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Abstract 

 
Urban heat islands (UHI) are a global problem that is likely to increase in the future as our global 

urban population increases. Multiple studies conclude that urban green spaces and urban 

waterbodies can reduce UHI impacts, as green spaces provide many environmental and social 

benefits for the well-being of the residents. However, previous studies often treat urban green 

spaces (UGS) as static, and other studies greatly limit the number of UGS investigated. 

Cognizant to these shortcomings, I investigate eighty UGS in Puebla, Mexico, over a 33-year 

period (1986-2019), with the goal of improving our understanding of UGS characteristics that 

provide the most cooling to remediate UHI impact. I personally visited 73 of the UGS and 

recorded the land cover types as well as other characteristics to provide a good baseline 

understanding of most of the UGS in the study. I also used visible, infrared, and thermal data 

recorded by the Landsat 5, 7 and 8 sensors. First, I calculated the normalized difference 

vegetation index (NDVI) for each satellite image. Next, I standardized these NDVI values to 

mitigate seasonal differences and calculated the slope, p-values, and adjusted r-squared for the 

relation against time. To retrieve the land surface temperature (LST) from the thermal bands 

between 2000 and 2019, I applied the Radiative Transfer Equation (RTE). I found that UGS with 

Indian Laurel vegetation cover were much greener and remained relatively stable compared to 

UGS with mixed vegetation cover. Similarly, UGS with large waterbodies were cooler than UGS 

with small water cover. My results show that larger UGS were significantly cooler (p<0.01) and 

that the size of the UGS can explain almost 30% of the LST variability. Furthermore, greener 

UGS were significantly cooler (p<0.01), although this relationship appeared to strengthen over 

time, with only 16.5% of the variability in LST explained by NDVI in 2000, which increased to 

42% by 2019. 
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Chapter 1: Introduction 

 
“…[humanity] must rise above the earth… and beyond… to fully understand the 

world in which [we] live.” (Socrates, 500 B.C.E.) 

 

Remote sensing (RS) allows researchers to study objects or phenomena (land cover, 

water, or the cryosphere) from a distance (Tucker, C. J. 1979). RS is a science because it obtains 

relative and absolute measurements, interprets the results, and draws meaningful conclusions; it 

is a tool because the collected information can be used to draw conclusions that can be used to 

make inventories of resources and solve ecological problems (Moore, G. K. 1979). There are two 

types of RS, passive and active, and their measurements utilize electromagnetic energy 

measurements. Passive RS or passive sensors can only record if the sun is illuminating the earth. 

The solar energy is either reflected (in the visible and near-infrared wavelengths) or absorbed 

and then re-emitted (in the thermal infrared wavelengths). Active RS or active sensors do not 

depend on solar illumination to acquire information from an object. One of them is Radio 

Detection and Ranging (RADAR); its wavelengths are long enough to penetrate clouds. RADAR 

uses low frequencies (long wavelengths), in the microwave region ranging from millimeters, 

meter, and beyond. The other active remote sensing type is Light Detection and Ranging 

(LiDAR), which uses a laser or pulsed lights. These pulses bounce off from the object and return 

to the sensor. LiDAR uses both optical and infrared wavelengths.  

In 1972, NASA launched its first Earth Resource Technology Satellite (ERTS-1) series, 

or Landsat 1(William & Carter, 1976). Since then, Landsat 2, Landsat 3, Landsat 4, Landsat 5, 

Landsat 6, Landsat 7. The most recent and still active Landsat 8 (L8), launched on February 11, 

2013 (USGS, 2020). Landsat-9 and its associated instruments is expected to be launched mid-
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2021 (USGS Landsat 9, 2020). This study uses Landsat 5 TM (L5), Landsat 7 ETM+ (L7), and 

Landsat 8 OLI and TIRS (L8), all are passive remote sensing sensors, sun-synchronous orbit 

with a 16-day repeat cycle. L5 was launched in March 1, 1984, with altitude of 705 km (438 mi) 

and transmitted over 2.5 million images of land surface around the world, inclined at 98.2 

degrees and circle earth every 99 minutes. L7, launched on April 15, 1999 and has similar 

specifications as L5.  L8 has two sensors: The Operational Land Imager and the Thermal Infra-

Red Sensors. L8, orbits earth in a sun-synchronous, near-polar altitude of 705 km (438 mi) 

(USGS, 2020).  NASA and the European Space Agency (ESA) both provide open-access global 

remotely sensed data. These organizations have the mission to advance scientific knowledge to 

understand planet earth as a system, preserve the environment, and address global environmental 

issues to benefit the global community (NASA’s vision and Mission statement, and ESA’s 

About, 2020). 

Remote Sensing data are distinguished by four types of resolution characteristics: 1) 

Spatial resolution refers to the instantaneous field of view, or the size of one grid cell (pixel) and 

is usually measured in meters. The spatial resolution of the optical bands for Landsat are 30m. 

The spatial resolution of the thermal bands is 60m for Landsat 5, and 100m for Landsat 8; 2) The 

temporal resolution defines how often a land surface is sensed, the Landsat sensors typically 

have a 16-day repeat cycle, with an 8-day offset between L5 and L8, allowing for images 

approximately every 8 days from one of the sensors; 3) Radiometric resolution is the ability of 

the sensor to differentiate tonal variation measured in Bit. For example, L5 has 8 Bit resolution 

(ranges from 0-255), while L8 has a 16 Bit (ranges from 0-65535) radiometric resolution. Lastly, 

the spectral resolution is the wavelength interval, or the frequency spectrum of the bands. For 
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example, the finer the spectral resolution, the narrower the wavelength bands or channels. L5 and 

L8 have multi-spectral resolution sensors with multiple bands (Table 1). 

Table 1. Landsat 5 and Landsat 8 band designations, spatial and spectral resolutions. 

Landsat- 5 TM- and L5 ETM+ Bands (µm) Landsat-8 OLI and TIRS bands (µm) 

  30 m Coastal/Aerosol   (0.435-0.451) Band 1 

Band 1 30 m Blue           (0.44-0.514) 30 m Blue                    (0.452- 0.512) Band 2 

Band 2 30 m Green        (0.519-0.601) 30 m Green                  (0.533-0.590) Band 3 

Band 3 30 m Red           (0.631-0.692) 30 m Red                      (0.636-0.673)  Band 4 

Band 4 30 m NIR           (0.772-0.898) 30 m NIR                      (0.851-0.879) Band 5 

Band 5 30 m SWIR-1    (1.547- 1.749) 30 m SWIR-1                (1.566-1.651) Band 6 

Band 6             60 m TIR          ( 10.31-12.36) 100 m TIR-1                 (10.60-11.19) Band 10 

100 m TIR-2                 (11.50-12.51) Band 11 

Band 7 30 m SWIR-2    (2.064-2.345) 30 m SWIR-2               (2.107-2.294) Band 7 

Band 8 15 m Pan            (0.515-0.896) 15 m Pan                     (0.503-0.676)) Band 8 

  30 m Cirrus                  (1.363-1.384) Band 9 

 

Solar energy illuminates the Earth's surface. A fraction of the energy or photons are either 

absorbed, transmitted, and reflected to space. Any given object on Earth's surface absorbs (the 

process by which radiant energy is absorbed) and reflects (the process where radiation ‘bounces 

off’ from the sensed object) and transmit energy. The percentage reflected, percentage absorbed, 

and percentage transmitted depend on the object's unique characteristics, including chemical 

composition, water content, heat capacity, color, surface roughness, and albedo properties.  As a 

result, each land cover type exhibits a unique spectral response curve. Fig. 1 provides an example 

of four spectral profiles for different land covers. 

 Remote sensing technology has many applications. In this study I used it to examine the 

changes of urban green spaces over time, using the Visible and NIR bands (0.44- 0.89 

wavelength in µm). I also use thermal infrared remote sensing (10.31-12.51 wavelength in µm) 

to investigate thermal emission characteristics of the land surface temperature of the urban green 

spaces (UGSs) over time.   
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Figure 1. Spectrum profile of vegetation (green) reflects higher in the near-infrared (NIR) and 

low in the visible light. This is due to the cellular structure, particularly the spongy mesophyll. 

Water (blue) has lower reflection in visible bands, and then it drops close to 0 reflectance in 

other bands. Mixed surface (yellow) shows high reflectance in the visible bands and overall flat 

reflectance in other bands, similarly, asphalt (red) is the second lowest after water.  

 

Normalized Difference Vegetation Index  

 
  This work examines the urban vegetation change from 1986-2019, a 33-year period. The 

Normalized Difference Vegetation Index (NDVI) is the most commonly used spectral index to 

measure the health of vegetation (Huete et al. 1985; Glen et al. 2008). NDVI is the foundation 

for remote sensing phenology studies. Vegetation photosynthesis allows vegetation to absorb 

solar energy in the (0.4 to 0.7 µm) spectral region. On the other hand, to prevent overheating, 

vegetation strongly reflects solar energy in the near-infrared spectrum (0.7 to 1.1 µm). To 
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calculate NDVI we use the spectral bands in the near-infrared (NIR) and red (RED) range of the 

electromagnetic spectrum, using the following formula:  

NDVI= (NIR -RED) / (NIR + RED)     (1) 

Green vegetation absorbs strongly in the red range of the electromagnetic spectrum, and reflects 

strongly in NIR, resulting in relatively high NDVI values. Unhealthy or senescent vegetation 

absorbed far less in RED and does not reflect as strongly in NIR resulting in lower NDVI values. 

While the theoretical range of NDVI varies from -1 to 1, most non-water/non-snow surface show 

NDVI values above 0, with values close to 1 indicating healthy and dense vegetation.  

 

Figure 2. Example of NDVI differences for healthy and senescent  vegetation 

 
Thermal Remote Sensing  

 
 Thermal infrared remote sensing allows the sensing of previously invisible source of 

information, as human eyes cannot sense thermal infrared energy (3.0 – 14 µm) or radiant 

energy, meaning the energy emitted from an object or land surface. Thermal infrared records the 

apparent radiant energy rather than the true kinetic energy. Most objects (except glass) have high 
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kinetic energy and have high amount of radiant energy (Torgersen et al. 2001). The total 

radiation or exitance (Mb), measured in Watts m-2 is proportional to the fourth power of its 

temperature: 

Mb =σT4     (2) 

 

where Mb is the total spectral radiant exitance, σ is the Stefan-Boltzmann constant = 5.6697 x 10-

18 W m-2 K-4 and, T is the temperature in Kelvin.  

Since earth surface cover is composed of selectively radiating bodies, for example water, 

rock or vegetation that emit only a portion of the energy compared to blackbody, emissivity is an 

important component of the full equation. A blackbody is a theoretical construct that absorbs all 

the solar energy and radiates energy at the maximum possible energy rate per unit area. 

Emissivity (ꜫ) is the ratio between the actual radiance emitted (Mr) and the radiance of a 

blackbody at the same kinetic temperature (Mb) (Jacob et al. 2004), or  

ꜫ =
Mr

Mb
      (3) 

According to Kirchhoff’s law of thermal radiation, objects that are good absorbers are 

good emitters, and good reflectors are poor emitters. For this reason, the relationship between 

reflectance (rλ) and emissivity (ꜫλ) must be accounted for. Knowing the emissivity of an object 

makes it possible to modify the Stefan-Boltzmann law originally applicable to blackbodies, so 

that it pertains the total spectral radiant flux (Mr). With, Mr = ꜫ σTkin 
4   and Trad = ꜫ 1/4Tkin then, 

 ꜫ =(
𝑇𝑟𝑎𝑑

𝑇𝑘𝑖𝑛
)4     (4) 

 As indicated in Table 1, for L5 and L7 the thermal infrared band (10.31-12.36) 

correspond to band 6 and for L8 there are two bands 10 and 11, but only the band 10 is used as 

band 11 has some reported issues (Barsi et al. 2014).  
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Chapter 2: Multi-Temporal Land Surface Temperature and Vegetation 

Greenness in Urban Greenspaces of Puebla, Mexico 

 
Gomez-Martinez F, de Beurs KM, Koch JA, Widener J, 2021. Multi-Temporal Land Surface 

Temperature and Vegetation Greenness in Urban Greenspaces of Puebla, Mexico. To be 

submitted to Land, December 2020. 

 
2.1 Introduction 

 
Cities are home to 55% of the world’s human population, a percentage projected to 

increase to 68% by 2050 (UN DESA, 2018). Cities host important institutions that make policy 

and economic decisions. Comprised of complex systems, cities generate challenges and 

opportunities for the multitude of different social classes that intermingle in them. Young people 

searching for economic, academic, and other opportunities arrive without intending to return to 

rural communities, a phenomenon known as ‘rural flight’ (Anuja et al., 2018; Nelson & Nelson. 

2011). As city populations grow, so does the rate of urbanization, resulting in environmental 

transformations such as replacing vegetated land covers with impervious surfaces (IS).  

IS include housing, roads, parking lots, sidewalks, shopping centers, and airports. 

Primarily constituted of concrete and asphalt, these structures provide shelter and mobility; 

however, they also disrupt the ecosystems and negatively impact biodiversity (McKinney 2002). 

In some cases, IS prevent rainwater infiltration and inhibit groundwater regeneration. This 

creates water quality and quantity issues for cities located in arid regions. IS and related 

infrastructure can also cause flooding, as rainwater flows to lower areas (Shuster et al., 2007), 

resulting in economic impacts and in some instances, loss of life (Hammond et al., 2015).  

Additionally, most IS materials are gray or black, which absorb more incoming solar 

energy than vegetated land surfaces. These materials also have a high-heat storage capacity that 

delays energy emission.  In tropical countries and especially during the summer seasons, IS 
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increase heat storage (Santamouris et al. 2015). Tropical countries receive more shortwave 

radiation or insolation from the sun. They are located around the equator line between the 

Tropics of Capricorn and Cancer. Examples of hot countries include Australia, India, Indonesia, 

and Mexico. When urban temperatures rise, increase in energy use related to cooling systems 

further warms these cities (Polydoros & Cartalis, 2015).  

The term Urban Heat Island (UHI) refers to higher temperatures in cities compared to 

surrounding rural areas not impacted by urbanization (Zhao et al. 2018; Liu et al. 2018; 

Maimaitiyiming et al. 2014; Voogt & Oke, 2003). These temperature differences can range from 

small increases of 0.6°C to extremes of 12°C (Yague et al. 1991; Rosenzweig et al. 2005; Vidrih 

& Medved, 2013). The high variability of UHI stems from each city’s unique characteristics of 

urbanization, climate zone, land cover types, latitude, elevation, prevailing wind directions, and 

the surrounding land cover context (Zhang et al. 2017). Regardless of the unique characteristics 

each city presents, Li et al. (2017) argue that the processes of urbanization can explain up to 87% 

of UHIs, especially in cities surrounded by homogenous vegetation cover.  

Urban heat was first examined in the city of London using atmospheric temperature data 

from weather stations (Howard, 1818). Much later Rao (1972) used remotely sensed data to 

investigate the land surface temperature. Oke (1982) investigated both short-wave and long-wave 

radiation fluxes in cities in comparison with surrounding rural areas. UHIs have since been 

examined across the seasons, with most of the literature concluding this phenomenon reaches its 

peak during summer months (Zurita & Martinez, 1991; Ren et al., 2007; Yuan & Bauer, 2007; 

Hamada & Otha 2010; Ren et al. 2013). Studies demonstrate that the substitution of vegetation in 

any climate with manufactured structures is the primary driver of UHIs because flora generally 
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provide evapotranspiration (Hamilton et al. 2017; Hanson, 1991) and higher albedo, except for 

cacti and other succulent plants (Trlica et al. 2017).  

UHI studies illustrate how urbanization and UGSs have a negative correlation (Ren et al., 

2007; Maimaitiyiming et al. 2014). UGS generate ‘cooling islands’ that can potentially reduce or 

mitigate an UHI (Lin et al. 2015), especially in the case of big parks with healthy canopies 

(Chang & Li, 2014). The cooling capacity of UGS directly relates to the size, shape and intensity 

of the green space itself (Zhang et al. 2017). While green strips or small parks do not have the 

same cooling capacity as big parks, it remains critical to examine their impacts because they still 

provide recreational activities, shade, and serve as meeting points (Zhang & Zhou, 2018). UGS 

provide ample economic and social benefits as well as other ecosystem services (von Döhren & 

Haase, 2015).  

In this study I examine the vegetation changes of UGS and their relationship to LST over 

time in the Mexican city of Puebla. I begin with a brief overview of the literature examining UHI 

in Mexico, an understudied region. Next, we analyze NDVI to determine the transient nature of 

UGS in Puebla over the course of 33-years. Finally, we document the unique characteristics and 

circumstances of 80 UGS in the city with in-depth field observations. 

 

2.1.1. Geographic biases of UHI studies 

 
Starting in 2005, the number of peer-review publications focused on UHI increased 

exponentially; this burst of scholarship has resulted in geographic asymmetries regarding cities 

being studied (Zhou et al. 2018). A literature review by Zhou et al. (2018) indicates that UHI 

studies and the use of remotely sensed data have largely focused on five large Chinese cities 

(213), a small selection of cities in the USA (106), two cities in India (38), as well as a few other 
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cities: Berlin (11), Paris (11), São Paulo (5), Lagos and Sydney (4 each). While there may be 

underlying reasons contributing to this research imbalance, it is important to study a wider range 

of cities to understand UHI impacts. This type of analysis is particularly important for cities 

where informal settlements occur, as is the case in Latin America, where urban green 

infrastructure is often sparse (Roberts et al. 2017; Arocena & Senker, 2016; Alcorta & Perez, 

1998). Limited investment in education and technology in less developed cities (Moguillansky, 

2016; Eakin & Lemos, 2006), in tandem with global disruptions such as climate change and 

pandemics, further exacerbate social and environmental vulnerabilities as is the case in the cities 

of Mexico.  

Along with Mexico City (with over 8 million people), ten other cities in Mexico had 

populations of 1 to 2 million people in 2010 (INEGI, 2010). The few UHI studies undertaken in 

Mexico have primarily focused on Mexico City, with one study exploring how urban 

morphology influences solar and radiative exchanges (Jaregui, 1993), and others examining the 

role of canopy cover on UHI mitigation (Ballinas & Barradas, 2015; Cui & de Foy, 2012). 

Rivera et al. (2017) reveal how soil wetness weakens UHI effects and how wind-flow affects the 

spatial distribution of UHI in the metropolitan area of Toluca. Jauregui et al. (1992) illustrate 

how urbanization positively correlates with rising temperatures in Guadalajara; Villanueva-Solis 

(2017) does the same for Mexicali. The only study of UHI in Puebla uses atmospheric 

temperature data to document temperature differences in the city’s historic center, as well as 

strategic areas with heavy traffic concentration (Abarca et al. 2019). Our work uses optical and 

thermal remote sensing to identify UHI and their relationship with UGS and treats UGS as 

impermanent and constantly evolving spaces. 
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2.1.2. Temporal Dynamics of UGS 

 
Many UHI studies treat UGS as static. Few studies address the dynamic nature of 

vegetation cover resulting from aging, climatic, or human-induced transformations. One 

exception is Mackey et al. (2012). These authors observed vegetation and reflective surface 

changes from 1995 - 2009 in the city of Chicago by examining NDVI, albedo, and temperature 

changes of UGS and their positive/negative correlations with LST (Mackey et al., 2012). 

Another exception is Glenn et al. (2008), who highlight how UGS experience physiological 

stages differently within the same city. Similarly, others have found that vegetation cover types 

differ within a park, and from park to park (Glenn et al., 2008). Attentive to this variability 

across time and space, our study examines 33 years of data for 80 UGS, examining their spectral 

signatures and the relationship between green vegetation and land surface temperature. 

 

2.1.3. Importance of field observation 

 
Remotely sensed data undoubtedly enables the examination of human impacts on land 

cover change from a distance. Studies exclusively relying on remotely sensed data, however, 

have shortcomings. For instance, passive remotely sensed data such as from Landsat sensors 

depend on solar radiation and cloud-free days in order to detect urban land cover signatures. 

Satellite data also depend on temporal and spatial resolutions (Zhou et al. 2019). For example, 

optical data from Landsat 5, 7 and 8 used in this study have a spatial resolution of 30 meters, 

while thermal bands for L5 and L7 (band 6) have 60 m resolution, and thermal bands for L8 

(bands 10 and 11) have 100m spatial resolution. While land cover heterogeneities exist in a 900 

m2 area (30mx30m pixel), it is difficult to account for land cover variability in mixed pixels. 

Even if a certain pixel consists of the same type of vegetation, other areas of the park might have 
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different vegetation types. It is, therefore, important to ground truth satellite observations by 

performing field inspections of study area. 

While some studies featuring in-situ observations have focused on the potential health 

and economic benefits that UGS provide, they have not explored vegetation cover differences 

from one park to another park. A survey in the Chinese city of Guangzhou revealed that many 

park users believe that UGS mitigate poor air quality and contribute to the well-being of visitors. 

This survey also found that higher educated people generally perceived parks more favorably 

(Duan et al., 2018). Similarly, Gibson (2018) indicates that older adults experience autonomy 

and fulfillment when visiting city parks. UGS enable positive health outcomes (Kondo et al., 

2018), add recreational value (Zhang & Zhou, 2018), and contribute to overall well-being of park 

users (Kothencz et al. 2017). Sherer (2006) notes that UGS increase property values and attract 

businesses and tourists. In addition to the use of satellite derived data, we visually evaluated 73, 

out of the 80 UGS sites in our study in order to determine land cover characteristics and 

dominant vegetation species, as well as the level of maintenance a park received, and services 

found within it. 

 

2.2. Study Area 

 
Puebla is the largest city in, and capital of, the Mexican state of Puebla (Fig. 3). During 

the colonial period of Mexico, this city was known as ‘Puebla de Los Ángeles,’ after 

independence it became ‘Heroica Puebla de Zaragoza;’ here we simply refer to the city as 

Puebla. In 2010, Puebla was the fourth largest city in Mexico. The most recent demographic data 

from the National Institute of Statistics and Geography (INEGI), a 2015 intercensal survey, 

indicates it was home to 1,579,259 people. Puebla’s population has grown substantially (82%) 



  13 

between 1980 and 2010 (Fig. 4) due to immigration of people from peripheral areas. The 

population growth has been accompanied by significant urbanization which is easily visible on 

Landsat imagery from 1986 and 2019 (Fig. 5).   

 

 

Figure 3. Location of Puebla, its 2010 urban extend and 80 urban green spaces (UGS). These 

UGS are mostly public parks, but also include five cemeteries, one golf course, three 

neighborhoods, and a state park: Flor del Bosque with the size of (13,404, 500 m2)  
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Figure 4. Puebla’s experienced an 84.2% population increase between 1980 and 2010. 

 

  

Figure 5. A 33-year comparison of urbanization from May 3,1986 using Landsat 5 data, RGB 

band combination (5,4,3) on the left, and May 14, 2019 using Landsat 8, band combination 

(6,5,4) on the right. 
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Puebla is characterized by a subtropical highland climate according to the Köppen 

climate classification. Spring weather is dry and warm, summers are hot and wet, autumn 

weather is mildly cold and dry, and winters are cold and dry (Abarca et al. 2019). Puebla 

includes 53,432 km2 in area with an elevation of 2,135 m (7,005 ft.). May is the warmest month 

with an average temperature of 28oC (82.4oF) and the highest recorded temperature of 35.5oC 

(97.7oF).  According to Mexico’s National Meteorological service, Puebla’s yearly precipitation 

average is 970 mm (38.15 inches). Located within the Trans-Mexican Volcanic Belt, which 

spans the Pacific coast to the Gulf coast (Eisenstadt, 2019; Barton 2019), Puebla is surrounded 

by three volcanoes: Popocatepetl, Ixtaccihuatl, and La Malinche. Popocatepetl remains active, 

spewing volcanic gas multiple times a year and showering the city and neighboring towns with 

ash and dust particles. The city also regularly experiences earthquakes of varying sizes, the latest 

major earthquake with a magnitude of 7.1 (Mw) and a duration of ~20 seconds, occurred on 

September 19th, 2017 (National Seismological Service of Mexico, 2017). 

 

2.3. Data 

 
Our study relies on data from Landsat 5 Thematic Mapper (L5 TM), Landsat 7 Enhanced 

Thematic Mapper (L7 ETM+) and Landsat 8 Operational Land Imager (OLI) & Thermal 

Infrared Sensors (TIRS) with a slight variation in band designations. L5 and L7 have a total of 

eight bands, including a panchromatic and thermal band. L8 features eleven bands, the same as 

L5 and L7 plus coastal aerosol, cirrus, and two thermal bands: 10 and 11. We selected two 

Landsat tiles: path 26 row 47 and path 25 row 47 and processed all data on the Google Earth 

Engine. We have chosen the month of May to acquire consistent data from 1986 to 2019. We 

applied a filter of < 20% cloud cover, applied a cloud mask, and then visually inspected each tile 
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individually to ensure the study area was free of clouds (Table 1). We did not calculate land 

surface temperature (LST) for the first four images from May 03, 1986 to May 04, 1998 because 

the data necessary for the atmospheric correction are only available from January 19, 2000 

(https://atmcorr.gsfc.nasa.gov/). 

Table 2. Landsat products used, sensors types and respective dates. 

Sensor       Date Sensor       Date Sensor      Date Sensor       Date 

L5 May 03, 1986 L7 May 01, 2000 L8 May 16, 2014 L8 May 18, 2018 

L5 May 22, 1993 L5 May 09, 2000 L8 May 19, 2015 L8 May 27, 2018 

L5 May 14, 1996 L5 May 28, 2001 L8 May 28, 2016 L8 May 14, 2019 

L5 May 04, 1998 L5 May 24, 2011 L8 May 08, 2017 L8 May 21, 2019 

 
A shapefile of Puebla’s city limit was acquired from the Municipal Planning Institute of Puebla 

(IMPLAN, http://implan.pueblacapital.gob.mx/) and the shapefiles of the state and country were 

downloaded from INEGI site (https://www.inegi.org.mx/app/areasgeograficas/?ag=21). 

 

2.4. Methods 

 

2.4.1. UGS identification and their digitized boundaries 

 
To determine Puebla’s urban green spaces (UGSs), we consulted an inventory of green 

areas prepared by the municipal government. This inventory listed a street address and 

coordinate for each green space, but it did not provide names or spatial vector data. We selected 

80 UGSs using Google Maps. All 80 UGSs polygons were manually digitized using Google 

Earth, zooming in 200 m, then saved as Keyhole Markup Language Zipped (KMZ) file. Then, 

that KMZ file was opened in ArcMap and saved as a shapefile.  

During the months of March, April and early May of 2018, we visited 73 of the 80 

selected UGS to corroborate their names and visually inspect land cover types and other 

https://atmcorr.gsfc.nasa.gov/
http://implan.pueblacapital.gob.mx/
https://www.inegi.org.mx/app/areasgeograficas/?ag=21
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characteristics. To conduct this fieldwork, we relied on a bike share system and the Red Urbana 

de Transporte Articulado (RUTA), a metrobus system. Locations not accessible through public 

transportation were reached with the help with a family friend with a car, or by relying on the 

ride share service Uber.  

Our selection of 80 UGS features 68 parks that ranged from 743 m2 to 1,563,180 m2 in 

size. Some were lacking amenities, while five were recently completed large and carefully 

landscaped tracts of land featuring high end restaurants, museums and other attractions, as well 

as a range of recreational equipment and program activities. Five of the selected UGS were 

cemeteries distinguished by significant greenery compared to their surroundings. Three others, 

which we call “neighborhood cases,” Case-1 (496,869 m2) developed in late 1970s, Case-2 

(1,563,180 m2) developed in the early 2000s, both include neighborhood golf courses, and Case-

3 (17,619 m2) is a block-sized private compound with a large swimming pool and dense Indian 

Laurel trees (Ficus microcarpa). Finally, four UGS consist of an untended strip of land covered 

with vegetation, a university campus, a private golf course, and a state park called Flor del 

Bosque (13,404,500 m2). We selected these diverse UGS because they exhibit significant 

vegetation cover compared to their immediate surroundings. This sharp juxtaposition allowed us 

to examine whether these locations influence the city’s microclimate. Close examination of 

characteristics of each of the 73 UGS visited also resulted in the collection of about 450 

photographs to capture unique attributes of UGS (e.g. Fig. 6). 
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Figure 6. Date Palm and Indian Laurel trees in the Zocalo park of Puebla (upper left), 

Eucalyptus trees in Amalucan Hill park (upper right), grass in La Constancia/Paseo de Los 

Gigantes or ‘model park’ (bottom left), and blossoming Jacaranda trees in Federico Escobedo 

park (bottom right).  

 

The dominant vegetation cover of our UGS includes trees, such as Indian Laurel, 

Jacaranda, Eucalyptus, Bougainvillea, Pirul or Peruvian peppertree (Schinus mole), Pine trees, 

Date Palm, grass and other ornamental shrubs. Indian Laurel trees are one of the most distinctive 

tree species found in Puebla. For example, Puebla’s main plaza, or Zocalo, is distinguished by 

giant Indian Laurel trees (Fig. 6). These trees are angiosperm or seed producing, with 
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oblanceolate leaves and light-gray bark. They grow as tall as 33.5 meters (110 feet) and stand out 

as the greenest trees, with dense canopy cover year around. Their native location ranges from 

tropical Asia to Australia. Over time, Indian Laurel trees have been widely distributed as 

ornamental trees in warm climate cities, for shade, carbon storage, and many other 

environmental services. Indian Laurel trees are now also found in Florida, and parts of 

Mesoamerica and South America. Other land covers in the selected UGS include concrete from 

sidewalks, buildings and two parks with significant waterbodies. 

 

2.4.2. Normalized Difference Vegetation Index Analysis 

 
To investigate the vegetation in each UGS over time, we calculated the Normalized 

Difference Vegetation Index (NDVI) for each of the 16 Landsat images. NDVI is the most 

commonly and widely used index in environmental studies, agricultural monitoring, and 

examinations of vegetation vitality changes (Rouse et al., 1973, Tucker, 1979). NDVI quantifies 

vegetation health indicating strong correlation with areas covered with green biomass. It can be 

calculated using just two bands, the RED band (0.64 – 0.67 µm) and the near-infrared (NIR) 

band (0.85-88 µm). NDVI is calculated using the following equation: 

                                     NDVI = (NIR – RED) / (NIR + RED)                                                     (5) 

 

The Red band measures the absorption of chlorophyll pigments signaling low reflectance, and 

the NIR-band senses the maximum reflection of the cell structures in leaves (Baret & Guyot, 

1991). NDVI values typically range from -1 to +1. Values closer to 0 indicate absence or sparse 

vegetation, stress or drought, as vegetation health and canopy layers and density increase, NDVI 

increases reaching closer to +1 (Huete et al. 1985).   
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 To evaluate the change of each park over the 33 years of the study period, and to avoid 

outlier issues as a result of weather events, normalization of the data was performed using the 

standard z score as follows: 

                                   Z = 
𝑥−µ

𝜎
                                                                                                     (6)   

in where the x = mean NDVI value of each park per each date, µ = mean NDVI value of all parks 

for each date, and σ = standard deviation of all parks by each corresponding date.  

The z-score indicates the standard deviation or change of each of the UGS from the mean 

of NDVI of all data across all UGS. As a result, we can evaluate for each UGS whether it is 

greener or browner than all other parks observed for a particular image without worrying about 

NDVI fluctuations affecting all parks as a result of weather. We apply a linear regression of the 

z-scores against time and calculated the slope, adjusted R-squared, and P-values. With the slope 

we calculated and mapped the yearly changes of each UGS. Also, we examined the 33-year z-

score changes for each of the 80 UGS, by using May 3rd, 1986 data z-score against the May 21st, 

2019 z-score.  

 To further examine how the land cover impacted UGS changes, we grouped the UGS into 

categories by dominant land cover type, size, and by level of maintenance or human intervention. 

We formulated the following hypothesis:  

 Hypothesis-1: (Ho) states that UGS with Indian Laurel tree vegetation cover change at a 

similar rate of change of NDVI as all other UGS.  (Ha) states Indian Laurel trees influence how 

the parks changed over time. We selected seven UGS with Indian Laurel trees as their dominant 

vegetation cover; five are parks (Paseo Bravo, Benito Juarez, Los Enamorados, Zocalo, Paseo de 

San Francisco), and the other two consist of a University campus and Neighborhood Case-3. The 

selection of these seven UGS is based on visual examination during field work. To address 
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Hypothesis-1, a t-test was performed comparing the rate of the change of NDVI of the seven 

UGS against the rate of the change of the remaining 73 UGS with mixed vegetation cover. 

Similarly, we wanted to evaluate if big UGS changed in NDVI more significantly than 

small UGS. To examine, Hypothesis-2 was formulated: (H0) states that the size of UGS does not 

significantly influence the rate of change, while (Ha) states that the size of the UGS does 

influence how the vegetation greenness changed over the 33-year period. To carry out the 

Hypothesis-2, we applied a log linear regression of the rate of NDVI change against the size of 

the UGS.  

 Lastly, we examine whether the maintenance level an UGS receives influences the rate 

of vegetation change in greenness as measured with NDVI. For this, we formulated Hypothesis-3 

with: (H0) stating that maintenance of UGS do not influence significant change in NDVI, while 

(Ha) states that the maintenance level an UGS receives does influence change. To carry out this 

examination, 11 UGS were identified as highly maintained and well-tended. Again, this selection 

is based on multiple visits to those parks in which landscape personnel were actively tending to 

those UGS. Of the eleven UGS, ten are parks (El Tamborcito, Los Fuertes, Cerro Amalucan, El 

Centenario/Chapulco Lake, Paseo de Los Gigantes, La Ninez, Jardin del Arte, Paseo de San 

Francisco, Ecopark Mexican Revolution, and Ecopark Metropolitano of Puebla), and the other 

one is a Golf Course.  In this analysis, we used a two-sample t-test assuming unequal variances. 

 

2.4.3. Land Surface Temperature Retrieval 

 
Three methods are commonly used in the retrieval of Land Surface Temperature (LST) 

from thermal bands: The Mono Window Algorithm (Qin et al. 2001), the Single Channel Method 

(Jimenez-Munoz & Sobrino, 2003), and the Radiative Transfer Equation (RTE) (Berk et al. 
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1989; Qiang, Fu, 2006; A. Sekertekin, 2019). We decided to use the RTE method because it 

estimates specific surface emissivity, atmospheric transmittance, upwelling radiance and 

downwelling radiance of a given band (Li et al. 2013). Furthermore, Windahl & de Beurs (2016) 

conclude that the RTE method provides the lowest errors of LST calculation compared to the 

other two methods over an urban landscape in Oklahoma. Regardless of which of the three-

retrieval method is chosen, all methods require pre-processing to calculate LST (Tang et al. 

2014). We excluded four images, all before the year 2000 (see, Table 2), from the atmospheric 

correction process, as there are no atmospheric profiles available before 2000 

(https://atmcorr.gsfc.nasa.gov/). These date exclusions yield 12 data sets from 2000 to 2019.  

Land Surface Emissivity (LSE) measures the ability of the land surface to emit thermal 

radiation. LSE is a crucial component in the study of climatic, ecological and biochemical 

processes observations as well as in many other applications (Tang & Li, 2014). LSE reveals 

characteristics of surface top layer such as soil or vegetation as well as unevenness of the surface 

(Sobrino et al., 2008; Li et al., 2013).  

Similar to LST retrieval methods, currently, three methods exist that are commonly used 

to calculate LSE: classification-based emissivity (Perez & DaCamara, 2005), day/night 

temperature-independent spectral-indices (Wan & Li, 1997), and the NDVI method (Griend & 

Owe, 1993). In this study we use the classification-based emissivity of ASTER Global 

Emissivity Dataset (ASTER GED) at 100m spatial resolution (Hulley et al. 2015, & Hulley and 

Hook, 2009), then applied the monthly adjustment to adapt the emissivity to correct for bare 

ground and vegetation based on the NDVI layer delivered with the dataset. 

To atmospherically correct the thermal bands, we first calculate the blackbody radiance at 

ground-level as follows:  
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      𝐵∗(𝑇𝑠) =  
𝐿∗−(1−𝜀6)𝜏∗𝐿∗

↓−𝐿∗
↑

𝜀∗𝜏∗
        (7), 

where * is the Landsat band number, e.g. 6 as in Band 6 for Landsat 5 and 7 and  𝜀∗is calculated 

based on the Aster Global Emissivity Dataset. Where 𝐿∗ is the top-of-atmosphere radiance 

(𝑊 𝑚−2𝑠𝑟−1𝜇𝑚−1) of the Landsat (5,7,8) thermal bands. 𝜏∗ is the atmospheric transmittance 

retrieved from the Atmospheric Correction Parameter Calculator. 𝐿∗
↑ is the upwelling radiance 

(𝑊 𝑚−2𝑠𝑟−1𝜇𝑚−1) retrieved from the Atmospheric Correction Parameter Calculator. 𝐿∗
↓ is the 

downwelling radiance (𝑊 𝑚−2𝑠𝑟−1𝜇𝑚−1)  retrieved from the Atmospheric Correction 

Parameter Calculator. The inverse of the Planck function was used to calculate LST (K) from the 

surface blackbody radiance (Chander et al. 2009):  

                        𝑇𝑠 =  
𝐾2

𝑙𝑛(
𝐾1

𝐵∗(𝑇𝑠
+1)

                                                                                  (8), 

where the constants K1 and K2 are derived from the Landsat metadata, and B* is derived in (7). 

 

2.4.4. Statistical analysis of LST data 

After retrieving LST from the thermal bands of the 12 satellite images, mean values of 

LST were extracted for each of the UGS. We then calculated the z-score to standardize the LST 

values across all datasets for each of the UGS, using the Equation 6. We applied ordinary least 

squares regression to the z-scores against time to calculate the slope, p-value, and adjusted R 

square for each of the 80 UGS. 

Hypothesis-1 was formulated: (H0) states that the size of UGS does not significantly 

influence the LST mean z-score, while (Ha) states that the size of the UGS does influence LST 

mean z-score. To carry out the Hypothesis-1, we applied a log linear regression of the LST mean 

z-score of LST against the size of the UGS. Hypothesis-2 was formulated: (H0) states that the 
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size of UGS does not significantly influence the rate of LST, while (Ha) states that the size of the 

UGS does influence LST over the 19-year period. To carry out the Hypothesis-2, we applied a 

log linear regression of the rate of LST change against the size of the UGS. Lastly, we plotted the 

LST z-scores against the z-scores from NDVI to examine the relationship between park 

greenness and park temperature over time using the data for year May 1st, 2000, May 24th, 2011 

and May 21st, 2019. 

 

2.5. Results 

 

2.5.1. Results of NDVI Analysis 

 
After calculating the mean NDVI for each of the 80 UGS across the 16 Landsat images, we 

combined all the NDVI values from all the parks by each year to examine the yearly trend (Fig 

7). The NDVI for all the parks is increasing slightly over time (p<0.02), with significant 

variation from year to year as. Similarly, we plotted the standard deviation of the 80 UGS for 

each year (Fig. 8).  The standard deviation also increased slightly over time (p<0.04). 
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Figure 7. Yearly NDVI mean across the 80 UGSs 

 

Figure 8. Yearly standard deviation from the 80 UGSs 
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2.5.2. Yearly UGS Changes 

 
Figure 9 provides a visual summary of the z-score changes for each of the 80 UGS.  We 

found two parks with significantly browning (p<0.02): El Centenario/Lake Chapulco and La 

Luna. Twenty-six UGS showed moderate browning (p<0.05), thirty UGS revealed No Change, 

eighteen revealed moderate greening (p<0.05) and four revealed significant greening (p<0.02). 

The four UGS with significant greening were Neighborhood Case-2, Jardin del Arte, Paseo de 

San Francisco and the Soccer Field. 

 

 

Figure 9. Visual summary of the yearly changes of each of the 80 UGSs during the 33-year 

period of this study. 
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2.5.3. Thirty-three-year comparison of changes in positive and negative direction. 

 
In an effort to understand how each of the 80 UGS changed over time, we compared the 

z-score of the 37 UGS that had a positive z-score in 1986, meaning they were greener than 

average, against their z-score in 2019 (Fig. 10). UGS de Santa Cruz had the highest z-score in 

1986; this park was almost three standard deviations greener than the average park in 1986. 

During the 33-year period the z-score of UGS de Santa Cruz declined to ~1.8, still much greener 

than the average UGS. We visited UGS de Santa Cruz and determined that the declining z-score 

of this UGS might be attributed to the reduction of canopy density, this UGS is dominated by 

eucalyptus trees, with many of the trees going through senescence.  

The Golf Club showed the second highest z-score in 1986, which remained relatively 

stable, when compared with its z-score in 2019. The relative consistency of this z-score is likely 

the result of human intervention. This private Golf Club is heavily maintained and irrigated. 

Three parks, Villa ATL (500,736 m2), Cerro Amalucan (1,350,060 m2) and State park Flor del 

Bosque (13,404,500 m2), also remained consistent during this study period, despite minimal 

maintenance. The 33-year consistency in these three parks might be due to their vegetation and 

location; the vegetation cover of these three UGS is mainly dominated by trees, and other 

vegetation types that thrive in Puebla’s climate. In addition, they are relatively removed from the 

city core, which reduces human impact. However, as Puebla’s population increases, more human 

disruption is starting to occur. For example, in the state park Flor del Bosque, camping, hiking 

and other recreational activities are now being developed. Similarly, in El Cerro Amalucan park 

a large public swimming pool and dozens of studio rooms were inaugurated in 2020.  
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Of the three parks with the smallest positive z-scores in 1986, El Cri Cri (3009 m2) 

experienced vegetation loss ~ -0.8, Amanda (4273 m2) remained relatively stable, and Strip-3 

(5243 m2) experienced vegetation loss as well (~ -0.5 in 2019). Park Amanda has the most tree 

canopy and other vegetation cover compared to the other two parks, while the other two have 

some shrubs but also significant concrete surfaces. Out of all 37 UGS, La Luna park experienced 

the greatest loss in greenness, going from much greener than average in 1986 to much browner 

than average in 2019. During our field inspection, we found that La Luna is a relatively new 

park; before becoming a park, it was an empty lot covered with vegetation. When the lot became 

a park, its native vegetation was replaced with gravel, cacti and other arid succulent vegetation.  

Similarly, the Soccer Field was an empty lot in 1986, which was converted to a soccer field by 

the Universidad Popular Autonoma del Estado de Puebla (UPAEP). During the conversion, 

grasses were planted, and an irrigation system was installed. As a result, it experienced the 

strongest increase in greenness ~ 1.5 between 1986 and 2019. Los Enamorados park which is 

covered mostly with Indian Laurel trees, which have increased significantly in canopy area and 

density, also shows a significant increase in greenness.  
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Figure 10. 37 UGS with positive z-scores on May 3, 1986 compared with their z-scores on May 

21, 2019. 
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We also investigated the 43 UGS that had a negative z-score in 1986 (Fig. 11). There are 

only six parks that converted from being browner than average in 1986, to becoming greener 

than average in 2019: Paseo San Francisco, Ecopark Metropolitano of Puebla, 2 de Octubre, 

Jardin del Arte, Jardines Paseo de San Francisco and Las Ninjas. Out of the six, Paseo San 

Francisco increased the most from -.05 in 1986 to 1.9 in 2019.  Also, it is important to mention 

that these three parks (Ecopark Metropolitano de Puebla, Paseo San Francisco, and Jardin del 

Arte) experienced major renovation and vegetation cover was expanded during the 

administration of Rafael Moreno Valle Rosas as state governor of Puebla from 2011 to 2017.  

There were twenty UGS that were already browner than average in 1986, that experienced 

further loss in vegetation cover.  
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Figure 11. 43 Urban green spaces (UGS) with negative z-scores on May 3, 1986 compared with 

their z-scores in May 21, 2019. 
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2.5.4. Hypothesis Testing of NDVI 

 
To better understand the impact of Indian Laurel vegetation cover, UGS size, and UGS 

maintenance on greenness of the UGS we present a series of hypothesis test results (see section 

2.4.2). 

 

2.5.4.1. UGS with Indian Laurel vegetation cover case study 

 
To test whether UGS dominated by Indian Laurel vegetation changed more significantly 

than UGS with other mixed vegetation types, we compared the slope of the regression line of the 

z-scores against years. We identified 7 UGS which were dominated by Indian Laurel and 

compared their regression slopes against 73 UGS with mixed vegetation cover. We would expect 

that the average rate of the change for the z-scores from the UGS with mixed vegetation cover 

would be approximately 0, which we indeed found (Table 3). However, the t-test results indicate 

that there is no significant difference (p= 0.30) between the rate of change of UGS with mixed 

vegetation cover and the UGS with Indian Laurel tree vegetation cover. 

Table 3. t-test of Indian Laurel against mixed vegetation cover. 

t-Test: Two-Sample Assuming Unequal 
Variances  

  mixed cover Indian Laurel cover 

Mean -1.877E-06 0.000035 
Variance 4.412E-09 7.21633E-09 
Observations 73 7 
Hypothesized Mean Difference 0  
df 7  
t Stat -1.116  
P(T<=t) one-tail 0.151  
t Critical one-tail 1.895  
P(T<=t) two-tail 0.301  
t Critical two-tail 2.365   
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We also evaluated whether the UGS with Indian Laurel trees where greener on average (Table 

4). We find that there is a significant difference in the z-scores (p<0.01) for the UGS with mixed 

vegetation, versus the UGS with Indian Laurel trees. It appears that despite the fact that the UGS 

with Laurel trees did not reveal a significantly different rate of change, the UGS with Laurel 

trees are signifcantly greener overall than those with other vegetation types. 

 

Table 4. t-test of Indian Laurel against mixed vegetation cover. 

t-Test: Two-Sample Assuming Unequal Variances 

 mixed 
Indian 
Laurel 

Mean -0.120 1.324 

Variance 0.693 0.179 
Observations 73 7 

Hypothesized Mean 
Difference 0  

df 11  
t Stat 7.717  

P(T<=t) one-tail 4.593E-06  
t Critical one-tail 1.796  
P(T<=t) two-tail 9.185E-06  
t Critical two-tail 2.201  

 

2.5.4.2. The impact of the UGS size 
 

To understand whether the size of the UGS impacts their greenness, we created a log-

linear model linking the UGS size and the mean z-score over the 33-year period. The logistic 

regression model results (Figure 12) indicate that there is a significant relationship between the 

mean z-score and UGS size (p < 0.01). The majority of small UGS have a negative mean z-score 

and the z-score increases for larger UGS. A little more than 31% of the variability in greenness is 

explained by the size of UGS, with larger UGS being significantly greener. Other variables, such 

as the vegetation type, and level of maintenance are likely explaining aditional variability. 
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Figure 12. Log linear regression of UGS size and mean z-score of the 33-year period. 

 
To understand if the size of UGS impacts how the greenness of the UGS changed over 

time, we created a log-linear model linking UGS size and the rate of change of the z-score over 

the 33-year period. The logistic regression model results (Figure 13) indicate no significant 

relationship between UGS size and UGS change (p > 0.95). Thus, while larger UGS are on 

average greener than smaller UGS, we do not find that larger UGS changed more or less over 

time than smaller UGS. 
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Figure 13. Log linear regression of UGS size and change of the 33-year period. 

 

 

2.5.4.3. The impact of maintenance on UGS 

 
In our last hypothesis, we test whether highly maintained and recently renovated UGS 

changed in greenness more significantly than less maintained UGS. We carried out a t-test to 

compare the change rate between 11 highly maintained or recently renovated UGS (according to 

our field observations) and all other (69 UGS). We did not find a significant difference (p < 0.54) 

between the two groups of parks. As a result, we reject our null hypothesis because the lack of 

evidence that the level of maintenance influences greenness in the UGSs over the 33-year period 

(Table 5). Figure 14 is an example of three selected parks that are highly maintained and their 

respective changes in NDVI, and their respective images from Google Earth.  
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Table 5. t-test of Laurel Indian against mixed vegetation cover. 

t-Test: Two-Sample Assuming Unequal Variances 

  low maintenance high maintenance 

Mean -6.928E-06 1.691E-05 
Variance 3.145E-09 1.495E-08 
Observations 69 11 
Hypothesized 
Mean Difference 0  
df 11  
t Stat -0.636  
P(T<=t) one-tail 0.269  
t Critical one-tail 1.796  
P(T<=t) two-tail 0.538  
t Critical two-tail 2.201   

 

 

 
Figure 14. A visual comparison of NDVI in 1986 with 2019, and Google high-resolution images 

of 2005 and 2017. 1) is Jardin del Arte park, 2) is Soccer field, and 3) El Centenario/Chapulco 

Lake park. 

 

 NDVI 1986 NDVI 2019 UGS 2005 UGS 2017 

1 

    

2 

    

3 
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2.5.5. Paseo of San Francisco and El Centenario/Chapulco Lake parks case study 

 
While we did not find a statistically significant difference between the rate of change for 

highly maintained parks and the level of maintenance, we do want to highlight the development 

of some of the highly maintained parks specifically. We noticed from the eleven-highly 

mantained or recently renovated parks, that Paseo de San Francisco experienced the largest 

increase in greeness, while El Centenarion/Chapulco Lake decreased the most in greenness (Fig. 

12).  

a)                                                                      b) 
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Figure 15. The graphs show the change in greenness of a) Paseo de San Francisco and b) El 

Centenario/Chapulco Lake during the 33-year period. The pictures reveal how these two 

diverging parks looked in 2018. Note that the Paseo de San Francisco is a very green city park 

with lush vegetation. El Centenario/Chapulco Lake on the other hand is dominated by 

impervious surfaces with limited shading and vegetation, and a large lake. 

 

2.6 Results from LST  

 
 In the following section we present the results in the LST mean z-score and UGS size, 

LST change with UGS size, and the relationship of the LST mean z-score with the NDVI mean 

z-score formulated for May 1, 2000, May 24, 2011 and May 21, 2019 (see, Section 2.4.4).   

 

2.6.1. LST change and UGS size 

 
Figure 16 indicates a significant relationship (p<0.01) between the size of the UGS and 

the average Land Surface Temperature. Smaller (UGSs) were significantly warmer than larger 

UGS (p<0.01). Almost 50% of the variability in LST can be explained by the size of the UGS. 

Other biosphysical and human-induced variables such as location (nearer or further from the city 
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core), UGS greenness, vegetation cover type, and maintenance might explain the remaining 

variability in LST. 

 

Figure 16. Log linear regression of size of 80 UGS and LST. 

 

2.6.2 LST mean z-score and UGS size 

 
We also evaluated how the rate of change of the LST over the period of 19 years (using 

the data from 2000-19) varied with the size of the UGS (Figure 17). We found a significant 

relationship (p<0.01) with larger UGS revealing cooling over time (negative slopes), while 

smaller UGS revealed slight warming or no change (rate of change was close to 0). Almost 30% 

of the change of the LST can be explained by the size of UGS. Other biosphysical and human-

induced variables such as location (nearer or farther from the city core), USG greenness, 

vegetation cover, and maintenance might explain the remaining changes in LST. 
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Figure 17. Log linear regression of LST mean z-score and change of Land Surface Temperature. 

 

 

2.6.3. Detailed NDVI z-score and LST z-score analysis 

 
To investigate the relationship between NDVI and LST we selected observations from 

three different years: 2000, 2011 and 2019 as examples. Figure 18 visualizes the data from May 

1, 2000 and reveals a negative relationship between the NDVI and LST values (p<0.01), with an 

R-squared of 0.17. About 16.5% of the variability in the LST z-score of the UGS can be 

explained by the z-score of the NDVI. The relatively weak relationship shows that in general in 

the year 2000, greener parks were slightly cooler than browner parks and those differences 

depended on vegetation cover types. For example, parks covered with trees (C-B quadrant) were 

cooler than parks with grass cover (W-B quadrant) similarly size.  
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Figure 18. Relationship of NDVI z-score against the LST z-score for May 1, 2000 for each of 

the 80 urban green spaces. The colored circles represent the relative size of the UGS, and blue 

circles are UGS with waterbodies greater than 1 km2. 

UGS in the upper left quadrant (Warmer-Browner) and the lower right quadrant (Cooler-

Greener), appear to follow the literature, which generally reports lower temperatures for areas 

with high green vegetation cover. UGSs in the lower left quadrant (Cooler-Browner) appear to 

behave against this idea, although at least one of those UGSs (Lake of San Baltazar) has a large 

waterbody, which could explain its relative coolness.  UGSs in the upper right quadrant 

(Warmer-Greener), such as La Constancia/Paseo de Los Gigantes, El Ameyal, and 

Neighborhood Case-1 & Case-2, are relatively warm compared to their above average greenness.  

The relationship between NDVI and LST appears to strengthen in time, with R2
adj values 

increasing from 0.17 in 2000, to 0.37 in 2011 (Figure 19), and 0.42 in 2019 (Figure 20). This 

W-B: 

Warmer than average 

Browner than average 

W-G: 

Warmer than average 

Greener than average 

 

C-B: 

Cooler than average 

Browner than average 

C-G: 

Cooler than average 

Greener than average 
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strengthening might be a result of our UGS digitization being performed on modern high-

resolution satellite imagery. 

Most UGS in 2011 appear to match the general theory that greener areas are cooler. 

Exceptions are parks with large waterbodies (e.g. Lake of San Baltazar) where a browner than 

average UGS resulted in a cooler than average observation. This is not surprising considering 

that water is generally cooler than other land cover classes, and the NDVI values for water are 

generally low. Other UGS, such as the Soccer Field also divert from the regression line. The 

Soccer Field is relatively green; however, the green field provides no shading and as a result this 

UGS is slightly warmer than average.  

 

Figure 19. Relationship of NDVI z-score against the LST z-score for May 24, 2011 for each of 

the 80 urban green spaces. The colored circles represent the relative size of the UGS (except for 

University and Statepark Flor del Bosque, their sizes were reduced as they are close to each 

other) the one in blue has a significant waterbody, greater than 1km2. 

W-B: 

Warmer than average 

Browner than average 

W-G: 

Warmer than average 

Greener than average 

 

C-B: 

Cooler than average 

Browner than average 

C-G: 

Cooler than average 

Greener than average 
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Figure 20 shows El Centenario/Chapulco Lake and Lake of Saint Baltazar (C-B quadrant) 

closer together both with extensive waterbodies on their surface. Not all UGS were fully 

established in 2000. El Centenario/Chapulco lake is a relatively new park that used to be an 

overgrown marshy area, after the establishment of this park it resulted in a reduction of the park 

area, and in vegetation cover but marshy water got cleaned resulted in lower LST compared to 

fig. 18. We found that highly maintained UGS generally increased in greenness (Paseo de San 

Francisco, Jardin del Arte, Ecopark Metropolitano de Puebla (includes a Baroque Museum) and 

Ecopark Mexican Revolution.  

 

 

Figure 20. Relationship of NDVI z-score against the LST z-score for May 21, 2019 for each of 

the 80 urban green spaces. The colored circles represent the relative size of the UGS, and the 

ones in blue have waterbodies greater than 1 km2
. 
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Warmer than average 

Browner than average 
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Cooler than average 
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 The Soccer Field and El Ameyal also appear as outliers, with high NDVI values, and 

high land surface temperatures. These areas are covered with grass which does not produce 

shade, resulting in higher LST as well. While the opposite thing is observed with (C-G quadrant) 

parks (Paseo de San Francisco, Paseo Bravo, Benito Juarez and University) those parks mostly 

covered of Indian Laurel trees overt time they increased in height and in vegetation density, LST 

decreased over the 19-year. These results lead us to conclude that shade and canopy density are a 

vital variable for the remediation of UHI. Furthermore, an interesting relationship is observed for 

the Golf Club, which consistently has high NDVI and low LST. While the Golf Club is mostly 

covered with grass, it also has more than 40% of tree cover. This private Golf Club is also highly 

irrigated to keep the grass pristine, leading us to conclude that the soil has more moisture and 

potential evaporation from irrigation, causes lower LST. 

 

2.7. Discussion 

 
In this study, we have examined the NDVI and LST trajectories of 80 urban green spaces 

over a thirty-three-year period. We also analyzed the relationship of NDVI with LST after the 

year 2000. We visually inspected 73 of the 80 UGS, to understand land cover types and other 

characteristics of each of the UGS. Our study reveals that each UGS experienced change in 

NDVI differently, from biophysical processes, human induced changes and local climate 

impacts. We found significant variability in the results, with some UGS revealing significant 

greening while other UGS revealed greenness declines.  

The result of this study is consistent with previous studies that reported contrasting NDVI 

changes by comparing specific neighborhoods in Chicago in 1998, with the same neighborhoods 
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in 2010 (Mackey et al. 2014). We also found contrasting NDVI changes and we also observed 

that standard deviation widened over time. 

In this study, we were able to examine vegetation cover difference at a local scale, and 

we found that UGS with Indian Laurel were significantly greener than UGS with mixed 

vegetation cover, although we did not find that UGS with Indian Laurel changed at different 

rates. We also found that vegetation cover mattered for the LST relationship. UGS with grass 

such as the Soccer Field (in 2019), Neighborhood Case-1, and Neighborhood Case-2 (2010) had 

a relatively higher LST since these grassy UGS lacked shade. Other, studies also suggested that 

lower surface temperatures are due to shading, and high evapotranspiration (Alexander, 2020), 

vegetation types, and canopy density (Feyisa et al. 2014), and tree cover (Dugord et al. 2014). 

Soil temperature differences beneath trees and shrubs are lower compared to herbaceous and 

grass cover in the summer months (Edmonson et al., 2016). Similarly, surface temperature of 

grass is lower than asphalt or concrete (Ziter et al. 2019)  

Similar, to what other studies have found, we found that UGS with large water bodies 

(>128,889 m2) are generally cooler (Chen et al. 2012; & Kong et al. 2014).  El 

Centenario/Chapulco Lake (227,050 m2) and Lake of Saint Baltazar (143,629 m2) had lower LST 

compared to similar size UGS without waterbodies. Water bodies and dense urban green 

infrastructure were found to dampen LST in two Indian cities (Ramaiah et al. 2020). Water has a 

higher heat capacity than vegetation and most of the solar visible solar radiation is absorbed 

(Gunawardena et al. 2017; & Cheng et al. 2006), and subsequently released later. As a result, 

while water might be cooler in daytime images, it would be warmer during the night. 

 We demonstrated that large UGS are generally greener compared to smaller UGS, which 

is consistent with what other studies have concluded. By examining thirty-nine parks, Cheng et 



  46 

al. (2015) concluded that larger parks provide higher NDVI values, resulting also in maximum 

cooling effect (Lin et al. 2015). Other studies also conclude that vegetation, water, and 

impervious surface cover determine LST (Cheng et al., 2006, Ezimand et al. 2018; Owen et al., 

1998, Weng et al. 2004).  

 Multiple studies have been conducted investigating the relation between urbanization 

and UHI. One study found a positive relationship between the urban area and LST during the 

daytime for 500 urban areas in the USA (Li et al. 2017). They also found that the size of the 

urban area can explain up to 87% of the variance in UHI. As urbanization continues to increase 

worldwide it is important to preserve and build more urban green infrastructure to reduce surface 

and air temperatures. Urban green infrastructure can reduce the energy demand and consumption 

for cooling (Akbari et al., 1997) and alleviate UHI impact (Chen et al. 2020). 

Previous studies that have examined UGSs relationships with UHI on a city scale have 

predominantly used just one year, a summer season, or in some cases one date of data (Bokaie et 

al. 2016; Chang and Li, 2014; Cheng et al. 2014; Cao et al. 2010), with the exception of Mackey 

et al. (2012) examined UGS in Chicago for a twelve-year period (1998-2010). Similarly, many 

studies treat UGSs as static (Rotem-Mindali et al. 2015; Saaroni et al. 2018; Schwarz et al. 2012; 

Zhou et al. 2011). Cognizant to this limitation, our work used thirty years of data and treated the 

UGS as transient entities, assuming changes can be from natural processes such as senescence, 

induced changes from human activities. Using z-scores to investigate changes within UGS and 

across UGS, allowed us to understand variability in greenness.  

Field observation allowed us to learn about each park and helped to interpret our results 

better. For example, park Federico Escobedo was mostly covered by Jacaranda trees (Fig. 6) and 

was found ‘greener’ and warmer than average in May 21, 2019 (Fig. 19). The month of May is 
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the flowering season of the Jacaranda flowers resulting in higher NDVI, but also higher in LST 

as the flowers are mainly in the upper layer of the canopy resulting in limited shade, and warmer 

than average temperatures. Canopy layers in vegetation result in strong shading and with robust 

shade results in lower LST. Using field observations for 73 of the 80 UGSs, allowed us to learn 

differences in land cover, vegetation types, vegetation changes (as is the case with Jacaranda 

flowering), maintenance and infrastructure characteristics for each UGS, and social aspects. For 

example, in some parks there were street food vendors (e.g. Paseo Bravo park); El Tamborcito 

park (little drum) had an installation honoring murdered women and immigrant issues, to 

advocate for equal rights; one park had a training facility for acrobatics and tumbling (El 

Centenario park). Some parks have fancy services and infrastructure, while others lack services 

and basic amenities. 

Field observation enhanced our understanding and interpretation of the results. While we 

visited the park, we often talked to park users to learn about the story of the park.  For example, 

Park El Centenario/Chapulco Lake is a relatively new park in which its vegetation cover was 

reduced as impervious surfaces were added. However, during renovation, the water body was 

also cleaned up, several aeration systems were installed to keep to water circulated, and the LST 

values, which are typically lower for water bodies, dropped significantly. While, renovations in 

other parks, such as in Los Fuertes and El Centenario/Chapulco Lake, have resulted in a 

vegetation reduction. In other renovated UGS such as Los Fuertes (monuments and statues of the 

battle of Cinco de Mayo, museum, coffee shops), and La Constancia/Paseo de los Gigantes, 

which is a model park showcasing iconic buildings from around world, a museum, and a coffee 

shop, aesthetic and cultural displays are prioritized over environmental benefits.   
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Also, visiting 73-UGSs created a sense of place and connection to each park. For 

example, the names of the UGSs range from priest, politician, beauty pageant, animal names 

such as Los Sapos (frogs) and Las Hadas (fairies), and organizations names such as the Rotario 

Internacional park (International Rotary). Similarly, from field observations, we learned 

vegetation cover differences. For example, we learned that Eucalyptus trees dominate the Cerro 

Amalucan park (Fig. 6). Eucalyptus have a single main stem, and they are fast-growing trees, 

ranging from 10 to 60 m. However, with low canopy density and with long and slender leaves 

(7- 10 cm) pointing downward, these trees generate limited shade. Cerro Amalucan park is one 

of the biggest UGS in our study (see visualization summary Fig. 9), which is the large yellow 

polygon in East of the city. The second yellow is the Los Fuertes parks which also has 

Eucalyptus trees and other vegetation and is about 45% covered with impervious surfaces that 

include roads, parking lots, museums, and a statue with personages commemorating the Cinco de 

Mayo, Battle of Puebla.   

Lastly, our work intends to bridge the gap of what Zhou et al. (2019) have called 

geographic asymmetries in the cities studied for UHI. Most UHI and studies of urban green 

spaces predominantly look at parks that are concentrated in just a handful of countries and their 

respective cities. While some UHI studies have been conducted in Puebla (Mexico), to our 

knowledge, this is the first study where optical and thermal remotely sensed data are used to 

examine UGS and LST. 

 

2.8. Conclusion 

 
 This study intends to reduce the gaps in scholarship on asymmetries that Zhou 

and others identified in their literature review of UHI (Zhou et al. 2018). They identified that 
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limited UHI and urban green space studies have been conducted in other cities locates in other 

countries except cities in China, Unites States of America, Europe. It examined the dynamic 

nature of the 80 UGS for a thirty-three-year period. Lastly, it included field observations to 

examine the characteristics and vegetation cover types from the UGS. We found that small UGS 

are not as effective at reducing UHI as larger UGS. Similarly, the cooling intensity directly 

depends on land cover characteristics, as large UGS with portions of impervious surfaces or bare 

land might not be as effective in temperature reduction as UGS with vegetated areas. Similar size 

UGS with similar NDVI results, presented different LST values, and this difference was largely 

dependent on shadow effects, for example UGS mostly covered with trees had lower LST than 

UGS primarily covered with grasses. UGS with large water bodies were more effective at 

reducing daytime LST, although we did not investigate nighttime data.  

 
As urban populations continue to increase, urbanization encroachment in the vegetated 

landscapes is more likely to continue, resulting in the increase of UHI. For cities located in the 

lower latitudes, the UHI is more acute than for cities in higher latitudes (Campbell et al. 2018) 

because cities in the lower latitudes receive more solar radiation year around and in the summer 

months insolation is further exacerbated. Monitoring the health of UGSs and their relationship 

with LST is important to better understand how cities can implement and maintain urban green 

infrastructure. 

The inclusion of field observation allowed us to further understand vegetation cover types for 

each UGS. UGSs vegetated with Indian Laurel trees were greener than UGS with mixed cover. 

Similarly, UGSs covered with Indian Laurel trees were stable compared to UGSs with mixed 

vegetation cover. This stability in greenness might be because Indian Laurel does not shed all its 

leaves in one season but instead sheds them year around. Also, Indian Laurel trees have dense 
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canopy layers with oblate shape which provide more shade resulting in more cooling than, for 

example Eucalyptus trees, with stringy/elongated leaves pointing down. While newly planted 

Indian Laurel trees require intense watering to stablish their roots, once the trees are established 

watering can be eliminated as they area drought resistant compared to grass, flowers, and other 

ornamental shrubs. Planting Indian Laurel trees in UGSs in Puebla can be a good xeriscaping 

practices and yields the most ecosystem services compared to other succulent plants, grass or 

other ornamental shrubs. Although, Indian Laurel trees are not native to Puebla, they do fit the 

‘right plant and the right place’ concept (Beck, 2013), because they grow well in Puebla’s 

climate.    
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Chapter 3. Conclusion  

 

Cities provide opportunities, and they also face social and environmental challenges. This 

study addressed the importance of UGSs to reduce UHI impacts. UHI is one of the many 

environmental challenges’ cities face, as discussed in the previous chapter ample research 

conclude that UGSs reduce UHI impact, and associated energy demands for air conditioning 

while providing other ecosystem services (Walter, 2018; Saaratoni et al. 2018). UGSs contribute 

to the well-being of the residents as discussed in previous chapters. Conscious of UGSs multi-

layer benefits, some cities in Latin America (Mexico City; Bogota, Colombia; Buenos Aires, 

Argentina; Santiago, Chile, etc.) are actively implementing UGSs and some are in the early 

stages of becoming a ‘smart city’ (Calderon et al. 2017). Similarly, other cities embrace and 

actively promote urban green infrastructure. For example, in the City of Portland (Oregon) the 

Portland Forest park, encompasses 5,200 acres and is considered one of the largest urban forest 

parks in the United States (https://www.portland.gov/parks/forest-park). No cities are more 

committed to preserving and maintaining urban green areas than the City of Singapore, which 

currently has more than 50% of tree and vegetation cover (Henderson, Joan C. 2012), and the 

City of Vancouver which is moving beyond implementing UGSs and is actively working toward 

urban sustainability (Affolderbach & Schulz, 2017).  

It is important to mention that many of the initiatives and actions to preserving, and 

building green infrastructure are led mainly by municipal governments. Although in Puebla’s 

case, the establishment and renovation of parks required partnership between the state governor 

Rafael Moreno Valle Rosas (2011-2017) and three different mayors (Eduardo Rivera Perez 

(2011-2014), Jose Antonio Gali Fayad (2014-2017), and Luis Banck Serrato (2016-2018).  In 

this study, we conclude that not every UGS contributes the same cooling intensity.  We found 

https://www.portland.gov/parks/forest-park
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that large parks contribute more to reducing and mitigating the UHI effect especially if a park 

had dense tree and dense canopy layers, and a series of small parks might not be as effective in 

temperature regulation. The land cover types are also important; for example, UGS with water 

bodies over 1 km2 provided the most cooling intensity compared to other UGS with smaller 

water bodies. Some of the larger parks were very well maintained, but had too much impervious 

surfaces, and consequently were not contributing to reducing LST.  

This work has shortcomings, the inclusion of landscape metrics (patch, edge, and shape 

density) could have furthered our understandings of the park characteristics and their influence 

on LST. Similarly, including other data such as from the ECOsystem Spaceborne Thermal 

Radiometer Experiment in Space Station (ECOSTRESS) which measures both evaporation and 

transpiration of the vegetation would have allowed us a better understanding of temperature 

changes over diurnal periods. ECOSTRESS, like Landsat, senses thermal infrared brightness  

(https://ecostress.jpl.nasa.gov/data). ECOSTRESS is mounted to the International Space Station, 

and as a result the sensor has no fixed overpass time, allowing for images taken at different times 

for the day and night (Cha et al, 2017). Nighttime data are especially relevant, as the UHI effect 

is more acute during the night, when impervious surfaces release most radiant energy. Also, if 

LiDAR data were available in the study area, we could have developed a map of tree crowns and 

develop a shadow model. Our investigation revealed the effect of Indian Laurel trees, which 

generally provide important shading. In the future incorporating ECOSTRESS data, landscape 

metrics, and LiDAR data could result in a deeper understanding of the biophysical changes in the 

vegetation, canopy, shadow effects and their relationship with LST for each of the green 

infrastructures.  

 

https://ecostress.jpl.nasa.gov/data


  53 

References 

 
Abarca, K. M. N., De Lara, C. F., Hernandez, A. S., & Leon, M. T. (2018). Evaluation of urban 

heat island for Puebla City, Mexico. Sustainable Development and Planning, 867–879. 

https://doi.org/10.2495/SDP180731 

Affolderbach, J., & Schulz, C. (2017). Positioning Vancouver through urban sustainability 

strategies? The Greenest City 2020 Action Plan. Journal of Cleaner Production, 164, 

676–685. https://doi.org/10.1016/j.jclepro.2017.06.234 

Alexander, C. (2020). Normalised difference spectral indices and urban land cover as indicators 

of land surface temperature (LST). International Journal of Applied Earth Observation 

and Geoinformation, 86, 102013. https://doi.org/10.1016/j.jag.2019.102013 

Anuja, A. R. (2018). Analysis of Factors Triggering Distress Migration in Bundelkhand Region 

of Central In. Economic Affairs, 63(4). https://doi.org/10.30954/0424-2513.4.2018.31 

Ballinas, M., & Barradas, V. L. (2016). The Urban Tree as a Tool to Mitigate the Urban Heat 

Island in Mexico City: A Simple Phenomenological Model. Journal of Environmental 

Quality, 45(1), 157–166. https://doi.org/10.2134/jeq2015.01.0056 

Beck, T. (2013). Right Plant, Right Place: Biogeography and Plant Selection. In T. Beck, 

Principles of Ecological Landscape Design (pp. 7–31). Island Press/Center for Resource 

Economics. https://doi.org/10.5822/978-1-61091-199-3_1 

Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of Urban Heat 

Island based on the relationship between land surface temperature and Land Use/ Land 

Cover in Tehran. Sustainable Cities and Society, 23, 94–104. 

https://doi.org/10.1016/j.scs.2016.03.009 



  54 

Campbell, S., Remenyi, T. A., White, C. J., & Johnston, F. H. (2018). Heatwave and health 

impact research: A global review. Health & Place, 53, 210–218. 

https://doi.org/10.1016/j.healthplace.2018.08.017 

Cha, J. S., Rodriguez, J. I., & Carroll, B. (n.d.). Thermal Control System of the ECOsystem 

Spaceborne Thermal Radiometer Experiment on Space Station. 9. 

Chang, C.-R., & Li, M.-H. (2014). Effects of urban parks on the local urban thermal 

environment. Urban Forestry & Urban Greening, 13(4), 672–681. 

https://doi.org/10.1016/j.ufug.2014.08.001 

Chen, J., Jin, S., & Du, P. (2020). Roles of horizontal and vertical tree canopy structure in 

mitigating daytime and nighttime urban heat island effects. International Journal of 

Applied Earth Observation and Geoinformation, 89, 102060. 

https://doi.org/10.1016/j.jag.2020.102060 

Chen, X.-L., Zhao, H.-M., Li, P.-X., & Yin, Z.-Y. (2006). Remote sensing image-based analysis 

of the relationship between urban heat island and land use/cover changes. Remote 

Sensing of Environment, 104(2), 133–146. https://doi.org/10.1016/j.rse.2005.11.016 

Cheng, X., Wei, B., Chen, G., Li, J., & Song, C. (2015). Influence of Park Size and Its 

Surrounding Urban Landscape Patterns on the Park Cooling Effect. Journal of Urban 

Planning and Development, 141(3), A4014002. https://doi.org/10.1061/(ASCE)UP.1943-

5444.0000256 

Cui, Y. Y., & de Foy, B. (2012). Seasonal Variations of the Urban Heat Island at the Surface and 

the Near-Surface and Reductions due to Urban Vegetation in Mexico City. Journal of 

Applied Meteorology and Climatology, 51(5), 855–868. https://doi.org/10.1175/JAMC-

D-11-0104.1 



  55 

Duan, J., Wang, Y., Fan, C., Xia, B., & de Groot, R. (2018). Perception of Urban Environmental 

Risks and the Effects of Urban Green Infrastructures (UGIs) on Human Well-being in 

Four Public Green Spaces of Guangzhou, China. Environmental Management, 62(3), 

500–517. https://doi.org/10.1007/s00267-018-1068-8 

Dugord, P.-A., Lauf, S., Schuster, C., & Kleinschmit, B. (2014). Land use patterns, temperature 

distribution, and potential heat stress risk – The case study Berlin, Germany. Computers, 

Environment and Urban Systems, 48, 86–98. 

https://doi.org/10.1016/j.compenvurbsys.2014.07.005 

Eakin, H., & Lemos, M. C. (2006). Adaptation and the state: Latin America and the challenge of 

capacity-building under globalization. Global Environmental Change, 16(1), 7–18. 

https://doi.org/10.1016/j.gloenvcha.2005.10.004 

Feyisa, G. L., Dons, K., & Meilby, H. (2014). Efficiency of parks in mitigating urban heat island 

effect: An example from Addis Ababa. Landscape and Urban Planning, 123, 87–95. 

https://doi.org/10.1016/j.landurbplan.2013.12.008 

Fu, W. Q. (2006). Radiative Transfer. In Atmospheric Science (pp. 113–152). Elsevier. 

https://doi.org/10.1016/B978-0-12-732951-2.50009-0 

Gibson, S. C. (2018). “Let’s go to the park.” An investigation of older adults in Australia and 

their motivations for park visitation. Landscape and Urban Planning, 180, 234–246. 

https://doi.org/10.1016/j.landurbplan.2018.08.019 

Glenn, E., Huete, A., Nagler, P., & Nelson, S. (2008). Relationship Between Remotely-sensed 

Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What 

Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors, 8(4), 2136–

2160. https://doi.org/10.3390/s8042136 



  56 

Gunawardena, K. R., Wells, M. J., & Kershaw, T. (2017). Utilising green and bluespace to 

mitigate urban heat island intensity. Science of The Total Environment, 584–585, 1040–

1055. https://doi.org/10.1016/j.scitotenv.2017.01.158 

Hamada, S., & Ohta, T. (2010). Seasonal variations in the cooling effect of urban green areas on 

surrounding urban areas. Urban Forestry & Urban Greening, 9(1), 15–24. 

https://doi.org/10.1016/j.ufug.2009.10.002 

Hamilton, S. K., Hussain, M. Z., Lowrie, C., Basso, B., & Robertson, G. P. (2016). 

Evapotranspiration is resilient in the face of land cover and climate change in a humid 

temperate catchment [Preprint]. Ecology. https://doi.org/10.1101/075598 

Han, H. (2017). Singapore, a Garden City: Authoritarian Environmentalism in a Developmental 

State. The Journal of Environment & Development, 26(1), 3–24. 

https://doi.org/10.1177/1070496516677365 

Huete, A. R., Jackson, R. D., & Post, D. F. (1985). Spectral response of a plant canopy with 

different soil backgrounds. Remote Sensing of Environment, 17(1), 37–53. 

https://doi.org/10.1016/0034-4257(85)90111-7 

Hulley, G. C., & Hook, S. J. (2009). The North American ASTER Land Surface Emissivity 

Database (NAALSED) Version 2.0. Remote Sensing of Environment, 113(9), 1967–1975. 

https://doi.org/10.1016/j.rse.2009.05.005 

Hulley, G. C., Hook, S. J., Abbott, E., Malakar, N., Islam, T., & Abrams, M. (2015). The 

ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100-

meter spatial scale. Geophysical Research Letters, 42(19), 7966–7976. 

https://doi.org/10.1002/2015GL065564 



  57 

Hulley, G., Hook, S., Fisher, J., & Lee, C. (2017). ECOSTRESS, A NASA Earth-Ventures 

Instrument for studying links between the water cycle and plant health over the diurnal 

cycle. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 

5494–5496. https://doi.org/10.1109/IGARSS.2017.8128248 

Jauregui, E., Godinez, L., & Cruz, F. (1992). Aspects of heat-island development in Guadalajara, 

Mexico. Atmospheric Environment. Part B. Urban Atmosphere, 26(3), 391–396. 

https://doi.org/10.1016/0957-1272(92)90014-J 

Jauregui, Ernesto. (1993). Mexico City’s urban heat island revisited. ERDKUNDE, 47(3). 

https://doi.org/10.3112/erdkunde.1993.03.03 

Kondo, M., Fluehr, J., McKeon, T., & Branas, C. (2018). Urban Green Space and Its Impact on 

Human Health. International Journal of Environmental Research and Public Health, 

15(3), 445. https://doi.org/10.3390/ijerph15030445 

Kong, F., Yin, H., Wang, C., Cavan, G., & James, P. (2014). A satellite image-based analysis of 

factors contributing to the green-space cool island intensity on a city scale. Urban 

Forestry & Urban Greening, 13(4), 846–853. https://doi.org/10.1016/j.ufug.2014.09.009 

Kothencz, G., Kolcsár, R., Cabrera-Barona, P., & Szilassi, P. (2017). Urban Green Space 

Perception and Its Contribution to Well-Being. International Journal of Environmental 

Research and Public Health, 14(7), 766. https://doi.org/10.3390/ijerph14070766 

Leal Filho, W., Echevarria Icaza, L., Neht, A., Klavins, M., & Morgan, E. A. (2018). Coping 

with the impacts of urban heat islands. A literature based study on understanding urban 

heat vulnerability and the need for resilience in cities in a global climate change context. 

Journal of Cleaner Production, 171, 1140–1149. 

https://doi.org/10.1016/j.jclepro.2017.10.086 



  58 

Li, H., Zhou, Y., Li, X., Meng, L., Wang, X., Wu, S., & Sodoudi, S. (2018a). A new method to 

quantify surface urban heat island intensity. Science of The Total Environment, 624, 262–

272. https://doi.org/10.1016/j.scitotenv.2017.11.360 

Li, H., Zhou, Y., Li, X., Meng, L., Wang, X., Wu, S., & Sodoudi, S. (2018b). A new method to 

quantify surface urban heat island intensity. Science of The Total Environment, 624, 262–

272. https://doi.org/10.1016/j.scitotenv.2017.11.360 

Lin, W., Yu, T., Chang, X., Wu, W., & Zhang, Y. (2015). Calculating cooling extents of green 

parks using remote sensing: Method and test. Landscape and Urban Planning, 134, 66–

75. https://doi.org/10.1016/j.landurbplan.2014.10.012 

Liu, Y., Peng, J., & Wang, Y. (2018). Efficiency of landscape metrics characterizing urban land 

surface temperature. Landscape and Urban Planning, 180, 36–53. 

https://doi.org/10.1016/j.landurbplan.2018.08.006 

Mackey, C. W., Lee, X., & Smith, R. B. (2012). Remotely sensing the cooling effects of city 

scale efforts to reduce urban heat island. Building and Environment, 49, 348–358. 

https://doi.org/10.1016/j.buildenv.2011.08.004 

Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, Ü., Sawut, M., 

& Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: 

Implications for sustainable urban planning and climate change adaptation. ISPRS 

Journal of Photogrammetry and Remote Sensing, 89, 59–66. 

https://doi.org/10.1016/j.isprsjprs.2013.12.010 

McKinney, M. L. (2002). Urbanization, Biodiversity, and Conservation. BioScience, 52(10), 883. 

https://doi.org/10.1641/0006-3568052 



  59 

Polydoros, A., & Cartalis, C. (2015). Use of Earth Observation based indices for the monitoring 

of built-up area features and dynamics in support of urban energy studies. Energy and 

Buildings, 98, 92–99. https://doi.org/10.1016/j.enbuild.2014.09.060 

Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land 

surface temperature from Landsat TM data and its application to the Israel-Egypt border 

region. International Journal of Remote Sensing, 22(18), 3719–3746. 

https://doi.org/10.1080/01431160010006971 

Ramaiah, M., Avtar, R., & Rahman, Md. M. (2020). Land Cover Influences on LST in Two 

Proposed Smart Cities of India: Comparative Analysis Using Spectral Indices. Land, 

9(9), 292. https://doi.org/10.3390/land9090292 

Ren, Z., He, X., Zheng, H., Zhang, D., Yu, X., Shen, G., & Guo, R. (2013). Estimation of the 

Relationship between Urban Park Characteristics and Park Cool Island Intensity by 

Remote Sensing Data and Field Measurement. Forests, 4(4), 868–886. 

https://doi.org/10.3390/f4040868 

Renard, F., Alonso, L., Fitts, Y., Hadjiosif, A., & Comby, J. (2019). Evaluation of the Effect of 

Urban Redevelopment on Surface Urban Heat Islands. Remote Sensing, 11(3), 299. 

https://doi.org/10.3390/rs11030299 

Rivera, E., Antonio-Némiga, X., Origel-Gutiérrez, G., Sarricolea, P., & Adame-Martínez, S. 

(2017). Spatiotemporal analysis of the atmospheric and surface urban heat islands of the 

Metropolitan Area of Toluca, Mexico. Environmental Earth Sciences, 76(5), 225. 

https://doi.org/10.1007/s12665-017-6538-4 

Rotem-Mindali, O. (2015). The role of local land-use on the urban heat island effect of Tel Aviv 

as assessed from satellite remote sensing. Applied Geography, 9. 



  60 

Saaroni, H., Amorim, J. H., Hiemstra, J. A., & Pearlmutter, D. (2018). Urban Green 

Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and 

findings across different climatic regions. Urban Climate, 24, 94–110. 

https://doi.org/10.1016/j.uclim.2018.02.001 

Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban heat 

island and global warming on the power demand and electricity consumption of 

buildings—A review. Energy and Buildings, 98, 119–124. 

https://doi.org/10.1016/j.enbuild.2014.09.052 

Schwarz, N., Schlink, U., Franck, U., & Großmann, K. (2012). Relationship of land surface and 

air temperatures and its implications for quantifying urban heat island indicators—An 

application for the city of Leipzig (Germany). Ecological Indicators, 18, 693–704. 

https://doi.org/10.1016/j.ecolind.2012.01.001 

Sekertekin, A., & Bonafoni, S. (2020). Land Surface Temperature Retrieval from Landsat 5, 7, 

and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity 

Models and Toolbox Implementation. Remote Sensing, 12(2), 294. 

https://doi.org/10.3390/rs12020294 

Tang, H., & Li, Z.-L. (2014). Quantitative Remote Sensing in Thermal Infrared. Springer Berlin 

Heidelberg. https://doi.org/10.1007/978-3-642-42027-6 

Trlica, A., Hutyra, L. R., Schaaf, C. L., Erb, A., & Wang, J. A. (2017). Albedo, Land Cover, and 

Daytime Surface Temperature Variation Across an Urbanized Landscape: ALBEDO OF 

URBAN LANDSCAPE. Earth’s Future, 5(11), 1084–1101. 

https://doi.org/10.1002/2017EF000569 



  61 

Tucker, C. J. (n.d.). Red and Photographic Infrared l,lnear Combinations for Monitoring 

Vegetation. 24. 

Vidrih, B., & Medved, S. (2013). Multiparametric model of urban park cooling island. Urban 

Forestry & Urban Greening, 12(2), 220–229. https://doi.org/10.1016/j.ufug.2013.01.002 

Villanueva-Solis, J. (2017). Urban Heat Island Mitigation and Urban Planning: The Case of the 

Mexicali, B. C. Mexico. American Journal of Climate Change, 06(01), 22–39. 

https://doi.org/10.4236/ajcc.2017.61002 

von Döhren, P., & Haase, D. (2015). Ecosystem disservices research: A review of the state of the 

art with a focus on cities. Ecological Indicators, 52, 490–497. 

https://doi.org/10.1016/j.ecolind.2014.12.027 

Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of 

Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8 

Windahl, E., & de Beurs, K. M. (2016). An intercomparison of Landsat land surface temperature 

retrieval methods under variable atmospheric conditions using in situ skin temperature. 

International Journal of Applied Earth Observation and Geoinformation, 51, 11–27. 

https://doi.org/10.1016/j.jag.2016.04.003 

Yagüe, C., Zurita, E., & Martinez, A. (1991). Statistical analysis of the Madrid urban heat island. 

Atmospheric Environment. Part B. Urban Atmosphere, 25(3), 327–332. 

https://doi.org/10.1016/0957-1272(91)90004-X 

Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized 

difference vegetation index as indicators of surface urban heat island effects in Landsat 

imagery. Remote Sensing of Environment, 106(3), 375–386. 

https://doi.org/10.1016/j.rse.2006.09.003 



  62 

Zhang, S., & Zhou, W. (2018). Recreational visits to urban parks and factors affecting park 

visits: Evidence from geotagged social media data. Landscape and Urban Planning, 180, 

27–35. https://doi.org/10.1016/j.landurbplan.2018.08.004 

Zhang, Y., Murray, A. T., & Turner, B. L. (2017). Optimizing green space locations to reduce 

daytime and nighttime urban heat island effects in Phoenix, Arizona. Landscape and 

Urban Planning, 165, 162–171. https://doi.org/10.1016/j.landurbplan.2017.04.009 

Zhao, C., Jensen, J., Weng, Q., & Weaver, R. (2018). A Geographically Weighted Regression 

Analysis of the Underlying Factors Related to the Surface Urban Heat Island 

Phenomenon. Remote Sensing, 10(9), 1428. https://doi.org/10.3390/rs10091428 

Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, 

Z., & Sobrino, J. (2018). Satellite Remote Sensing of Surface Urban Heat Islands: 

Progress, Challenges, and Perspectives. Remote Sensing, 11(1), 48. 

https://doi.org/10.3390/rs11010048 

Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Does spatial configuration matter? 

Understanding the effects of land cover pattern on land surface temperature in urban 

landscapes. Landscape and Urban Planning, 102(1), 54–63. 

https://doi.org/10.1016/j.landurbplan.2011.03.009 

 

 

 


