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ABSTRACT

This thesis attempts, for the first time, to develop comprehensive equations for
determination of the conicity tolerance. No such attempts are evident in the current
literature in conicity analysis. This thesis develops linear and nonlinear equations for
the representation of a cone. For the minimum zone estimation of the conicity
tolerance, linear and non-linear optimization methods are developed. Hence, the
fundamental contribution of this work is in the mathematical development for cones.
These methods are compared against the popular Least Squares Method (respectively
linear and nonlinear formulation). Initial experiments are conducted and a preliminary
analysis of results 1s presented. It was observed in these pilot studies that the Least
Squares Method does not yield the minimum zone in the linear as well as the nonlinear
cases. The form tolerance using the Minimum Zone Method is approximately 13 %
less than the form tolerance using the Least Squares Method. Further, the linear
formulation may provide a good approximation and be used as an alternative to the

general nonlinear formulation.
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CHAPTER 1

INTRODUCTION

Coordinate Measuring Machines (CMMs) are employed for checking
conformance of form, orientation, profile and location specifications of part features.
They typically employ canned procedures for estimating the least squares fit zone of
the measured points. It has been proved over the last decade and half that the Least
Squares Method does not always result in a minimum zone in Shunmugam (1986),
(1987), Lin et al (1995), Murthy et al (1979), Suen (1996), Kanada (1993) and Huang
(1993). Accordingly, linear and nonlinear optimization methods have been used by
various researchers to develop minimum zones. However, the majority of works have
dealt only with flatness, straightness, circularity and cylindricity tolerances. This is
partly due to the reason that most standards define only these tolerances with
reference to inspection. To date, no attempts are evident in the current literature in
the development of minimum zones for inspection of cones and other complex (three
dimensional) geometrical shapes. The appropriate equations for the cone system are
more complex when compared with those for circles and cylinders. However, the
inspection of many industrial parts such as tapered cylinders, frustrum holes and bevel

gears require an accurate assessment of the conicity tolerance.

This thesis has studied the conicity tolerance for right cone, moved cone and

tilted cone and develops the relevant mathematical equation. The last-mentioned cone



is particularly important as it is most commonly employed within many CMMs.
Importantly, our work concentrates on the development of mathematical relationships
for the linear as well as non-linear Least Squares Method for evaluating conicity.
Further, linear and non-linear optimization procedures are developed, using standard
software, to evaluate the minimum tolerance zone for cones. The Least Squares
Method is then compared against the minimum zones obtained through the Simplex
Method and the non-linear optimization methods. Each of these models are validated
and compared using real data obtained using a Browne and Sharpe Coordinate
Measuring Machine (Model: PFx 454 System). Overall, a comprehensive equations
for conicity analysis is developed using several methods. Preliminary observations are

made and known trends verified using pilot data.

Chapter 2 provides a short review of the related literature and Chapter 3 gives
equations relevant to cones. General problems of tolerances in cones are highlighted
in Chapter 4. The Least Squares Method and Minimum Zone Method for cones using
linear equations are discussed in Chapter 5 while nonlinear optimization for cones is

elaborated in Chapter 6. Concluding remarks are made in Chapter 7.



CHAPTER 2

LITERATURE REVIEW

[t is to be noted that many of the papers written on CMM inspection do not
verify their algorithms with data obtained using an actual CMM in Shunmugam
(1986), (1987), Lin et al (1995), Murthy and Abdin (1979), Suen (1996), Huang
(1993), Roy et al (1992) and (1995). All the same, Significant work has been done in
the development of algorithms for inspection using CMMs. The research may be
categorized into two areas: sampling point selection and minimum zone estimation.
The sampling point problem deals with the selection of points for inspection such that
representative data to verify flatness, straightness, or roundness is obtained. Among
the common techniques employed are uniform sampling, pseudo-random sampling, the
Hammersly Method, and the Halton-Zaremba Method. These issues are described in

Woo et al. (1995) and Lee et al. (1997).

The Least Squares Method is most common in CMM inspection for data
fitting. Minimum Zone Estimation has arisen due to the inaccuracies caused by the
Least Squares Method. Of the techniques employed in the literature, the most
common are linear and non-linear modeling.

This research deals with the second area, namely the minimum zone problem.
Further, most minimum zone methods have been developed for representing

straightness (the Median Technique, the MinMax Method, the MinAvg Method),



flatness (the Median Technique, the Simplex Search Method, the MinMax Method),
roundness or circularity (the Simplex Method using limacon approximation, the
Median Technique, the Simplex Search Method) and cylindricity (the Simplex Search
Method, the MinMax Method, the MinAvg Method). No attempts are evident in the
development of methods for estimating the conicity allowance, although Kanada and
Suzuki (1993) illustrated minimum zone evaluation in spheres. In fact, the
mathematical extension of the studied geometries to cones is non-trivial. An extensive
presentation of all articles is avoided, and for brevity only the most relevant works for

the understanding the Minimum Zone Method are presented here.

Chetwynd (1985) introduced a limacon-approximated equation for circles. He
analyzed Minimum Radius Circumscribing Limacons (circles), Minimum Zone
Limacons (circles), and Minimum Zone Straight Lines and Planes. For CMMs, he
performed minimum zone analysis for circles using limacon approximation. He

approximated the nonlinear equation of circles.

r=E cos(8—¢)+[R - E’sin’ (6 — ¢) ] (True circle) [1]

into a linear equation such as:

= acosf + bsin @ + R (limacon circle) [2]

where FE, &J are coordinates in the Polar Coordinate System, and a and b are

coordinates in the Cartesian Coordinate System.



He compared the accuracy of limacon circles against true circles in this article.
He said that because roundness measuring instruments usually introduce a slight
geometrical distortion of the data, fitting a limacon, equation [2], nearly always gives a
more accurate measurement than would fitting a true circle. His opinion is used in this
thesis. Although he introduced the Minimum Zone Method using a constrained linear
optimization technique for a circle, he did not test his algorithm using real data to
prove his theory. However, several other articles in this area are based on the limacon
equation for representing three dimensional circular objects such as cylinder and

sphere.

Shunmugam (1986) used equations for lines, planes and circles, similar to
Chetwynd’s equations for lines, planes and circles. Further, he extended Chetwynd’s
linear equation for circles into a linear equation for a cylinder. He also presented an
equation for a sphere based on the Sphere Coordinate System. Based on these
equations for lines, planes, circles, cylinders and spheres, he used a Median Technique
to evaluate the minimum tolerance zone for each shape. He mentions that the Median
Technique considers only the extreme points, namely the crest and valley points. He
also illustrated the use of matrices to find unknown constants using the Least Squares

Method for various objects.

In an extension, Shunmugam (1987) compared linear deviation expressed as

linear equations against normal deviation expressed as nonlinear equations. When he




analyzed the normal deviation, he used the Simplex Search Technique for nonlinear
optimization. The Simplex Search Technique (Reklaitis, 1983) is different from the
Simplex Method in linear optimization. The Simplex Search Technique is a nonlinear

optimization technique which only requires function evaluations.

Lin et al (1995) used a Minimum Max-Deviation Method (MinMax), a
Minimum Average Deviation Method (MinAvg) and the Convex Hull Method to find
minimum form tolerances for lines, circles, planes and cylinders, compared to the Least
Squares Method. They used nonlinear equations to express normal deviations from
substitute elements using the MinMax algorithm, and linear equations to express
norminal deviations using the MinAverage algorithm. They stated that the tolerance
using the MinAverage algorithm is less than the tolerance using the MinMax algorithm
due to limacon approximation used in the equations for MinAverage Algorithm.
However, the comparison is not properly controlled. To solve the MinMax and
MinAverage problems, the IDESIGN software was used to solve the linear and

nonlinear optimization problems.

Murthy and Abdin (1979) used normal deviations to express form tolerances
for lines, planes, circles and spheres. They also used nonlinear equations and nonlinear
optimization techniques such as the Monte Carlo Technique, Simplex Search

Technique, and Spiral Search Technique. These techniques are based on function

6



evaluations rather than gradient based techniques. He emphasized the fact that the

normal Least Squares Method does not always lead to minimum zone deviation.

Suen (1996) used an interval bias adaptive linear neural network structure
together with a least mean squares learning algorithm to obtain an accurate algorithm
for a minimum zone circle. However, they still used a linear equation developed by

Chetwynd (1985) for a circle.

Orady et al (1996) developed an algorithm of the Minimum Zone Method for
lines using nonlinear optimization and called it the Nonlinear Optimization Method
(NOM). He used a data filtering algorithm to remove the outermost points before
using nonlinear optimization. The results were compared to NOM with the results
from the CMM, the Convex Hull Method, and Nonlinear Least Squares Method.
Since the outermost measured points were removed through the data filtering
algorithm, it is expected that the results are less than the outputs of the Least Squares

Method.

Kanada and Suzuki (1993) presented a nonlinear equation for planes. The
equation represented the errors between the substitute plane and the measured points
in normal direction from the plane. They formulated a MinMax problem to minimize
the difference of the maximum and minimum errors normal to the plane. To optimize

the nonlinear equation, they used two direction search methods: the Downhill Simplex
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Method and Repetitive Bracketing Method. These methods only require function
evaluations to find optimal objective function values. They found that the Downhill
Simplex Method is better than the Repetitive Bracketing Method from the viewpoint

of the number of iterative calculations.

Since the Simplex Method is only a basic algorithm for nonlinear optimization,
the results need not be the best results for precision measurement. Himmelblau said
that the Davidon-Fletcher-Powell Method (Quasi Newton Method), Broyden-Fletcher-
Shanno Method, and Powell Direct-Search Method are the superior methods in the

sense of robustness (Reklaitis, 1983).

Kanada and Suzuki (1993), in an explanation of their work, used the Nelder-
Mead Simplex Search Methods (Reklaitis, 1983), the Bracketing Method with
quadratic interpolation, the Bracketing Method with golden section, and a new method
called TKM. While presenting their new method, they used an assumption that the
extreme points from the optimization using the Least Squares Method are the same
extreme points as the optimization using the Minimum Zone Method. However, this

assumption seems different based on the results of this thesis.

Kanada (1994) has also applied a Downhill Simplex Search Technique to a
sphere expressed as a nonlinear equation. To evaluate a form tolerance, sphericity, he

used Shunmugam’s linear equation to formulate the Least Squares Method and a



nonlinear equation to formulate the Minimum Zone Method. The nonlinear equation
for spheres expresses the sphere moved in the X, Y, and Z directions. To find the
three unknown constants in this nonlinear equation, he used the Downhill Simplex

Technique, using system origin as the initial approximate values.

Huang (1993) developed the Control Line Rotation Schema for straightness
analysis. His algorithm was a geometrical approach, the so-called 2-1 Modal. His
algorithm found two control points and one control point to make two control lines.
Using two control lines, he calculated the straightness. His algorithm was applied to
evaluation of lines. However, it has a limitation of extension into the three
dimensions.

Roy and Xhang (1992) used a computational-geometry-based method, the
Voronoi Diagram, for measuring circularity. Their algorithm is a geometrical
approach rather than an optimization technique. They compared the circularity using

the Least Squares Method with the circularity using the Voronoi diagram.

In a later paper, Roy and Xhang (1995) provide definitions of form tolerances
such as straightness, flatness, roundness and cylindricity. To estimate cylindricity, they
used sections of a cylinder normal to the CMM’s local Z axis rather than a continuous
equation that expresses the cylinder. This could lead to a problem in that the center of
each circle need not lie on a unique center line. To solve this controversy, they used a

line as a center axis which consists of center points of the circle, using the Least



e i /'

Squares Method. However, the center axis of the cylinder estimated through the Least
Squares Method need not be the same as the center axis of the cylinder analyzed
through the Minimum Zone Method. Also, no results from experiments or simulation

were represented.

Wang (1992) analyzed straightness, flatness, roundness and cylindricity using
nonlinear equations with sample points. To measure the minimum zone for those
tolerances, he used a constrained optimization technique called the Fast Feasible
Direction Method. More specifically, he used the NCONG of IMSL developed by the
Fast Feasible Direction Method for this analysis. One of problems in his article is the
equation of a circle. His equation for a circle can not be tilted. This means that he
violates the ISO standard, and his equation for a circle can not generate the tilted
vector of the center axis to calculate the intersecting angle between the center axis of
the other objects.

These articles clearly point to the necessity of developing sturdy methods for
conicity inspection. And yet, several industrial shapes are cones, internal or external.
The present research tends to borrow important ideas, from the general area of
minimum zone estimation as well as least square approximation and applies them for
conicity analysis. In this aspect, the articles surveyed in this chapter have undoubtedly

influenced the research contained in this thesis.
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CHAPTER 3

EQUATIONS RELEVANT TO CONES

Two equations for a cone, one linear and the other nonlinear, are introduced in
this chapter. The first equation is a linearized equation of the cone, and the second
equation is the general nonlinear equation of the cone. Even though the nonlinear
equation provides a conventional expression for the cone, it is almost impossible to
find globally optimized values of unknown constants with current nonlinear
optimization software, unless some close guess values for each constant are known.
Therefore, most of the roundness measurement instruments, including CMMs, use
linear equations to find the unknown variables of the equation for each of the different
types of three dimensional substitute elements such as a cylinder, a cone or a torus.
One of the well noted linearization techniques, limacon approximation, is used here for
linearizing the conventional nonlinear equation for a cone. A comparison between the
linearized equation using limacon approximation and the nonlinear form of the tilted

cone is presented in the following sections.

3.1. Linear Formulation for a Cone

D.G. Chetwynd (1985) introduced the method of limacon approximation for
linearizing the non-linear equation of a circle. The limacon approximation is applied to

the transformation of the nonlinear equation to a linear equation of a circle by
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Chetwynd (1985). In his article, it said that if the radial coordinate of a center of a
circle in the Cylindrical Coordinate System E is quite small (see figure 1), compared
with a radius of a circle R,, the measurement by a limacon circle is more accurate
than the measurement by the true circle which is expressed by a nonlinear equation.

This means that utilization of the limacon circle gives a smaller error than the true

circle, on the condition that the eccentricity ratio, & = 18 less than 0.01.
0

/’/ _\- -
o'//
- R, —
Center of a circle (i /b ) or (£,9) e e
i e e
| Rgaes S T B "

' \V System origin

Fig 1. The linearized equation for a circle with Limacon approximation
(Chetwynd,1985). where ( £, ¢ ) represents a center of a circle in the Polar

Coordinate System, and (a,, b,) in the Cartesian Coordinate System. p is a radius
from the system origin to the point of a circle, which is a substitute element.

12
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The limacon equation to approximate the true circle as given in Chetwynd

(1979, 1985) is:

p=ECos(6- @)+~ R — E*Sin* (60— ¢)
=FECos(6—-¢)+ Ry Where E << R, [3]
or =a,Cos@+b,Sinf+ R,

Based on equation [3], Shunmugam (1986) extended his theories relevant to
the two dimensional limacon circle to a three dimensional object, a cylinder. Equation
[3] is modified for the cylinder to be tilted in X and Y direction according to the
increase of Z coordinates ( Z;). Then, the constants a, and b, in equation [3]
become functions of Z, to tilt the center of each cylinder sections to the X and Y
direction according to the increase of Z,. His equation for the cylinder is given in

Shunmugam (1986, 1987) and is of the following form:

R =(Xo+10Z)Cos@,+(Yo+moZ;)Sin6,+ R,. [4]
where R, is a radial coordinate of a substitute cylinder of which the center axis
is tilted. R, is a radius of a cylinder. 6, and Z, are 8 and Z coordinates of a
substitute cylinder in the Cylindrical Coordinate System. X, and Y, are the initial X

and Y coordinates of the center of the circular section at the bottom of the cylinder.

13
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AX, _
0= ZZ_‘ (The amount of X, increase according to the increase of Z, ) and

AY,

= E (The amount of ¥, increase according to the increase of Z, ).

my

Modifying Shunmugam’s notation and drawing for a cylinder, a cone can be
expressed as in Figure 2. The drawing on the left, in Figure 2, expresses a cone which
consists of a vertex of o degrees, a tilted center axis and cone sections which are
represented as o, the middle line among three lines and circles. Points P,, where
i=123,---,n., are points measured by a standard CMM. The points can be
expressed with three coordinates: r,, 6,, and z,. Lines hy in Figure 2 represent lines

on the surface of the substitute cone connected from the vertex of the cone to the
bottom of the cone. These lines will be referred to as the hypotenuse of the cone
throughout this thesis. The drawing on the right, expresses each section of the cone,

and R, is the radial coordinate on the circumference of each circular section which is
calculated by the Least Squares Method or variations of the Minimum Zone Method
using the measured points P,. The radial coordinate of a substitute cone, R, is used
to calculate half of the radial deviation which is denoted as hTd in the Minimum Zone
Method. R, represents the radius from the center axis of a substitute element to
points on the surface of the substitute cone at Z; and 6; (R, = Ro+ SZ:). The r; are
radial coordinates of measured points obtained by a standard CMM. This means that

the conicity can be calculated from radial coordinates on the substitute element, R,

subtracted from r; .

14
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Figure 2. The graphic representation of the radial deviation e, on each cone section

The equations derived in this work are based on equation [4] appropriately
modified using analytic geometry. It is realized that if the vertex angle of the cone is
increased to 180 degrees, the cone becomes a cylinder. If the constant R, in
Shumugam's equation is allowed to increase according to the increase of Z, , the Z
coordinate of each section, equation [4] can be expressed to represent the shape of the

cone in terms of Z, and @, . Therefore, the radial coordinate of a substitute cone can

be expressed in terms of &,, Z,, and six constants.

15
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R, = (R0+S Z:) +(Xg+[02,)€()59, +(Yn +muz,)SlIn9,
=Ro+S Z .+ X,Cos6,+1,Z,Cos 6, +Y,Sin 6, +myZ,Sin6,

. AR : , _ _
where § = Az (the rate of change in R coordinates according to the increase

- ]

and decrease of Z coordinates).

The first and second terms in equation [5] control the radius of the cone, the
distance between the tilted cone axis and the points on the substitute cone for each 6,
and Z,. The rest of the terms of the equation control the movement of the center axis
according to the increase and decrease of Z,. S in the above equation is the slope of

the hypotenuse which depends on the angle of the cone vertex. The following Figures

3, 5 and 6 demonstrate the development of equation [4] and equation [5].

Step 1.
]
|z 1z
R —— R
\ ‘ ' = |
/ hypot
- ! | J'v enuse |
I'. | gl IIII |
e |
\ . R R
R &
Ri=Ro+ S Z, R =R,
cone cylinder

Figure 3. Representation of the first step of development for a cone in this
thesis and a cylinder of Shunmugam (1986).

16
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When the center axis of the cone coincides with the Z axis in the Cylindrical
" - ; . e :
Coordinate System, and is perpendicular to the R axis, § = > (o is the angle of the

vertex), and the cone is referred to as a right cone throughout this thesis.

The transition from a cone and a cylinder is obtained in
S=tan 6
when 6 =0 thena = 180°.
tan0’ =0
~.The term S Z, should be dropped at & = 0’ or a = 180°.

Therefore, the hypotenuse of cone becomes the hypotenuse of the cylinder.
Since the tapered hole (with the shape of a cone) in Figure 6 is used to

calculate the minimum zone in this thesis, the radius terms R, + S Z, should remain

positive. This fact will lead to equation [13], discussed later, in the development of a

nonlinear constraint for a cone.

Sy W HE —— | = —=— R
\ L Ri+8Z,=90

Figure 4. The scope of calculation to generate a cone hole.



Step 2.
2 'z
I IR P T R, hypotenuse | | R;

B d L .

\ ‘ I 0.! o i

i

o ko w |
\ | | __R - R
Be= R
R =Ry+SZ + X,CosB,+Y,Sinb, R,=Ro+ X,Cos8,+Y,Siné,
cone cylinder

Figure 5. Representation of the second step of development for a cone in this
thesis and a cylinder of Shunmugam (1986). The center axis is allowed to be moved
horizontally in the direction of the X and Y axes. This type of a cone is referred to as

a moved cone throughout this thesis.

Step 3.
} Z L Z
| A R i
IJ'II. o U : 1
flll / ¥ ~ 7 R‘ , sl R’
A /1
! AKX/ £ il U
:-'—“HL i e o R i ._,_-. ~J 0 R
RG..’E i | RC}' ey

R=R+SZ+ X6+, Z,(5G+YoS+mZSnf R =R+ Xo(as6+1Z, Cas 6 +YoSnG +m Z.Sn6

Figure 6. Representation of the last step for a cone in this thesis and a cylinder
of Shunmugam (1986). The center axis is allowed to be moved horizontally and tilted
in the X and Y directions. This type of a cone is called a tilted cone through this
thesis.
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The above proofs and procedures show that equation [4] and equation [5] are
identical for an o of 180”. Equation [4] becomes a subset of equation [5]. Based on
equation [5], the equations of the right cone and the moved cone are summarized here:
For a right cone, X, ¥, /, and my, all have values of zero. The equation for a right

cone with a center axis coinciding with Z axis in the Cartesian Coordinate System is

given as:

Ri=Ro+SZ, (6]
If the cone is assumed to be a right cone whose center axis is moved in
X and Y directions, /, and m, assume values of zero in equation [5]. The

equation of the moved cone is

Ri=Ry+S Z + X,Cos6,+Y,Sin6, [7]

Equations [5], [6] and [7] also represent radial coordinates of points on
sections of a cone rather than a three dimensional cone. In other words, the equations
with the same value of Z, and different values of 6, represent the points of the
circumference on the sections of a substitute cone. The equations with the same value
of @, and the increase of Z, describe the hypotenuse of each cone, the line from the
minimum Z, to the maximum Z, on the surfaces of cones. Using these equations, the
radial deviations between points measured by the CMM and points on each type of the

substitute cone can be calculated by equations [5], [6] and [7].
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Since a hypotenuse generates a cone as it rotates around the center axis of the
cone, the linear equation may explain the cone at the same ¢, more precisely than the
nonlinear equation of the cone. Therefore, the radial deviations with the linear
equation might be less than those with the nonlinear equation. Chetwynd (1979) and
Lin (1995) arrive at similar opinions while discussing limacon approximation for
circular objects. Chetwynd (1979) proved the above opinion through his experiments
with 100 circles. Lin (1995) provides a confirmation of this opinion with a three
dimensional substitute element, that of a cylinder. In Chapters 5 and 6, it will be

determined whether the above opinion is correct in the case of cones, or not.

3.2. Nonlinear Formulation for a Cone

In this section, the procedure of developing a nonlinear equation for a tilted

cone is discussed in detail. The procedure starts from an asymptotic cone and ends up

as a cone with tilted center axis.
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Figure 7. Asymptotic Cone

If a right cone of elliptical cross-section is assumed, with a center axis
coinciding with the Z axis, the surface of a cone can be expressed by the following

equation:

=0 (8]

xE

— +

a
The real quadric cone is defined in John (1947) as a surface symmetrical with

respect to each coordinate plane, axis and the origin. He mentioned that if
P.(x,,¥,,z) is any point on the surface, different from the origin O, then any point on
the line O P, is also on the surface, since the coordinates of such a point have the form
kx,, ky, and k z,, that satisfy the equation [8] of a cone. Since ‘a’ is not equal to

‘b’, equation [8],above, represents an asymmetric cone (Figure 7). However, the
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majority of engineering parts are symmetric cones with a=b. The equation for them

should be modified for a symmetric cone.

Since the equation for the cone is able to analyze the coaxility, the form
tolerance in a cone object and the intersection angle problem with the other object, it
should allow for the center axis to be tilted along X-Z and Y-Z planes and be moved in

X,Y and Z directions.

Step 1. If the cone is assumed to be a circular cone, a is equal to b in equation

[8] resulting in:

CZ
X2+Y2:(E Z [9]

Step 2. Since the cone to be estimated should be allowed to move along X, Y

and Z directions, the X, Y and Z may be replaced as:

X=X—-X;
Y = Y" Yo
L= =Ty
thus yielding,
CZ 2
(X -Xo) +(r-7o)" = [;](bzn) - [10]
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where X, Y,and Z, are initial movements of the cone in the X, Y and Z

directions.

Step 3. To express a tilted cone, the center axis should be allowed to tilt along
the X-Z and Y-Z planes. Five new constants are hence introduced in equation [9] and
the new X, Y and Z in equation [9] are expressed as:

X:X—(X()‘f'[oZ)
Y:Y—(Y0+mOZ)
Z:Z‘Zo

AX
where /, = E( The increase of X coordinate according to the increase of Z

coordinate), m, = E( The increase of Y coordinate according to the increase of Z

coordinate)

The variables in equation [9], X, Y and Z, can be replaced with the above

2
¢ ; —
linear equations and the constant term [—) can be replaced with A for simplicity.

b

Equation [9] will hence be expressed in the following revised form:
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(x-(tor b2 +(r-Corm)) =(5) (2-2

or
(¥ =L+ 52)) Pl 2 = B+ T )i nsssusins [11]
where

12
A:[gj and A=>0

The above term A always has a positive value.

Step 4. Since the deviations that we are looking for are the deviations in the
radial direction, the coordinate system must be changed from the Cartesian
Coordinates to the Cylindrical Coordinates to express the radial deviations easily. The
variables, X, Y and Z, in equation [11] are hence replaced as:

X =rcos@
Y=rsmé@
Z=7

Thus, equation [11] can be transformed into a new form:

r {cos 6 +sin’ 0} — 2r{ X,cos0+1,Z cos@+Y,sinf+m,Z sinb}

2 5 i 2 . -[12]
X242 XohoZ + B2+ Yo+ mZ +2YomZ —AZ' - AZ:+24Z,Z } =0

The roots of the above formulation could be found as:

F= {Xocoso9+1020039+ Yosin@+m, Z sin(?}

I {X00059+1020059+ Yosin9+mOZsin9}h
A A XE42XohoZ +BZP+Yi+mZP +2YomeZ — AZ' - AZ3+2AZ,Z }
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When comparing the above equation to equation [5], the square root is
equivalent to R,+ S Z, in equation [5] which controls radius of the tilted cone. Since
the radius in the Cylindrical Coordinate System must be positive and added to the
center axis to make the cone shape, the second term, the value of the square root,
should be restricted to prevent getting a negative radius from the tilted axis. Due to
this restriction, the equation for the radial coordinates in the Cylindrical Coordinate

System can be expressed as :

R, = {Xcos0+1,Z cosO+Y  sinf+m,Z sinb)}

+D,

where, D = {X ,c0s0+1,Z cos@+Y ,sinO+m,Z sin 6}’ s 13]

—IXE+ 2 X Z AL+ e e 2P 42V omZ —AZ AL 242, 7 )
and D, >0

Equation [13] consists of two terms: a center axis term and a radius term. The
first term with the parenthesis controls the movement of the center axis according to
the increase of the Z and @ coordinates. The second term with the square root
decides the radius of the cone according to the increase of Z and @ coordinates.
Adding the two terms allows one to express the radial coordinate of a cone in the

Cylindrical Coordinate System in terms of an increase in6 and Z .

The above equation has two initial constraints, that must be satisfied.

e Radial coordinate ( R, ) can not be negative in the Cylindrical Coordinate System.
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® The values of /), can not be negative. Otherwise, the radius will have imaginary

parts.

These two constraints must be satisfied to obtain a cone.

Step 5. Since the variables, Z and @, are the same variables as Z, and 6, in

equation [5], these will be replaced for consistency of notation

R = {X,0080,+1,Z cosf,+Y  sin@,+m,Z sinf }

+D,

where, D, = {X ,cos,+1,Z,cosf,+Y ,sin@,+m,Z, sin@ }° ---[14]
~{Xo+2XoloZi+ 3Z}+ Yo+ my 22 +2Yomo Zi— AZP — AZ3+2A 20 Z))

and D; >0

Using these equations, two different types of equations for a tilted cone are

presented in the above sections. Linear and nonlinear optimization techniques for each

equation shown is presented in Chapters 5 and 6.



CHAPTER 4

TOLERANCE PROBLEMS IN CONES

General tolerance problems existing in cone inspection are defined by Henzold

(1996). Typical problems dealt with are classified into four categories:

1. The form of the cone (so-called conicity);

2. Orientation and radial location of the cone relative to a datum,

3. Axial location of the cone relative to a datum (so-called the coaxiality
problem); and

4. Distances of the endfaces of the truncated cone relative to a datum.

To understand the above problems, three drawings will be introduced in this
section which are adapted from Henzold (1996). Figure 8 represents that the vertex
angle of a cone can be specified by the theoretical exact angular dimension, and the
form tolerance can be specified by the conicity t. Where Figure 8a is the conventionally
dimensioned drawing with mechanical engineering notations, and Figure 8b presents a

graphical interpretation of Figure 8a.
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Figure 8. Tolerancing specification in the convention of drawing by theoretical exact
cone diameter and theoretical exact cone angle (Henzold,1996).

The form tolerance conicity can be controlled by 't' shown in Figure 9, and the
axial location of the cone can be specified by the theoretical exact cone diameter and

theoretical exact distance of the cone diameter from a datum in Figure 9.

The geometrical expanation of (g,

(a) (b)

Figure 9. The restriction of the radial location of the cone (Henzolod, 1996).. The
axial deviation is limited by the tolerance of axial cone location 7', .
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The radial location of the cone relative to a datum axis may be specified by the
coaxiality tolerance of the cone axis, relative to the datum axis and the form tolerance
of the cone related to a datum axis in Figure 10.

The geometrical explanation of (a)

(a) (b)

Figure 10. The restriction of the cone by form tolerance t, coaxility tolerance A, and
theoretical exact cone angle (Henzold, 1996).
Verification of the analytical model in this thesis are done using the Browne &
Sharpe (Model: PFx 454 System). Since this machine uses a tilted cone aligned with
the Z axis to permit analysis of all kinds of conical objects, the analysis of the
following will be based on a tilted cone. To analyze a tilted cone, the conventional

equations for 7, @max, Xmin> conicity, and coaxiality are modified from the equations

provided by Henzold (1996) for a right cone. @ ma. is the maximum vertex angle of

29



COnes. @iy 1S the minimum vertex angle of cones. 7, is the summation of a minimum
deviation and a maximum deviation. In other words, it represents the distance in R
direction or X direction from the two extreme points from the substitute cone.
Furthermore, vector analysis is used here instead of arithmetic calculations as used in
the Henzold (1996). The calculations used in this chapter assume that the center axis
of the tilted cone is well-aligned with the Z axis, and the datum is in accordance with
the center axis of the cone while calculating @ ., and a..;,, angle of the substitute
cone, Td, and conicity. These assumptions are used throughout Chapters 3, 4, 5, 6,
and 7. In Chapter 7, a revised procedure proposes to calculate the cone with the

center axis distant from the Z axis.

4.1. Form Tolerance in Cones

The form tolerance is specified by the conicity t, in the above drawings. If the
cone is a right cone, it is easy to find the conicity for the cone. However, if the cone is
assumed to be a tilted cone, analysis becomes more complex, since the angle in the
equation required to find the conicity is not related to a single angle, but the
summation of two angles; half of the cone vertex angle and the angle of tilt. To find

the summation of the two angles, consider Figure 11:
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Figure 11.The analysis of conicity using vector calculations
This triangle represents half of the cone section on the X and Z plane.

t=Td *cos (& +6 ) [15]
where t is the conicity, the normal distance of Td
@ 'is the half of the vertex angle of cones,
the vertex angle of cones (a )is2 *6 . and
6 "=6-90°
@ is the angle between the center axis and the X axis

V.,V.and , are vectors of radius, center axis and hypotenuse.
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VxeVe

cosf = HETI B
x| Ve

Where J/, is a vector from point C to point A, J7, is a vector from

point C to point B

Vneld

S8 ===
}Vn| 1Vd ‘

[17]

where 7, is a vector from point B to point A. }/, is a vector from

point B to point C.

Even though the estimated cone is not a cone with a right triangle section in X-
Z plane, the above equations can be used to calculate the angle of vertex in the case of

the tilted cone.

4.2. The Equation to Measure the Coaxiality of Cones.

To analyze the coaxiality problem in the cone, it is assumed that the datum is
the Z axis. The equation to measure the coaxiality of the cone is a simple equation
that uses the equation of a circle. If any points on the center axis of the cone are

within the specified boundary, the cone is within the specified coaxiality 4, , based on

the above assumption.



The equation to decide whether the center is out of the coaxiality zone of the
cone or not, can be expressed as a circle with a radius and a center (system origin)
giving:

2

h
Xi+Yi= (k) = [15]

where X . is the X coordinate of any point on the center axis of the tilted cone
in the Cartesian Coordinate System, Y, is the Y coordinate of any point on the center
axis of the tilted cone in the Cartesian Coordinate System, and 4, is the coaxiality

tolerance of the cone.

4.3. The Equations for Measuring Q. and o mi

The @y and @ma are useful information while determining whether the
vertex of the measured cone is within the specified angle tolerance. The equation for
these angles is introduced in the next section to find the maximum and minimum angles
of the tilted cone. Since each equation to measure the @ OF Amin CONSIStS of the
vectors J7.,.and 7, of V' and V4, Ve and 7, should be found. V.. isa
vector from point B to point Ca , and V o 18 @ vector from point B to point C -
To find the X coordinate of C e , the maximum deviation should be added to point A,
in Figure 12. Subtracting the absolute value of the minimum deviation from point A in

Figure 12 leads to the X coordinate of C i -
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The other point B in 7, and V... should be found to obtain these vectors

The vertex of point B is found using the property that when the radius of the cone is
zero, the point is the position of the vertex. When the linear equation is used to
establish a substitute cone, the Z value of the vertex can be found by the following

equation:

Ro+S8Z,=0 [19]

If a nonlinear equation is used to find the coordinates of the vertex

(X,,Y,,Z,), the following equations can be derived from equation [11]. The
equations are derived with Z, = Z, to find Radius=0. These equations are expressed

in terms of five unknown constants providing:

Xv:X0+loZU
Yv = Y0+mo Zo [20]
ZVZZ(}

where, X,, Y, and Z, are X, Y and Z coordinates of the vertex.

After finding the coordinates of the vertex of the cone, the a,.. and a, can

be found by equation [21]:
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Figure 12. The analysis of @y and @mi
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7 el el
. V.. eVd
COSin = 7= = [21]
min
P mallVl

= * :
a ,x_z Q max

&y =2" A min
where Td is the deviation from the innermost cone to the outermost cone, the

innermost cone and the outermost cone have the same slope as the hypotenuse of the

substitute cone. J7, is a vector from point B to point C. J7,,, is a vector from point

B to point Cpax - J .. is a vector from point B to point Cp . Qm 18 the angle
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which consists of the vertex of a substitute cone, the center axis of a substitute cone
and a point on the bottom of the outermost cone. «,,, is the angle which consists of
the vertex of a substitute cone, the center axis of a substitute cone and a point on the
bottom surface of the innermost cone. a,,, is the maximum vertex angle of cones.

Qmin 1S the minimum vertex angle of cones.

Now, the equations for & ,.., &, conicity and coaxiality for a cone are
prepared to analyze a tilted cone similar to that analyzed by the CMM. Using the
above equations, software is developed to calculate @ .., @mn, conicity and

coaxiality. The algorithm and procedure for the calculations will be introduced with

flowcharts in the next section.
4.4. Flow Charts for Procedures of Analysis

The calculations of the above equations for the analysis of a tilted cone are
done by developed programs and three commercial software programs: SAS, LINDO

and GINO. An overview is shown through three self-explanatory flow charts

illustrated in Figures 13, 14, and 15.
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Figure 13. The flow chart using the procedure for the linear equation of a cone
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Figure 14. The flow chart using the procedure for the nonlinear equation of a cone
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CHAPTER 5.
THE LEAST SQUARES METHOD AND MINIMUM ZONE METHOD FOR

CONES USING LINEAR EQUATIONS

S.1. The Least Squares Method with Linear Equations for Cones

The determination of constants in equation [5] in Chapter 3 depends on the
sum of square errors from the substitute cone to the measured points being minimized.
The Least Squares Method employed is frequently used in metrology and other
disciplines. This method finds the unknown constants for the best fit cone. To decide
the shape of the cone that minimizes the sum of square errors, the sum of square errors

for the tilted cone are represented as:

e =2(ri—(Ro+SZi+ XoCos6, + 1 Z, CosO, +YosinO +moZ, Sin@))* --------- [22]

where r, is the radial coordinates of the measured points in the Cylindrical

Coordinate System.

To minimize equation [22], above, the partial differential coefficients with

respect to each unknown constant are given as:
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oe;

oR :Zi S+ Ro+Cos0; Xo+8in@, Yo+ Z I, Cosb, + Z, mo Sin@, = r; —==-mmmmmmmmmm [23]
?Ro

696; o al

il S+Z Ry+Z,Cos6; Xo+ Z,; Sin6, Yo+ Z I, Cos 6,

+Z; m Sin6,=r, Z,

é?ef + ~ ) 2 )
é,XO:Zr Cos6, S + Cos6, R,+Cos’ 60, Xo+Cos0,Sin6, Yo+ Z, Cos’ 0,1y 25]

+ Z,Cos@, Sin@, mo=r; Cosé,

C‘? 1 2 5 2
5‘1’0 .72 Cos6, S +Z,Cos@, R,+Z, Cos* 0, X+ Z, Cos6, Sin6, Y, (26]

+ 72 Cos” 6, 1o+ Z> Cos 6, Sin@,mo=r; Z; Cosé,

Oe,
5;0 -7, Sin6, S + Sin@, Ry+ Cos, Sin6, X, + Sin*6, ¥, )

+Z, Cos®, Sin8, 1,+ Z, Sin* 6, m =y, Sin6,

éei:Z? Sin@, S+ Z,8in@, Ro+ Z;Cos 6, Sin, X,+ Z, Sin® g, Y,
amy [28]

+7¢ Cos 6, Sin6,1,+ Z; Sin* 6, my=r, Z, Sin6,

The above partial differential coefficients may be expressed in a matrix form

such as:
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where
A=
[ 2z, El
i i
2z 2z
i i
;Z Z;Cos@;, ZCosé,
i
2 Z}Cos6;, X Z,Cosé,
i i
? Z.Siné, 2.Sin @,
1
2Z:Sing, X Z Siné,
i i
F g
Ro
B o
Yo
lo

A * B=C
IZ Cos 6, 2. Sin @,
i
;Z‘ Z,Cos 6, 2 Z,Siné,
i
2 Cos’ 6, 2.Cos @, Sin 6,
i i
%: Z Cos’ g, 2 7Z,Cos 6, Siné,
I
? Cos 6, Sin 6, 2 Sin* 6,
i
IZ_Z',.Cosé?l.ém 0, 5 7 Sin*g,
i
» Sr -
1
xr Z,
i
2.r; Cosé,
C=| <
2riZ, Cosé,
i
2r; Sin6,
i

2r Z. Siné;

W

2 Z,Cosé,

i Z?Cos @,

é Z,Cos* 8,

> Z*Cos*8,
IZ Z‘ .Cos 8, Sin 6,

22 Cos @, Sin 6,
i

2 2Z,85iné,

é Z: Sin 6, _
IZ ZI, Cos8,5iné,
>Z:Cos#,Siné,
I ; Z,Sin* 6,

> Z:Sin" 6,
i

[29]

For a subset of equation [22], the sum of square errors for the moved cone

might be expressed as:

2(ri—(Ro+S Zi+ X0 Cos 6, +7, Sin@,))’

[30]

Corresponding partial derivatives with respect to each unknown constants are

given by:
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e

(QR'*rZ, S+ Ry+Cos@, Xo+Sing,Y,=r,--- e [31]
cei _, 5 .
S5 Z S+Z Ro+Z,CosO; Xo+2Z,85in6,Yo=r Z, -[32]
O 7. Cos, S +Cos6, Ry+Cos*6, X
ax. 2 0s 6, 050, Ry+Cos’ 6, X, (33]
+Cos @, Sin@, Yo=r,Cosé,
oe; _ ) .
- :Z; Sin@;, S+ Sin6, Ro+ Cos6, Sin0, Xo+ Sin*6,Y,=r, Sinb, [34]
0
These equations can be expressed in a matrix form as:
2Z, 21 2. Cos@, 2. Siné, F g
7 i I 1
2z 2z 2. Z,Cos®, >.Z,Sin6,
i i / I *
>.Z,Cos@, Y.CosO,  Y.Cos’6, Y Cos8,Sin6,
/ i i 7
2. 7Z,8in@, 2.85in@, > Cos@, Sinb, 2Sin" 6, L
L7 i i I J
T
[
22,
1
2. rCos@, 3]
/
2.rSin6,
. 1 o
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If the cone to be estimated is assumed to be a right cone, equation [7] will
reduce to that of a right cone (equation [6]). The only difference between equation [6]
and the equation of a line is that the right cone lies on the X-Z plane instead of X-Y
plane for the equation of aline. Since the Least Squares Method for a line is well

known, the corresponding matrix is not illustrated in this work.

S.2. Minimum Zone Methods with Linear Equations of Cones

The minimum zone is calculated by a linear optimization method. To find
optimal unknown constants of the linear equation of the cone, the optimization
program LINDO is used, and the required outputs for conicity, & .., and &, are
found by developed programs using the constants derived using LINDO. Basically,
the LINDO program uses the Simplex Method which is well known for optimization.
The basic theory and the algorithm of the Simplex Method are described in Bazaraa

(1990) and Ravindran (1987).

5.2.1. Formulation of the Minimum Zone Method for a Tilted Cone

Typically, the tolerance zone of a cone is the summation of the maximum

deviation and the minimum deviation from a substitute cone. However, all articles in

the literature review indicate that the Least Squares Method can not give a minimum
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zone. Therefore, in this section, a way to guarantee minimum zone is introduced for

cones.

The technique using half of the form tolerance was introduced by Chetwynd
(1985) to get roundness of a circle. Since a cone has circular sections, a similar
concept may be applied to a cone.

Objective function for this optimization is written as:

minimize hTd [36]
subject to

constraint 1 is expressed as:

le| < hTd where, hTd is the half of Td
or ‘r;' —= (Ro + S Zr. + X{)COSQ,- + ZﬂZ;i COSH, + YoSin(?,- + g Z, Sin 9,)' < hld --------- [37]

where Td is the radial distance between the outermost cone and the innermost

1d
cone, and hld = o

or the above constraint may be split into two constraints as:

hTd +(R,+S Z + X,Cos0,+1,Z,Cos6,+Y,Sin6,+m, Z,Sin6,) > r,
—hTd +(R,+S Z,+ X,Cos@,+1,Z,Cos@,+Y,Sin0,+m,Z.Sinf,) < r,
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The above constraints result in the error between the measured data and the

substitute cone being less than the absolute value of the radial distance which is half of

Td.

Constraint 2 is expressed as:

h1d >0 [39]

Since half of Td is the distance between the substitute cone and the measured

points, it can not have a negative value.

Constraint 3 1s written as:

R, =0 [40]
The initial radius might be restricted to be a positive value in the case of a
cone-shaped hole inspected in this thesis. Practically, it is a characteristic of the radial
coordinate is greater than zero, when 7, =0. Since the initial radius is the distance
from the tilted cone axis to points on the surface of the cone at the minimum Z,, the
above inequality should be added into the constraints. Thus,
In the case of a right cone:
Ri=Ro+SZ,
at Z,=0
thus, R, = R,
where R, are radial coordinates in the Cylindrical Coordinate System. By
definition, R, > 0. Therefore; R, >0
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In the case of a tilted cone:
Ri=Ro+S8SZ +(Xo+10Z)CosO+(Yo+myZ)Sin0
at Z,=0
thus, R, = Ry+ X,Cos@+Y,Sin0
Since we assume that the center axis is well aligned with the Z axis,
|Ro|>> | X0 Cos6+Y,Sin6
Therefore; if R, is negative, R, must be negative. This can not happen in the

Cylindrical Coordinate System

Constraint 4 is shown as:

R+ 8 Zpnb [41]

The radius according to the increase of Z, value must be restricted to positive
values. The above equation implies that the radius from the tilted cone axis

throughout the range of Z, remains positive.
Since the four above constraints are repeated for each of the seven measured

points, the Minimum Zone Method consists of one objective function and twenty three

constraints, fourteen from constraint 1, one from constraint 2, one from constraint 3
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and seven from constraint 4. These constraints are derived from the geometrical

meaning of the cone itself.

Since an ideal cone can be tilted in negative directions, the constants to control
the movement of the cone axis and the changing rate of the radius according to the
increase of Z, should be allowed to have negative values in LINDO, which initially
assumes for all variables to be positive. To allow the constants to have negative

values, the constants can be replaced with the following linear equation:

S:S1—Sz
Xo: Xl—.Xz
zll—lz
[42]
yo:y1_

My = nmy—
Ro,S1 ,Sz._,X1, Xg,l],lz,yl,yz,ml,mg,th20

Due to the above characteristics, equations [37], [38] and [41] must be revised

and allowed to have a negative value for the conicity.

'"(R0+Sl Z S> Z; +X1C059 X2C039+I;ZC059
1,7, Cos@,+Y, Sin0,~Y, Sinb; i+m, 7, Sin@,—m, Z, SmQ)

or

48



hTd +(Ro+S$,Z2,-8,Z .+ X,Cos6,— X, Cos6,+1, Z, Cos6,
~1, Z Cos@,+Y,Sin6,—Y, Sin@,+m, Z, Sinb,~m, Z, Sin 8)=r

—————————————————— [44]
—hTd +(Ro+S8,Z,-S8,Z,+ X,Cos6,— X, Cos6,+1, Z, Cos6,
~1, Z,CosO,+Y,8in6,—Y, Sinb,+m Z, Sin6,—m, Z, Sinb,) <r,
Ri+8$2,-8: 2,20 [45]

5.2.2. The Minimum Zone Method for a Moved Cone

The approach used in the previous section and the objective function are
similar to the equations in this section. The difference is that several variables such as
I, and m, are eliminated from the constraints due to the different expressions of R, of
the cone. Dropping these variables causes the center axis to be parallel to the Z axis.

The modified constraints and objective function are given as:

minimize hTd

subject to

Constraint 1 is expressed as:

ri—(Ro+S,Z,-8,Z,+ X, Cos6,— X Cos,
+Y,8in6,-Y, Sin6,)

< hTd ———-[46]
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or

hld +(Ro+S8,Z,-8,Z + X,Cos6,- X, Cosé,
+Y,8in@,-Y, SinB) > r,

47
—hTd +(Ry+S,Z,-S8,Z + X, Cos6,— X, Cos®, []
+Y,8in6,-Y, Sin6) <r,

Constraint 2 is shown as
hTd >0 [48]

Constraint 3 is written as:

R,20 [49]

Constraint 4 is expressed as:

Ri+8,Z,~ 8, Z, 20 [50]

The above constraints have the same meanings as before.

5.3. Results of the Least Squares Method and the Minimum Zone Method using

Linear Equations for Cones.

To find the values of the unknown constants in equations [5], [6] and [7] for
each type of cone, LINDO, a noted optimization software developed by Schrage

(1991), was used with constraint [36] through [50], derived in the previous section.
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The calculations of Td, conicity, coaxiality, &m. and a., are done by equation [15]

through equation [21] in Chapter 4.

In the analysis of various cones with the Least Squares Method, the unknown
constants in equations [5] and [7] may be found by solving matrices [29] and [35].
After finding the unknown constants in equation [5] and equation [7] with the Least
Squares Method, the same procedure explained in Chapter 4 is applied to find the

values of Td, conicCity, &ms aNd Qpmin -

The results for 'fd, CONICItY, Qms, aNd @mn are obtained using Matlab, a
mathematical calculation program, and are organized in Table 1 and Table 2. Table 1
illustrates the errors between a substitute cone and each measured point and the sum
of the square errors. Also, the Td, conicity, angle of a substitute cone, maximum
angle and minimum angle generated by the Least Squares Method and Minimum Zone

Method using each type of cone are presented in Table 3.

To conduct a preliminary test of the equations [5], [6] and [7], the Coordinate
Measuring Machine (Browne& Sharpe, PFx 454 System) was used to measure the
coordinates of measured points and compute conicity for comparison with the angle of
the vertex and conicity developed in this thesis. The Minimum Zone Method using the

Simplex Method will be referred to as the Simplex Method, for convenience,

hereinafter.
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Sample analysis is presented using data collected from a preliminary test (data
sample available in Appendix A). Table 1. shows the different characteristics between
the Least Squares Method and the Simplex Method for a sample set of data. The
Least Squares Method minimizes the sum of square errors. Thus, the deviations of all
measured points from the substitute cone affects the calculations in finding unknown
constants in equations [5], [6] and [7]. However, the Minimum Zone Method seeks to

minimize the sum of the maximum and the minimum deviations as low as possible.

Table 1. The Comparison of Deviations from the Measured Points

unit; inch
RIGHT CONE MQVED CONE
Method LSQ SIMPLEX 1.SQ

Deviations -0.00011146 0.00043896 -0.00049225
0.00016873 0.00071916 0.00050745
0.0003421 0.00089253 0.00070552
0.00013735 0.00040305 -0.00021079

-0.00133943 -0.00107404 -0.0010294
0.00121713 0.00107389 0.00053282
-0.00041443 -0.00107434 -0.00001336

Td 0.00255656 0.00214823 0.00173492
SES 0.000003624 0.000005130 0.000002386

MOVED CONE TILTED CONE

Method SIMPLEX LSQ SIMPLEX
Deviations -0.00071211 0.00031013 0.00036702
0.00071281 0.00027351 0.00036648

0.00071243 0.00010737 0.00036684

-0.00031058 -0.00054485 -0.00036761
-0.00071150 -0.00045454 -0.00036818

0.00071259 0.00017138 0.00036650

0.00050196 0.00013699 0.00036656

Td 0.00142492 0.00085498 0.00073520
SES 0.000002885 0.0000007341 0.0000009430

where SES is Sum of Error Squares.
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Toru Kanada (1995) suggests that the extreme points (maximum and minimum
deviations) measured by the Least Squares Method are the same extreme points
measured by the Minimum Zone Method. Based on our initial experiments, if may

state that for the given data, this trend was different in our analysis.

The comparison of deviations for the tilted cone provides a good example for
the different characteristics between the Least Squares Method and the Simplex
Method. Even though the Least Squares Method shows a lesser value for summation
of square deviations, the Simplex Method shows a smaller Td than the Least Squares

Method. All the types of cones illustrated the same trend as the tilted cone.

Table 2 illustrates a comparison of the conicity and the angle of vertex
calculated by the software offered by the Browne & Sharpe (Tutor) and the conicity,
angle of Vertex, ms, and ams Obtained by the program developed in this thesis.

Since the CMM is not able to provide @ma, and &mn, these are not listed in the table.

Table 2. The Comparison of the Least Squares Method and the Simplex Method

Td and conicity are measured in inches, angles are measured in degrees

Td conicity angle of a | max. angle | min. angle
substitute
cone
Tilted cone | CMM . 0.0009 20:134753 | * .
Tilted cone | L.S.Q 0.00085498 | 0.00084222 | 20.143489 | 20.160715 | 20.113224
Tilted cone | Simplex | 0.00073520 | 0.00072422 | 20.098651 | 20.119011 | 20.078225
Moved cone | L.S.Q 0.00173492 | 0.00170862 | 19.979709 | 20.018638 | 19.922903
Moved cone | Simplex | 0.00142492 | 0.00140346 19.909636 | 19.948886 | 19.87042
Right cone L.5.0 0.00255656 | 0.0025178 19.978837 | 20.04601 19.904899
Right cone Simplex | 0.00214823 | 0.00214823 20.153334 | 20.212987 | 20.093645
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Td and conicity (in.)
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Figure 16. The comparison of Td and conicity calculated by each method.

The most important observation is that the Simplex Method always gives a

smaller Td and a smaller conicity than the Least Squares Method. In the case of a
tilted cone while using my developed program, the conicity and Td computed using
the Simplex Method is approximately 14% better than that obtained with the Least
Squares Method. In the case of a moved cone, the conicity and Td computed using
the Simplex Method is approximately 17.8% better than those obtained with the Least
Squares Method. If the Td and conicity of the tilted cone are compared with the Td
and conicity of the moved cone, those of the tilted cone have smaller values than those

of the moved cone. This may be explained through a consideration of the tilted cone.

54




. 4

'

Since the center axis of a tilted cone can be tilted in X and Y direction, the equation of

a tilted cone can be constructed with smaller deviations from the measured points.

Since the type of the cone used by the Coordinate Measuring Machine

(Browne & Sharpe, Model PFx 454 System) is a tilted cone, using the Least Squares

Method, the Least Squares Method in the developed program using a tilted cone,

should show a close agreement with the CMM’s computed results. However, it was

observed that the conicity calculated by the program offered by the CMM is closer to

the Td value calculated by the developed program written in Matlab program

language. This means that the definition of conicity, so identified by the CMM, may

be different than the definition of conicity developed in this thesis, and may be closer

to the definition of Td developed in this thesis.
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Figure 17. The comparison of vertex angle , @ m , aNd & in -
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Another interesting observation from the plot provided in Figure 17 1s in the
comparison of the difference between the maximum angle and the angle of a substitute
element, and the difference between the angle of a substitute element and the minimum
angle. When the Least Squares Method is applied to find an optimized substitute
cone, the above two differences are not the same. In other words, the substitute cone
generated by the Least Squares Method does not lie in the middle of the outermost
and the innermost cone. The opinion that the Least Squares Method does not find a
substitute element to guarantee a minimum tolerance zone is proved again by the
above conclusion. On the other hand, the vertex angle of the cone analyzed by the
Simplex Method lies in the middle of @me and @min. This means that the substitute
cone lies in the middle of the two cones so that the minimum tolerance zone can be

constructed.

From Figure 17, a trend is observed in the analysis of angles. The angle of a
moved cone might have a tendency to be smaller than the vertex angle of the tilted
cone. This trend is caused by the constant S in equations [5] and [7]. If the value of S
in the equation is a larger value, it has a wider vertex angle. Even though the vertex
angle in a tilted cone is related to two vectors, a vector of the tilted center axis and a
vector on the surface of the cone, the angle of the tilted center axis is quite small as
compared to the angle between the vector on the surface and the Z axis. Thus, we
may say that if a cone has a wider vertex angle, the value of constant S has a larger

value in this experiment. Another interesting observation is that vertex angle
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generated by the CMM is a smaller angle than that generated by the Least Squares

Method with the developed program.

2025
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2015

2m

height (in.)
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1.99 t +
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Figure 18. The comparison of height in the Z direction.

Figure 18 represents the height in the Z direction generated by the different
types of cones, using the different methods. Comparing Figures 17 and 18, an
interesting trend may be noted. With a decrease in the vertex angle of the cone, an
apparent increase in the height of the cone is noted. The above observation seems to
be quite reasonable in the case of a three dimensional cone. If the initial radius is
unchanged, the angle is a factor that controls the height of the cone. The following

logic is used to find the height in the Z direction for each cone.
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height = Z, + |Max Z, - MinZ,

Since |Max Z, — Min Z,| is constant, Z, is the only factor that controls height.
Where, Z, 1s Z, at Radius = 0. Radius= Ry+ S Z..

Ro

Thus, Z; =
LS'

, S=tan @

Since the distance from Min Z, to Max Z, of the cone in the Z direction is a
constant, the only variables in the above equation are R, and S. If R, is fixed, the

only remaining variable is S = tan@ . Thus, the increase of the vertex angle causes the

decrease of the height in the Z direction.

In this Chapter, the objective function and constraints for the Minimum Zone
Method and the Matrix for the Least Squares Method are introduced to find the values
of unknown constants in equation [5]. Using these constraints and matrix, Td,
CONICItY, (Imax, and ami, are found by each method. In the next Chapter, Td, conicity

A max » ANd @i Will be found by a nonlinear equation for a tilted cone.
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CHAPTER 6

NONLINEAR OPTIMIZATION OF CONES

Getting a global optimization by the nonlinear optimization technique is almost
impossible in that the nonlinear equation might have several local optimal points.
However, if a close initial value to the globally optimized point is known, it is possible
for the nonlinear optimization technique to find a local optimization point close to the
global optimal. In other words, the nonlinear optimization technique can lead to a

wrong answer without a good initial guess of the unknown constants of the equation.

Four of the six unknown constants of equation [5] may be used from the
previous chapter’s linear optimization results. These could serve as the initial guess to

obtain the optimal point. To guess the two remaining unknown constants ( Z, and A),

guessing equations have been developed as:

for Roe+S8SZ=0
ZU:Z

[51]

Equation [51] means that the guess value for Z, is determined by Radius = 0.
The Z, determines the values of Z as the hypotenuse of the cone meets the center
axis of a cone. Using X,, Ys, Iy, and m, from the previous chapter’s linear

optimization results, Z, from equation [51], and equation [11], A may be found as:
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e ()('—(X0~t—[,)Z))2 +(Y—(Y0+m02))2
- (z-z,)
where ---[52]

al
d=|—| and A=0

c

The values of X, Y and Z are the Cartesian points on the optimal cone and are
obtained using the programs in Appendix B-1 named as ‘Revise.m’ and ‘Lpconel.m’.
These programs generate the X, Y and Z coordinates of points on the cone optimized
by the Linear Simplex Method and using the Linear Least Squares Method. The
calculation is based on the assumption that the X, Y and Z values of the points on the
surface of a cone generated by the nonlinear equation of the cone might have a
location similar to the points on the surface of a cone calculated by the linear equation
of the cone. The above assumption is based on Chetwynd’s experiments (1979) on
circles. Chetwynd states that the radial variation between the limacon and the circle is
at most a fraction of a percent of the total signal caused by eccentricity. Even though
the object is not a circle but a cone which is a three dimensional object, the radial
variations between a linear equation using limacon approximation and a nonlinear
equation for the cone will be close to one percent. Based on the above idea, the
unknown constants in the nonlinear equation may be set close to the unknown
constants in the linear equation. Coordinates of two points on the cone with two

different Z coordinates generated by the linear equation are used as X, Y and Z values

of equation [52].
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6.1. The Least Squares Method for the Nonlinear Representation of the Cone

To solve the nonlinear least square problem for the cone, a procedure called
"NLIN" in the SAS software package is used. In the first step, the guessed values of
each unknown constant in the nonlinear equation and the partial differential
coefficients with respect to them should be provided. Using this information, a local
optimal point is found by five iterative methods given in SAS. To find the minimum
sum of square errors, the following five iterative methods are given in the SAS
program:

® the Steepest-Descent or Gradient Method

the Newton Method

the Modified Gauss-Newton Method

e the Marquardt Method

e the Multivariate Secant of False Position Method (also called the DUD method)

These algorithms are explained in SAS (1990), Rao (1996) and Reklaitis (1985).

Four of the methods (except the Newton method) are used to find optimal
values of the six unknown constants in the nonlinear equation of the cone. Each
iterative method requires at least three kinds of information: the names and starting
values of the parameters, the model of nonlinear equation to be optimized, and the

partial derivatives of the function with respect to each dependent variable. Since our
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model require minimization of hTd in the radial direction of the Cylindrical Coordinate
system, the model to be estimated in the cone is the cone’s radial coordinates, of
which the dependent variables are X,,Y,, m,, /,, Z,, and A. The radial coordinates

of the surface of a cone are expressed in the following form:

R = {X,c080,+1,Z,cos0,+Y ;sin,+m,Z sin0} +.,/D,
where D = {X ,c0s0,+1,Z ,cos0,+Y sinf,+m,Z sinf}° = cceeeeeee- [53]
X 2 X0l ZA B2+ mE 2P+ Yo+ 2Y oy Zi— AZ? - AZ2+2A2Z,Z;)

The partial differential coefficients with respect to each unknown constants are

needed to find the optimal point, and are given as:

{X0C05295+1(]Z,C0529,'+Y0COS 9,' Sin 9,'
éR,' B +ng,-COS 9;' Sin 9,'_ Xo"‘]ozr'}

4 X, JD;

+ Cos@ [54]

(Yo Sin® 6, +myZ,Sin’ 6, + X,Cos 6, Sin 6,
O R; _ +1,Z:Cos 6, Sin 6;—Yo—my Z;} +Sin 8 (551

Y JD

{1022 Cos® 0,+ Xo Z; Cos’ 6, + Y, Z;Cos @, Sin 6,

GR, +miZ}Cos 6, Sin 6~ XoZi 1o Zh

81, JD:
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{moZ; Sin*6,+Y,Z,Sin* 6,+ XoZ;Cos @, Sin 6,

ﬁR} B +[:1ZI2(.TOS 9, Sin 9; = Y(}Z, —ngf‘} G
Ao = m +Zi* W) D rrimememern [57]

R {Zi+Z5-2Z,2} [58]

A 2b

IR {Z,A-AZ)

0Z, JD,

[59]

where D= {X ;cos0+1,Z cosO+Y ,sinO+m,Z sin 6}’
—AX3 42Xl Z+ B2 +m3 2+ Y5+ 2YomoZ — AZ — AZ3+2A 20 Z}

2
A= (3 thus, A> 0

Since the constant A in the nonlinear equation for a cone should be greater
than zero, the SAS program offers a method to bound A’s range by setting it to be
greater or equal to zero. The algorithms of SAS provides flexibility to the user
through the proposition of a range for each unknown constant to change the initial

guess value. However, this increases the computational time.

After obtaining the values of the unknown constants, the program appended in

Appendix B-2 is attached to calculate Td, angle of the substitute cone , @ .., Qm,and
conicity.
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6.2. The Objective and constraints for the Nonlinear Minimum Zone Method

The mathematical expression of the nonlinear minimum zone for nonlinear cone is

developed. The available software and algorithms suitable to solve the above problem

are then found.

6.2.1. Formulation of the Nonlinear Minimum Zone Problem

The basic concept is the same as used in the linear minimum zone
approximation. The only difference is that the radius equation is expressed in a
nonlinear form in the constraint equations. Therefore, the equation is reformulated as
follows:

minimize hTd

subject to

le|<hTd [60]

If equation [14] for cones is substituted into the above constraint, it will be

expressed with 6 unknown constants as:

r, — {(X,cos0,+1,Z cosf +Y ,sin +m,Z sinf)

}
(X242 XoboZARZ YA mZ +2YomZ,— AZ — AZ3+2A42,Z)

\/(XO cos,+1,7,cosd,+Y ,sinf,+m,Z,sin6,)’ <hld
..+.
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The above constraint is divided into:

Constraint 1

h1d +((X ,cos0,+1,Z,c0s0,+Y ,sin@ +m,Z sinb,)

i

‘j(XO c0s,+1,Z, 0086, +Y, sind, +m, Z, sind, )’
+ 2r

)=
A2 ZAPL VA mk 4+ 2V Z~ AL ~AZ 4245 T)
--[61]

—hTd +((X ,c086,+1,Z,cos6,+Y ,sin6,+m,Z, sinb,)

' §

" (X, c086,+1,Z,c080,+Y ,sinf,+m,Z,sin6,)’
5
_(Xﬁ +2XDIDZ: +I%ZIZ + Yg +”éz.-'2 +2Y0”‘021 - AZJE - AZ% +2AZUZ‘)

The second constraint is derived from equation [61] itself. The constraint
means that to express the radius of cone, the inside value of root can not be negative.

The second constraint has the following form:

Constraint 2 is expressed as:

(X ,cosf +1,Z,cosh,+Y  sin@,+m,Z,sin6,)’
——-[62]
(X342 Xl Zo+ BZ 4 Y24m 2+ 2YomeZ,— AZ — AZ5i+2AZ,Z) 20

The third constraint is derived similar to the derivation of equation [14]. The
radial coordinates of the reference cone is restricted from having a negative value in

the Cylindrical Coordinate System. Thus, the third constraint is:
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Constraint 3 is written as:

(X ,cos6,+1,Z, cosf +Y sin€ +mZ sind)

) >0
~ (X2 X0hZ A B2 +Vi+ 1R Z} +2YemZ,— AZ} - AZE+2A47,7)

\/(X 0C086,+1,Z cosf +Y  sinf +m,Z sinf )’ ----[63]
+

The fourth constraint is extracted from the first constraint and the geometry of
the radial error in the cone. hTd, the absolute value of error between the measured

points and substitute cone, must not be less than zero in cylinder coordinates. The

constraint will be:

Constraint 4 is shown as:

hid >0 [64]

Since the first three constraints are repeated for each of the seven measured

points, a total of twenty two constraints result, including the fourth constraint.

6.2.2. Software and Algorithm

GINO, a nonlinear optimization software developed by The Scientific Press, is
utilized to find the value of half of Td and the six unknown constants. Since the GINO

software is not a package to find a globally optimized point in all ranges of the
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Cylindrical Coordinate System, it might find a local optimum rather than a global
optimum, leading us to a wrong optimized result. However, if GINO finds a global
optimal point as a local optimal point, the values are just what the Minimum Zone
Method should find. Therefore, the answer that we can get from Gino is highly
dependent on our initial guess values for the six unknown constants. To get more
accurate information, the number of trials should be increased. Also, the problem to
solve should be understood well, and trials with different search techniques available in

GINO can help to obtain a more exact answer.

A version of the generalized reduced gradient, so-called GRG, is used in GINO
software to solve a nonlinear optimization problem. The GRG algorithm is presented
in Liebman (1986). The Nonlinear Minimum Zone Method using GINO is referred to

as GRG after this point.

GINO uses two different methods to find a search direction; the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) Quasi Newton Method and the Conjugate Gradient
Method. The BFGS is used as a default, but the other method is a good choice in the
case of many variables used in the constraints and objective function. In the Conjugate
Gradient Method, there are five different sub-methods according to searching
techniques; Flecher-Reeves, Polak-Ribiere, Perry, 1-step Davidon-Fletcher-Powell

Method (1-step DFP), and 1-step Broyden-Fletcher-Goldfarb-Shanno Method (1step
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BFGS). These the five Conjugate Gradient methods and the BFGS Quasi Newton

Method are used to find optimal constants in the nonlinear equation for a cone.

A table of the direction search formula of the most effective conjugate gradient

methods is offered in Liebman (1986) as:

Table 3. The Methods to Find Search Directions in the Conjugate Gradient Method
(Liebman, 1986)

Method name The formula to find search directions
FLETCHER-REEVES D=-VF +ad,.
POLAK-RIBIERE D=-VF +a,d .,
1-STEP BFGS D=-VF +a;(a.s+asy)

where, a,=VF' VF |(VF prev) (VF pw)
an=VF"y [ (VF prev)’ (VF )

a,=1/sy
a,=—(1+) y/s y)s’ VF+y VF
a,=s"VF

If the line searches are exact, the first two techniques generate down hill search
directions along which the objective function decreases. Each search technique is used
every time the guess values are changed. The source code of a program which is

developed in order to generate the nonlinear constraints and objective function is

included Appendix B.
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To get proper values of unknown constants and the objective function with
minimum zone, several parameters are changed. For example, the parameter to
restrict maximum iteration without converging is changed from a default of 10 to 100.
The default fractional change and the stopping criteria in the objective function, are
changed. With these changes, GINO is used to solve the nonlinear Minimum Zone

Method for a cone.

6.3. The Result using the Nonlinear Optimization Technique

Additional discussion on obtaining guess values may help in understanding the

procedure for nonlinear optimization techniques used in this thesis.

First, the bounding techniques about unknown constants is applied. The

bounding technique can be summarized as:

Stepl. Give any values to the unknown constants except one variable.
Allocate two guess values to that variable.

Step 2. Evaluate the sum of square errors for the two settings of guess
values with SAS. Choose the better guess value based on the
sum of square errors. Repeat three or four times. Find the two
best guess values among them.

Step 3. Repeat Step 2 with the other unknown constants.

The above procedure can be beneficial in finding the boundary of unknown

constants in the case of one or two variables in the objective and constraints.
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However, it was recognized as time consuming for the cone equation with six

unknown constants.

Second, to save evaluation time, this previous procedure is revised. Since the
cone generated by a nonlinear equation may be close to the cone generated by a linear
equation, the constants estimated from the results of the linear optimization in the
previous chapter can be used as guess values for the unknown constants in the
nonlinear equation. Using the previous chapter’s results which are the results of the
Least Squares Method and Simplex Method in a tilted cone, only two constants A and
Z, remain unknown. Steps 1, 2, and 3, outlined earlier, are performed for these two
constants. Hence, the boundaries for these constants can be determined. Any values
within these boundaries can be used as guess values for these unknown constants A

and Z,.

Third, equations [51] and [52] are used to find guess values for A and Z,.
These equations use the values of X, /o, m, and ¥, from the previous chapter’s
results of the Linear Least Squares Method and the Linear Minimum Zone Method. A
point on their surface generated by equation [5] is used as X, Y, and Z for equation

[52].

Using these different combinations of guess values for the unknown constants,

SAS and GINO are used to find the minimum sum of square errors and the minimum
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tolerance zone. After obtaining the results from SAS and GINO for different
combinations of guess values, the results are compared with each other. SAS and
GINO give the values of unknown constants, as well as the value of the objective
function. With these values of unknown constants, the Td, coniCity, @ms. @mia and
vertex angle of the cone are found by a developed program with Matlab. For example,

six trials and data collected from a preliminary test are illustrated in Appendix A.

Compared with the nonlinear optimization using SAS, the nonlinear
optimization using GINO seems less sensitive to guess values of unknown constants in
the nonlinear equation. The reason may be that the nonlinear optimization in GINO is
a constrained nonlinear optimization, but SAS is a unconstrained nonlinear

optimization.

Table 4. The Comparison of the Radial Deviations of Each Measured Point and Sum

of Square Errors unit: inch
TILTED CONE
LEAST SQUARE MINIMUM ZONE
(GAUSS) (GRG)
Errors of each 0.00030810 0.00037010
measured points 0.00027840 0.00036947
0.00010967 0.00036973
-0.00054425 -0.00036846
-0.00046273 -0.00036899
0.00017289 0.00036998
0.00013791 0.00037024
Sum of error 0.0000007436969145 0.00000096
squres
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Table 4 illustrates the same trend as the linear optimization in the previous
chapter. If the sums of square errors are compared, the Least Squares Method shows

smaller values than the Minimum Zone Method.

The values given in Table 5 are from the results of the developed program
using the results of SAS and GINO. In the case of the Nonlinear Least Squares
Method, the results of 6™ trial of the Gauss Method are used with the results showing
a minimum sum of square errors. The reason that the 6™ trial of the Gauss Method
shows the smallest sum of square errors might be due to the guess values. The guess
values are based on the results of linear optimization, as mentioned before, and the

guess value for Z, is given as a range instead of as a fixed value.

Table 5. Results of the Least Squares Method and Minimum Zone Method Using the
Nonlinear Optimization
unit: inch for Td and conicity, angle for other

Td conicity angle of max. angle min. angle
substitute
cone
LSQ 0.00085235 | 0.00083963 20.14472 20.161835 20.114486
GRG 0.00073923 | 0.00072819 | 20.099637 20.120177 20.079165

where the model of the cone is a tilted cone. LSQ is the Least Squares Method
and GRG is the Minimum Zone Method using the General Reduced Gradient

Algorithm.
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Figure 19. The comparison of Td and conicity with a nonlinear equation.

Figure 19 confirms the most important trend in the nonlinear optimization. As
Figure 16 showed in the previous chapter, the Td and conicity using the Nonlinear
Minimum Zone Method are approximately 13.3% better than those obtained with the
Nonlinear Least Squares Method. Due to this, it is proposed that using the Minimum
Zone Method always results in the smaller tolerance zone than while using the Least
Squares Method. In other words, the Least Squares Method can not guarantee the

minimum tolerance zone using either a linear or nonlinear equation.

Another interesting observation concerns the Td and conicity for each method.

In each case of using linear and nonlinear equations, the conicity is less than Td. It
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should be recognized that the form tolerance of cones is the conicity, and not the Td
which is the sum of the maximum radial error and the minimum radial error. The
conicity of a cone is affected not only by the vertex angle of a cone but also by the

angle of the tilting axis of the cone.
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Figure 20. The comparison of angles generated with a nonlinear equation

The trends in Figure 20 are similar to those obtained in the linear cone. The
vertex angle using the Minimum Zone Method with a nonlinear equation lies in the
middle of amx and am,. However, the vertex angle using the Least Squares Method
is not in the middle of them. Since a circle having a minimum zone should lie in the
middle of @, and @mn, the vertex angle of the cone having a minimum zone should

also lie in the middle of the outermost cone and the innermost cone. This characteristic
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of a cone, having a minimum zone, can be derived from the fact that a section of a

cone at a specific Z, is a circle.

The above observation means that the Least Squares Method might not
guarantee the determination of Td and conicity with a minimum tolerance zone.
However, in the case of the General Reduced Gradient Method, the substitute cone
lies almost in the middle of the outermost and the innermost cone. Also, a substitute
cone using the General Reduced Gradient Method could offer a smaller vertex angle
than a cone using the Least Squares Method, as illustrated by the cases of the linear

approximation in Table [2].

Table 6. The Comparison of Error in Linear and Nonlinear Approximation

unit: inch
Sum of Square Errors Td
(LSQ) (the Minimum Zone Method)
Linear Equation 0.0000007341181 0.0007352
Nonlinear Equation 0.0000007436969 0.0007392
the Percentage of 1.288% 0.541%
Difference

The sum of square errors using a linear equation is approximately 1.29% less
than that using a nonlinear equation. The Minimum Zone using a linear equation is
0.54% less than that, using a nonlinear equation. These results are similar to

Chetwynd’s (1979) circle work and Lin’s (1995) cylinder estimation.

D




Hence, Table 6 confirms the above articles in that the linear equations using
limacon approximation for circular objects such as circles, cylinders and cones may
express surfaces of circular objects better than the nonlinear equations when their

center axis is well-aligned with the Z axis.
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Chapter 7

CONCLUDING REMARKS

This thesis has presented linear and nonlinear equations for cones. Based on
the two representations, a comparison between the Minimum Zone Method and the
Least Squares Method is attempted. The following summarizes this works and

assumptions of this thesis:

1. Linear and nonlinear equations for tilted cones are developed consistent with those
employed by the Coordinate Measuring Machine (CMM) used Browne and Sharpe
(Model: PFx 454 System).

2. Linearization of a nonlinear equation of the cone is applied. The Least Squares
Method (LSM) and the Simplex Method using the linearized equation for cones
are employed for calculation of Td and Conicity. The Least Squares Method and
minimum zone calculation are also done for a non-linear representation of the
cone.

3. CMM s only analyze the vertex angle of a substitute cone, and do not focus on
determination of angles such as .. and @, that are computed here.

4. The nonlinear least square optimization techniques such as Gradient, Gauss, DUD
and Marquadt are then used to find a substitute cone using the Nonlinear Least

Squares Method. The constrained nonlinear optimization technique, the General
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Reduced Gradient Method, is applied for the analysis of the form tolerance of
cones using the Nonlinear Minimum Zone Method.

Some preliminary observations are made based on a sample set of data

obtained using the above CMM and fitted to validate the equations. There are:

1.

The Minimum Zone Method yielded a smaller Td and conicity than the Least
Squares Method in Figure 21. This trend has been proven before by many
researches while evaluating cylindricity, circularity, flatness, and straightness. It is
difficult to make conclusive statement in the conicity case, without additional data
sets. Further work must concentrate on careful experimental design and analysis
to verify this claim.

The preliminary test and analysis confirmed that the results using linear equations
are more precise than the results using nonlinear equations in the case of the tilted
cones of which the eccentricity ratio is less than 0.01, as observed by Chetwynd
(1985) and Lin (1995). But these differences are very small (0.541%) to make any
conclusions. It would be interesting to investigate this issue with various data sets.
Development of data sets and selection of representative data and detailed
experimental designs is the subject of future work.

A comparison of the Least Squares Method and the Simplex Method in different
types of cones using the linear equation and nonlinear equation is presented for
assessing angles, height and form tolerances. Figure 21 through Figure 23 may be
used to summarize the comparison. Since Td and conicity using the nonlinear and

linear equations for the tilted cone are very close to each other, the height and
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vertex angle should be close to each other. The Figures 22 and 23 show that the
tilted cones using the linear and nonlinear equations have similar height and vertex
angle. Since the conicity using the moved cone in Figure 21 are not close to the
conicity from the Coordinate Measuring Machine (CMM), we may conclude that
the type of cone used in CMM is the tilted cone as the definition of ISO. Figure

22 and Figure 23 show that the increase of height is directly related to the decrease

of the vertex angle.
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Figure 21. Td and conicity with the linear and nonlinear equations.
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All the calculations in this research are based on the assumption that the center
axis of a substitute cone is well-aligned with the Z axis and the center axis is a datum
to analyze the form tolerance and angular problems.

If users measure three points at the same height in the first step of
measurement, the movement of the center axis can be determined by the following

equation of circle:

(X=a) +(Y-b) =

By the above equation, the movements of X and Y may become known
variables. The same Z value of the three points is considered to be the movement of
the center axis. After obtaining coordinates of measured points in the Cartesian
Coordinate System, a, b, Z values can be subtracted from coordinates of measured
points respectively to apply the assumption used in Chapters 3 through 6. Now,
general cone problems are calculated under these assumptions to get results such as
the form tolerance, angle of a substitute cone, @, @mn and other data. The above
procedure might be similar to those used in CMMs. However, whether the procedure

works correctly or not should be tested by real experiments.

A second problem concerns the datum in the analysis of form tolerance. How
the conicity and Td are affected by the movement of the datum should be investigated
in the case of cones. Also, when the datum has a tolerance such as a position

tolerance, the conicity of a cone might be affected by the accumulation of tolerances.
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The formulation of a cone including the above consideration should be investigated in

the future.

Extensions to three dimensions must also be investigated. Choice of proper
measuring points is yet another area of research that needs adequate consideration in
CMM research. Proper choice of data impacts the inspection and data- fitting
significantly. To state otherwise, the same object, sampled differently can yield
different data which when fitted can result in different minimum zones and different
least square fits. This in itself points do the need for more comprehensive data
collection and analysis for the future.

The another method for the Minimum Zone Method should be investigated to
be compared with the results of the Minimum Zone Method in this thesis. The

formulas can be written as :

Using a linear equation for cones

Min( Max(e;) — Min(e;))

where e, =r,— (R,+SZi+ XoC0s0,+1,Z,Cos 6, +Y,Sin6, + m Z, Sin6))
Subject to

Ro+8Z,20

Ro=0
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Using a nonlinear equation for cones

MIN (MAX (e;) — MIN (e,))

Where e, =r,—R,

R = {X,cos0,+1,Z cosO,+Y sinf,+m,Z sinf }

D,

where, D, = {X ,cos0,+1,Z,cosf,+Y ,sinf,+m,Z,sind,}’
~AXo+2XoloZi+ R ZI + Y3+ myZ} +2YomoZ,— AZ} — AZ5+2AZo 7.}
and D, >0

Subject to

{X ,cos0,+1,Z,cosO +Y ;sinf,+m,Z sinf .}’
~AX A2 Xl Zi+ BZ}+ Yo +mi ZE+2YomoZ, — AZ — AZE+2A 202} 20
R =0
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Appendix A. The outputs of the Nonlinear Least Squares Method and the

Nonlinear Minimum Zone Method

There are no constraints on A in the 1st and 2nd trial in the SAS program. The

other trials include the bound statement for constant A.

Table 1. The result of Td , conicity and the angle of a substitute cone

I1st Trial 2nd Trial 3rd Trial
Td and angle of Td and angle of Td and angle of
conicity substitute conicity substitute conicity substitute
cone cone cone
Gradient Td: 21.9595178 Td: 18.2283642 Td: 20.1506753
0.05331794 6 0.05311694 4 0.00085235 3
conicity: conicity: conicity:
0.05236780 0.05247991 0.00083963
Gauss Td: 20.1506753 Td: 20.1506756 Td: 20.1506753
0.00085235 3 0.00085235 5 0.00085235 3
conicity: conicity: conicity:
0.00083963 0.00083964 0.00083963
DUD Td: 20.1542276 Td: 20.1546838 Td: 20.1542276
0.00083696 5 0.00083848 1 0.00083696 5
conicity: conicity: conicity:
0.00082447 0.00082596 0.00082447
Marquadt Td: 20.1506756 Td: 20.1506756 Td: 20.1506756
0.00085235 5 0.00085235 5 0.00085235 5
conicity: conicity: conicity:
0.00083964 0.00083964 0.00083964
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4th Trial 5th Trial 6th Trial
Td and angle of Td and angle of Td and angle of
conicity substitute conicity substitute conicity substitute
cone cone cone
Gradient Td: 18.2283642 Td: 21.9527306 Td: 18.2152321
0.0531169%4 4 0.05434306 8 0.05296937 2
conicity: conicity: conicity:
0.05247091 0.05337062 0.05232189
Gauss Td: 20.1506756 Td: 20.1506756 Td: 20.1506756
0.00085235 5 0.00085235 5 0.00085235 5
conicity: conicity: conicity:
0.00083964 0.00041939 0.00083964
DUD Td: 20.1546838 Td: 20.1507928 Td: 20.1814855
0.00083848 1 0.00085168 2 0.00291621 5
conicity: conicity: conicity:
0.00082596 0.00083897 0.00287277
Marquadt Td: 20.1506756 Td: 20.1506756 Td: 20.1506756
0.00085235 5 0.00085235 5 0.00085235 5
conicity: conicity: conicity:
0.00083964 0.00083964 0.00083964
7" TRIAL 8" TRIAL
Td and conicity angle of substitute Td and conicity angle of substitute
cone cone
DUD Td: 0.00083886 20.15361072 Td: 0.00294802 20.18122566
conicity: conicity:
0.00082634 0.00290411
GAUSS Td: 0.00085235 20.15067565 Td: 0.00085235 20.15067565
conicity: conicity:
0.00083964 0.00083964
GRADIENT Td: 0.05342035 21.95920631 Td: 0.05427906 21.95298152
conicity: conicity:
0.05246853 0.05330775
MARQUARDT Td: 0.00085235 20.15067565 Td: 0.00085235 20.15067565
conicity: conicity:
0.00083964 0.00083964
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Table 2. The sum of square errors of the Gauss Method

GAUSS 1°T TRIAL 2P TRIAL 3"V TRIAL
Errors of each 0.00030810 0.00030810 0.00030810
measured points 0.00027840 0.00027840 0.00027840
0.00010966 0.00010966 0.00010966
-0.00054425 -0.00054425 -0.00054425
-0.00046274 -0.00046274 -0.00046274
0.00017289 0.00017289 0.00017289
0.00013791 0.00013790 0.00013791
Sum of square errors 0.00000074370397 | 0.0000007437012178 0.0000007437039759
GAUSS 4™ TRIAL 5™ TRIAL 6™ TRIAL
Errors of each 0.00030810 0.00030810 0.00030810
measured points 0.00027840 0.00027839 0.00027840
0.00010966 0.00010966 0.00010967
-0.00054425 -0.00054426 -0.00054425
-0.00046274 -0.00046274 -0.00046273
0.00017289 0.00017288 0.00017289
0.00013790 0.00013790 0.00013791
Sum of square errors 0.00000074370121 0.000000743703773 0.0000007436969145
GAUSS 7" trial 8" trial
Errors of each measured 0.00030810 0.00030810
points 0.00027840 0.00027840
0.00010966 0.00010966
-0.00054425 -0.00054425
-0.00046274 -0.00046274
0.00017289 0.00017289
0.00013790 0.00013790
Sum of square errors 0.0000007437012178 0.000000743712178
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Table 3. The sum of square errors of the Gradient Method

GRADIENT 1°" TRIAL 2™D TRIAL KD TRIAL
Errors of each -0.02002275 0.01999384 0.00030810
measured points -0.01985158 0.01986027 0.00027840
-0.02067165 0.01988234 0.00010966
-0.02389108 0.02228427 -0.00054425
-0.02352004 0.02223708 -0.00046274
-0.02640358 0.02721784 0.00017289
-0.03346636 0.03325667 0.00013791
Sum of square errors 0.00416343 0.00402738 0.0000007437039759
GRADIENT 4™ TRIAL S™ TRIAL 6™ TRIAL
Errors of each 0.01999384 -0.02050073 0.02059817
measured points 0.01986027 -0.02030066 0.01945451
0.01988234 -0.02095188 0.02025415
0.02228427 -0.02431888 0.02371212
0.02223708 -0.02402979 0.02097617
0.02721784 -0.02690190 0.02750169
0.03325667 -0.03404240 0.03351486
Sum of square errors 0.00402738 0.00432281 0.00409485
GRADIENT 7" trial 8" trial
Errors of each measured points -0.02007512 -0.02046780
-0.01990915 -0.02026767
-0.02072599 -0.02091906
-0.02395002 -0.02428637
-0.02356880 -0.02399720
-0.02646338 -0.02686972
-0.03351120 -0.03401139
Sum of square errors 0.00418135 0.00431177
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Table 4. The sum of square errors of the DUD Method

DUD 1°" TRIAL 2"P TRIAL 3*Y TRIAL
Errors of each 0.00028009 0.00027262 0.00028009
measured points 0.00031687 0.00032533 0.00031687

0.00010367 0.00010471 0.00010367
-0.00052009 -0.00051314 -0.00052009
-0.00048923 -0.00049743 -0.00048923
0.00016647 0.00016428 0.00016647
0.00014221 0.00014369 0.00014221
Sum of square errors 0.000000747380019 | 0.0000007495094564 0.000000747380019
DUD 4™ TRIAL 5" TRIAL 6" TRIAL
Errors of each 0.00027262 0.00030826 0.00099478
measured points 0.00032533 0.00027893 -0.00029414
0.00010471 0.00011072 0.00011102
-0.00051314 -0.00054342 0.00091487
-0.00049743 -0.00046251 -0.00192143
0.00016428 0.00016699 0.00034451
0.00014369 0.00014709 0.00044750
Sum of square errors 0.000000749509456 | 0.0000007438270156 0.00000594
DUD 7" trial 8" trial
Errors of each measured 0.00027429 0.00100891
points 0.00032071 -0.00031191
0.00010578 0.00012689
-0.00051815 0.00092954
-0.00049219 -0.00193911
0.00016792 0.00032493
0.00014164 0.00046267
Sum of square errors 0.0000007482687512 0.00000608

Table 5. The sum of square errors of the Marquadt Method

MARQUADT

ALL TRIALS GIVE THE SAME RESULTS

Errors of each measured points

0.00030810
0.00027840
0.00010966

-0.00054425

-0.00046274
0.00017289
0.00013790

Sum of square errors

0.0000007437012178
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Table 6. The four initial guessed values for the nonlinear minimum zone method and
the results of variables

The 1" set of

The 2™ set of

Variable The 3 set of | The 4" set of Answer
Initial Initial Initial Initial

X0 0.00103398 0.00075 0.00103398 0.00075 0.000745
YO -0.00089145 -0.00084 -0.000891455 -0.00084 -0.000839
10 -0.00281865 -0.00237 -0.00281865 -0.00237 -0.002367
m( 0.000518612 0.00492 0.000518612 0.00492 0.00492
Z0 -1.08943694 -1.092264 -1.08974648 -1.09207926 -1.091928
A 0.031522003 0.031366 0.031506217 0.031374858 0.031383

Table 7. The Data Set Used in the linear and the non-linear optimization

Measured order X Y Z

1 0.0350 0.2160 0.1416
2 0.0349 -0.2163 0.1416
3 0.2159 0.0383 0.1416
4 0.0541 0.2451 0.3229
5 0.0260 -0.2482 0.3231
6 -0.2968 0.0261 0.5833
7 0.3533 0.0261 0.9123
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Appendix B. Mfile

APPENDIX B-1

These programs are performed in Pentium 200MHz and this language is a
language offered by Matlab. First, these program should be saved as separate files in
the same directory. Second, run Matlab and type mfile’s names in the Matlab. Third,
follow the instruction offered in the matlab.

Revise.m

%This function calculate R value of cone object which is depended on

%height and center of cone section and R value of right cone

%The equation of radius of the tilted cone is that
%Radius=R0+Ram*Zval+X0*cos(theta)+10*Zval*cos(theta)+Y0*sin(theta)+m0*Zval*sin(theta)

%Input section
[m.n]=size(Data):;
Newcoord=zeros(m,n);
A=zeros(6.,6).
C=zeros(6,1);

t0O=clock;

%data transformation loop from x,y,z coordinate to cylinder coordinate
[TH.R.Z]=CART2POL(Data(:,1).Data(:.2).Data(:.3))
Newcoord(:,1)=R;

Newcoord(:,2)=TH;

Newcoord(:,3)=Z;

theta=TH;

%the calculation of tilted cone
[A.B.C.R0,Ram.X0.10,Y0.m0,INVE]=tcone(R.Z.theta.m):

%finding optimal points of tilted cone
[DataZ,Zver.xyz.]:optimal(Data.RO.Ram.XO-!O.YO‘mO)‘.

%find error
[sizez.a2]=size(Z)
Err=zeros(sizez.1):
Rid=zeros(sizez.1);

for cl=1:sizez :
Rid(c1,1)=R0+Ram*Newcoord(c1.3)+ X0*cos(Newcoord(c1.2)) + 10*Newcoord(c1.3)

cos(Newcoord(c1,2))+Y0 * sin(Ncwcoord(cl_2))+m(}*Ncwcoord(cl_3) * sin(Newcoord(c1.2)):

Err(cl.1)=Newcoord(cl.1)-Rid(cl.1):
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end

%find maximum and minimum
maxError=max(Err)
minError=min(Err)

[11,j1]=size(xyz),
slice=zeros((11/36),3);

nc=1;

for na=1:36:396
slice(nc.1)=xyz(na.l);
slice(nc,2)=xyz(na,2);
slice(nc.3)=xyz(na.3);
nc=nc+1;

end

ti="This calculation is for conicity of tilted cone'
Tdti=abs(maxError)+abs(minError)

%coaxility analysis
diam=input('what is the diameter of tolerance');%diam is short for coaxility
decision=Zver(:.1) .» 2+Zver(:,2) " 2
[de.del]=size(decision)
for che=1:de
if decision(che.del)>(diam/2)"2
s='The center is out of tolerance'
end
end

Rideal(:,3)=Newcoord(:,3);
time=etime(clock.t0)

%equation saving

%data output

file=input('What is the output file name that you want?"'s’)
fn=fopen(file,'w");

case1="tilted cone with using least squares method'.
case2="right cone with using least squares method'.

text4='original data’

fprintf(fn,'%s\n' text4):

[m,n]=size(Data);
for I=1:m
fprintf(fn,'%12.8f %I12.8f %12 .8f\n' Data(l.1).Data(l.2).Data(l.3)):
end

text23="the converted r theta z of original data".
fprintf(fn,'%s\n’,text23);

for I=1:m

fprintf(fn,'%12.8f %12.8f %12.8An"' R(1.1). TH(L.1).Z(1.1)).

end
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e=' A matrix';
fprintf(fn.'%s \n'.¢):
[w.r]=size(A);
for 12=1:w
fprintf(fn.'%12.8f %12.8f %12 8f %12.8f %12.8f
%12.8\n",A(12,1).A(12,2),A(12.3).A(12.4).A(12.5).A(12.6)):
end

c='Inverse A matrix';
fprintf(fn,'%s \n',c);
[q.r]=size(INVE);
forll=1:q
fprintf(fn.'%12.8f %12.8f %12.8f %12.8f %12.8f
%12.8A\n' INVE(11,1),INVE(11,2),INVE(11,3).INVE(11,4).INVE(11.5).INVE(11.6)):
end

p='B matrix";

fprintf(fn,'%s \n'.p);

[ql.r1]=size(INVE);

for 17=1:ql
fprintf(fn,'%12.8f\n'.B(17.1)).

end

t='C matrix';

fprintf(fn.'%s \n'.t);

[q2.r2]=size(INVE);

for 18=1:q2
fprintf(fn,'%12.8f\n',C(18.1)).

end

writap(fn,R0,Ram,X0.10,Y0,m0.Data2.xyz.Zver Err, maxError.minError,slice. Newcoord.case1.Tdti)
fclose(fn);

%Preparation for linear programming analysis
lindo(Newcoord)

%plotting operation
plotap(Data.xyz.Zver,slice)

This is subfunction “plotap”.

function plotap(Data.xyz.Zver slice)
%oplotting operation
%oplotting x and y value

plot(Data(:,1).Data(:,2).'rt")
hold on
plot(xyz(:.1),xyz(:.2).'g*")
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title('Check whether the 2 dimensional representation is right or wrong')
xlabel('X")

ylabel("Y")

gtext("* are optimal cone data and + is original coordinate data')

grid

Y%plotting X.y and z value

figure
plot3(Data(:,1).Data(:,2),Data(:,3).'r+')
hold on
plot3(xyz(:,1),xyz(:,2),xyz(:,3),'g*)
hold on

plot3(Zver(:,1).Zver(:,2),Zver(:,3),'c-)

title('3-dimensional representation for measured and ideal cone data')
text(-0.4.-0.4.min(xyz(:,3))-0.35."line is center axis')

xlabel('X")

ylabel("Y")

zlabel('Z")

axis(‘'auto")

grid

%line representation for ideal cone
figure
plot3(Data(:.1),Data(:.2),Data(:,3),'r+")
hold on
plot3(xyz(:,1).xyz(:,2),xyz(:,3),'g-")
title(' line representation for ideal cone')
text(-0.6.0.min(xyz(:,3))-0.45.'green line is surface of tilted cone ')
xlabel('X")

ylabel("Y")

zlabel('Z")

axis(‘auto')

grid

%'Front view of line representation for ideal cone';

figure

plot(Data(:,1).Data(:,3),'r+")

hold on

plot(xyz(:,1).xyz(:,3),'g*')

hold on

plot(Zver(:,1).Zver(:,3),'c-")

title(Front view of line representation for ideal cone')

xlabel('X")

ylabel('Z') ‘
gtext('red +:original data, green *:optimal cone data.cyan line:center axis')
axis(‘auto')

grid

%show the contour in the xy plane

figure

plot(slice(:,1).slice(:,3).'rt")
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e

hold on

plot(Zver(:,1),Zver(:,3),'c-")

title("The contour of cone in xyplane')
xlabel('X")

ylabel('Z')

gtext('red + tilted cone. cyan line: center axis')
zoom

grid

This is a subfunction tcone.m.

function [A.B,C.R0.Ram.X0.10,Y0,m0.INVE|=tcone(R.Z.theta.m)
%let's assume that the cone is tilted
Y%find matrixes and the coefficients of the tilted cone
%'A' matrix calculation
cosine=cos(theta);

sine=sin(theta);

=7, 2;

co=cos(theta) .~2;

si=sin(theta) ."2;

A(1,1)=sum(Z);

A(1,2)=m:;

A(1.3)=sum(cos(theta));
A(1.4)=sum(sin(theta)):

A(1.5)=sum(Z .* cos(theta)):
A(1,6)=sum(Z .* sin(theta));
A(2,D)=sum(t);

A(2.2)=sum(Z);

A(2.3)=sum(Z .* cos(theta));
A(2,4)=sum(Z .* sin(theta));
A(2,5)=sum(t .* cos(theta));
A(2,6)=sum(t .* sin(theta));
A(3,1)=sum(Z .* cos(theta));
A(3.2)=sum(cos(theta));
A(3,3)=sum(co);

A(3.4)=sum(cos(theta) .* sin(theta));
A(3,5)=sum(Z .* co);

A(3.6)=sum(Z .* cos(theta) .* sin(theta)):
A(4,1)=sum(t .* cos(theta));
A(4.2)=sum(Z .* cos(theta)).
A(4.3)=sum(Z .* co);

A(4,4)=sum(Z .* cos(theta) .* sin(theta)).
A(4.5)=sum(t .* co);

A(4,6)=sum(t .* cos(theta) .* sin(theta)):
A(5.1)=sum(Z.* sin(theta));
A(5.2)=sum(sin(theta));
A(5.3)=sum(cos(theta) .* sin(theta)):
A(5.4)=sum(si);

A(5,5)=sum(Z .* cos(theta) .* sin(theta)):
A(5.6)=sum(si .* Z);

A(6,1)=sum(t .* sin(theta));
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A(6.2)=sum(Z .* sin(theta));
A(6.3)=sum(Z .* cos(theta) .* sin(theta));
A(6.4)=sum(si .* Z);

A(6,5)=sum(t .* cos(theta) .* sin(theta));
A(6.6)=sum(t .* si);

%'C' matrix calculation
C(1,1)=sum(R);

C@.1)=sum(R .* Z);
C(@3.1)=sum(R .* cos(theta));
C(4,1)=sum(R .* Z * cos(theta)):
C(5.1)=sum(R .* sin(theta));
C(6,1)=sum(R .* Z * sin(theta));

%find inverse matrix and variables in equation
INVE=inv(A);

B=INVE*C,

Ram=B(1,1);

R0O=B(2,1);

X0=B(3.1);

Y0=B(4,1);

10=B(5,1);

m0=B(6.1);

This is a subfunction “optimal.m”.

function [Dala2,Zver,xyz}=optimal(Data,RO,Ram,XO,lO,YO,mO)
%let's find the optimal cone and the centers in each sections of cone
%input Data , the coefficient of equation for cone(R0O,Ram,.X0,10, YO, mO)
row=1;
hms=1;
Data2=zeros(360,3);
Zval=min(Data(:.3)):
Zmax=max(Data(:,3)):
Zmin=min(Data(:,3));
Gap=abs(Zmax-Zmin);
Zinc=Gap/10;
%while row<=360
while Zval<=Zmax & Zval>=Zmin
for inc=0:10:350
theinc=inc*pi/180;
Radius=R0+Ram*Zval+X0*cos(theinc)HO*Zval*cos(theinc)+Y0*sin(theinc)+m(}*2val*sin(thcinc};
Data2(row. 1)=theinc;
Data2(row.2)=Radius;
Data2(row.3)=Zval,
row=row+1;
end
Zval=Zval+Zinc;
hms=hms+1:%how many sections are in the cone
end
hms=hms-1;

101



Zver=zeros(hms,3);
Zval=min(Data(:.3));
for ver=1:hms
Yeen=Y0+mO*Zval;
Xcen=X0+10*Zval;
Zver(ver,1)=Xcen;
Zver(ver,2)=Ycen,
Zver(ver,3)=2Zval,
Zval=Zval+Zinc;
end
%converting cylinder coordinate to x-y-z coordinate
[v.b]=size(Data2);
xyz=zeros(v.b);
[nx.ny.nz]=pol2cart(Data2(:.1),Data2(:,2),Data2(:,3)):
xyz(:,1)=nx;
xyz(:,2)=ny;
xyz(:,3)=nz;

This is a subfuction “lindo.m”.

function lindo(Newcoord)

%Newcoord: r theta z coords of original data Preparation for linear programming analysis

%writing progam file for lindo Newcoord()

filelin=input('What is the Input file name for lindo that you want?''s')

flin=fopen(filelin,'w");

lin="min'";

linl="h";

lin5='subject to';

lin

fprintf(flin,'%s %s\n',lin.lin1)

fprintf(flin,'%s\n’,1in5)

[lin3.lin4|=size(Newcoord)

for linor=1:1in3

fprintf(flin,'RO1 -R02+%12.7f Ram1-%12.7f Ram2 +%12.7f X01-%12.7f X02+%12.7f101-%12.7f
102\n',Newcoord(linor,3),Newcoord(linor,3)_.cos(Newcoord(linor.Z)),cos(Newcoord(linor.?.)).Newcoor
d(linor.3)*cos(Newcoord(linor,2))_.Newcoord(1inor.3)*cos(Newcoord(linor.2))):

fprintf(flin,’ + %12.7f Y01-%12.7f Y02 +%12.7f m01-%]12.7f

m02+h>=%12 .TI\n'_sin(Newcoord(linor.2))__sin(Newcoord(linor,Z)).Newcoord(linor. 3)*sin(Newcoord
(linor,2)),Newcoord(linor, 3 )*sin(Newcoord(linor,2)),Newcoord(linor. 1));

fprintf(flin,'/RO1 -R02+%12.7f Ram1-%12.7f Ram2 +%12.7f X01-%12.7f X02+%12.7f101-%12.7f
102\n' Newcoord(linor,3),Newcoord(linor,3 ).cos(Newcoord(linor,2)).cos(Newcoord(linor.2)).Newcoor
d(linor,3)*cos(Newcoord( 1inor,2))_.Newcoord(iinor.3)*cos(Ncwcoord{linor.Z)));

fprintf(flin,' + %12.7f Y01-%12.7f Y02 +%12.7f m01-%12.7f m02-
h<=%12.71\n'.sin(Newooord(linor.2)).sin(Ncwcoord(linor.2)).Ncwc00rd(linor.3)*sin(Ncwcoord(linor.
2)),.Newcoord(linor, 3)*sin(Newcoord(linor.2)).Newcoord(linor. 1)).

end
fclose(flin),
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This main function is used to find conicity, Td, angles for a tileted cone

%This function calculate R value of cone object which is depended on
%the ouput value of variables from nonlinear programming(Gino or SAS)
%To use this function.open this m file and change the value of
%R0.Ram.X0,10,m0.Y0 at first and then this function will calculate
%conicity and Td for you Gnewton.m

format long e;

%Input section

[m,n]=size(Data);

Newcoord=zeros(m,n);

A=zeros(6.6);

C=zeros(6.1);

t0=clock;

%data transformation loop from x,y.z coordinate to cylinder coordinate
[TH.R.Z]=CART2POL(Data(:,1),Data(:,2),Data(:.3))
Newcoord(:,1)=R;

Newcoord(:,2)=TH;

Newcoord(:.3)=Z;

theta=TH;

[A.B,C.R0O.Ram,X0,10,Y0,m0,INVEj=tcone(R.Z. theta,m);
file=input('"What is the output file name that you want?",'s")
fn=fopen(file.'w");

%finding optimal points of tilted cone

[Data2.Zver.xyz. height last, Xcenm, Y cenm.Xcenv, Ycnvj=opt12(fn.Data.R0.Ram. X0.10.Y0.m0).

%find error
[al.a2]=size(Z)
Err=zeros(al.1);
for cl=1:al

Rid(c1,1)=R0+Ram*Newcoord(c1,3)+ X0*cos(Newcoord(cl.2)) + 10*Newcoord(c1.3) *
cos(Newcoord(c1,2))+Y0 * sin(Newcoord(c1,2))+m0*Newcoord(c1.3) * sin(Newcoord(c1.2)):
Err(cl,1)=Newcoord(cl,1)-Rid(cl,1):

end

%find maximum and minimum

maxError=max(Err)

minError=min(Err)

%slice the cone in accordance with x-y plane

%conicity analysis(tilted cone)

%ifind theta between vectors

ti="This calculation is for conicity of tilted conc'
Vn=zeros(1,3);

Vn(1,1)=xyz(2,1)-xyz(1.,1);
Vn(1,2)=xyz(2.2)-xyz(1,2).
Vn(1,3)=xyz(2.3)-xyz(1,3).

Vcl=zeros(1,3);

Vcl(1,1)=2Zver(2,1)-Zver(1,1);
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Vel(1.2)=2Zver(2,2)-Zver(1,2);
Vel(1,3)=Zver(2,3)-Zver(1,3);

Vc2=zeros(1,3);

Ve2(1,1)=Zver(1,1)-Zver(2,1);
Ve2(1,2)=Zver(1,2)-Zver(2.2):
Ve2(1,3)=Zver(1,3)-Zver(2.3);

Vx=zeros(1,3);

Vx(1,1)=xyz(2,1)-Zver(2,1):
Vx(1,2)=xyz(2,2)-Zver(2,2);
Vx(1,3)=xyz(2,3)-Zver(2,3);
absvn=sqrt(Vn(1,1)"2+Vn(1,2)"2+Vn(1.3)"2):
absvcl=sqrt(Vcl(1,1)"2+Vcl(1.2)"2+Vcl(1,3)"2);
absve2=sqrt(Ve2(1,1)"2+Vc2(1,2)72+Ve2(1,3)12);
absvx=sqrt(Vx(1,1)"2+Vx(1,2)"2+Vx(1,3)"2);
Vnn=[Vn(1.1),Vn(1,2),Vn(1,3)];
Vncl=[Vcl(1,1),Vcl(1,2),Vcl(1,3)];
Vne2=[Vc2(1,1),Vc2(1,2),Vc2(1,3)];
Vnx=[Vx(1,1),Vx(1,2),Vx(1,3)];
over=dot(Vnx,Vnc2);

overl=dot(Vnn,Vncl);
thetadash=acos(over/(absvc2*absvx));
thetadash=thetadash-0.5*pi;
thetaone=acos(overl/(absvn*absvcl)):
thetato=thetaone+thetadash;

angleti=(thetaone* 180%2)/pi

Y%calculate Td(distance of maximum cone and minimum cone)
Td=abs(maxError)+abs(minError)

%calculate conicity

conicity=(Td)*cos(thetato)

%find angle max and angle min

%The end of conicity analysis for tilted cone
angxyz(1,1)=xyz(2,1)+maxError;
angxyz(1,2)=xyz(2,2);
angxyz(1,3)=xyz(2,3);
angxyz(2,1)=xyz(2,1)+minError;
angxyz(2,2)=xyz(2,2);
angxyz(2,3)=xyz(2,3);

Vna=zeros(2.3);
Vna(1,1)=angxyz(1,1)-xyz(1,1);
Vna(1,2)=angxyz(1,2)-xyz(1,2);
Vna(1,3)=angxyz(1,3)-xyz(1.3);
Vna(2,1)=angxyz(2.1)-xyz(1,1);
Vna(2,2)=angxyz(2,2)-xyz(1.2);
Vna(2,3)=angxyz(2,3)-xyz(1.3);
Vnnax=[Vna(1,1),Vna(1,2),Vna(1.3)];
Vnnan=[Vna(2.1),Vna(2.2),Vna(2.3)];
%find maximum angle
absvnx=sqrt(Vna(1,1)*2+Vna(1.2)"2+Vna(1.3)"2).
over2=dot(Vnnax,Vncl);
thetaonex=acos(over2/(absvnx*absvcl)).

maximumang=(thetaonex*2*180)/pi
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%find minimum angle
absvnn=sqrt(Vna(2,1)"2+Vna(2,2)"2+Vna(2.3)"2):
over3=dot(Vnnan,Vncl);
thetaonen=acos(over3/(absvnn*absvcl));
minimumang=(thetaonen*2*180)/pi
gapl=maximumang-angleti
gap2=angleti-minimumang

Y%coaxility analysis
diam=1nput(‘what is the diameter of tolerance'):%diam is short for coaxility
decision=Zver(:,1) . 24+Zver(:,2) "~ 2 )
|de.del]=size(decision)
for che=1:de
if decision(che,del)>(diam/2)"2
s='The center is out of tolerance'
end
end

over7=dot(Vnnax,Vnnan);
thet=acos(over7/(absvnx*absvnn));
gapang=(thet*2*180)/pi:

time=etime(clock,t0)

%equation saving
%-data output

pergap=(gap2-gapl)/gap2
pererr=(abs(minError)-maxError)/abs(minError)

This is a subfunction ”opt12.m”

function

[Data2.Zver xyz.height.last, Xcenm,Ycenm,Xcenv. Y cenv]=opt10(fn.Data.R0,S.X0. 10.Y0.,mO0)
%let's find the optimal cone and the centers in each sections of cone

%the equation is a nonlinear form.

%input Data . the coefficient of equation for cone(A.X0.10.Y0.m0)

format long e;

row=1;

hms=1;
last=_R0,;SD/o((A*ZO+Y0*m0)+5qn((A*ZO+Y0*mo)hz_(A_m()Az)*(A*ZOAz_YOr’\z)))f(A-mO’\Z)“/oZO
height=abs(last)+0.9123;

Data2=zeros(2,3);

Zval=last; %min(Data(:,3))

Zmax=max(Data(:.3)):

Zmin=last; %min(Data(:.3))

Gap=abs(Zmax-Zmin);

Zinc=Gap/10;

fprintf(fn,'R0=%12.8f\n".RO);

fprintf(fn.'S=%12.8f\n",S).

fprintf(fn,"’X0=%12.8f\n', X0);
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fprintf(fn,'Y0=%12.8f\n',Y0);
fprintf(fn,'10=%12.8f\n",10);
fprintf(fn,'m0=%12.8f\n',m0);

er="the inside value of root is negative';

Zvalv=last
Zvalm=Zmax

Zver=zeros(2.3);

Ycenv=Y0+mO0*Zvalv;
Xcenv=X0+10*Zvalv;
Zver(1,1)=Xcenv;
Zver(1,2)=Ycenv;
Zver(1,3)=Zvalv;

Yecenm=YO0+mO*Zvalm;
Xcenm=X0+10*Zvalm;
Zver(2,1)=Xcenm;
Zver(2,2)=Ycenm,

Zver(2,3)=Zvalm;

the=0
Radius=R0+S*Zvalv+ X0*cos(the) + 10*Zvalv * cos(the)+YO0 * sin(the)+m0*Zvalv * sin(the):
Data2(row, 1)=the:
Data2(row,2)=Radius;
Data2(row,3)=Zvalv;
%end
Yoprospect the maximum value
max=zeros(1,3)
max(1,3)=Zvalm
max(1,2)=Ycenm
max(1,1)=Xcenm+R0+S*Zvalm
[thel,r,Zvalm]=cart2pol(max(1,1),max(1,2),max(1,3))
Radius1=R0+S*Zvalm+ X0*cos(thel) + 10*Zvalm * cos(thel)+Y0 * sin(thel)+m0*Zvalm *
sin(thel);
[comx.comy]=pol2cart(thel,Radius1)
comxol=comx
delta=1
while delta >0,

the1=the 1+0.00000001

Radius1=R0+S*Zvalm+ X0*cos(thel) + 10¥*Zvalm * cos(thel)+YO0 * sin(thel)+m0*Zvalm *
sin(thel):

[comxnew,comynew|=pol2cart(thel.Radiusl);

delta=comxnew-comxol;

ccomxol=comxnew;
end

thel=the1-0.00000001

Radius1=R0+S*Zvalm+ X0*cos(thel) + 10*Zvalm * cos(the1)+Y0 * sin(the])+m0*Zvalm *

sin(thel);

row=2
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Data2(row, 1 )=thel
Data2(row.2)=Radius1
Data2(row,3)=Zvalm

Y%converting cylinder coordinate to x-y-z coordinate
|v,b]=size(Data2);

Xyz=zeros(v.b);
[nx.ny,nz]=pol2cart(Data2(:,1).Data2(:,2).Data2(:,3))
xyz(:.1)=nx

xyz(:,2)=ny

xvz(:,3)=nz

xyz(1,2)=Ycenv

LPCONE1.M

%This function calculate R value of cone object which is depended on
%the ouput value of variables from linear programming

%To use this function.open this m file and change the value of
%R0,Ram.X0.10.m0.Y0 at first and then this function will calculate
%conicity and Td for you

%Input section
[m,n]=size(Data):
Newcoord=zeros(m,n);
A=zeros(6.6);
C=zeros(6,1);

t0=clock:

%data transformation loop from x.y.z coordinate to cylinder coordinate
[TH.R.Z]=CART2POL(Data(:,1).Data(:,2),Data(:,3))
Newcoord(:,1)=R;

Newcoord(:,2)=TH;

Newcoord(:.3)=Z;

theta=TH;

R0=0.193443
Ram=0.177134
X0=0.000746
10=-0.002373
Y0=-0.000839
m0=0.00492

%finding optimal points of tilted cone
[Data2.Zver, xyz]=optimal(Data,R0.Ram,X0.,10.Y0.mO0):

%find error

[al.a2]=size(Z)

Err=zeros(al.l);

forcl=1:al . ccondicl s
Err(cl.1)=Newcoord(c1.1)-R0-Ram*Newcoord(c1.3)- X0*cos(Newcoord(c1.2)) - 10 NC“CO:‘T e
* cos(Newcoord(c1.2))-Y0 * sin(Newcoord(cl 2))-m0*Newcoord(c1.3) * sin(Newcoord(c1.2)).
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end

%find maximum and minimum
maxError=max(Err)
minError=min(Err)

%slice the cone in accordance with x-y plane
[11 j1]=s1ze(xyz),
slice=zeros((11/36).3);

nc=1;

for na=1:36:396
slice(nc, 1)=xyz(na, 1);
slice(nc.2)=xyz(na.2);
slice(nc.3)=xyz(na.3);
nc=nc+l;

end

%conicity analysis(tilted cone)

%find theta between vectors

ti="This calculation is for conicity of tilted cone'
Vn=zeros(1,3);

Vn(1.1)=xyz(361,1)-xyz(1,1);
Vn(1,2)=xyz(361,2)-xyz(1,2),
Vn(1,3)=xyz(361,3)-xyz(1,3);

Vcl=zeros(1,3);
Vel(1,1)=Zver(11,1)-Zver(1,1);
Vcl(1,2)=Zver(11,2)-Zver(1,2);
Vel(1,3)=Zver(11,3)-Zver(1,3);
Vc2=zeros(1,3);
Ve2(1,1)=Zver(1,1)-Zver(11,1);
Ve2(1,2)=2Zver(1,2)-Zver(11,2);
Ve2(1,3)=2Zver(1,3)-Zver(11,3);

Vx=zeros(1,3);

Vx(1,1)=xyz(361,1)-Zver(11,1);
Vx(1,2)=xyz(361.2)-Zver(11,2);
Vx(1,3)=xyz(361,3)-Zver(11,3);
absvn=sqrt(Vn(1,1)"2+Vn(1,2)"2+Vn(1,3)"2);
absvcl=sqrt(Vecl(1,1)"2+Vcl(1,2)"2+Vcl(1.3)"2).
absvc2=sqrt(Vc2(1,1)"2+Vc2(1,2)"2+Vc2(1,3)"2).
absvx=sqrt(Vx(1,1)"2+Vx(1,2)"2+Vx(1,3)"2);
Vnn=[Vn(1,1).Vn(1.2),Vn(1,3)];
Vncl=[Vcl(1,1),Vc1(1.2),Vcl(1,3)];
Vne2=[Ve2(1,1),Vc2(1,2),Ve2(1,3)]:
Vnx=[Vx(1.1),Vx(1,2).Vx(1,3)];
over=dot(Vnx,Vnc2);

overl=dot(Vnn,Vncl);
thetadash=acos(over/(absvc2*absvx)).
thetadash=thctadash-0.5*pi;
thetaone=acos(overl/(absvn*absvcl)).
thetato=thetaone+thetadash;

angleti=(thetaone* 180%*2)/pi

%calculate Td(distance of maximum cone and minimum conc)

Td=abs(maxError)+abs(minError)
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Y%calculate conicity
conicity=(Td)*cos(thetato)
%find angle max and angle min

%The end of conicity analysis for tilted cone
angerror=zeros(2,3);
angerror(1,2)=Data2(361,2)+maxError;
angerror(1,1)=Data2(361.1);
angerror(1,3)=Data2(361,3);
angerror(2,2)=Data2(361,2)+minError:;
angerror(2,1)=Data2(361.1);
angerror(2,3)=Data2(361,3);

angxyz=zeros(2.3);
[al.a2,a3]=pol2cart(angerror(1,1),angerror(1,2),angerror(1.3)):
angxyz(1,1)=al;

angxyz(1,2)=a2;

angxyz(1,3)=a3;
[a4,a5,a6]=pol2cart(angerror(2,1),angerror(2.2),angerror(2,3)):
angxyz(2,1)=a4;

angxyz(2,2)=as;

angxyz(2,3)=26;

Vna=zeros(2,3);

Vna(l,1)=angxyz(1,1)-xyz(1,1);
Vna(1,2)=angxyz(1.2)-xyz(1.2);
Vna(1,3)=angxyz(1,3)-xyz(1.3);
Vna(2,1)=angxyz(2,1)-xyz(1,1);
Vna(2,2)=angxyz(2,2)-xyz(1,2);
Vna(2,3)=angxyz(2,3)-xyz(1.3);
Vnnax=[Vna(1,1),Vna(1.2),Vna(1.3)]:
Vnnan=[Vna(2,1),Vna(2,2),Vna(2,3)];

%find maximum angle
absvnx=sqrt(Vna(1,1)"2+Vna(1,2)"2+Vna(1,3)"*2):
over2=dot(Vnnax,Vncl);
thetaonex=acos(over2/(absvnx*absvcl)):
maximumang=(thetaonex*2*180)/pi

%find minimum angle
absvnn=sqrt(Vna(2,1)"2+Vna(2,2)"2+Vna(2,3)"2).
over3=dot(Vnnan,Vncl);
thetaonen=acos(over3/(absvnn*absvcl));
minimumang=(thetaonen*2*180)/pi

Ycoaxility analysis
diam=input(‘what is the diameter of tolerance'):%diam is short for coaxility
decision=Zver(:,1) .~ 2+Zver(:,.2) "2
[de.del]=size(decision)
for che=1:de
if decision(che.del)>(diam/2)"2
s='The center is out of tolerance'
end
end

time=etime(clock.t0)
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Y%equation saving

%data output

file=input('"What is the output file name that you want?''s")
fn=fopen(file,'w');

case1="tilted cone with using linear programming technique';
case2="right cone';

text4="original data',

fprintf(fn.'%s\n'.text4);

[m.n]=size(Data);
for I=1:m
fprintf(fn,'%12.8f %12.8f %12 8f\n’,Data(l,1). Data(l,2).Data(l.3));
end

text23="the converted r theta z of original data'",
fprintf(fn,'%s\n',text23);
for I=1:m
fprintf(fn,'%12.8f %12.8f %12.8f\n'.R(1,1), TH(1,1),Z(1.1)):
end

writing(fn,R0,Ram.X0,10,Y0,m0,Data2, xyz. Zver, Err,maxError.minError.slice, Newcoord.case1.Td.co
nicity,angleti, maximumang, minimumang)

fclose(fn);

%plotting operation
plot1(Data,xyz,Zver,slice)

THIS IS A SUBFUNCTION “PLOT1”

function plotl(Data,xyz,Zver,slice)
%plotting operation
%plotting x and y value

plot(Data(:,1),Data(:,2),'r+')%original data

hold on

plot(xyz(:,1),xyz(:.2),'g*')%optimal cone data

title('Check whether the 2 dimensional representation is right or wrong')
gtext('* are optimal cone data and + is original coordinate data’)
xlabel('X")

ylabel('Y")

grid

%plotting x.y and z value

figure
plot3(Data(:,1),Data(:.2).Data(:.3).'rt)
hold on
plot3(xyz(:.1),xyz(:,2).xyz(:.3).'g*)
hold on

plot3(Zver(:,1).Zver(:,2).Zver(:,3).'c-")Yocenter
110



title('3-dimensional representation for measured and ideal cone data')
text(-0.4,-0.4.min(xyz(:,3))-0.35."line descrbe the center axis')
xlabel('X")

ylabel("Y")

zlabel('Z")

axis('auto’)

grid

%Iine representation for ideal cone
figure
plot3(Data(:,1),Data(:,2),Data(:.3).'r+")
hold on
plot3(xyz(:,1).xyz(:.2).xyz(:.3).'g-")
title(' line representation for ideal cone')
text(-0.4.-0.4. min(xyz(:,3))-0.35,"+ are original data')
xlabel('X")

ylabel('Y")

zlabel('Z'")

axis('auto')

grid

%'Front top view of line representation for ideal cone';
figure

plot3(Data(:,1),Data(:,2),Data(:,3),'r+")

hold on

plot3(xyz(:,1).xyz(:,2).xyz(:.3),'g*")

hold on

plot3(Zver(:,1).Zver(:,2),Zver(:,3),'c-")

title('Front view of line representation for ideal cone')
xlabel("X")

ylabel("Y")

zlabel('Z")

axis('auto')

view([0,-1,0])

grid

%show the contour in the xy plane

figure

plot(slice(:.1).slice(:.3).'r*")

hold on

plot(Zver(:.1).Zver(:,3).'c-)

title('The representation of contour of cone')
gtext("* are optimal cone data and line is cone axis')
xlabel('X")

ylabel('z")

zoom

grid

This is a subfunction “writing.m”
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function

writing(fn,R0,Ram, X0,10,Y0,m0,Data2. xyz.Zver.Err maxError, minError. slice. Newcoord case Td.con

icity.angleti, maximumang. minimumang)

Y%equation saving and data output
%writing(Data.R,TH.Z.R().Ram,XU.l(}.Y{)_mU.DalaZA)'z.Zvcr.Err.slice_Newcoord)
%lfn:file name Data: original data R, TH.Z:converted coordinate(Newcoord)
%R0,Ram, X0,10,Y0,m0:the coefficients of equation Data2, xyz:ideal cone Zver center
%Err: the distance of error, slice:contour of cone

fprintf(fn,'%s\n',case)

m="The equation for cone is";

fprintf(fn.'%s \n'.m);

fprintf(fn.'%10.5f+%10.5f * Zi+ %10.5f * cos theta+%10.5f * Zi*cos theta\n'.R0.Ram.X0.10):
fprintf(fn,'+%10.5f * sin (theta)+ %10.5f * Zi* sin (theta)\n',Y0.m0):

ex='ldeal data generation(theta R Z)';

fprintf(fn.'%s\n'.ex);

[g.h]=size(Data2);
for112=1:g
fprintf(fn,'%d %12.8f %]12.8f %12.8f\n',112.Data2(112,1),Data2(112.2).Data2(112.3)):
end

text1 1="Ideal data conversion to xyz coordinate';

fprintf(fn,'%s\n’, text11);
for112=1:g
fprintf(fn,'%d %12.8f %I12.8f %]12.8f\n" 112, xyz(112.1).xyz(112.2).xvyz(112.3)):
end

y="Center of ideal cone sections only for tilted cone';
fprintf(fn,'%s \n',y);
[b,r]=size(Zver),
for131=1b

fprintf(fn,'%12.8f %12.8f\n',Zver(131.1).Zver(131.2)):
end

y2="The error',
fprintf(fn,'%s \n',y2);
[bl.rl])=size(Err);
for 132=1:bl

fprintf(fn,'%]12.8f\n' Err(132.1));
end

v32="The residual sums of square(sum of error squres)".
fprintf(fn,'%s \n',y32):
sumsg=sum(Err(:.1) ."2)
fprintf(fn.'%15.13f\n'.sumsq):%sumsq is the summation of error squares

y2="The maximum and minimum error’;
fprintf(fn.'%s \n'.y2);
fprintf(fn.'%]12.8f\n'.maxError);
fprintf(fn,'%12.8f\n".minError).
y2="the conicity and Td".



y21='conicity";

y22="Td";

y23="angle of reference conc';

y24="maximum angle";

y25="minimum angle";
fprintf(fn,'%s \n',y2);
fprintf(fn.'%s:%12.8f\n' y22.Td);
fprintf(fn,'%s:%12.8f\n",y2 1 conicity):
fprintf(fn.'%s:%12.8f\n',y23 angleti);

if maximumang~=0 | minimumang ~=0
fprintf(fn.'%s: %12 .8f\n',y24, maximumang);
fprintf(fn,'%s:%]12.8f\n',y25. minimumang);

end

yr3="The contour coords of cone which is';
fprintf(fn.'%s %s\n',yr3.case);
[br2.rl]=size(slice);
for 133=1:br2
fprintf(fn,'%12.8f %12.8f %12.8f\n’,slice(133,1),slice(133,2).slice(133.3)):
end

Conelill.m
%This function calculate R value of cone object which is depended on
%the ouput value of variables from nonlinear programming(Gino or SAS)
%To use this function,open this m file and change the value of
%R0,Ram,X0.10,m0,Y0 at first and then this function will calculate
%conicity and Td for you Gnewton.m
format long;
%Input section
[m,n]=size(Data);
Newcoord=zeros(m.n);

=zeros(6.6);
C=zeros(6,1);

t0=clock;

%data transformation loop from x,y.z coordinate to cylinder coordinate
[TH.R,Z]=CART2POL(Data(:,1).Data(:.2),Data(:.3))
Newcoord(;,1)=R;

Newcoord(:,2)=TH:

Newcoord(:,3)=Z;

theta=TH;

R0=0.193443

Ram=0.177134

X0=0.000746

10=-0.002373

Y0=-0.000839

m0=0.00492

%]| A,B.C,R0.Ram,X0,10.Y0.m0.INVE|=tcone(R.Z.theta.m).
file=input('What is the output file name that you want”"'s’)
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fn=fopen(file.'w');
%finding optimal points of tilted cone
[Data2,Zver.xyz.height last, Xcenm, Y cenm, Xcenv, Ycenv|=opt12(fn. Data. RO, Ram. X0.10.Y0.m0):

%ifind error
|al.a2]=size(Z)
Err=zeros(al,l);
for cl=1:al

Err(cl.1)=Newcoord(c1,1)-R0O-Ram*Newcoord(c1.3)- X0*cos(Newcoord(c1.2)) - 10*Newcoord(cl.3)
* cos(Newcoord(cl1,2))-YO0 * sin(Newcoord(c1,2))-m0*Newcoord(c1.3) * sin(Newcoord(cl.2)).

end

%find maximum and minimum

maxError=max(Err)

minError=min(Err)

%slice the cone in accordance with x-y plane

%conicity analysis(tilted cone)
%find theta between vectors
ti="This calculation is for conicity of tilted cone'
Vn=zeros(1.3);
Vn(l.1)=xyz(2,1)-xyz(1,1);
Vn(1,2)=xyz(2,2)-xyz(1,2),
Vn(1,3)=xyz(2.3)-xyz(1.3);
Vcl=zeros(1,3);
Vel(1,1)=Zver(2,1)-Zver(1,1);
Vel(1,2)=2Zver(2.2)-Zver(1,2);
Vel(1,3)=Zver(2,3)-Zver(1,3);

Vc2=zeros(1,3);

Ve2(1,1)=Zver(1,1)-Zver(2,1);
Vc2(1,2)=Zver(1,2)-Zver(2,2);
Vc2(1,3)=Zver(1,3)-Zver(2,3);

Vx=zeros(1,3);

Vx(1,1)=xyz(2,1)-Zver(2,1),
Vx(1,2)=xyz(2,2)-Zver(2,2);
Vx(1.3)=xyz(2,3)-Zver(2,3);
absvn=sqrt(Vn(1.1)"2+Vn(1,2)"2+Vn(1,3)"2);
absvcl=sqrt(Vcl(1,1)"2+Vel(1,2)"2+Vel(1.3)"2).
absve2=sqrt(Vc2(1,1)"2+Vc2(1,2)"2+Vc2(1,3)"2).
absvx=sqrt(Vx(1,1)"2+Vx(1.2)"2+Vx(1,3)"2);
Vnn=[Vn(1,1).Vn(1.2).Vn(1,3)]:
Vncl=[Vcl(1,1),Vcl(1.2),Vcl(1,3)]:
Vnc2=[Vc2(1,1).Vc2(1,2),Vc2(1.3)];
Vnx=[Vx(1.1).Vx(1,2).Vx(1,3)]:
over=dot(Vnx.Vnc2);

overl=dot(Vnn,Vncl);
thetadash=acos(over/(absvc2*absvx)).
thetadash=thetadash-0.5*pi:
thetaone=acos(overl/(absvn*absvcl)):
thetato=thetaone+thetadash:.

angleti=(thetaonc*180*2)/pi
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Y%calculate Td(distance of maximum cone and minimum cone )
Td=abs(maxError)+abs(minError)

%calculate conicity

conicity=(Td)*cos(thetato)

%find angle max and angle min

%The end of conicity analysis for tilted cone
angxyz(1,1)=xyz(2.1)+maxError;
angxyz(1,2)=xyz(2,2),
angxyz(1,3)=xyz(2,3);
angxyz(2,1)=xyz(2.1)+minError,
angxyz(2.2)=xyz(2,2);
angxyz(2,3)=xyz(2.,3);

Vna=zeros(2,3).
Vna(l,1)=angxyz(1.1)-xyz(1.1):
Vna(l,2)=angxyz(1,2)-xyz(1,2);
Vna(1,3)=angxyz(1,3)-xyz(1,3);
Vna(2,1)=angxyz(2.1)-xyz(1.1);
Vna(2,2)=angxyz(2,2)-xyz(1,2);
Vna(2.3)=angxyz(2,3)-xyz(1,3);
Vnnax=[Vna(1.1).Vna(1,2).Vna(1.,3)]:
Vnnan=[Vna(2,1),Vna(2,2),Vna(2,3)];
%find maximum angle
absvnx=sqrt(Vna(1,1)"2+Vna(1,2)*2+Vna(1,3)"2):
over2=dot(Vnnax,Vncl);
thetaonex=acos(over2/(absvnx*absvcl));
maximumang=(thetaonex*2*180)/pi

%find minimum angle
absvnn=sqrt(Vna(2,1)"2+Vna(2,2)"2+Vna(2,3)"2),
over3=dot(Vnnan,Vncl);
thetaonen=acos(over3/(absvnn*absvcl));
minimumang=(thetaonen*2*180)/pi
gapl=maximumang-angleti
gap2=angleti-minimumang
%maximumang=20.15067565+gapl
%minimumang=20.15067565-gap2

%coaxility analysis
diam=input('what is the diameter of tolerance'),%diam is short for coaxility
decision=Zver(:,1) .» 2+Zver(:,2) " 2
[de.del]=size(decision)
for che=1:de
if decision(che.del)>(diam/2)"2
s='The center is out of tolerance'
end
end

over7=dot(Vnnax.Vnnan);
thet=acos(over7/(absvnx*absvnn));
gapang=(thet*2*180)/pi;

time=etime(clock.t0)
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Yeequation saving
%data output

pergap=(gap2-gapl)/gap2

pererr=(abs(minError)-maxError)/abs(minError)
confidential=abs(pergap-pererr)/max(abs(pergap).abs(pererr))

APPENDIX B-2

CONENO10

%This function calculate R value of cone object which is depended on
%the ouput value of variables from nonlinear programming(Gino or SAS)
%To use this function.open this m file and change the value of
%R0.Ram,X0.,10,m0,Y0 at first and then this function will calculate
%conicity and Td for you Gnewton.m

format long;

%Input section

[m,n]=size(Data);

Newcoord=zeros(m.n);

A=zeros(6,6);

C=zeros(6,1);

t0=clock;

%data transformation loop from x,y.z coordinate to cylinder coordinate
[TH.R,Z]=CART2POL(Data(:.1),Data(:,2).Data(:.3))
Newcoord(;,1)=R;

Newcoord(;,2)=TH,;

Newcoord(:,3)=Z;

theta=TH,
%][A.B,C,R0,Ram,X0,10.Y0,m0.INVE]=tcone(R.Z theta.m).
Z0=-1.089436924

A=0.031522003

X0=0.00103398

10=-0.002818651

Y0=-0.000891455

m0=0.005186123

file=input('What is the output file name that you want”''s’)

fn=fopen(file.'w");

%finding optimal points of tilted cone

[Data2,Zver xyz.height.last, A01,A11.Xcenm, Y cenm.Xcenv. Ycenv]=opt15(fn.Data. A.Z
0);

0.X0.10.Y0O.m
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%find error
[al,a2]=size(Z)
Err=zeros(al.l):
forcl=1l:al

Al=(X0*cos(Newcoord(c1.2))+l0*Newcoord(c1,3)*cos(Newcoord(c1.2))+Y0*sin(Newcoord(c]l 2 ))+
mO*Newcoord(cl.3)*sin(Newcoord(c1.2)));

AO=Al"2-
(X0"2+2*X0*10*Newcoord(c1,3)+10"2*Newcoord(c1,3)"2+Y0"2+m0"2*Newcoord(cl.3)"2+2*Y0*
mO0*Newcoord(c1.3)-A*Newcoord(c1.3)"2-A*Z0"2+2* A*Z0*Newcoord(c1.3)):

Err(cl,1)=Newcoord(cl.1)-Al-sqrt(A0).
end

%find maximum and minimum
maxError=max(Err)

minError=min(Err)

%slice the cone in accordance with x-y plane

%conicity analysis(tilted cone)
%find theta between vectors
ti="This calculation is for conicity of tilted cone'
Vn=zeros(1,3);
Vn(1,1)=xyz(2,1)-xyz(1,1);
Vn(1.2)=xyz(2.2)-xyz(1.2);
Vn(1,3)=xyz(2.3)-xyz(1,3);
Vcl=zeros(1.3);
Vel(1.1)=Zver(2.1)-Zver(1.1);
Vel(1,2)=Zver(2,2)-Zver(1,2).
Vel(1.3)=2Zver(2,3)-Zver(1,3);

Vc2=zeros(1,3);
Ve2(1,1)=Zver(1,1)-Zver(2,1);
Ve2(1.2)=Zver(1,2)-Zver(2,2);
Ve2(1,3)=Zver(1.3)-Zver(2.3).

Vx=zeros(1,3);

Vx(1,1)=xyz(2.1)-Zver(2,1);
Vx(1,2)=xyz(2,2)-Zver(2,2);
Vx(1.3)=xyz(2,3)-Zver(2,3),
absvn=sqrt(Vn(1,1)"2+Vn(1.2)"2+Vn(1.3)"2);
absvcl=sqrt(Vcl(1,1)"2+Vcl(1,2)"2+Vel(1.3)"2)
absve2=sqrt(Vc2(1,1)"2+Vc2(1,2)"2+Ve2( 1.3)"2);
absvx=sqrt(Vx(1,1)"2+Vx(1,2)"2+Vx(1.3)"2);
Vnn=[Vn(1,1),Vn(1.2).Vn(1,3)];
Vncl=[Vcl(1,1),Vcl(1,2),Vcl(1,3)];
Vne2=[Vc2(1,1).Vc2(1.2).Ve2(1,3)];
Vnx=[Vx(1,1).Vx(1,2).Vx(1.3)]:
over=dot(Vnx,Vnc2);

overl=dot(Vnn.Vncl);
thetadash=acos(over/(absvc2*absvx)):
thetadash=thetadash-0.5*pi:
thetaone=acos(overl/(absvn*absvcl)).

thetato=thetaone+thetadash:
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angleti=(thetaone* 180%2)/pi

Y%calculate Td(distance of maximum cone and minimum cone)
Td=abs(maxError)+abs(minError)

Y%calculate conicity

conicity=(Td)*cos(thetato)

%find angle max and angle min

%The end of conicity analysis for tilted cone
angxyz=zeros(2,3):
angxyz(1.1)=xyz(2,1)+maxError;
angxyz(1,2)=xyz(2.2).
angxyz(1,3)=xyz(2.3);
angxyz(2.1)=xyz(2.1)+minError;
angxyz(2,2)=xyz(2,2);
angxyz(2,3)=xyz(2,3),

Vna=zeros(2,3):
Vna(1l,1)=angxyz(1,1)-xyz(1,1);
Vna(1,2)=angxyz(1,2)-xyz(1,2);
Vna(1,3)=angxyz(1.3)-xyz(1.3):
Vna(2,1)=angxyz(2,1)-xyz(1.1);
Vna(2,2)=angxyz(2,2)-xyz(1,2);
Vna(2.3)=angxyz(2.3)-xyz(1.3);
Vnnax=[Vna(1.1),Vna(1,2),Vna(1,3)]:
Vnnan=[Vna(2.1),Vna(2.2),Vna(2.3)];
%lfind maximum angle
absvnx=sqrt(Vna(1,1)"2+Vna(1,2)"2+Vna(1,3)"2),
over2=dot(Vnnax.Vncl);
thetaonex=acos(over2/(absvnx*absvcl));
maximumang=(thetaonex*2*180)/pi

%find minimum angle
absvnn=sqrt(Vna(2,1)"2+Vna(2.2)"2+Vna(2,3)"2),
over3=dot(Vnnan,Vncl):
thetaonen=acos(over3/(absvnn*absvcl));
minimumang=(thetaonen*2*180)/pi
gapl=maximumang-angleti
gap2=angleti-minimumang

%coaxility analysis
diam=input('what is the diameter of tolerance'),%diam is short for coaxility
decision=Zver(:,1) .» 2+Zver(:,2) " 2
[de.del]=size(decision)
for che=1:de
if decision(che.del)>(diam/2)"2
s='The center is out of tolerance'
end
end

over7=dot(Vnnax,Vnnan);
thet=acos(over7/(absvnx*absvnn)):
gapang=(thet*2*180)/pi.

time=etime(clock.t0)
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Yequation saving
Y%data output

pergap=abs(gap2-gapl)/gap2
pererr=(abs(minError)-maxError)/abs(minError)
confidential=abs(pergap-pererr)/max(abs(pergap).abs(pererr))

This is a subfunction “OPT15.M”

function

[Data2,Zver.xyz height last, AO1.A11,Xcenm,Ycenm, Xcenv, Ycenv,thecenv.rcenv. AO1v. Al lv.partl.p
art2.error,part3]=opt15(fn,Data, A.Z0,X0.10,YO.mO0)

%lIet's find the optimal cone and the centers in each sections of cone
%the equation is a nonlinear form.

%input Data , the coefficient of equation for cone(A.X0.10,Y0.m0)
format long e;

row=1;

hms=1;

last=Z0

Data2=zeros(2,3);

Zval=last; %min(Data(:,3))

Zmax=max(Data(:.3));

Zmin=last; %min(Data(:,3))

Gap=abs(Zmax-Zmin),

Zinc=Gap/10;

fprintf(fn,'A=%12.8f\n", A);

fprintf(fn,'Z0=%12.8f\n'.Z0);

fprintf(fn,'X0=%12.8f\n", X0);

fprintf(fn,"Y0=%12.8f\n', Y0):

fprintf(fn,'10=%12.8f\n",10);

fprintf(fn,'m0=%12.8f\n',m0);

er="the inside value of root is negative'.

Zvalv=last
Zvalm=Zmax

Zver=zeros(2.3);
Yeenv=Y0+mO*Zvalv;
Xcenv=X0+10*Zvalv:;
Zver(1,1)=Xcenv:
Zver(1,2)=Ycenv;
Zver(1,3)=Zvalv;

Yecenm=Y0+m0O*Zvalm;
Xcenm=X0+10*Zvalm.
Zver(2,1)=Xcenm;
Zver(2,2)=Ycenm:
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Zver(2,3)=Zvalm;

row=1
[thecenv.rcenv|=cart2pol(Xcenv.Ycenv)

the=thecenv
Allv=(X0*cos(the)+10*Zvalv*cos(the)+Y0*sin(the)+m0* Zvalv*sin( the))
partl=Allv"2
part2=(X0"2+2*X0*10*Zvalv+10"2*Zvalv"2+Y0"2+m0"2*Zvaly"2+2 *Y0*mO*Zvalv)
part3=A*Zvalv"2+A*Z0"2-2*A*Z0*Zvalv
AOlv=partl-(part2-part3)
Radius=A1 lv+sqrt(A01v).%since a0 is almost zero
Data2(row, 1)=the;
Data2(row.2)=Radius;
Data2(row.3)=Zvalv;

row=2
max=zeros(1,3)
max(1.3)=Zvalm
max(1,2)=Ycenm
thma=0
Al1=(X0*cos(thma)+10*Zvalm*cos(thma)+Y0*sin(thma)+m0*Zvalm*sin(thma)):
A01=A11"2-(X0"2+2*X0*10*Zvalm+10"2*Zvalm"2+Y 0"2+m0/2*Zvalm”2+2*Y 0*m0* Zvalm-
A*Zvalm"2-A*Z0"2+2* A*Z0*Zvalm);
max(1,1)=Xcenm+sqrt(A01)

[thel,r.Zvalm]=cart2pol(max(1,1),max(1.2).max(1.3))
Al=(X0*cos(thel)+10*Zvalm*cos(thel)+Y0*sin(thel)+m0*Zvalm*sin(thel));
A0=A1"2-(X0"2+4+2*X0*10*Zvalm+10"2*Zvalm”2+Y0"2+m0"2*Zvalm”2+2*Y0*m0*Zvalm-
A*Zvalm”2-A*Z0"2+2* A*Z0*Zvalm);
Radius=A1+sqrt(A0);%since a0 is almost zero

[comx,comy]=pol2cart(thel,Radius)
comxol=comx
delta=1

while delta >0,

thel=thel-1E-9:
Al=(X0*cos(thel)+10*Zvalm*cos(thel)+Y0*sin(thel)+m0*Zvalm*sin(thel)):
A0=Al“2-(X0“2+2*X0*lO*Zvalm+lO"‘2*Zvalm"2+YO"2+m0"‘2*Zvalm"‘2+2“‘Y0*m{1*2\‘alm-
A*Zvalm”2-A*Z0"2+2* A*Z0*Zvalm).

Radius=Al+sqrt(A0);%since a0 is almost zero

[comxnew,comynew]=pol2cart(thel.Radius).
delta=comxnew-comxol
ccomxol=comxnew;

end

thel=thel+1E-9

Al=(X0*cos(thel)+10*Zvalm*cos(the1)+YO0*sin(thel y+mO*Zvalm*sin(thel)).
AO=A12-(X0"2+2*X0*10*Zyalm+10"2*Zvalm"2+Y0"2+m0"2*Zvalm"2+2*Y0*m0*Zvalm-
A*Zvalm"2-A*Z0"2+2* A*Z0*Zvalm),
Radius=A1+sqrt(A0):%since a0 is almost zero
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Data2(row. 1)=thel;
Data2(row.2)=Radius;
Data2(row.3)=Zvalm,

Y%converting cylinder coordinate to x-y-z coordinate
[v.b]=size(Data2),

xyz=zeros(v.b):
[nx.ny.nz]=pol2cart(Data2(:,1),Data2(:,2).Data2(:,3)):
xyz(:,1)=nx;

xvz(:,2)=ny:

XyZ(:.3)=nz;

error=partl-part2

Conenoll

%This function calculate R value of cone object which is depended on
%the ouput value of variables from nonlinear programming(Gino or SAS)
%To use this function,open this m file and change the value of
%R0.Ram.X0.10,m0,YO at first and then this function will calculate
%conicity and Td for you Gnewton.m

format long;

%Input section

[m,n]=size(Data);

Newcoord=zeros(m,n);

A=7er0s(6,6);

C=zeros(6.1);

t0=clock:

%data transformation loop from x,y,z coordinate to cylinder coordinate
[TH,R,Z]=CART2POL(Data(:,1).Data(:,2).Data(:.3))
Newcoord(:,1)=R;

Newcoord(:,2)=TH;

Newcoord(:,3)=Z;

theta=TH;

%[ A.B.C.R0.Ram.X0.10,Y0,m0,INVE]=tcone(R.Z.theta,m):

Z0=-1.091928
A=0.031383
X0=0.000745
10=-0.002367
Y0=-0.000839
m0=0.00492

file=input('What is the output file name that you want?'.'s")

fn=fopen(file.'w"):

%finding optimal points of tilted cone ; ’
[Data2. Zver,xyz height. last. AO1.Al1 Xcenm.Ycenm. Xcenv,Ycenv]=optl 5(fn.Data.A.Z0.X0.10.YO.m
0);

%find error
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lal,a2]=s1ze(Z)
Err=zeros(al.l):
for cl=1:al

A1=(X0*cos(Newcoord(cl,2))+10*Newcoord(cl,3)*cos(Newcoord(c1.2))+Y0*sin(Newcoord(c] .2 ))+
mO*Newcoord(c1,3)*sin(Newcoord(c1,2)));

AO=A1"2-
(X072+2*X0*10*Newcoord(c1,3)+10"2*Newcoord(c1,3)"2+Y0/2+m0”2*Newcoord(c].3)"2+2*Y(*
mO*Newcoord(c1.3)-A*Newcoord(c1,3)"2-A*Z0"2+2* A*Z0*Newcoord(c1.3)):

Err(cl,1)=Newcoord(cl,1)-Al-sqrt(A0);
end

%end

%find maximum and minimum
maxError=max(Err)

minError=min(Err)

%slice the cone in accordance with x-y plane

%conicity analysis(tilted cone)
%find theta between vectors
ti="This calculation is for conicity of tilted cone'
Vn=zeros(1.3):
Vn(1.1)=xyz(2,1)-xyz(1.1);
Vn(1.2)=xyz(2,2)-xyz(1,2);
Vn(1,3)=xyz(2,3)-xyz(1,3);
Vcl=zeros(l,3);
Vel(1,1)=Zver(2,1)-Zver(1,1);
Vcl(1,2)=Zver(2,2)-Zver(1,2):
Vel(1,.3)=Zver(2,3)-Zver(1,3);

Vc2=zeros(1.3);

Ve2(1,1)=Zver(1,1)-Zver(2,1);
Vc2(1,2)=Zver(1,2)-Zver(2,2);
Ve2(1,3)=Zver(1,3)-Zver(2,3);

Vx=zeros(1,3);

Vx(1.1)=xyz(2,1)-Zver(2.1);
Vx(1.2)=xyz(2.2)-Zver(2.2);
Vx(1.3)=xyz(2,3)-Zver(2,3);
absvn=sqrt(Vn(1,1)"2+Vn(1,2)"2+Vn(1.3)"2).
absvcl=sqrt(Vcl(1,1)"2+Vcl(1.2)"2+Vcl(1,3)"2):
absve2=sqrt(Vc2(1,1)"2+V¢2(1,2)"2+Vc2(1.3)"2).
absvx=sqrt(Vx(1,1)"2+Vx(1,2)"2+Vx(1.3)"2).
Vnn=[Vn(1,1).Vn(1,2).Vn(1,3)];
Vncl=[Vcl(1,1),Vcl(1,2),Vel(1.3)];
Vnc2=[Vc2(1,1),Vc2(1.2).Vc2(1.3)];
Vnx=[Vx(1.1).Vx(1,2).Vx(1.3)].
over=dot(Vnx,Vnc2);

overl=dot(Vnn,Vncl);
thetadash=acos(over/(absvc2 *absvx)).
thetadash=thetadash-0.5*pi.
thetaone=acos(over1/(absvn*absvcl)).

thetato=thetaone+thetadash;
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angleti=(thetaone*180*2)/pi

Y%calculate Td(distance of maximum cone and minimum cone)
Td=abs(maxError)+abs(minError)

Y%calculate conicity

conicity=(Td)*cos(thetato)

%lfind angle max and angle min

%The end of conicity analysis for tilted cone
angxyz=zeros(2,3);
angxyz(1,1)=xyz(2.1)+maxError;
angxyz(1,2)=xyz(2,2);
angxyz(1,3)=xyz(2,3);
angxyz(2,1)=xyz(2,1)+minError;
angxyz(2,2)=xyz(2.2),
angxyz(2,3)=xvyz(2,3);

Vna=zeros(2,3);
Vna(1,1)=angxyz(1,1)-xyz(1,1);
Vna(l,2)=angxyz(1.2)-xyz(1,2);
Vna(1.3)=angxyz(1,3)-xyz(1.3);
Vna(2,1)=angxyz(2,1)-xyz(1.1);
Vna(2,2)=angxyz(2.2)-xyz(1.2):
Vna(2.3)=angxyz(2,3)-xyz(1,3),
Vnnax=[Vna(l,1),Vna(1,2),Vna(1,3)]:
Vnnan=[Vna(2.1),Vna(2.2),Vna(2,3)];
%find maximum angle
absvnx=sqrt(Vna(1.1)"2+Vna(1,2)"2+Vna(1,3)"2);
over2=dot(Vnnax,.Vncl);
thetaonex=acos(over2/(absvnx*absvcl));
maximumang=(thetaonex*2*180)/pi

%find minimum angle
absvnn=sqrt(Vna(2.1)"2+Vna(2.2)"2+Vna(2.3)"2),
over3=dot(Vnnan.Vncl);
thetaonen=acos(over3/(absvnn*absvcl));
minimumang=(thetaonen*2*180)/pi
gapl=maximumang-angleti
gap2=angleti-minimumang

%ocoaxility analysis

diam=input('what is the diameter of tolerance');%diam is short for coaxility

decision=Zver(:.1) . 2+Zver(:.2) " 2

[de.del]=size(decision)

for che=1:de

if decision(che.del)>(diam/2)"2
s='The center is out of tolerance

end

end

over7=dot(Vnnax.Vnnan);
thet=acos(over7/(absvnx*absvnn)).
gapang=(thet*2*180)/pi.

time=etime(clock.t0)
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Y%equation saving
Y%data output

pergap=abs(gap2-gapl)/gap2

pererr:ab_s(abs(minError)-abs( maxError))/abs(minError)
confidential=abs(pergap-pererr)/max(abs(pergap).abs(pererr))
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