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Abstract 

This research presents a novel concept of the connected reservoir storage (CRSM) with which 

we can characterize the reservoir and accurately predict the production performance of 

hydrocarbon reservoirs, which have a complex reservoir geometry and have a considerable 

uncertainty of reservoir energy support. Based on the deconvolution of measured pressures and 

rate data from a well, both a liquid and gas reservoir performance can be modeled using a group 

of normalized quantities with which the behavior of the well can be accurately predicted in all flow 

regimes. No foreknowledge of reservoir geometries, petro-physical properties, or fluid properties 

is required to develop this analysis.  

Reservoir storage is a time function defined as the product of the total compressibility and the 

reservoir volume at a particular time. Unlike with classical or curve fitting decline curve analysis, 

the CRSM is based on the pressure diffusivity theory by the normalized production rate and 

normalized cumulative production volume through deconvolution methods. With the knowledge 

of reservoir volumes, the long term well performance of liquid or gas reservoirs can be predicted. 

Through the development of the CRSM, three profiles can be ascertained and are interrelated to 

shed valuable insight into the production potential and health of a liquid or gas reservoir that 

exhibits complex formation geometries. The three curves are the reservoir response curve (RPC), 

normalized decline curve (NDC), and connected reservoir storage curve (CRSC). Utilizing the 

three curves stated above embodies a more powerful reservoir performance analysis technique for 

predicting the production potential of complex reservoirs.  

The CRSM will be presented from the fundamental material balance approach and 

mathematical equations will be derived for the model related to both liquid and gas reservoir 

production. The CRSM concept will be validated through the development of numerical simulation 
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models, conventional well application, with varying permeabilities, porosities and well geometries 

through the use of a reservoir simulation suite with known reservoir parameters and the utilization 

of deconvolution techniques to develop the CRSM. The CRSM will then be used to evaluate the 

reservoir response behavior to better approximate and characterize the flow and pressure behavior 

utilizing simulated production data of a bi-wing hydraulically fractured undersaturated oil 

reservoir, tight well application, and compare the CRSM to two classical forecasting methods. 

Additional studies using the CRSM will be applied to shale gas well performance comprised of a 

formation where the matrix is made up of very low permeable media (Kim and Lee, 2015). 

Moreover, this research will conclude by applying the CRSM to evaluate the reservoir response 

behavior to characterize the fracture network system in a shale gas reservoir with multi-stage 

hydraulic fracturing along the horizontal segment. 

The application ability of the CRSM allows for the bridging of the production decline and 

reservoir pressure response from production data found in the public domain. This concept enables 

one to evaluate and forecast current and future volume production, reservoir pressure behavior, 

average reservoir pressure and determine original fluids in place with no prior knowledge of 

reservoir geometries, petro-physical or fluid properties. With the development of this model, 

decline curve analysis (DCA) can be extended into the transient regime of the production period. 
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Chapter 1: Introduction 

1.1 Connected Reservoir Storage Model (CRSM) 

The CRSM will be presented from the fundamental material balance approach and 

mathematical equations will be derived for this model as it relates to both liquid and gas reservoirs. 

The primary objective of completing or stimulating reservoirs is to bypass formation damage 

encountered in the drilling and completion phase of a new well and by opening highly conductive 

fractures to increase the contacting surface area such that a well can be economically produced 

from a very low permeable media (Bybee, 2011). Tight reservoirs require a stimulation process 

such that recoverable resources can be produced economically due to flow behavior in tight 

reservoirs with multistage fractured horizontal wells being acutely complex (Wu, 2015). The 

actual physics behind the flow and transport processes regarding tight formations is insufficiently 

understood; therefore, at this time there is not an effective way of modeling the dynamic flow 

behaviors during the process of development (Spivey and Lee, 2013). One common approach 

regarding production performance analysis and forecasting is using conventional reservoir 

simulation to approximate hydrocarbon migration and rate forecast. This method is usually time-

consuming and contains large uncertainties due to poor reservoir characterization of its 

heterogeneity. Another practical way is to use decline curve analysis (DCA), such as the Arps’ 

model (Arps, 1945), which is often used to evaluate tight formation performance, even though the 

fundamental assumptions are highly questionable for reservoirs with permeability in the order of 

nano-Darcy’s. Therefore, there is a need to develop physics-based mathematical models as well as 

associated modeling tools for assisting in the development and quantification of tight formation 

oil and gas resources.  
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Tight formation wells that are completed with hydraulic fractures exhibit multiple flow 

regimes including linear flow, boundary dominated flow via fracture interface, linear flow in the 

unstimulated matrix that may or may not appear during the life of the well (Joshi and Lee, 2013). 

Currently, several methods have been empirically formulated for shale and tight formation wells. 

These methods are Power Law Exponential Decline (PLE) (Ilk et al., 2008), Stretched Exponential 

Decline (SEPD), (Valkó and Lee, 2010), the Duong model (Duong, 2011) and the logistic growth 

model (LGM) (Clark et al., 2011b) and each method has different parameters used for history 

matching for the goodness of fit using numerical regression (Agarwal et al., 1999; Duong, 2011; 

Freeborn and Russell, 2012; Kanfar and Wattenbarger, 2012). Other curve fitting based models 

that have been developed for tight formations in the past five years are the composite type curve 

model (Childers and Callard, 2015), and the combined capacities resistance model (CRM), which 

was developed as a data-driven approach using the physics of the reservoir to find a collaboration 

between analytical and empirical methodologies, which was initially designed for waterflood 

performance with an application for unconventional wells (Pan, 2016), the Fracture Decline Model 

(FDC) based on uncharacteristic anomalous diffusion principles (Zuo et al., 2016). The Variable 

Decline Modified Arps’ model (Gupta et al., 2018) modifies the existing Arps’ exponential decline 

curve by replacing the constant decline rate with power-law function for variable decline rates, 

which in turn has been applied to existing shale reservoir. Ravikumar and Lee (2019) proposed 

Bayesian estimations and prior probability distributions to facilitate noise reduction for better 

estimates in the loss ratio and Arps’ b-factor to understand reservoir flow regimes when applied to 

tight formation reservoirs. Currently, one aspect that is challenging for empirical models to 

reconcile is due to the high initial production from a tight reservoir, which is caused by the fracture 

network unloading, which results in early production in two transient flow phenomena, fracture 
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linear flow followed by bilinear flow (Wasaki and Akkutlu, 2015). Flow characteristics in tight 

formations are still not well understood; therefore, most of the empirical curve-fitting techniques 

cannot be used to accurately predict reservoir behavior in the long term and lose accuracy when 

production schedules are modified (Childers and Wu, 2017). Uncertainty in reserve estimates 

using DCA techniques has led to the need for probabilistic methods to overcome shortcomings 

with tight formation reservoirs (Holdaway, 2013).  

This research focuses on production forecast from a reservoir system comprised of low 

permeable matrix and fracture networks, which features multiple flow regions and complex 

reservoir energy charging. The CRSM differs from the empirical methods as it relies on the actual 

physics of the reservoir, lending itself to more acceptable reservoir forecasting results with the 

novelty being the implementation through deconvolution to converge on a solution that will update 

in real-time and forgoes the need to use tuning parameters as in classical empirical methods. The 

model utilizes production rate history and well flowing bottom-hole pressure that can be readily 

found or determined in practice. Utilizing the CRSM allows for production performance prediction 

to be applied to a well with varying operational conditions, which will exceed the current curve 

fitting based models. The CRSM was first developed using numerical simulation models with 

variable reservoir parameters via reservoir simulation and deconvolution techniques. The CRSM 

was then used to evaluate the reservoir response behavior to better approximate and characterize 

the flow and pressure behavior utilizing simulated production data of a bi-wing hydraulically 

fractured undersaturated oil reservoir. The CRSM was then applied to shale gas well performance 

where the matrix is made up of very low permeable media to predict future production behavior. 

Lastly, the CRSM was applied to characterize the fracture network system in a shale gas reservoir 

with multi-stage hydraulic fracturing along the horizontal segment.  
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1.2 Research Motivation: 

The motivation of this research is to present a new approach of evaluating reservoir response 

behavior to accurately predict well production performance through the concept of the CRSM as 

it relies on the actual physics of the reservoir; thereby, lending itself to more accurate reservoir 

forecasting results. This model utilizes production rate history and well flowing bottom-hole 

pressure from numerical simulation models and actual production data from a shale reservoir. This 

research continues the efforts of DCA but utilizes the CRSM that allows for the extension of DCA 

into the transient and pseudosteady state (PSS) flow regimes.  

 
 

1.3 Research Objectives: 

The limitations of the empirically formulated methods previously mentioned have led to the 

development of the CRSM bypassing the ambiguous nature when using empirical methods by 

incorporating reservoir diffusivity theory and to allow for rate forecasting with changes in 

operational conditions. The CRSM determines a unit response behavior of a producing reservoir - 

through the utilization of deconvolution techniques - from measured transient pressure and 

production rate data (Kuchuk et al., 2010a). Deconvolution has been used to determine a wide 

variety of reservoir parameters such as the minimum tested reservoir volume (Whittle and 

Gringarten, 2008), enhanced reservoir characterization (Ahmad et al., 2016), and used in the 

minimization and removal of wellbore storage effects (Dastkhan et al., 2015). Details and other 

applications in the determination of reservoir characteristics as well as pressure transient analysis 

applications can be found in the literature (Levitan, 2005; Levitan and Wilson, 2012). 
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1.4 Layout of Chapters: 

Chapter 2 is a literature review of the various production forecasting methodologies and 

fracture diagnostic methods used in tight formations that exhibit low permeable media. The 

mathematical models, assumptions, limitations, and applications will be discussed. This chapter 

intends to help the reader understand the various methodologies of the existing problems when 

utilizing these methods with production forecasting and fracture diagnostics. 

Chapter 3 is the introduction of the CRSM. This chapter will detail how the CRSM was 

derived and how it should be implemented to aid in production forecasting and fracture diagnostics 

along with model validation. 

Chapter 4 applies the CRSM to a bi-wing hydraulically fractured undersaturated oil reservoir 

to predict production performance and compare the results to two classical empirical techniques 

currently used in unconventional reservoir predictions. The validation is done via numerical 

simulation.  

Chapter 5 will demonstrate the interrelated paradigms among well performance, increasing 

reservoir connected volume, and rate forecasts with uncertainties. This research uses the 

operational history of a shale gas well to demonstrate the CRSM’s capability in rate prediction 

under variable operating conditions. 

Chapter 6 applies the CRSM to the actual production rate and pressure of a shale gas reservoir 

free of subsurface uncertainties and can be used efficiently to characterize the flow regimes and 

reservoir boundaries, derive the reservoir behavior, and predict production performance to quantify 

hydraulic fractures using the CRSM. This chapter will demonstrate that the CRSM can be used in 

lieu of stimulated reservoir volume (SRV) for multiple stage fracture characterization. The CRSM 
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allows for estimating the efficiency of a stimulation program through production decline and 

reservoir pressure response from production data and is strongly physics-based. 

Chapter 7 presents conclusion, recommendations, and future research endeavors. 
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Chapter 2: Literature Review 

This chapter will review the current methodologies, mathematical models, and practices 

regarding prediction models used in tight formations such as reservoirs classified as shales and 

sandstones. This review will also look at the current technologies used to characterize fractures 

after undergoing a hydraulic stimulation process. Fracture technologies will be reviewed based on 

mechanisms, advantages, limitations, and uncertainties when evaluating hydraulic fracture 

treatment. Hydraulic fracturing of a reservoir has two motivations. (1) To accelerate the production 

potential of oil or gas reservoirs through the increase of the productivity index, while unlocking 

trapped hydrocarbons in tight formations that would not otherwise be economically viable to 

produce, in this case, tight formations. (2) To bypass the near-wellbore skin damage induced by 

drilling and completion practices to allow better communication with the reservoir, in this case 

conventional wells. Whichever well classification, conventional or unconventional, one is 

evaluating, the need for understanding fracture characterization is imperative to surmise how 

hydraulic fractures interface with natural fractures in the reservoir, example shales, and understand 

how the induced hydraulic fractures propagate near the wellbore and far away from the wellbore. 

 

2.1 Current Production Forecasting Methods:  

Throughout the literature, there have been many research efforts to develop mathematical 

models such that the behavior of tight formation production can be estimated and projected into 

the future. Projecting production from tight formations has been an ongoing challenge due to the 

uncertainties one encounters when evaluating shales and sandstones, which are deemed 

unconventional due to their very low permeable media. Some of the uncertainties of hydrocarbon 

production reside in the fluid transport mechanism when encountering hydraulic fractures and the 
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natural fractures in the formation (Tan et al., 2018).  Reservoir simulation methods are arguably 

the most efficient method for production forecasting; however, this can be time consuming and 

expensive. Many production models have been developed, mostly empirical except for the 

combined capacities resistance model (CRM), which was developed as a data-driven approach 

using the physics of the reservoir to find a collaboration between analytical and empirical 

methodologies (Pan, 2016). The following review will look at the most common models used in 

production forecasting of tight formations and discuss their governing assumptions,  applications, 

and limitations.  

 
 

2.1.1 Reservoir Simulation 

Perhaps the most efficient way to develop production forecasting models is through reservoir 

simulation; however, simulators are predicated on classical diffusivity equations based on Darcy 

flow mechanisms and the complexity of the tight formation wells regarding organic matter, 

petrophysical properties and nanopores make it extremely challenging to develop simulation 

models to capture all of the multifaceted flow mechanism one would encounter. Moreover, 

gathering the needed information to properly develop a reservoir simulation model can be 

expensive and time consuming and one needs to evaluate the economic feasibility to determine if 

the information needed to conduct reservoir simulation is warranted (Tan et al., 2018). Lastly, in 

depth experience is paramount to developing a good reservoir simulation model where one needs 

a good foundational understanding of conservation of mass, energy and momentum as well 

equations of state and constitutive equation, which is the foundation of reservoir simulation and 

each element can contribute to uncertainty in reservoir simulation analysis (Ertekin et al., 2019). 
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2.1.2 Hydrocarbon Tight Formation Production Models  

Many models have been developed or have been adapted to predict the production 

performance of tight reservoirs. This section will discuss the most commonly used foundational 

models found in the literature and emphasize their applications and limitations.  

The most often used classical production forecasting model used in evaluating tight formation 

production has been the Arps model introduced in 1945 (Arps, 1945). The governing assumptions 

regarding the Arps model state that the bottom-hole flowing pressure (BHFP), skin factor and 

drainage area must be constant, and the flow regime has reached boundary dominated flow. Arps 

defined the change in flow rate by Eq. (2-1) where D  the continuous decline rate per unit time,  

for liquid flow rate in STB per unit of time and gas flow rate in Mscf per unit of time. 

 

 
 lnd q

D
dt

  (2-1) 

 

The Arps exponent b is described as the time rate of change to the reciprocal rate of the decline 

rate Eq. (2-2) and should remain constant throughout the life of the well.  

 

  1d Db
dt

  (2-2) 

 

Integrating Eq. (2-2) for 0 to t , a unit of time, and assuming at 0t   that iD D  , where iD  is 

the initial decline rate at 0t  , then Eq. (2-2) becomes Eq. (2-3) as follows: 

 

 
1

i

i

D
D

bDt



 (2-3) 
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Setting Eq. (2-1) equal to Eq. (2-3) gives the general differential expression of the Arps equation: 

 

 
 ln

1
i

i

d q D

dt bDt
 


 (2-4) 

 

From this expression, Eq. (2-4), three cases where assessed for Arps exponent values of 0b  , 

exponential case, 0 1b  , hyperbolic case, and 1b , harmonic case. From the Arps model a few 

observations should be discussed. (1) The assumption that the Arps exponent b remains constant 

throughout the life of the reservoir is an impracticality for any well especially that of tight 

formations as Arps fails to fit early time production of tight formation performance. (2) The Arps 

is essentially only applicable to medium or high permeable reservoirs as one of the governing 

assumptions is that it has reached boundary dominated flow rather quickly, which is not the case 

for tight formation reservoirs as this may take months if not years to reach boundary dominated 

flow. The Arps model is mathematically simple and is easy to implement with non-linear 

regression methods and is one of the reasons it is still so widely used in production forecasting 

applications especially those wells that are considered tight formation. Using the Arps model for 

tight formation production will lead to overestimates of production performance and ultimately in 

estimated ultimate recovery’s (EUR’s) (Akbarnejad-Nesheli et al., 2012). Other works that where 

developed from the Arps model where the Fetkovich dimensionless type curves (Fetkovich, 1980a) 

that combined the infinite acting flow regime and boundary dominated flow regimes to the Arps 

model in the same coordinate system, which helped to extend the Arps model to cover a wider 

range of conditions one would encounter during well life. 
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Another model that is predicated on the original Arps model is the Modified Hyperbolic 

Decline (MDH) model. The MDH model was developed to overcome the original Arps model's 

issues for boundary-dominated flow. However, the original assumptions of the Arps model still 

apply as this model utilizes two equations based on the Arps model with a transition from the 

transient flow regime to boundary dominated flow occurring at a predetermined decline rate given 

by D . It should be noted that D  can be ascertained from empirical correlations and has no 

physical foundation, according to Meyet Me Ndong et al. (2013). To determine the transition point, 

one would employ a computer program that would transition from the hyperbolic equation to the 

exponential equation once a certain decline limit has been reached. For tight formations when the 

original Arps model Arps’ exponent is greater than unity the predicted cumulative productions 

could be unbounded for tight reservoirs in the transient flow regime, which would lead to 

overestimations of EUR (Lee and Sidle, 2010; Valkó and Lee, 2010). With this knowledge, 

Robertson (1988) developed the modified hyperbolic model and was later adapted to the current 

form by (Seshadri and Mattar, 2010). The hyperbolic equation is used in the early stages of well 

life Eq. (2-5). Once it has reached a specific predetermined decline rate, or time domain, which is 

the end of the transient flow regime, the equation will transition to the exponential decline 

equation, Eq. (2-6), as boundary dominated flow now governs the flow behavior:  

For D D   

 
 

1

1

( ) i

b

q
q t

q bDt



 (2-5) 

ForD D   

 2( ) D t
iq t q e  (2-6) 
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One application of the MDH model was presented in the work by (Childers and Callard, 2015) 

of the composite type curve model to analyze the time to end of linear flow for tight formations in 

the Bakken basin. Limitations of the MDH model is in the overestimation of the EUR’s and 

Paryani et al. (2016) showed through evaluation of oil shale wells that the MDH model yields over 

expectant reserve estimates. Moreover, there are additional variants to this model such as the 

Variable Exponential Decline (VED) model, which modifies the existing Arps exponential decline 

equation where the decline rate is allowed to very per a power law function (Gupta et al., 2018),  

The Transient Hyperbolic Model (THM) which uses a logistical Arps exponent that will transition 

between flow regime states during well life  (Fulford and Blasingame, 2013). 

An additional expansion regarding the original Arps model, Ilk et al. (2008) suggested a 

modification to the Arps hyperbolic model such that the loss ratio would be estimated by a 

decaying power function at later production times Eq. (2-7), where 1,D D  are the decline constant 

at infinite time and initial time respectively, and n  is the time exponent. Since this model is 

predicated on the governing assumptions of the original Arps model then those assumptions would 

apply to this model as well unless modifications to the model have been made like with the decline 

rate. 

Ilk et al. (2008) proposed the modification to the Arps decline constant as follows: 

 

 (1 )
1

nD D Dt 
   (2-7) 

 

Eq. (2-8) is defined as the Power Law Exponential Decline (PLE) model where Eq. (2-7) is 

substituted into the decline rate of the Arps model Eq. (2-1): 
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 ( )
n
iD t Dt

iq t qe      (2-8) 

 

where iD  is defined as the ratio of the initial decline constant to the time exponent which is 

defined as follows, Eq. (2-9): 

 

 1
i
DD n  (2-9) 

 

Eq. (2-8) use the power law to allow for approximation of the production rate which was 

specifically introduced to handle shale gas well production to account for both transient and 

boundary dominated flow regimes. Mattar and Moghadam (2009) found that Eq. (2-9) is only 

applicable in transient flow regime applications. Furthermore, McNeil et al. (2009) through 

studying production data that the PLE model performs well when applied to wells that are in 

transient and boundary dominated flow regimes and the PLE model has shown to perform better 

than the original Arps model. The limitation of this method is that it will initially overestimate the 

production flow rate when using Eq. (2-8). However, Paryani et al. (2016) found that the PLE 

model yields the most conservative forecasts when compared to other decline curve models.  

Kanfar and Wattenbarger (2012), found that the PLE model has the capability of being applied to 

linear, bilinear and boundary dominated flow regimes, with the first two regimes being important 

to understand production behavior from the fractures in early stages of well life.  

The Duong model was introduced to allow for a better approximation of EUR from wells that 

produce primarily from fracture dominate flow with very little contribution being realized from 

the formation matrix (Duong, 2011). The model is derived from the relationship of the ratio of the 

production rate to the cumulative production 
P

q
G vs time t  on a log-log plot that will reveal a 
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straight line. This relationship is expressed as the material balance time and time retention 

expressed as Eq. (2-10), where the parameters m  and a are the Duong slope, range of 1 2m  , 

and Duong intercept, range 0 2a   respectively. Although Duong derived the equation for shale 

gas reservoirs, the model can be adapted for use in oil reservoirs as well. The primary assumption 

with this method is that there is a long term linear flow affect and this flow regime dominates all 

others. The limitations of this method requires at least a year and a half of production history before 

applying this model and that some wells may not be applicable as they may violate the constraints 

of the Duong parameters for the slope and intercept of Eq. (2-10) when using non-linear regression 

methods to determine the Duong parameters (Zuo et al., 2016).  

 
( )

( )
m

P

q t
at

G t
  (2-10) 

 

From Eq. (2-10), Duong derived equations that represent the production rate and cumulative 

production Eq. (2-11) and Eq. (2-12) respectively. 
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i m

P

q
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a

 
  (2-12) 

 
One limitation found in the work conducted by Wang et al. (2017) when comparing empirical 

models is that the Duong model can overestimate reserves. The Duong model appears to best fit 

both linear and bilinear flow regimes (Kanfar and Wattenbarger, 2012), which makes a good model 

for understanding and analyzing early production data. 
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The Logistic Growth (LG) Model is an empirical model that was adapted by (Clark et al., 

2011a) from liver growth models and applied to gas wells with very low permeable media. The 

main assumptions that governs the LG model is that the cumulative production increases to a 

maximum bearing capacity and once this capacity has been reached future growth is impeded. 

However, this model also has an assumption that the reservoir will be depleted by a single well 

over a long period of time (Paryani et al., 2016), which is very difficult to achieve in practice. The 

parameters for the LG model are the cumulative production ( )Q t with respect to time in bbls, K

is the carrying capacity, a  is a constant of 
nt , n  is the hyperbolic exponent that characterizes 

the curvature of the LG model with a constraint of 0 1n  , and t  is the time, in days. Nonlinear 

regression analysis can be implemented to determine the parameters of the LG model for K , a

, and n . According to Clark et al. (2011b) the main advantage in utilizing the LG model is that 

the overall reserve estimate is controlled by the carrying capacity parameter as well as the 

production rate, which ends as time goes to infinity. 

The LG model cumulative production is expressed as follows: 

 

 ( )
n

n

Kt
Qt

a t



 (2-13) 

 

The production rate for the LG model can be found by the expression as follows: 

 

  
1
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n
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q t
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

 (2-14) 
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The Extended Exponential Decline Curve (EEDC) model was introduced by Zhang et al. 

(2016) and is predicated on the assumption of a growing drainage volume that models the 

performance of tight formations like shales.  The EEDC model couples the exponential form of 

the decline equation that was proposed by Fetkovich (1980b).  The parameter e  illustrates early 

production life of the well that exhibits a quick decline, which is defined as the transient flow 

regime; whereas, the parameter l  illustrates the moderate decline that is shallow in nature at later 

times in well life and both parameters are determined through non-linear regression methods. The 

moderate decline during late life illustrates how the growing drainage volume will be the dominant 

behavior at late stages of well life.  The main assumptions to this model should follow the same 

assumption outlined by Fetkovich (1980b), which assumes constant bottom-hole flowing pressure 

and boundary dominated flow. 

Zhang et al. (2016) coupled the exponential form of the Arps decline equation that was originally 

proposed by Fetkovich (1980b), Eq, (2-15),  and the empirical equation that illustrate the growing 

drainage volume, Eq. (2-16): 

 t
oq q e   (2-15) 

 

 
nt

l ee      (2-16) 

 
Combining Eq, (2-15) and Eq. (2-16) the following mathematical expression can be formed for 

the EEDC model. 
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  

  
     

(2-17) 

 

From Eq. (2-17) some important observations should be discussed. (1) at early stages of well life 

nt
ee   is the dominant factor, which is characterized as a quick decline, which is indicative of tight 

formation wells like shales with early production from the fractures. (2) l  becomes the dominate 

parameter at late stages of well life, which is characterized by boundary dominated flow. One of 

the main advantages of using the EEDC model is that it does not require the determination to find 

the transition point at which transient flow ends and boundary dominated flow begins like when 

using the MHD and composite type curve models.  Moreover, values of e , l  are unique to the 

well being studied and may not be applicable to project these parameters on wells in the 

surrounding area. Therefore, a large sample of wells may be required to develop appropriate type 

curves of a basin of interest. 

The Stretched Exponential Decline (SEPD) model was introduced by Valko (2009) and Valkó 

and Lee (2010) as an alternative to the Arps model. The main assumption with the SEPD model is 

that the production rate will comply with the stretched exponential decay defined by Eq. (2-18): 

 
n

t qdq ndt t
    
 

 (2-18) 

 

where  and n  are the characteristic time constant and exponent respectively. Additional 

assumptions for the SEPD model are that the actual production decline will be determined by many 

contributing volumes and these volumes will all exhibit exponential decay rates with a specific 

characteristic of time constant.  
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To develop the SEPD model two parameters  and n  will need to be ascertained through 

the utilization of the gamma function and incomplete gamma function, Eq. (2-19) and Eq. (2-20) 

respectively, where 21r and 31r are the cumulative production ratios of two and three years 

respectively. 
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An important advantage of the SEPD model is that it has the ability to couple the sharp decline 

and shallow decline segments of the decline curve model while minimizing model parameters and 

provide a finite value of EUR without limits in rate or time according to the study by (Akbarnejad-

Nesheli et al., 2012). Unlike the Arps model, which is predicated on boundary dominated flow, 

the SEPD model actually models the transient flow regime. The only downside to using the SEPD 

is that it requires a long time interval of production data, approximately three years or longer, to 

provided sufficient approximations of  and n , and the SEPD model is computationally 

intensive (Zuo et al., 2016). Moreover, one additional limitation when using the SEPD model is 

that it has limited ability to project production performance in late well life of shales (Lee, 2015). 

The Fracture Decline Curve (FDC) model was introduced by Zuo et al. (2016) based on 

anomalous diffusions that was used in designing a model that captured the late production life 

phenomena characteristics of shale gas wells where the production rate declines at a slower rate 
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than observed when using exponential decline models. Challenges with the modeling of tight 

formations such as shales are due to the slower production rate decline, at late times, and may not 

be modeled adequately using the beforementioned production forecasting methods. Moreover, 

anomalous diffusion is prescribed by the nonlinear relationship between the mean square 

displacement and time, where ordinary diffusion is linear. Therefore, Zuo et al. (2016) proposed 

the use of fractional diffusion equations using three fitting parameters  ,  , and m  that are a 

special case of the Mittag-Leffler function (Mittag-Leffler, 1903). Taking the special case of 1   

when using the Mittag-Leffler function the following FDC model can be formed, Eq. (2-21) and 

Eq. (2-22) respectively. 

 ,1( )q mE t    (2-21) 
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Zuo et al. (2016) surmised that the fractional diffusion equation replaces the conventional pressure 

equation when utilizing the general solution of fractional diffusion. The results of this new model 

illustrated improved matching performance with historical production and exhibited a more 

confident EUR result. Zuo et al. (2016) validated the FDC model using production wells that where 

from the Fayetteville Shale through a four step implementation process that will not be repeated 

here; however, has been outlined in the original work. One limitation when using the FDC model 

is that it requires and iterative process to calibrate the three fitting parameters from historical 

production data and determining the EUR can be complicated when employing the FDC model. 
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2.1.3 Production Forecasting Model’s Summary  

Regardless of which production forecasting method one uses the underlying issue is that the 

parameters for one model, studying one well, will almost always not be efficient to apply those 

parameters to existing or future wells. One should think of wells similar to human beings as every 

human being is unique. Furthermore, using one method that is easy and convenient such as the 

Arps equation will yield a result; however, the result will most definitely be unreliable in tight 

formations over the course of well life as the Arps model was never designed for applications in 

tight formation analysis.  Therefore, one usually needs to apply a stochastic approach along with 

probabilistic models when using production forecasting methods. The models presented in this 

review are deterministic in nature and are subject to various uncertainties, which range from the 

quality of the data being analyzed to the complexities of implementing a model such as the FDC 

model, as well as understanding the formation one is studying. Production forecasting models are 

good for aiding the understanding of future behavior of production performance; however, 

physical models are needed as understanding flow mechanism when dealing with tight formation 

reservoirs is very complex and most, if not all, empirical models will fail due to the lack physics. 
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Table 2 - 1 Comparison table showing the various empirical models used in assessing tight 
formation production. Computational complexity increases as one descends down the list. 

Empirical Models for Production Forecasting 

 
Model 

Mathematical 
Expression 

Advantage Limitations 

C
om

p
u

ta
ti

on
al

 C
om

p
le

xi
ty

 
Arps Eq (2-4) 

Simplest DCA 
Method 

Overestimates EUR’s. 
Only accurate at late 
time. 

Modified Arps Eq (2-5) & Eq (2-6) 

Determines a time 
to end of linear flow 
and changes from 
hyperbolic to 
exponential 

Overestimates EUR’s 
Only accurate at late 
time. 

PLE Eq (2-8) 

Applicable to linear, 
bilinear and 
boundary dominated 
flow regimes 

Will overestimate 
production flow rate.  
Provides conservative 
forecasts when 
compared DCA 
models 
 

Duong Eq (2-11) & Eq (2-15) 
Good fit for both 
linear and bilinear 
flow regimes 

Short term forecast is 
needed to determine 
parameters 

LGM Eq (2-16) & Eq (2-17) 

Reserve estimate is 
controlled by the 
carrying capacity 
parameter as well as 
the production rate 

Assumes only one 
well will drain the 
entire reservoir 

EEDC Eq (2-17) 
Models transient 
and boundary flow 
regimes 

May need to study 
many wells to 
determine parameters 

SEPD Eq (2-18) 

Couples the concave 
and convex 
segments of the 
decline curve model 
while minimizing 
model parameters 

Medium term forecast 
needed to determine 
parameters Difficulty 
in prediction 
production 
performance of shales 
in late well life. 

FDC Eq (2-21) & Eq (2-22) 
Models the long tail 
behavior of shales 

Mathematically 
Complex 

*Short term forecast > 1.5 years 
*Medium term forecast > 3 years 

 

2.2 Fracture Diagnostic Methods 

Fracture diagnostic methods have been developed to aid producers in optimizing the 

recoverable potential of a hydrocarbon reservoirs by allowing insight into fracture genesis through 

the propped fracture and net pay zone (Cipolla and Wright, 2000c). In this section, a detailed 

review will be conducted of all the fracture diagnostic methods available to aid in the quantification 

of fracture initiation. The fracture diagnostic methods will be split into three segments starting 
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with direct near-wellbore diagnostic methods, direct far-field methods, and conclude with indirect 

methods. Figure (2-1) illustrates a synopsis of the available methods currently used in field 

applications and has been extensively discussed in the literature. It should be emphasized that one 

fracture diagnostic technique may not be adequate to reveal pertinent information about a fracture 

but only reveal a small portion of the fracture genesis puzzle. Therefore, many fracture diagnostic 

techniques will be needed to sufficiently quantify fracture geometry as fracture diagnostic 

techniques should be thought of as a toolbox to allow for deeper understanding of fracture genesis 

such that trapped hydrocarbons can  be produced efficiently and economically. 

 

Figure 2 - 1: Diagram of the of the fracture diagnostic methods currently available today. 
This diagram breaks down the individual elements that make up the fracture diagnostic 
method for direct methods that are near the wellbore, direct methods that are used to analyze 
fractures far away from the wellbore and indirect methods that analyze the fractures 
through field production. 
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2.2.1 Hydraulic Fracturing Fundamentals 

Before fracture diagnostic methods can be discussed one needs to understand hydraulic 

fracturing and why it is needed. Heydarabadi et al. (2010) asserted that the purpose of hydraulic 

fracturing is to induce fractures into the target formation such that a highly conductive flow path 

can be created to allow for hydrocarbons to flow through the created fractures and natural fractures 

of the rock. Generating artificial fractures is an important component in tight formation reservoirs 

such that hydrocarbons can be produced economically that are currently locked in hydrocarbon-

rich areas in the subsurface of the Earth. According to (API, 2020) the United States Department 

of Energy stated that 95% of all new wells drilled in the United States will require some form of 

stimulation. No shale or tight reservoir can be produced economically without some form of 

stimulation process such as hydraulic fracturing. One of the most challenging aspects of hydraulic 

fracturing, is understanding how fractures propagate in the formation of interest after undergoing 

a stimulation process. Stimulating a reservoir has two motivations: (1) to bypass the near-wellbore 

formation damage that has occurred during the drilling and completion phase of a new well and 

(2) to create high conductive flow paths such that hydrocarbons locked in the tight pore space of a 

tight formation can be produced.  It should be emphasized that not every well requires treatment 

as this is predicated on several key factors regarding fracture propagation, which include: ease of 

penetration into layers outside of the target zone, fracture conductivity loss due to high in-situ 

stresses on fracture faces, and fluid leak off during fracture initiation (Heydarabadi et al., 2010). 

Additionally, reservoirs that are comprised of thin formation layers with reservoir pressures that 

are minimal would be averse to implementing a hydraulic fracturing treatment.  Many fracture 

diagnostic technologies are mechanical in application and are applied in field settings; however, 

some fracture diagnostic technologies can be limited based on the environment one encounters. 
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Moreover, there are indirect technologies that are more theory based to help understand the fracture 

propagation environment, and there have been substantial research efforts regarding indirect 

technologies that can be found in the literature. However, there may be challenges when using 

indirect technologies during field applications based on the complexity of some of the indirect 

theories. Understanding the process of fracture genesis is critical to determine reserves and to 

understand the production potential of the reservoir.  

A hydraulic fracturing process is illustrated in Figure (2-2). Fracturing fluid (pad fluid) is first 

pumped into the formation causing the pressure to increase at the perforated zones along the 

wellbore. As the pressure increases above the formation parting pressure, fractures will begin to 

propagate in the direction of the minimum stress, which is usually orthogonal to the wellbore. The 

next stage will be to pump a slurry comprised of fluid and proppant agent not only to increase the 

fracture but to allow for the fractures to remain open due to the utilization of the proppant agents. 

During the hydraulic fracture operation, the fracture growth may intersect natural fractures and 

form a complex fracture network. Figure (2-2) also depicts a modeled view projection of just how 

a theoretical hydraulic fracture stimulation should look. The wellbore will have multiple stages 

represented by the five compartments that would represent the hydraulically induced fractures. 

During the pumping of the slurry mixture into the formation these fractures will open and intersect 

with other natural fractures that will constitute what is known as the stimulated reservoir volume 

(SRV), which is the stimulated portion of the formation matrix that is in contact with the hydraulic 

fractures. A few comments are need regarding SRV. First, SRV has several names that are 

sometimes used interchangeably such as effective stimulated volume (ESV) Cipolla et al. (2011), 

and the stimulated reservoir area (SRA) Mayerhofer et al. (2010). In essence, SRV is assumed to 

be the volume of the formation that has been affected by a stimulation treatment that interacts with 
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the fractures within the formation.  Moreover, it is believed that as the SRV increases the ultimate 

recovery of hydrocarbons will also increase. Research conducted by Cipolla and Wallace (2014) 

found that the hydrocarbon recovery increases due to hydraulic fracture area, reservoir properties 

and how well fracture conductivity has been dispersed in the formation to quantify the hydrocarbon 

recovery increase, not SRV. Therefore, trying to quantify SRV has been a challenge for the 

industry. 

 
 
Figure 2 - 2: Diagram of hydraulic fracturing treatment. The black lines in the main diagram 
represent the induced hydraulic fractures. The red lines, small lines that branch off the 
induced hydraulic fractures, represents the natural fractures that will be encountered during 
stimulation treatment. The projected image represents a theoretical model of the hydraulic 
fracturing treatment design process. The projected image depicts the five stimulated 
compartments of the hydraulic fracture and illustrates the stimulated reservoir volume 
(SRV), which is the volume that has been theoretically affected by the stimulation treatment 
and assumed that it will contribute to production. 
 

Some of the common challenges for hydraulically stimulating tight formation reservoirs is in 

the complex development of hydraulic fracture networks not being distributed uniformly. The 

reason for nonuniform development may be related to the heterogeneity of the reservoir, how the 

natural fractures are distributed in the target formation, deficient hydraulic fracture treatment, and 
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interference relative to clusters and staging. As the lithology in the reservoir can change from one 

location in the reservoir to another, the effect on the minimum horizontal stress can cause 

variations in parting pressure that would lead to nonuniform distributions of the hydraulic 

fractures. To overcome these complexities many fracture models have been proposed in the 

literature such as the planar model, the wire-mesh model, and the complex-fracture-network model 

(Cipolla et al., 2010; Crockett et al., 1989; Xu et al., 2009) and are used to help understand the 

physics of fracture genesis. The planar model, commonly referred to as the planar hydraulic 

fracture growth model, the projected theoretical model illustrated in Figure (2-2), depicts hydraulic 

fractures that are orthogonal to the horizontal wellbore and has been utilized as the principal model 

to describe hydraulic fracturing. The validity of the planar model is only pertinent when the 

difference between maximum and minimum horizontal stresses in the field are significant (Cipolla 

et al., 2011). The presence of natural fractures in the formation can aid in the development of 

complex fracture networks through hydraulic stimulation that can be an elusive parameter to 

identify, which may require, in almost all cases, a stochastic approach to account for the ambiguous 

nature in the fracture distribution and connectivity. Most fracture accessing methods, which have 

been discussed extensively in the literature, use data-assimilation approach employing production 

data, such as the Kalman Filter (EnKF), to better approximate fracture geometry and to better 

understand and characterize fracture genesis in real-time (Aanonsen et al., 2009; Crestani, 2013; 

Evensen and Van Leeuwen, 1996; Ghods and Zhang, 2012; Huseby et al., 2010; Marquart et al., 

2013; Moreno et al., 2014). Features that are critical involving hydraulic fracture design are in the 

estimation of the fracture geometry, which includes: azimuth, fracture height, and fracture half-

length, with respect to lateral orientation, see Figure (2-3). There has been a surplus of work in 

prefracture design assessments such that an approximate model can be developed to enable the 
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ability to design an effective fracture treatment program. Many fracture propagation models have 

been developed to understand the governing physics of fractures and have been calibrated with 

actual field data to validate the models accuracy; however, some of the calibrations may result in 

conflicts when discerning fracture physics (Weijers and De Pater, 2019).  

 

 
Figure 2 - 3: Diagram of hydraulic fracturing showing the critical geometry that is required 
for fracture design. The azimuth angle is showing the orientation of the fracture from the 
horizontal wellbore in addition to the fracture height and fracture half-length. 
 

2.2.2 Fracture Diagnostic Methods Direct Near-Wellbore 

Near wellbore diagnostic tools are ran downhole and can be used to understand and  

characterize fractures less than two feet from the wellbore. The major limitation is its short 

investigation depth regarding fracture geometry when the fracture is not aligned with the wellbore 

(Cipolla and Wright, 2000a).  Direct near-wellbore techniques consist of tracers, temperature 

logging, production analysis, borehole imaging, and caliper logs. If a hydraulic fracture traverses 

the wellbore, these direct near-wellbore techniques can be of some benefit in locating the hydraulic 

fracture. However, these near-wellbore techniques are not unique and cannot supply information 

on the size or shape of the fracture once the fracture propagates two to three wellbore diameters 

Hydraulic Fractures

θf = Azimuth angle
hf = Fracture Height
Xf = Fracture half‐length
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from the wellbore. In a naturally fractured reservoirs, in which multiple fractures are likely to exist, 

the reliability of direct near-wellbore techniques is even more subjective. As such, direct near-

wellbore techniques are used only to find where the hydraulic fracture exited the wellbore and to 

map the fracture that is essentially connected directly to the wellbore (Warpinski, 2019). 

Radioactive (RA) proppant tracers can be used as a fracture diagnostic method that allows for 

an approximation of the fracture height near the wellbore. Figure (2-4) is an illustration of how 

RA tracers are being injected or tagged with the stimulation fluid and it is pumped downhole into 

the induced fractures. Gamma-ray logging tools are used to detect the RA tracer downhole to help 

quantify fracture height and potentially other features in the reservoir of interest. RA tracers can 

also aid in the understanding of zonal isolation to assess fracture staging efficiencies, evaluate the 

effectiveness of the perforations around the wellbore and give insight into the completion system 

by understating its mechanical integrity. RA tracers use embedded tracers, which can be a ceramic 

material, and through gamma ray logging, provides quantitative information when evaluating 

important features near the wellbore (Barree et al., 2002).  

The most common types of isotopes used in RA tracer applications are Iridium, Scandium and 

Antimony and each have specific half-life and mean energy peaks, see table 15.1 of Warpinski 

(2019) for half-life and mean energy peak data. The isotopes of the RA tracers will radiate gamma 

rays , which can be identified by applying a gamma ray logging tool, spectral gamma ray logging 

tool, to distinguish the energy peaks of the various isotopes. Logging tools transmit information 

via a sensor output to a multichannel analyzer, which assess the amount of radiation within a 

limited spectral window. Common issues that arise regarding RA tracers are the tracers depositing 

onto the formation and interacting with the mineralogy thereby, in essence, getting trapped as well 

as potentially compromising the coating that incase the RA tracer. Public concerns when using RA 
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tracers, in wellbore diagnostics, is the perception of the radioactivity emitted from RA tracers 

maybe harmful to the environment or the public. Therefore, it is important to have good open 

communicative dialogue with the operating companies and the communities for which RA tracers 

will be implemented to help prevent concern. Moreover, RA tracers maybe unrecoverable in some 

stimulation applications as some of the stimulation fluid that is tagged with RA tracers are lost due 

to fracture conductivity and fracture closure during flowback (Barree and Mukherjee, 1995; 

Veatch and Crowell, 1982). However, even though some of the RA tracers maybe unrecoverable, 

studies observed by Smith et al. (1987) and (Gardien et al., 1996) that the quantity of recovered 

RA tracers can surmise fracture efficiency. One item of note is that since RA tracers are deployed 

with stimulation fluid it may yield only early time flow information and may not be able to fully 

evaluate fracture growth.  

Applications regarding RA tracers have been used to measure fracture height near the wellbore 

and assess isolation stages and efficiency in vertical wells (Warpinski, 2019). Other applications 

looked at monitoring fracture fluid, quantify fracture width and estimating the amount of proppant 

near the wellbore through studies conducted by Holditch et al. (1993) and McDaniel et al. (2009).  

RA tracers are also used in understanding of fluid migration in the subsurface, impediments to 

fluid migration and saturations (Zemel, 1995). Studies conducted by (Lange et al., 2005; Parney 

et al., 2000) used Interwell tests to understand the transmissivity of active fractures as well as aide 

in the understanding how fluids are dispersed between the fracture and the formation matrix. RA 

tracers have been used to conjecture residual oil saturations and to assess the heterogeneity, rock 

wettability, understanding fluid breakouts, and marking of fracture points in the reservoir (Descant 

et al., 1989; Ferreira et al., 1992; Kumar et al., 2020; Silber et al., 2003; Woodroof et al., 2003).  
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RA tracers have also found applications in horizontal wells to differentiate the stages and assess 

transverse fracture behavior and zonal isolation.  

 
Figure 2 - 4: Diagram illustrating how tracers are dispensed in a reservoir. RA tracer is 
injected or tagged with the stimulation fluid and is pumped down hole into the induced 
fractures. Using gamma ray logging tools to detect the energy peaks one can estimate 
fracture height. 
 

Chemical fracture tracers (CF) are commonly used in multi-stage hydraulic fracturing 

treatment and are comprised of a chemical compound that is soluble in the presence of water and 

in both phases of oil and gas. Unlike RA tracers, CF tracers are deemed environmentally safe as 

they are non-toxic and can be easily implemented in a fracture stimulation program. CF tracers are 

injected at a specified concentration and traverses with the hydraulic fracturing fluid into the 

formation. As the CF tracer migrates into the formation it will flow into each fracture stage and 



31 

allow for assessments of the inter-well connectivity, flow patterns and quantification of the fracture 

system, see figure (2-4) for illustration. Three types of CF tracers are commonly used in the 

industry such as emulsion tracers, oil and water soluble tracers commingle with the hydraulic 

fracturing fluid, perforation tracers, metallic solid used in high temperature applications along with 

plug-and-perf operations, and controlled-release tracers, which are a polymer compound that 

release the chemical tracers in the formation once they are in contact with the formation, see Figure 

(2-5) for CF tracer summary, which has been adapted from Salman et al. (2014). CF tracers  are 

either in a liquid or solid form and must be stable under reservoir conditions, non-absorbent and 

the partitioning of the CF tracer must be kept to a minimum when encountering multiple phases 

with low detection limits and stewardship to the environment must be adhered (Dugstad, 2007).      

 Oil or water soluble tracers can be placed in the fracturing stimulation fluid to provide 

information regarding the production potential, oil-soluble case, and to evaluate the effectiveness 

of the stimulation treatment, water soluble case. Tracers allow for the understanding of how the 

fluids cleanup, zonal distributions, production and well-to-well interference during multistage 

completions (Warpinski, 2019). CF tracers are comprised of unique characteristics such that one 

can monitor their propagation using a gas chromatography and mass spectrometry and are usually 

mixed at a given concentration and pumped into the fracture fluid media using a peristaltic pump 

(Munoz et al., 2009). One advantage in using CF tracers is that they are usually found to be inert 

and are not susceptible with temperature or time. Additional advantages of using CF tracers is in 

examining the staging of a single fracture treatment as different tracers for pad and individual sand 

stages have different concentrations of different fluid characteristics (Warpinski, 2019). From the 

research conducted by Woodroof Jr et al. (2003) regarding tracer applications found that by 

inserting crosslinked gel treatments in the fracture fluid media more complicated flow behavior 
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was observed that was unexpected during the design phase due to convection and leak off. The 

information that was gained by Woodroof Jr et al. (2003) allowed for optimization of fracture fluid 

placement and proppant scheduling to enhance overall production. Stegent et al. (2011) used CF 

tracers in comparing plug-and-perf completions, which indicated that one perforated zone was 

highly productive versus others. 

 

 
Figure 2 - 5: There are three common chemical tracers used in fracture diagnostic 
applications: emulsion tracers, perforation tracers, and controlled-release tracers. This 
chart has been adapted from (Salman et al., 2014). 
 

Distributed fiber-optic sensing (DFOS) has been used in downhole applications, which was 

introduced to the industry back in the latter half of the twentieth century (Hartog, 1983; Hartog et 

al., 1985), providing measurements of reservoir information in-real time along the length of the 

fiber optic cable, which is comprised of glass fibers. The primary use of distributed fiber-optic 

cables was for use in geothermal studies (Förster et al., 1997; Hurtig, 1993). DFOS application 

uses the fiber as the sensing element, which is predicated on refraction physics that conveys a 

series of light pulses through the fiber and measures the natural occurring scattered signal with 

respect to time. Due to the fiber being the sensing element the fiber-optic cable has the ability to 
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be implemented in vary harsh environments such as wells that exhibit high temperatures. The 

primary application when using fiber-optic sensing elements in wellbores is to determine reservoir 

temperature, strain on the near wellbore formation and acoustic data analysis. The two most 

common fiber optic measuring technologies is the distributed temperature sensor (DTS), figure (2-

6) and the distributed acoustic sensor (DAS), figure (2-7), (Warpinski, 2019). The advantage of 

using DFOS is that only the measurement cable is subject to potentially hostile downhole 

conditions making the fiber-optic systems suitable for operations in high-temperature 

environments (Reinsch and Henninges, 2010; Reinsch et al., 2013). 

DTS has been employed to measure the temperature along the wellbore in real-time, as well 

as finding applications in the understanding of stimulation diagnostics in both vertical and 

horizontal wells that provide insight into fracture genesis near the wellbore (Huckabee, 2009). 

DTS systems mostly use the temperature-sensitive Raman scattering (Dakin et al., 1985) and due 

to cooling during the stimulation process and the warming from fracture closure one can 

approximate fracture conditions by analyzing the scattering characteristics of the Stokes and Anti-

Stokes Raman bands, where Stokes is weakly temperature dependent, and anti-Stokes is strongly 

temperature sensitive, one can compute the temperature along the length of the fiber optic cable 

(James and Alex, 2003). 

DAS is used to acquire dynamic axial-strain changes caused by propagating elastic waves 

along the wellbore structure (Raab et al., 2019; Shatalin et al., 1998). DAS systems are often 

dependent on the detection of phase changes of Rayleigh backscattered light (Hartog, 2017).  The 

signals are recorded by a permanently installed fiber-optic cable and are studied for the possibility 

of real-time well-integrity monitoring through the fiber undergoing vibration. A change in the 

phase difference of light scattered by two separate points along the fiber is linearly proportional to 
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a change in fiber length separating the points (Masoudi et al., 2013). Determining these phase 

changes for consecutive fiber intervals and over time can therefore be used to record the dynamic 

strain progression of a fiber-optic cable induced by a seismic signal. Applications of DAS have 

been in vertical seismic profiling (Daley et al., 2013; Götz et al., 2018), flow profiling (Bukhamsin 

and Horne, 2016), near-surface geophysics (Dou et al., 2017), and seismology (Jousset et al., 

2018). Measured strain changes are influenced by the coupling between the optical fiber and the 

medium in which the cable is installed (Daley et al., 2013; Reinsch et al., 2017). 

DFOS is a powerful tool used in understanding or gaining approximate information at near 

wellbore conditions. The only drawback to this technology is due to the fact it can only give 

information a short distance from the wellbore. However, due to the fiber optic glass crystals along 

the fiber makes DFOS ideal to be able to understand well conditions in real-time and allow for 

near wellbore fracture quantification analysis. 

 

 
Figure 2 - 6: Illustration of a distributed temperature sensor fiber-optic wire distribution 
cable (fibergratings.com, accessed on 6/16/2020). 
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Figure 2 - 7: Illustration of a distributed acoustic sensor fiber-optic wire distribution cable 
(silixa.com, accessed on 6/16/2020). 

 

Wellbore imaging is a data processing method used to produce quantitative information 

regarding the borehole with interest in understanding the stimulation effects on the wall of the 

wellbore. The purpose of wellbore imaging is for analyzing small-scale rock formation 

characteristics, identifying breakouts, irregularities in the borehole wall, understanding of the 

sedimentological features around the wellbore, and aide in fracture quantification (PetroWiki, 

2020). Imaging the wellbore utilizes various logging tools that help in describing the wellbore 

through visual, sonic, and electrical logging applications. The equipment used in imaging the 

wellbore are video cameras, acoustic televiewer, advanced sonic logs, and resistivity imaging logs. 

The main disadvantage of using some of these imaging tools is that there needs to be an open hole 

segment of the wellbore to conduct imaging studies (Warpinski, 2019).  

Optical Imaging, video downhole cameras, is an optical device that allows for a visual image 

of the wellbore in both pre and post fracture applications, illustration of a typical optical imaging 

device can be found in figure (2-8). The main disadvantage is that the downhole camera must be 

placed in a transparent fluid to provide quality resolution of the wellbore. In the early days of 
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downhole camera applications another disadvantage is that the video camera would have to be 

retrieved from the wellbore to provide information. However, due to new advancements in imaging 

technology downhole cameras can be viewed in real-time or with slight delay in the video relaying 

the wellbore image in the subsurface. Applications of downhole cameras have been used 

evaluating casing integrity as well aiding in fracture diagnostic. Downhole cameras have been used 

in understanding fracture genesis in sandstones by Smith et al. (1982) and fracture genesis near 

the wellbore of coal seams by Palmer and Sparks (1991). 

 
Figure 2 - 8: Illustration of a downhole optical imaging device used in evaluating wellbores 
(katwell.com.cn, accessed on 6/16/2020). 

 

Acoustic imaging, which is also known as “acoustic televiewer”, was developed by Zemanek 

et al. (1969); Zemanek et al. (1970) using pulse acoustic energy to image the wellbore wall through 

a non-translucent fluid media. Acoustic energy is supplied in small bursts by a transducer that is 

rotating in the wellbore housed inside a mandrel allowing for full coverage of the wellbore wall, 

see figure (2-9) for image. The time for which the acoustic energy travels is predicated on the 

distance between the borehole and the transducer as well as the drilling mud composition. As the 

acoustic energy pulses are reflected in the surrounding media the amplitude of these pulses allows 

for a wellbore image to be formed. If there are anomalies such as fractures, vugs, breakouts, the 
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severity of the amplitude from the pulsed acoustic energy may skew acoustic imaging. Drilling 

mud weights and irregular borehole sizes also can impede amplitude allowing for poor acoustic 

imaging resolution. The best environments for the acoustic imaging to thrive is in smooth 

boreholes where high impendence in acoustic imaging is profound. The advantage of using 

acoustic imaging is that it can be applied in both closed and open hole applications; however, it 

cannot be applied in gas wellbore environments. The main application that acoustic imaging is 

used for in fracture diagnosis is in understanding where the fractures have occurred from a 

stimulation treatment near the wellbore wall and identifying potential breakouts. Some 

applications of acoustic imaging is in ultrasonic tools to access borehole stability (Hayman et al., 

1994) and other studies regarding fracture identification, stratigraphic interpretation, and thin-bed 

analysis (Faraguna et al., 1989; Seller et al., 1990). 

 
Figure 2 - 9: Illustration of an acoustic imaging device used in wellbore evaluations 
(mountsopris.com, accessed on 6/16/2020). 
 
 

Electrical imaging is a microresistivity imaging tool, see figure (2-10), comprised of flaps and 

pads that contain a collection of electrode buttons set at a constant potential and spaced azimuthally 

on the electrical imaging tool and functioning as a dipmeter (Boyeldieu and Jeffreys, 1988; 

Ekstrom et al., 1986; Seller et al., 1994). The voltage potential allows for alternating current to 
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flow from each electrode pad into the formation along the wellbore. The current then propagates 

back to an electrode at the top end of the electrical imaging tool. The electrodes on the pad are 

sensitive to the current density, which is related to the formation resistivity near the wellbore. The 

only drawback with the electrical imaging tool is that it cannot provide an absolute measurement 

of the formation resistivity. The effectiveness of the electrical imaging tool is predicated on the 

button size and any feature that is the same size as the button can be determined; however, smaller 

features may be obscured.  Advantages to the use of the electrical imaging tools is that it is capable 

of determining characteristics of sedimentology and natural fractures in the formation along the 

wellbore. Conventional electrical imaging tools required a conductive mud to operate correctly; 

however, recent advancements in synthetic drilling mud applications can allow the electrical 

imaging tool to be run into the well without changing out fluid for the conductance needed to 

operate the electrical imaging tool effectively (Cheung et al., 2001; Dumont et al., 1987; Laastad 

et al., 2000).  

 

 
Figure 2 - 10: Illustration of an electrical imaging device used in wellbore evaluations 
(slb.com, accessed on 6/16/2020). 
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  Production logging is an array of logging tools such that are used to evaluate wellbore 

characteristics to gain insight into how the wellbore and how the well will operate during either 

production or injection operations. The main function of production logging is to understand 

formation cross flow, channeling, coning effects, casing leaks, corrosion, perforation impedance 

and understanding how fractures are produced (Houze et al., 2016). The logging tools that are 

available are: resistivity, spontaneous potential, gamma ray, photoelectric, neutron, density, sonic, 

dipmeter (electrical imaging), caliper and temperature logging device with both caliper and 

temperature logging devices used to aide in fracture diagnostics (Evenick, 2018). Any of the 

beforementioned logs can be applied at any stage of the life in the reservoir.  

Caliper logs are used in assessing the diameter of the wellbore; however, can be used to 

ascertain lithological features to help in understanding how the fracture is generated near the 

wellbore (Satter and Iqbal, 2016). Temperature logs are used in cataloguing temperatures in the 

reservoir in real-time. The deeper one traverse into the wellbore the temperature will increase with 

respect to depth. Monitoring temperature and studying its effects may provide valuable insight in 

understanding fracture genesis; however, one needs to be cognizant that temperature may vary 

from basin to basin at similar depths and may require additional tools to quantify a fracture system. 

According to Evenick (2018) characteristic of a fracture system confined to a localized area would 

be an indication of a temperature decrease that may be due to fluid or gas emanating from a fracture 

system. Some recent applications utilizing temperature logging is understanding the heat transfer 

effects during fracture propagation that aides in understanding the effectiveness of multistage 

fracture treatments (Cui et al., 2016; Zhu et al., 2018). Since temperature logs are run using fiber 

optics, the temperature logging tool can be run downhole in harsh environments regardless of the 

operational condition of the well and aid in understanding fracture treatment.   
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2.2.3 Fracture Diagnostic Methods Direct Far-Field 

Direct far-field methods are primarily used to analyze the far reaching effects of a fracture 

treatment. Ideally these methods are used to map hydraulic fractures as they propagate into the 

target formation. Far-field methods principally use applications of tiltmeter-fracture-mapping, 

which can be either through surface tiltmeters or downhole tiltmeters, and microsesmic-fracture-

mapping. Both far-field diagnostic methods require sophisticated instrumentation embedded at the 

surface or downhole near the well that will undergo fracture treatment. In the case of microsesmic 

mapping, a receiver array that is comprised of accelerometers or geophones are used to detect the 

location of microearthquakes that are induced by shear slippage in natural fractures surrounding 

the hydraulic fracture. The sensitive receiver array instrumentation allows for noise detection 

caused by the shear slippage that can be analyzed, recorded, and mapped for diagnostic studies. 

When hydraulic fracture treatment is initiated, fracture expansion causes the earth around the 

fracture to deform and these deformations can be analyzed through microsesmic mapping around 

the well that is undergoing treatment. Tiltmeters are employed to measure the rock deformation 

and to allow for computation that can assess direction and size of the induced fractures. Surface 

tiltmeters find their application at the surface near the wellbore or in shallow holes surrounding 

the well. Downhole tiltmeters are placed in vertical wells at depths near the target zone to be 

fracture treated. Both surface tiltmeters and downhole tiltmeters are used to approximate fracture 

orientation and dimension of the induced fractures. Some of the common limitations of the far-

filed methods is that these methods will lose accuracy the further away from the fracture and may 

not give good estimates on how the fracture grows nor any details regarding fracture conductivity 

(Cipolla and Wright, 2000c). 
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Tiltmeters are devices that can detect slight rotational movements due to the deformation of 

the earth at a precise location.   During hydraulic stimulation, the formation parts creating a 

conductive flow path and causing shearing along the fracture surfaces resulting in the deformation 

of the rock formation. The small rotational movements induced by the stimulation fluid can be 

detected by the tiltmeter located at the surface or can be placed in the wellbore near the stimulation 

zone or in an offset well. Tiltmeters are primarily used in fracture mapping and to give a broad 

view of the fracture network and help aide in the understanding of how fractures propagate 

(Warpinski, 1996; Wright et al., 1998), see figure (2-11) for tiltmeter illustration. The tiltmeter is 

a precession bubble sensor that can detect changes in the angular position. In essence, a tiltmeter 

can be looked at as a leveling device commonly used in home building applications that measures 

height relative to a specified datum. The tilt gradient displacement is orthogonal to the 

displacement direction and can be used in detecting how the rock formation is distorting 

(Warpinski, 2019). Tiltmeters are also subject to external disturbance, noise that can corrupt the 

data collected from the tiltmeters and may skew the data of the actual fracture (Pandurangan et al., 

2018). Primarily surface tiltmeters are used to ascertain fracture azimuth, dip, and complexity 

whereas downhole tiltmeters are used to obtain fracture dimensions (Bhatnagar, 2016). 

Furthermore, using the results from fracture mapping, over a specified time interval, one can 

generate a deformation map outlining how the fracture network is formed and couple the results 

with a specified forward model that will allow for the approximation regarding the orientation of 

the fracture, the fracture volume, and the potential understanding of the fracture geometry by an 

inversion process (Lecampion and Gunning, 2007). One item to note is that inverse problems can 

be ill-posed where multiple solutions can be obtained, and it can be difficult to determine fracture 

properties such as width and shape if the tiltmeters are placed far away from the fracture plane 
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(Lecampion et al., 2005). The mathematical geophysical inversion model is predicated on finding 

the minimized error difference between the predictions in the forward model and that of the 

measured data regarding fracture mapping. The residual error from the minimization error analysis 

allows for an approximation of secondary fractures (Wright et al., 1998), which play an invaluable 

role in fracture diagnostics. 

Moreover, to overcome some of the inversion challenges Astakhov et al. (2012) introduced a 

new approach for tilt based SRV estimation for defining the growth of the fracture network and 

determine the areal extent of the fracture network. Zhou et al. (2015) studied the fracture network 

growth during synchronous fracturing through multiple wells on a cluster of horizontal wells 

observed using tiltmeters. Research conducted by Wang et al. (2013) described a new method for 

determining fracture complexity using surface tiltmeters and defined additional parameters to gain 

insight in characterizing sandstones, coalbeds, and shales. Additional applications of tiltmeters 

have been in studying reorientation refracturing that helps assess the direction of the maximum 

principal stress and how it is altered such that fracture growth may occur in a direction oriented 

differently than the original fracture (Siebrits et al., 2000; Wolhart et al., 2007; Yao et al., 2007). 

Additional applications for tiltmeters has been used to estimate the effectiveness of propped 

treatments downhole (Mayerhofer et al., 2006; Wright et al., 1998). 

 



43 

 

Figure 2 - 11: Illustration of the concept of both surface tiltmeters and downhole tiltmeters. 
Tiltmeter is a precession bubble sensor that can detect changes in the angular position and 
can measure small rotational changes incurred by the deformation of the rock during 
hydraulic stimulation (Tiltmeter images from wikipedia.org/wiki/tiltmeter, accessed 
6/19/2020). 
 

Microseismic monitoring is an application that is well founded for monitoring hydraulic 

fractures (Warpinski, 2009). The data provided from microseismic analysis aide in the monitoring 

and characterization of hydraulic fracturing treatment. During stimulation, the formation rock 

undergoes mechanical failure, which creates sudden releases of energy, due to changes in stress 

and pressure that propagates away from the event via elastic waves that are characteristic to a 

seismic event.  Through the application of geophones, located in offset wells from the event, see 

figure (2-12) for illustration, the data collected from the geophones can be used to ascertain the 

seismic event location and severity. Over a specified time interval when monitoring seismic events, 

microsesmic data can be used to develop a three dimensional image of the fracture event of the 

wellbore that can aide in the understanding of rock properties, fracture characterization and 

stimulated reservoir volume, see figure (2-13) for three dimensional microsesmic map (Cipolla et 
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al., 2010; King et al., 2008). Microseismic modeling is not without challenges and geophone 

placement, monitoring array, is critical in the location selection of the monitoring array, how one 

can handle noise, and determine the appropriate velocity structure (Eisner et al., 2010; Eisner et 

al., 2011). The seismic signal received by geophones are typically very weak and exhibit a low 

signal and noise ratio, introducing significant uncertainty about the location of the events, which 

is typically calculated by time separation of the P (primary)-wave and S (secondary)-wave and 

these wave signals can also aide in rock formation identification (Peyret et al., 2012). The spatial 

distribution, see figure (2-13), of microseismicity discloses information regarding fracture 

geometry and fracture development; however, it does not provide detailed information about the 

fracturing process, other than what is ascertained from the locations of the microsesmic event. 

(Warpinski et al., 2012). 

Furthermore, microseismic data is primarily used for visually understanding how fractures are 

distributed in a target formation and help in quantifying geometric properties that may not allow 

for insight in which fractures are conductive or nonconductive. From King et al. (2008) 

understanding fracture networks and growth allows for more efficient conductive flow path to 

allow for hydrocarbons to flow to the wellbore. Moreover, tight formation reservoirs that have 

extremely low permeabilities will not be economical to recover, which is why understanding 

fracture propagation is paramount to economic success (Sutton et al., 2010). 

Applications regarding microseismic technology have been used by Fisher and Warpinski 

(2012) to understand how fractures are not a threat to propagate into aquifers through the study of 

thousands of monitored fractured treatments and demonstrate that fractures will not propagate 

thousands of feet vertically and intersect potable water sources. Microsesmic technology 

identified, and helped build confidence in conclusions relative to, the fracture geometry and 
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orientation, as well as confirming a completion problem (O'Brien et al., 2011). Through 

microseismic modeling Wesson and Nicholson (1987) documented minor earthquakes that were 

likely induced by local injection operations. Microseismic modeling has been used extensively in 

geothermal applications to monitor induced seismicity (Fehler, 1989; Majer et al., 2005; Smith et 

al., 2000). 

 
Figure 2 - 12: Illustration of a well that is undergoing hydraulic stimulation treatment. 
Observation wells are used to monitor seismic events from the stimulation treatment by 
placing geophones at various locations in the offset wellbore. As a seismic event occurs due 
to the hydraulic fracture treatment, the energy release will propagate away from the event 
and can be detected by the geophones in the offset well. 
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Figure 2 - 13: Example of microseismic modeling. The induced seismicity created by the 
stimulation treatment releases energy that is recorded by geophones in offset wells that 
allows for the detection of the event and determine the distance and elevation of the location 
of the seismic event of a well that is undergoing hydraulic stimulation treatment. The 
microsesmic model can be used to develop a three dimensional image of the stimulated area 
(3D Microseismic image, microseismic.com, accessed 06/19/2002). 

 
 
Recent advances in complex fracture modeling via microseismic modeling have allowed for 

predictions of fracture propagation in unconventional reservoirs using sophisticated models 

(Cipolla et al., 2011; Rahman et al., 2002; Weng et al., 2011; Xu et al., 2010; Xu et al., 2009). 

Studies have also been conducted by Nagel et al. (2012) investigating fracture complexity through 

applications of  higher viscosity fracture fluids, different proppant sizes, and natural fractures to 

address interaction between a single dominant vertical hydraulic fracture and pre-existing fracture 

networks. Microseismic modeling has aided in the understanding of fracture geometry and 

conductivity through flow and transport related data, with emphasis on tracer-test and production 

data applications that contain important information about matrix and fracture properties and can 

be used to update fracture properties, including fracture length and hydraulic conductivity (Elahi* 

and Jafarpour, 2015; Ghods and Zhang, 2012; King et al., 2008; Moreno et al., 2014). 
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2.2.4 Fracture Diagnostic Methods Indirect 

Indirect methods use a variety of tools through the application of historical production. Tools 

that are used are reservoir simulation, fracture modeling and well test theory, rate transient analysis 

(RTA) and pressure transient analysis (PTA). Utilizing these tools one can achieve approximate 

information such as fracture dimensions, effective fracture length and fracture conductivity. 

Historical production is used to calibrate a history match between actual production and 

mathematical models. The underlying limitation of using these models is personal experience and 

some of the solutions may not be unique, which is why calibrating must be done between actual 

production data and the mathematical model of choice.  However, the advantage of using indirect 

methods, especially that of well test theory, is that is relatively inexpensive, provided in-house 

expertise, and can lead to approximations of induced fracture dimensions that can be used in the 

development of optimized fracture models. 

Reservoir simulation is by far one the most effective tools used in fracture design and its 

advantages and limitations have been discussed in the previous section. Reservoir simulation 

allows for what-if analysis that allows the engineer or scientist to run case studies of how the 

reservoir will respond to a set of conditions. However, one needs actual data to help allow for the 

calibration between simulated data and that of the actual data. Reservoir simulation software is 

readily available in the industry and can be employed to aid in fracture design as well as fracture 

diagnostics. 

Fracture models are commonly used in the industry to understand the changes and 

complexities that reside in fracture genesis and help in aiding the engineer or scientist to execute 

a plethora of scenarios that honor the physic of the reservoir of interest (Weijers and De Pater, 

2019). Fracture models look to understand elastic deformation, how fluids will leak off, viscous 
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fluid effects, how proppant will be transported into the fracture and how the fracture will propagate 

into the target formation (Bellarby, 2009). The two most commonly used two dimensional models 

are the Perkins-Kern (PKN) (Perkins and Kern, 1961) and the Khristianovic-Gerrtsma-de Klerk 

(KGD) (Daneshy, 1973; Geertsma and De Klerk, 1969; Zheltov, 1955) and both are designed to 

combine physics with Darcy flow traversing between two parallel plates using the fracture 

deformation as a function of the pressure distribution via the Sneddon (1946) equation. The PKN 

model is applicable for deeply penetrating fractures and low permeability reservoirs, and the KGD 

model, is applicable with high-permeability, high fracture conductivity with short fracture 

penetration.  

More recent advancements have led to parameterized three dimensional models. These models 

allow for the incorporation of the full coupling effects between the distribution of the pressure and 

fracture distribution in the entire fracture through nodal-analysis concepts and allow for 

incorporating the actual physics governing fracture genesis (Hsu et al., 2012). The main challenges 

regarding fracture modeling is that research is still trying to understand the mechanisms of how 

the fracture will actually grow, which is still an elusive phenomenon. Additional challenges are in 

the calibration process between the model and actual data and this challenge only further 

exasperates model predictions and will be an ongoing challenge into the future (Weijers and De 

Pater, 2019). 

Well testing in regards to Rate Transient Analysis (RTA) is classified as the analysis of 

production data with flowing pressures to extract reservoir characteristics, hydraulic fracture 

properties, and ascertain fluids in place (Mattar and Anderson, 2003). RTA is equivalent to 

pressure transient analysis (PTA) and RTA models have been used in tight formation reservoir 

analysis and are continually evolving to divulge more unique characteristic in understanding how 
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fractures are developed during hydraulic stimulation treatment  (Clarkson, 2013a; Clarkson, 

2013b; Clarkson and Williams-Kovacs, 2019; Deen et al., 2015; Ely and Herndon, 2019). When 

RTA is applied to real time production data, RTA can divulge beneficial information regarding 

not only the reservoir, but also gain some insight into hydraulic fracture characterization that is 

tied in well performance; however, similar to issues related to PTA regarding early time 

production, it is often difficult to ascertain early time information due to wellbore storage effects 

potentially masking the information. Detailed review of flowback studies have been analyzed by 

Williams-Kovacs (2017) and the workflow for conducting RTA during flowback has been 

emphasized by the work done by Clarkson (2013b). According to the research by Barree et al. 

(2019) RTA was applied to online production to quantify the effect of the hydraulic fracture length 

through the approximations using microcosmic mapped length, gross created length, propped 

length, flowing length and effective length, where the size of the effective hydraulic fracture length 

runs from largest to least respectively.  

Moreover, RTA is a model inversion forecasting process that applies analytical and semi 

analytical methods. One disadvantage of using analytical models is that important ancillary 

information, such as reservoir physics, may be neglected that is critical in determining fracture 

creation. There is a surfeit of information in the literature that can aide in fracture diagnosis using 

indirect methods such as composition numerical simulation using multiple objective optimization 

algorithms to history match flow back and early time production in liquid-rich reservoirs (Kanfar 

and Clarkson, 2016). Well testing is an invaluable tool to understand how a fracture may generate 

if early wellbore storage effects can be interpreted. 
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2.2.5 Advances in Fracture Diagnostic Methods and Emerging Technologies 

At the time of this writing, the advances that are henceforth have been in indirect 

methodologies in conjunction with classical fracture diagnostic tools. Current near-wellbore and 

far-field wellbore fracture quantification have allowed for better development of indirect methods 

to not only quantify fractures and how they are formed but assist in fine-tuning existing fracture 

models. Due to the heterogeneous anisotropic nature of the formation of interest and the range of 

geomechanical properties, one can observe in a target formation, the future of fracture diagnosis 

will be in a balance of developing more precise tools that can employ machine learning and big 

data via indirect methods to help sharpen the before-mentioned tools in this writing. Future 

research will be coupling reservoir simulation with data mining that is already becoming 

mainstream, such as works by (Esmaili and Mohaghegh, 2016) through the use of data mining, 

pattern recognition and machine learning algorithms to quantify in real-time a fracture stimulation 

program, which is a different approach than traditional stochastic methods (Mohaghegh, 2020). 

The use of discrete fracture modeling in reservoir simulation (Xu et al., 2017) is proposed for 

fracture quantification. Additional methods that use historical production through the connected 

reservoir storage model first introduced by (Childers and Wu, 2017) and later adapted for fracture 

quantification (Childers and Wu, 2020).  A new fracture diagnostic concept that has shown 

promise is the Sealed Wellbore Pressure Monitoring (SWPM) technique. The application of the 

SWBP uses a sealed wellbore as a monitoring well that is applied with an external force that 

slightly deforms the casing of the monitoring well. This technique allows for real-time monitoring 

of fracture growth of the treatment well to understand how fractures will propagate by analyzing 

pressure data from the treatment well and that of the monitoring well (Haustveit et al., 2020). The 
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limitation regarding this technique require a noncompleted well to be the monitoring well, which 

may be difficult depending on other completed wells in the area of interest (Jacobs, 2020).  

 

2.2.6 Summary of Fracture Diagnostic Methods 

The following figure (2-14) has been adapted from (Cipolla and Wright, 2000c) and is a 

synopsis of the different technologies that can aid in fracture diagnostic. This chart shows the 

different capabilities of each diagnostic technique along with their respective limitations. 
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Figure 2 - 14: Diagram of fracture diagnostic methods demonstrating each method's ability 
to approximate fracture parameters along with the limitations of each technique. This 
diagram has been adapted and expanded (Cipolla and Wright, 2000b) to include a few 
modern diagnostic methods. 
 

This section has presented a comprehensive review of fracture diagnostic methods used in the 

oil and gas industry, advantages, limitations, challenges, and possible solutions. Based on the 

above study and analysis, the following conclusions can be drawn. (1) fracture diagnostic analysis 

is an evolving science that allows for a greater understanding of how fractures form and understand 
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the stress mechanisms to develop a stimulation program smartly. (2) fracture diagnostic techniques 

are multifaceted, meaning one fracture diagnostic technique is not enough to quantify fractures. 

Multiple techniques are required to understand the near wellbore effects along with the far-field 

effects. (3) indirect methods allow greater insight into fracture formation through historical 

production data that will yield information about the fracture to aid in developing new diagnostic 

methods or aid in advancing existing fracture diagnostic techniques. 
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Chapter 3: The Connected Reservoir Storage Model (CRSM) 

In this chapter, the Connected Reservoir Storage Model will be presented from the 

fundamental material balance approach, and mathematical equations will be derived for this model 

related to gas reservoirs. This concept will then be validated through the development of synthetic 

models with varying permeabilities, porosities, and well geometries through the use of a reservoir 

simulation suite with known reservoir parameters along with the utilization of deconvolution 

techniques. Limitations involved with this method will be highlighted in the development 

procedures. 

 

3.1 CRSM and the Governing Assumptions: 

When an oil or gas well is initialized for production it begins to produce in the transient flow 

regime. The speed at which the pressure propagation occurs is determined through the diffusivity 

of the reservoir. When the propagation of the pressure reaches all boundaries of the reservoir, the 

well is in the pseudo steady state (PSS) which is also characterized as boundary dominated flow. 

Due to the pressure change in the finite volume, the energy contributing to the fluid flow in this 

volume includes the pore volume compressibility, fluid compressibility, and rock grain 

compressibility. The summation of pore compressibility and the saturation weighted average fluid 

compressibility is expressed as the total compressibility of the system and is represented by Eq. 

(3-1). 

 

 
, ,

t i iPV
i w o g

c c S c


    (3-1) 

 



55 

The total compressibility quantifies the relationship between the variations in pore pressure on a 

body of a porous media, thus resulting in a change in its volume under a uniaxial compression. 

The total compressibility is defined by the following expression.  
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Where P is the pressure change over an infinitely small volume and V is the total volumetric 

change which is equal to the volume of fluids expelled from an infinitely small volume at the 

subsurface condition.  When quantifying the cumulative production of the reservoir volume, one 

can determine this by the product of the total compressibility Eq. (3-3) and PV  which is the pore 

volume of an infinitely small volume and the pressure change over the same volume. The 

mathematical expression that relates the cumulative production of the reservoir volume is defined 

as the product of the total compressibility, pore volume, and the differential pressure change of the 

reservoir volume.  

 

 RV t PQ cV P   (3-3) 

 
 
Here the concept of connected reservoir storage will be defined, and it is expressed as follows:  

 

 ( ) ( )t PE t cV t  (3-4) 

Note that the Appendix (D) details the relationship of connected reservoir storage Eq. (3-4) as 

it relates to the radius of investigation (ROI) and time. The connected reservoir storage growth 

concept, from 1t  to 2t , is presented in Figure (3-1). If 1 0t  , then Eq. (3-3) can be written as follows:  
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Where ( )Q t  is defined as the cumulative fluid production at reservoir conditions with respect 

to time, ( )E t  is defined as the connected reservoir storage (CRS) in the region of pressure 

propagation, and  ( )rP t  is defined as the average reservoir pressure at the time t .  
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Figure 3 - 1: Diagram of the CRS changing from 1t  to 2t , the ordinate-axis displays the 

pressure and is the location of a producing well, whereas the abscissa axis represents the 
radius of investigation into the formation.  As the well is initialized for production, the 
pressure response propagates into the formation, and the CRS can be determined at various 
times during well life. 

 
 

The derivations of the CRSM can be found in appendix (A) and the connected reservoir 

storage can be modeled at any time for oil or gas reservoirs. The CRSM is not dependent on 

reservoir shape, heterogeneity, effective reservoir permeability or fluid properties. From Eq. (3-

5), the average reservoir pressure can be written as follows: 
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It should be noted that when evaluating actual production history, constant rate production is an 

unrealistic assumption since well production operations is a cyclical event with many service 

interruptions, such as well production shutdowns and startups, for various operational needs. To 

apply deconvolution to well production, one will need to normalize the production and cumulative 

production at any particular moment in time, t , for both oil and gas reservoirs as follows along 

with the governing assumptions of the CRSM, which are vertical well orientation, two-phase fluid 

is present either oil and water or gas and water media, constant production rate, radial flow in a 

circular reservoir of radius er , no mechanical skin effects exist, nor are there any effects of non-

Darcy flow. 

For liquid production: 
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where  ( )Nq t  and ( )NQ t  are the normalized production rate and normalized cumulative production 

values to the normalized derivation of the PSS solution to the radial diffusivity equation for liquid, 

and is expressed as follows:    
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For gas production: 
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where ( )
gN

q t  and ( )
gN

Q t  are the normalized production rate and normalized cumulative 

production values to the normalized derivation of the PSS solution to the radial diffusivity equation 

for gas, and is expressed as follows:  
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   (Wu and Childers, 2020). For a detailed derivation of Eq. 

(3-7) – Eq. (3-12), liquid and gas production, the reader should consult appendix (A) of this 

dissertation. Therefore, t  is the elapsed time in hours and 
i w fP P    is the reservoir response 

curve with unit production rate for liquid production and 
i w f     is for gas production. From 

the actual production rate, the relationship between time, t , and 
i w fP P   , liquid production, or 

i w f     gas production, can be found using deconvolution techniques. Furthermore, from 
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pressure transient analysis theory, the derivative function is defined as 
i wfd P P

t
dt

    
  

 and 

i wfd
t

dt

     
  

 for liquid and gas production, respectively, can be used to determine the reservoir 

boundaries. Once the normalized rate and normalized cumulative production have been 

determined, the connected reservoir storage can be readily ascertained. The connected reservoir 

storage can be calculated from the intersection of the tangent of the normalized decline curve with 

the normalized cumulative production axis as shown in Figure (3-2). 
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Figure 3 - 2: Determination of the connected reservoir storage at time 1t  and 2t .                                               
 
The derivations above illustrate that the reservoir response to a unit production rate can be 

approximated with no prior knowledge of the reservoir formation characteristics or fluid 
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properties, which makes for a very powerful tool when evaluating production behavior. The 

reservoir response curve can be used to calculate the production rate for a given pressure (or vice 

versa) using Duhamel’s integral, which is given by equation Eq. (3-13).  
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The procedure to calculate the production rate for a given flowing bottom hole pressure has been 

outlined in the paper by Wu et al. (2012a)  

Moreover, there are a few limitations when utilizing the connected reservoir storage model 

that need to be addressed. First, the original reservoir pressure should be uniform and constant. 

Second, the well being evaluated should be free of interference. If these assumptions are not 

adhered to then significant errors would occur in the analyzed results. Furthermore, it should be 

noted that the wellbore skin effect does not impede the application of this method as the skin does 

not affect the connected reservoir storage. If a well exhibits skin behavior, the calculated pressure 

response and its time derivative will encompass the skin effect already.  An additional challenge 

as well is with the initial pressure being an unknown; however, the pressure rate deconvolution 

algorithm that was proposed by (Levitan, 2003; Levitan, 2005) and can be employed to reconstruct 

the pressure response and estimate the initial reservoir pressure.  

 

3.2 CRSM Validation using Numerical Simulation Gas Reservoir:  

Nine cases shown in Figure (3-3) through (3-5) were used to validate the above algorithm. 

These cases, with known reservoir geometries, along with variations in permeability and porosity 

are simulated to generate rate and pressure data. Table (3-1) gives other essential parameters for 
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these nine cases that are used to develop bottomhole flowing pressure profiles utilizing reservoir 

simulation software.  

 
Figure 3 - 3: Rectangular reservoir models with varying permeability. 

 

 
Figure 3 - 4 : Rectangular reservoir models with varying porosity. 
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Figure 3 - 5: Radial reservoir models with varying permeability. 

 
Table 3 - 1: Summarized input parameters for the rectangular and radial reservoir 
formation case studies at initial conditions.  

Simulation Parameters 
Initial pressure , psia 5,000 Gas saturation, dimensionless 0.8 
Formation temperature, F 212 Gas compressibility, 1/psi 1.33E-04 
Pay thickness, ft 100 Rock compressibility, 1/psi 3.00E-07 
Top of reservoir, ft 5,000 Total compressibility, 1/psi 1.07E-04 

Skin dimensionless 0 
Gas formation volume factor, 
cf/Mscf 

3.82 

Wellbore radius, ft 0.5 Gas viscosity, cP 2.49E-02 
Gas deviation factor, 
dimensionless 

1.01 Gas gravity, dimensionless 0.65 

Water saturation, dimensionless 0.2 Gas flow rate, Mscfd 2,000 

Water compressibility, 1/psi 3.39E-06 
Porosity, dimensionless. Case 
studies (1,2,3,4,7,8,9) only 

0.25 

 
For a well that is testing at a constant production rate in all the above cases, the well bottomhole 

pressure can be calculated using well testing design based on the pressure response for laterally 

composite reservoirs (Kuchuk and Tarek, 1997). Figures (3-6), (3-9) and (3-12) shows the pressure 

profiles generated using reservoir simulation software for case studies one through nine along with 

the normalized production rate versus the normalized cumulative production and calculated 

connected reservoir storage at various times during well life. The tangent at any point on the 

normalized production rate versus the normalized cumulative production curve figures (3 - 7), (3-

10) and (3-13) can be estimated using numerical differentiation to calculate the connected reservoir 

storage at any moment, which is the intersection of the tangent line with the normalized cumulative 

production axis (refer to Figure (3-2) for the general concept). After convergence of all case study 
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models, the total connected reservoir storage model results are compared with the explicit 

connected reservoir storage solution which can be determined from Eq. (3-4).  
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Figure 3 - 6: Simulated flowing bottomhole pressure for cases one through three, varying 
permeability.  
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Normalized Cumulative Production, cf/PSI
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Figure 3 - 7: Normalized production rate and normalized cumulative production for cases 
one through three, varying permeability. 
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Figure 3 - 8: Calculated connected reservoir storage for cases one through three, varying 
permeability. 
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Figure 3 - 9: Simulated flowing bottomhole pressure for cases four through six, varying 
porosity.  
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Figure 3 - 10: Normalized production rate and normalized cumulative production for cases 
four through six, varying porosity. 
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Figure 3 - 11: Calculated connected reservoir storage for cases four through six, varying 
porosity. 
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Figure 3 - 12: Simulated flowing bottomhole pressure for cases seven through nine, varying 
permeability. 
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Figure 3 - 13: Normalized production rate and normalized cumulative production for cases 
seven through nine, varying permeability. 

 

Time, hours

0 50 100 150 200 250 300

C
on

n
ec

te
d

 R
es

er
vo

ir 
S

to
ra

g
e,

 c
f/

P
S

I

0

10000

20000

30000

40000

50000

60000

CASE 7 
CASE 8
CASE 9

 

Figure 3 - 14: Calculated connected reservoir storage for cases seven through nine, varying 
permeability. 
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Table 3 - 2: Comparison of the calculated total connected reservoir storage explicit solution 
and the proposed algorithm connected reservoir storage model for cases one through nine.  

Case Studies Case 1 Case 2 Case 3 
Pore volume, cf 125,000,000 125,000,000 125,000,000 

Total storage (Explicit), cf/psi 13,375 13,375 13,375 
Total storage (Model), cf/psi 13,111 13,017 11,735 

Error =  1.97% 2.67% 12.36% 
Case Studies Case 4 Case 5 Case 6 

Pore volume, cf 125,000,000 12,500,000 1,250,000 
Total storage (Explicit), cf/psi 13,375 1,337 134 

Total storage (Model), cf/psi 13,017 1,301 130 
Error =  2.67% 2.71% 2.69% 

Case Studies Case 7 Case 8 Case 9 
Pore volume, cf 490,873,852 490,873,852 490,873,852 

Total storage (Explicit), cf/psi 52,522 52,522 52,522 
Total storage (Model), cf/psi 51,587 49,652 50,694 

Error =  1.78% 5.47% 3.48% 
 

Using Figures (3-6), (3-9) and (3-12) and utilizing deconvolution techniques, the pressure response 

i w f    (which describes the pressure drop for unit production rate) can be determined. The 

derivative of the pressure response
i wfd

t
dt

     
  

 describes the boundary conditions of the 

reservoir, and the calculating technique to determine the derivative has been discussed by Horne 

(Horne, 2000).  

The results shown in Table (3-2) for case studies one through nine between the explicit 

solution and model solution agree very well with some degree of error. The error in the results 

come from the approximation error duration during the numerical calculation as well as error in 

the grid block calculations of the reservoir simulation. The absolute error ranges from 

approximately 2% to 12% with Case 3 exhibiting the highest absolute error value. The error in 

Case 3 is due to the two-zone linear composite model with one zone, 60% of the formation, having 

a permeability of 100 md and second zone having a permeability of 1 md making up 40% of the 
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remainder of the formation. Moreover, the matching of the results would be acceptable once the 

error causing the difference between the explicit solution and the connected reservoir storage 

model is understood.  

 
3.3 CRSM Implementation and Interrelated Curves: 

The CRSM interrelated curves allow for reservoir diagnosis and can be used independently 

for multiple purposes of reservoir characterization and performance analysis. Figure (3 - 15) shows 

the various elements that govern the CRSM. The normalized decline curve (NDC), at the apex of 

figure (3 - 15), is found through the computation of Eq. (3-10) and Eq. (3-11). The next step is to 

find the connected reservoir storage curve (CRS), and reservoir response curve (RPC) which 

represent the pressure drop function at a different time at a unit production rate. The derivative 

function of RPC can be used independently or in conjunction with reservoir diagnosis. Moreover, 

to determine any of the interrelated curves, both the BHFP and production rate will be needed. The 

reservoir response curve also can be obtained from theoretical reservoir models such as image 

wells and pressure superposition, and numerical deconvolution of actual production data. The 

pressure drop curve can be used to predict production rates for complex reservoirs and zonal rate 

allocations by coupling this curve with Duhamel’s integral (Wu et al., 2012b). The pressure drop 

curve can be used to monitor the change in well productivity and skin history. The derivative curve 

can be utilized to state the boundary conditions and flow regimes for a given reservoir. Using the 

NDC, one can diagnose the well performance and flow region of a producing well. The CRS curve 

reveals the growth of the minimum pore volume contributing to the pressure behavior and 

production performance.  With the knowledge of the minimum connected pore volume, the 

average reservoir pressure and volume can be estimated which is a required value needed when 

applying material balance analysis. The combination of these three curves is more useful in 
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reservoir performance analysis and forecasting for complex reservoirs. For instance, a well with 

limited production history has a high probability to still be in the transient flow regime, especially 

if the reservoir is a tight formation. To forecast the production rate, many uncertainties associated 

with the reservoir volumes with different confidence intervals can be implemented in the CRSM. 

Integrating the CRSM with geological data, the overall CRS can be utilized in the development of 

probabilistic forecast models.  

 

Figure 3 - 15: Connected Reservoir Storage Model flow chart process.  Normalized Decline 
Curve (NDC) is determined from the normalized cumulative production and production 
rates. Connected Reservoir Storage (CRS) curve is determined from NDC. The reservoir 
response curve (RPC) is determined through the deconvolution of the normalized cumulative 
production and production rate history. 
 

3.4 Summary: 

This chapter has introduced a novel concept of the CRSM. The CRSM adds a needed bridge 

between production decline and the reservoir pressure response. Using the methodology presented 

in this chapter, it has been demonstrated that the CRS term can be calculated directly from 

production data without any prior knowledge of the reservoir geometric information, petro-

physical data, or fluid properties. This in turn, significantly streamlines the pressure transient 

analysis and can be directly used to forecast production, pressure behavior, average reservoir 

Connected 
Reservoir Storage 

Curve
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Decline Curve

Reservoir 
Response Curve



71 

pressure and original fluids in place. In addition, the CRS concept can also be related to the 

superficial radius of investigation as demonstrated in Appendix (D). The capabilities of decline 

curve analysis have been greatly expanded. With the concept of the connected reservoir storage 

model, decline curve analysis can now be applied to the transient flow regime which, in turn, will 

greatly enhance reservoir forecasting for wells that exhibit long life in the transient flow region.  
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Chapter 4: CRSM Applied to Simulated Liquid Well Performance 

This chapter will demonstrate the ability of the CRSM to predict production performance and 

compare the result to two classical empirical techniques currently used in tight formation 

predictions, and the validation is done via numerical simulation. Based on the CRSM, this chapter 

will reveal the interrelated paradigms among well performance, increasing reservoir connected 

volume, and rate forecasts with uncertainties.   

 

4.1 Applying the CRSM Oil Well Application: 

To validate the performance of CRSM and to forecast well performance, a bi-wing synthetic 

reservoir model was used for a base and sensitivity case studies. Figure (4 - 1) is an illustration of 

the numerical model with known parameters summarized in Table (4 - 1). The model represents a 

half of fracturing cluster in a tight formation. Since the purpose of this exercise is to validate the 

CRSM, we must use existing flow mechanisms with known flow regions and reservoir properties. 

Permeability impact was studied by changing the matrix permeability to 0.1 md, and 0.01 md. 

Each synthetic reservoir simulation was simulated for 30 years and the data derived from the 

reservoir simulation was the BHFP, liquid rate production and cumulative liquid production, see 

figure (4 - 2), (4 - 3), and (4 - 4) respectively. 
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Table 4 - 1: Summarized input reservoir simulation parameters for the case studies at initial 
conditions. The parameters outlined in this table were utilized with bi-wing hydraulically 
fractured reservoir model, figure (4 - 1), to determine the BHFP, liquid production rate and 
liquid cumulative production for base and sensitivity case studies. 

Simulation Parameters 

Bubble point pressure, psi 1,323 
Oil formation volume 
factor, rb/STB 

1.15 

Formation temp., F 220 Pay thickness, ft 210 
Fracture perm., md 10,000 Skin factor 0 

Initial reservoir pressure, psia 8,000 
Specific gas gravity, 
dimensionless 

0.71 

Matrix perm., md 1, 0.1, 0.01 Total vertical depth, ft 5,085 
Matrix porosity, fraction 0.081 Wellbore radius, ft .5 
Minimum BHFP limit, psi 1,500 Oil compressibility, 1/psi 2.80E-06 

Oil density, lbm/cf 55.3 
Pore volume 
compressibility, 1/psi 

2.80E-06 

Oil flow rate, STB/D 750 
Water compressibility, 
1/psi 

2.80E-09 

Model Geometry 
Length, ft 1,000 Thickness, ft 210 
Width, ft 1,000 Number of layers 1 

 
 
 

 

Figure 4 - 1: Bi-wing hydraulically fractured reservoir simulation model (half fractured 
system cluster) where point A is the location of the wellbore. The model was developed with 
a logarithmic single layer gird. The left picture is the top view looking down on the reservoir 
from the surface, where the red layer, first grid block represents the hydraulic fracture, and 
the blue grid block represents the matrix formation. The right view is looking into the 
formation from the left side. 
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Figure 4 - 2: BHFP determined from the reservoir simulation. The BHFP were determined 
using the base case, 1 md and for the sensitivity case studies of 0.1 md and 0.01 md, 
respectively. 
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Figure 4 - 3: Simulated oil production rate from reservoir simulation. The oil production 
rate was determined using the base case study of 1 md and for the sensitivity case studies of 
0.1 md and 0.01 md, respectively. 
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Figure 4 - 4: Cumulative production for the base case study, 1 md and the sensitivity case 
studies of 0.1 md and 0.01 md  respectively. The cumulative production is used in the 
normalized cumulative production calculation of Eq. (3-8) 
 

4.2 Production Forecasting using CRSM: 

The base case with the matrix permeability of 1 md is used to demonstrate the implementation 

of the CRSM. The numerical simulator yields the well production history and BHFP with which 

the NDC can be obtained as shown in Figure (4-5) as the procedure outlines in appendix (C). 
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Figure 4 - 5: The determination of the normalized decline curve model for the base case km 
= 1 md. This model was derived from the computations of Eq. (3-7) and Eq. (3-8). 
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Figure 4 - 6: The connected reservoir storage determined for the base case of km = 1 md. CRS 
was determined looking at historical production of one, two and three years, respectively. 
The CRS can be determined from A-(40)  
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Once the NDC has been determined, the next step is to determine the CRS curve by applying 

Eq. A-(40), to the data formulated from Eq. (3-7) and Eq. (3-8), see figure (4 - 6). Note that the 

CRS assumes that PSS flow has been reached at the end of one, two and three year production 

histories. This assumption allows for the projection of the unit pressure response since 

deconvolution will only be applied to the historical data set of interest. Once both the NDC and 

CRS curves have been determined, the unit pressure response will be determined by 

deconvolution, see figure (4-7). The unit pressure response forms the basis such that the CRSM 

can be implemented. Moreover, due to the numerical errors that arise from the normalization 

computations presented earlier as well as the deconvolution being ill-posed (Kuchuk et al., 2010a), 

there can be noise in the data that may require some data smoothing to reduce the amount of noise 

seen in the unit pressure response when applying the CRSM algorithm for production forecasting 

predictions illustrated in appendix (A). 
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Figure 4 - 7: Determination of the unit pressure response for the base case model of km = 1 
md. The unit pressure response was determined using deconvolution on the historical 
production of one, two and three years, respectively. The unit pressure response was 
projected into the future at a linearly increasing rate that assumes the reservoir has reached 
PSS flow.  
 

 
Two empirical models will be used for comparison of the production forecasting models, 

which is the Arps’ hyperbolic model Eq. (2-4) and Duong model Eq. (2-11). The traditional Arps’ 

model and Duong parameters were determined using the procedures outlined (Arps, 1945) and 

(Duong, 2011) and can be found in table (4-2). It is important to note that for tight formation 

production analysis using the Arps’ hyperbolic model, it is not uncommon to have Arps exponent 

values greater than unity (Poston and Poe, 2008). The results of table (4-2) will be used for both 

the Arps’ and Duong empirical models to forecast future production performance and these 

parameters where determined using numerical regression to minimize the error between the 

simulation data and the empirical models. Figure (4 - 9) and (4 - 10) show the production 

performance between simulated production and empirical models. 
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Table 4 - 2: Tabulated parameters found for the Arps and Duong Model’s base case study. 
The constraints for the Arps Model are with the Arps’ exponent such that: b = 0 for 
exponential decline, 0 < b < 1 for hyperbolic decline and b = 1 for harmonic decline. The 
constraints for Duong Model are with the Duong intercept “a” and Duong slope “m” with 
constraints of 0 < a ≤ 2 and 1 ≤ m ≤ 2, respectively. 

Empirical Model 
Parameters Summary 

Arps Parameters Duong Parameters 

Model 
Data 

Matrix 
Per, (md) 

qi 
(rb/Day) 

Di 
(1/Day) 

b 
qi 

(rb/Day) 
a  

(1/Day) 
m 

Year 1 1 862.5 8.69E-03 0.39 862.5 4.58 1.55 
Year 2 1 862.5 4.27E-03 0.67 862.5 2.21 1.26 
Year 3 1 862.5 3.74E-03 0.75 862.5 2.09 1.24 

 

Figure (4 - 8) shows the production forecasting performance of the CRSM as shown in figure 

(4 - 7). Illustrated on Figure (4 - 8) are three coloring schemes to represent the production history 

that was used for the prediction models. The one year (Yr1) represents one year of historical 

production data, two years (Yr2) represent two years of historical production data and three years 

(Yr3) represent three years of historical production data, which were used for prediction model 

forecasting. The method in figure (4 - 8) was carried over to figures (4 - 9) through (4 - 10) and 

will not be repeated in the following figures. 
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Figure 4 - 8: Flow rate prediction using the CRSM for the base case of km = 1 md. The CRSM 
used one, two- and three-year historical data utilizing Eq. B-(9). 
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Figure 4 - 9: Flow rate prediction using the Arps’ model Eq. (2-4) for the base case of km = 1 
md. The Arps’ model used one, two- and three-year historical data to determine the Arps’ 
parameters using numerical regression.  
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Figure 4 - 10: Flow rate prediction using the Duong’s model for the base case of km = 1 md. 
The Duong’s model Eq. (2-11) used one, two- and three-year historical data to determine the 
Duong’s model parameters using numerical regression. 
 
Using the same procedural steps as in the base case, the sensitivity cases of matrix permeability of 

0.1 md and 0.01 md are conducted and the results compared to that of Arps’ and Duong empirical 

models are shown in figures (4 - 11) - (4 - 16).  
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Figure 4 - 11: Flow rate prediction using the CRSM for the sensitivity case of km = 0.1 md. 
The CRSM used one, two- and three-year historical data utilizing Eq. B-(9). 
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Figure 4 - 12: Flow rate prediction using the Arps’ model Eq. (2-4)  for the sensitivity case of 
km = 0.1 md. The Arps’ model used one, two- and three-year historical data to determine the 
Arps’ parameters using numerical regression. 
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Figure 4 - 13: Flow rate prediction using the Duong’s model for the sensitivity case of km = 
0.1 md. The Duong’s model Eq. B-(9) used one, two- and three-year historical data to 
determine the Duong’s model parameters using numerical regression. 
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Figure 4 - 14: Flow rate prediction using the CRSM model for the sensitivity case of km = 
0.01 md. The Duong’s model Eq. B-(9) used one, two- and three-year historical data to 
determine the Duong’s model parameters using numerical regression. 
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Figure 4 - 15: Flow rate prediction using the Arps’ model Eq. (2-4)  for the sensitivity case of 
km = 0.01 md. The Arps’ model used one, two- and three-year historical data to determine 
the Arps’ parameters using numerical regression. 
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Figure 4 - 16: Flow rate prediction using the Duong’s model for the sensitivity case of km = 
0.01 md. The Duong’s model Eq. (2-11) used one, two- and three-year historical data to 
determine the Duong’s model parameters using numerical regression. 
 
 
4.3 Discussion of the results: 

Table (4-3) shows the tabulated data between Arps and Duong models for the sensitivity case 

studies. As one should expect, using numerical regression to fit the historical results will lead to 

different empirical coefficients depending on how much historical data is available.  
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Table 4 - 3: Tabulated parameters found for the Arps and Duong model’s sensitivity case 
studies. The constraints for the Arps model are with the Arps’ exponent such that: b = 0 for 
exponential decline, 0 < b < 1 for hyperbolic decline and b = 1 for harmonic decline. The 
constraints for Duong Model are with the Duong intercept “a” and Duong slope “m” with 
constraints of 0 < a ≤ 2 and 1 ≤ m ≤ 2, respectively. 

Model Parameters 
Summary 

Arps Parameters Duong Parameters 

Model 
Data 

Matrix 
Per, (md) 

qi 
(rb/Day) 

Di 
(1/Day) 

b 
qi 

(rb/Day) 
a  

(1/Day) 
m 

Year 1 0.1 862.5 2.32E-02 0.97 862.5 1.82 1.17 
Year 1 0.01 862.5 2.32E-02 0.97 862.5 1.59 1.24 
Year 2 0.1 862.5 2.12E-02 1.09 862.5 1.70 1.15 
Year 2 0.01 862.5 2.12E-02 1.09 862.5 1.46 1.20 
Year 3 0.1 862.5 2.07E-02 1.15 862.5 1.65 1.14 
Year 3 0.01 862.5 2.07E-02 1.15 862.5 1.4 1.19 

 
 

This study has compared the production forecast performance between Duong’s model and 

Arps’ hyperbolic decline methods and CRSM by using production histories of one, two and three-

years from reservoir simulation results. Moreover, there are limiting boundaries for each of the 

coefficients such that the variables like the Arps’ exponent “b” being greater than unity. The 

original work by Arps did not allow for the Arps’ exponent to be greater than unity; however, there 

has been many tight reservoirs that have exhibited Arps’ exponent’s that are greater than unity to 

best fit the historical data. Moreover, if the Arps’ exponent is greater than unity, the predicted 

cumulative productions could be unbounded for tight reservoirs in the transient flow regime (Valkó 

and Lee, 2010). It should be noted that the governing assumptions regarding the Arps’ hyperbolic 

model were constant BHFP, constant drainage area, constant skin factor and constant boundary 

dominated flow or PSS. None of these assumptions are realistic or true in the production life of 

tight reservoirs. The Duong model is more applicable in tight reservoirs; however, it also has 

limitations when finding the empirical coefficients that govern the Duong model. Illustrated in the 

table (4-3), the Duong coefficients are shown for both Duong slope, “m”, and Duong intercept, 

“a”; however, both coefficients are bounded by constraints outlined in tables (4-2) and (4-3) 
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captions. Using unconstrained numerical regression for these parameters to best fit the historical 

data, the Duong parameters are satisfied for different periods except for the Duong intercept 

parameter for each time series of matrix permeabilities of 1 md, base case study. For this study, 

the constraints were left unbounded to illustrate the advantages of CRSM in lieu of empirical 

models, which does not require any parameters to undergo curve fitting optimization, or tuning, as 

in empirical methods.  

Starting with the base case of matrix permeabilities of 1 md, figures (4 - 10), (4 - 11) and (4 - 

12), the results show at one-year historical best-fit regressions of Arps’ and Duong underestimate 

performance; however, comparing their performance at two and three year historical best fit 

analysis, shows a much better improvement comparing the model to the simulation data; however, 

both models still under-predict performance. The CRSM predicts production performance slightly 

better than both Arps’ and Duong models at year one historical data. Moreover, it should be noted 

that there is a numerical error that is occurring at the very first-time step of the superpositions 

algorithm within the CRSM. This error is due to errors within the numerical simulation as well as 

numerical errors in the computations of Eq. (3-7) and Eq. (3-8). As the superposition moves 

forward with every time step this error is summed out resulting in a good fit of the CRSM, physical 

model, to that of the simulation data. Also, note that the accuracy of the CRSM improves, like 

Arps’ and Duong models, based on the amount of historical production data that is used or is 

available. When comparing the overall error between the simulation data and the CRSM, Arps’ 

and Duong models, the CRSM predicts slightly better than both the Arps’ and Duong models. The 

error analysis used to compare all models was the Mean Relative Error (MRE), Eq. (4-1), between 

simulation production data to the CRSM, Arps and Duong forecasting models and is illustrated 

with a bar chart, figure (4 - 17). 
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Moreover, evaluating the sensitivity cases of 0.1 md and 0.01 md, as the matrix permeabilities 

decrease, figure (4 - 11) – (4 - 16), the empirical models, Arps and Duong, still underestimate 

performance in the early stage of well life; however, improve overall performance, later in well 

life when best fitting the data through numerical regression. Comparing both Arps’ and Duong 

models to the CRSM, the CRSM estimates production performance slightly better than both Arps 

and Duong for the historical time steps, except for year one prediction beyond 1500 days. As 

previously stated, the prediction performance improves the more historical production data that is 

available and the CRSM estimates historical production better than both Arps’ and Duong models 

when evaluating both two- and three-year historical production history. Figure (4 - 11) – (4 - 16) 

shows that for a matrix permeability of 0.01 md both Arps’ and Duong models over predict 

performance, whereas, the CRSM provides a better overall estimate for year one, two- and three-

year historical projections especially in the early stages of well life where transient flow is 

observed. 
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Figure 4 - 17: Error Analysis between Prediction Models. Comparing the average percent 
error found between the simulated data to that of the prediction model for one, two- and 
three-year historical production trends using the MRE calculation Eq. (4-1). 
 

 
4.4 Summary and Conclusion: 

This study has demonstrated the application of the CRSM using a numerical simulation of a 

tight oil reservoir with a bi-wing hydraulically fractured reservoir with low permeable matrix. The 

CRSM was developed utilizing the BHFP and production rate. Several major advantages of using 

the CRSM over curve fitting based models include: 

(1) CRSM is physics-based with a rigorous mathematical foundation without the 

knowledge of reservoir geometry or properties. 

(2) CRSM can be used in scenarios with variable production operations which is more 

realistic than the assumption of constant flowing bottom hole pressure used in classical 

empirical models. 

(3) CRSM can be used to bypass the ambiguous results found when using empirical models 

when encountering multiphase flow phenomena experienced during well life.  

0%

20%

40%

60%

80%

100%

120%

CRSM
Yr1

CRSM
Yr2

CRSM
Yr3

Arps Yr1 Arps Yr2 Arps Yr3 Duong
Yr1

Duong
Yr2

Duong
Yr3

M
R
E 
%

km = 1 md km = 0.1 md km = 0.01 md



89 

One limitation of the CRSM is that the deconvolution of the normalized cumulative 

production and normalized production rate history can induce noise in the CRSM prediction. 

Therefore, when determining the unit pressure response, data smoothing may be required when 

dealing with matrix permeabilities of micro and nano-Darcy scale.  
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Chapter 5: CRSM Applied to Shale Gas Well Performance 

This study uses the operational history of a shale gas well to demonstrate the CRSM’s 

capability in rate prediction under variable operating conditions with uncertainties. This chapter 

will also feature the CRSM’s applicability in well diagnostics to aide in the understanding of 

production performance via triangular distribution with Monte Carlo simulations.  

   
5.1 Brief discussion regarding flow regimes of a shale gas reservoirs: 

Before applying the CRSM to shale gas production performance it is important to discuss the 

various flow regimes that comprise a shale gas well. Figure (5-1) will be used to describe the flow 

phenomena during the production life of a shale gas well. After the hydraulic fracture stimulation 

treatment, and the commissioning of a shale gas well, the first flow regime that will occur will be 

fracture linear flow illustrated by point A of figure (5-1). At this stage, fluid flowback will take 

place in the hydraulically induced fractures and the fracture linear flow regime may not be visible 

at early times due to wellbore storage effects. The next flow regime that will be encountered is the 

bilinear flow regime illustrated by point B on figure (5-1). The bilinear flow regime is 

characterized by fluid flowing through the hydraulic fracture and the natural fractures in the 

formation. After bilinear flow, formation linear flow regime will appear point C on figure (5-1), 

which is demonstrated by fluids being produced from the stimulated reservoir volume (SRV).  

Point D on figure (5-1) is the transition from the linear flow periods in the early stages of 

production to radial flow regimes at later stages of well life, which exhibits an elliptical flow 

regime. The last phase encountered in the production life of a shale gas well is the pseudo radial 

flow, point E of figure (5-1), and at this stage, all boundaries have been reached and the reservoir 

is producing primarily from the formation matrix. 
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Figure 5 - 1: Schematic representing the flow regime phenomena encountered during shale 
gas production. Point A represents fracture linear flow, point B represents bilinear flow, 
point C represents formation linear flow, point D represents the transition from linear to a 
radial flow regime, and point E represents pseudo-radial flow.  

  
 

5.2 Applying the CRSM to Shale Production Well Field Example: 

The well selected for this case study is a hydraulically fractured shale gas well located in 

Chongqing, China, and will be referred throughout this study as well A. The shale play is 

intermediated between the middle-upper Longmaxi formation and the overlain upper Ordovician 

tight limestone with a thickness of 38-45 meters (125 – 148 ft) organic-rich section with a maturity 

range 2.2-3.0% Ro (Guo, 2015). The original reservoir pressure was about 5400 psi, and reservoir 

temperature was 206°F. The shale gas has more than 98% methane with a specific gravity of 0.61. 

The original pressure gradient is approximately 0.67 psi/ft. A typical wellbore structure of well A 

is provided below in figure (5-2). For the shale gas well, the tubing head pressure was recorded 

daily, and this pressure was converted to bottomhole pressure at the end of the tubing string to 

reduce pressure noise induced from wellbore uplifting performance. The daily production data of 

the shale gas well was recorded and plotted together with the converted downhole pressure as 
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Formation 
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shown in figure (5-3). From the production data, figure (5-4), one can see the rate variations are 

caused by pressure depletion and well intervention over production life. 

 

 
Figure 5 - 2: Wellbore diagram for the horizontal well A, illustrating the tubing and open 
hole section of the gas well. This well has been fractured with multiple stages along the 
horizontal segment, and is located in Chongqing, China. 
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Figure 5 - 3: Casing and tubing head pressure after well A was put on production. This 
chart illustrates the bottomhole flowing pressure and the tubing head pressure over time. 
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Figure 5 - 4: Gas and Water production rate after well A was put online. This chart illustrates 
the gas and water production at standard conditions over time. 
 

 
The CRSM was applied to well A and only the first 200 days of the historical production data 

were used to forecast its performance to an economic limit of 10 Mscf/d, which will be used in 

predicting the EUR. A true EUR is predicated on many economic factors such as commodity price, 

severance, and taxes. During the life of well A there are several instances where the well 

experienced interruptible service during production operations, start-up, and shut-in periods, 

which caused some instances of flush production at various times when well A was brought back 

online. The purpose of this study is to demonstrate the gas production prediction potential of the 

CRSM and the beforementioned factors that go into determining EUR can be added to any future 

prediction analysis. The 200 days illustrated in figure (5-5) are represented by the red data set and 

will be used to generate the unit pressure response for three linear relationships for the 

approximations of gas production performance. The three linear projections will be used to 

develop a triangular distribution using Monte Carlo approximation to determine the best probable 



94 

outcome based on the three linear projection assumptions, which will lead to a fourth linear 

projection of the unit pressure response. Figure (5-10) displays the four linear projection models 

on the unit pressure response curve. A step-by-step implementation is demonstrated using well A. 
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Figure 5 - 5: Semi-log plot of the gas production rate history of well A. The black data points 
are the production history corresponding to approximately three years of historical 
production for well A. The red data points will be used in the CRSM gas production 
prediction models. 
 

The first step is to covert the well head pressure to the bottom-hole flowing pressures from 

figures (5-3) and (5-4). Using the historical production of well A, both the normalized production 

rate and normalized cumulative production for gas can be computed, Eq. (3-10) and Eq. (3-11) 

and is shown in figure (5-6). The flush production was omitted from the NDC analysis as it does 

not represent the actual decline of the well during production. It should be noted that during the 

early life of shale gas production the rate of decrease on the NDC is caused by fracturing fluid 

flow back and the gas rate data must be omitted from the analysis. After data cleaning the 

production data from well A is shown on the NDC figure (5-7). The connected reservoir storage 
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curve (CRS) can also be used to illustrate the transitions of the transient regime to that of the PSS 

regime, figure (5-8). The red points in figure (5-8) represents the filtered data from the NDC and 

the black data points are the actual CRS values over the entire three-year history of well A. Note 

that for the gas production forecast prediction models, the CRS assumes that PSS flow has been 

reached at the end of 200 days. This assumption allows for the projection of the unit pressure 

response linearly overtime. The filtered NDC data is represented by the red data points of figure 

(5-7). Once both the NDC and CRS curves have been determined the unit pressure response will 

be determined by deconvolution, see figure (5-9). The unit pressure response forms the basis such 

that the CRSM can be implemented. Moreover, due to the computational nature of the normalized 

equation computations presented early as well as the deconvolution being ill-posed (Kuchuk et al., 

2010b), there can be noise in the data that may require some data smoothing to reduce the amount 

of noise seen in the unit pressure response when applying the CRSM algorithm for production 

forecasting predictions illustrated in appendix (A). Therefore, figure (5-9) shows three important 

aspects regarding the information associated with well A. First the red data, is the historical data 

that will be used for linear projections of the unit pressure response. Second, the green data set 

represents the bottom-hole flowing pressure of well A to help further illustrate the transient and 

PSS regimes. The black data set is the unit pressure response of the filtered data set over the three 

years of historical production, figure (5-9).  
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Figure 5 - 6: Normalized Decline Curve of well A. The abscissa axis is the normalized 
cumulative production, and the ordinate axis is the normalized rate production. The NDC is 
shown over the entire historical production of well A and will need to be filtered to utilize 
the NDC for the CRSM analysis.  
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Figure 5 - 7: Filtered Normalized Decline Curve of well A. The red data points have been 
superimposed onto figure (5 - 6) indicating the data set that will be used to employ the CRSM 
analysis to well A for the first 200 days of production.  
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Figure 5 - 8: Connected Reservoir Storage (CRS) curve also known as the proven energy of 
the reservoir. This curve demonstrates the amount of energy at any given time in the 
reservoir’s life. As the well is initiated for production the energy of the reservoir will increase 
at a decreasing rate until the transition from transient flow regime to pseudo-steady state 
(PSS) flow regime has been reached, which will run parallel to the abscissa axis. 
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Figure 5 - 9: The unit pressure response curve shows the change in pressure drop for one 
unit of gas production (1 Mscf/d). The unit pressure response curve can be used for well 
behavior diagnostics. The unit pressure response prediction models were developed using 
200 days of well A data illustrated by the red data points. The bottom-hole flowing pressure 
is shown on the secondary axis to illustrate the transient and PSS transitions. 
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Some important observations regarding the unit pressure response curve, figure (5-9). Using 

deconvolution to determine the unit pressure response, the filtered data set shows some interesting 

trends. First, if the unit pressure response is parallel to the ordinate axis, it indicates the well is in 

steady-state, which is usually not the case for shale reservoirs. The unit pressure response will 

increase linearly once PSS has either been assumed, for forecast prediction purposes, or naturally 

based on reservoir physics. One key concept to take from figure (5-9) is that the red data set is all 

that is used for the prediction models, which is approximately 200 days. Furthermore, between 

400 to 600 days of well life the unit pressure response appears to be increasing linearly; however, 

once 700 days of production has been reached it should be noted that the unit pressure response 

increases dramatically. This rapid increase in unit pressure response behavior can be due to 

multiple factors playing in tandem. For example, as the unit pressure response increases rapidly 

from 700 days to the 1200 days of historical production, this may be contributed by skin change 

taking place near fracture channels or the wellbore. Likewise, the net stress occurring in the 

formation is increasing relative to production, which would yield a decrease in fracture 

conductivity. Both the increase in the net stress and a decrease in fracture conductivity will lead to 

an increase in the unit pressure response behavior. Moreover, as water accumulation takes place 

in the wellbore, the gas production would subsequently decrease as the water droplets become 

entrained in the near-wellbore in two-phase flow regimes. Therefore, the gas production is 

inversely proportional to the unit pressure response and this will be illustrated in the prediction 

models. 

The next step will be to use unit pressure response projections to determine shale gas 

production prediction models. Using the 400 to 700 days as a starting point, a linear projection 

will be placed above the historical data of 400 to 700 days, blue line illustrated in figure (5-10). 
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Similarly, another linear projection will be placed below the 400 to 700 days of historical 

production, illustrated by the grey line figure (5-10). Lastly, the mean of the upper and lower 

projection will be illustrated by the dark green line of figure (5-10). The upper, lower and mean 

linear projections will be used with a triangular distribution to determine the Monte Carlo 

representation of both the slope and intercept of the unit pressure response linear projection of the 

most probable outcome for the unit pressure response projection, which is illustrated by the red 

line of figure (5-10). Figures (5-11) and (5-12) represent the Monte Carlo simulation to determine 

the most probable slope and intercept from the slope and intercepts of the upper, lower and mean 

linear unit pressure response projections. From figure (5-11) and (5-12) convergence for both the 

slope and intercept appear to occur at approximately 800 iterations in both cases; however, over 

1500 iterations were used to minimize any deviations in the random variables that are used in 

determining the most probable outcome of the slope and intercept of the unit pressure response.  

Now that the unit pressure response has been determined for four cases, all cases will be used 

to develop the gas production forecast predictions to illustrate the power of using the CRSM. It 

should be noted that the CRSM can be viewed as a model that will update in real-time. Since this 

analysis uses only 200 days of historical production data for prediction purposes, the more data 

that becomes available, the CRSM will update in real-time providing for a better approximation 

of unit pressure response behavior, which lends itself to easy implementation as it does not require 

any variables to be tuned as in empirical models that use nonlinear regression methods. 
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Figure 5 - 10: Unit pressure response from the filtered NDC of well A. The red data was used 
for shale gas forecast projections. Each unit pressure response projection was projected at 
the end of 200 days of the historical data of well A. The black data points are the unit pressure 
response determined over the filtered NDC data set up to the current history of the 
production of well A. The green triangular data set represents the calculated bottom-hole 
flowing pressure represented by the secondary axis, which demonstrates the early transient 
regime and transition to PSS regime. 
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Figure 5 - 11: The slope of the unit pressure response projections of the upper, lower, and 
mean linear projections. Monte Carlo simulations were conducted for 1500 iterations until 
convergence has been reached on the most plausible outcome to represent the slope of the 
linear unit pressure response projections. 
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Figure 5 - 12: The intercept of the unit pressure response projections of the upper, lower, 
and mean linear projections. Monte Carlo simulations were conducted for 1500 iterations 
until convergence has been reached on the most plausible outcome to represent the intercept 
of the linear unit pressure response projections. 
 

 
5.3 Shale Gas Production Performance CRSM Predictions: 

The next phase of the CRSM analysis will be to predict gas production performance using the 

results found in figures (5-6) - (5-12) for gas production projections, and using rate prediction 

model based on the unit pressure response and superposition Eq. B-(9). The four-unit pressure 

response projections were conducted using only 200 days of historical data. With the assumption 

that all unit pressure responses have reached PSS and utilizing the various slopes and intercepts of 

the unit pressure response, the gas production performance can be approximated for each of the 

four case studies, figure (5-13). 
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Figure 5 - 13: Shale gas production predictions for well A. The blue line represents the unit 
pressure response resulting in the upper limit approximation of well performance, due to the 
skin factor and liquid loading, which results in an under prediction of production to 
historical data. The grey line represents the lower limit of the unit pressure response analysis 
and results in an overestimate of historical data. The red and green prediction models 
represent the mean and Monte Carlo predictions and yield a more approximate performance 
prediction to historical data. 
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Figure 5 - 14: Cumulative production predictions for all four case studies. As should be 
expected the unit pressure response associated with the blue line is the upper limit of the unit 
pressure response from figure (5 - 10) and yields a lower EUR. The grey line represents the 
lower limit of the unit pressure response and will yield the most conservative EUR. The green 
and the grey line represents the mean and the Monte Carlo prediction and yield the average 
and the most probable outcome for EUR, respectively. 
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The first gas production projection was for the minimum assumed slope and intercept of the 

unit pressure response curve, grey line, which shows that for lower assumed unit pressure response 

would correlate to an overestimate of gas production performance. The production trend from the 

minimum assumed slope and intercept of the unit pressure response correlates with a relatively 

low skin effect that would allow for greater production flow from the shale gas reservoir. The next 

gas production projection uses the maximum assumed slope and intercept of the unit pressure 

response, blue line, which shows that if the unit pressure response prediction is relatively high 

there will be an inverse relationship with production rate or underestimate shale gas production 

due to the increase in the skin factor as well as other contributing factors that would impede gas 

production, such as liquid loading in the wellbore. The mean unit pressure response, green curve, 

was used as an arithmetic average between the maximum and minimum slope and intercept values 

found for the unit pressure response predictions. Using the mean unit pressure response yields a 

good approximation to the actual shale gas production projections. Furthermore, using both the 

maximum, minimum and mean unit pressure response slope’s and intercept’s a triangular 

distribution with Monte Carlo simulation was done to generate multiple realizations of shale gas 

production prediction based on the assumed maximum and minimum values of the parameters of 

the unit pressure response. The red line, displayed in figure (5-13), shows that there is a slight 

under-prediction of the historical shale gas production performance. The results of the shale gas 

prediction performance between the four-prediction models and the historical shale gas 

performance are displayed in the table (5 - 1). The Mean Relative Error (MRE) was used to 

compare errors between each model prediction and is also shown in table (5 - 1). Furthermore, 

using the four prediction models, the estimated ultimate recoveries (EUR) of each prediction 

model were also determined to an economic limit of 10 Mscf/d. The result of the EUR is displayed 
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in figure (5-14) for each of the four shale gas prediction models. As previously stated, the EUR 

for this analysis does not incorporate any economic metrics and is purely a volumetric number 

only. The results of the EUR’s for all four prediction models are also given in table (5-1).  

 
Table 5 - 1: Comparative analysis between all four prediction models relative to actual 
historical data by comparing the EUR of the historical data to the model prediction of 1200 
days. Further EUR’s are shown for each of the prediction models to and economic limit of 
10 Mscfd. Please note that the EUR computation is a purely driven volumetric number that 
does not incorporate any economic metrics. MRE, Eq (4-1) is also documented showing the 
error between actual historical data and prediction models. 

Models 
Estimated 

Ultimate Recovery 
(Mscf) 

Mean Relative 
Error 

Unit pressure response gas prediction model 1 2,540,913 44.8% 
Unit pressure response gas prediction model 2 1,848,378 10.8% 
Unit pressure response gas prediction model 3 1,038,368 58.4% 
Unit pressure response gas prediction model MC 1,685,005 18.4% 

 

 Moreover, one important factor when utilizing the CRSM is that the model will self-update 

as new data become available, which lends itself to a very robust prediction performance model. 

The more data that is available the more accurate the model will become as the CRSM was 

designed to be a physics-based model that incorporates reservoir physics and updates in real-time 

as more production data comes in. Assumptions regarding this model are how to predict unit 

pressure response performance. Furthermore, it should be noted that there is a numerical error that 

is occurring at the very first-time step of the superpositions algorithm within the CRSM, which is 

seen as a dip, very first iteration, in figure (5-13). This error is due to errors in the forward 

differentiation computations of Eq. (3-10) and Eq. (3-11). As the superposition moves forward 

with every time step this error is summed out resulting in a good fit of the CRSM, physical model, 

to that of the historical data. 
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5.4 Summary and Conclusions: 

This chapter has demonstrated the capabilities of the CRSM for shale gas production 

forecasting predictions using the production history of a shale gas well. The CRSM was developed 

utilizing the BHFP and production rate. This chapter has demonstrated how to use CRSM to handle 

uncertainties of production scheme and changing well conditions such as increasing skin factor 

using stochastic methods. From this study the following conclusion can be drawn. (1) When 

CRSM is used in rate forecast of a shale gas well, it is very critical to analyze the production rate 

history. (2) Shale gas production rates are affected by multiple factors and its forecast has a large 

uncertainty. The shale gas well early history can be affected by flow back water production, and 

at the late time, the rate history can be affected by many mechanisms leading to increasing skin 

factor. The CRSM model reveals the dynamics of flow mechanisms through a deconvoluted unit 

pressure response. (3) The complex constraints of shale gas production render the long term rate 

forecast with large uncertainties and failures of curve-fitting based models. Coupled with 

stochastic analysis, CRSM can capture these constraints and make a reasonable range of 

production forecasts even with short production history.  
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Chapter 6: CRSM in Fracture Diagnostics of a Shale Gas Well 

This chapter proposes the utilization of the CRSM in lieu of SRV for multiple stage fracture 

characterization. CRSM directly characterizes the stimulation performance, only utilizing actual 

production which is free of subsurface uncertainties and can be used efficiently in characterizing 

the flow regimes and reservoir boundaries. The CRSM allows for the estimation of the efficiency 

of a stimulation program through production decline and reservoir pressure response from 

production data and is strongly physics-based. A real field shale gas production case will be used. 

 

6.1 Gas Well Field Example : 

Using figure (5-2) to ascertain volumetric properties of the tubing and open-hole segments of 

well A in conjunction with the reservoir properties for well A are given in tables (6-1) and (6-2) at 

initial conditions respectively. Both tables (6-1) and (6-2) will be used for characterizing the 

hydraulic fracture treatment. 

Table 6 - 1: Volumetric properties of the tubing and open-hole segments of well A. 
From Fig (5 - 2) Dia. (in) Length (ft) Volume (bbls) 

Tubing dimensions 2.88 7218 58.2 
Open-hole dimensions 5.50 5926 173.9 

 
 

Table 6 - 2: Reservoir properties of well A at initial conditions. 
Gas specific gravity, fraction 0.61 
Bottom-hole temperature, F 206 
Initial reservoir pressure (psi) 5,400 
Gas viscosity, cP 0.025 
Gas compressibility, dimensionless 1.068 

 
 

The CRSM will be applied to the production history of well A to characterize the effectiveness 

of the fracture program through the deconvolved pressure derivative curve. Applying the CRSM 

procedure outlined in Appendix (C), a diagnostic analysis can show the production potential of 
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well A during the transient and pseudo-steady state (PSS) flow regimes. The normalized decline 

curve (NDC) was generated using equations Eq. (3-10) and Eq. (3-11). During the life of well A 

there where several instances where the well experienced interruptible service during production 

operations, start-up, and shut-in periods, which caused some instances of flush production at 

various times when well A was brought back online. The flush production was omitted from the 

NDC analysis as it does not represent the actual decline of the well during production. Figure (6-

1), which is an adaptation of figure (5 - 7), represents the NDC during well life. It should be noted 

that during the early life of shale production the rate of decrease on the NDC is very short lived 

and this represents the transient portion of the reservoir that will be used to quantify fracture 

stimulation effectiveness. 
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Figure 6 - 1: The normalized decline curve (NDC) of well A. This curve was generated using 
a filtered data set of the historical production. 
 

 
Using deconvolution methods, the deconvolved dimensionless pressure and pressure derivative 

can be determined. The deconvolved dimensionless pressure derivative curve is used to predict the 
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production rate for complex reservoirs and zonal rate allocations. The dimensionless pressure drop 

curve can be further used to monitor well productivity change and skin history. The dimensionless 

pressure derivative curve shows the boundary conditions and flow regimes in the reservoir Figure 

(6-2). 
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Figure 6 - 2: Deconvolved dimensionless pressure derivative curve of well A. The 
deconvolved dimensionless pressured derivative curve is derived from the unit pressure 
response from the deconvolution of the normalized decline curve model. 
 

From figure (6-2), it can be seen that the deconvolved dimensionless pressure derivative shows 

characteristics of a flow regime as seen in dual-porosity systems with a transient matrix flow - a 

common phenomenon seen in shale gas reservoirs (Jahanbani and Aguilera, 2008). As illustrated 

in figure (6-2), the dual porosity phenomenon can be seen in the deconvolved dimensionless 

pressure derivative curve. Points 1 to 2, on the deconvolved dimensionless pressure derivative 

curve, gas flow is occurring only from the fractures in the reservoirs near the wellbore. Points 2 to 

3, gas begins to produce from the matrix and gas begins to flow from the matrix into the natural 

fractures of the reservoir. During points 2 and 3 both the matrix storativity and interporosity 
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parameters can be ascertained. The details in regards to the determination of both the matrix 

storativity and interporosity parameter from the deconvolved dimensionless pressure derivative 

curve have been discussed in detail by Horne (Horne, 1995). Points 3 to 4, the pressure in the 

matrix and the natural fractures will reach an equilibrium state. Although it is not seen in figure 

(6-2), the transition point beyond point 4 will experience various flow regime transitions until PSS 

is reached (Kim and Lee, 2015). Moreover, if figure (6-1) is utilized the CRS profile - the time at 

which PSS flow occurs - can be approximated and has been illustrated (Childers and Wu, 2017) 

and will not be repeated here. Using the early time information from figure (6-2). The 

dimensionless wellbore storage can be found on the deconvolved pressure derivative curve, figure 

(6-3) at any time along the unit slope, illustrated by the blue line on  figure (6 - 3).  
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Figure 6 - 3: Deconvolved dimensionless pressure derivative curve of well A. Unit slope is 
illustrated by the blue line on the deconvolved dimensionless pressure derivative curve. 
 

The dimensionless wellbore storage will be used to approximate the effective fracture 

treatment using the definition of wellbore storage given by Eq. (6-1) and Eq. (6-2) and the volume 
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of the tubing and open-hole section of the wellbore outlined in table (6-1). From the definition of 

the wellbore storage for gas the approximate volume after treatment can be determined from Eq. 

(6-1). 

 
 

wb wbC c V  (6-1) 

 

 2.36 g

g

q T t
C

 
    

 (6-2) 

 
where Eq. (6-2) the wellbore storage is determined from normalized pseudopressure. By 

introducing the unit pressure response found from the deconvolved dimensionless pressure 

derivative curve figure (6-3); therefore, Eq. (6-2) can be rewritten as a function of the unit pressure 

response from Eq. A-(38) from appendix (A) and takes the form of Eq. (6-3).  

 

 2.36
gas

g Unit

T t
C

P
 

  
 

 (6-3) 

 
 
The units of Eq. (6-3) are in cf/psi and the units of Eq. (6-1) are in bbls/psi. Using the dimensionless 

wellbore storage found from the unit slope of figure (6-3), the gas wellbore storage from Eq. (6-3) 

was found to be 328.8 cf/psi. Converting the units of Eq. (6-3) to bbls/psi the wellbore storage is 

58.6 bbls/psi. Evaluating the gas compressibility at the initial tubing pressure, the volume of the 

wellbore from Eq.(6-3) was found to be 83,697 bbls with a gas compressibility 7.0 ൈ 10ିସ 1/psi. 

The tubing pressure was used due in part that pressure drawdown of the tubing pressure relative 

to the bottomhole flowing pressure is very small at the early stages of well life. Using the volume 

calculated from the tubing string and the open-hole section of the wellbore the stimulated fracture 

volume was found to be approximately 83,500 bbls, see tabulated results table (6-3) below. From 
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this result one can see the effectiveness of the fracture treatment and if the geometry of the fracture 

is known one can estimate if the initial fracture design was successful based on the assumed 

fracture geometry and comparing the hydraulic stimulation design phase to actuals through the 

fracture volume. 

Table 6 - 3: The approximated hydraulic fracture volume at the beginning of well life 
determined from the dimensionless pressure derivative curve and the unit pressure response 
of the wellbore storage Eq.(6-3) 

Hydraulic Fracture Volume Approximation 
Wellbore storage, cf/psi 328.82 
Wellbore storage, bbl/psi 58.56 
Gas compressibility, 1/psi 7.00E-04 
Wellbore volume, bbls 83,697.67 
Volume of the tubing section, bbls 58.16 
Volume of the open-hole section, bbls 173.86 
Hydraulic fracture volume, bbls 83,465.66 

 
Further analysis was done to compare model results from commercial well testing software. Using 

results found from commercial well testing software regarding the storativity and interporosity 

table (6-4), the CRSM predicted results similar to the commercial well test software. Figure (6-4) 

shows a comparison of the results of both the commercial well testing software and to that of the 

CRSM. 

 
Table 6 - 4: Commercial Rate Transient Analysis Software used to determine duel porosity 
model parameters based on the historical production of well A at initial conditions. 

From Commercial RTA Software 
Storativity 0.179 Skin 0.125 
Interporosity 9.38E-10 kh, md-ft 2.17 
Dimensionless radius of investigation 1,746   

 
Using the dual-porosity model parameters found in table (6-4), the dual porosity model was 

converted to dimensionless time and pressure and superimposed on the dimensionless pressure 

and time data found through the deconvolution of the normalized rate and cumulative production, 

figure (6-4). 
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Figure 6 - 4: Deconvolved dimensionless pressure and pressure derivative curve with the 
dual porosity model of well A.  
 

From the figure (6-4), a satisfactory match was found between the dual porosity model and the 

results found through deconvolution techniques. 

 

6.2 Summary and Conclusions : 

This chapter has demonstrated the application of the CRSM using a shale gas well example 

to characterize hydraulic fracture treatment. Utilizing actual production data, regardless of 

production interruptions, the CRSM can be used in forecasting production performance relying 

only on reservoir physics, through production rate and bottom hole flowing pressure data. The 

shale gas example illustrated in this study allows for the characterization of fracture effectiveness 

while honoring the physics of the reservoir.  

Chapter 7: Conclusions 
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7.1 Summary and Conclusion: 

 
This research has demonstrated that the Connected Reservoir Storage Model (CRSM) is a 

physics-based, mathematically robust, and easy to implement algorithm for reservoir 

characterization, production forecasting, and fracture volume quantification. The CRSM uses 

historical production history, production rate and bottom-hole flowing pressure (BHFP), for 

reservoir characterization and rate forecast with variable operating conditions. CRSM’s predictive 

performance is mainly governed by how much the reservoir pore volume has been “contacted” by 

the production performance. Reservoir geometries, petro-physical properties, and fluid properties 

are not required when implementing the CRSM algorithm; however, they can be inferred. 

Below is a synopsis of the research findings: 

1. The CRSM was validated comparing the CRSM model to that of the explicit definition 

of the CRS through the BHFP and production rate response that contain the physics of 

the reservoir. 

2. This research further demonstrates how versatile the CRSM is through the application 

of a simulated bi-wing fractured reservoir system and how this algorithm is more 

advantageous in lieu of tested curve-fitting models in rate forecasting accuracy, where 

more extended production history is usually required to yield a more accurate 

estimation on rate forecast for empirical models whereas the CRSM can be employed 

with minimal production history. 

3. The CRSM was applied to an actual shale gas production well where gas production 

rates are affected by multiple factors and its forecast has a large uncertainty. Its early 

history can be affected by flow back water production, and at late time, the rate history 

can be affected by many mechanisms leading to increasing skin factor. The CRSM 
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model reveals the dynamics of flow mechanisms through a deconvoluted unit pressure 

response. The complex constraints of shale gas production render the long-term rate 

forecast with large uncertainties and failures of curve-fitting based models. Coupled 

with stochastic analysis, CRSM can capture these constraints and make a reasonable 

range of production forecasts even with short production history.  

4. The CRSM can be used to analyze fracture effectiveness via stimulation treatment 

through the applications of NDC and CRS curve to help understand the flow behaviors 

in the early stages of well life. Coupling this information with the ability to forecast 

production performance without the use of empirical methods through nonlinear 

regression analysis makes the CRSM a dynamic tool for a full gambit of well 

diagnostics applications. 

Moreover, the CRSM can be used as a diagnostic tool to provide a better estimation of a well’s 

production performance during the transient flow regime and illustrates flow regime transition to 

ensure steady production operations with minimal downtime. Furthermore, it can be further 

demonstrated through applications of the CRSM that one can determine a variety of reservoir 

parameters for all reservoir types. 

 

7.2 Recommendations and Future Research Endeavors: 

Future research will extend the CRSM to multiple wells from similar areas to better quantify 

the unit pressure response as further studies need to be done to understand the boundaries 

encountered by this method. Using this method for unit pressure response prediction, assumptions 

were made such that one can get an understanding of the upper and lower limits of the unit pressure 

response. However, more production samples are needed such that a compare and contrast analysis 
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can be done on the unit pressure response taking into account the basin, geological structures, 

reservoir properties, drilling, completion, and operational practices by producers to better quantify 

the unit pressure response for more robust forecast predictions. 

Future research will extend the CRSM to all types of reservoir formations and apply the 

CRSM to illustrate its ability to handle flow rate interruptions and to be used to determine pressure 

behavior, average reservoir pressure as well as ascertain original fluids in place for all formation 

types. Additional research utilizing the CRSM will be to compare and contrast through numerical 

simulation, the quantification of the hydraulic fracture volume from the production history via 

hydraulicly fractured reservoir simulation. 
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Nomenclature 
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3 3
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3 3 3
g
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t

A = ReservoirSurfaceArea, L ,ft
a = Duong Intercept, 1/t, 1/Day
B = OilFormation VolumeFactor,L /L , RB/STB
B = Gas Formation VolumeFactor,L /L ,ft /Mscf or RB/Mscf
C = DietzShapeFactor,dimensionless
c = Tot 2

2 2

2 2

2

alcompressiblity,Lt /m,1/psia
CRS = Connected Reservoir Storage, L t /m,RB/psi
E(t) =Connected Reservoir Storage, L t /m,RB/psi
h = Formation thickness,L,ft
k = Permeability,L ,md
MRE = Mean Relative Error, frac

r

3 2

2

2
Norm

D
th

D j

i

tion
m(P) = Pseudo Pressure, m/Lt , psi /cP
P = Pressure, m Lt ,psia
P = Average Normalized Pressure, m Lt ,psia
P (t) = Dimensionless pressure
P (t-t ) = Dimensionless pressure at j  time step
P = Initial Rese 2

2
Norm

3

3

2
r

Unit

rvoir Pressure, m/Lt ,psia
P = δ= Normalized pressure,m Lt ,psia
PrE = Proven Energy, L /t, rb/Day
PrV = Proven Volume, L , rb
P  = Average Reservoir Pressure Proven Volume, m/Lt ,psia
P (t)= Unit press 2

2
wf

2
i wf

2
i

2
r

ure response, m/L t, Day-psi/RB
P = Bottomhole Flowing Pressure, m/Lt ,psia

P(t) = P -P Differential pressure,m Lt ,psi
δ = Inital Normalized pressure,m Lt ,psia
δ = Reservoir Normalized pressure,m Lt ,psia



2
wf

2
r

3 3
o

g

δ = Normalized Bottomhole Flowing Pressure, m/Lt ,psia
δ  = Average Normalized Reservoir Pressure Proven Volume, m/Lt ,psia
Q (t) = Cumulative Production of the Oil,L ,ft
Q (t) = Cumulative Production 

 

g

3

2 2
N

2 2
N

th 2
N

N int

of the Gas,L ,Mscf
Q (t) = Normalized Cumulative Production,L t /m,RB/psi
Q  = Normalized Cumulative Production,L t /m,RB/psi
q = N Step Production Rate,L t m,RB Day-psi
q t = Normalized Production Rate 

s

2

th 2
N-1

th 2
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4
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4
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Intercept,L t m,RB Day-psi
q = N - 1Step Production Rate,L t m,RB Day
q (t)= N Step Production Rate,L t m,RB Day-psi
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q (t)= Production Rate of the Gas,L t m,  cf D
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N

4
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4
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ay
q (t) = Normalized Production Rate,L t/m,  cf/psi
q = Historical Gas Production Rate Data at actual conditions,L t m,RB Day
q = Predicted Gas Production Rate Data at actual conditions,L t m,RB Day
q - q th 2

e

w

g

o

= j Step Production Rate, L t m,RB Day
r = External drainage radius, L, ft
r = Wellbore radius, L, ft
γ = Euler constant, γ =1.78
μ = Gas Viscosity, cP
μ = Oil Viscosity, cP
φ= Porosity, fraction
t = Productio

3 3
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n time, Days
V (t)=PoreVolume at actual conditions,L , ft
z = Gas Deviation Factor, fraction

Subscripts
i = i index
o = Oil
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Appendix A: CRSM Derivations  

Liquid Production: 

For a vertical well without mechanical skin factor, see figure (A–1), Economides et al. (2013) gave 

the general expression for the inflow performance relationship under PSS condition in oil field 

units: 
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Figure A - 1: Schematic of a vertical well that is used as the basis of the derivations of the 
Connected Reservoir Storage Model (CRSM). 
 
Assumptions: 
 

1. Vertical well 

2. Constant production rate 

3. No mechanical skin effects 

4. No non-Darcy flow effects 

Where the parameters of Eq. A-(1) are as follows: rP is the average reservoir pressure in psi , 

wfP is the flowing bottomhole pressure in psi, oq  is the production rate in STB/d, k is 
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permeability in md, oB  is the oil formation volume factor in bbls/STB, A is drainage area in ft2, 

AC is the shape factor which is dimensionless,  𝛾 is Euler constant equal to 1.78, and wr  is the 

wellbore radius in feet as illustrated in (Economides et al., 2013). 

 
Defining the reservoir storage as:  

    p tE t V t c  A-(2) 

 

Assuming the reservoir is cylindrical in shape with constant porosity and thickness, then we have 

Eq. A-(2) can be expressed as: 

 

   tE t Ah c  A-(3) 

 

Where ( )PV t  and tc  are the proven volume and total compressibility as it relates to liquid.  

Rearranging Eq. A-(3) and solving for the drainage area and substituting this equation into 

equation Eq. A-(1) and simplifying, the PSS solution to the radial diffusivity equations becomes, 
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Total compressibility is defined as:  

 t w W o o g g fc c S c S c S c     A-(5) 

 

where the parameters of Eq. A-(5) are as follows: tc total compressibility in psi-1, wc  is the water 

compressibility in psi-1, wS  is water saturation fraction, oc  is the oil compressibility in psi-1, oS  is 
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oil saturation fraction, gc  is the gas compressibility in psi-1, gS  is gas saturation fraction, and fc  

is the pore volume compressibility in psi-1. 

From material balance and assuming pseudosteady state (PSS) conditions Eq. A-(5) takes the 

following form: 
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0
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t

o o oQ t q B d    

Rearrange Eq. A-(6) to solve for the average reservoir pressure will yield the following equation: 
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Plugging Eq. A-(7) into equation Eq.  A-(4) will yield the following equation Eq. A-(8), which is 

the differential pressure across the sand face. 
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Note that    p tE t V t c  and plugging this expression into Eq. A-(8) and further simplifying 

becomes:  
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Simplifying Eq. A-(9) and defining the following normalized rate and cumulative production terms 

Eq.  A-(11) and A-(12) the new equation is as follows: 
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where ( )NQ t  is in units of bbls/psi, and ( )Nq t is in units of bbls/psi/day. 

The normalized PSS solution to the radial diffusivity equation for liquid reservoirs is defined as 

follows. 
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Gas Production: 

Similarly, we can derivate the gas connected reservoir storage model by introducing the 

normalized or adjusted pseudopressure term. Defining pseudopressure as follows: 
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Defining the normalized pseudopressure as illustrated from (Olivier Houze et al., 2016). 
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Plugging Eq. A-(14) and A-(15) into Eq. A-(1) and solving Eq. A-(1) similar to the procedure as 

outlined in Spivey and Lee (2013) will yield the gas well initial production rate (IPR) using the 

normalized pseudopressure for gas production form as follows:  
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where r is the normalized average reservoir pressure in psi , wf is the normalized flowing 

bottomhole pressure in psi, gq  is the production rate in Mscf/d, k is permeability in md, gB  is 

the gas formation volume factor in bbls/Mscf, A is drainage area in ft2, AC is the shape factor 

which is dimensionless 

Simplifying Eq. A-(16) and plugging in Eq. A-(3) the new form of Eq. A-(16) is as follows:  
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Defining total compressibility equation A-(6) in the form of  pseudopressure as well as taking the 

derivative yields the following relationship for total compressibility for gas: 
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Expressing the form of A-(18) in terms of normalized pressures, and note that i is the normalized 

initial reservoir pressure in psi: 
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Where V  is the cumulative gas production volume in reservoir condition, in terms of surface 

production gQ . Rewriting Eq. A-(19) in the form of average normalized reservoir pressure will 

yield the following expression: 
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Plugging Eq. A-(20) into equation Eq. A-(19) will yield the following equation, which is the 

differential pressure across the sand face.  
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Recall that    p tE t V t c then Eq. A-(21) becomes: 
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Simplifying Eq. A-(22) and defining the following normalized rate and cumulative production 

terms of gas Eq. A-(24) and A-(25): 
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where ( )
gN

Q t  is in units of bbls/psi, and ( )
gN

q t is in units of bbls/psi/day. The normalized PSS 

solution to the radial diffusivity equation for gas reservoirs is defined as follows: 
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Fracture Volume via Unit Pressure Response and Wellbore Storage for Gas Reservoirs:  

Using the definition for wellbore storage Eq. A-(27), assuming gas compressibility is constant and 

no liquid dropout, as defined in (Spivey and Lee, 2013),  which is the product of the gas 

compressibility (psi-1) and wellbore volume (ft3): 

 

 g wbC c V  A-(27) 
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Defining the differential pressure across the sand face at standard conditions: 
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where C is the wellbore storage in cf/psi, gq  is the production rate in Mscf/d, gB  is the gas 

formation volume factor in cf/Mscf, and t  is production time in hours. 

Solving Eq. A-(28) in terms of wellbore storage: 
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Defining the formation volume factor for gas as follows and note that gB  in Eq. A-(30) has units 

of cf/scf; therefore, gB will be converted to scf/Mscf once substituted into A-(29):  
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Expanding Eq. A-(30) and subbing in Eq. A-(29) the following expression for wellbore storage is 

as follows: 
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Manipulating and rearranging Eq. A-(31) is as follows: 

 

    
1000 1.178 2.361 1

224
g g g g

g gi wf
i wf

g
g

q B t q tT q tT
C

PP P P P P P
zz

 


  
  

 
A-(32) 

 



151 

Using the average gas viscosity and gas deviation factor in place of the gas viscosity and gas 

deviation factor terms in Eq. A-(32) reduces as follows: 
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Recall Eq. A-(14) and A-(15) for the definition of pseudopressure and normalized pseudopressure 

respectively Eq. A-(33) reduces to the following: 
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Defining normalized differential pressure in dimensionless form, where gq  is the production rate 

in Mscf/d, gB  is the average gas formation volume factor in cf/Mscf, g  is the average gas 

viscosity in cP,  k  is the permeability in md,  h  is the formation thickness in feet, and ( )DP t

is the dimensionless pressures, for gas as follows: 
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Defining the unit pressure response in dimensionless form as follows: 
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Plugging Eq. A-(35) into Eq. A-(36) yields the following: 
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Plugging Eq. A-(37) into Eq. A-(34) and simplifying, the wellbore storage is now a function of the 

unit pressure response. 
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Connected Reservoir Storage Curve Derivations: 

The connected reservoir storage at any time it  can be determined from the intercept on the abscissa 

of the normalized cumulative production of the tangent line going through ( )N iq t  and ( )N iQ t . The 

equational form is as follows, where “i” represents the ith time step and the “int.” represents the 

normalized production rate intercept, on the ordinate, at the ith time step. 
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To determine the connected reservoir storage from Eq. A-(39) the normalized rate at the ith time 

step will be zero and this will yield the connected reservoir storage for the ith time step as follows:  
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Where the derivative can be obtained numerically for discrete points. 
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Once the connected reservoir storage is determined, the connected pore volume of the well can be 

determined at any time by the following: 
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Appendix B: Superposition for Variable Rate 

Discretize the production history into 1 2, ,... nq q q  in the duration of 1 2, ,... nt t t  using variable 

production-rate scheduling as illustrated in figure (B - 1) and using eq. 2.60 from (Horne, 1995) to 

solve the flow rate at the Nth step from equation B-(1): 
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Figure B - 1: Schematic representation of a variable production-rate schedule, pg. 191 
(Earlougher, 1977) 
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Next solving the flow rate for the Nth step. 
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2

( )
( )

N
i wf

D j j D j
j

P P t
q P t q q P t t

 


  
    
 

  B-(3) 

 

Let ( ) ( )i wfP t P P t    

 

 1 -1
2

( )
( ) ( -  ) ( - )

N

D j j D j
j

P t
q P t q q P t t

 

 
  
 

  B-(4) 

 

Expanding the right-hand side of Eq. B-(4) for Nth series. 

 

  
-1

1 -1 -1
2

( )
( ) -  - ( -  ) (  -  )

N

D N N D j j j D j
j

P t
qP t q q P t t q q P t t

 

       
 

  B-(5) 

 

Eq. B-(5) gives the flow rate at the Nth step for a given flowing bottomhole pressure is as follows. 

 
1

1 1
1

1 ( )
( ) ( )

N

N N j j D j
jD j

P t
q q q q P t t

P t t 



 


 
         

  B-(6) 

 

Defining unit pressure as follows: 
 

 
141.2

( ) ( ) ( )o
Unit D D

o

P t P t P t
kh B

 
   B-(7) 

 

 
141.2

( - ) ( - ) ( - )o
Unit j D j D j

o

P t t P t t P t t
kh B

 
   B-(8) 
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Rewriting Eq. B-(6) in terms of unit pressure and simplifying: 
 

 
1

1 1
1

1
( ) ( ) ( )

N

N N j j Unit j
jUnit j

q q P t q q P t t
P t t



 


 
          

  B-(9) 

 

Equation B-(9) is the production rate prediction based on deconvolution and superposition. Unit 

pressure response is determined from the deconvolution of the normalized cumulative and 

production rate as a function of time. 
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Appendix C: CRSM Process Flow 

Applying the CRSM procedure, an eight-step implementation process: 

Step 1: Gather BHFP and production rate historical data. The data should be tabulated as follows: 

 

Table C - 1 Tabulated data format for a producing well. The three main parameters needed 
for the CRSM is production time, BHFP and production flow rate.  
 

Time 
Bottomhole Flowing 

Pressure 
Flow Rate 

1t  1wfP  1q  

2t  2wfP  2q  

      

      

it  wf iP  iq  

 

 
Step 2: Generate the Normalized Decline Curve (NDC) using the normalized cumulative 

production Eq. A-(13), liquid production, Eq. A-(26), gas production, and the normalized 

cumulative and production rate Eq. A-(11) and A-(12), liquid production, Eq A-(24) and A-(25) 

for gas production.  
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Figure C - 1: Normalized Decline Curve determined from the BHFP and flow rate 
production history. The NDC curve is generated from Eq. A-(11) and Eq. A-(12), liquid 
production, Eq. A-(24) and Eq. A-(25), gas production, of the normalized production and 
normalized cumulative production, respectively. 

 

The NDC curve, figure (C - 1), is used to diagnose the well performance and flow region of a 

producing well. 

 

Step 3: Using numerical differentiation for discrete points, the data that governs NDC, represents 

the tangent at any point on the NDC. Eq. A-(40) is used to determine the linear line that is tangent 

at any time on the NDC. Using equation A-(40) the tangent for a given moment in time on the 

NDC, where E(t1) is the CRS value at time t1 of well life can be determined from the intercept of 

the abscissa line of the normalized cumulative production. This is illustrated in Figure (C - 2) as 

follows: 
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Figure C - 2: Any point tangent along the NDC can be extrapolated to the normalized 
cumulative production intercept, abscissa axis, which determines the reservoir storage. 
 

 
Figure C - 3: The reservoir storage E(t) can be determine from the tangent to the NDC for 
any value of time for a given set of normalized production rate and cumulative production 
parameters, respectively. 
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Step 4: During the transient flow regime, the CRS value changes until PSS flow regime is reached. 

Once PSS flow regime is reached, the CRS value will be approximately constant. The CRS value 

is related to the normalized production rate and normalized cumulative production for a given time 

interval and is illustrated in Figure (C - 3).  

 

Step 5: Determine the CRS, Eq. A-(40) and it should be noted that the CRS is also referred to as 

the proven energy (PrE). The CRS curve, Figure (C - 4), is illustrated as a function of time and 

shows the transition that occurs from the transient flow regime to PSS flow regime. During the 

transient flow regime CRS is not constant, whereas CRS is approximately constant during the PSS 

flow regime. 
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Figure C - 4: Connected Reservoir Storage Volume can be determined for any time through 
Eq. A-(40), which is the reciprocal of negative normalized production rate intercept to the 
derivative of the NDC 

 
Step 6: Finding the connected pore volume at various stages of well life, the proven volume can 

be determined at any given time Eq. A-(41). 
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Step 7: Using deconvolution methods, user’s preference, to determine the unit pressure response 

curve, figure (C - 5), the deconvolved pseudopressure drop curve and deconvolved pseudopressure 

derivative curve, figure (C - 6). The pseudopressure drop curve can be used to predict the 

production rate for complex reservoirs and zonal rate allocations and monitor well productivity 

change and skin history. The derivative curve states the boundary conditions and flow regimes in 

the reservoir. 
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Figure C - 5: Deconvolved unit pressure response curve that is determined from historical 
production data. 
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Figure C - 6: Deconvolved pseudopressure and pseudopressure derivative curve. This curve 
can be used for reservoir characterization and flow regime determination.   
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Step 8: Using CRSM along with figures (C - 1) through (C - 6), one can estimate and forecast 

reserves along with determining reservoir characteristics and original fluids in place by only 

utilizing bottom hole flowing pressure and rate production historical profiles.  
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Appendix D: CRSM Derived with ROI and Time 

This section will demonstrate how the CRSM can be derived as function of the radius of 

investigation (ROI) and time. Starting off with the definition of the Ei(-x) function where Ei(-x) is 

defined as follows: 

 
( )

y

x

e
Ei x dy

y

 

    D-(1) 

Where “x” is defined as follows: 

 

2948 tc rx
kt


  D-(2) 

 

Since the diffusivity equation is linear and a 2nd order  partial derivative equation, the principle of 

superposition can be used to compute solutions for complex boundary conditions using only linear 

solution combinations for relatively simple boundary conditions. In fact, horizontal wells can be 

characterized as the superposition of multiple vertical wells where each completion stage is 

assumed to be a vertical well. 

Since the logarithmic approximation to the Ei(-x) function is zero when the argument of the 

logarithm is “1” then the following can be assumed 1.781 1x  ; therefore, Eq. D-(1) can be 

expressed as follows: 

 

 ( ) ~ ln(1.781 ), 0.01Ei x x x    D-(3) 
 

and Eq. D-(2) can be solved for time by setting “x” equal to 
1

1.781
x  , then the equation for time 

is as follows: 

 



164 

 

21688 t invc r
t

k


  D-(4) 

 

Solving Eq. D-(4) in terms of the radius of investigations is as follows: 

 

 
0.0243inv

t

kt
r

c
  D-(5) 

 

Using Eq. A-(2) and expanding the connected reservoir storage equation with time dependent pore 

volume and assuming for a special case of a cylindrical reservoir with constant thickness and 

porosity, the connected reservoir storage can be expressed: 

 

 
2( ) ( )t P t invE t cV t c r h    D-(6) 

 

Plugging Eq. D-(5) into Eq. D-(6) and simplifying then the CRS will become: 

 

 

2( ) 0.0243
kt

E t h


 
 
 

  D-(7) 

 

Mobility is defined as k   and setting 
20.0243a  ; therefore, Eq. D-(7) can be simplified 

where ( )E t  is a function of mobility and time with uniform thickness. 

 

 ( )E t a ht  D-(8) 
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Eq. D-(8) shows that for the special case, the connected reservoir storage has a linear relationship 

with the increase of time. This conclusion is very critical for rate forecast before the radius of 

investigation is less than the external reservoir boundary. This linear relationship can be used to 

extrapolate the connected reservoir storage growth, even for the case of changing reservoir 

thickness, permeability, and viscosity.  Moreover, from Eq. D-(8) one can use geological 

parameters to predict production performance without the actual production history, which is a 

topic that will be further researched in the future. 


