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Abstract 

Humans detect and react to characteristics of timbre in speech and instrumental sounds, but the 

relationship between emotions conveyed by timbre in non-verbal vocalizations and those 

conveyed by electric guitar sounds is unknown. For this study, I created a series of sounds with 

varying timbre characteristics: non-verbal voice sounds and electric guitar sounds. Sounds were 

validated through categorization of emotion and ratings of intensity and believability. I found 

that sounds with low (slow onset) attack slope were most likely to be categorized as angry, while 

sounds with high (fast onset) attack slope were most likely to be categorized as happy. I 

collected EEG data from participants while they made judgements on the emotional similarity of 

guitar sounds (primes) when compared with vocal sounds (targets). I conducted Multifractal 

Detrended Fluctuation Analysis and MANOVAs, and I found systematic differences of the 

multifractal spectrum of EEG responses between conditions (emotion and sound type) that would 

be obscured by other forms of analysis. This information could be applied to development of 

more effective and psychologically healthy entertainment (music, film, etc.). It is also applicable 

in therapy situations in which there is a need to induce a certain neurological or emotional state.  

Keywords:  music therapy, timbre, emotion, sound, audio, EEG, wavelet, guitar, 

empirical mode decomposition, complexity, multifractal detrended fluctuation analysis, fractal 
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Emotional and Neurological Responses to Timbre 

People have considered music a communicator of emotion for a long time (Spencer, 

1911, p.603-642), although it is usually considered more subjective than linguistic 

communication. However, listeners often agree regarding emotional content of musical stimuli 

(Eerola, Ferrer, & Alluri, 2012; Filipic, Tillmann, & Bigand, 2010). Instrumental sounds are used 

to express emotion, similarly to vocal sounds (Eerola, Ferrer, and Alluri, 2012; Ilie &Thompson, 

2006). Many aspects of this expression have been studied: fundamental frequency (or “pitch”), 

amplitude (or “volume”), timbre (or “tone quality”), etc. However, timbre has been studied 

considerably less than other aspects of sonic expression. 

Timbre has historically been most commonly defined as what it is not rather than what it 

is. In 1960, the American Standards Association defined timbre as “that attribute of auditory 

sensation in terms of which a listener can judge that two sounds similarly presented and having 

the same loudness and pitch are dissimilar” (American Standards Association, 1960, p.47). More 

positive definitions mostly involve different levels of dissection of the measurable elements that 

make up timbre. Broadly, these include spectral elements, temporal elements, and spectro-

temporal elements. Within these broad categories are more specific measurable qualities such as 

brightness, attack time, spectral centroid, spectral flux, and many others (Hailstone et al., 2009; 

McAdams & Cunible, 1992; Caclin, McAdams, Smith, & Winsberg, 2005; Griffiths & Warren, 

2004). For the purposes of the study presented in this document, timbre will be defined as an 

emergent characteristic of sound based on the interplay of multiple spectral, temporal, and 

spectro-temporal traits by which a listener can distinguish differences between sounds that are 

perceptually the same in pitch, loudness, and duration.  
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Vocal timbre offers important information about the state of an environment, fostering 

emotions in the listener. For example, vocal sounds of aggression or repeated loud sounds are 

generally met with feelings of fear in the listener and a response of the sympathetic nervous 

system. This response of the sympathetic nervous system includes several physiological changes 

(Kato et al., 2014). The parasympathetic nervous system (which activates during times of rest) 

tends to produce inverse physiological changes. Threatening sounds, such as the sound of a 

predator or an angry human voice, and relaxing sounds, such as the sound of moving water or 

infant-directed speech, within the natural environment can cause these inverse types of 

physiological responses (Santesso, Schmidt, & Trainor, 2007); instrumental sounds might cause 

similar responses, depending upon their timbral characteristics.  

Previous studies of timbre have focused on classical instruments. This makes sense, as 

composers of classical styles use timbre as a primary expressive tool in the choice of instruments 

(sometimes called “arrangement”) for a given piece. However, this has presented problems for 

the study of timbre. Manipulations of timbre in recordings of classical instruments do not 

necessarily have the expected effect on the listener. This might be because listeners have a fixed 

template for the given instrument and ignore the deviations from that template (Eerola, Ferrer, & 

Alluri, 2012). In contrast, timbre is so frequently and drastically manipulated in electric guitar 

that it is unlikely that listeners would have a strict template for the timbre they expect from this 

instrument. The use of the electric guitar also allows for a more controlled study of timbre, since 

only one instrument is being used. The electric guitar is a common instrument used in various 

settings, so this knowledge could benefit multiple communities (audio engineers and producers, 

sound designers for film and video games, music therapists, musicians, etc.). This instrument’s 

purposeful timbre manipulation in many commercial recordings and performances is used to 
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express genre, style, and emotion; this is comparable to the way that vocal sounds are 

manipulated by speakers to convey emotional content to the listener. In fact, several devices have 

been invented to create the sound of a voice in conjunction with an electric guitar (the “talk box,” 

“singing guitar,” etc.). The common use of the electric guitar in popular recordings and the 

frequent tone manipulation makes this instrument an ideal choice for the study and application of 

effects of timbre. 

Body size projection theory suggests that vocal timbre is a tool for communicating body 

size and, consequently, a tool for communicating threat level (Ohala, 1984; Xu, Lee, Wing-Li, 

Liu, & Birkholz, 2013; Morton, 1977). This theory suggests that sounds with a more “pure tone” 

(less noise-like, more singular in frequency content) are used to indicate a submissiveness/lack of 

threat; it also suggests that sounds that are “rougher” (more noise-like, less singular in frequency 

content) are used to indicate presence of threat. Evidence for this theory can be observed in 

everyday life; for example, birds and human infants tend to have more “pure” timbre 

characteristics in their communication sounds, while lions and bears tend to have more “rough” 

timbre characteristics (growling, for example). Morton specifically suggests that animals use 

lower frequencies and more harmonics (“harshness”) to suggest larger body size and 

communicate aggression, similar to the way that animals might use fur or feathers to suggest 

larger body size (1977). Morton created a list of what he called “motivation-structural rules” 

(MS) around these observations. These physiological mechanisms may be related to the purpose 

music plays in our society. Emotional responses to auditory stimuli are tied to these 

physiological responses and are likely to incur related changes in response to musical stimuli.  

Instrumental sounds are used to express emotion, similarly to vocal sounds. The ratio of 

high-frequency to low-frequency energy in a sound is negatively correlated with the valence 
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rating of the listener, and energetic sounds tend to have fast attacks and more high-frequency 

energy than low-frequency energy (Eerola, Ferrer, & Alluri, 2012). Listeners have different 

valence ratings dependent on pitch in both music and speech, different tense arousal ratings 

dependent on intensity of sounds in both music and speech, as well as other main effects (Ilie & 

Thompson, 2006). Arousal and valence of non-linguistic sounds have even been shown to have a 

measurable effect on electrodermal activity (EDA) of listeners (Greco, Valenza, Citi, & Scilingo, 

2017; Tajadura-Jiménez et al., 2010). Taken together, these results indicate the possibility that 

humans might have emotional and physiological reactions to certain sonic timbres across 

cultures.  

Timbre of isolated instrument sounds can convey emotional information in a similar way 

to emotional speech prosody. In one study, participants judged emotional categories (sad, happy, 

angry, or neutral) and intensity levels of instrument sounds based on differences in timbre. 

Different classical instruments were used for production of different timbres. Participants were 

then asked to judge similarity between primes (instrument sounds) and targets (emotional speech 

sounds) while EEG data was recorded. People produced a significantly larger N400 ERP 

response at the Cz electrode location when the stimulus pair was incongruent. For example, with 

angry targets, there was a stronger N400 when the prime was happy or sad than when the prime 

was angry (Liu, Xu, Alter, & Tuomainen, 2018). These results also supported the size code 

theory (Ohala, 1984), in that sounds and speech that were perceived as angry were found to be 

“rough” in timbre (higher attack slope, higher spectral centroid, higher high-frequency to low-

frequency ratio, and lower spectral flux), while happy sounds and speech were “pure” in timbre 

(lower attack slope, lower spectral centroid, lower high-frequency to low-frequency ratio, and 

higher spectral flux) (Liu et al., 2018). While this research is extremely valuable, it again uses 
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different classical instruments as the way to control timbre variation. This makes sense for use in 

traditional music composition, which primarily uses arrangement of instrument entrance and exit 

times as an overarching timbre control to affect emotion, but there is an additional level of 

knowledge that would be very useful in the contemporary music industry. In the contemporary 

industry, direct tone manipulation of certain instruments (electric guitar being arguably the most 

common other than the voice) is one of the primary ways of controlling the emotional impact of 

a song on the listener. 

While responses to timbre could be measured in various ways, I decided to measure 

responses via electroencephalography (EEG) due to the speed at which an EEG signal can 

fluctuate and be captured. Recent research has indicated that neurological data is multifractal in 

its dimension. While a line is one-dimensional, a square is two-dimensional, and an object such 

as a pen is three-dimensional, some things have fractional dimensions. For example, the 

dimension of a Sierpinski triangle is between one and two, about 1.585 (Figure 1). Other things, 

however, have multiple fractional dimensions: these are called multifractals. Multifractals 

require multiple fractal exponents to represent their dimension. Much of the research considering 

psychophysiological responses to sound lacks analysis styles that take the inherent complexity of 

EEG signals into account. While there has been some research done in this area (Maity et al., 

2015), EEG responses to non-linguistic affective vocal sounds and timbral manipulations of 

electric guitar have yet to be studied in this way to the researcher’s knowledge.  

The most common way to analyze EEG in response to given stimuli is through ERPs 

(event-related potentials). While this type of analysis offers valuable insight, time-series analysis 

techniques offer a different perspective on EEG data. Time series analysis techniques take into 

account the lack of independence in EEG data points. Unlike some other data types, in EEG data 
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(and many other types of physiological data) each data point is related to the point before and 

after it; the data is nonstationary. This type of data also often has self-similarity at different 

scales; it is multifractal. Time series approaches to EEG analysis are a good alternative to a more 

traditional wave analysis like Fourier Transforms, which are only accurate if a waveform is 

linear and stationary.  

A sound waveform or EEG waveform looks random if you try to model it with a line. A 

sine wave is a better idea, but not as good an idea as a wavelet, or better still, a mathematical tool 

called detrended fluctuation analysis. What it does is detect patterns that are distributed across 

multiple scales. These patterns are not whole numbered dimensional patterns like 1D or 2D 

objects. These objects have fractional dimensions. For example, a Sierpinski triangle has a 

fractional dimension of approximately 1.585. If you could shrink yourself down like an ant to 

stand on it, it would be self-similar in every direction at every scale. It is a perfect mathematical 

object. 

 

 

Figure 1. A Sierpinski triangle, which has a dimension of 1.585. This is an example of a 

monofractal. Image by Beojan Stanislaus. 

 

Objects in nature are not perfect like this, however, because physical objects cannot be 

infinite in three-dimensional space. The same fractional dimension is not seen throughout the 
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entire Romanesco broccoli flower, but the fractional dimension varies a bit according to the 

complexity of the physical system. A system that has only one fractional dimension is 

monofractal. A system that is not perfectly the same in every direction at all scales but still has 

fractional dimension is multifractal. That system can be described with detrended fluctuation 

analysis better than it can be described by other means.  

 

 

Figure 2. One example of a multifractal object, Romanesco broccoli. Photo by Artiom Vallat on 

Unsplash. 

 

 

 

Figure 3. Another example of a multifractal object, lightning. Photo by Mélody P on Unsplash 

 

https://unsplash.com/@virussinside?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/romanesco-broccoli?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
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Prior to analysis of EEG data, it is generally necessary to smooth the data for removal of 

noise in the signal. Empirical Mode Decomposition (EMD) is one such method, which smooths 

the data by sifting it into Intrinsic Mode Functions (IMFs). EMD is a smoothing method for 

nonlinear data that uses local minima and maxima of the waveforms to sift out different pieces 

that make up the waveform. These pieces are separated based on the energy in the signal at 

different time scales and different frequencies. This produces a number of largely orthogonal 

IMFs that make up the original signal. This then allows for certain noise components to be 

extracted and removed from the waveform.  

It is also often necessary to extract certain features/rhythms of waveforms in order to 

analyze them separately (alpha, beta, delta, theta, etc.).  The Wavelet Transform (WT) is a 

method for this process that takes into account the nonlinearity of EEG data. This involves 

choosing a wavelet and comparing it to one portion of the signal at a time. This allows for 

multiresolution analysis in frequency, amplitude, and timing of the waveform, leading to a more 

accurate deconstruction of the frequency components of the waveform than a more traditional 

analysis style such as a Fourier Transform. 

After these components are extracted, the EEG signals need to be analyzed, in this case 

using Multifractal Detrended Fluctuation Analysis (MFDFA) due to the multifractal nature of the 

data. When graphing the multifractal spectrum, Dq is the q-order dimension; hq is the q-order 

singularity exponent (also known as the Hӧlder exponent, or α) (Figure 4). A higher Dq value 

indicates a higher dimension and a higher level of chaos within the system. A monofractal such 

as the Sierpinski triangle (Figure 13) would only need a single point along the y-axis (Dq) at 

1.585 to represent its dimension, while a multifractal needs multiple points along the y-axis 

because it has multiple fractional dimensions. A higher hq value indicates higher persistence of 
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the multifractal spectrum. A persistent signal is one that continues in the same direction from one 

data point to the next, while an anti-persistent signal is one that changes direction from one data 

point to the next. 

 

Figure 4. An example graph of the multifractal spectrum of one participant while listening to a 

guitar sound categorized as angry, with parameters of width, α0 (hq at the curve’s apex, where 

q=0), and asymmetry marked. 

 

Parameters of the multifractal spectrum that were analyzed are somewhat new to 

neurological study, and have not yet been studied in regard to responses to sound to the 

researcher’s knowledge. There is little consensus on what they mean for neural dynamics and 

overall mental and emotional health. These parameters can be discussed in general terms, but 

further study is needed in understanding the practical meanings behind them. As asymmetry of 

the multifractal spectrum decreases, extreme neurological events are more frequent and play a 



RESPONSES TO TIMBRE                                                                                                           13 

 

more important role in the signal. α0 of the multifractal spectrum (the value of hq at the apex of 

the spectrum) is representative of the persistence of the multifractal spectra over time, or its 

regularity. As α0 goes up, the signal is more persistent (more likely to go in the same direction 

from one data point to the next rather than change direction). Width is the range of the Holder 

exponents (maximum of hq-minimum of hq), and it is the characteristic most commonly 

addressed in current EEG research regarding multifractal spectra. Multifractal spectrum width 

indicates the level of self-similarity in the signal (sometimes called complexity or “richness”).  

Neural complexity has been shown to be high for individuals with schizophrenia when 

compared to controls, and severity of schizophrenia symptoms appears to be associated with 

complexity. After treatment, the complexity of neurological signals for those with schizophrenia 

decreases in the fronto-temporal regions of the brain (Sokunbi et al., 2014). Those suffering with 

depression also have higher neural complexity, with a decrease post-treatment (Li et al., 2008; 

Méndez et al., 2012). However, not all pathological states share this pattern. People with post-

stroke depression have lower overall neural complexity than controls (Zhang et al., 2015), and 

there is conflicting evidence for whether those with Alzheimer’s have higher or lower complexity 

than controls (van Cappellen van Walsum et al., 2003; Grieder, Wang, Dierks, Wahlund, & Jann, 

2018).  

During timbre judgements, people show maximal N400 ERP (Event-Related Potential) in 

the mid-central posterior region of the brain, which includes the Cz electrode site. A graphic of 

the neurological signals at the Cz electrode was used to show the typical N400 responses to 

differing emotions for this recent study (Liu et al., 2018). People listening to a drone that subtly 

changes in timbre over time show maximal increase in multifractality of alpha brain waves at the 

frontal midline (Fz) electrode (Maity et al., 2015). Listening to music is associated with changes 
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in alpha and theta brain wave rhythms (Kabuto, Kageyama, & Nitta, 1993; Maity et al., 2015). It 

is possible that central electrodes show especially prominent alterations during sound processing 

due to corpus callosum involvement, as musicians have a larger anterior corpus callosum than 

non-musicians (Schlaug, Jäncke, Huang, Staiger, & Steinmetz, 1995). 

In this study, I test the research hypothesis that there are systematic differences between 

conditions (emotion and sound type of sound being heard) that would be obscured by other 

forms of analysis.  More specifically: (1) Emotional categorizations of electric guitar sounds and 

non-linguistic vocal sounds differ as a function of alterations in timbre. (2) The multifractal 

spectrum of EEG responses (width, apex, and asymmetry) differs as a function of the emotional 

category of a sound. 

Method 

Participants 

Sixteen students with normal hearing abilities (as defined by UCO’s Speech and Hearing 

Clinic) from the University of Central Oklahoma participated in the experiment. People who 

participated in the stimuli validation were not allowed to participate in the EEG experiment. Due 

to poor electrode connection, data from six participants was not used, leaving ten data sets for 

analysis. 

Apparatus 

Appropriate audio files had to be created for use as stimuli prior to EEG data collection. 

Two types of stimuli were created: non-linguistic affective vocalizations and electric guitar 

sounds with timbre alterations.  

The emotions portrayed by the vocalizations were anger, happiness, and sadness. Twelve 

ten-second examples of each emotion were recorded, six performed by a female voice actor and 
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six by a male voice actor. They were recorded using Pro Tools audio recording software (Avid, 

2018). These stimuli were normalized for perceptual loudness and precise length. 

Twenty-eight ten-second electric guitar sounds were recorded with variation in timbral 

characteristics using a guitar, guitar amplifier, and guitar pedals. These were also recorded within 

Pro Tools audio recording software (Avid, 2018). All guitar sounds were recorded playing the 

D#4 note for the sake of comparability with recent research and because this is the mean note 

found to be present in a large collection of written musical scores (Liu et al., 2018; Eerola, 

Ferrer, & Alluri, 2012; Huron, 2001). These sounds were then normalized for perceptual 

loudness and length to match that of the vocal sounds.  

Ten students with normal hearing abilities (as defined by the UCO Speech and Hearing 

Clinic) from the University of Central Oklahoma participated in the validation process. After 

reading and signing a consent form, students were seated in front of a computer and given Audio 

Technica ATH-M40x headphones due to their excellent frequency reproduction ability and 

sound isolation (Audio Technica, 2018). People heard each sound in a randomized order, and 

they were asked to answer questions after each sound. The first question was regarding emotion 

categorization (anger, happiness, sadness, or other/none), the second question was regarding the 

emotion intensity on a 5-point scale (1= very weak to 5= very strong), and the third was 

regarding how believable the emotion was on a 5-point scale (1= not believable at all to 5 = very 

believable). The believability rating was only collected for the vocal sounds.  

Responses regarding emotion categorization agreed on all vocal sounds at 80% or above. 

The two most believable and intense non-linguistic vocal sounds as judged by the listeners for 

each emotion and each sex were chosen for use in the EEG experiment (four total vocal sounds 

for each emotion, two per sex). While there were trends among the participant responses to the 
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guitar sounds, they were much more subtle. Entropy was calculated for emotion categorization 

responses for each of the guitar sounds, and the four guitar sounds with the lowest entropy for 

each emotional category were chosen for use in the experiment (Table B1). Twenty-four sounds 

were chosen, twelve per sound type (guitar and voice). 

 

 

Figure 5. Comparing means of standardized scores of each of the timbre characteristics for 

different emotions.  

 

After initial sonic analysis in using MIRtoolbox (Lartillot, 2014; Lartillot & Toiviainen, 

2007) in MATLAB (MATLAB, 2014), a multivariate analysis of variance (MANOVA) was run 

comparing emotion categories for vocalizations and guitar sounds on standardized scores (T 

scores) for each of the four timbral characteristics (brightness, attack slope, spectral centroid, and 

spectral flux). The results of this MANOVA show a significant effect of emotion on the 
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dependent variables (DVs, timbre characteristics) (F (8, 98) = 3.812, p = .001; Wilks’ Λ = 0.582), 

while the effect of sound (guitar vs. voice) (F (4, 49) = 0.453, p = .770; Wilks’ Λ = 0.964),  and 

the interaction of sound and emotion (F (8, 98) = 1.602, p = .134; Wilks’ Λ = 0.782) were non-

significant (Table B2). Emotional categorizations of electric guitar sounds and non-linguistic 

vocal sounds differ reliably, depending on their timbre characteristics. Further inspection of 

analysis results show that emotion categorization only has a significant relationship with the 

timbre characteristic of attack slope (F (2, 52) = 10.224, p < .001). Specifically, angry sounds 

have a low (slow) attack slope. Emotion categorization did not have a significant relationship 

with brightness (F (2, 52) = 0.406, p = .668), centroid (F (2, 52) = 0.674, p = .514), or flux (F (2, 

52) = 1.093, p = .343) (Table B3). 

 

 

Figure 6. Standardized Attack Slope means for guitar and voice on different emotional 

categories. 
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Figure 7. Attack portions of waveforms of a guitar sound that was judged to be “angry” (top) and 

one that was judged to be “happy” (bottom). 

 

BioPac’s MP150, Biopac Student Lab Professional Version 3.7.7, and an electrode cap 

were used to collect EEG data while participants listened to stimuli on professional-grade Audio 

Technica ATH-M40x headphones (Biopac Systems, Inc., 2010; Electro-Cap International, Inc.; 

Audio Technica, 2018). Responses were recorded using PEBL (Mueller & Piper, 2014; Mueller, 

2012). 

Procedure 

Participants were taken to one of the rooms in the UCO Psychology Lab and instructed to 

sit comfortably in a chair with feet flat on the floor and their hands resting on their legs after 

reading and signing a consent form (Appendix A). Participants were fitted with an electrode cap, 

and one reference electrode was placed on the mastoid bone behind the right ear. Gentle abrasion 

was done at each electrode site, and electrodes were filled with conductive paste. I recorded 

signal at Cz and Fz according to the 10:20 method, with one ground. After two minutes of 

resting time, the participants were asked to sit as still as possible and given two minutes to 

practice and familiarize themselves with the experiment task before the experiment began. 

Participants were tested one at a time in a quiet laboratory setting with an ambient noise 

background of less than 50 decibels SPL (sound pressure level). Each trial consisted of a pair of 
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sounds (pairs were randomized): a guitar sound (prime), one thousand milliseconds (1000 ms) of 

silence, then a vocal sound (target). Participants then had one thousand milliseconds (1000 ms) 

to indicate whether the sounds were congruent (similar) via a left mouse click or incongruent 

(not similar) via a right mouse click. There were nine possible types of stimulus pairs (for 

example: angry guitar and angry voice, or angry guitar and sad voice), each with four possible 

guitar sounds and four possible vocal sounds. The experiment consisted of four ten-minute 

sessions (27 trials each), with short breaks (two to five minutes) between each session for rest 

and movement. EEG data was recorded at 250 samples per second, resulting in collection of over 

one million data points collected for each participant. 

Data Denoising and Extraction 

I divided EEG data into chunks for each participant to isolate data that was recorded 

while they listened to sounds of a given emotion. After this, I averaged data for all trials of a 

given emotion (angry, happy, or sad) by electrode (Cz or Fz) and sound type (guitar or voice) for 

each participant. Then the data was formatted. The time column had to be formatted to “Time”, 

specifically the format shown as “37:30:55” in Excel. After this, I selected “Custom,” where I 

typed “.000” after “ss” to retain the highest resolution. After formatting, the data was imported 

into MATLAB, where the Signal Multiresolution Analyzer app was used to conduct Empirical 

Mode Decomposition (EMD) for denoising. EMD involves breaking a signal down into 

components called Intrinsic Mode Functions (IMFs). IMFs containing lower frequencies in 

which most blink artifacts reside were discarded (<3.5 Hz), and the remaining IMFs were used to 

reconstruct the signal. The same app was then used to conduct the Wavelet Transformation (WT) 

for extraction of alpha and theta rhythms. The db4 (Daubechies) wavelet was used to break the 
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signal down, after which the alpha range (~8-12 Hz) and theta range (~4-8 Hz) were extracted 

and exported as separate MATLAB objects (see Appendix D for code samples). 

Results 

Multifractal Detrended Fluctuation Analysis was conducted on each object using the 

toolbox provided by Espen Ihlen (2012). I used q (magnification) values from negative five to 

positive five, and I used a scale maximum of 250, a little less than one-tenth of the number of 

samples in each chunk of data (2750 samples in each chunk). I calculated the width of the 

multifractal spectrum, the α0 (apex) of the spectrum (the value of hq where q = 0 and Dq=1), and 

the asymmetry (sometimes referred to as αs) of the spectrum for each (see Appendix D for more 

code details).  

I ran four repeated measures MANOVAs with width, α0, and asymmetry as dependent 

variables (DVs) and sound type and emotion as independent variables (IVs) (Table B4; Table B5; 

Table B6; Table B7). Four MANOVAs were run to allow for these comparisons on Cz and Fz 

electrodes and on alpha and theta brain wave rhythms (one for alpha rhythms from the Cz 

electrode, one for theta rhythms from the Cz electrode, one for alpha rhythms from the Fz 

electrode, and one for theta rhythms from the Fz electrode). This was done so that the effects of 

sound type and emotion might be seen on each of these separately, as they are separate channels 

of output data.   

Emotion was the only significant effect for both alpha wave rhythms at the Cz electrode 

(F (6, 32) = 4.275, p = .003; Wilks’ Λ = 0.308, partial η2 = .445) (Table 1) and theta wave 

rhythms at the Cz electrode (F (6, 32) = 3.687, p = .007; Wilks’ Λ = 0.350, partial η2 = .409) 

(Table 2). Happy sounds induce higher α0 than sad and angry sounds at the Cz electrode for both 

alpha and theta rhythms (Figure 8; Figure 9). The widths of the multifractal spectra differ for 
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alpha at the Cz electrode, with responses to angry sounds having the highest width, followed by 

sad sounds, and happy sounds having the lowest width. Asymmetry of the multifractal spectra 

also differ for alpha at the Cz electrode, with the same pattern (A>S>H). 

 

Table 1 

Results of MANOVA at electrode site Cz on brain wave rhythm alpha with multifractal spectrum 

characteristics (width, α0, asymmetry) as DVs.  

 

Within Subjects Effect Wilks’ λ F Hypothesis df Error df Sig. Partial η2 Observed Power 

emotion .308 4.275 6.000 32.000 .003* .445 .953 

sound .909 .234 3.000 7.000 .870 .091 .077 

emotion * sound .731 .903 6.000 32.000 .505 .145 .303 

Note. * denotes significant p values at α = .05. 

 

Table 2 

Results of MANOVA at electrode site Cz on brain wave rhythm theta with multifractal spectrum 

characteristics (width, α0, asymmetry) as DVs.  

Within Subjects Effect Wilks’ λ F Hypothesis df Error df Sig. Partial η2 Observed Power 

emotion .350 3.687 6.000 32.000 .007* .409 .915 

sound .886 .300 3.000 7.000 .825 .114 .084 

emotion * sound .616 1.462 6.000 32.000 .223 .215 .485 

Note. * denotes significant p values at α = .05. 

 

The results at the Fz electrode are more varied, with a significant effect of only sound 

type on alpha dependent variables (F (3, 7) = 5.348, p = .031; Wilks’ Λ = 0.304, partial η2 

= .696) (Table 3) and a significant interaction of emotion and sound on theta dependent variables 

(F (6, 32) = 3.840, p = .005; Wilks’ Λ = 0.338, partial η2 = .419) (Table 4). Guitar sounds have a 
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higher α0 than vocal sounds for alpha waves at Fz (Figure 10). Angry guitar sounds elicit the 

highest α0 for theta waves at Fz, followed by happy sounds, then followed by sad sounds (Figure 

11). The multifractal spectra for responses to vocal sounds for theta at Fz are very similar across 

emotions, with responses to sadness having the lowest width and responses to happiness having 

the highest width (Figure 12). 

 

Table 3 

Results of MANOVA at electrode site Fz on brain wave rhythm alpha with multifractal spectrum 

characteristics (width, α0, asymmetry) as DVs.  

Within Subjects Effect Wilks’ λ F Hypothesis df Error df Sig. Partial η2 Observed Power 

emotion .563 1.775 6.000 32.000 .136 .250 .579 

sound .304 5.348 3.000 7.000 .031* .696 .718 

emotion * sound .640 1.333c 6.000 32.000 .271 .200 .444 

Note. * denotes significant p values at α = .05. 

 

Table 4 

Results of MANOVA at electrode site Fz on brain wave rhythm theta with multifractal spectrum 

characteristics (width, α0, asymmetry) as DVs.  

 

Within Subjects Effect Wilks' λ F Hypothesis df Error df Sig. Partial η2 Observed Power 

emotion .429 2.813 6.000 32.000 .026* .345 .811 

sound .140 14.357 3.000 7.000 .002* .860 .989 

emotion * sound .338 3.840 6.000 32.000 .005* .419 .927 

Note. * denotes significant p values at α = .05. 

 

 A conservative correction for familywise error would mean setting significance at α = 

0.0125 (.05/4). This would leave all results previously mentioned still significant except the 
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effect of sound type on Fz alpha and the main effect of emotion on Fz theta (though the effect of 

the interaction remains). 

 After each participant’s multifractal spectra were calculated for each type of sound, 

graphs were made for individual participants (Appendix C). I then averaged hq and Dq values for 

all participants for each sound type, electrode, and brain wave rhythm. Then, graphs were created 

by plotting these hq averages by the Dq averages for each significant comparison (Figures 8-12). 

 

 

Figure 8. Multifractal spectra averages for alpha at Cz, averaged across guitar and voice. 
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Figure 9. Multifractal spectra averages for theta at Cz, averaged across guitar and voice. 

 

 

Figure 10. Multifractal spectra averages for alpha at Fz, averaged across emotions. 
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Figure 11. Multifractal spectra averages for theta at Fz for guitar. 

 

 

Figure 12. Multifractal spectra averages for theta at Fz for voice. 
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To expound upon these results, univariate tests were also completed with a Bonferroni 

correction (Table B8; Table B9; Table B10; Table B11). These results show that α0 is the primary 

dependent variable with significant relationships to the emotion category; Cz alpha (F (2, 18) = 

9.820, p = .001; partial η2 = .522); Cz theta (F (2, 18) = 5.174, p = .017; partial η2 = .365); Fz 

alpha (F (2, 18) = 5.638, p = .013; partial η2 = .385); Fz theta (F (2, 18) = 6.357, p = .008; partial 

η2 = .414).  However, the alpha rhythms from the Cz electrode show significant relationships to 

all three dependent variables; width (F (2, 18) = 10.683, p = .001; partial η2 = .543); asymmetry 

(F (2, 18) = 5.624, p = .013; partial η2 = .385). To further investigate these relationships, means 

of each property were calculated for each emotion and each instrument.  

Means of asymmetry were higher for angry sounds than for happy sounds when listening 

to both guitar and vocal sounds. The patterns for asymmetry in EEG responses differed between 

voice and guitar on sad sounds (Figure 13).  

 

 

Figure 13. Means of the asymmetry of the multifractal spectra while participants heard each type 

of sound. 
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Means of α0 were higher for happy sounds than for angry sounds when listening to both 

guitar and vocal sounds. The patterns for α0 in EEG responses also differed between voice and 

guitar on sad sounds (Figure 14).  

 

 

Figure 14. Means of α0 of the multifractal spectra while participants heard each type of sound. 

 

Means of width of the multifractal spectra were higher for angry sounds than happy 

sounds in responses to both guitar and voice. Again, the pattern differed on sad sounds (Figure 

15).  

 

Figure 15. Means of the width of the multifractal spectra while participants heard each type of 

sound. 
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Discussion 

In this study, I tested the hypothesis that there are systematic differences of the 

multifractal spectrum of EEG responses (width, apex, asymmetry) between conditions (emotion 

and sound type of sound being heard) that would be obscured by other forms of analysis.   

To address this question, a collection of high-quality sounds was recorded. Non-verbal 

vocal sounds were recorded for the emotions of sadness, happiness, and anger. Electric guitar 

sounds were recorded with differing timbre characteristics. Listeners validated these sounds for 

their emotional content by making judgements about what emotion they conveyed, how intense 

the emotion was, and (for vocal sounds) how believable the emotion was. The results of this 

process indicated that certain parameters of electric guitar timbre can predictably convey 

emotional information to listeners. They also indicated that there is a relationship between the 

emotional information conveyed through timbre in electric guitar sounds and that conveyed 

through non-linguistic vocal sounds. Specifically, a high mean attack slope (which might also be 

called a fast onset time) for a given electric guitar or non-linguistic vocal sound indicates a 

“happy” emotion, a low mean attack slope indicates “angry,” and an attack slope between those 

two indicates “sad.” This is an interesting finding, as some studies have found anger to have a 

particularly high attack slope. This could be related to more subtle differences in types of anger 

(for example, threatening anger or more passive anger). To my knowledge, the finding that attack 

slope alone can predict the emotional category of a sound (at least in regard to these three 

categories) and, to some degree, the neurological response of the listener, is unique to this study. 

While self-report measures of perceived emotion were helpful in obtaining listeners’ 

subjective perceptions about the sounds, the EEG data collected during the experiment give 

further insight into how hearing these sounds with perceived emotional content affect the 
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underlying neurological processes of the brain. Since the processes of the brain have been found 

to be complex and multifractal in several studies including the current study, it is appropriate to 

use multifractal analysis techniques and inappropriate to use other analysis techniques that do not 

account for this complexity. It was found that the singularity spectrum/multifractal spectrum of 

EEG responses (width, apex, and asymmetry) differs as a function of the emotional category of a 

sound at the Cz electrode. At the Fz electrode, the multifractal spectra of the alpha rhythm waves 

differ as a function of the sound type. The multifractal spectra of the theta rhythm at Fz differ as 

a function of the interaction of sound type and emotion.  

There are some trends across electrode sites and brain wave rhythms. Where emotion had 

a significant contribution to the differences, multifractal spectra of EEG responses to angry 

sounds have a higher width than spectra for sad sounds, indicating that neurological responses at 

these electrodes are higher in complexity when listening to angry sounds than when listening to 

sad sounds. Multifractal spectra of EEG responses where emotion was significant have a higher 

α0 for happy sounds than for sad sounds, indicating that neurological responses at these 

electrodes are more persistent when listening to happy sounds than when listening to sad sounds. 

Asymmetry for theta rhythms at the Fz electrode is higher in response to happy sounds than to 

angry sounds, for both guitar and voice. This indicates that extreme events play a less prominent 

role in neurological responses to angry sounds than in neurological responses to happy sounds 

when considering the theta rhythm at Fz. Neurological responses to angry sounds rely more 

heavily on smaller fluctuations, while responses to happy sounds are more balanced in their 

reliance on both small and large fluctuations. 

These results have direct implications for the entertainment industry. The results support 

the current practice of often using low attack slopes to build suspense by representation of anger 
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or threat in sound for film. Sound designers for a film or video games often utilize sounds with 

low (slow) attack slopes if they want to convey anger to the consumer. Conversely, a sound 

designer would want to use sounds with high (quick) attack slopes to convey happiness. This 

could also apply to singers and voice actors, who could slowly increase the amplitude of a note 

or phrase to more accurately portray anger. Further research involving attack slopes would be 

necessary to understand how attack slopes are used in different styles of music, but according to 

the present study it would be likely that slow (low) attack slopes would be most effective in 

conveying anger in music, especially when considering the electric guitar. It is tempting when 

discussing music to equate attack slopes involved in timbre of a sound with the tempo of a song; 

however, these are two separate features. A fast song in the metal genre, for example, might use 

guitar sounds with relatively low attack slopes. Through the song itself is moving quickly, each 

individual note might be relatively slow in its rise in amplitude when compared to other guitar 

timbres. While evidence toward the overarching concept that listeners perceive different 

emotional communication based only on changes in timbre is in itself important, more research 

is needed to add further ecological validity to these findings. 

These results also apply directly to music therapy and other forms of sonic therapy. For 

example, if there is a need to raise multifractal spectral width, listening to a sound with a low 

(slow) attack slope would encourage this. This might be helpful in altering neurological systems 

for patients who struggle with certain pathologies such as poststroke depression and have a 

particularly low multifractal spectral width. Conversely, it is possible that sounds with high 

(quick) attack slopes might decrease multifractal spectral width for people experiencing 

schizophrenia, epileptic seizures, or major depression by encouraging the neurological system to 

become less chaotic and more persistent. Further research needs to be done to confirm whether 
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these results might generalize to those who suffer from these conditions, and whether they might 

help with symptoms in a practical way. 

The results of this study could be expanded upon in many ways. One limitation of the 

current study is that direct comparison between the vocal sounds and the guitar sounds may have 

been difficult for participants, since the guitar sounds contained only one note (fundamental 

frequency) while the vocal sounds contained fluctuating fundamental frequencies. While this 

limitation was necessary to isolate the effects of timbre on the perception of the guitar sounds, a 

study in which the sounds are more directly comparable could reveal new insights. Using vocal 

sounds that are consistently categorized into different emotions while not containing pitch 

fluctuation would allow for a more direct comparison and might reveal more about the 

relationship between communication through timbre in voice and communication through timbre 

in electric guitar. However, this would be fairly unnatural and would therefore lack much in 

terms of ecological validity. Another way to improve the comparability of sounds might be to 

imitate the vocal fluctuations of fundamental frequency with a guitar. This would be somewhat 

difficult to do with a high level of accuracy, but would have higher ecological validity since it is 

rare that vocalists or guitarists only use a single fundamental frequency in communication. Also, 

while the results of this study showed some trends, there are individual differences that can be 

seen between participants (Appendix C). This indicates that there are other factors at play in 

these neurological responses that were not considered in this study and could be used as 

variables in future research. For example, how might neurological responses of women differ 

from those of men? Beyond differences in the sex of the listener, differences in responses 

depending on the sex of the speaker might be explored. I controlled for this by utilizing a male 

and a female speaker, but this could instead be treated as its own independent variable (IV) in 
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future studies to determine whether there are systematic differences between multifractal 

neurological responses to male vocal sounds and responses to female vocal sounds. I think that 

there could be a systematic difference between responses to vocal sounds of anger dependent on 

whether the sex of the listener matches that of the speaker. For example, when the sex of the 

speaker and listener match, the observable reaction might be more aggressive than it would be if 

the sex is mismatched. This might relate to a difference in the underlying neurological state as 

well. Based on my research, I speculate that there would be an interaction between the sex of the 

speaker and the sex of the listener on neurological responses. Responses to same-sex vocal 

sounds of anger might have higher multifractal width, lower α0, and higher asymmetry than 

mismatched-sex vocal sounds. Multifractal characteristics would also likely differ between 

professional audio engineers (for music, film, video games, etc.) and those without any audio 

work experience, since a part of an audio engineer’s job is to listen for and adjust timbre 

differences. I suggest that audio engineers might show more pronounced differences in 

neurological responses to sounds with differing perceived emotional content. Another potential 

area for expansion is in observing behavioral and cognitive results of the alteration of the 

multifractal spectrum to offer further insight into how this information might be applied 

effectively in music therapy. For example, the following questions might be asked: Can the 

induced neurological state be maintained over time? If so, how might changes in this state be 

reflected in cognitive tasks? How might someone convey fear or calmness using attack slopes? I 

predict that sounds that convey fear might have a relatively high attack slope, since fear is an 

emotion that is more associated with submissiveness rather than aggression (such as anger). The 

multifractal neurological responses to these sounds of fear might be similar to those of sadness, 

since these sounds both imply submissiveness and need for social support. However, some have 
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speculated that fear (along with some other emotions) may be difficult to express utilizing only 

timbre and could rely on other elements of sound. These results could also be expanded upon 

from a musicological perspective by studying different pieces or genres of music to determine 

average attack slopes. In combination with collection of EEG data and/or self-report data, the 

extent to which the current findings might relate to everyday music listening experiences might 

be discovered.  
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Appendix A: Consent Form  

UNIVERSITY OF CENTRAL OKLAHOMA  
INFORMED CONSENT FORM 

Research Project Title: Physiological and Emotional Reactions to Timbre in Voices and 

Electric Guitar  

Researcher (s): Sephra Scheuber, Dr. Mickie Vanhoy 

A. Purpose of this research: This research is designed to explore emotional and 

physiological reactions to sounds and to build scientific knowledge about how sounds 

can affect people physiologically and psychologically.  

B. Procedures/treatments involved: First, participants will receive a basic hearing test to 

ensure that hearing is adequate for participation. If the hearing test is not passed, the 

participant will not be able to complete the study but will still receive course credit. If 

the hearing test is passed, participants will be seated comfortably in a laboratory 

room in front of a computer with feet flat on the floor. Four electrodes will be placed 

on the participant’s scalp for measurement of EEG brain signals. This requires mild 

scalp abrasion. The participant will be provided with headphones to put on. They will 

hear several sounds while sitting still and will be asked to answer a question after each 

pair of sounds via a mouse click. The questions will be based on the subjective 

experience of the participant; there are no “right” or “wrong” answers. The 

experimenter or lab assistant will be nearby to deal with any technical malfunctions.  

C. Expected length of participation: 1.5 hours total 

D. Potential benefits: Course credit and the opportunity to contribute to scientific 

knowledge about how sounds affect human psychology and physiology. Participants 

who do not pass the hearing test will be unable to complete the experiment but will 

still receive course credit. 

E. Potential risks or discomforts: Though improbable, there is the possibility of equipment 

malfunction leading to sounds being too loud and hurting the ears or a small electrical  
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shock. There is also a possibility of sympathetic nervous system arousal, but this is not likely 

to exceed the levels that would happen while listening to music or an emotional 

conversation. As electrode placement requires very mild skin abrasion, there is also a 

possibility of mild scalp irritation. 

F. Medical/mental health contact information (if required): N/A 

G. Contact information for researchers: Sephra Scheuber: sscheuber@uco.edu 

H. Contact information for UCO IRB: irb@uco.edu or (405) 974-5497 

I. Explanation of confidentiality and privacy: No identifying data will be kept, only a list 

of who participated in order to give course credit. 

J. Assurance of voluntary participation: At any time, you can choose to walk away and 

withdraw your participation in this study, but you will not receive course credit. You will 

not be penalized for withdrawing. This is completely voluntary. 

 

AFFIRMATION BY RESEARCH SUBJECT 

I hereby voluntarily agree to participate in the above listed research project and further 

understand the above listed explanations and descriptions of the research project. I also 

understand that there is no penalty for refusal to participate, and that I am free to withdraw my 

consent and participation in this project at any time without penalty. I acknowledge that I am at 

least 18 years old. I have read and fully understand this Informed Consent Form. I sign it freely 

and voluntarily. I acknowledge that a copy of this Informed Consent Form has been given to me 

to keep.  

Research Subject’s Name:       

Signature:   Date       
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Appendix B: Tables 

Table B1 

Entropy calculations for each guitar sound.  

File Name Angry Sad Happy Other Entropy Most Common Emotion 

Category 

AMP4DISTRD* 3.03% 6.06% 18.18% 72.73% 0.817412 HAPPY 

AMP5SW* 6.90% 6.90% 31.03% 55.17% 1.060088 HAPPY 

AMP8SW* 0.00% 53.85% 0.00% 46.15% 0.690186 SAD 

AMPCln 0.00% 44.44% 11.11% 44.44% 0.964963 SAD 

Guit1CutHarsh 3.45% 20.69% 20.69% 55.17% 1.096174 SAD/HAPPY SPLIT 

Guit1Dark* 3.45% 27.59% 0.00% 68.97% 0.727635 SAD 

Guit1HiCutLowShlf 3.70% 37.04% 0.00% 59.26% 0.800012 SAD 

Guit1LowCutHiShlf 10.71% 7.14% 10.71% 71.43% 0.907468 ANGRY/HAPPY 

SPLIT 

Guit1121NL1* 0.00% 25.00% 0.00% 75.00% 0.562335 SAD 

Guit1121NL5 4.00% 48.00% 0.00% 48.00% 0.833365 SAD 

Guit1121NL7 3.70% 37.04% 0.00% 59.26% 0.800012 SAD 

Guit1121NL10* 15.38% 7.69% 0.00% 76.92% 0.687092 ANGRY 

Guit1121NL15 0.00% 18.18% 9.09% 72.73% 0.759547 SAD 

Guit1121NL16 0.00% 35.71% 21.43% 42.86% 1.060944 SAD 

Guit1121NL19 8.33% 41.67% 0.00% 50.00% 0.918428 SAD 

Guit1121NL23 11.11% 7.41% 22.22% 59.26% 1.08124 ANGRY 

Guit1121NL27 11.54% 15.38% 11.54% 61.54% 1.085086 SAD 

Guit1121NL30* 6.67% 13.33% 0.00% 80.00% 0.627705 SAD 

Guit1121NL31 12.50% 25.00% 12.50% 50.00% 1.213008 SAD 

Guit1121NL35* 53.33% 20.00% 0.00% 26.67% 1.009614 ANGRY 

Guit1121NL38* 50.00% 0.00% 50.00% 0.00% 0.693147 ANGRY 

Guit1121NL40 13.64% 36.36% 13.64% 36.36% 1.2791 SAD 

Guit1121NL43 53.33% 0.00% 20.00% 26.67% 1.009614 ANGRY 

Guit1121NL46 4.35% 60.87% 0.00% 34.78% 0.805827 SAD 

Guit1121NL51* 3.57% 21.43% 32.14% 42.86% 1.177045 HAPPY 

Guit1121NL52* 23.81% 19.05% 0.00% 57.14% 0.97732 ANGRY 

Guit1121NL55* 10.34% 0.00% 20.69% 68.97% 0.816915 HAPPY 

Guit1121NL60 10.71% 7.14% 10.71% 71.43% 0.907468 ANGRY/HAPPY 

SPLIT 

Note. * indicates sounds that were chosen. 
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Table B2 

Results of MANOVA with timbre characteristics (brightness, attack slope, spectral centroid, and 

spectral flux) as dependent variables.  

Effect Wilks’ λ F Hypothesis df Error df Sig. 

emotion .582 3.812 8.000 98.000 *.001 

sound .964 .453 4.000 49.000 .770 

emotion * sound .782 1.602 8.000 98.000 .134 

Note. * denotes significant p values at α = .05. 
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Table B3 

Results of Between-Subjects Effects for MANOVA with timbre characteristics as dependent 

variables.  

Effect SS df MS F Sig. 

brightness 88.294 2 44.147 .406 .668 

attack slope 1579.422 2 789.711 10.224 .000* 

centroid 167.327 2 83.663 .674 .514 

 flux 262.189 2 131.094 1.093 .343 

Note. * denotes significant p values at α = .05. 
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Table B4 

Results of MANOVA at electrode site Cz on brain wave rhythm alpha with multifractal spectrum 

characteristics (width, α0, asymmetry) as DVs.  

Within Subjects Effect Wilks’ λ F Hypothesis df Error df Sig. Partial η2 Observed Power 

emotion .308 4.275 6.000 32.000 .003* .445 .953 

sound .909 .234 3.000 7.000 .870 .091 .077 

emotion * sound .731 .903 6.000 32.000 .505 .145 .303 

Note. * denotes significant p values at α = .05. 
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Table B5 

Results of MANOVA at electrode site Cz on brain wave rhythm theta with multifractal spectrum 

characteristics (width, α0, asymmetry) as DVs.  

Within Subjects Effect Wilks’ λ F Hypothesis df Error df Sig. Partial η2 Observed Power 

emotion .350 3.687 6.000 32.000 .007* .409 .915 

sound .886 .300 3.000 7.000 .825 .114 .084 

emotion * sound .616 1.462 6.000 32.000 .223 .215 .485 

Note. * denotes significant p values at α = .05. 
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Table B6 

Results of MANOVA at electrode site Fz on brain wave rhythm alpha with multifractal spectrum 

characteristics (width, α0, asymmetry) as DVs.  

Within Subjects Effect Wilks’ λ F Hypothesis df Error df Sig. Partial η2 Observed Power 

emotion .563 1.775 6.000 32.000 .136 .250 .579 

sound .304 5.348 3.000 7.000 .031* .696 .718 

emotion * sound .640 1.333c 6.000 32.000 .271 .200 .444 

Note. * denotes significant p values at α = .05. 
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Table B7 

Results of MANOVA at electrode site Fz on brain wave rhythm theta with multifractal spectrum 

characteristics (width, α0, asymmetry) as DVs.  

 

Within Subjects Effect Wilks' λ F Hypothesis df Error df Sig. Partial η2 Observed Power 

emotion .429 2.813 6.000 32.000 .026* .345 .811 

sound .140 14.357 3.000 7.000 .002* .860 .989 

emotion * sound .338 3.840 6.000 32.000 .005* .419 .927 

Note. * denotes significant p values at α = .05. 
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Table B8 

Results of univariate tests with Bonferonni correction at electrode site Cz on brain wave rhythm 

alpha with multifractal spectrum characteristics (width, α0, asymmetry) as DVs.  

 

Source Measure SS df MS F Sig. Partial η2 

emotion Alpha0 .209 2 .105 9.820 .001* .522 

Width .323 2 .162 10.683 .001* .543 

Asymmetry .116 2 .058 5.624 .013* .385 

Error(emotion) Alpha0 .192 18 .011    

Width .272 18 .015    

Asymmetry .185 18 .010    

sound Alpha0 .001 1 .001 .293 .602 .032 

Width .006 1 .006 .134 .723 .015 

Asymmetry .003 1 .003 .564 .472 .059 

Error(sound) Alpha0 .043 9 .005    

Width .423 9 .047    

Asymmetry .056 9 .006    

emotion * sound Alpha0 .024 2 .012 1.641 .221 .154 

Width .051 2 .025 1.270 .305 .124 

Asymmetry .017 2 .009 1.055 .369 .105 

Error(emotion*sound) Alpha0 .134 18 .007    

Width .360 18 .020    

Asymmetry .146 18 .008    

Note. * denotes significant p values at α = .05. 
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Table B9 

Results of univariate tests with Bonferonni correction at electrode site Cz on brain wave rhythm 

theta with multifractal spectrum characteristics (width, α0, asymmetry) as DVs.  

 

Source Measure SS df MS F Sig. Partial η2 

emotion Alpha0 .086 2 .043 5.174 .017* .365 

Width .029 2 .014 .345 .713 .037 

Asymmetry .001 2 .000 .045 .956 .005 

Error(emotion) Alpha0 .149 18 .008    

Width .756 18 .042    

Asymmetry .176 18 .010    

sound Alpha0 .002 1 .002 .819 .389 .083 

Width 1.323E-7 1 1.323E-7 .000 .998 .000 

Asymmetry 7.125E-5 1 7.125E-5 .017 .900 .002 

Error(sound) Alpha0 .024 9 .003    

Width .189 9 .021    

Asymmetry .038 9 .004    

emotion * sound Alpha0 .029 2 .015 3.328 .059 .270 

Width .023 2 .012 .646 .536 .067 

Asymmetry .027 2 .014 1.586 .232 .150 

Error(emotion*sound) Alpha0 .079 18 .004    

Width .322 18 .018    

Asymmetry .154 18 .009    

Note. * denotes significant p values at α = .05. 
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Table B10 

Results of univariate tests with Bonferonni correction at electrode site Fz on brain wave rhythm 

alpha with multifractal spectrum characteristics (width, α0, asymmetry) as DVs.  

 

Source Measure SS df MS F Sig. Partial η2 

emotion Alpha0 .027 2 .013 5.638 .013* .385 

Width .004 2 .002 .244 .786 .026 

Asymmetry .004 2 .002 .566 .578 .059 

Error(emotion) Alpha0 .043 18 .002    

Width .142 18 .008    

Asymmetry .067 18 .004    

sound Alpha0 .057 1 .057 9.827 .012* .522 

Width .092 1 .092 2.845 .126 .240 

Asymmetry 2.998E-5 1 2.998E-5 .024 .881 .003 

Error(sound) Alpha0 .052 9 .006    

Width .291 9 .032    

Asymmetry .011 9 .001    

emotion * sound Alpha0 .021 2 .011 3.993 .037* .307 

Width .001 2 .000 .016 .984 .002 

Asymmetry .004 2 .002 .544 .589 .057 

Error(emotion*sound) Alpha0 .048 18 .003    

Width .378 18 .021    

Asymmetry .068 18 .004    

Note. * denotes significant p values at α = .05. 
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Table B11 

Results of univariate tests with Bonferonni correction at electrode site Fz on brain wave rhythm 

theta with multifractal spectrum characteristics (width, α0, asymmetry) as DVs.  

 

Source Measure SS df MS F Sig. Partial η2 

emotion Alpha0 .033 2 .016 6.357 .008* .414 

Width .062 2 .031 .901 .424 .091 

Asymmetry .012 2 .006 1.023 .379 .102 

Error(emotion) Alpha0 .046 18 .003    

Width .619 18 .034    

Asymmetry .104 18 .006    

sound Alpha0 .038 1 .038 15.276 .004* .629 

Width 9.203E-5 1 9.203E-5 .007 .934 .001 

Asymmetry .000 1 .000 .026 .876 .003 

Error(sound) Alpha0 .023 9 .003    

Width .114 9 .013    

Asymmetry .077 9 .009    

emotion * sound Alpha0 .038 2 .019 8.685 .002* .491 

Width .085 2 .042 .992 .390 .099 

Asymmetry .031 2 .016 8.029 .003* .471 

Error(emotion*sound) Alpha0 .039 18 .002    

Width .770 18 .043    

Asymmetry .035 18 .002    

Note. * denotes significant p values at α = .05. 
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Appendix C: MFDFA Spectra Averages by Participant 

 

Figure 16. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 1. 

 

 

Figure 17. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 1. 
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Figure 18. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 2. 

 

 

Figure 19. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 2. 
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Figure 20. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 3. 

 

 

Figure 21. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 3. 
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Figure 22. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 4. 

 

 

Figure 23. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 4. 
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Figure 24. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 5. 

 

 

Figure 25. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 5. 
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Figure 26. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 6. 

 

 

Figure 27. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 6. 
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Figure 28. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 7. 

 

 

Figure 29. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 7. 
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Figure 30. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 8. 

 

 

Figure 31. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 8. 
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Figure 32. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 9. 

 

 

Figure 33. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 9. 
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Figure 34. Multifractal spectra of EEG responses to guitar sounds of different emotions for 

participant 10. 

 

 

Figure 35. Multifractal spectra of EEG responses to voice sounds of different emotions for 

participant 10. 
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Appendix D: Algorithms and Code 

MATLAB Code for Empirical Mode Decomposition (sample) 

> levelForReconstruction = [true, true, true, false, false, false, false, false, true]; 

> [imf, residual] = emd(GuitAP15T10CzARRAY, ... 

    'SiftRelativeTolerance', 0.25, ... 

    'SiftMaxIterations', 100, ... 

    'MaxNumIMF', 10, ... 

    'MaxNumExtrema', 1, ... 

    'MaxEnergyRatio', 20, ... 

    'Interpolation', 'spline'); 

> mra = [imf residual].'; 

>GuitAP15T10CzARRAY2 = sum(mra(levelForReconstruction,:),1); 

MATLAB Code for Wavelet Transformation (sample) 

> levelForReconstruction = [false, false, false, true, false, false, false, false, false, false, true]; 

> wt = modwt(GuitAP15T10CzARRAY2, 'db4', 10); 

> mra = modwtmra(wt, 'db4'); 

> GuitAP15T10CzAlpha = sum(mra(levelForReconstruction,:),1); 

> levelForReconstruction = [false, false, false, false, true, false, false, false, false, false, true]; 

> wt = modwt(GuitAP15T10CzARRAY2, 'db4', 10); 

> mra = modwtmra(wt, 'db4'); 

> GuitAP15T10CzTheta = sum(mra(levelForReconstruction,:),1); 
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MATLAB Code for MFDFA (sample) 

> scmin=10;  

> scmax=250;  

> scres=10;  

> exponents=linspace(log2(scmin), log2(scmax),scres);  

> scale=round(2.^exponents);  

> q=linspace(-5,5,101); 

> [GuitAP10T10CzAlphaHq,GuitAP10T10CzAlphatq,GuitAP10T10CzAlphahq, 

GuitAP10T10CzAlphaDq,GuitAP10T10CzAlphaFq]=MFDFA1(GuitAP10T10CzAlpha, 

scale,q,1,1) 

PEBL Code (sample) 

define WaitForDownClickDuring() 

{ 

part5data<-FileOpenAppend("EEGParticipant5.txt") 

a<-GetTime() 

click<-WaitForMouseButtonWithTimeout(1000) 

b<-GetTime() 

if((b-a)<1000) 

{ 

Wait(1000-(b-a)) 

} 

FilePrint(part5data,click) 

} 
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define Start(p) 

{ 

##PRACTICE 

part5data<-FileOpenAppend("EEGParticipant5.txt") 

win <- MakeWindow () 

inst <- EasyTextBox("",350,300,win,22,700,300) 

inst.text <- "First, you will do a few rounds of practice. You will hear a series of sounds, in pairs. 

The first sound in each pair will be a guitar, and the second sound will be a voice. Each sound 

represents happiness, sadness, or anger. After hearing two (2) sounds, indicate whether the pair 

of sounds you just heard is emotionally similar (right click) or dissimilar (left click). Please be as 

still as possible. After responding to each pair of sounds, you may blink. Let the researcher know 

if you have questions before you begin the practice round. Click the mouse to continue." 

WaitForDownClick () 

RemoveObject (inst,win) 

 

practiceonset<-GetTime() 

practicestamp<-Timestamp() 

FilePrint(part5data,practiceonset) 

FilePrint(part5data,practicestamp) 

prime <- EasyTextBox("",400,300,win,22,600,200) 

prime.text <- "                                       WAIT 

 

dissimilar (left click)                        similar (right click)" 
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practice <-LoadSound("EEGAudioSessionPRACTICE.wav") 

PlayBackground(practice) 

Draw() 

Wait(21000) 

 

resp <- EasyTextBox("",400,300,win,22,600,200,"black","green") 

resp.text <- "                                       RESPOND 

 

dissimilar (left click)                        similar (right click)" 

Draw() 

WaitForDownClickDuring() 

 

prime <- EasyTextBox("",400,300,win,22,600,200) 

prime.text <- "                                       WAIT 

 

dissimilar (left click)                        similar (right click)" 

Draw() 

Wait(21000) 

 

resp <- EasyTextBox("",400,300,win,22,600,200,"black","green") 

resp.text <- "                                       RESPOND 

 

dissimilar (left click)                        similar (right click)" 
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Draw() 

WaitForDownClickDuring() 
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Appendix E: Supplementary Disc 

See attached disc for the following data: 

1. Hurst exponents for each participant (Hq) 

2. Hӧlder exponents for each participant (hq) 

3. Dimension values for each participant (Dq) 

4. Raw Cz and Fz data for each participant 

5. Sound files 

6. Audio analysis data 

7. Trial Information 
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Appendix F: “Letter to a Thesis Writer” 

Creating and writing this thesis is one of the most challenging things I’ve done so far, so I 

thought it would be pertinent to share a few bits of wisdom with those who come after me (yes, it 

was my advisor’s idea).  

First, you are likely to feel some form of self-doubt, sometimes referred to as “imposter 

syndrome.” In some ways, this can help you to do your work with more rigor, but only if you 

believe you are capable of doing it well. One professor during my time here told us all that we 

would not have made it into the program if someone did not believe we could complete it (thank 

you, Dr. Jeyaraj-Powell). I needed to hear that long before I did, so I’m telling you now.  

Second, you must do your work to your own standards. The experience of many students 

is of teachers forcing them to do their best work at each step along the way. When you are a 

graduate student, that job is yours. You are the one who is most invested in your project, and 

even if others say it’s great (or it stinks), you are the one who knows why it is interesting and 

valuable research. You will not be happy with your research if you know it is not as good as it 

could be. If you question whether you should make it just a little better, you should! The balance 

of that is that you have to know when you need to rest. Good advisors and teachers will push 

you, because they want you to do as well as you possibly can. Only you know where the line is 

between doing your best and having a panic attack. It might be a good idea to get a counselor if 

you don’t have one yet; hopefully they can help you find that line. Be as consistent as you can 

with the things you know are important. Make time for friends, family, and faith (if you are of 

that persuasion) when you can. It won’t be as much as you would like, but those supports will get 

you through. You can do this! 


