition differences relative to

34



0 200 400 600 800 1000
ppbv

300

200

150

100

70

Ps
eu

do
-p

re
ss

ur
e 

(h
Pa

)

1 10 100
ppmv

300

200

150

100

70

Ps
eu

do
-p

re
ss

ur
e 

(h
Pa

)

0 20 40 60 80 100
ppbv

300

200

150

100

70

Ps
eu

do
-p

re
ss

ur
e 

(h
Pa

)

March
April
May
June
July
August

(a) Ex. Water Vapor

(c) Ex. Ozone

(e) Ex. Carbon Monoxide

1 10 100
ppmv

300

200

150

100

70

0 200 400 600 800 1000
ppbv

300

200

150

100

70

0 20 40 60 80 100
ppbv

300

200

150

100

70

(b) Tr. Water Vapor

(d) Tr. Ozone

(f) Tr. Carbon Monoxide

Figure 4.7: Pseudo-profiles of trajectory-matched echo-free layers in tropopause-

relative coordinates for monthly median concentrations of (top) water vapor, (middle)

ozone, and (bottom) carbon monoxide in (left) extratropical and (right) tropical en-

vironments for months March-August. Horizontal solid lines in each panel indicate

the average altitude of the tropopause for all trajectory-matched layers analyzed.
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Figure 4.8: As in Fig. 4.7, but for (left) single tropopause extratropical environments

and (right) double tropopause extratropical environments.
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a seasonally varying background (i.e., echo-free) profile. To do this, the median echo-

free concentration of each trace gas is computed at every tropopause-relative level for

each month and environment classification (Figs. 4.7 and 4.8). These monthly me-

dian profiles are then subtracted from every corresponding convective measurement

to compute the de-seasonalized convective anomaly for each trace gas. Every tenth

percentile value of these anomalies is then computed for the whole season at each

tropopause-relative level to reveal the seasonally-adjusted variability of convective

influence.

Given the substantial seasonal changes in trace-gas composition of the UTLS, it

is beneficial to approach the seasonally-adjusted convective influence analysis from

a relative convective-anomaly perspective rather than absolute differences. These

accumulated relative difference distributions for extratropical and tropical H2O con-

centration changes are shown in Figures 4.9a and 4.9b, where (as previously indicated

in the bulk analysis in Fig. 4.2) convective moistening can be seen throughout the

entirety of the profiles. In the 30th to 70th percentile range, extratropical convective

moistening is between 20–150% at the level of the tropopause, and 10–100% in the LS.

Tropical moistening is extreme in the UT (190–530% in the 30th to 70th percentile

range), though this diminishes rapidly closer to the tropopause. The tropical LS

typically sees convective increases from 20–60% which is notably smaller than corre-

sponding extratropical LS values. Extreme values in the tropical LS are considerably

smaller than in extratropical environments, with values rarely reaching 100% while

extratropical LS extremes often exceed 200% increases. This lack of large tropical

extremes is likely linked to low tropopause temperatures.

Extratropical and tropical changes in O3 concentration are shown in Figure 4.10

and are largely consistent with the bulk analysis shown in Figures 4.3a and 4.3b.

Throughout the entirety of the profile, extratropical median O3 concentrations de-

crease by ∼20% when influenced by convection. In the LS, at least 70% of convective
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Figure 4.9: Seasonally-adjusted convective anomalies expressed as accumulated rel-

ative differences from the corresponding monthly echo-free median concentration of

water vapor in (left) extratropical and (right) tropical environments. For each pseudo-

profile, filled circles and solid lines indicate median relative difference as a function

of pressure, while the horizontal lines from thickest to thinnest represent the 40th to

60th, 30th to 70th, and 20th to 80th percentile ranges, respectively, and the open cir-

cles and dashed lines indicate the 10th to 90th percentile range of values at each level.

Horizontal solid lines in each panel indicate the average altitude of the tropopause

for all trajectory-matched layers analyzed. The average precision of the MLS mea-

surement is shaded in blue and accuracy is shaded in red.
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Figure 4.10: As in Figure 4.9, but for (top) ozone and (bottom) carbon monoxide.
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profiles contain smaller O3 concentrations than the echo-free median, with differences

commonly reaching −40%. These decreases are likely a reflection of troposphere-to-

stratosphere convective transport and mixing of low O3 UT air into the LS. Tropical

changes in O3 concentration vary with altitude throughout the UTLS. Observational

limitations from MLS precision and accuracy are prominent in the tropical UT and

inhibit our ability to diagnose convective impact on O3 with confidence in this region.

In the lowest layers of the UT, the median percent change (∼13%) and majority of

the difference distribution is positive but falls within the measurement uncertainty.

However, more than 30% of profiles exceed these limitations with O3 increases of

more than 22–32%. In the tropical LS, convective decreases in O3 concentration are

seen with the largest decrease (−34% median) found two levels above the tropopause.

The median O3 decrease at this tropopause-relative level in the tropical LS exceeds

any median decrease in the extratropical LS (−24%). While some of this tropical O3

reduction is a result of convective mixing, the larger magnitude of the LS decrease

is potentially indicative of chlorine activation and O3 destruction taking place in the

colder tropical environment. This will be further discussed in Chapter 5.

CO changes in extratropical and tropical environments are shown in Figures 4.10c

and 4.10d, though limitations from MLS precision and accuracy almost entirely limit

confident identification of convective influence. Extratropical CO is convectively in-

creased in the UT and in the lower part of the LS, with 30–40% of profiles showing

CO increases that exceed the measurement uncertainty (∼30%). At the two highest

levels, convective influence on CO concentration is indiscernible. Tropical convective

CO changes are mostly positive but again are mostly confined to values within the

MLS precision and accuracy ranges. The only median change that exceeds these un-

certainties occurs in the UT at a value of 36%. This occurs at the same level as the

CO peak in Figure 4.3d, which as mentioned previously may be indicative of the LMD

for convection in tropical environments. Convective influence on CO concentrations
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Figure 4.11: As in Fig. 4.9, but for (left) single tropopause extratropical environments

and (right) double tropopause extratropical environments.

near the tropopause is less prevalent in tropical environments than extratropical en-

vironments, with less than 30% of the difference distribution exceeding uncertainty

values. However, at the top level of the tropical pseudo-profile there is a shift in the

entire distribution towards higher values where nearly half of the distribution exceeds

the precision and uncertainty of the measurement. It is important to note that only

380 convective MLS measurements are sampled at this level while all other levels use

at least one order of magnitude more MLS observations (Fig. 4.1d). It is therefore

unclear if there is a physical or dynamical reason for this increase or if it is an artifact

of reduced sampling at this level.

Seasonally-adjusted difference profiles for the ST and DT breakdown of the ex-

tratropical H2O, O3, and CO are shown in Figures 4.11 and 4.12. It is clear that

tropopause type has little impact on the H2O changes induced by convection in the
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Figure 4.12: As in Fig. 4.10, but for (left) single tropopause extratropical environ-

ments and (right) double tropopause extratropical environments.
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UTLS, as previously found in the bulk pseudo-profile analysis. Similarly, the differ-

ences in convective influence on O3 and CO within ST and DT environments are in

agreement with the bulk analysis, revealing little change in LS O3 in DT environments

and slightly larger increases in CO at tropopause level in DT environments compared

to that in ST environments (median differences of ∼25% and ∼20%, respectively).
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Chapter 5

Discussion of LS O3 Impacts

The overall convection-driven reduction in stratospheric O3 concentration and

its differing magnitude between extratropical and tropical environments is one of the

more interesting results identified in this study and warrants further investigation into

the processes responsible. We therefore speculate on the importance of some poten-

tially responsible processes by using a simple two-layer linear mixing model to define

the expected losses of O3 due to transport and mixing of tropospheric air into the

LS. The model is comprised of a LS layer that is representative of the non-convective

background two layers (∼2 km) above the tropopause (where the observed maximum

O3 decrease occurs) and a layer representative of typical O3 composition within the

troposphere. Beginning with the extratropical case, the starting concentration of the

LS layer is set to 425 ppbv based on the echo-free analysis (Fig. 4.3a). The starting

UT O3 concentration is set to 75 ppbv, which is notably lower than the observed 150

ppbv echo-free concentration in Figure 4.3a. This concentration was chosen based on

climatological studies of tropospheric ozone concentration that show typical values in

the range 50–100 ppbv, and because the expected mixing occurs with air originating

in the troposphere that has been delivered to the UTLS by convection (Gettelman

et al., 2011; Tilmes et al., 2010). Using these concentrations for the two layers, we

then solve for the percentage of air in the LS that must be delivered by convection

to achieve the observed 24% decrease shown in Figure 4.10a. The resulting estimate

of tropospheric air fraction is 29%. Repeating this process for a tropical environment

using the same tropospheric O3 concentration and a LS concentration of 600 ppbv

based on the echo-free profile in Figure 4.3b results in a tropospheric air fraction

of 39% to achieve the observed decrease of 34% shown in Figure 4.10b. Therefore,
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a simple mixing model suggests that 10% more UT air must be mixed into the LS

in tropical environments than in extratropical environments to achieve the observed

differences in O3 reduction via mixing alone.

Note that despite the very simple and prescribed approach here, these estimates

and the difference between tropical and extratropical fractions are largely insensitive

to the endpoint concentrations used. In particular, varying the tropospheric endpoint

from 50 to 150 ppb or the stratospheric endpoint ±150 ppbv from the concentrations

prescribed leads to a most a ±3% difference from our baseline estimates. Thus, even if

the end points differed considerably from those used here or between tropical and ex-

tratropical environments, they would still not explain the ∼10% difference observed.

Given this limited sensitivity, we considered four possible scenarios that would yield

the tropical-extratropical difference: 1) convection in tropical, high tropopause al-

titude environments is deeper and more vigorous than convection in extratropical,

low tropopause altitude environments, 2) background stratospheric concentrations

of echo-free environments are not representative of stratospheric concentrations in

pre-convective environments, 3) misidentification of the secondary tropopause in an

extratropical DT environment as a tropical tropopause alters the concentration of

tropical O3, and 4) air mass mixing in tropical environments is similar to (or weaker

than) that in extratropical environments, but there is an additional process (or pro-

cesses) responsible for the increased ozone reduction in tropical environments (e.g.,

chemical destruction of O3).

The first possibility, that storms in high-tropopause environments are deeper and

instigate more vigorous mixing is not supported by previous work, such as Cooney

et al. (2018) which found that there are few overshoots deeper than 1 km in regions

with an average tropopause height greater than 15.5 km (comparable to the 150 hPa

tropopause pressure threshold used here to delineate between environments). The sec-

ond scenario, that convection detrains into a substantially different O3 environment
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than the echo-free background, would introduce non-negligible error in our simple

model. However, this situation also seems unlikely given that the echo-free and con-

vective populations are subject to the same spatial and temporal restrictions in this

study and that we have additionally verified that the geographic distributions of MLS

matches are consistent between the convective and echo-free populations (Fig. 3.2).

The third possibility, that tropopause misidentification can influence trace gas con-

centrations in tropical environments, would require that such misidentifications are

more common in one population (i.e., convective or echo-free) and the precise nature

of the impact would depend on the favored population. Previous studies have shown

that misidentification of a secondary tropopause in extratropical environments as the

primary tropopause in model analyses/reanalyses occurs 5-10% of the time over the

CONUS (Homeyer et al., 2010; Solomon et al., 2016). By examining Figure 4.8d,

it appears that the secondary tropopause likely occurs around ∼125 hPa where the

vertical gradient of O3 increases rapidly, and that this layer (three levels above the

primary extratropical tropopause) would be mistaken for a tropical tropopause. In

such cases, LS O3 would appear to be in the UT and could bias these observations

in tropical environments. However, this appears to have little impact on diagnosed

composition changes at higher altitudes in the LS (where two levels above the tropical

tropopause would correspond to five levels above the extratropical tropopause), as

the background O3 concentrations at this level are similar between tropical and DT

environments. Therefore, it seems unlikely that tropopause misidentification would

have a significant impact on tropical LS O3 concentrations as the impacts of this seem

confined to lower altitudes.

The final scenario, that other processes are contributing to O3 reduction in trop-

ical environments, seems most likely. Previous studies have identified the possibility

of chemical destruction of O3 through chlorine activation when an airmass is cold

and wet enough and contains a sufficient amount of inorganic chlorine, though the
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Figure 5.1: A histogram of the relative frequency of HCl concentrations occurring

two fine-resolution layers above the tropopause in tropical environments, with a bin

size of 200 pptv.
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extent of possible destruction is still a subject of debate (Anderson et al., 2012, 2017;

Schwartz et al., 2013; Robrecht et al., 2019; Schoeberl et al., 2020). At the level of

maximum O3 reduction observed in convectively-influenced MLS layers within tropi-

cal environments, temperatures are less than 205 K ∼50% of the time and less than

200 K ∼10% of the time while H2O concentrations are typically ∼5–7 ppmv (Figs.

3.4c, 4.2b). MLS observations of hydrogen chloride (HCl) in this same layer reveal a

typical background concentration that exceeds 400 pptv ∼45% of the time (Fig. 5.1).

Based on these observations and the temperature-H2O thresholds given in Anderson

et al. (2012, 2017) for such O3 depletion, it is possible that chemical destruction is

a contributor to the enhanced LS O3 decrease within convectively-influenced tropical

environments found here. This hypothesis is further supported by the reduction of

convective HCl concentrations (shown as a shift in the relative distribution towards

lower values than echo-free observations in Figure 5.1), which would occur as HCl is

removed during the process of chlorine activation and subsequent O3 destruction. If

we again use our simple two-layer linear mixing model and set the amount of mixing

in tropical environments equal to the estimated mixing in extratropical environments

(29% tropospheric air), comparable mixing would account for only a 25% decrease in

O3 concentration, leaving 9% of the observed decrease unexplained by mixing. Thus,

O3 destruction from high-H2O chlorine activation may be responsible for a reduc-

tion of up to ∼10% in tropical environments, though definitive attribution of this

difference to any particular source is impossible in this study. While this estimate is

based on a very simple model that makes a few key assumptions, the model is largely

insensitive to its prescribed endpoints and it demonstrates that differences between

extratropical and tropical background concentrations alone do not account for the

greater reduction in LS O3 observed in tropical environments.

Finally, to provide broader context for the frequency of convective influence on

UTLS air over the CONUS, we show the ratio of all trajectory-matched MLS layers
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Figure 5.2: The percent of all trajectory-matched MLS layers associated with convec-

tion in each tropopause-relative logarithmic pressure bin for each month in (top)

extratropical and (bottom) tropical environments. The solid line represents the

tropopause. The numbers within each month-pressure box indicate the total number

of matches (both convective and echo-free) in that tropopause-relative layer.
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associated with convection as a function of tropopause-relative altitude for extratrop-

ical and tropical environments in Figure 5.2. There exists a clear seasonal cycle, with

convective influence in the extratropical UT peaking from May-August with up to

50% of the immediate ∼1 km layer below the tropopause being recently impacted by

convection. In the lowest ∼1 km of the stratosphere, up to 20% of trajectory-matched

MLS layers were recently impacted by convection in April-September, and up to 30%

in June and July. For tropical environments, UT convective influence peaks slightly

later in the season with the most frequent occurrence in July and August (when such

high-tropopause environments are most frequent over the CONUS). The frequency

of convective influence near and above the tropopause in tropical environments is

lower than in extratropical environments, occurring up to only 30% of the time in the

first ∼1 km below the tropopause. This likely stems from the fact that the tropical

tropopause is higher and convection does not reach these levels as often. However,

convective influence on the LS is still prevalent in tropical environments, with up to

20% of trajectory-matched MLS layers in the first ∼1 km above tropopause being

convectively influenced in June-August. Outside of these peak times, we see that

convection is capable of impacting the composition of the UTLS throughout the en-

tire year although the frequency is somewhat minimal. A growing body of work has

additionally suggested that environments favorable for deep convection will become

more frequent in the future as a result of anthropogenic climate change, thus increas-

ing the overall influence of convection on the composition of the UTLS (e.g., Trapp

et al., 2007; Gensini and Mote, 2015; Hoogewind et al., 2017).
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Chapter 6

Conclusions and General Discussion

This study examined convection-driven changes in concentrations of H2O, O3,

and CO in the UTLS using trajectory-matched radar observations of convection and

satellite observations of composition. In particular, for a 13-year period, we matched

ground-based weather radar observations across the CONUS (GridRad data) with

downstream Aura MLS trace gas profiles using the TRAJ3D trajectory model. This

allowed for the comparative analysis of convectively-influenced and non-influenced

MLS profiles to quantify convective impact on UTLS composition. It was found that

in extratropical and tropical environments (delineated by a tropopause pressure of

150 hPa), H2O concentrations are substantially increased throughout the UTLS due

to convection, as expected (Figs. 4.2a, 4.2b, 4.9a, 4.9b). In the extratropical LS,

convective moistening is often between 10–100% with a median increase of ∼60% at

an altitude of ∼1 km above the tropopause. Median H2O increases in tropical en-

vironments range from 10–45% throughout the LS. Large increases (≥ 100%) in the

tropical LS occur less than 10% of the time, likely due to both low temperatures and

high pre-convective relative humidity associated with the high tropopause in these

environments (e.g., Schoeberl et al., 2019). Convection-driven reductions in O3 in

the LS were found in both extratropical and tropical environments, with a maximum

decrease occurring two levels (∼2 km) above the tropopause at −24% and −34%,

respectively (Figs. 4.3a, 4.3b, 4.10a, 4.10b). Lofting and mixing of low-O3 tropo-

spheric air into the LS is likely a large driver of the O3 decrease, but the differences

in the magnitude of the decrease between environments may be related to additional

factors as discussed in Chapter 5. Extratropical and tropical concentrations of CO

increase under convective influence, though exact changes are difficult to quantify due
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to limited measurement precision and accuracy (Figs. 4.3c, 4.3d, 4.10c, 4.10d). There

does appear to be a peak increase in CO concentration occurring two levels (∼3 km)

below the tropopause in tropical environments, which may be indicative of the LMD

of convection occurring in such environments.

Extratropical environments were also further classified based on the tropopause

type (ST or DT) at the location of convection or trajectory initialization (Figs. 4.5,

4.6, 4.11, 4.12). This had little or no impact on H2O concentration, which was

somewhat unexpected given previous work showing that the presence of a DT can

be related to deeper convective overshooting (Homeyer et al., 2014; Solomon et al.,

2016). Alternatively, convection in DT environments did show larger increases in LS

CO concentrations than in ST environments, which does suggest an increased effi-

ciency of upward cross-tropopause transport in convection within DT environments.

Furthermore, analyzing the fraction of trajectory matches associated with convection

indicated that convection reaches the tropopause at similar rates in ST and DT en-

vironments, but reaches altitudes in the LS at higher rates in DT environments (Fig.

4.4). The extratropical tropopause type breakdown of O3 concentrations revealed a

much greater distinction between convective influence in ST and DT environments,

with a ST pseudo-profile that can be characterized by convection-driven decreases

in O3 and a DT profile with little overall convective influence. This is likely related

to the complex vertical distribution of O3 in the UTLS when a DT is present (an

“S”-shaped profile in the stratosphere). With convection-driven upward and down-

ward cross-tropopause transport likely occurring within the UTLS, the impact on O3

concentration from any particular storm is likely highly variable and dependent on

the depth of overshooting. Thus, a wide range of increases and decreases in O3 can

be expected given both in-mixing of low-O3 tropospheric air and vertical overturning

of high and low O3 layers within the background stratosphere. The analysis here
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demonstrates that the end result is a near-zero median change in O3 from convection

in DT environments.

Using a simple, two-layer mixing model, we further investigated how convection-

driven reductions of LS O3 were greater in tropical environments than extratropical

environments. We showed that the observed reductions of O3 could not be acheived

through mixing alone based on the observed echo-free O3 concentrations. In fact, we

showed that if mixing were equivalent in extratropical and tropical environments, ap-

proximately 10% of the observed 34% decrease in tropical environments would have

to come from other sources. We speculate that, since our analyses show tropical

environments commonly fall within the temperature-H2O thresholds specified by An-

derson et al. (2012, 2017) for chlorine activation to occur, the enhanced O3-reduction

found in tropical environments may be a result of chemical destruction.

The results presented here build upon a growing body of work on the influence of

convection on UTLS composition, and more specifically, its impact on concentrations

of H2O, O3, and CO. While it is generally agreed upon in prior work that midlatitude

convection acts to moisten the UTLS, the extent to which it occurs has been debated.

Although several studies have shown that convection transports copious H2O into

the LS in individual events, some work suggests that the overall role it plays is minor

compared to larger-scale processes (e.g., Randel et al., 2015). Our results suggest that

convection over the CONUS contributes substantially to LS H2O during the warm

season in both high and low tropopause environments, at least for short timescales of

up to three days. In contrast to previous aircraft observations of convective influence

in the UTLS, the finding of substantial O3 and CO changes in the LS in this study

is somewhat surprising. Given the order of magnitude and greater change in H2O

from UT to LS, its concentration (compared to the remaining trace gases examined

here) is expected to be most sensitive to convective influence, followed by O3 (about a

factor of 4 change) and CO (a factor of ∼2). Following convection occurrence, mixing
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of influenced air prior to downstream sampling by MLS will dilute any composition

changes that take place, making it most difficult to assess O3 and CO changes in these

observations. Past aircraft observations have seldom shown large changes in trace

gases such as O3 and CO following convection, while H2O changes vary broadly. There

are some potential explanations for the difference between aircraft observations and

our results. First, since aircraft observations of convective transport are uncommon,

it is possible that the envelope of transport outcomes has not been well characterized

by existing observations. Moreover, analysis of aircraft observations of gases other

than H2O in convective plumes has not been routinely documented in prior studies,

leaving characterization of their changes largely unexplored. Second, due to the broad

layers over which MLS retrieves trace gas observations, it is possible that changes in

trace gases that are more confined to the UT or LS are distributed further across the

tropopause in this analysis than in reality. There is a wide range in outcomes found

here (and in recent modeling studies), so it is likely that these and other factors may

be impacting the results.

While this study has contributed valuable insights, there are some limitations

that hinder our ability to determine precise impacts of convection on the UTLS

that can be improved upon in future work. First, both the spatial and temporal

resolution of MLS observations are coarse with respect to the scales of convection.

Currently, there are few high-resolution aircraft observations that have extensively

sampled convectively influenced air in the LS (mostly limited to those recently col-

lected during the Deep Convective Clouds and Chemistry [DC3] experiment and the

Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by

Regional Surveys [SEAC4RS] field campaign). Fortunately, an upcoming field cam-

paign supported by NASA - Dynamics and Chemistry of the Summer Stratosphere

(DCOTSS) - will provide a large dataset of high-resolution aircraft observations of
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tropopause-overshooting convective influence on UTLS composition in the near fu-

ture. Second, convective echo-top altitudes as observed by radar have an uncertainty

of 1 km. Increased vertical resolution of radar observations would decrease this un-

certainty, though current satellite-based alternatives pass at non-optimal times (0130

AM/PM LT) for observing convection. Additionally, the benefits of increased vertical

resolution are likely minimal for trajectory-matching with MLS. Third, representa-

tions of the atmosphere are only provided every three hours by MERRA-2 and every

six hours by ERA-Interim. It would be beneficial to use more reanalyses to ensure

robustness of results across multiple datasets, and to increase wind field resolution to

hourly which would in turn decrease horizontal displacement errors in the trajectories

(Bowman et al., 2013). Finally, because our trajectory calculations are initialized in

and outside of convection only within the CONUS and the history of the tracked

air masses prior to their transit across the CONUS is unknown, it is possible that

convective influence is substantially underestimated due to echo-free trajectories hav-

ing recent convective origins outside of the CONUS and longer-term association with

convection than that captured by our trajectories (e.g., hydration 10 days prior rather

than 3 days prior). Such convective contamination of our echo-free population would

be most likely during late summer, when deep (and often, tropopause-overshooting)

convection has been occurring for long periods of time and can be found frequently

nearby over the Sierra Madre Occidental of Mexico and in south-central Canada (e.g.,

Liu et al., 2020). Deep convection over the Sierra Madre is most frequent, but tran-

sit times of influenced air to the CONUS are often slow due to long paths followed

initially west, then north and east through the North American upper troposphere

monsoon anticyclone. Outflow from deep convection over Canada may be advected

rapidly into the analysis domain, but such storms are much less common than those

over the high Plains of the CONUS. In future work, backwards trajectories could also

be calculated for initialized convective and echo-free particles. This would allow for
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better and extended understanding of the history of convectively-influenced and non-

influenced air, and allow for the analysis of pre-convective trace gas concentrations.

This study represents an important step in understanding the convective impact

on UTLS composition. It is the first major co-utilization of the NEXRAD network of

radar observations with MLS trace gas observations to examine composition changes

in H2O, O3, and CO. We show that the trajectory-matching method reveals clear

convective influences on these trace gases with unprecedented sampling. This sig-

nifies an important step in better characterizing radiative impacts of convection for

representation in climate modeling. As the frequency and intensity of convection

is likely sensitive to anthropogenic climate change, an understanding of these im-

pacts could prove even more crucial in the future. Subsequent work with Aura MLS

and alternative, higher-resolution satellite observations should be carried out to con-

tinue to characterize convective influence on UTLS composition and its variability.

In particular, should a unique trace gas signature of convective influence be found,

the global and long-term impacts of convection on UTLS composition could be as-

sessed purely from a chemical perspective. Furthering our understanding of global

convection-chemistry-climate linkages is vital as we work to improve representation

of STE in climate model simulations.
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