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Abstract

Complex energy flow dynamics following an untoward event has a direct impact on

the responses of the protective and stabilization control systems of the power grid, in

defending the power grid against from large-scale cascading failures or network frag-

mentation.

In this dissertation, a non-classic view and an analytical framework on electro-mechanical

dynamics are proposed, which is different from the electric circuit-based ones built up

classic physics.

Inspired from some recent advances in port-Hamiltonian formulism in control systems

and random work interpretation of energy flows in electric circuit, a hypothetical but

well-grounded unitary view on power grid is postulated, which leads to the new concept

of many-body delocalization. The power grid with n ports of synchronized compo-

nents can be transformed into a unitary electromagnetic field, which can be mathemat-

ically described by a complete graph that couples the active and passive resources and

boundaries. Thus, the energy flow becomes the manifestation of an underlying unitary

electromagnetic field.

A quantum number-based analytical framework is built based on several principles re-

lated to the unitary field view, such as Hermitian symmetry, Heisenberg uncertainty

principles and general relativistic effect. With the intrinsic properties of the quantum

number-based model, a new network property is developed, namely z-direction radical

distance. This is a new concept about the projection of angular quantum number and

the unit reference potential. This novel radical distance concept describes the funda-

mental connection between the energy flow in a complex network and its structure: it

stands for the fraction of system energy surging at various spots as the result of l-motions

along the z-direction, later found very useful for understanding the energy flow in power

grid. An evidential experiment is carried out using a real world power grid model of

electro-mechanical stability. With mathematical tools from tensor analysis of network,

xi



the estimation of distribution of network energy flow in the power grid is derived. By

comparing the radical distance based estimation of electromagnetic waves in the power

grid to the one calculated with the complete dynamic system model of the power grid, a

remarkable consistency is observed. This dissertation presents a unique perspective for

complex network analysis, which is drastically different from the current “small-world”

one. Based on its analytical root and the evidential experiments, we discover that radi-

cal distance is a metric that penetrates the boundary between the microscopic quantum

world and real-world macroscopic power and energy systems. Such a discovery suggests

the possibility of the coupling of active resources of power grid could be of the entangled

particles type, authoring the usage of quantum effects in explaining and dealing with

the states at a macroscopic scale, at least from a modeling/analytical perspective.
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CHAPTER 1

Introduction

1.1 Research problem description

The energy flow is very important for power grid operations. Operators in large in-

terconnected electric power systems aim to transfer scheduled power from one area to

the other while adhering to the operating conditions that include security and economy.

Power system operation in North America follows a framework set by the North Amer-

ican Electric Reliability Corporation (NERC) which requires security constraints to be

fulfilled for different operating conditions. Generally the security constraints include

static constraints such as thermal limits, and dynamic constraints such as voltage lim-

its and transient stability limits [1]. Also, additional power can be transferred in case

of contingency or other atypical operational conditions. These conditions suggest the

significance of interface flows for planning as well as operational cases while satisfying

security assessments [2].

In addition to the security constraints, one critical component of power system oper-

ation is the determination of maximum transfer capability, which remains significant

for trading. Maximum transfer capability can be referred to the measure of ability of

interconnected power system to reliably transfer power from one area to another [1].

This ability of interconnected transmission networks to reliably transfer electric power

may be limited by the physical and electrical characteristics of the systems and can be

majorly classified by thermal limits, voltage limits and stability limits. Once the critical

contingencies are identified, the impact of these limits on the network is evaluated to

determine the most restrictive. Here, thermal limits establish the maximum amount of

electrical current that an interconnection can sustain over a specific time period. Ad-
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ditionally, changes in voltage levels must be maintained within an acceptable range to

avoid widespread system impact. Most of all, the ability of power system to survive dis-

turbances is established by stability limits and is of major concern due to the changing

dynamics of the system, specifically transient stability limits.

The power system is a highly non-linear system that operates in a constantly changing

environment with variable loads, generator outputs and various operating parameters.

Stability of such a system is dependent on the initial operating conditions when sub-

jected to a disturbance, as well as on the severity of the disturbance. In large intercon-

nected power systems, dynamic stability of energy exchange is of great significance for

operation and planning purposes.

The determination of dynamic stability of energy exchange normally is based on the

time domain simulated dynamic trajectories using electro-mechanical dynamic models.

This is due to the fact that dynamic stability limit of energy exchange is concerned

with the ability of the power system to maintain synchronism when subjected to a

severe disturbance under the given initial operating state of the system [3]. Hence the

determination and calculation of the dynamic stability of energy exchange is one of

the most complicated and time consuming task. Moreover, since the conditions on the

interconnected network changes continuously in real-time, the transfer capabilities need

to be updated for every interface at regular intervals and hence requires the calculations

to be fast and accurate [4].

The dynamic stability is one of the major factors that not only directly impact the

system operating stability condition, they may also be a binding constraint that impact

the outcomes of short-term markets and real-time generation dispatch solutions.

According to the classification of power system stability problems, the determination of

limits for active power exchange is a electo-mechanical dynamical transient problem of

frequency or angle stability which is described mathematically by a number of Differ-

ential and algebraic equations (DAEs). The electro-mechanical dynamic models are the
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most sophisticated models for power system analysis.

The dynamic characteristics of energy flow in power grid are very complex due to the

size of the system, the interconnection relationship of each components and the distinct

dynamic characteristics of each components. For complex power grid, different compo-

nents have distinct dynamic characteristics. Different dynamic problems have different

models. As a result of the complexity, the dynamic characteristics of energy flow in

power grid are needed to be fully understood.

1.2 Motivations and objectives

Understanding the dynamics of energy flow on interconnected electric power networks

[5, 6] is a major and profound work with applications ranging from setting threshold

of protective devices, determining various security limits for daily power grid opera-

tion, to making critical decisions on load shedding or grid sectionalization following an

unexpected contingencies for prevention and mitigation of large-scale cascading failures.

Today, determination of the operating limits and control decisions rely on the experi-

ence of grid operators based on off-line time domain simulation studies. It has been a

long-standing challenge to quickly identify the critical components in responses to the

contingencies, particularly following a dramatic untoward change of system or real-time

market operating condition. The limitation of time domain simulation becomes a more

pressing concern for real-time needs nowadays as the grid operating condition becomes

more fluctuating, due to the time and efforts needed for construction, modification,

validation of models, in addition to the execution time of simulation and the massive

amount of output data.

Moreover, the envisioned complexity of the next generation power grid will not easily be

solved with computation and information technologies, not only because of the models

of power grid may represent the interactions of hundreds of thousands of non-linear
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components, also due to the fact that some of new components (such as fast-acting

semiconductor-based power devices) cannot be adequately modelled with current ana-

lytics, particularly those associated with the transient behaviors of energy flow in the

power grid.

To deeper understand the uncertainties and complexity of electric power grid dynamic

stability, and better describe the relation between characteristics of energy flow and

physics property of power grid in terms of modeling and method for solving practical

problems, an novel electro-mechanical dynamic stability analytics is necessary.

1.3 Overview of contributions of dissertation research

The primary contributions of this research are summarized as follows:

• First of all, a common feature of the current State-of-the-Art is identified and

some new explorations of the recent works are conducted.

• Next, a new integrated power grid hypothetical view is postulated. The view

on synchronous electric power grid is a hypotheses permitting physics properties,

with a goal of bring principles and models to bear on complex problems of energy

flow on the power grid. The hypothetical view permits delocalizaiton of particles

so that they can be considered as a single-particle level, like one with quantum

particles that occupy different energy orbitals.

Note that different from a small-world perspective on power grid, this unitary view

is conceived as an undertaking towards a full first-principles account of a quantum

or “quantumic” analytics for understanding some complex behavior of energy flow

during transient period.

• Third, a quantum number-based (n-l-m) model for power grid based on this uni-

tary electromagnetic field hypothesis is proposed.
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• Furthermore, an estimation on a specific energy influx in the electric power grid

using the quantum number-based (n-l-m) model is presented. Specifically, this

study shows that under this hypothetical view, how the Heisenberg uncertainty

principle [7] and quantum number-based (n-l-m) model can help us exploit the

energy transient in electric power grid.

• At last, independent test studies in estimation of energy influx using real power

grid models are presented and assert an industrial-grade accuracy of quantification.

1.4 Organization

This thesis is organized as follows. Chapter 2 presents the investigation results of

the current major methods for dynamics stability analysis. Chapter 3 conducts some

new explorations of recent works and an integrated power gird hypothetical view is

postulated. Chapter 4 presents a quantum number-based (n-l-m) model. The chapter

also presents the estimation of specific energy influx distribution. Chapter 5 is a practical

application using experimental studies based on a real world power grid. Finally, chapter

6 draws a conclusion of the work and proposes the future work.
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CHAPTER 2

Summary of Fundamentals for Current Analytics

2.1 Current major methodologies

In this section, two major analytics for power grid dynamic stability are reviewed. One

is the electric circuit theory-based analytics. The other one is the complex network

theory-based analytics.

2.1.1 Electric circuit theory-based analytics

Although more and more direct current (DC) energy systems are integrated such as

DC transmissions and storages, the power grid currently is still considered as an alter-

nating current (AC) interconnection under a given frequency of 50Hz or 60Hz. Such a

power grid presents various types of energy transients or power flows, that are described

mathematical with different electric circuit-based models according the theory of classic

physics.

The current electric circuit theory-based analytics of power grid dynamic stability can

be broadly categorized under two major types of approaches: 1) deterministic numerical

simulation approaches [8, 9, 10, 11], and 2) direct methods [5, 12, 13].

2.1.1.1 Numerical simulation methods

The electro-mechanical dynamic models are the most sophisticated models for power

system analysis, which consist a set of DAEs as shown in (2.1) and (2.2)

ẋ= F (x, y, λ), (2.1)

0 =G(x, y, λ), (2.2)
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where x is vector of state variables that includes machine dynamic states, y is vector

of network variables such as bus voltage magnitudes and angles, and λ is vector of

parameters that are subject to change that includes load, generation or transmission

line impedance.

Power systems are non-linear dynamic systems, whose behaviors are usually modeled by

DAEs. The algebraic equations describe the network connectivity, network parameter,

coordinate transformations used in generator equations, and all static elements, e.g.

static loads. The differential equations describe the behaviors of all dynamic elements,

including generators and their control systems, dynamic loads and FACTs (flexible al-

ternating current transmission systems) devices.

For a power system with ng synchronous generators, its dynamics can be described by

a set of DAEs as shown in (2.3) and (2.4), while considering simplifying assumptions of

constant rotor winding flux, constant mechanical torque and no damping.

δ̇i = ωi − ωR, for i= 1, . . . , ng (2.3)

ω̇i =
1

Mi

(Pmi − Pei), for i= 1, . . . , ng (2.4)

where δ̇i and ωi are the angle and angular velocity of the ith machine, Mi is the inertial

constant of the ith machine, and Pmi and Pei are the mechanical and electrical power of

the ith machine, respectively. ωR is the reference angular frequency of the system. As

known, the electrical power Pei in (2.4) can be defined as,

Pei =GiiE
2
i +

n∑
j=1
j 6=i

EjEiYij cos(Θij − δi + δj), (2.5)

where Ei and Ej are the magnitudes of the voltages of electric machine at internal

nodes i and j respectively; δi and δj are the angles of electric machines at node i and j

respectively; Yij and Θij is the magnitude and angle of the admittance between internal
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node i and j respectively; lastly Gii is the total conductance at internal node i.

Based on this conventional model, numerical simulation is the major approach to gen-

erate the rotor angle trajectories that will be used for determination of energy flow. In

some advanced studies, different types of sensitivity are derived based on the analytical

study to improve the computational efficiency.

Power system simulation methods have been used and the major methods in the elec-

trical industry based on the power grid models including various components and con-

sidering economic factors to investigate the electro-mechanical dynamics.

Today, the operating energy flow stability is set mainly based on the results of off-line

dynamic stability analysis obtained through time domain simulations.

The study of power systems in general might be difficult due to different time constants

for different dynamic elements across the system. The time constants may range from

10−3 s for power electronic devices like FACTs to 10 s for governor system for controlling

the active power input to generators. Here models representing static and dynamic

characteristics of variety of power system components are discussed.

Synchronous generator model:

Two basic state variables of a generator are the rotor angle δ and the rotor speed ω.

Since only the relative motions among different angles are of concern when analyz-

ing the oscillation or angle stability, a rotating coordinate system at the synchronized

speed/frequency is commonly used to represent the system equations, where the rotor

speed ∆ω is zero and rotor angle ∆δ is a constant for each generator at the system

equilibrium.

The generator model discussed here is a fourth-order differential equation with four

state variables: δ, ω, e′q and e′d. The DAEs of a power system with mg generators can

be represented by the following set of equations,

δ̇i = ωsωi, (2.6)
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ω̇i =
1

2Hi

(Pmi − Pei −Diωi), (2.7)

ė′qi =
1

T ′d0i

(
Efqi − (Xdi −X ′di)idi − e′qi

)
, (2.8)

ė′di =
1

T ′q0i

(
(Xqi −X ′qi)iqi − e′di

)
, (2.9)

where δi, ωi, e′qi and e′di are the rotor angle, rotor speed, transient voltages along q and

d axes respectively of generator i; Pei, idi and iqi are the electric power, stator currents

of q and d axes respectively of generator i, which are functions of all rotor angles and

network parameters; Hi and Di are inertia and damping constants of generator i; T ′d0i

and Tq0i are the open circuit time constants, Xdi and Xqi are the synchronous reactance,

X ′di and X ′qi are the transient reactance respectively for d and q axes of generator i; Pmi

is the mechanical power of generator i; ωs is the synchronized frequency of the system.

Since the above generator model is a fourth order model, it can accept exciter and

governor to be incorporated in the model since it does not have field voltage as constant

as opposed to a classical generator model that can only accept governor to the system.

We briefly discuss the exciter and governor models in the following subsections.

Excitation system model:

The simplified IEEE type DC-1 excitation system [14] is shown in Fig. 2.1. The

mathematical model is represented in the following equations,

Ėfdi =
1

Tei

(
Vri − (Kei + Sei(Efdi)Efdi)

)
, (2.10)

V̇ri =
1

Tai

(
Kai(Vrefi − Vi −Rfi)− Vri

)
, (2.11)

Ṙfi =
1

TfiTei

(
KfiVri −KfiEfdi(Kei + SeiEfdi)−RfiTei

)
, (2.12)

where Vref is the reference voltage of the automatic voltage regulator (AVR); Vr and

Rf are the outputs of the AVR and exciter soft feedback; Efd is the voltage applied to

generator field winding; Ta, Te and Tf are AVR, exciter and feedback time constants;
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Ka, Ke and Kf are gains of AVR, exciter and feedback; V r,min and V r,max are the

lower and upper limits of Vr.

Fig. 2.1: IEEE type DC-1 Excitation System.

Governor system model:

A simplified prime mover and speed governor is shown in Fig. 2.2. The dynamics of a

governor can be described by the following two differential equations,

Ṗmi =
1

Tchi
(µi − Pmi), (2.13)

µ̇i =
1

Tgi
− (ωi − ωref )

Ri

− µi. (2.14)

In the formulations, the variable Pmi is the mechanical power of the prime mover and

µi is the steam valve or water gate opening; Ri is the governor regulation constant rep-

resenting the inherent speed-droop characteristic; ωref is the governor reference speed;

Tchi and Tgi are the time constants related to the prime mover and speed governor

respectively.

Remarks on time domain method:

A set of DAEs are numerically solved to study the transient behavior of power sys-

tems. As we know, power systems networks typically include thousands of generators,

exciters, governors, loads, transformers and other devices, where each individual com-
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Fig. 2.2: Simplified speed governor and prime-mover.

ponent may need several differential and algebraic equations to represent, thus the total

number of differential and algebraic equations of a real power system can be formidably

large. These simulations also include step-by-step numerical integration of DAEs due to

which errors may accumulate thereby yielding qualitatively wrong results. In this con-

text we introduce different perspectives in order to avoid complex models for different

components and move towards a uniform representation of key components in power

system.

The simulation-based methods may not meet all the operational requirements in real-

time, especially when the system operators need to make a rapid control or mitigation

decisions in complicated operating conditions, such as untoward events.

The examples of time domain approaches are maximum rotor angle deviation and crit-

ical clearing time (CCT) that need full-scale time-based simulations which proves to

be computationally taxing as well as time consuming. Additionally, time domain ap-

proaches fail to provide stability margins directly, determination of which requires full

time domain simulations for the development of equivalent single-machine infinite-bus

system for multi-machine system.

2.1.1.2 Direct energy function methods

The direct energy function methods [5, 12, 13] have recognized to be reliable and re-

garded a promising tool for dynamic stability analysis in power grid. The basis of the

method is the famous Lyapunov’s direct method [15] by constructing a scalar Lyapunov
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or energy function V (x),

V (θ, ω̃)=
1

2

m∑
i=1

Miω̃
2
i −

m∑
i=1

∫ θi

θsi

fi(θ)dθi

=
1

2

m∑
i=1

Miω̃
2
i −

m∑
i=1

Pi(θi − θsi )−
m−1∑
i=1

m∑
j=i+1

[
Cij(cos θij − cos θsij)

−
∫ θi+θj

θsi+θsj

Dij cos θijd(θi + θj),

(2.15)

which generally the sum of the kinetic and potential energies (VKE(ω̃) + VPE(θ)) of the

post-fault system described by a set of three differential equations as below,

ẋ(t) = fF (x(t)) 0< t ≤ tcl (2.16)

with the initial condition x(0) = x0, and

ẋ(t) = f(x(t)) t > tcl (2.17)

with the initial condition x(tcl) for Eq. (2.17) provided by the solution of the faulted

system described in Eq. (2.16) evaluated at t = tcl. The basic idea is to describe

the interior of the region of attraction of the post-fault system (Eq. (2.17)) through

an inequality of the type V (x) < Vcr. There are three basic methods to calculate the

critical energy Vcr, which are 1) Lowest energy u.e.p method [16], 2) Potential Energy

Boundary Surface (PEBS) method [17] and, 3) Controlling u.e.p method [18].

On the other hand, direct approach does not completely rely on time domain simulations

and has the capability to restrict the time domain simulation for the period of distur-

bance, therefore considerably reducing the computational effort and time consumption.

While other deterministic studies follow repeated time-based solutions that may result

in computationally heavy and not so accurate results.
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2.1.1.3 Remarks

Numerous research works have shown that the trajectory sensitivity approach can effec-

tively complement time domain simulation and provide valuable insights in evaluating

limits and account for changes in operating conditions and system parameters. How-

ever, there are several intrinsic challenges that are associated with the fundamental way

of thinking which is based on the DAEs-based conventional framework of the power

system dynamics analyses as listed below,

• Even with the support of advanced sensitive approaches, determination of the

security boundary requires repeated time domain simulations taking into consid-

eration of many operating conditions, which is time consuming.

• Conventional methods are highly dependent on the accuracy of presumed models

for individual components. As a result, the methods suffer from the inaccuracy

caused by modeling assumptions and the difficulties of state and parameter esti-

mations.

• The entanglement of the different types of variables and states makes it difficult

to develop an appropriate systematic approach to investigate the problems.

• Fundamentally, the electric circuit based models used in the conventional methods

are derivatives from the presumed physics models which could cause errors in rep-

resenting the nature of underlying physics or actual behavior of electric-magnetic

energies dynamics in complex networks.

2.1.2 Complex network theory-based analytics

Complex network theory-based analytics is different electric circuit theory-based ana-

lytics from the fundamental perspective.
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Applying complex network theory in development of new kind of analytics have attracted

substantial attentions for the electric power engineering industry (as fast technology)

and in network sciences (as understanding). Early research works have shown that com-

plex network methods can be used to convert raw or processed information to support

some long-term planning work of power grid and visualizing its layout with a satisfied

accuracy [19, 20, 21]. Owing to many successful applications in analyzing a number

of real complex systems, such as world-wide web, the internet, biological, and social

networks, it has been holding high promise for long-standing or new challenges with

high complexity such as prevention and mitigation of cascading failures, which demand

a new analytical ways that do not relay on non-time-domain simulations, so the stability

can be rapidly identified adaptively based on real-time operating condition without the

much modeling efforts.

Organizations has created significant interest in whether there exist universal properties

of networks that may be discovered and then applied to understand and manage them,

that cannot be easily achieved based on current technology. It is also hoped that

application of complex network theory can offer in-depth insights and inspirations for

development of new science and technology breakthroughs.

The ubiquity of complex network theory across many science and practical engineering

areas has attracted strong interests and motivated substantial efforts to exploit if there

exist universal structural properties of networks, known or to be discovered, that can be

used to better model, predict and address some dynamic transient energy flow related

problems [19, 20, 21] of the power grid and dynamics of network itself. For example,

a substantial amount of work including our prior ones have been focusing on applying

complex network theory and properties to study cascading failures, vulnerability assess-

ment [22, 23] and resiliency, that are related to complex dynamics of energy transient

on the power grid.

One of the areas that have been studied intensive for over a decade is to understand

14



the dynamics of energy flow and its impact on cascading failures by applying some

fundamental property of interdependent networks in illustration the possible cascading

failures of dependent nodes [22, 23] including our prior work [24] .

2.1.2.1 Approach to power grid analysis with network indices

The foundation of complex network theory-based analytics is based on graph connection.

A number of recent studies have used the concepts of network science and graph theory

to understand the operational behavior of power system networks and further there have

been efforts to establish links between the topological structure of power networks and

vulnerabilities in the network [25, 26].

Electric power system structure can be represented by a graph G=(V ,E ), constructed

by assigning ports to each of the components, and the edges to the connections of electric

power system structure, which is shown in Fig. 2.3 [27].

Fig. 2.3: Electric power system example.

In the general network representation of the electric power system, V ={v1, v2...vn} and
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E = {e1, e2...em} are denoted as the set of nodes and edges of network G respectively.

ek(vi, vj) is denoted as the function of edge ek leaves source vertex vi and enters terminal

vertex vj. n = |V | and m = |E | denoted as the number of nodes and edges of network

G respectively.

An graph, G=(V ,E ), can be normally described by incidence matrix M = (Mkh), M ∈

∈ RM×N that denotes the incidence of edges on nodes, adjacency matrix A = (Aij),

M ∈ Rn×n which denotes whether pairs of nodes are adjacent or not, and Laplacian

matrix L= (Lij), L ∈ RN×N that denotes the connection of nodes and edges. They can

be defined as,

Mkh =


+1 if vh is the terminal node of edge ek ,

−1 if vh is the source node of edge ek ,

0 otherwise.

(2.18)

Aij =

 1 if vivj ∈ E ,

0 otherwise.
(2.19)

Laplacian and adjacency matrix of a network are related by

L = D−A = MTM, (2.20)

Lij =


−1 if vivj ∈ E ,

Dii if i= j,

0 otherwise,

(2.21)

where D = (Dij) is the degree matrix, D ∈ Rn×n, which is a diagonal matrix of the

degrees of the nodes in the network.
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The connection of node and transmission line in the electric power system can be denoted

by the un-normalized Laplacian matrix in the network representation, which does not

contain any weight shown in Eq. (2.20) and Eq. (2.21).

Knowing from above relationships of different matrices, the square of the Laplacian can

be expressed as,

L2 = D2 −AD−DA + A2. (2.22)

Next, we would like to show that the sign structure of L2 can be used to find the

topology. Let’s define the sign structure of a matrix T= (tkh), T ∈ Rn×n with notation

sign(·), i.e., sign(T) = (signkh(T)), such that

signkh(T) =


1, if tkh is negative.

0, otherwise.
(2.23)

Using the definition of the sign structure of a matrix, we known that

sign(L2) = sign(−AD−DA). (2.24)

Since the degree matrix of the graph for electric power distribution system shown in

Fig. (2.3) is positive-definite, then we know the following relationship,

sign(L2) = A. (2.25)

Eq. (2.25) shows that the adjacency matrix A can be constructed from L2 matrix. Once

the adjacency matrix is known, the topology is identified. Therefore, we could use sign

structure of L2 matrix to represent the connection of power distribution networks.

Classification of network structures have recently been studied in fields of complex
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networks science, social networks, etc. Also a number of recent studies have used the

concepts of network science and graph theory to understand the operational behavior

of power system networks and further there have been efforts to establish links between

the topological structure of power networks and vulnerabilities in the network [25, 26].

For example, [25] provides a general concept of topology identification that takes into

account shortest distance between two nodes, [28] introduces a centrality measure that

defines the system based on its electrical topology, [29] and proposes a set of electrical

betweenness measures which takes into account flow direction in power grids. While

these studies provide substantial information regarding the structure of power system,

the new research has shown that these models based on the foundation of complex

network science lack in showing the operational aspects of the dynamics in power system.

2.1.2.2 Application in stability analysis with structural information

Structural analysis is an analytics of power system analysis that is based on structure of

the electric power grid and does not depend on electric-circuit models and time domain

simulations.

A new perspective of power gird dynamic stability analysis

The functional forms of different power system models defined under different operating

conditions are based on basic electrical circuit laws i.e. KVL and KCL. Specifically, the

active power flow equation shown in (2.26) is the most commonly used equation and is

derived from Kirchhoff’s current law.

Pi = Vi

n∑
j=1

Vj(Gij cos(Θi −Θj) +Bij sin(Θi −Θj)), (2.26)

Qi = Vi

n∑
j=1

Vj(Gij sin(Θi −Θj)−Bij cos(Θi −Θj)). (2.27)

Such steady state equation can be solved mathematically but in many real-time ap-
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plications this is simplified under a number of assumptions that result in DC power

flow equations. These assumptions are 1) for normal operating conditions, assuming

adequate reactive power that maintains the voltage magnitudes close to unity, and 2)

neglecting resistances as compared to the reactances since transmission lines have high

reactance. These assumptions remain valid for the small time window which allows

us to use them for transient analysis when seen in a very small time interval since it

behaves in a manner similar to steady-state perspective.

Nevertheless, for short-time period under relatively normal operating condition, the DC

power flow equation has this form which can be seen as the simple uniform representation

of the power system and its power flow. From a DC power flow perspective, apart from

considering one per unit voltage magnitude at each bus and Gij = 0, the difference of

phase angles (Θi−Θj) between two buses i and j is very small such that sin(Θi−Θj) ≈

≈ (Θi − Θj). This reduces the power flow problem in (2.26) to a linear equation as

shown in (2.28),

Pi =
n∑
j=1

Bij(Θi −Θj), or P = BΘ, (2.28)

where Bij is the element in susceptance matrix B. Therefore, from the classic view,

Electric power system can be described by the admittance matrix, which is developed

by applying KCL at each bus in the system and gives the relationships between all the

bus current injections and all the bus voltage [30],

Bn×n =


Bii = bi +

n∑
j=1,j 6=i

bij, if i= j

Bij =−bij, if i 6= j

(2.29)

where bi and bij are the susceptance of node i and transmission line connecting node i

and node j.

Here matrix B defines the structure of the network and from the previous studies and the
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functional forms of models representing different operating conditions, we can see that

structure plays an important part in characterizing the performance of power system.

The traditional time domain methods and and deterministic methods have major com-

putational issues and on-line real-time applications, which may face challenges due to

these fundamental computational limitations. Therefore, digressing from conventional

use of classic power flow based dynamic stability simulation approaches, a new method

that is so called structural analysis is used to quantify the relationships between the

active power transfer limits and dynamic transient stability. Specifically, the direct ap-

proach utilized in the analysis is transient energy based criteria which focuses on the

quantitative measurement of the stability degree. A structural analysis based method-

ology is developed for 1) estimation of the transient stability interface limits based on

structural stability of the grid from a system-wide perspective, and 2) identification

of the weak spots or links in the grid structure for estimation of stability margins of

generator and decision of controlled compensation at given operating conditions such

as levels of the load, power generation and active power flow over the interface.

Overview of structural analysis

Structural analysis is an analytical approach of power system analysis that studies the

dynamics of energy flow in a network from a topological perspective. Rather than re-

lying on electric-circuit model and simulation methods, structural analysis relies on the

topology of physical connection of power grid and related physics principles. Technically,

structural analysis includes 1) embedding of information of power grid and operating

condition (from measurement or simulation perspective) into undirected graph and ma-

trix, 2) coordinate transformation which converts the matrix of the original graph to one

that represents a completely graph, 3) application of fundamental physics principles to

analyze the energy flow in the power grid. By taking the advantage of graph matrix for-

mulism, quantitatively structural analysis only involves standard matrix operations and

simple arithmetic so the computational burden is kept to a minimum. These mathemat-
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ics tools allow us to develop ideas, equations and computational methods for analyses

of issues related to energy flow over power network from a structural perspective.

In the research of our group, structural analysis was used to create a mathematical for-

mula based on the matrices of original and converted graphs, for calculation of amount of

energy exchanges among ports of generator during the initial period of the electromag-

netic transient following a disturbance, or a fault-induced change of system potential

(Ef ), to compute fractal pattern of energy distribution, without using time domain

simulations. Although for comparison purpose steady-state power system models and

power flow simulation were still used to obtained the information about topology of

power grid and system status, these information can be easily obtained through mea-

surement for creation of the fractal pattern. In addition, structural analysis was used

for estimation of the linking strengths of individual components of interest based on

their topological locations and the composite of neighbors (from an electric-magnetic

distance or topology perspective). Component linking strength (Wmax
PE,i) is defined as the

capability of individual component, in terms of potential energy, to support the addi-

tional inrush exchange of induced fault energy Ef at the corresponding ports. Finally,

the information of induced fault energy distribution and component linking strengths,

are used in the stability analysis.

Structural analysis is a physics-based analytics for power system analysis. Different

from the conventional electric circuit based methods, in structural analysis, rather than

simulating the variations of frequency, power and voltage angles over time using math-

ematical models described with DAEs, we directly create fractal patterns of energy

distribution over network, compute the maximum energy exchanges at the ports of in-

dividual components as well as the linking strengths, and analyze the dynamic stability

based on fundamental physics laws.

An conceptual application of structural analysis: transient energy automaton

Automata theory was established in the 20th century when mathematicians began de-
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veloping machines which imitated a human perception of completing calculations more

quickly and reliably [31]. Through automata, it is easy to understand how machines

compute functions and solve problems and more importantly, what it means for a func-

tion to be defined as computable.

Automatons are abstract models of machines that perform computations on an input

by moving through a series of states or configurations [31, 32]. At each state of the

computation, a transition function determines the next configuration on the basis of a

finite portion of the present configuration. As a result, once the computation reaches an

accepting configuration, it accepts that input. The most general and powerful automata

is the Turing machine. The main objective of automata theory is to develop methods by

which we can describe and analyze the dynamic behavior of discrete systems, in which

signals are sampled periodically. The behavior of these discrete systems is determined

by the way that the system is constructed from storage and combination of elements.

The automata theory has also been utilized in mathematical idealizations of nature

systems, known as cellualar automata, which are designed to follow predetermined set

of rules [33, 34, 35].

One of the main forms of automata is finite-state automata [36] which lays the founda-

tion of transient energy automata.

Construction of transient energy automaton

The concept of transient energy automaton (TEA) [37] involves representation of a

system as a graph with each vertex in the graph of TEA considered to be capable of

processing energy by either reflection or absorption. When a vertex in the graph receives

energy from the graph, this vertex has a tendency to absorb or reflect the received energy.

That is, one vertex will absorb parts of the received energy while reflect another parts

of the received energy to the other vertices on the graph. Therefore, the two actions can

be termed as, fast action and slow action, to present the process of energy reflection

and energy absorption.
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The fast and slow actions of one vertex in the TEA network can be defined as:

• Fast Action: A process that after a vertex receives energy, a part of the received

energy is reflected from a vertex and injected to the other vertices in the graph.

• Slow Action: A process that after a vertex receives energy, a part of the received

energy is absorbed by this vertex.

The two actions on a vertex are coupled with each other and require complex rules

governing them. In order to simplify and implement those actions into TEA model, the

following rules are defined for coupling of two actions:

• The fraction of energy that can be absorbed by each vertex in the slow action or

absorption ratio depends on the capability of the vertex;

• For each vertex, the amount of energy received at a local site (from the disturbance

vertex or the reflected energy to neighboring vertices) or dispersion ratio in the

fast action is a function of the graph geometry including the structure of lattice

and value configuration of edges;

• Such rules are functions of the geometry and value configuration of graph and the

property of vertices, and ultimately enable the TEA to create time evolution of

energy distributions that may affect the dynamics of the system.

In summary, the first rule shows the absorption ratio is given by the property of that

vertex, which is assumed to be known; the second rule shows dispersion ratio is related

to graph geometry; the third rule shows the time evolution of TEA.

2.1.2.3 Remarks

In structural analysis, various graph representations have the advantage of allowing

use of linear algebra and matrix operation for fast coordinates transformations and
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computation of interactive energy exchanges, which makes the computation burden far

more less and it also provides more reliable and robust numerical results. Moreover, the

graph representation allows us to connect our knowledge of power system engineering

to some fundamental physics, develop a insights on energy flow over network such as

the random walk interpretation we proposed in our previous work, in additional to the

understanding obtained from electric-circuit theory.

Although it can be demonstrated that complex network based methods can be used

to provide some insights on the failures mechanisms, for example a broader degree

distribution increases the vulnerability of interdependent networks to random failure,

which is opposite to how a single network behaves. For example, our prior work on

integrating more important variables in power system analysis to the complex network

method yields an improved estimation results based on the standard methods of complex

network. However from a more practical perspectives, we found it is very difficult to get

exact analytical solutions for the critical fraction of nodes that, on removal, will lead to

a failure cascade and to a complete fragmentation of two interdependent networks that

can be used for real world of power system operation.

Fig. 2.4: Classic power gird and generator model.

There are on-going undertakings of seeking solutions from complex networks theory and
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properties of complex networks to address some transient energy influx related complex

network problems, such as cascading failures and vulnerability assessment of power grid

[22, 23, 24].

The outcomes of current applications of complex networks theory in real world prob-

lems have created both excitement and confusion about to what extend the knowledge

of network structure can be applied to describe and predict the energy transients to ad-

dress practical issues. For example of a recent work of seeking network-based solutions

to practical problems as found in [24] as well as many others, that complex network

based methods can still be refined for a better description of dynamics and improved

in prediction of critical components of power grid with appropriate integration of more

engineering knowledge or variables such as direction and magnitude of power flow.

For example in [24], an exploration of if additional engineering factors can be incorpo-

rated in universal proprieties of complex networks and used to address some practical

solutions to vulnerability of realistic power grid, we develop a method that the mag-

nitude and direction of power flow into the major network models was presented and

applied the analytical approach to an experiment of identification of critical nodes and

their dependence sequence that, on failure, would cause cascading effects and network

fragmentation. The experimental results are both exciting and confusing: it was excit-

ing that the results showed that the proposed method is more effective comparing to

the existing ones in terms of identification of nodal criticality and network vulnerability,

which is not very surprising as more information about the dynamics on the network

was appropriately used.

On the other hand, we also found the results were also confusing as that, although

our approach yields better results and easy to implement than the major existing

network-based approaches. However, most of these complex networks methods offer

few additional insights to the real world problems other than what have been already

known with the existing engineering methods, significant technical advantages in solv-
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ing real problems, nor major superior prediction advantages comparing to the existing

engineering methods for practical use.

Moreover, within the standard complex network setting of small-world, it was noticed

that some critical factors impacting transient energy flow have not been adequately

considered and normally has been ignored/excluded in most literature. Such as het-

erogeneity of network (a critical variable for system stability) caused by an uneven

distribution of synchronous machine moment of inertia, is difficult to integrate into in

existing network models and properties shown in Fig. 2.4. Fig. 2.4 is an example of sin-

gle line diagram of IEEE system for a K-buses power grid with N ports, K= 30, N = 6.

The bottom of Fig. 2.4 is a generator model. Further studies shows that neglecting these

factors in network-based approaches seriously limit the applicability of classic complex

network theory in address practical transient problems in real power grid.

Despite some pioneering conceptual works that demonstrated the potentials of complex

network theory, there continue lack general answers to practical large weighted and

directed networks, which most commonly emerge in complex systems. Although it can

be demonstrated that complex network based methods can be used to provide some

insights on the failures mechanisms, for example a broader degree distribution increases

the vulnerability of interdependent networks to random failure, which is opposite to

how a single network behaves. People continue seeking general network based solutions

real world complex systems like the power grid.

2.2 An interpretation of common features

The common feature of the current major analytics of dynamic stability is the network

structure. Network structure feature can be explained with port-Hamiltonian.

Motivated by the excitements and confusions, people continue exploiting if there exist

universal structural properties of complex networks, known or to be discovered, that
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can be applied to real complex network. The following two important observations on

some recent works are made.

One of the recent investigations on the network representation of major power system

models highlights the connection between traditional electric circuit theory-based ap-

proach and complex network theory-based application in power system analysis. It can

be shown mathematically almost all existing models of power system analysis can be

reformatted into uniform port-Hamiltonian representation [38], characterized by the in-

terconnection matrices (i.e., the Laplacians), which are the impedance of transmission

lines or branches.

It is known that electric power system can be viewed as a complex system network. In

the complex network, port-Hamiltonian representation is very useful as an effect and

unified method to analyze the complex network characteristics. Many of the models of

the complex system can be converted into a port-Hamiltonian formulism. According to

the general port-Hamiltonian formulism, it is clear that the system structure plays an

import role to determine the performance of the network system [38, 39, 40, 41]. As I

mentioned that power system is also a complex system, many of the problems are also

can be represented by the port-Hamilton method. Therefore, the system structure is also

an significant factor in the analysis of the electric power system dynamic characteristics,

which is suggested by the literatures [42, 43].

A port-Hamiltonian formulations as one of the best representation of the dynamic

system have been paid much attention [38, 39, 40, 41]. The port-Hamiltonian the-

ory provides a systematic framework for the geometric description of network models

of complex physical system. The idea of structural analysis can be explained using

Port-Hamiltonian formulism. The framework of port-Hamiltonian systems combines

the original framework by associating it with the network structure.

The port-Hamiltonian systems are open dynamical systems which can interact with

their environment through ports and are a representation of the energy in a particular
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network [44]. Therefore, an electrical network can be formulated as a port-Hamiltonian

system. In order to formulate such systems, classical Hamiltonian equations are repre-

sented in the form of port-Hamiltonian system. Hamiltonian formulism is known as a

general energy-based modeling approach in control systems. The standard Hamiltonian

equations for a system in general form are given as,


q̇ = ∂H

∂p
(q, p),

ṗ=−∂H
∂q

(q, p) +B(q)f, f ∈ Rm,

(2.30)

where the Hamiltonian H(q, p) is the total energy of the system, q = (q1, · · · , qk)T are

generalized configuration coordinates for the dynamic system with k degrees of free-

dom, p = (p1, · · · , pk)T is the vector of generalized momentum, and B(q)f denotes the

generalized forces resulting from the input f ∈ Rm.

Port-Hamiltonian formulism is a modeling technique that adopt a port-energy based

approach to convert the original models of interconnected components into Hamiltonian

equations, which offers the following useful advantages for illustration of the idea of

structural analysis,

1) Uniformity and additivity:

Taking the advantage of energy additivity, port-Hamiltonian formulism offers

a uniform way to construct a mathematical representations for a network of

multi-physics energy system and its sub-systems with different dimensions and

characteristics

2) Embedding of structural information:

As a simplistic topological formulism, port-Hamiltonian offers geometric view of

many dynamic systems and embedding of structural information of energy net-

works, which can be used to characterize their complex dynamics.
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2.2.1 Uniformity in port-Hamiltonian formulism and features

As one of the energy-based modeling techniques, Port-Hamiltonian can convert the most

models of dynamic systems into a following port-based representation [44]. Recent stud-

ies present the formulation of the electric power system as a unified port-Hamiltonian

system that describes the dynamics of the electric network [42, 43, 45]. For example,

the dynamics of the electrical network can be represented in Hamiltonian form as below

[42],

 ˙q(t)

˙ϕ(t)

=

 0 JLC

JLC 0


q(t)
ϕ(t)

 , (2.31)

where JLC represents JL−1 or JTC−1 and Ci is the capacitance of the ith capacitor, Lj

is the inductance of the jth inductor and C=diag(C1 · · ·CnC ) and L=diag(L1 · · ·LnL).

q(t) ∈ RnC and ϕ(t) ∈ RnL are vectors of capacitor charges and inductor fluxes at time

t respectively. J is the skew symmetric n× n matrix defined by

J =

 0 M

−MT 0

 , (2.32)

where M is the incidence matrix of represented network of electric power system, which

is shown in Fig. 2.5. The result interconnection matrix (Laplacian) can be seen as a

weighted graph that explicitly represents the topology of energy flows, and the compo-

nents of the interconnection matrix are impedance which are mainly representations of

connected electromagnetic fields. The expression in a general form showing below,

LW = ML−1MT =
√
CM̂M̂

T√
C, (2.33)
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where,

(M̂M̂
T

)kl =
1√
CkCl

nL∑
m=1

dkm̂dlm̂
Lm̂

, (2.34)

which are the impedance of transmission line or branches.

According to port-Hamiltonian formulism. Eq. (2.31) is network representation of power

grid models, which also serves as the topology foundation of complex network models

for most of power system analysis.

It clearly suggests that the system structure is an important factor and plays an im-

portant role in electric power system, by which to formalize the basic interconnection

laws together with the power-conserving elements. That is the basic starting point in

the theory of port-Hamiltonian system.

Fig. 2.5: Network representation of the classic electric power system with heterogeneous
distribution of generator moment of inertia denoted by different colors.

The advantage of port-Hamiltonian formulism is that it allows us to combine the various

dynamic models of all components or subsystems with different physics into an uniform

mathematical representation using energy-preserving addition principles.

The above port-Hamiltonian is a representation of a system with single component.

For a system with multiple components that interact with each other, the represen-

tation for all the components can be easily found because the formulism is based on

energy interaction and energy is adaptive. A power system in general comprises of
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multiple components which can be presented in terms of interconnection of different

port-Hamiltonian systems.

Considering an interconnection of multiple energy systems, its dynamics is given by,

ẋi = (Ji(xi)−Ri(xi))∇Hi(xi) + gi(xi)ui + ei(xi)vi

yi = gi(xi)
T∇Hi(xi), i= 1, 2.

(2.35)

The simplest illustration, being an interconnection of two port-Hamiltonian system, is

shown in Fig. 2.7.

Fig. 2.6: Interconnection of two port-Hamiltonian systems.

Considering port-Hamiltonian representation of two components in a system as shown

in Fig. 2.7, we discuss the interconnection of the two components and observe the

overall port-Hamiltonian representation. The port-Hamiltonian representation of the

two components are shown in Eq. (2.36) and Eq. (2.37),

ẋ1 = (J1(x1)−R1(x1))∇H1(x1) + g1(x1)u1 + e1(x1)v1,

y1 = g1(x1)T∇H1(x1),

(2.36)

ẋ2 = (J2(x2)−R2(x2))∇H2(x2) + g2(x2)u2 + e2(x2)v2,

y2 = g2(x2)T∇H2(x2).

(2.37)

If we know the connection structure, say y1 = u2 and u1 = −y2, from the above equa-

tions, we can derive the overall port-Hamiltonian representation of the system where

the overall Hamiltonian function H(x1, x2) can be easily obtained as the sum of two
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individual Hamiltonian functions shown in Eq. (2.36) i.e. H1(x1) +H2(x2). Therefore,

the Hamiltonian representation of the overall system can be expressed as below,

ẋ1

ẋ2

= (J(x1, x2)−R(x1, x2))∇H(x1, x2) + E(x1, x2)v, (2.38)

where J(x1, x2) can be defined as

J(x1, x2) =

 J1(x1) −g1(x1)g2(x2)T

g2(x2)g1(x1)T J2(x2)


T

. (2.39)

Based on the above example of interconnection of two components in a system, the

port-Hamiltonian shows that,

• the system of components has identical forms,

• time domain dynamics (described by right hand side of port-Hamiltonian frame-

work equations) is characterized by J-matrix shown in (2.39).

The port-Hamiltonian of interconnection consisting of a finite number of energy systems

can be created in the same way mathematically. No matter how many subsystems

are interconnected, the port-Hamiltonian equation of the total system has the same

mathematical form as those of individual systems. The illustration of an interconnection

of port-Hamiltonian system is shown in Fig. 2.7. Port-Hamiltonian of the power system

can be found in a number of literature recently published.

The dynamics of electrical network defined in Eq. (2.31) presents different states as-

sociated with the weight, and is comparable to the functional forms of power system

models defined using simplified DC power flow as shown in Eq. (2.28). Therefore, we

can observe an underlying similarity of port-Hamiltonian representation and its depen-

dence on the network structure with respect to the circuit based representation under

various assumptions and conditions.
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Fig. 2.7: Interconnection of port-Hamiltonian systems.

Eqs. (2.28) and (2.31) are the representation of the power system based on the electric

circuit theory under conventional interpretation, i.e., the currents or power flows flow

through the power system that are deterministic under KCL and KVL.

Note that port-Hamiltonian formulism can be applied to almost all problems of power

system dynamics stability analysis. Thus, the modularity due to the uniformed model-

ing make it easy to construct explicit global energy or energy-like functions to represent

complicated multi-physics interconnections without model approximations and reduc-

tion. Port-Hamiltonian formulism has proven highly efficient in modeling and often

found usefully in stability analysis and controller designs, such as construction of Lya-

punov function for a non-linear multi-physics system. In structural analysis, rather

than analyzing the energy function or the characteristics of the complete set of DEAs,

the goal is to extract only the topological information embedded in the formulism in

stability analysis.

2.2.2 Embeddiy of structural information and applicability

Port-Hamiltonian formulism embeds the structural information. As shown in Equations

(2.31) and (2.39), J matrices are derived from the topological structure of intercon-

nection of sub-systems in a network, which naturally contain the embedding of some

structural information which represents the network structure.
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The uniformity and energy additivity in port-Hamiltonian formulism allow one to define

the Hamiltonian of a multi-physics systems with algebraic relations in an identical form

[46]. In fact, any power-conserving interconnection of port-Hamiltonian systems again

defines a port-Hamiltonian system. Specifically as shown in Equations (2.31) and (2.39),

J- and J(·)−matrices are derived from the topological structure of interconnection of

sub-systems in a network, which naturally contain the embedding of some structural

information. Significant, possibly dominating, impact of network structure on the dy-

namical properties of large-scale networks suggests an potential application of Dirac

structure, graph and algebraic theories in analyses.

Fig. 2.8: Topological graph of one-line diagram of power grid.

The structural information includes the topological interconnection data in J- and

J(·)−matrices. For example, a direct transformation of one line diagram to a simple

topology graph is shown with plots (a) and (b) in Fig 2.8. The topology of intercon-

nection is represented with various graphs and matrices such as adjacency matrix and

Laplacian matrix discussed in the last section.

From the port-Hamiltonian formalism, it is clear to the Laplacian not only exhibits a

weighted graph which allows application of complex network theory in some complex

problems of power system analysis, more importantly, it reveals the nature of the weights

of the Laplacian from an electric circuit perspective.

Many studies, including our early works, were trying to obtain the network proper-

ties by analyzing various electric distances based on weighted graphs, constructed by
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combining topological graphs and transmission system impedances. Our later research

suggested that the applicability of simple weighted graph is very limited in terms pro-

vide useful information and additional insights for real problems in practical operations.

Therefore, the topological information described by weighted matrices need be modified

or corrected for a better representation of network interconnection.

Let’s postulate the generalized graph representation for electric power distribution grid.

From power perspective, distribution networks modeled as graph, where vertexes rep-

resent the buses and transformer of the distribution network, the edges represent the

distribution lines. The graph representation of network contains weights. Here, we de-

fine 4 kinds of Laplacian matrices for generalized graph representation of distribution

network.

Definition of LW : In the real power distribution system, considering the line impedance,

that is if Z−1 6=aI and Ψ†=b(I-101T0 ), we define the weighted Laplacian matrix written

as (LW )N×N :

(LW )N×N = F T
M×NZ

−1FM×N , (2.40)

where FM×N stands for the incidence matrix of graph G, and Z is the diagonal matrix

of the line impedances;

Definition of LΨ: In the real power distribution system, considering the injection

power on each nodes, that is if Z−1= aI and Ψ† 6= b(I-101T0 ), where a and b are constants,

we define the Laplacian matrix written as (LΨ)N×N :

(LΨ)N×N = (LN×N)Ψ†(LN×N). (2.41)

Definition of (LWΨ)N×N : Considering the line impedance and injection power on each

nodes in the real power system, that is if Z−1 6= aI and Ψ† 6= b(I-101T0 ), we define the
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Laplacian matrix written as (LWΨ)N×N , and we define L=LWΨ

(LWΨ)N×N = (F TZ−1F )Ψ†(F TZ−1F ). (2.42)

Comparing the existing graph representation, the definition with Eq. (2.42) is a more

general graph representation of power grids: it not only includes commonly used LN×N

and (LW )N×N , it also integrates the information of power injections. Therefore, (LWΨ)N×N

is conceived as a generalized graph representation of the power grid.

Remarks:

From the port-Hamiltonian formalism, it is clear to the Laplacian not only exhibits a

weighted graph which allows application of complex network theory in some complex

problems of power system analysis, more importantly, it reveals the nature of the weights

of the Laplacian from an electric circuit perspective.

Particularly, as suggested in a further investigation [47], it is showed that weights of

Laplacian matrices themselves are critical quantities that characterize some important

dynamics in power system analysis and are the building blocks to defineso-called electric

distance used to quantify sensitivities used in power engineering community. Electric

distance can be component inductance such as transmission line inductance, electric

machine coupling inductance in simple cases because of its similarity of the geometric

distance from a topological view, or their linear transformations of component induc-

tance representing other types of sensitivity in analyses of more complicated problems.

For different problems, different types of electric distance are constructed. More inter-

estingly, since there is only physical power grid, different interconnection matrices thus

representation of subjective views or modifications of an objective presence.

Electric distances 1) serves as graph distance of under various topological connection

based on classic complex networks theory or electric distances various circuits based

on electric engineering theory which suggests some possible unified view about energy
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transient on the power grid, which previously interested separately in power engineering,

network science and physics; 2) illustrates that weights of the Laplacian of a lossless

grid are reactance of transmission lines, linear representation of interconnected electric

fields and magnetic fields; 3) it unifies circuit impedance, electric distance and graph

distance. electromagnetic fields in physics.

Consideration of entries in the Laplacian as distances goes beyond the provision of edge

weights of topological connection. Having a notion of distance that is built on the

circuit sensitivities representing the coupling interactions among interconnected electric

fields and magnetic fields, which at the same time is interpreted with respect to the

ubiquitous proprieties of complex networks, highlights the importance of distance from

power system engineering (electric distance), complex network theory (graph/resistance

distance) and physics (state of interacting electric and magnetic fields).

This distance view highlights the limitation of direct transformation of an electric-

circuit based model to its graph representation in power flow analysis. Knowing that

electric-circuit based models of power flow mathematically are a set of frequency domain

functions built on the fundamental frequency waveform component (@50/60Hz). This

cycle-based models for H in Eq. (4.10) is the base for all other components including

the harmonics, symmetrical components and noises, thus both resolution of original

impedance-based electric circuit models and predictability of the distance-based network

properties are defined by the accuracy of impedance in one cycle time frame of the

fundamental frequency.

In other words, the fundamental frequency component based family of frequency domain

models of power system analysis required at least cycle-long validation. Therefore,

electric circuit based models are accurate in a longer time horizon, while less accurate

during the transient period, particularly the sub-transient period.

Theoretically, simple scale-free applicability of the network-based models or methods

is inadequate for description of energy flow during sub-transient period such as those
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in cascading failures, because “graph distance” in a small-world complex network does

not have the flexibility of adding additional frequency components of its electric circuit

original, nor its connectivity provide additional information that the original model does

have.
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CHAPTER 3

A Hypothetical View on Energy Flow in Power Grid

Inspired from the existing works, in this chapter, a integrated hypothetical view on

energy flow in power grid is postulated. Here the power grid refers to the transmission

system in electric power system. The hypothetical view comes from three inspirations.

Let’s talk about the inspirations first.

3.1 Inspirations from the investigation of recent works

Some prior investigations on the nature of connections between the structural properties

of electric power grid and the characteristics of energy flow highlighted several interesting

observations.

The integrated power grid hypothetical view is inspired from three observations based

on some recent investigations on structural and functional properties related to the

attributes of links in power system models : 1) unification of power system models under

the port-Hamiltonian formalism, 2) application of advanced structural analysis, and 3)

reformulation of a fundamental general power flow model into probabilistic random-walk

representation on graph of power flow models.

3.1.1 A physics interpretation of port-Hamiltonian representation

The first inspiration comes from a physics interpretation of port-Hamiltonian represen-

tation of power grid. The observation on the Laplacian matrix of power system model

suggests the physics nature of power grid that it is a manifestation of interconnected

electromagnetic field.
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It is known that, a network model of power system analysis can be uniformly repre-

sentation with the port-Hamiltonian formulism [38, 47]. Port-Hamiltonian formulism

is a network representation of power grid models, which also serves as the topology

foundation of complex network models for most of power system analysis. The re-

sult interconnection Laplacian matrix can be seen as a weighted graph that explicitly

represents the topology of energy flows, and the components of the interconnection

matrix are impedance which are mainly representations of connected electromagnetic

fields. These impedances sometimes are called electric distance. For different problems,

different types of electric distance are constructed. More interestingly, since there is

only physical power grid, different interconnection matrices thus are representations of

subjective views or modifications of an objective presence.

Port-Hamiltonian formalism is a system engineering modeling approach for dynamical

analysis of nonlinear multi-physics systems [38]. As summarized in [43], almost all

power system models can be rewritten using port-Hamiltonian formalism [38, 47], with

characterizing Laplacian matrix, including the governing H pertinent to the models and

functions governing energy influx in Eq. (4.10) (shown in next chapter). [ ˙q(t), ˙ϕ(t)] =

= [0 M,−MT 0][C−1q(t), L−1ϕ(t)], where q(t) ∈ RnC and ϕ(t) ∈ RnL are vectors of

capacitor charges and inductor fluxes at time t respectively. C = diag(C1 · · ·CnC ), L=

= diag(L1 · · ·LnL), Ci is the capacitance of the ith capacitor, and Lj is the inductance

of the jth inductor. M is the incidence matrix of represented network of electric power

system. The characterizing Laplacian matrices of port-Hamiltonian system can be seen

as a weighted graph that explicitly represents the topology of energy flow

LW = ML−1MT =
√
CM̂M̂

T√
C, (3.1)

and the components of the interconnection matrix are Laplacian matrices. And the

Laplacian matrices essentially are impedance matrix which are mainly representations
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of an interconnected electromagnetic fields

(M̂M̂
T

)kl =
1√
CkCl

nL∑
m=1

dkm̂dlm̂
Lm̂

. (3.2)

According to port-Hamiltonian formulism, Eq. (3.1) is network representation of power

grid models,which also serves as the topology foundation of complex network models

for most of power system analysis.

This observation on the Laplacian of power system model suggests the physics nature

that is an unitary electromagnetic field view underlying engineering power system mod-

els, their graph representations under physics, and unifies the electric distance in power

system engineering, graph distance [48] in complex networks, and coupling strength of

electromagnetic fields in physics.

3.1.2 Practical network structural analysis

The second inspiration comes from an example of structural analysis that is restoration

evidential application. Application of structure analysis suggest the network structure

has an important, even dominating, impact on dynamic stability of power grid. As

shown in the example of evidential application of system restoration [49], using structure

information can quickly find critical or most effective paths that have less the stability

issues as shown in Fig. 3.1 [47, 50].

In structural analysis, rather than analyzing the energy function or the characteristics

of the complete set of DEAs, the goal is to extract only the topological information

embedded in the formulism in stability analysis.
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Fig. 3.1: Illustration of solution space reduction.

3.1.3 Random-walk-on-graph perspective of network power flow

The third inspiration comes from an implication of random-walk-on-graph. One of

recent work proof that, mathematically, power flow model can be converted to a random

walk model [51, 52]. The observation on random-walk-on-graph related work suggests a

dramatic new interpretation of energy flow in power grid, which is different from a classic

or small world perspective that the electric power grid is considered as a delocalized

system of energy. which suggest power system can be seen as a delocalized system.

Some recent works seek new network properties that characterizing the structural com-

plexities of real world networks. Random walk on general network and graph/resistance

distance have been discussed in mathematics community [53, 54, 55].

Specifically, the power grid can also be conceived as an one-world. For example, par-

ticularly, in [51], it was found that a fundamental power flow model can be precisely

transformed into a probabilistic random walk on graph representation. In this model,

42



the power flow can be seen as random power flows on a complete graph with a probabil-

ity function that depends on the associated electric distances. And the resultant node

or bus angle of the power grid , which governs the energy flow over transmission lines,

corresponds to a probabilistic state involving simultaneous and random energy flows be-

tween all pairs of nodes as if they are connected through a complete graph. The arriving

probabilistic distribution are characterized by the interconnection Laplacian weights or

electric distances described in Laplacian interconnection matrix and its inverse.

An potential application of the concept described in [51] that applying the random walk

concept and graph distance to estimation of energy flow was successfully demonstrated

through an experiment with a toy power system model with 49-generators intercon-

nected through lattice graph and homogeneous inertia distribution [21].

It is also shown that the probability distribution of state transitions is typically rep-

resented as the fundamental Markov chain’s transition matrix [53, 54, 55], which can

be constructed based on the Laplacian and its inversion using the method showing in

[55]. The effective electric distance used to calculate the Markov chain [53, 54, 55] that

represents the system states (the power angle) depends on the connectivity of all pairs

of vertices as if the grid follows a complete graph representation. Such relationship

between the probabilities of the transition matrix and graph/resistance distance associ-

ated with complete graph are also discussed in mathematics community in [53, 54, 55].

In the case of connected graphs, the generalized inverse of the Laplacian matrix can be

expressed in terms of the resistance matrix to represent the link strength that depends

on all pairs of vertices.

The important concepts in random-walk-on-graph representation of power flow equa-

tions can be illustrated by an conceptual application that is port energy automaton [21]

as shown in Fig. 3.2. Port energy automaton is designed with the condition of complete

graph representation. Under this assumption, the same energy flow characteristics were

obtained with other methods.
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Fig. 3.2: Energy flow in the network.

3.1.4 Remarks

The aforementioned observations have been mentioned in some other literature, which

gave raise to some fundamentals due to the intrinsic limitation associated with the

cycle-resolution of graph weight or graph distance. Are complex networks models and

proprieties are truly scale-free to interpret transients in real world complex network?

Due to the complex nature of power flow in a transient period, can we use static struc-

tural information to predict the power flow during a transient period? Although any

known waveform can be replicated accurately with a set of frequency domain sinusoidals,

what if the complex power flow during the transient period tends to follow the Heisen-

berg uncertainty principle in terms of time and energy (i.e., ∆E∆t ≈ Constant), is it

still predictable?

The three observations on some recent works in engineering and mathematics perspec-

tives gave rise to a new physics view of power grid as a unitary electromagnetic field.

Motivated by the difficulties associated with the unclear nature of the uncertainties of

energy flow during transient periods, the progress is made on one-world interpretation

of a random walk representation of a fundamental power flow model e.g. in [51], and

the fact that the electric power grid is an synchronized complex network linked with

synchronized or coherent electric-magnetic fields. It is natural to exploit answers from

physics theory and methods, to see if the modern physics theory and methods support
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the one-world or complete graph representation of power grid and to find new network

properties to address some real world transient problems.

To obtain the maximum flexibility of bearing quantum theory and methods on energy

transient problems, we would like to the following hypothetical view based on our prior

research and experience, particularly those related to one-world mathematical represen-

tation of power grid having complete coherence links between all pairs of nodes.

3.2 New wave-based view on power system electro-mechanical dynamics

Based on the inspirations in section 3.1, the power system dynamics can be considered

from the wave perspective.

The dynamics stability of synchronous machines in electric power system can be deter-

mined by the swing equation as follows,

M
d2δ

dt2
= Pm − Pe, (3.3)

where, M represents the angular momentum of the machine, δ is the angular displace-

ment, and Pm and Pe are the mechanical power input and electrical power output,

respectively. For a uniform one-dimensional chain discrete power system using the

distributed parameters y′ , m′ and k
′ that the line reactance X = xl, inverse of ma-

chine reactance Y = y
′
l, the machine inertia M = m

′
l which is proportional to its size,

the distance between buses l, and the defining transmission capacity for lossless lines

K= V 2

X
= k

′

l
, the swing equation can be considered from the wave perspective as follows,

∂2ξ

∂x2
=
m

′

k′

∂2ξ

∂t2
, (3.4)

The second order linear differential Eq. (3.4) of lossless one-dimensional propagation

is considered as the of electro-mechanical dynamic equation of electrical power system
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from the wave perspective. In Eq. (3.4), ξ can be angular displacement δ, angular

velocity ω and power P .

3.3 Postulation of hypothetical view on energy flow in power grid

Above observations, new explorations, thinking and wave-based view in section 3.1

and 3.2 give rises to a conjunctive view on electric power grid as a delocalized system

of energy, hence naturally motives us to switch from the classic small-world network

perception to a new one of on-world network, aiming at seeking tools from fundamental

physics.

3.3.1 Description of hypothetical unitary field view

Based on the inspirations, insight and understanding of the investigation results, the

integrated power grid hypothetical view is postulated, which includes the following

hypothesises.

H1 Delocalized many-body system of energy

– A unitary field

– A complete graph

H2 Particle-wave property of energy exchange at ports (generation and load nodes,

etc.)

H3 Relativistic time-space view

3.3.1.1 Delocalized many-body system of energy

In the complex electric power system network with multi-ports, the whole system is

considered as a delocalization of many-body system. The many-body energy system
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is constituted with many different elementary-unit-like particles. In general, every

elementary-unit-like particle is treated as interacting with all the other elementary-

unit-like particles. Any elementary-unit-like particle is simultaneously associated with

all other elementary-unit-like particles in many-body system representing the electric

power system network, and we can not just consider each elementary-unit-like particle

itself and adjacent ones connected physically at a time. Any elementary-unit-like par-

ticle behavior extends over the whole system framework. The delocality indicates that

there exists a correlation among elementary-unit-like particles. Also, the unitary view

with homogeneity is considered so that physics can be applied.

Fig. 3.3: Propagating electromagnetic field in the simple electric power system.

A unitary electromagnetic field:

From the fundamental physics perspective, the electric power grid is a unified electro-

magnetic field of rigid body constituted by n particles essentially. And the behavior of

the system is determined by such a electromagnetic field, which can be shown using a

simple two ports electric power system shown in Fig 3.3.

A complete graph:

Knowing the power grid is a network of energy systems that are synchronously linked

through eclectic and magnetic field, the aforementioned investigation and observations

suggested some possible hidden linkages between the dynamics of energy flow and ef-
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fective electric distance, which might be difficult to discover with classic electric circuit

theory-based analytics and complex network theory. For example, the effective elec-

tric distance used to calculate the Markov chain that represents the system states (the

power angle) depends on the connectivities of all pairs of vertices as if the grid follows

a complete graph representation.

In power grid dynamic structure analysis, in addition to using information intercon-

nection represented by weighted topological graph, it is also critical to look at the

interconnection from the flip-side, that considering the graph as a complete graph [56].

The network representation is fully connected network that each port connects with

all other ports. As shown in Fig. 3.4(a), a complete graph contains some important

information about the linking strengths described by lumped-parameters from a global

perspective.

Fig. 3.4: Complete graph representation.

The complete graph representation also includes the heterogeneity of the power grid in

terms of inertia constants and nodal powers. As shown in Fig. 3.4(b), in additional to

graph weights from transmission system impedances, information such as the differences

among nodal inertia constants and nodal powers need to be appropriately taken into

consideration as additional layers of information in terms of system heterogeneity. These

additional layers of information have significant impact on the network properties thus

should be included in correction or modification of the original weight topological graph

as discussed in section 2.2.2.

The complete graph representation of power grid can be illustrated using a quantum
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magnetosphere, which is very important to understand the interaction of energy and

information of the system. The network representation of the electric power system is

considered as a complete network. Each pair of distinct network nodes is connected by

a unique linking, which can be illustrated in Fig. 3.5. The top operator layer is the real

Fig. 3.5: Quantum magnetosphere.

physical connection structure. It is one of the observation layers with certain probability.

It is a further description or transformation mathematically without changing the real

physical connection structure, which corresponds the LWΦ we discussed in section 2.2.2.

Every port can be seen as a spin model. Different colors of them represent the different

spin angles. Here, the color changing is very fast, which forms a certain pattern overall

corresponding to the quantum state or electric current. Different layers with different

kinds of colors in the top represents the different quantum states essentially. The time

evolution of the pattern can be represented by the left-hand-side (LHS) of Schrödinger

equation. Each port in the quantum magnetosphere represents the generator. The

bottom layer is a fundamental change of state and represents the complete structure,

which is considered as a physics existence. Between the top and bottom layer, there

exists a pattern.
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3.3.1.2 Particle-wave property of energy exchange at ports

The second hypothesis is about the nodes in power grid. The energy exchange of

generation nodes and load nodes have similar particle-wave property. The ports in power

grid can be generate energy or withdraw energy and the energy exchanges on the nodes

has particle-wave property. For one hand, waves exhibit particle-like characteristics,

E = hν = ~ω,

~p=
h

λ
= ~~k.

(3.5)

For the other hand, Particles behave like waves and exhibit interference effects. The

wavelength of a particle is derived as following equation,

λw =
h

mpv
=
h

p
, (3.6)

where, E is the energy of the particle, ~p is the momentum of the particle, mp is the

particle mass (in kilograms ), and v is the traveling velocity (in m/s). h is the Planck’s

constant (6.626 × 10−34kg ·m2/s), ~ is the reduced Planck’s constant, ~k is the wave

vector, λw is the de Broglie wave length of the particle in metres, and ω is the angular

frequency, and ν is the vibration frequency of the particle.

3.3.1.3 Relativistic time-space view

The third hypothesis is a relativistic time-space view of the energy flow propagation

and time domain variation of particles. We consider spatial propagation of energy is

slower than the time domain variation of particles. Time domain variation of particle

movement is fast, while the result of movement is slow. Even in a short time period,

multiple movement processes have completed.

In the unitary electromagnetic field, the energy flow characteristics can be described

by electromagnetic wave from two separate perspectives: time-domain variation of the
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magnitude of transverse wave at each spot of the delocalized energy system and propa-

gation of electromagnetic wave along z-direction longitudinally. Electromagnetic wave

propagates as a result of time-domain variation of 2-dimensional alternating transverse

waves at each spot of the system. The energy flow defined along the z-direction is con-

ceived as spatial energy propagation driven by electric and magnetic waves transverse

plane (x − y plane). We consider there exists a relativistic time-space relationship be-

tween the spatial energy propagation in the z-direction and the time domain variation

in the transverse plane of electromagnetic wave.

3.3.2 Illustration of the hypothetical view

The electric power system is considered as one unified field, i.e.,a interconnected electro-

magnetic field essentially. The characteristics of fully connected electric power system

network is determined by the boundary-field (B-F) and neighboring-field (N-F). B-F

corresponds the delocalized quantum state behavior of the elementary-unit-like parti-

cles (magnet dipoles considered). N-F only indicates the relationship between ports and

their close neighbors.

The interconnected electromagnetic field view from the classic perspective can be rep-

resented by the following matrix illustratively,

Hclassic
complete =



H11 H12 · · · H1n

H21 H22 · · · H2n

...
...

...
...

Hn1 Hn2 · · · Hnn


. (3.7)

Interconnected electromagnetic field is driven by B-F and N-F with n entangled particles

or superposition eigen-states,

Ĥquantum
complete = Ĥk ⊕ Ĥij, (3.8)
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where Ĥk is the B-F operator and Ĥij is the N-F operator. The variation of the move-

ment of particles is the joint effect of B-F and N-F.

From the quantum perspective (complete graph representation perspective), intercon-

nected electromagnetic field view can be generalized by the Hamiltonian operator Ĥquantum
complete

as follows,

Ĥquantum
complete =



Ĥ11 Ĥ12 · · · Ĥ1n

Ĥ21 Ĥ22 · · · Ĥ2n

...
... . . . ...

Ĥn1 Ĥn2 · · · Ĥnn


= (3.9)




κ1111 · · · κ111n
...

. . .
...

κ11n1 · · · κ11nn


11


κ1211 · · · κ121n
...

. . .
...

κ12n1 · · · κ12nn


12

· · ·


κ1N11 · · · κ1n1n

...
. . .

...

κ1nn1 · · · κ1nnn


1n


κ2111 · · · κ211n
...

. . .
...

κ21n1 · · · κ21nn


21


κ2211 · · · κ221n
...

. . .
...

κ22n1 · · · κ22nn


22

· · ·


κ2n11 · · · κ2n1n
...

. . .
...

κ2nn1 · · · κ2nnn


2n

...
...

. . .
...


κn111 · · · κn11n

...
. . .

...

κn1n1 · · · κn1nn


N1


κn211 · · · κn21n

...
. . .

...

κn2n1 · · · κn2nn


n2

· · ·


κnn11 · · · κnn1n

...
. . .

...

κnnn1 · · · κnnnn


nn



. The Hamiltonian operator Ĥk for B-F can be generalized as,

Ĥk=



hk11 h
k
12 h

k
13 · · · hk1m

hk21 h
k
22 h

k
23 · · · hk2m

...
...

... . . . ...

hkm1 h
k
m2 h

k
m3 · · ·hkmm


, (3.10)
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and the Hamiltonian operator Ĥij for N-F can be generalized as,

Ĥij=



κ11 κ12 κ13 · · · κ1N

κ21 κ22 κ23 · · · κ21

...
...

... . . . ...

κN1 κN2 κN3 · · ·κNN


ij

. (3.11)

The views of B-F and N-F is as follows.

• B-F determines the the coordinate of each port.

• N-F determines the interaction between ports.

• N-F is influenced by the B-F.

• N-F considers the effect of the link strength between ports and the power of each

port.

• In the electric power system, if any port is effected by the external B-F operation,

any other ports will be influenced immediately.

• B-F is taken as a physical entity simultaneously distributing in space. Based on

Maxwell’s equations, it is considered that B-F transmits with fast speed and are

perceptive by particles simultaneous.

• B-F corresponds the radiation of the accelerating spins with fast speed.

• While, the ergodic motion of a particle exists throughout N-F space in an essen-

tially local way. The particle is still in one position at each instant, and it is only

during a time interval that the ergodic motion of the particle spreads throughout

space.

• In the N-F operation area, electromagnetic wave propagates through the media.
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• The transmission of B-F is fast (information transmission), while the variation of

B-F is slow. B-F is related with energy. The variation of energy is slow and it

needs time.

• B-F defines the whole space-time. N-F is considered as the instantaneous percep-

tions of magnetic field.

• B-F is considered as radiation field. N-F is the result of the charge and rotational

movement of the elementary-unit-like particle and is considered as induction field.

• N-F is considered as the relativistic effect of the B-F.

• N-F is derived by B-F, which needs to be understood through unified four dimen-

sional electromagnetic field tensor. N-F is considered as the spatial component of

the four dimensional tensor and B-F is considered as the time component of the

four dimensional tensor.

• The existence of B-F must be accompanied by the existence of N-F, which is

indicated by the time-space special relativity theory described by Einstein. It can

be said that N-F that exists in the macro low-speed world is a powerful proof of

the correctness of the relativistic space-time concept.

Connections of B-F and N-F to Schrödinger equations, i.e., corresponding

to left-hand-side (LHS) and right-hand-side (RHS) of Schrödinger equation

Fig. 3.6: Connections of F-F and N-F to Schrödinger equations.
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The connection of B-F and N-F to Schrödinger equations is illustrated in Fig. 3.6

LHS of Schrödinger equation represents the slow pattern-evolving of fast rotational

movement, corresponding to real time domain energy flow of interconnected magnetic

dipoles or N-F in response to B-F.

RHS of Schrödinger equation corresponds to fast information propagating but slow

changing of B-F. B-F is conceived as the fundamental unity that sending information

to and received simultaneously by every particle but such an information or operation

cannot be quantized or measured in terms of energy because measurement is based on

accumulated energy over time. So actual measurement has to be done in the LHS of

Schrödinger equation, not the RHS of Schrödinger equation.

However, the Schrödinger equation is about the same quantum “state”. Therefore,

we can estimate the whole system state through a very short time period (LHS of

Schrödinger equation) thought the spatial structure (RHS of Schrödinger equation). It

is not necessary to wait a long time.

LHS and RHS of Schrödinger equation address the issues of applying distributed al-

gorithm in protection scheme design, i.e., RHS of Schrödinger equation provides the

general reference needed, and LHS of Schrödinger equation adopts distributed algo-

rithm.

Energy flow illustration with B-F and N-F

Energy flow (wave) can be illustrated under the B-F and N-F views.

The rotational movements of elementary-unit-like particle (magnetic dipole model) in

interconnected electromagnetic field is the joint effect of B-F and N-F. The rotational

movement of an elementary-unit-like particle is influenced by N-F when the B-F is

constant. A magnetic field will cause rotational procession of the elementary-unit-like

particle, which is around the direction of the magnetic field. Some information is based

on the rotational procession rate of the magnet dipoles.
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Fig. 3.7: Schematic diagram of energy wave.

The elementary-unit-like particle rotates fast and radiates the wave with fast speed.

The statistic average of the movement state of the elementary-unit-like particles forms

the energy flow state, which is related with the medium and is another source of the

magnetic field. The wave function of the conduction current is travelling wave that

constitutes with infinite electromagnetic waves. Energy flow is illusive and can be seen

as the effect of the interaction of N-F.

From the macro perspective, these charge carriers and dipoles variation under the field

can be seen as a state. Such a state constructs the energy flow or conductive electric

current we normally discuss. The schematic diagram of electric current wave is shown

in Fig. 3.7.

The variation of the electric current, such as the one during the transit state depends

on the property of media. In fact, the microscope conduction current comes from the

microscope electron arrangement and interaction patterns inside the media. It can be

interpreted by the collective behavior closely related to dipoles movements under the

field.

The near field refers to electromagnetic fields near the charges and current, therefore,

electric current can be seen as the effect of near field on the media.
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3.3.3 Remarks

Above statements have analytical solid foundation, however it is not mature enough to

call this as a theory and we call the statements description as a hypothetical view.

However, the postulated hypothetical view is novel in that the hypothetical view of

energy flow in power grid is based on physics concepts and principles which are different

from the model suggested by electric-circuit theory. Remarks of postulated hypothetical

view on interconnected electric power system are as follows.

The delocalization property can be used to understand the underlying causes of steady

state of electric power gird. The existence of a stable structure of electric power system is

due to the in-distinguish property of identical elementary-unit-like-particles. In electric

power system, elementary-unit-like particles no longer belong to a specific port, but

they form delocalized particles, such that a new interaction occurs-system linking force.

It is the system linking force to combine all the ports together.

The postulated hypothetical view is useful in that the unitary view with homogeneity

is considered so that physics can be applied. Specifically, with the quantum effect as-

sumption, the element-unit-like particle with fast rotational movement is considered.

Relativistic time-space view is a whole frame of the system, under which the char-

acteristics are realized through quantum principle-Schrödinger equation. The LHS of

Schrödinger equation is the time evolution of slow pattern after countless fast rotational

movement. The LHS of Schrödinger equation is considered as the space operator apply-

ing information that can be perceived simultaneous. In Schrödinger equation, the same

entangled state wave function is a complete description of a single elementary-unit-like

particle. It is because of the same state, the LHS and RHS are time-space complemen-

tary, i.e., space state is derived according to time experimentally, and time evolution

state is obtained after space operator.

The proposed hypothetical view provides a completely delocalized picture of the link-
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ing in the complex electric power system network, which is capable of explaining and

predicting some essential phenomenon in a complex power system network like the sta-

bility predictions. Also, the results obtained using this proposed view are generally in

good agreement with a large body of experimental data and have given extremely useful

insights into the nature of electric power system operations.

This unitary electromagnetic field view may not be completed a new conjecture as there

have been discussions and research on Laplacian matrix of connected graphs and the

property of its inverse as an completed graph [53, 54]. In the case of connected graphs,

the generalized inverse of Laplacian matrix can be used to represent the effective links

(referenced to as resistance distance in some literature) between nodes [53, 54]. However,

it is still a hypothesis for interpretation of energy transient in synchronous power grid,

particularly when we are granting it quantum field properties that has been fully tested

and agreed.

Specifically, under the hypothetical view, the particle with fast rotation is considered.

Relativistic time-space view is a whole frame of the system, under which the char-

acteristics are realized through quantum principle-Schrödinger equation. The LHS of

Schrödinger equation is the time evolution of slow pattern after countless rotation with

fast speed. The RHS of Schrödinger equation is considered as the space operator ap-

plying information that can be perceived simultaneous. In Schrödinger equation, the

same delocalized state wave function is a complete description of a single particle. It is

because of the same state, the LHS and RHS are time-space complementary, i.e., space

state is derived according to time experimentally, and time evolution state is obtained

after space operator.

The integrated electric power grid hypothetical view inspires the curiosity about the

nature of energy flow in power grid: what if the sub-transient energy flow does not

admit a classical time-space picture or well-defined models that are priori known, in

the similar sense in which there is no single time domain trajectory of microscope
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particle motion? What if there are fundamental physics effect in the synchronized

electric and magnetic fields of power grid? From a fundamental physics perspective,

can fundamental physics theory offer more insights on how to quantify the relationship

between structural properties of complex networks and dynamics of energy flow in real

system? Is the network structural information can really predict the time domain energy

transients in real-system? Can we use space domain or structure information to predict

time domain propagation of energy with industrial grade accuracy for practical reality

application? Can we use featureless modeling to get maximum flexibility to break the

limit of cycle-dependent sinusoidal form of frequency domain model?

Note that different from a small-world perspective on power grid, the hypothesis allows

us to obtain maximum flexibility to take the advantage of some fundamental principles

and tools to break the limit of the cycle-dependent sinusoidal family of frequency domain

model. That are not offered or supported by classic physics based electric circuit and

solve real world problems. This hypothesis allows us to use first-principles account of a

quantum or “quantumic” analytic for understanding some complex behavior of energy

flow during transient period. Moreover, it offers more tangible from physics perspective

that quantum information theory or models as the power grid indeed an interconnected

electromagnetic field.

In the next chapter chapter, I will show that the hypothesis allows us to obtain maximum

flexibility to take the advantage of some fundamental principles of tools: to break the

limit of the cycle-dependent sinusoidal family of frequency domain model. We are able

to use 1)featureless quantum number-based model, and 2) application of Heisenberg

uncertainty principle, quantum number-based model, quantum states, tool-operators

to derive an unified principles of evolution yielding a different dynamical behavior for

microscopic and macroscopic objects. That are not offered or supported by classic

physics based electric circuit and solve real world problem.

Postulation of integrated hypothetical view allows us to bear theory and tools from
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quantum physics. Specifically, in the following chapter, a new theoretical quantum

number-based (n-l-m) model of electric power grid will proposed based on the hypo-

thetical view, extended physics illustration with boundary field and neighboring field,

and the experience and knowledge in power grid, which can help to get better under-

standing of some characteristics of the electric power grid energy flow and to solve some

existing complex problems potentially.
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CHAPTER 4

A Quantum Number-based (n-l-m) Model for Power Grid

Analysis

Here by taking a unitary quantum field view on the power grid, we discover a new

structural and functional property of complex networks and name it z-direction radical

distance, built on the principles of quantum system angular motion (the azimuthal

motion or l-motion) and Heisenberg uncertainty.

The l-motion-based radical distance is conceived as a fundamental complex network

property bijective with energy by nature. With that, we show that radical distance

is bijective with energy and observable, thus by associating z-direction axis with fault

location, radical distance can quantify the distribution of transient energy influx in

macroscopic power grids.

Different from the known complex network properties such as betweenness centrality,

radical distance represents a profound non-small-world attribute of complex networks

corresponding to complex energy distribution, that penetrates the boundary between

the quantum world and macroscopic complex networks, at least from a modeling per-

spective.

We hope that the defining intrinsic nature of radical distance, combined with striking

statistical tendencies exhibited in an estimation of energy distribution on power grid,

presents a stimulating thread for exploitation and utilization of hidden quantum effects

in natural and man-made complex networks, from an azimuthal (l-motion) perspective.

This is unprecedented in the current literature of network science.
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4.1 Quantum number-based modeling

Before postulating the quantum number-based model, the basic description of quantum

numbers in atom structure model is introduced first.

4.1.1 Fundamental rules of quantum number theory

Quantum numbers are used to specify the properties of orbitals and the properties of

electrons in orbitals. In the atom model, the state of electron and the structure of the

electrons within an atom are typically described by 4 parameters, and each of them is

characterized with a designated quantum number. Quantum numbers define the rules

of electron location and orbital filling orders.

Quantum numbers are quantities and tools to completely describe the dynamics and

the relation with the energy levels of electrons in an atom model.

In quantum number theory, quantum numbers are actually used to describe the distri-

butions and configurations of electrons in atoms. There is specific relationship between

quantum numbers and atomic orbitals, and the fundamental rules are summarized as

follows [57]:

• the types of quantum numbers to describe the atom configuration,

• the conventional symbols of quantum numbers,

• the principles for the allowable values of each quantum number,

• the indication of each quantum number and the feature on the basis of the size,

shape, direction in space and spin state,

• the description meaning of each type of quantum number in atom configuration,

such as shell, sub-shell and orbital,
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• the method of how the electrons are distributed among the various atomic orbital,

such as the order for the levels and sub-levels, and the numbers of electrons they

may contain, and

• the electron configuration principles such as Aufbau scheme, Pauli Exclusion and

Hund Rule.

4.1.2 Illustration with atom structure model

In atom model, the quantum numbers are illustrated as follows.

Fig. 4.1: Illustration of 4 quantum numbers describing the states of electron.

Table 4.1: Summary of quantum numbers.

Name Symbol Values Meaning Indicates
Principal n 1,2,· · · shell, energy level size

Orbital angular momentum l 0,1,· · · ,n-1 sub-shell energy, orbital type shape
Magnetic ml 0,±1,±2,· · · ,± l orbitals of sub-shell direction

Spin magnetic ms +1/2,-1/2 spin state spin direction

Principle quantum number :

• Symbol n: n=1, 2, 3, · · · (shell)

• Principle quantum number represents the main energy level of the electron and

its distance from the nucleus.
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• Each orbital has an n value and the larger the value of n, the more energy and

the further away from the nucleus it is.

• The total number of orbitals in a energy level is equal to n2, and the total number

of electrons in a energy level is 2n2.

Angular momentum quantum number :

• Symbol l: l=0, 1, 2, · · · , n−1.

• Orbital angular momentum quantum number describes sub-levels, shapes of the

orbital.

• The number of sub-levels in an energy level equals the value of the principle

quantum number n, that is, number of possible shapes is equal to energy level.

• Sub-levels are named as s-orbital, p-orbital, d-orbital, f -orbital, · · ·

– s-orbital: l=0

– p-orbital: l=1

– d-orbital: l=2

– f -orbital: l=3

• Shapes of s, p, d, and f orbitals are shown below:
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Fig. 4.2: Shapes of the orbitals.

Magnetic quantum number :

• Symbol ml: ml=−l,−l+1, · · · , l−1, l.

• Determine the orientation of the orbital, how many orbitals there are per energy

level and describe a specific orbital among a particular set.

Spin quantum number :

• Symbol ms: ms=1/2 or −1/2.

• Spin quantum number describes the spin state of the electrons in an orbital and

tell whether a electron is spin-up or spin-down.

• There can be two electrons in each orbital and paired electrons must have opposite

spins.

4.2 Quantum number-based (n-l-m) model for network

The unitary view permits us to treat the dynamic power grid as a quantum system,

then authorizes to use the principles and models of quantum physics to interpret and

understand the energy dynamics from a quantum perspective. In this section, a quantum

number-based model is proposed.
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4.2.1 Model proposition

System description under the hypothetical view:

Under the proposed hypothetical view, the electric power grid with n nodes is considered

as an unitary electromagnetic field corresponding a quantum system provided by a cloud

of n elementary-unit-like particles i with mass Mi under a equivalent central potential

field V (ri), in which all particles are entangled so that it can be seen as an one-particle

or unitary system evidently, then the coherent state of such a unitary system has n

energy eigen-states pertinent to n energy levels.

Energy representation that can be connected to quantum momentum oper-

ator:

We consider the energy of this system and complex dynamic interactions using the

system Hamiltonian operator. It is known that the system energy state of complex

dynamic interactions of a multiple-particles quantum system can be described by central

potential Hermitian Hamiltonian operator [58] with the following form,

Ĥ =−
n∑
i

(
~2

2Mi

1

ri

∂2

∂r2
i

ri+
1

2Ii
L̂ 2+V̂ (ri)

)
, (4.1)

where Mi and Ii are the mass and moment inertia of each elementary-unit-like particle,

respectively, Ii=Mr2
i . ri is the elementary-unit-like particle distance from the central.

V̂ (ri) is the potential operator. L̂ is the angular momentum operator.

With the assumption that there is no position changes of the particles (electric field is

unchanged), the r-dependence are factored out, thus the energy change is dominated

by rotational energy contributed by a cloud of n particles each with intrinsic angular

momentum Li. Therefore, under the unitary quantum field view, the power system

is treated as a quantum system described by the following generic central potential

Hermitian Hamiltonian with the origin of reference at its mass centre and negligible
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vibrations energy, taking the simple form below,

Ĥ =
L̂ 2

2I
, (4.2)

where L̂ 2 is an angular momentum operator conserved in central potential with the

commutation relation, and I is the moment inertia of the system. The energy change is

dominated by rotational energy contributed by a cloud of n particles, each with intrinsic

angular momentum Li. The directional net angular momentum are associated with

non-commuting spherically rotational symmetric Hermitian quantum operator, L̂i, i=

=(x, y, z) obeying the Heisenberg uncertainty relation, which has important implication

in quantum system [7].

System decolizated state representation:

With a goal of bringing principles and models to bear on complex problems of energy

flow on the power grid and seeking a quantum representations on energy flow randomly

walking on the graph, the unitary electromagnetic field is considered as an ideal quantum

field, that permits entanglement of particles so that they can be considered as a single-

particle level, like one with quantum particles that occupy different energy orbitals.

From the quantum perspective, the dynamic behavior of electric power system network

can be represented as a quantum state. Consider a electric power system network with

n ports, the dynamic behavior of the system can be represented by the state and any

state is described as fully as possible by a wave function Ψ, which is a function only of

the spatial coordinates of the ports and the time, and determines the port energy and

other properties.

Specifically, energy state of the system can be represented by n independent eigen-states
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of one-particle in n orbitals with unique energy levels shown below,



Ψ1

Ψ2

...

Ψn


delocalized

=



C11 C12 · · ·C1n

C21 C22 · · ·C2n

...
...

...
...

Cn1Cn2 · · ·Cnn


︸ ︷︷ ︸

related to J



ψ1

ψ2

...

ψn


. (4.3)

Each elementary-unit-like particle state is associated with all the particles in the system

with the weight Cij. The system state can be represented with Ψ as Eq. (4.3), in which

each column denotes one elementary-unit-like particle state.

The quantum state wave function of some of the elementary-unit-like particles are delo-

calized across the whole system instead of localizing between some ports. The behavior

of any elementary-unit-like particle contributed by the port is not localized between the

two linked ports and it extends over the whole system due to the interactions between

ports. The state of elementary-unit-like particle is viewed as quantum delocalized. It

is a completely delocalized picture of the linking in the electric power system. The

delocalized wave functions of elementary-unit-like particle are called system orbitals.

Introducing quantum numbers:

In this quantum number-based model, quantum numbers n, l,m are introduced to de-

scribe the characteristics of and energy state based on probability rather than certainty,

and can be used to explain observations made on complex interaction particles. The

relations are stated as follows.

• Quantum number n represents the the main energy level of the particle in the

field and its average distance of the energy state from the center.

• For each energy level n, it limits a maximum angular quantum number lmax=n−1,

which determines the possible values of quantum number m. Therefore, lmax also
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indicates the distance.

• For each lmax, m=−lmax,−lmax+1, · · · , 0, · · · , lmax−1, lmax, where mmax=lmax,

and the number of possible values of m is (2lmax+1).

• Different ms with different values represent different orbitals, where ms with neg-

ative values are mirroring orbitals. n particles occupy orbitals with different values

of |m|. The total number of orbitals with different values of |m| is mmax+1=n.

The sum of different values of |m| is l(l+1). n particles occupy these l+1=n or-

bitals. There are two possible states for the particles on these orbital, that, m can

be positive and m can be negative (mirror orbitals).

With the quantum number-based (n-l-m) model, energy state of a n-particles quantum

system can be represented by n independent eigen-states of one particle in n orbitals

with unique energy levels. Orbital angular quantum number l represents an indepen-

dent angular motion, pertinent to the rotational energy at orbital n, and lmax=n−1.

Magnetic quantum number m is a set of unique consequent integers determined by

l, with the total absolute-value summation equal to l(l+1). Since such a motion is

parameterized by quantum angular momentum number l, we call l-motion herein after.

The total number of energy state representing orbitals with different values of |m| is

lmax+1=n. n particles occupy orbitals with different values of |m|.

Further explanation of the state of quantum number-based model:

Considering the quantum number-based (n-l-m) model for a quantum system of n en-

tangled particles, the energy states of the system with n particles are characterized by n

independent energy eigen-states of one-particle in n orbitals with unique energy levels,

which are determined by principle quantum numbers n, angular quantum number l, and

magnetic quantum number m. Each energy level is assigned to each particle. n energy

levels pertinent to n particles.

69



4.2.2 Properties of the model

4.2.2.1 One to one relation between |m|, particle and energy state

In this subsection, we consider the one-to-one relation between one |m| with certain

value, one particle i, one energy state ni, the number of |m| and n.

The n-l-m model embeds a useful primitive relation of one-to-one correspondence de-

sired. Considering the largest orbital angular quantum number lmax for given n in a

n-particle quantum system represented by the quantum number-based model, with the

knowledge that the magnetic quantum number m has n unique absolute values (|m|)

ranging from 0 to lmax in steps of one, the total number of energy state representing

orbitals with different values of |m| is lmax+1=n. n particles occupy orbitals with dif-

ferent values of |m|. Each particle is characterized by a |m| value and an important

observation is obtained that there is a one-to-one correspondence between one |m| with

one value and one particle associated with one energy state.

Another important observation is that, there are n different values of |m|, i.e., the

number of |m| equals to n from the quantity, which means that there is a one-to-one

correspondence between |m| value to energy level n. It can be concluded that with

such a n-l-m uniqueness, a desired one-to-one correspondence between |m| integers and

integers of n-orbital energy levels is admitted that is guaranteed by the primitive relation

of quantum numbers, so that the usage of one-to-one correspondence between |m| and

n entangled energy level of the quantum system is authorized.

To summarized, quantum theory and the property of the model tell us one-to-one rela-

tion that each particle is characterized by a |m| value. The value of m and particle are

corresponding with each other. One value of |m| only corresponds one particle. Also,

there is another one-to-one correspondence between one |m| with one value and one

particle associated with one energy state, which relation can be made more precisely

with a mapping from a |m| value to a particle and an energy state, i.e, mathematically
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can be represented by Eqs. (4.4) and (4.5) as follows inversely,

M : |m| → particle i u energy state ni, (4.4)

number of |m|=n. (4.5)

4.2.2.2 Uncertainty relationship

Introduce to Heisenberg uncertainty:

It is importantly known that the complex dynamics of the particles for a quantum system

behaves in an unpredictable way that follows the Heisenberg uncertainty principles [59].

Here we show that the a specific relation between uncertainty and energy flow of electric

power system can be described by the quantum number-based model. In order to

find the relation between uncertainty and described energy, we investigate the energy

observed at each particle, in the form of surging energy in z-direction.

A quantitative approach to describe the Heisenberg uncertainty relation [7] is as follows.

We show an application in explaining the energy uncertainty relationship from the

determination relation between uncertainty and observables perspective using quantum

number-based model.

Uncertainty relation in terms of defined the imaginary L̂x−L̂y surface and

real L̂z:

For a given reference potential, in the Hamiltonian expression Eq. (4.2), we consider

the rotational energy described by angular momentum operators which are conserved

in central potentials with respect to the reference, implied by the commutation relation

and play a crucial role in our study. A quantitative approach to describe the Heisenberg

uncertainty relation [7] is as follows. Hermitian angular momentum operator uncertainty

relation can be described in a 3-dimensional x−y−z Hilbert space. According to the
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Heisenberg uncertainty relation [7, 59], angular momentum operator uncertainty relation

has the interpretation that for given one randomly chosen polarized direction along the

axis z, an ensemble of projective measurements performed on either L̂x or L̂y will yield

a distribution of random outcomes with variances ∆L̂x and ∆L̂y. Note that L̂z is real

with a imaginary circular uncertainty region in an orthogonal plane x−y associated with

L̂x and L̂y. The uncertainty of angular momentum in x−y plane determines its constant

real z component in the direction perpendicular to x−y plane. Such uncertainty allows

available in entangled quantum superposition states, which cannot be derived from

classic physics or cycle-based circuit models.

Note that L̂z is an operator that yields a number in the z-axis, as the results of circular

quantum movement in the imaginary uncertainty surface of x−y characterized by L̂x

and L̂y.

Energy uncertainty in terms of the determination relation between uncer-

tainty and scalar constant:

This unitary view permits us to treat the dynamic power grid as a quantum system,

then authorizes to use the principles and models of quantum physics to interpret and

understand the energy dynamics from a quantum perspective. Under the quantum

number-based model, the relation between energy and uncertainty is authorized.

Some researches on application of Heisenberg uncertainty in energy observation suggests

that uncertainty variables is fundamentally limited by a scalar Planck’s constant [60,

61, 62], i.e., ∆E∆t ≥ constant, meaning that it has a constant lower-bound for the

product of the uncertainties.

Let’s consider the lower boundary of Heisenberg uncertainty principle in the quan-

tum system described by quantum number-based model. Now we apply the constant

lower-bound of Heisenberg uncertainty principle to angular momentum operators of the

quantum system. We extend the Heisenberg uncertainty relation in term of quantify-

ing the energy occurring at the particles. In particular, let’s consider a given reference
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potential in the quantum number-based model, and we are interested in the part of

rotation energy described in the Hamiltonian expression Eq. (4.2). This energy is the

result of quantum circular motion on a finite 3-dimensional x−y−z Hilbert space of

rotation-l particles and described in term of Hermitian angular momentum operators

which are conserved in central potentials with respect to the reference, implied by the

commutation relation. For given one randomly chosen polarized direction along the axis

z, in the coherent state, operator L̂z yields a lower boundary in the z-axis, as the results

of circular quantum motion in the imaginary uncertainty surface of x−y characterized

by L̂x and L̂y.

Such uncertainty only available in entangled quantum superposition states, which can-

not be derived from classic physics or cycle-based circuit models or not related to any

uncertainty of mechanical motion and therefore without any classical analog.

4.2.2.3 Quantification of the quantum uncertainty degree

Considering above Heisenberg uncertainty relation, we define a z-direction after a fault.

According quantum mechanical model, projection of the lmax on z-direction lmax,z is

mz with real number, where mz=lmax,z, and mz indicates a distance. The number

of mz with different values is 2lmax+1. The number of |mz| with different values is

lmax+1=n. Maximum projection of limax on z-direction is mz,i,max, which is a real

distance representing the energy state ni on z-direction in the fully connected unitary

electromagnetic field. The value of mz stands for the projection of distance on z-

direction. Quantum numbers l,m are representation of both energy and distance. Note

that there is one-to-one correspondence between each value of mz and each particle.

This distance quantized by mz corresponds to a particle at an energy level related with

the average distance from the center. It is also a macroscopic measure of the practical

electric power system parameter. We notice distance square is representation of energy.

Introduction of ι:
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Let’s consider the projection low-boundary of Heisenberg uncertainty on L̂x−L̂y sur-

face along z-direction of angular momentum L̂ in quantum number-based model. To

facilitate the analysis, we further denote ι=lmax+1, (ι=1, 2, · · · , n) to associate the

maximal angular quantum number of a given energy level (with lmax) with respect to a

unit reference potential. And one-to-one correspondence of ι to quantum energy states

is also authorized by aforementioned n-l-m uniqueness.

Specifically, the denotation of ι is important in that it allows us to find the length be-

tween the farmost quantum sub-shelol to the center origin for a given reference potential

as
√
ι(ι+1), as schematically depicted in Fig. 4.4. In our model, heterogeneous particle

variables with different moment inertia are considered, which can be seen in Fig. 4.3.

Fig. 4.3: Relative z-direction rotational energy illustration.

Definition of z-direction radical distance:

Aiming at obtaining the needed observability of
√
ι(ι+1) from l-motion, the following

framing principle is used. It is known that, by framing the Hermitian operator of a

quantum system on angular momentum conserved in a given central potential with the

commutation relation (Eq. (4.2)) in a x-y-z system of 3-dimension Hilbert space, the

angular momentum in a chosen polarized orientation can be projected to the z-direction
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that is real thus observable [7, 60]. Those non-observable uncertainties of angular motion

are left on the imaginary x−y surface, characterized by L̂x and L̂y [61, 63]. Such a

framing principle is often used in description of lower-bound of ∆L̂x∆L̂y associated

with Heisenberg uncertainties as an observable projection in z-direction, i.e., a real

number in z-direction [7, 60, 61], as proceeded next.

This allows us to define uncertainty based on projection. Here, by adhering quantum

quantity
√
ι(ι+1) in above z-direction framing principle, we know that the azimuthal

projection of
√
ι(ι+1) in z-direction axis is observable, ready for quantifying the degree

of uncertainty of quantum system with respect to the L̂x−L̂y surface associated with

a given l-motion for a given angular quantum number, shown in Fig. 4.4.

This kind of treatment of the projection of quantum number
√
l(l+1) on z-direction

allows us use |mz| to define a distance in z-direction associated with the energy caused

by circular rotational motion in the quantum system. In other words, this distance

quantized bymz corresponds to a particle at an energy level that related with the length

from the center. We define an important distance-concept below and call this distance

dmz,ι the z-direction radical distance, illustrated conceptually in Fig. 4.4, which is the

projection of
√
ι(ι+1) on z-direction and the distance between the central to particle.

d|mz,i| : =z−direction radical distance. (4.6)

This indicates the relation between z-direction radical distance and |mz|. The number

of |mz| is also n. The number of z-direction radical distance d|mz | is n.

Specifically, we use
√
ι(ι+1) to define an important distance-concept associated with

the energy represented by uncertain circular motion. The z-radical distance reflects the

projection of limax(limax+1) on z axis, and the distance between the central to particle,

which is illustrated in Fig. 4.4. By letting the angle between z-direction of azimuthal

motion or l-motion and the uncertainty L̂x−L̂y surface by γι, we find the following
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important quantity and name it as radical distance, and the expression of measurable

z-direction radical distance can be defined as follows,

dmz,ι=
√
ι(ι+1)·sin γι, (4.7)

which is illustrated conceptually in Fig. 4.4. Note that dmz,(ι+1)
=dmz,ι+1, and dmz,ι=

=|mz| ≈ ι if ιj � 1, where ι=1, 2, · · · , n, n is the number of particles and energy states.

By definition, ι corresponds to the energy level and entangled particle.

The radical distance described with Eq. (4.7) represents the most influential positions

of particle rotating orbital along z-axis for the given level of uncertainties in L̂x−L̂y

surface. According the quantum number-based model, dz,i=|mz,i| thus has one-to-one

relation to energy level ni.

The energy states of the system with n particles are n independent one-particle energy

eigen-states associated with n energy levels, which are determined by principle quantum

numbers n, angular quantum number l, and magnetic quantum number m. Each energy

level is assigned to each particle. Based on the quantum number-based model, the

relation of the distances represented by these quantum numbers is shown in Fig. 4.4.

An important observation is obtained that z-radical distance d|mz | quantized by |mz| has

an one-to-one relation to each particle, energy level ni, and the particle total rotational

energy l(l+1)~2 in homogeneous unit momentum inertia system that will talk about in

the following section.

Fig. 4.3 is the conceptual illustration of surging energies of 6-particles quantum sys-

tem, quantified by 6 radical distances in observable z-direction in 6 different colors,

correspond to the generators located at 6 ports in the power grid. Different ports are

represented by different colors with unit blocks. For each port, different unit blocks

represent the different moment inertia of the generators. The number of unit blocks

showing that radical distance is determined by the absolute values of quantum number
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m. The number of unit block with dark color indicates the z-direction radical distance,

which can represent z-direction surging energy. The number of unit blocks with light

colors indicates the different possible distance coming form the different possible value

of quantum number |m|. The middle of Fig. 4.3 is the completed graph representation

of unitary interconnected electromagnetic fields.

Fig. 4.4 is the conceptual illustration of z-direction radical distance dmi,ι of quantum

system and the relation with entangled particles, which is the observable distance repre-

senting azimuthal projections of length
√
ι(ι+1) in observable z-direction, perpendicular

to the imaginary x−y surface of quantum uncertainty.

Fig. 4.4: Explanation of distance and particle relation.

Remarks on z-direction radical distance:

Different from the graph distance of classic complex networks theory or electrical dis-

tance from electric engineering theory, the z-direction radical distance is a set of se-

quential integers defined based on the quantum number-based model, serving as one of
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the fundamental proprieties of complex network from a quantum perspective.

The radical distance described with Eq. (4.7) represents the most influential positions

of particle rotating orbital along z-axis for the given level of uncertainties in L̂x−L̂y

surface. Specifically, the radical distances is a resultant outcome or reflection of the

maximum impact of strength or loading conditions of a dynamic complex network at the

L̂x−L̂y surface that has the property of saturating a Heisenberg uncertainty relation.

The concept of distance is very important, which is completely different from classic

complex network method. We can get the connection between classic and quantum

analysis using distance. Two distances are different. This radical distance is defined

from quantum number-based model and it is a fundamental network property from

quantum perspective.

This distances is a reflection of the maximum impact of strength or loading conditions

of a dynamic complex network from the quantum perspective at the given position from

the quantum perspective, which has the property of saturating a Heisenberg uncertainty

relation.

4.2.3 Remarks

The remarks of quantum number-based model are as follows.

In order to understand how the system structure may effect the performance of the

electric power system, a power network physics model was proposed based on the hypo-

thetical view, extended physics illustration with boundary field and neighboring field,

and the experience and knowledge in power grid, which can be used to help us to get

better understanding of some characteristics of the electric power system and to solve

some existing complex problems potentially.

The integrated quantum number-based model is based on the fundamental physics prin-

ciples other than the electric circuit rules (KCL and KVL) with linear representation
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of connection using impedance, which are different from some similar concepts used in

complex system analysis, particularly in electric power system like the link strength,

electrical distance and so on [45, 64].

The quantum number-based model of electric power system is a new model based on

the assumptions of quantum effect and relativistic effect. This assumption allows that

B-F and N-F are joint together. Based on the combined B-F and N-F effect, the unified

interconnected electromagnetic field is taken. The quantum number-based model is not

supported by existing power system theory and knowledge, which is the non-classic

standpoint, and not electric circuit theory based model.

The quantum number-based model allows the electric power characteristics are studied

in a wide time scale. Especially, it may provide the potential solution for the transient

study of electric power system no matter the frequency.

4.3 Estimation of energy flow in network

The developed quantum number-based model with a unitary electromagnetic quantum

field can be applied to study transient energy flow during the initial transient period

following a untoward event in electric power grid. The unitary quantum field is gauge

and Hermitian symmetric during the transient period, and permits delocalized energy

exchanges at the critical ports or nodes of electric power grid, thus authorizes an exten-

sion of the basic quantum number-based model and the Heisenberg uncertainty principle

to represent energy flow using surging energy in z-direction and exploit a specific energy

influx in power grid.

Next we will show that radical distance can be used to quantify the impact of network

uncertainties in terms of energy, or the surging energy more precisely.
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4.3.1 Relationship between distance and energy

Let’s focus on a specific relation between the energy and uncertainty that related to

the problem we studied that is the relation between uncertainty and surging energy and

energy influx of electric power system dynamics.

Many studies of Heisenberg uncertainty [60, 61, 62] consider that uncertainty variables

can be limited by a real constant measurement. In the quantum model, energy can be

measured at each particle, in which we can define the direction of energy flow through

the particle along as z axis. Similarly, in the physical dynamics electric power system,

only energy can be measured at each physical port. In each port, we can define the

direction of energy flow through the physical port along as z axis. Mathematically,

taking the view of tensor analysis, z axis is determined by a surface, and we define

the L̂x−L̂y surface perpendicular to z axis. From the co-variant and contra-variant

principles in tensor analysis [65], the resulting z component of the energy flow at each

particle are said to be referred to the imaginary x−y surface (coordinate transformation

is needed). z is physical direction of energy, while x−y surface is referred to as one in

the unitary field which is imaginary with Heisenberg uncertainty.

Connect from distance to energy:

Let’s denote the rotation energy defined in Eq. (4.2) with distance which is the re-

sult of rotation of uncertainty movement. Since z-direction radical distances quantified

by quantum number is a resultant outcome or reflection of the maximum impact of

strength or loading conditions of quantum system at the L̂x−L̂y surface, according to

Eq. (4.2), the energy associated with resulting rotational quantum motion of particle

over a uncertain x−y surface associated with L̂x and L̂y can be considered as a surging

energy in z-direction εz,i perpendicular to L̂x−L̂y surface, in terms of total rotational

energy l(l+1)~2 and the energies surging at individual particles.

The resultant rotational quantum movement of particle over a uncertain x−y surface
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associated with L̂x and L̂x can be considered as a surging energy in z-direction εz,i

perpendicular to L̂x−L̂y surface.

Specifically, inherent uncertainty in L̂x−L̂y surface is bounded by a fundamental real

precise limit in z-direction. Here we can show that it can found that the maximum of

this real-limit number can be used to quantify the energy, including rotational energy

(associated with l2) and the surging energy in z-direction (associated with mz) at the

particle.

4.3.2 Quantification of network energy flow

Now we extend Heisenberg uncertainty projection to quantify the surging energy oc-

curred at the particle and angular momentum operators uncertainty relationship from a

determination relation between uncertainty and constant energy perspective, using the

quantum number-based model.

In order to find the relation between uncertainty and described energy, we investigate

the energy observed at each particle (surging energy in z-direction). Next, we show that

z-direction radical distance can be used to represent the energy as follows.

Total rotational energy:

For a given reference potential, in the Hamiltonian expression Eq. (4.2), we consider

the rotation energy described by angular momentum operators which are conserved in

central potentials with respect to the reference, implied by the commutation relation

and play a crucial role in our study. A quantitative approach to describe the Heisenberg

uncertainty relation [7] is as follows.

According to the intrinsic energy-number relation offered by quantum number-based

model, it is known that the relation between quantum number and energy level are

bijective, that energy of quantum system can be represented with quantum number. e.g.,

m2~2 and l(l+1)~2 with unit moment inertia, are representations of energy expressions
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of a quantum system with unit momentum inertia.

In homogeneous unit momentum inertia system, surging energy in z-direction is quan-

tified by m2
z~2, which is a maximum energy generated on particles very fast, where

mz=−l,−l+1, · · · , 0, · · · , l−1, l, which is the observable energy at port i based on the

mapping relation of a set of |mz| to each particle i.

Similar, we can represent the total rotational energy of l-motion for a given l with respect

to z axis with l(l+1)~2, surging at particles on quantum orbitals index by non-negative

magnetic quantum number or energy level n.

z-direction surging energy:

Since radical distance dmz,ι is defined as a quantum-number-based projection in z-

direction that is observable, it can be used to quantify the fraction (sin γι) of the max-

imum rotational energy observed in z-direction with ~2d2
mz,ι . We call this z-direction

rotational energy as surging energy in z-direction, which is a maximum energy gener-

ated on particles and can be quantified with radical distance d2
mz,ι~

2. Therefore, let’s

call ~2d2
mz,ι z-direction surging energy because it corresponds to the energy surging at

each port of a quantum system, as illustrated in Fig. 4.3.

Generic unit z-direction surging energy:

The primitive relation of quantum number-based model allows us to allocate the surging

energy and its distribution using magnetic quantum number. Knowing that magnetic

quantum number m is pertinent to a given lmax corresponds to n entangled particles,

thus, for the different possible values of |mz| for given lmax corresponding to each particle

i in quantum number-based model, and the total value of |mz,i| is
∑l

i=−l |mz,i|, so the

total length of radical distance is 2
∑

ι dmz,ι . Thus, for a given lmax, a generic unit

z-direction surging energy associated with a underlying radical distance can be written
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as,

εz,i=
m2
z,i~2∑l

i=−l |mz,i|

=
~2d2

mz,ι

2
∑

ι dmz,ι
,

(4.8)

where 2
∑l

i=−lm
+
z,i=

∑l
i=−l |mz,i|, and i=1, 2, · · · , n.

Note that given the total rotation energy l(l+1)~2 the real surging energy can be seen

as the energy surging from uncertain rotation energy in L̂x−L̂y surface at the particle

i.

This exploration shows the intrinsic relationship between energy and distance with

quantum number-based model.

The ratio of z-direction surging energy with respective to total rotational

energy:

According to Heisenberg uncertainty principle, it is easy to tell that the ratio of z-

direction surging energy with respective to total rotational energy can be expressed

with
d2mz,ι~

2

2
∑
i dmz,ι

/l(l+1)~2.

The generic surging energy ratio r(εz,i):

In this model, heterogeneous particle variables with different moment inertia are con-

sidered, which can seen in Fig. 2.4. For a heterogeneous system with rotational inertia

ratio, considering the microscopic rational inertia ratio, the built-in energy-number re-

lation also renders an easy expression of moment inertia pi=Ii/
∑

i Ii, so the general

surging energy ratio in z-direction r(εz,i) is obtained as follows consequently,

r(εz,i)=
1

pz,i

d2
mz,ι/2

∑
dmz,i

l(l+1)
. (4.9)
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Eq. (4.9) is the formula can be used as a metric of surging energy at every particle

i, and its distribution density function (ρ(·)) after being normalized by total energy of

l-motion.

4.3.3 Remarks

This exploration shows the intrinsic relationship between energy and distance with

quantum number-based model. As energy is truly scaled in both micro and macroscopic

world, this energy and distance relation in Eq. (4.9) sheds some lights on using distance

to find energy flow property in the electric power grid under the integrated hypothetical

view.

1) The energy relations derived in Eqs. (4.9) and (4.11) represent the relation between

energy uncertainty and distance from quantum perspective.

2) The Gauge field and observables formalized as Hermitean operators, uncertainty

of the hypothetical view allows to use math tools or coordinate change such tensor

analysis [66] to connect both quantum models Eqs. (4.9) and (4.11) and real world

complex network or power grid models shown in Eq. (3.1) without change the energy

nature and characteristics.

Next we will show that despite from its quantum origin, a real world counterpart of this

radical distance can be found to quantify the energy influx as the results of disturbance

in a network.

4.4 Energy influx estimation in power grid

In this subsection, a specific transient energy in the power grid based on the quantum

number-based model is exploited. Specifically, we show that under the integrated hypo-

thetical view, how the Heisenberg uncertainty principle [7] and quantum number-based

model can help us exploit the energy transient in power grid.
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4.4.1 Energy influx in power grid

Energy flow over the power grid is an inherent network process. The energy transient is

the result of a dramatic deviation of the synchronously linked electromagnetic fields from

the known or predicted sinusoidal states, to some highly uncertain, possibly chaotic,

states of mechanical curve. The resultant complex current spikes induce rapid energy

influxes at all interconnected components throughout the power grid. Propagation of

energy transient over the electric power grid, particularly during initial period following

an untoward incident (often known as the first swing period lasting a few cycles or less),

directly affect the grid stability and resiliency.

During the first swing of transient period following an untoward incident, the distri-

bution and magnitude of propagating energy immediately impacts the responses of the

primary protective schemes of the power grid, as well as the actions of the secondary

stabilization controllers. That guards the bottom-line of power grid stability and re-

siliency, and form the critical front-line for mitigation or against of the risks of large-scale

cascading failures and prevention of fragmentation of networked components.

Due to the level of complexity and uncertainty, the distribution and magnitude of the

first swing energy transient are very hard to be described even with high-order non-linear

inductance models based on the classic electric circuit theory, with a desired level of

accuracy, robustness and generality.

Transitional engineering approaches to understanding of impact of energy transient

on grid stability rely on well-defined mathematical models built upon the cycle-based

family of sinusoidal waves, including the fundamental frequency (50/60Hz) component,

according harmonics and residual noises, as well as the simulated time domain dynamic

trajectories such as ones generated by solving nonlinear swing equations describing

coupled rotating masses of synchronous generators and dynamic flux models describing

electromagnetic energy exchanges.
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4.4.2 Definition of energy influx with quantum number-based model

Consider the electromagnet transients in a power grid during the initial transient pe-

riod immediately following a untoward event such as a fault (normally it is called first

swing period for a large system or excitation period for a smaller system) as an energy

influx. Transient energy and energy influx during the initial response of the power grid

immediately after a fault or disturbance, the exogenous variables (such as those rep-

resenting controller operating conditions) remain without changes, but the endogenous

states (such as the magnetic fluxes) are changed which creates energy influx. And this

induced energy plays an critical role in many critical operations such as relays settings,

automated under frequency controls for prevention of untoward events.

Transient energy influx referred here is an electromagnetic phenomenon in power grid,

that energy observed at buses of power grid during the sub-transient period (in the

initial stage of energy transient) following an untoward event. Such a transient energy

influx lasts only a few cycles or less, but has a direct and determining impacts on the

responses of the protective and stabilization control systems, in defending the power grid

from cascading failures or network fragmentation. The transient energy influx in this

stage has similar complex nature of core excitation of magnetic system or energization

of electric system after being turned on/off, but at a much higher level of complexity

due to the number of interconnected components and their interactions, which is one

of the most complex nature phenomena and difficult to characterize and quantitatively

predict priori.

Transient energy influx in power grid is defined here as the port observation or experience

(l-observation) of an inherent transient process of complex network caused by some

highly uncertain, possibly chaotic mechanical oscillations and energy waves in the bulk

power transmission system that happens at the process outset of the transient (t0+),

following a dramatic deviation of synchronously linked electromagnetic fields from a

known or predicted stationary sinusoidal state.

86



Mathematically, the transient energy influx can be illustrated with a multivariate time

domain filtration process characterized by a set of frequency domain models and coher-

ent coupling functions, in terms of a Hamiltonian functions denoted by H or nearby

Hamiltonian system, with the following rather illustrative than rigorous form,

FX(t)={X(s)|H : t0+<s ≤ ts}, (4.10)

where X={X1, ..., XK} ∈ RK
+ denotes a state vector representing the abundance of

energy-exchanging quantities of K interconnected components, during the period from

t0+ to ts, before some dominating transient states are revealed at ts sub-transient ends. ts

represents the end of the sub-transient period that marks the beginning of the transient

period in which some dominating states can be identified. In power system analysis,

X can only be described or estimated by frequency domain models or functions that

require at least one 50/60Hz-cycle validation, theoretically.

The transient energy influx of power grid in this stage is a complex mechanical os-

cillations of sub-synchronous transient dynamics, which has similar complex nature of

core excitation of magnetic system or energization of electric system after being turned

on/off. It is difficult to characterize and predict priori for complex dynamics, but at a

much higher level of complexity due to the number of interconnected components and

their interactions.

The complex dynamic nature makes it difficult to predict energy transient accurately

and robustly with existing engineering theory and methods. Particularly for the energy

influx in the sub-cycle time frame, the state of energy flow is too uncertain and complex

to describe by the cycle-based sinusoidal family of frequency domain models. In fact,

most surprising or hard-to-explain failures of networked component and open questions

are pertinent to the complex dynamics of energy transients or energy influx, such as the

ones occurred in cascading events.
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4.4.3 Estimation of energy influx in power grid

In this work, distance including the z-direction radical distance and electrical distance

is the profound bridge to connect classic complex network theory and quantum view.

z-direction radical distance is defined from the quantum perspective and its macroscopic

representation is also a macroscopic measure of the practical electric power system

parameter.

In this subsection, we will show that despite from its quantum origin, a real world

counterpart of this radical distance can be found to quantify the energy influx as the

results of disturbance in a network.

In particular to establish the transition between the system described by quantum num-

bers to electric power system, under the unitary view, we choose the resistance in the

complete graph obtained from Kron reduction to represent z-radical distance in Eq.

(4.7).

Macroscopic proxy of radical distance, defined by quantum number-based model and

principles, for estimation of transient energy influx are warranted by its observability

and energy nature. As surging energy is quantified with radical distance, which is real

measurable quantity in observable z-direction in quantum theory, we are permitted to

interpolate between radical distance (dmz,ι) in quantum world and couplings in macro-

scopic electromagnetic fields of complete graph representation of real power grid. The

insights from aforementioned observations on the nature of couplings of complex net-

work led to the idea of connecting graph distance (Di,f ) in a complete graph to radical

distance. Fortunately, relevant research in mathematics offers rich and profound com-

putational tools, such as the theory and methods of network tensor analysis in [48]

and [66]. The macroscopic approximation of radical distance for estimation of transient

energy influx in power grid can be obtained from graph distance (Di,f ) in its complete

graph representation with the theory and methods of network tensor analysis in [48]

and [66].
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Here we postulate the following. Consider a practical real world K-buses electric power

grid with N ports of interest (N ≤ K), by introducing Di,f , L and Pi, the ratio of

energy influx in electric power grid at port i, R(Ei,f ), can be directly obtained from

equation (4.9), which is the macroscopic surging energy in z-direction,

R(Ei,f )=
1

Pi

D2
i,f/2

∑
Di,f

L(L+1)
, (4.11)

where i=1, 2, · · · , N . Di,f and L are different macroscopic dominating distance mea-

sure, which is the physical world representation of quantum numbers in microscopic,

and Di,z is graph distance as a macroscopic approximation of z-direction radical dis-

tance in the complete graph representation of a complex network for given reference

f . They are corresponding to reference uncertainty, different macroscopic dominating

distance measures, and the physical world representations of z-direction radical distance

in microscopic. Specifically, they are electrical distances in electric power system asso-

ciated with the port and the system respectively. Pi is the moment inertia, which will

be shown in following practical study.

Knowing that theoretically l(l+1) represent rotational uncertainty motion, the total

rotational energy because of the rotational quantum motion of uncertainty is not ob-

servable and measurable associated with the L̂x−L̂x surface, but it can be found

l(l+1)=2
∑
|mi| based on the property offered by quantum number-based model.

Note that theoretically L(L+1) is a non-observable quantify energy associated with the

L̂x−L̂y surface but can be estimated with L(L+1)=2
∑
Di,f according to the primitive

relation of quantum number-based model. The computation of Di,f can be obtained

from Kron reduction [48].

If there is a fault in the electric power system, there will be different influx energy on

different physical ports corresponding to each energy change on different physical ports.
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Fault location is considered as a reference.

The construction of Eq. (4.11) from Eq. (4.9) enables an energy-enabled across-

boundary penetration of z-direction radical distance from the quantum world into

macroscopic world in two fundamental aspects:

1 Surging energy ratio (r(εz,i)) for a given unit reference potential built upon quan-

tum theory as well as surging energy distribution (ρi (εz,i)) provide practical met-

rics for estimation of energy influx ratio and its distribution (ρi(Ei,f )) for all nodes

of interest i, i.e.,

ρi(εz,i) ∼ ρi(Ei,f ). (4.12)

2 Total surging energy (
∑

i εz,i) and its distribution ρz(
∑

i εz,i) among all reference

potentials of interest provides practical metrics for estimation of total energy influx

(
∑

i Ei,f ) and its distribution ρz(
∑

i Ei,f ) to reveal the significance of nodes of

complex network for a given reference, i.e.,

ρz(
∑
i

εz,i) ∼ ρz(
∑
i

Ei,f ). (4.13)

According the energy connection, L and Di, f can be obtained in the practical system,

which are approximation of theoretical l and m, and dominating eigen-states represen-

tation associated with the studying problems.

Remarks

In this chapter the concept of z-direction radical distance is postulated under a unitary

quantum field view. Radical distance is conceived as a structural and functional property

of complex networks that penetrates the boundary between the quantum world and

macroscopic real systems, thus allows us to quantify dispersion of sub-transient energy in

real system with quantum metrics. The relation between radical distance and dispersion
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of sub-transient energy in a complex network with respect to a reference potential is

quantified. We hope this work can be an impetus that will stimulate further exploitation

of exotic quantum phenomena in natural and man-made complex networks.
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CHAPTER 5

Demonstration of Practical Application Using a Real World

Case

In this chapter, we will show that starting from its quantum origin, a real world

counter-party of this radical distance can be found to quantify the energy influx as

the results of disturbance in a network. Independent test studies by a regional Trans-

mission Organization (RTO) in estimation of energy influx using real power grid models

are present and assert an industrial-grade accuracy of quantification.

5.1 Electro-mechanical stability for power system operation

Power system electro-mechanical stability is an important issue for power system op-

eration. Power system electro-mechanical stability can be considered from two per-

spectives. The first one is frequency stability, which is from system wide perspective.

The other one is angle stability of generators, which is from component perspective.

Electro-mechanical stability is directly affected by kinetic energy and potential energy

exchange in the network. And the total energy following a fault plays an important role

on the dynamics exchange of kinetic energy and potential energy.

The total energy in the power system following a disturbance or fault can be represented

with the summation of kinetic energy (WKE(t)) and potential energy (WPE(t)) at any

time t, W (t)=WPE(t)+WKE(t). In this equation, the representations of WKE(t) and

WPE(t) are derived from the classical generator model [14, 67, 68], specifically the first

swing dynamics. For example, if the classical generator model is considered shown in
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Fig. 2.4, WKE(t) and WPE(t) can be represented as,

WKE(t)=

Ng∑
i=1

∫ t

0

2Hi

ωR
(ωi (τ)−ωR)

d (ωi (τ)−ωR)

dτ
, (5.1)

WPE(t)=

Ng∑
i=1

∫ t

0

(Pei (τ)−Pmi)
dδi (τ)

dτ
, (5.2)

where subscript i refers to the ith generator; δi (t) is generator rotor angle at any time

t; ωi (t) is generator angular velocity at any time t; ωR is the rated angular velocity; Hi

is the generator inertia constant; Pmi is mechanical input power of generator; Pei (t) is

electrical output power of generator; and Ng is the total number of generators in the

system.

The total transient energy refers to the total amount of energy that is accumulated dur-

ing the fault period through the interaction between kinetic energy WKE and potential

energy WPE in the power system. The total transient energy can be represented with

the summation of the total kinetic energy and total potential energy at the instant of

fault clearing. When the total amount of energy at the instant time tc of fault clearing

is selected as energy reference, the total transient energy [69, 70], TF , can be expressed

based on Eqs. (5.1) and (5.2) as follows,

TF=WKE(tc)+WPE(tc)=
1

2

Ng∑
i=1

2Hi

ωR
(ωi (tc)−ωR)2 . (5.3)

In Eq. (5.3), variables ωR, Hi, and Ng are known for a given system. Thus, the total

transient energy TF varies with generator angular velocity ωi (tc). That is, determining

the total transient energy needs to evaluate generator angular velocity, which is one of

variables characterizing the dynamics of a power systems. The dynamics are described

by a set of DAEs. Thus, determining generator angular velocity needs to solve the
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DAEs. Note that when the advanced modeling of generators and controls are used in

a power system, the set of DAEs becomes very complicated. Traditionally, the set of

DAEs are solved by time domain simulations.

In the experiment with real world model, everything is from time domain simulation

and the actual operational models.

Thus, the following procedure can be used to evaluate the total transient energy in

Eq. (5.3) for a power system following a given fault: 1) Prepare parameters required

to run a simulation for determining the dynamics of the power system. 2) Apply the

given fault in the power system. 3) Solve the set of DAEs by time domain simulations

to determine angular velocity of all generators in the system at given fault clearing

time tc. 4) Evaluate the total transient energy in (5.3) using the angular velocity of all

generators and other parameters such as ωR and Hi known for the power system.

5.2 Descriptions of demonstrative experiment

Now we present a usage of radical distance in estimation of transient energy influx

with real world power flow and dynamic system models of the power grid manged by

ISO-New England in the North American Eastern Interconnection (with 4236 buses,

4773 lines, and 230 generators). The US and ISO-New England power grids are shown

in Fig. (5.1).

The experiment follows the standard procedure of dynamic stability analysis: a 3-phase

short-circuit fault is first introduced at a bus bz to create energy transient and then the

distribution of transient energy influx at all generators of interest is evaluated in the

power system. This procedure is repeated for various 177 fault locations (only 345kV

buses are included due to space limit). Two methods will be used: radical distance-based

structural analysis using Eqs. (4.7), (4.8), (4.9) and (4.11) and model-based time domain

simulations.
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Fig. 5.1: US and ISO-New England power grids.

In the structural analysis, fault bus bz is considered as the reference for z-direction. Di,z

in Eq. (4.11) is determined by the graph distance between generator bus i and fault bus

z which can be found in (N+1)-reduced matrix from the Laplacian (L) matrix of power

grid using the methods of network tensor analysis [66, 71], i.e., Di,z : =B†ii+B
†
zz−2B†iz,

i, z ∈ (1, 2, · · · , N), where † represents the Moore-Penrose pseudo inverse [71, 72, 73].

Pi in Eq. (4.11) is obtained from the dynamic system model. These are all information

needed for radical distance-based structural analysis, no time domain modeling and

simulation needed.

Time domain dynamic simulation and validation are done independently by the re-

search group in ISO-New England using commercial Transient Security Assessment

Tool (TSAT). The fraction of energy influx at each generator port i is measured based

on the change in kinetic energy of each generator ∆WKE,i during the sub-transient pe-

riod of 5 cycles with
∑N

i (ωi−ω0)2Pi/ω0, where ω0 is the generator rated velocity; ωi

is the angular velocity of generator i, which is the result obtained from time domain

simulations with TSAT.
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Having described the set-up of the experiment, we proceed to report its results. The

comparative studies and results generated by z-direction radical distance-based struc-

ture analysis and time domain simulations are shown using the the real power grid

described above.

5.3 Results of experiment

Fig. 5.2: Polar contour maps of energy influx.

Experiment results comparisons of time domain simulation and z-direction radical distance-

based structure analysis are described in Figs. 5.2, 5.3 and 5.4, where, Fig. 5.2 is the

polar contour maps of energy influx obtained from distance-based structural analysis

(i) and time domain simulation (ii), respectively, in which the energy levels are colored

in a range between 0 (black) to 0.5 (red) to show the distributions and boundaries of

energy influx. (Two additional levels are added to represent values less than or equal to

0 and greater than 0.5 using black and gray label, respectively.) Angular coordinates

represents the 230 generators and radius represents 177 fault bus locations. Fig. 5.3 is

the statistical consistency is confirmed with scatter patterns, distribution histograms,

and a high correlation coefficient. Fig. 5.4 is the plot of fault severity levels at different

locations in decreasing order and the energy of maximum error in two regions (I) and

(II). Ultra low errors in region I assert that there is no significant discrepancy in results
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Fig. 5.3: The statistical consistency.

from two methods till the level of severity of faults becomes very low: energy of the

maximum error is less than 2.72% for 78 locations of serious fault with the total energy

influx over 29.62%. Region II starts from a maximum error of 11.30%. Although the

overall maximum error is up to 95.41% (with a fault severity level of 14.38%), the errors

in region II are not considered due to the lower severity of fault in practice.

Fig. 5.2 shows the comparison of transient energy influx distributions obtained from

the z-direction radical distance-based structural analysis as described in Eq. (4.11-4.12)

and time domain dynamic simulation in polar contour map (Fig. 5.2.-i and Fig. 5.2.-ii).

Angular coordinates of contour corresponds to the locations of a fleet of 230 generators

managed by ISO-New England, while radius corresponds the 177 fault locations. Fig.
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5.2.-i and Fig. 5.2.-ii exhibit a remarkable similarity of contour patterns such as pattern

intensity, mutual gradient, etc.

The fault energy estimated by distance-based structure analysis is compared with the

one evaluated by time domain simulations in the system. Fig. 5.3 shows the result

consistency from a statistical perspective in terms of distribution of total energy influx as

described in Eq. (4.13) for all fault locations (345kV buses from bus 1 to bus 177) in ISO-

New England. It can be seen from Fig. 5.3 that at each fault location, the magnitudes of

fault energy estimated by distance-based structure analysis is high correlated with the

one evaluated by time domain simulations. A correlation coefficient of 0.9489 confirms

the high-degree of consistency in terms of statistical measures such as histogram, scatter

distribution, etc.

For practical power system analysis and potential practical applications of the strong

dependence of the total transient energy on grid structure, a high level of consistency

in statistical measure showing in Fig. 5.2 and Fig. 5.3 may not be adequate for mak-

ing important engineering decisions, particularly for operational decisions to maintain

extra-high reliability of power grid. We further quantitatively analyze the discrepancy

resulting from the structural representation of the total transient energy for each in-

dividual fault location. The industrial-grade accuracy with non-statically comparison

of the total transient energy predicted using distance-based structure analysis with the

one evaluated using time domain simulations and the examination of the energy of

maximum errors are demonstrated in Fig. 5.4.

Fig. 5.4 demonstrates an remarkable accuracy of the radical distance-based structural

analysis in terms of degree of discrepancy between two methods. The orange dots

represent the levels of total transient energy influx (
∑

i Ei,f ) (%) induced by different

fault locations in a decreasing order of severity and the blue bars represent the levels

of energy (%) of the maximum error for given fault locations. In this case study, the

error becomes significant when the level of total transient fault energy influx is small
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(<29.62%). For a high level of total fault energy influx, meaning a higher severity level

(from the maximum (100%) observed to 29.62%), the errors are very small (<2.72%),

which is qualified for industrial applications included those in real operation. In practical

operations, faults with severity level less than 30-40% are considered as the low severity

faults, which are not critical to system reliability. The ultra-low errors in identifying

high severity faults show a very good and an industry-grade accuracy for real world

applications.

It can be observed that the energy of maximum error is no more than 2.7% for more

than 70.4% total energy covering 78 more serious fault bus location. Within the 29.6%

total fault energy, maximum of energy error happens at fault bus location with 14.4%

total fault energy. It can be concluded that the energy of maximum error is very low

when the total fault energy is more than 70.4%.

Remarks:

In this chapter, an applicability of radical distance in real systems is demonstrated

with a quantitative analysis of complex sub-transient problem in a real power grid,

exhibiting striking statistical tendencies with an industrial-grade accuracy, which seems

unprecedented in the current literature of complex networks. We hoped this work can

be an impetus that will stimulate further exploitation of exotic quantum phenomena in

natural and man-made complex networks.
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Fig. 5.4: Plot of fault severity levels at different locations in decreasing order and the energy
of maximum error in two regions I and II.
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CHAPTER 6

Conclusions and Future Works

6.1 Conclusions

The efforts to develop a ubiquitous view of complex networks to understand, predict,

or govern system behavior have created both excitement and skepticism about to what

extent the knowledge of network structure can be used.

The work is motivated from recent works on unification of power system models with

port-Hamiltonian system [38, 43, 47] and applications of complex networks methods in

power grid analysis [21, 24, 48, 51].

Particularly inspired by 1) an universal interpretation of electrical distances in power

grid and graph distances of complex networks as various manifestations of electromag-

netic linkage [47], and 2) mathematical reformation of a fundamental power flow model

into a picture of “simultaneous random walk on complete graph” representation [51], we

exploit transient energy influx in power grid as a complex-network phenomenon from

a quantum perspective: we first regard the power grid with n ports of synchronized

components as a unitary gauge electromagnetic field with quantum coherence that is

gauge and Hermitian symmetric quantum system, that is represented by a complete

graph, to obtain the permissions of 1) investigating the power grid with localized ports

as a delocalized quantum system, and 2) using quantum theory and methods.

Further, this dissertation reports a new structural and functional property of complex

networks from a quantum perspective, which we call radical distance. Specifically, with

the quantum number-based model, we reference and name an important z-direction

radical distance, which is the projection of a quantum-number-based length associated

with l-motion in the observable z-direction of 3-dimension Hilbert space, with z for the
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observable direction as a unit reference orbital potential, and x−y for the uncertainty

surface as the results of l-motion.

Restricted by the principles of quantum numbers and Heisenberg uncertainty, radical

distance of each entangled particle corresponds to an on-site surging energy associated

with the underlying azimuthal or l-motion in observable z-direction, which authorizes

quantum effects to be measurable at macroscopic scale.

With the mathematical tools of network tensor analysis [66, 71], we found that observ-

able radical distance built on quantum theory can describe the transient energy influx

in real world power grid.

The defining nature of radical distance and its intrinsic bijectivity with energy, combined

with the striking statistical tendencies exhibited in the estimation of energy distribution

on power grids, present a stimulating thread for exploration of hidden quantum effects

in natural and man-made complex networks.

The discovery of quantum-based radical distance, as a new property of complex net-

works, may stimulate research interests from various disciplines: 1) striking statistical

tendencies generated, seemly unprecedented in current literature of complex networks,

helps relieving the growing skepticism about applicability of complex networks theory

to real problems, 2) industry-grade accuracy exhibited asserts a promising approach to

some complex issues notoriously known in physics and engineering, and 3) clear physics

and mathematical foundation offers a new perspective on the emerging field of network

science, for searching the key that opens the gate between the quantum world and the

macroscopic complex reality.

At last, an independent test study in estimation of energy influx with real power grid

is presented, which asserts an industrial-grade accuracy of quantification.
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6.3 Future works

Opened up by this dissertation, the following works may be explored for the future

research.
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• Based on the understanding of the proposed quantum number-based model for

network, I believe there are many potential applications. In the near future, First,

I will focus on the interface development with real time issue. Specifically, the

network structure will be measured with the real time estimation model instead

of using the planning model. Based on the real time estimation, the interface will

be developed.

• Second, I am planning to do some real time dynamic analysis using measured

data. Specifically, I will focus on real time estimation based on the dynamic data

measurement instead of using the static data based on the model because the

system structure obtained from the measure based estimation is different from

the one obtained from the static model.

• Some potential applications would be further explored in the area of power grid

dynamics and electromagnetic stability analysis based on the understanding of

physics-based analytical framework.
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List of Abbreviations

NERC North American Electric Reliability Corporation

DAEs Differential and algebraic equations

DC Direct current

AC Alternating current

FACTS Flexible AC transmission system

AVR Automatic voltage regulator

CCT Critical clearing time

PEBS Potential energy boundary surface

TEA Transient energy automaton

LHS Left-hand-side

RHS Right-hand-side

B-F Boundary-field

N-F Neighboring-field

RTO Regional transmission organization

TSAT Transient Security Assessment Tool
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List of Key Symbols

x vector of state variables;

y Vector of network variables;

λ vector of parameters;

ng The number of synchronous generators;

δ̇i Angle of the ith machine;

ωi Angular velocity of the ith machine

Mi Inertial constant of the ith machine;

Pmi Mechanical power of the ith machine;

Pei Eectrical power of the ith machine;

ωR The reference angular frequency of the system;

Ei Magnitudes of the voltages of electric machine at internal nodes i;

δi angles of electric machines at node i and i;

Yij Magnitude of the admittance between internal node i and j;

Θij Angle of the admittance between internal node i and j;

Gii Total conductance at internal node i;

δi Rotor angle of generator i;

ωi Rotor speed of generator i;

∆ω Change of rotor speed;

∆δ Change of rotor angle;

e′qi Transient voltages along q axis respectively of generator i;

e′di Transient voltages along d axis respectively of generator i;

idi Stator currents of q axis of generator i;

iqi Stator currents of d axis of generator i;

Hi Inertia of generator i;
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Di Damping constants of generator i;

T ′d0i Open circuit time constants for d axis of generator i;

Tq0i Open circuit time constants for q axis of generator i;

Xdi Synchronous reactance for d axis of generator i;

Xqi Synchronous reactance for q axis of generator i;;

X ′di transient reactance for d axis of generator i;

X ′qi transient reactance for d axis of generator i;

ωs the Synchronized frequency of the system;

Vref Reference voltage of the AVR;

Vr Outputs of the AVR;

Rf Exciter soft feedback;

Efd Voltage applied to generator field winding;

Ta AVR time constants;

Te Exciter time constants;;

Tf Feedback time constants;;

Ka Gains of AVR;

Ke Gains of exciter;

Kf Gains of feedback;

V r,min Lower limits of Vr;

V r,max Upper limits of Vr;

Pgs Designated real power generation;

Pm Mechanical power of the prime mover;

µ Steam valve or water gate opening;

µmin lower limit of µ;

µmax upper limit of µ;

R Governor regulation constant;

ωref Governor reference speed;

Tch Time constant related to the prime mover;
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Tg Time constant related to the speed governor;

V (x) Lyapunov or energy function;

Vcr Critical energy;

VKE(ω̃)+VPE(θ) Sum of the kinetic and potential energies of the post-fault system;

G Graph;

V Set of graph vertices;

E Set of graph edges;

M=(Mkh) Incidence matrix;

A=(Aij) Adjacency matrix;

L=(Lij) Laplacian matrix;

D=(Dij) Degree matrix ;

T=(tkh) Sign matrix;

Θi−Θj Difference of phase angles between two buses i and j;

B Susceptance matrix;

bi Susceptance of node i;

bij Susceptance of transmission line connecting node i and node j;

Bij The element in susceptance matrix;

Ef Fault-induced change of system potential;

Wmax
PE,i Component linking strength;

Ef Inrush exchange of induced fault energy;

K Number of buses of power system;

N Number of ports of power system;

H(q, p) Hamiltonian of the system;

q=(q1, · · · , qk)T Generalized configuration coordinates for the dynamic system with k

degrees of freedom;

p=(p1, · · · , pk)T The vector of generalized momentum;

B(q)f Generalized forces;

f ∈ Rm Input;
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Ci Capacitance of the ith capacitor;

Lj Inductance of the jth inductor;

q(t) ∈ RnC Vector of capacitor charges at time t;

ϕ(t) ∈ RnL Vector of inductor fluxes at time t;

J Skew symmetric n×n matrix;

H(x1, x2) Sum of two individual Hamiltonian functions H1(x1)+H2(x2);

(LW )N×N Weighted Laplacian matrix considering the line impedance;

(LΨ)N×N Weighted Laplacian matrix considering the injection power on each

nodes;

(LWΨ)N×N Weighted Laplacian matrix considering the line impedance and injec-

tion power on each nodes;

Z Diagonal matrix of the line impedances;

E Energy of the particle;

~p Momentum of the particle;

mp Particle mass;

v Traveling velocity;

h Planck’s constant;

~ Reduced Planck’s constant;

~k Wave vector;

λw de Broglie wave length of the particle;

ω Angular frequency of the particle;

ν Vibration frequency of the particle;

B-F Boundary field;

N-F Neighboring field;

Hclassic
complete Classic interconnected electromagnetic field matrix;

Ĥquantum
complete Hamiltonian operator of interconnected electromagnetic field;

Ĥk B-F operator;

Ĥij N-F operator;
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n Principle quantum number;

l Orbital angular momentum quantum number;

ml Magnetic quantum number;

ms Spin magnetic quantum number;

Mi Mass of elementary-unit-like particle;

V (ri) Equivalent central potential field;

Ii Moment inertia of each elementary-unit-like particle;

ri Elementary-unit-like particle distance from the central;

V̂ (ri) Potential operator;

L̂ Angular momentum operator;

Li Intrinsic angular momentum;

I Moment inertia of the system;

L̂i Rotational symmetric Hermitian quantum operator;

Ψ Wave function;

Cij Weight;

lmax Maximum angular quantum number;

L̂x Angular momentum operator in the x-axis;

L̂y Angular momentum operator in the y-axis;

L̂x−L̂y Imaginary surface;

L̂z Angular momentum operator in the z-axis;

lmax,z Projection of the lmax on z-direction;

mz Projection value of the lmax on z-direction;

mz,i,max Maximum projection of limax on z-direction;

ι Maximum angular quantum number plus 1, i.e.,lmax+1;

dmz,ι dmi,ι z-direction radical distance;

γι Angle between z-direction of azimuthal motion or l-motion and the

uncertainty L̂x−L̂y surface;

d2
mz,ι~

2 z-direction surging energy;
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l(l+1)~2 Total rotational energy;

εz,i Generic unit z-direction surging energy;

r(εz,i) The generic surging energy ratio;

pi Moment inertia of the particle;

t0+ The process outset of the transient;

H Hamiltonian functions;

X State vector representing the abundance of energy-exchanging quanti-

ties of K interconnected components;

ts Sub-transient ends;

Di,z Graph distance;

R(Ei,ref) Macroscopic surging energy in z-direction;

Pi Moment inertia;

L Macroscopic dominating distance measure;

ρi (εz,i) Surging energy distribution;

ρi(Ei,ref) Energy influx distribution;∑
i εz,i Total surging energy;

ρz(
∑

i εz,i) Total surging energy distribution;∑
i Ei,ref Total energy influx;

ρz(
∑

i Ei,ref) Total energy influx distribution;

WKE(t) Kinetic energy;

WPE(t) Potential energy;

t Time;

W (t) Total energy;

δi (t) Generator rotor angle at any time t;

ωi (t) Generator angular velocity at any time t;

Ng The total number of generators;

TF Total transient energy;

tc The instant time of fault clearing;
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ωi (tc) Generator angular velocity at tc;

bz Fault bus;

† Moore-Penrose pseudo inverse;

∆WKE,i The change in kinetic energy of each generator;

ω0 Generator rated velocity;

Wmax
PE,i Component linking strength;

Ef Fault energy;
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