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Abstract 

The extraction of Earth responses from seismic data without an acti\'e source has 

received more attention in the past decade than ever before. This growth in popularity 

is primarily due to the increased availability of computing capabilities required to 

process such data . Interferometry is the most common method of processing passive 

ambient data . Different methods of interferometric computation are compared in this 

study and a workflow for the interferogram with the most clarity is presented . Methods 

of normalization include ru1ming absolute mean , sign bit, and an automatic gain control 

(AGC) based on root mean squared (RMS) average. Interval lengths from I minute to 

120 minutes are compared, and the differences between cross-correlation and cross­

coherence are examined. The final workflow uses rwming absolute mean 

nom1alization, cross-coherence, and a 30 minute interva l length . Interferometry often 

deals with large amounts of data , greater than 17 terabytes in this case . Additionally, 

Central Processing Units (CPUs) and Graphical Processing Units (GPUs) are both used 

on each step of the workflow to find the most efficient hardware for each process. I 

analyzed the time cost associated with steps in interferometric computation and found 

CPUs operate faster on complicated normalizations and GPUs operate faster on simple 

nom1alizations and correlations. The workflow does not change based on these 

findings. 
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Introduction 

Modern exploration geophys ics requires more efficient and effective ways to 

extract meaningful data from measurements. The main tool exploration geophysicists 

use today are elastic vibrations in the Earth. The sources of these vibrations fall into 

two distinct categories : active sources and passive sources. Active sources include any 

vibrations that are intentionally created such as dynamite buried underground and large 

vibroseis trucks. Passive sources include vibrations that are not intentionally created 

such as ea11hquakes, highway ' ibrations, or anything else that might unintentionally 

cause the Earth to move. Geophones along with accelerometers are used to record the 

Ea11h 's seismic response . A few decades ago, data collected from geophones were 

incredibly I imited because computer storage had not reached the level needed to hold 

large seismic datasets . The amount of storage required to house today ' s seismic data 

sets can be more than 20 Tb for a single survey. Today ' s data storage is adequate for 

these surveys, but simple processing computations have suddenly become monumental 

challenges. The problem has spread to other areas like processing speed and data 

transfer rates. These computational steps must be controlled in a way to minimize the 

time to extract useful information . lnterferomet1y makes use of a computationally 

inexpensive and mathematical simple operator: cross-correlation. I use interferomet1y 

to test data management methods on a l 7 Tb passi ve se ismic data set. 

Interferometry, or ambient noise cross-correlation , is an effective and 

increasin gly popular way in exploration geophys ics to extract surface waves. The 

extraction of surface waves has applications including removal of surface waves from 



active exploration seismic data and near surface shear wave ve loci ty estimates. Seismic 

interferometry uses coITelation and stacking on passiYe seismic data to approximate the 

Green ' s function, or lag time, between two recei vers. Jnterferometry assumes that the 

signal received from the passi ve seismic data consist of Ea11h responses that are 

indistinguishable from real noise . By cross-coITelating and stacking all traces , or data 

recei ved from a set position on the Earth, with a single trace oYer a large amount ohime 

(days) , the real noise is suppressed and meaningful signals that originally appeared as 

noise are enhanced. The resulting " interferogram ," or image produced from 

interferometry, looks as if one receiver had been a source recorded at all other receivers. 

The recei ver that looks like a source is called a "virtual source. " Deconvolution is used 

in other types of interferometry, but the source is meant to be suppressed in those 

applications (Vasconcelos and Snieder, 2008). This study, however, does not want to 

suppress the source. Once the interferogram is created, it can be anal yzed to discover 

new information. Lin et al. (2013) used interferograms to create a near surface velocity 

model. Until recently, only surface waves have been found , but Nakata et al. (2015) 

and Lin et al. (2013) found and extracted body waves from an interferogram. Grechka 

et al. (20 12) uses geometry and data already present in microseismic surveys to find 

anisotropic parameters. My goal w ill be to produce the clearest possi ble interferogra m 

and find the computational cost of creating that interferogram. All applications of 

interferometry , such as creating near surface shear ve locity estimates and estimating 

aniso tropic parameters, rely on the user ' s ability to distinguish surface waves from 

noise . Producing the interferogram with the most di stinct waves w ill make the 

app li cations of interferometry even more accurate. J hypothesize the interfe rogram w ith 
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the most distingui shable surface waves w ill become apparent by con-elating w ith cross­

coherence, nonnalizing with running-absolute-mean normalization , and us ing a longer 

interval length . A graphics processing unit (GPU) will be most useful in computing 

conelation and a central processing unit (CPU) will be most effective on running­

absolute-mean normalization, but both will be limited due to hardware constraints. 

Chapter I is a review of the regional geology of the For1 Worth Basin and Bend 

Arch areas . 

Chapter 2 describes passive interferometry and how useful information can be 

derived from oscillations prov ided by unknown sources. This chapter is divided into 

two sections : data conditioning and application of the interferometric equations . 

Chapter 3 analyzes computational methods and how to deal with a large dataset. 

This chapter is split into three sections : computational analysis of data conditioning, 

computational ana lysis of the application of interferometric equations, and hardware 

anal ysis . The computational analysis section focuses on the elements that are the most 

computationally rigorous - nonnalization and conelation for data conditioning and the 

application of interferometric equations, respectivel y. 

Chapter 4 cone I udes the study and reviews the outcomes of Chapter 2 and 

Chapter 3. 

Chapter 5 g ives suggestions of work that could be done in the future related to 

interferometry and data management. 
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loth :it ion 

The goal of this study is to identify the best process of interferometric 

computation to improve the separation of signal from noise in an interferogram. All 

applications of interferometry require the identification and extraction of signals from 

an interferogram. All of the extraction techniques depend on the ratio of the amplitude 

of the signal to the amplitude of the noise . Consequently, accurately identifying surface 

and body waves from interferograms contributes significantly to the extraction of 

information useful to exploration geophysics such as near surface shear velocity 

models , reflection imaging, and anisotropic parameter estimation. I will make the 

applications of interferometry more accurate by creating the workf1ow to achieve the 

most distinct waves. Some studies that analyze the applications of interferometry are 

presented here. 

Lin et al. (2013) applied interferometry to a data set from Long Beach, CA, 

constrncting a near surface shear wave velocity model up to 600 m. Lin et al. (2013) 

started by using interferometry on the dense receiver array to record higher frequenc y, 

0 .5 - 4 Hz, Raylei gh waves. Eikonal tomography was then used to compute phase 

\·elocity. Next, the surface wave phase ve locity was inverted to find shear ve locity for 

that area . The spacing between the receivers was small enough to find the higher mode 

swface waves or body waves . 

Lin et al. (20 l 2) and aka ta et al. (2015) used interferometry to distinguish 

surface wave and body wave signals in frequencies less than 15 Hz. The waves are 

identified by their velocities and dominate amplitudes in lower frequency bands . Both 

studies follow a workf1ow that is s imilar to the one used by Lin et al. (2013) to compute 
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the interferogram. The primary difference is that akata et al. (2015) used a slightly 

different version of correlation called "cross-coherence." While both studies see clear 

body waves, Nakata et al. (2015) uses correlation, se lection filters , and noise 

suppression filters to ft.111her isolate body waves and creates a near surface p-wave 

ve locity estimate. 

Grechka et al. (20 12) shows how interferometry can have a large impact on 

microseismic surveys using geophones placed inside of a well as opposed to on the 

Eanh 's surface. As microseismic data becomes more common, more geophones are 

used to record signals from hydraulic fracturing . Microseismic events are located from 

these signals and the majority of the seismic signal is not used . Grechka et al. (2012) 

shows how with a little computing power, this noise can be turned into something 

useful. Grechka et al. (2012) was able to directly measure shear velocity in the 

horizontal and ve11ical pa11 of a well and demonstrates how interferometric methods 

could ga ther vertical-seismic-profile-like data . The wo rkflow that Grechka et al. (2012) 

uses is almost identical to the worktlow used in this study. Unfonunately, this study 

does not have any down.hole seismic data, but the Data Management section of this 

study touches on some of the computational difficulties. 

All of these interferometric applications rely on how well surface and body 

wa ,·es can be extracted, and almost all of the methods rely on a signa l to noi se ratio 

(S R) greater than 10 (Ha lliday et al. , 2010). With this study, 1 will compare different 

methods of interferometry and the va riables that go into those methods to obtain the 

interferogram with the most clarity. 
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( 'hapter I: Geologic Background 

Data propertit''> 

For this study, seismic data were provided by Tamecat, LLC and acquired by 

odalSeismic, LLC. NodalSeismic , LLC was acquiring seismic during a \·ibroseis 

exploration survey on the Bend Arch in No11h Texas and let their geophones acquire 

additional seismic data for varying lengths. The geophones gathered data for 

approximately I 0 days while the active source exploration seismic survey was being 

completed. The survey was a mobile survey capturing the Yertical component of the 

Ea11h ' s responses and contains more than 5,000 trace locations. The sampling interYal 

is 1 millisecond (ms) . The survey ' s data size is approximately 17 terabytes (TB). 

(reologic Bad ground 

The survey used in this srudy is located in North Texas on the Bend Arch at the 

northwest section of the Barnett Shale in the same petroleum system as the Fo11 Worth 

Basin as seen in Figure I . The area is adjacent to the Fort Worth Basin, where oil and 

gas ha\·e been found since the Civil War and has been producing since the early 1900s 

(Pollastro, 2007). This area , fom1ed by the Ouachita Thrust Belt, is home to the 

Barnett Shale source rock . Until 1998, conYentional wells were producing oil and gas 

from Ordovician and Permian age formations , but as of 2000, howeYer, the 
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Mississippian Barnett Shale has become the largest producer of gas in the area due to 

unconventional drilling and production methods (Poll astro et al. , 2007). 

The ova l shaped Fort Worth Basin elongates no11h and south and is one of many 

basins formed by the Ouachita Tlm1st Belt (Wa lper, 1982). The Fort Worth Basin ' s 

no11hem end is characterized by the Red Ri ver and Muenster arches while its west 

boundary includes the Bend and Concho arch (Pollastro, 2007). Figure 2 shows the 

general location of the oil and gas reservo irs relati ve to major structural formations. 

The seismic survey in this study was conducted to the west of the Bend arch. Pollastro 

et al. (2007) also finds common structures in the Fort Worth Basin include major and 

minor faults, local folds fractures , and thrust-fold structures. 

The uppermost part of the Bend Arch is dominated by inter-bedded limestone 

and shale. The Flippen Limestone is at the surface in thi s area as seen in Figure 3. The 

limestone is interbedded with layers of shale and thins to the east. Additionally, beds of 

black shale and dark limestone become more conu11on towards the east of the Bend 

Arch (Galloway et al., 1973). Agnich ( 1949) finds that the seismic velocities for 

limestone deposits in west central Texas can range from 8,000 to I 6,000 feet per 

second , or 2.4 to 4.9 kilometers per second. These ve locities are consistent with the 

ve locities found later in this study. 

Prior to the di scovery of oil and gas in the area , the history of the Bend Arc h and 

Fo11 Wonh Basin area was key to determining if the timing was correct for hydrocarbon 

maturi ty . This plays an impo1tant role in determining economic areas for field 

de\·elopment . 
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This Precambrian interYal is overlain by a section call ed the El lenburger that 

ex tends from the Cambri an to Mississ ippian times . Precambrian granite and diorite is 

found beneath the sedimentary section of the Fo11 Worth Basin and Bend Arch . This 

sec ti on has not produced hydrocarbons (Pollastro et al. , 2003 ). Carbonates were then 

deposited on top of the Precambrian rock over an area extending across the modem 

state of Texas . Sea level dropped towards the end of the deposition of the Ellen burger 

which caused the development of karst features thrnughout the basin (Pollastro et al. , 

2003). 

The Silurian and Devonian rocks were eroded away and the Barnett Shale was 

deposited during the Mississippian age. Structurally, the Bend Arch and Fo11 Worth 

Basin were fom1ed during the late Mississippian to early Pe1msylvanian periods when 

the Ouachita structural belt tluust onto the North American margin (Pollastro et al. , 

2003). The Bend Arch was a regional structural hi gh as seen in Figure 4. This minor 

uplift created erosional surfaces . Clastic rocks with origins from the Ouachita thrust 

sheets began depositing during this Pennsylvanian strat igraphic section. Rocks consist 

of mostly sandstones and conglomerates from the Middle and Late Pennsy!Yanian Age 

with limestone beds becoming less frequent. Most conventional oil and gas were found 

in the Pennsylvanian age rock, but oil and gas has also been found from Wolfcampian 

age sandstones on the Bend Arch (Pollastro et al. , 2003) . The generalized stratigraphic 

ection in Figure 5 shows the producing areas. The converging plates during this time 

not only caused the Fo11 Worth basin to form , but other simil ar basins including the 

Black Wa1Tior, Arkoma, Val Verde, and Marfa Basins (Pollastro et a l. , 2003) . 
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Figure I . The extent of the Fort-Worth Basin - Bend Arch total petroleum system in 

north central Texas. Major structural features are shown. The type of hydrocarbon 

produced out of each well is plotted (Pollastro, 2007). 
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(Galloway et al. , 1973). 
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Figure 4. Generalized cross-section of the Fort Worth Basin - Bend Arch petroleum 

system. The Fort Worth Basin is shown in the middle with the structurally high Bend 

Arch on the left (Pollastro et al. 2003) . 
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Figure 5. Generalized stratigraphic section of the Fort-Worth Basin - Bend Arch 

petroleum system with a1motated source rocks, seal rocks, and producing formations 

(Pollastro et al. , 2003) . 
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Chapter 2: Passi' r Sourer lnterferometr~· 

Passive se ismic data consists of the natural vi brations in the Ea11h . Pass ive 

sources range from small amplitude highway noise to large amplitude earthquakes. 

Jnterferomet1y uses passive seismic data to deri ve the Ea11h ' s true responses . By using 

the method proposed by Curtis et al. (2006), the passi ve seismic data are cross 

correlated and stacked until the actual noise is suppressed and a signal is seen. 

"Correlation" measures how well two signals relate to one another. "Stacking" 

is the process of averaging signals occurring in the same location. Cross correlation, a 

type of correlation, provides a trace that correlates hi gher when equiva lent signals are 

present. A signal may be identified when traces with low SNR are cross-correlated 

even though the signal is not seen in either of the input traces . When many traces with 

a low S Rare stacked at the same location , the identification of a signal is even more 

likely. 

This idea of cross correlating and stacking seems simple enough, but not very 

intuiti ve. Consider the "simple thought experiment" proposed by Cw1is et al. (2006) in 

Figure 6. Imagine if two receivers and a reflector are placed randomly and vertically 

between two impulsive sources as in the left image in Figure 6. The center-left image 

shows each receiver for each source individually . Source I RI shows a large amplitude 

initially followed by a second, smaller amplitude. These represent the direct and 

reflected wa e respectively. Source I R2 similarly shows a large amplitude followed 

by a mailer amplitude for the same reasons. The two amplitudes are closer together 

becau e R2 is closer to the reflector. Source 2 shows small amplitudes for RI and R2 
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because it is showing the transmitted wave through the reflector. The center-right 

image shows the result of the cross-coITelation between the traces for eac h source. The 

t\;vo traces are then stacked, as shown in the right image of Figure 7, to produce what is 

called an " interferogram." The stacked image is mirrored on a va lue of zero which 

represents "zero" time. Zero time represents the middle of the cross-coITelation result. 

Below zero time is positive time and, by convention, is refe1Ted to as the "causal" 

po1tion of the cross-correlation . Above zero time is negati ve time and is referred to as 

the "acausal" portion of the cross-correlation. The causal portion represents the 

comparison of a signal travelling from R 1 to R2 while the acausal po1tion represents the 

signal travelling in the opposite direction . 

For two signals, an interferogram shows how well the two signals relate . If the 

interferogram is analyzed from the perspecti ve of R 1, the interferogram shows an image 

that yo u would see if Rl was the source and R2 was a recei ver. By performing cross­

coITelation and stacking of multiple receivers with one specific receiYer, one is able to 

create an image that looks as if the chosen receiver is a source. Thi s is shown in Figure 

7. The recei ver that is a source is called a "v irtual source ." 

A reflector and two receivers in the middle of a medium suITounded by evenly 

distributed sources w ill never occur naturally. C laerbout ( 1968) shows that the 

reflection coefficients can be retrieved if that situation occurred naturally . The s ituation 

where many receivers are "son of ' surrounded by non-uniform sources on top of, or in , 

a multi layered medium is much more likel y. The signal s need to be conditioned to fit 

the assumptions made in Figure 6. 
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The first assumption is that the recei\·er must be completely and evenly 

surrounded by the signal that it is measuring . This is difficult to do because often 

signal s are di screte, vary in amplitude, and include the vibroseis sweep used in thi s 

study for conventional exp loration geophys ics. The \·ibroseis sweep does not have an 

equa l amplitude in all areas and has a distinct direction of wave propaga tion . An 

artificial way to create an evenly distributed signal that seems random would be to 

normalize the signal in a way that made each signal indistinguishable from each other. 

The signal would still be there , but the nonnal ization would lessen the effect of it. 

Another method would be to just remove the pa11 of the trace that contained the known 

signal. Many methods have been attempted to imitate an evenly di stributed s ignal. 

These methods will be discussed in Normalization. 

The second major assumption is that the signals that are recei ved are produced 

partly by direct arrivals and reflections in the Earth. In other words , the signals are 

coming from waYes bouncing off reflectors and not from noise from instrument sources 

and random signals . The stacking process should minimize the role of the instrument 

sources and random signals , but there needs to be a satisfactory amount of real Ea11h 

sources. For this study, this means that there needs to be enough traces to be stacked 

and a long enough trace such that the number of sources occurring in each trace is 

maximized . These methods will be discussed in Determining interval length, T . 

E\·en with these constraints, Lin et a l. (20 13) , Snieder (2004 ), Bensen et a l. 

(2007) , Halliday et al. (2008) , aka ta et a l. (20 15), Grechka and Zhao (2013) , and 

others haYe shown that the opportunities for ambient noi se cross-correlation are 

grow ing e\'ery day. Thi s ection will describe the theory behind interferometry and 
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how data can be conditioned to represent a uniform and e\·en signal to extract surface 

wave . The study generally follows the workflow set by Bensen et al. (2007), Lin et al. 

(20 I 3 ), and Nakata et al. (2015 ). 

\\ orldlo" 

The workflow created for the study is shown in Figure 8. This workflow 

was created from an analysis of workflows deYeloped by Bensen et al. (2007), Sneider 

(2004) , Nakata et al. (20 I I) , and Halliday et al. (2008). Before the interferometric 

equation can be applied the data must be conditioned to fit the assumptions made in the 

previous sections. The whole process can be broken down into two pa11s: data 

conditioning and computation. l n data conditioning, the processes include: reference 

trace selection, band-pass filtering , normalization, and spectral whitening. Computation 

is just the application of the inteferometric equations which is dominated by correlation. 

Data conditioning 

A '' reference trace" in this study refers to the trace that is cross-correlated with 

all other trace so that the location of the ' 'reference trace" becomes the location of the 

\'irrual source. This can be done for all trace locations. As shown by Lin et al. (2013), 
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a sn1dy that use the max imum number of trace locations has the smalle t amount of 

error. Usua lly studi es are limited by computing power. Optimization of processes for 

compu ting wi ll be di scussed in Data Management. Figure 9 shows line 34 in line wi th 

the reference trace at trace 60 . A ll wiggle plots were created using SeisLab 3.0, a 

MATLAB Toolbox available on MATLAB CENTRAL 's File Exchange library. The 

blue cones enclose the surface waves. Thi s reference trace was chosen because it is the 

middle of the survey shown in Figure 10 by the blue sta r. Figure 11 shows the cross­

li ne at line 55. 

I ortt! data anti crop 

A secondaiy goa l of thi s sn1dy was to find the most efficient way of computing 

the interferogram. In most exploration case, the data loading time expense is small. In 

interferometry it can be quite large. 

ln thi s sn1dy, each geophone held the Earth ' s response at a locati on in a singu lar 

direction for about I 0 days. These geophones were spaced approximately 165 ft in the 

no11h-south direction and generally 660 ft in the east-west direction. There are 

exceptions to thi s. Figure I 0 shows the acn1al spacing of the survey. The files holding 

the signal s were each a little over 3 g igabytes (GB). For reference, each file was greater 

in size than the stacked seismic vo lume collected from the vibroseis sweep by a factor 

of 2 . The tota l size of the passive seismic vo lume is 17.3 TB. The data was stored on 

an external hard dri ve, 20 TB RAJDBan.k5 by MircroNet, and was transferred by a 

cable with a USB 3.0 port. The transfer speed varied but averaged around 60 
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megabytes (MB) per second w hich is about 4 times as fast as a USB 2 .0 connection. 

Figure 12 shows the length of time required to transfer one ten day trace to 1A TLAB . 

The time is measured for 150 ten day traces. 

Add itio nall y, the signals that are to be cross-correlated need to occur at the same 

moment in time. The signals do not start a t the same time in their raw form , so they 

must be cropped. This specific data set had a few more issues than surveys procured for 

academic purposes because its ma in purpose was oi l and gas exploration. Because of 

this, the survey was done with a mobile v ibroseis sweep . A common way to complete a 

, ·ibrose is sweep is to have a gro up of geopho nes that move across the area being 

surveyed. In this survey, the center geophones were kept static w hile groups were 

moved around the center. The traces needed to be so11ed in to groups that occUITed at 

the same time. After this is done, the signals can be cut into interva l length sec ti ons . 

Re,ample 1(/1(/ detrent! 

The effect of resampling wi ll be discussed in the Data Management section, 

but it is genera ll y used for computational efficiency. The goal of a study determines the 

extent of resampling . For example, increasi ng the sampling interYal fro m I ms to 5 ms 

may not significa ntl y affect a study that looks to extract surface waves because surface 

wa,·es exist at frequencies lower than 50 H z, and the yquist frequency is 500 Hz and 

100 Hz for I m and 5 ms, respectively . akata et a l. (20 15) increases hi s samp ling 

interval from 2 ms to 30 ms because they are analyzing waves below 15 Hz. Schu ster et 

al. (2004) has fou nd that a wave needs to haYe propagated at least 2 - 3 periods before 
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the waYe can be identified. Consequentl y, the sampling interva l needs to be small 

enough to accommodate at least 2 - 3 peri ods of the wave the study is trying to obserYe. 

The standard sampling interva l for thi s study is increased from I ms to 4 ms . 

The sampling intervals that were tested were I ms, 4 ms, and 20 ms wi th yqui st 

frequencies of 500 Hz, 125 Hz, and 25 Hz respective ly. The total number of data points 

used in interferometric computation decreases with increasing sampling interva l. 

/Jami-pa ' filter 

Band-pass filtering is an impo11ant step because it helps iso late the surface 

waves. Surface waves are identified in interferometry because they have a high S R 

and occur in a we ll-defined frequency range. According to Halliday et al. (20 I 0) 

surface waves are dominant in the 0 - 30 Hz frequency band . The study done by 

Halliday et al. (2010) used acti ve seismic data which has a higher frequenc y range than 

pass ive source seismic data . This hi gher frequency range allows for high mode surface 

waves to be observed. 

In this study, a l-30 Hz band-pass filter (0-1-20-30 Hz Ormsby filter) was 

applied to the passive seism ic data and tested against broadband data. This choice of 

frequency range was made to full y cover the possible surface wave modes coming from 

the un.k11own sources. All images are broadband unless specified othe1wise. 

O/'l/lllfi;11ti1111 
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Time domain norma li za ti on is the most important step in creating a signal that 

replicates noise . Figure 13 shows the raw seismic windows for ten 20s intervals that are 

representative of the data at any receiver. Figure 14 shows the effect of different 

norma li zat ion methods on a noise burst in the seco nd wi ndow of Figure 13. The 

assumption that the receiver must be evenl y surrounded by equal sources must be 

sati sfied. If thi s is not satisfied, then large amplitude events w ill dominate the result. 

This causes the interferogram to have large , non-phys ical spurious events that make the 

surface waves difficult to identify , as seen in Figure l 5. Surfaces are more easily 

identified in I Sc and l 5d as shown by the highli ghted area. The nega ti ve effect of 

normalization is that the amplitude data from the extracted surface waves is lost 

completely. There are many different approaches to normalization and Bensen et a l. 

(2007) describes a few that he has found to be affective for interferometry. 

Bensen et al. (2007) considers fi ve methods to norn1al ize a signal: one-bit, 

clipping based on RMS amplitude, event detection and remova l, running absolute mean , 

and "water-level" normalization . These methods cover the whole spectrum of severity 

of nom1alization . One-bit normalization is the most extreme out of the five because it 

destroys any amplitude data that mi ght have existed . Running absolute mean 

normalization gives the user the option to vary the data in a large or small way. 

Running absolute mean normalization becomes one-bit normalization in its strongest 

case and doesn ' t change the data in its weakest case. The one-bit and running absolute 

mean normalization seem to provide the most meaningfu l data (Bensen et al. , 2007). 

One-bit, also referred to as sign bit, normalization assigns a l to positi ve 

amp litudes and a -I to negatiYe amplitudes as seen in Equation I , 
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{ 

1 if Uj > 0 

Vj = 0 if Uj = 0, 
-1 if Uj < 0 

(I) 

where u j represents a specific , ·alue in a trace and Vj represents the weighted value with 

index j. Changing the amplitude in such a radical way keeps only a sliYer of amplitude 

information, but satisfies the first assumption discussed at the top of page 16. One-bit 

nom1alization turns the uneven signal into a signal with even amplitudes throughout the 

signal. The one-bit normalization method also takes the least amount of computational 

power. Other methods require the computation of a value to weight the original signal 

by while one-bit nonnalization just has to determine the sign of the value. One-bit 

nom1alization is the nonnalization of choice for quick looks at data and data sets with 

large amounts of data. 

The running absolute mean method computes an average of the absolute value 

of the trace in a ce11ain window and weights each point that the window is centered on . 

The weight is shown by Bensen et al. (2007) in Equation 2, 

U · = -1- L:+~ lu · I 
ln111ning absolllte mean 2N+1 n--N J+n ' 

(2) 

vvhere N is the window size . The window is impo11ant because it detennines how much 

amplitude information is kept. A window of length I (N = 0) will give the one-bit 

normalization answer while an infinite window will give an unaltered trace. A window 

that is equivalent to half of the maximum period being studied is suggested by Bensen 

et al. (2007). ln this study, the normalization window is O.Ss centered on the rnlue 

being normalized . Running absolute mean normalization is the most computationally 

intensiYe. 
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The last normalization is an automatic ga in control (AGC) based on RMS 

average. Th is study wi ll term thi s type of nom1alization " length-to-I ." This proce s 

weights a ll values in a set w indow so that the length of the va lues w ithin the window is 

equal to one as seen in Equation 3 

1 

U · = (-1-("+'.! U2 · )2] . 
J length-to-1 2N+l Lm- -N J+n 

(3) 

The w indow used in this study is also 0.5s . Like running absolute mean normalizati on, 

length-to-] nonnaliza tion w ill become one-bit normalization with a wi ndow of I 

(Bensen et al. , 2007) . This method takes up more time than one-bit normalization but 

produces a clearer image. Length-to- I normalization is more time efficient than 

running absolute mean normalization and produces a similar image. 

Figure 14 shows comparisons of length-to-1 , one-bit, and running absolute mean 

nonnalization . For running absolute mean and len gth-to- I nonnalization , the data are 

dived by the weights as seen in Equation 4 

Uj norma lizat ion 

(4) 

where v1 is the weighted data . Figure 15 shows the interferogram for one inline for 

different normalization methods . The problem with one-bit normalization is that it 

would require a massive amount of cone lated traces to stack to produce a clear image. 

There are two methods of increasing the amount of correlated traces: decrea si ng interval 

length and longer recorded s ignal s. Decreasi ng interval length leads to problems that 

wi ll be discussed in Determining interval length, T and the recorded signal length is 

et for thi s study. 
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Whitening is a tep that is used to fu11her enforce the assumption that data must 

be evenly urrounded by homogenous sources for the interferometric equation to apply. 

Bensen et al. (2007) refers to this step as whitening, but other studies might describe it 

as energy nomrnlization . "Whitening" refers to the background frequency spectrum of 

the Ea11h. The Ea11h 's background frequency is assumed to be without any distinct 

peaks. Therefore , if a signa l is recorded and has distinct frequencies , then it must not be 

completely from the Ea11h. Whitening is done to make the frequency bandwidth of the 

data have an even amplitude distribution . This study follows Bensen 's et al. (2007) to 

multiply by the inverse of the smoothed frequency spectrum of a trace . The whitening 

step is a lso often "built-in" to the interferometric equations as w ill be discu ssed in 

Correlation. 

The spectrum of a trace shown in Figure J 6 is representative of the spectrum of 

the entire data set. Noticeable spikes in the spectrum occur at every 25 Hz interva l. 

Manual examination of the time domain data did not revea l any periodic spikes or tape 

ecryption enors. Therefore, I hypothesize that there is an ambient periodic source with 

multiple harmonics. 

'.'-.urface rn e computation: appl. ing interferometric equation 

App licati on of the interferometric equation is the next step in extracting the 

Green ' function . After the cro s-corre lations are completed for one I 0-day trace, the 
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coITelation are stacked. The correlations consist of a two-sided time series 

representing po iti,·e and negative correlation lag times both beginning at the middle 

va lue of the coITelogram. After stacking, the signal representing the Rayleigh wave 

emerges . 

The signals received from the sources in interferometry are not always 

transmitted directly from the original source. The recorded signal is often a 

combination of signals from multiple that have been scattered by anything that would 

reflect the wave. A collection of multiple scattered waves is ca lled a "coda wave." 

Additionally, it is li kely that these coda waves are scattered multiple times before being 

recorded and have a small amp litude as a result . The goal of applying interferometric 

equations is to constructively add the information contained in each of these waves over 

a large amount of coda waves. 

( orre/atHm 

Consider two receivers that are located in a medium and separated by a distance, 

R. In the medium, there are also sources that emit a signa l, S11 (t), where n is the index 

of each source. These sources include coda waves (Snieder, 2006). We assume that the 

\'elocity of the source signal does not change with time. The signal recorded by the first 

receiver is labeled u(xA, t) and the signal recorded by the second receiver is u(x8, t). 

The location of each receiver is represented by X;. Recei ver at location A, xA , is used in 

this example, and the source location is represented by x8 . IS11 (w)l 2 is the average 

power spectrum in the frequency domain . The time derivati,·e of the cross-co1Telation 
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ofu(xA, t) with u(xB, t) is equal to the causal and acausal parts of the Green ' s function 

between the two receivers (Snieder. 2004): 

(5) 

GAB (xA, xB, T) corresponds to the causal Green ' s function between receivers A and B 

for a time interval of length T, or interval length . The right-hand side of Equation 5 is 

the time derivative of the result of the cross-correlation and stack, DAB(t) 

(6) 

The length of the full recording is t. The recording is then split into equally sized 

sections to be correlated of length T . The number of correlated sections ism, and tm is 

a specific interval of the recording, t , corresponding to index m. If the recording time 

stans at t = 0, then t 111 is the time interval from 0 to T seconds . The record length for 

any index ni is represented by tm = (m - l)T to m.T seconds within length t . 

Nakata et al. (2011) proposed "power normalized cross-correlation" called 

"cross-coherence" 

(7) 

where CAB is the cross-coherence between receivers at xA and xB in the frequency 

domain ; Wm is the frequency of a specific interval length corresponding to tm ; U is the 

Fourier transform of signal u ; u· is the complex conjugate of U; < ... >denotes the 

ensemble average ; and .s is a regularization parameter. akata et al. (201 I, 2013) finds 

that c = 0.01 is the "smallest value needed to owrcome the potential instability of 

[CAB] introduced by division" in Equation 7. 

26 



Figure 9 and Figure I 7 show cross-coherence and cross-correlation respectivel y 

for the ame line of traces. Nakata et al. (20 11 , 20 15) both find cross-coherence to 

how the clearest surface waves. This study finds that for this area , cross-coherence and 

cross-correlation are very similar and indistinguishable . 

The seismic data for a ten day recording is split up into sections of a pre-

detern1ined length . This length is called the " interva l length ." Each of these interval 

lengths of data are then cross-correlated with data from another recording and stacked 

m times . The interval length can be different for each study, but it determines how 

much data the recording represents . A longer interval length results in an estimate of 

the Green's function that contains more frequency information and a more similar 

number of natural sources per interval length. A shorter interva l length results in an 

estimate that has a larger amount of stacking, m , but more va riability in the amount of 

sources per interval length . Equations 6 and 7 consist of normal terms and cross-terms 

(Snieder, 2006) . The nomrnl terms are real arrivals and reflections measured by the 

signal while the cross-tem1s are not real and can result in a noisy image Snieder (2004) 

finds that for an average over the number of sources is taken, the ratio of cross-terms to 

fr . 
normal terms decreases by a factor , where n 1s the number of natural sources and T 

T 

is the interva l length . 

/>011 er 'f'l't tr11/ 11or11111/i:11ti1111 

The difference between cross-conelation and cross-coherence is one of spectra l 

normalization. Wl1itening consists of dividing by the square root of the average of a 
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power spectrum in the frequency domain (Oppenheim and Verghese, 20 I 0) . This is the 

term, IS (w) l2 , in Equation 6 and the denominator term, IV(xa, Wm)l IV (xA, wm)I , 

in Equation 7. In exploration seismic, this can be thought of as the difference between 

' 'post-stack" and "pre-stack" spectral whitening. For two receivers , any g iven length of 

time will contain different sources. Dividing by the source power spectrum nonnalizes 

the variability in source distribution when the sources are unknown. Di viding by the 

average power spectrum of your virtual source can approximate the div ision by the real 

source average power spectrum in cross-correlation, IS(w)l 2
. Snieder (2004) shovvs 

that if an interval length is used such that the number of sources per trace is 

approximately equal , then the normalized average power spectrum is I . According to 

Snieder et al. (2009) , many studies do not div ide by the average power spectrum 

because the a\·erage power spectrum is not known . \Vhile removal of thi s division can 

lead to ringing, this study does not divide by the average power spectrum for cross­

correlation. 

J>ete1111i11i111.~ i11rerl'lll IC'11gtli, 1' 

As the interva l length, T, increases, the signal to noise ratio also increases . The 

S R of the surface wayes is impo1tant because it determines how well the surface 

waves can be identified . Figure 18 illustrates how increasing the interva l length affects 

the signal to noise ratio . The standard interferogram is shown in Figure 9 and has an 

interval length of 30 minutes. 

Figure 18 shows that the interferogram is clearer as the inten·al length is 

increa ed . For an interYal length of I minute, surface wa\'e can be identified \·isuall y 
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from trace -30 to trace J 5 . For an inten·al len gth of 5, 30 , and 120, surface wa\·es can 

be identified from trace -50 to trace 30. The clarity of the interferogram increases 

s li ghtly from an interval length of 5 minutes to an inten·al length of I 20 minutes . The 

blue arrow in Figure 18 indicates an area on the I 20 minute interval length 

interferogram where a surface wave can be identified, but identification on the 5 minute 

interval length interferogram is questionable. The increase in clarity from 30 minutes to 

120 minutes is nonexistent. l find that the 120 minute interval length interferogram is 

not significantly clearer than the 30 minute interferogram because there are not enough 

stacked traces for a stable result. A larger interval length generally produces a clearer 

image, but there must be enough traces to stack to adequately reduce random noise. 

The number of traces from an interval length of 30 minutes to I 20 minutes is reduced 

by a factor of 4 for a set total time. 

l chose an interva l length of 30 minutes , half of the interva l length chosen in the 

Long Beach study done by Lin et al. (20 12) and equivalent to the interva l chosen by 

akata et al. (2015). This leng th of time is long enough for the number of sources in 

each length to be approximately equal. Each recorded signal is split into blocks of 

I ,800,000 va lues before it is cross-cone lated . 

1000 samples 60 seconds 30 minutes 
number of values= x x -.- --- --

second minute m.terval length 

= 1,800,000 values 

The large interval length of 30 minutes was chosen to reduce the number of cross-terms 

in the urface wave data (S nieder, 2004) . These cross-terms are non-physical quantities 

that cause the interferogram to look noi sy. They can contaminate the result and reduce 
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the S R. To further reduce the contamination caused by an uneven source distribution , 

the symmetric-component co1Telation can be calculated . 

• \r111111errit'-co111po11l flt l on elatio11 

Once stacked, the causal and acausal components are averaged to retrieve the 

"symmetric-component" cross-correlations (Lin et al. , 2008). This is a method of 

suppressing the error due to a non-even source distribution (Lin et al. , 2008) . Analysis 

can be done on the raw interferogram before stacking to reveal the direction that the 

waves were propagating. Different sides of the cross-conelation result represent 

different directions of wave propagation. 

Results 

Ultimately, the best result is detem1ined by the image that gives clear surface 

waves for the longest distance from the virtual source. 1 have found that using a smaller 

sampling interval , a larger interval length, running absolute mean normalization, and 

cross-coherence produces the result that has the most distinguishable surface waves. 

Specifically in this study I used, a 4 ms sampling interval , 30 minute interval length , 

running absolute mean nom1alization with a 0.5 s window of normalization, and cross­

coherence. Fi gure 20 shows different surface wave modes that have appeared using the 

pre,·iously stated constraints . Figure 21 shows a 2 - 4 Hz surface wave propagating 

through a volume at different times . Figure 22 shows a north to south line intersecting 

the , ·olume in Figure 21 at a location offset from the vi11ual source. 
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I created Figure 20 finding interferometric gathers, or cross-section of seismic 

traces , and summing them. The traces are summed based on the distance of the trace 

from the , ·irtual source in the gather. Figure 20 can ' t be used for geologic interpretation 

app li cations, but it does present a clear image of the surface and body waves. In 

addition to the strong surface wave amplitudes shown by the blue arrow, there are other 

wave modes present. Again, an interferogram is mirrored across t = 0 s . At first 

glance, one sees the three distinct modes exhibiting different velocities . There is also a 

high velocity wave that is too fast to be a surface wave shown by the green arrow in 

Figure 20 . l interpret this to be a " diving" body wave as described by Nakata et al. 

(2015) . The body wave cou ld not be seen in a single gather like in Figure 9, but it is 

visible when gathers are stacked. The diving wave is evidence that body waves are 

present in the interferogram. 

Interferograrns can also be analyzed to determine the direction of the majority of 

the sources. If the source distribution were even from all directions , then the 

interferogram would look symmetric. In Figure 9 , this is not the case . The surface 

waves in the lower left quadrant have stronger amplitudes than the other quadrants . The 

amplitudes in the upper right quadrant are also stronger than the amplitude in the lower 

right quadrant. The difference in amplitude occurs because most of the sources are 

coming in from the direction corresponding to the left: south . When traces are 

co1Telated, the secondary trace is cross-correlated with the reference trace. 

Additionall y, the causal p011ion, or bottom portion , of the interferogram represents the 

waYe heading from the seconda1y trace to the reference trace for the left side of the 

interferogram. The greater number of sources from the south causes the amp I itudes to 
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be large in the lower left portion of the interferogram. When the secondary trace is on 

the ri ght-hand side of the reference trace, the reference trace is more southerly than the 

secondary trace . One then correlates the secondary trace with reference trace and the 

stronger amplitudes appear in the acausal , or upper, po11ion of the interferogram. 

Evidence of body waves is also seen due to the stronger amplitudes in the upper right 

and lower left quadrants. I therefore conclude that there are more sources coming from 

the south. The origin of these sources is most likel y from the highway that cuts through 

a corner of the survey and the machinery from a small industrial area that is also on the 

southern boundary of the survey. 
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Figure 6. Thought experiment proposed by Curtis et al. (2006) to describe 

interferometry. 
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Figure 7. The source on the left is detected by receivers (triangles) A and Bat different 

times, T Aaod TB · The correlated trace on the right is the difference in travel time 

between recei ver A and receiver B mirrored around T=O. (Schuster et al. , 2004) 
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Figure 9. Cross-coherence of all traces along I ine 34 with trace 60 corresponding to the 

blue star. Using baseline parameters of 4 ms sampling interval , 30 minute interval 

length, pre-correlation whitenin g, and bandpass filtering from 0 - 60 Hz (a) without and 

(b) with interpretation of group veloc ity of coherent events . (c) Spectrum of a 

representati ve correlated trace. Each trace is sca led by the maximum value in each 

trace. 
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Figure I 5. Results of cross-coherence using alternative nom1alization methods (a) no 

nonnalization, (b) sign bit, (c) O.Ss running window absolute mean, and (d) O.Ss 

automatic gain control (AGC) based on RMS average prior to correlation. All traces 

are filtered from I - 60 Hz. Highlighted areas indicate a surface wave arrival that can 

be identified in the running absolute mean and absolute va lue AGC nom1alization, but 

not in the un-nonnalized or sign bit images. 
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Figure 16. Spectrum of a representative trace (900,000 samples with l1t = 1 ms): (a) 

unfiltered original data, (b) after suppression of spikes due to an unknown noise source, 

(c) after application of a (0-0-60-120 Hz) band pass filter, and (d) after spectral 

balancing using Equation 7 and a va lue of E = 0. 03. 
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Figure 17 . Cross-correlation of all traces in line 0 with trace 60 line 0. The inputs are a 
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Figure 18 . Cross-coherence results for interval lengths of(a) I, (b) 5, (c) 30, and (d) 

120 minutes . Data have been filtered from 0 - 60 Hz. Each trace has been normalized 

by the maximum value in each respective trace except for the interferogram with an 

interval length of I minute, which is scaled by a single va lue. 
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Figure 21 . Time slices through the 2-4 Hz filtered component of the data at t = 0.04 , 

0.30, 0.80, and 1.20 s. The surface wave from the virtual source, green star, expands 

with time and reaches the edges of the survey at about t = 1.20 s. Seismic data have 

been linearly interpolated in the E-W direction to match the resolution in the -S 

direction . Data above 4 Hz are spatially aliased in the E-W direction and give poor 

images. 
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Figure 22 . Line A-A' filtered between 2-4 Hz as seen in Figure 21 at 0.30 seconds . 

The 0.30 s line is marked and shows that the surface wave can be seen for about 30 

traces . This corresponds to the length of the surface wave in Figure 21 at 0.30 seconds . 

The yellow lines indicate the start of the surface waves, generally. 
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Chapter 3: Data \lanagement 

( ornputation anal~ 'lis 

Interferomet1y turns supposed noise into information. Computing a full 

interferometric estimation seems to require incredible computing power for a large data 

set. In this section , I will describe just how much computing power is needed . This 

will be done using Big 0 analysis . 

The 0 in Big 0 notation is not a zero but a capital letter. The symbol is also 

called Landau ' s symbol after a Gennan theoretical mathematician, Edmund Landau 

(Lundqvist, 2003) . The 0 is a reference to the order of the complexity of the algorithm 

being studied (Lundqvist, 2003). Big 0 analysis describes the complexity of a 

computation as it approaches infinity. A decade ago, the 17.3 TBs, or 

17,300,000,000,000 bytes, of data that this study examines would have been a term used 

interchangeably with infinity, but modern surveys would just say that the data set is 

" large. " Big 0 analysis counts how many times a program " touches ," or operates on , 

this data . For example, given random integers, n and m , 

n+m=x (8) 

results in a Big 0 count of l. If N was a vector of 100 terms and m was an integer, 

Nm=X (9) 

results in a Big 0 count of N where X represents the respective terms of the product of 

each \'alue in N with m. N happens to be l 00 in this case . The Big 0 count is l 00 

because each of the I 00 terms in is multiplied by the integer, m . Luckily, Big 0 
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anal y is i characterized by a notation that does not require each "touch" to be 

documented . Big O analys is seeks to pinpoint the operation that affects the data set the 

most. It does not take into account each detail. Parker Phinney, founder of Interview 

Cake, desc ribes Big 0 math as "awesome, not-boring kind of math where you get to 

wave your hands through the details and just focus on what's basica/h· happening." Bi g 

O notation determines what the biggest factor in a computation is, "basically." The Big 

0 notation to describe 

f(n) = n + 1 

is O(n) , or 

f(n) = O(n) 

(I 0) 

( 11 ) 

where n represents the number of values in a set of data . The l is dropped because as n 

becomes arbitrarily large, the value I becomes inconsequential. For 

f(n) = n 3 + n + 1 ( 12) 

the Big 0 notation is O(n3 ) , or 

f(n) = O(n3
) . (13) 

Then and I are dropped for the same reasons . As n becomes arbitrarily large, n 3 

develops so much more quickl y than nor l that the va lues become computationally 

inconsequential. Lundq vist (2003) has listed some of the orders of Big 0 notation in 

Table I in order of complexity. Notice that Big 0 analysis measures complexity in 

relati\'e tem1s. Again Parker Phinney, personal tutor to many engineers in coding, 

describe this as " . . . [expressing] the runtime in terms of - brace yourse lf - hov,1 

quickly [complexity] grows relative to the input, as the input gets arbitrarily large ." 
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Unti l now, researchers have onl y used Big 0 analys is to describe the efficiency 

of computation time . Big O analysis can also be used to characterize other efficiencies 

includi ng memory usage, disk usage, and network usage. 

Notation Name 

0(1) Constant 

O(log(n)) Logarithmic 

O((log(n))C) Polylogarithmic 

O(n) Linear 

O(n2
) Quadratic 

O(rz.C) Polynomial 

O(cn) Exponential 

Table I . ames given to different stages of computational complexity in Big 0 

analysis 

\urfuce ll'lll'e t 111111mt11tio11: t 11rrelatio11 

lnterferomet1y is mainl y based on how we ll correlations can be computed. This 

srud y looks at two methods of correlation : cross-correlation and cross-coherence. These 

co1Te lations are computationally similar. The cross-conelation Equation 6 simplifi es to 

Equation 14 for one interva l length . 

DAB(xA, XB, tm) = !S(: )l2 u(x8, t111 ) * u(xA, t111 ) 
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The length ofu(x8 , t
111

) is one interval length , t . In the discrete time domain cross­

conelation is defined by 

(f * g)(t) = L~~0 f(r)g(r + t) ( 15 ) 

for f(t) and g(t) are interval length vectors in the time domain and g(T + t) is an 

interval length \·ector that is shifted over f for all time represented by f . Each point in 

f is multiplied by all points in g and then summed. An analysis of the operations leads 

to an equation of 

n x n + n = n 2 + 11 = O(n2
) (16) 

for n representing the number of each discrete value in one interval length . The cross­

conelation equation in the frequency domain is defined by 

(f * g)(t) = '.F- 1[F *(w)C(w)] . (17) 

The cross-cone la ti on in the time domain is the product of the complex conjugate of one 

function with the other in the frequency domain. Each function is Fourier transformed, 

multiplied together, and the result is Fourier transformed back to the time domain. 

Analysis of the operations for one interval length leads to an equation of 

n+11+n=3n=O(n) (18) 

for 11 representing interval length. The equation for cross-conelation in the frequenc y 

domain is often used because its number of computations is O(n) rather than its time 

counterpart O(n2
). The operations analysis equation for Equation 6 is 

m + m + m + m + k = 4m + 2n + 1 = O(m) , (19) 

where k = n + n + 1 and m = r11 
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where r is the number of interYal length traces , the fourth m term is the multiplication 

of-1
- and k is the a\·eraae RlvfS amplitude of all the points in the virtual source. 

IS(w) l2 ' 
0 

Again , the equation for cross-coherence is 

(5) 

and the operations equation is 

m + m. + m + m + k + k + 1=4m. +4n + 3 = O(m) . (20) 

The fourth m term in this instance refers to the division by the denominator and k refers 

to the average RMS amplitude of each of the tem1s in the denominator. An extra I is 

added for the scalar multiplication of€. Both conelation methods vary linearly, O(n) , 

with the number of input values. 

The cost of computation time varies linearly with the number of values as a 

result of the equations described previously. This is expected because the two equations 

differ by only a sum in the denominator of cross-coherence. The cost of computation 

dramatically decreases when correlation is computed in the frequency domain. 

Figure 25 shows the increase in time with increased input va lues for cross-coherence. 

The increase in time is due to the difference in Equation 19 and Equation 20. This 

computational difference is the di vision by the denominator in Equation 7. 

The computational efficiency of conelation is necessary to compute an 

interferogram in a reasonable amount of time. The correlation is computed in the 

frequency domain because co1Telation increase in time is quadratic and the correlation 

increase in frequency is linear, as shown in Equation 16 and Equation 18. The 

difference in conelation methods by Big O standards is negligible as shown by 
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Equation 19 and Equation 20. The quality gained from using cross-coherence is wo11h 

the computational time that is used . 

/)a/11 < O/ltfiti11/li1U.:: f/f//'lllttfi-:_t1tio11 

Norma li zing a data set in the time domain with a large amount of values can 

also be computationally intensive. In this study I test 3 different types of normalization : 

one-bi t, ru1ming-absolute-mean, and length-to- I . 

One-bit normalization is the least computationally intensive because it on ly 

requires a few steps to compute. The first step is to determine whether a value is 

positive, negative, or zero . Thi s can take a maximum of three "touches" per va lue by 

asking the fo llowing questions. Is the value positive? ls the value negative? ls the value 

zero? The second step wou ld be to replace the value with its corresponding one-bit 

va lue, I , -J , or 0. This represents one interaction. The largest computation equation is 

m. + m + m + m = 4m = O(m) (21) 

where mis the number of input va lues (m = rn). One-bit normalization also varies 

linearly with the number of input values. Figure 23 and 24 show the increase in time 

with the number of input va lues for one-bit normalization. As expected, normalization 

time increases linearly with an increasing number of input va lues . 

Running-absolute-mean is the most computationally intensive out of all the 

normalizations. Running-absolute-mean normalization divides each value by the local 

RMS amplitude. The "local" RMS amplitude refers to the RMS amplitude in a user 

defined window. The operations equation is given by 
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m + w(m + ni) = (2w + l )m = O(m) (22) 

Where the first mis the di vision of all , ·alues by the local RMS amplitude, w is the 

length of the local window, and (m + m) represents the RMS amplitude of all values. 

Even though this is an O(m) type of equation, w can be large depending on how much 

amplitude infomiation the user wants to retain . Figure 23 and Figure 24 show the 

increase in time with the number of input values for running-absolute-mean 

nonnalization . This increase is also linear. However, the effects of w can clearly be 

seen in Figure 23. The running-absolute-mean normalization time is orders of 

magnitude greater than one-bit and length-to- I normalization. I would suggest using 

length-to-! normalization because it provides a similar quality image but does not 

require such a Jong normalization period. 

Length-to-] normalization is less computationall y intensive than rulll1ing­

absolute-mean normalization but takes more time to compute th an one-bit 

nomialization. Length-to-] normalization weights the va lues in a user defined window 

such that the square root of the square of each va lue in that vvindow is equal to l . Each 

va lue in the window is weighted accordingly. The operations equation is given by 

m+ (m+m) = 3m =O(m) (23) 

Where the first m represents the division by the weight and (m + m) represents the 

computation of the RMS amplitude of all va lues. Again , lineari ty can be seen in Figure 

23 and Figure 24 and efficiency compared to runnin g-absolute-mean normalization can 

be clearl y seen in Figure 24. 

orrnalization can be as computationally intensive as conelation, so great care 

mu t be taken when setting up the interferometric workflow. Running-abso lute-mean 
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normalization may gi,-e the best result, but it is marginally better than the length-to-] 

method. It also ha a computational cost that one mi ght not be willing to pay depending 

on his or her available resources. One-bit normalization is the fastest method , but 

produces the worst results. ln the future , it may be wo11hwhile to uy one-bit 

normalization on a data set that has a total length of greater than I 0 days , the length of 

thi s survey, with an interval length of 30 minutes, the interval length in this survey. I 

prefer one-bit nonnalization because it completely takes care of the assumption of an 

evenly distributed signal, but l think there is not enough data to produce an image 

similar to the images produced by length-to- I or running absolute mean normalization. 

Increasing the total length of the data to over l 0 days might allow enough data for one­

bit nom1alization to be effective. 

Ila rd" arl' anal~ io; 

Another factor in the discussion of data management is the tools that are used 

for computation. There are two popular tools that are used for computation : computer 

process in g units (CPU) and graphics processing units (GPU). CPUs are faster and have 

more varied applications than GPUs. GPUs are slower but have orders of magnitudes 

more processors. GPU processors aren ' t designed for varied applications. 

GP s tend to work well when computing data that does not rely on previously 

computed data. For example, if l0,000,000,000 different numbers were multiplied by 

2, a GPU should be able to perform it quicker than a CPU. A disadvantage of using a 

GP is that data needs to be transfe1Ted to and from a GPU, so that time needs to be 
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taken into con ideration. A GPU works well for simple calculations, but the transfer 

peed to the GPU needs to be taken into account. 

CPUs rend to work well for data that builds on pre,·iously calculated data. This 

is because a CPU 's clockspeed, or speed of a single processor, is much faster than a 

GPU. For example, a CPU would be used over a GPU if one had a I e I 0 array of 

numbers, wanted to sta11 at the first number, and then add or subtract based on the 

average up to that point, then a CPU would be used . Generally, a more compl icated 

process wou ld be better suited for a GPU. 

Cross-con-elation and running-absolute-mean normalization was run on a GPU 

and CPU. Cross-correlation was chosen because the algorithm is built in a way that 

farnrs the GPU. Ru1ming-absolute-mean 's algorithm is built in a way that would 

benefit a CPU. MA TLAB 's built in GPU function was used to transfer data to the GPU 

and MATLAB 's parallel computing functions were used to access all computing cores 

on the CPUs. A NVrDIA Tesla C2075 workstation card was the GPU used for 

computation. The CPU used for computat ion was 2 quad-core Intel Xeon E5 -2643 

processors. The Tesla GPU costs$ 1399.99 (NVIDIA by Amazon.com) and a single 

Xeon processors costs $1249.95 (newegg.com). Figure 26 and Figure 28 are the raw 

re ult of normalization and correlation , respecti ve ly . Figure 25 and Figure 29 are 

divided by the cost of each piece of hardware to nonnalize the data. Since the CPU and 

GP may be of different quality, the normalization of the data is an attempt to reduce 

the difference in quality. 

The comparison of the CPU and GPU for normalization in Figure 27 shows a 

light! unexpected result. om1alization favors CPUs because its algorithm iterates 
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depending on the pre\·ious results . However, the CP is much slower than the GPU, 

but the rate of increa e in computational time is much smaller. The time required for 

computation for the GPU grows at 6 times the rate of the CPU. This means that for a 

mailer data set, the GPU would be optimized for computation, but for a larger data set, 

the CPU would be the best choice. The situation where the GPU is faster is almost not 

wo11h discussing because the time difference between the CPU and GPU for a small 

data set is still small. With current technology, the CPU is a better choice when 

computing an algorithm that is more complicated. 

The comparison of the CPU and GPU in Figure 29 is expected. Correlation 

favors the GPU because the algorithm doesn ' t depend on any computations before or 

after it. As the amount of data increases, the GPU is faster than the CPU by 

approximately a consistent factor of 3. For simple calculations like the fast Fourier 

transforms used in correlation, the GPU would be ideal. 

The computational hardware is not the only hardware involved in time 

management. Memory management was a main contributor to data management but 

wa not studied in this analysis because of resource constraints. Additionally, 

MATLAB was chosen as the platfom1 to execute the computations, and MATLAB does 

not manage its memory as well as a compiled programming language might, such as 

Fonran. Even though this study does not CO\'er memory management, here is another 

thought experiment. l present a few facts: 

The external hard drive that stored the 17 TB of passive seismic was transferred 

to my computer via a USB 3.0 connecting cable and pons (each 3 GB file 

transfer takes 30 second on average) 
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MATLAB could only compute interferograms of 2 passive seismic traces at a 

time with my 32 GB of RA 1 (the reference trace and one other trace) 

A full interferometric analysis would require the correlation of all of the passive 

seismic traces to each other 

There are a little over 5000 traces 

The number of inter-receiver conelations is 5000 x (5000 - 1) = 25,000,000. For 

this study, that would require 2.5e7 transfers betvveen the external hard drive and the 

computer because MATLAB could only hold 2 passi,·e seismic traces at a time. That is 

23.8 years at 30 seconds per transfer, and 23 .8 years is too long for any study. A larger 

amount of RAM would significantly reduce this time . The factor increase of RAM 

would decrease the computation by more than that factor squared and would be related 

to the number of passive seismic traces held. For example, if RAM is increased by a 

factor of 4 for this study I am able to hold 8 traces at once in MATLAB. I am able to 

compute inter-recei,·er coITelations bet'vveen all traces, or 28 coITelations. This 

translates to a saying of 7 transfers of data per trace. Another method of time reduction 

would be to use a different computational platform and a faster transfer speed. The 

i sue of transfer speed may be so lved for by the add ition of solid state drives (SSD). 

like to think that essentially infinite computing power is aYailable due to the 

proliferation of computer processors, but when computing power grows, other variables 

like RAM need to grow with it. 

There are many factors to consider when managing a large dataset. GPUs and 

P haYe their own areas of computational superiority. CPUs were fa ter for specific 

type of nonnalization and GP Us were faster for correlation . Lastl y, variables like data 
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transfer speed may not be something one immediately thinks about when deciding the 

fea sibility of a computation. Mapping out the flow of data is crucial to minimizing 

these ,·ariable computational "hang-ups ." 
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Figure 24. The same data as in Figure 23 , but each type of normalization time has been 

normalized by the maximum value of each set of data. 

60 



Q) 5 
E 
f= 

Variance of correlation computing time with increasing input values 

'Cross-correlat1on 
Cross-coherence 

20 

f Vr1 
J 

40 60 80 100 

Number of input traces 

Figure 25. Time required to correlate an increasing amount of traces of all the same 

length_ Cross-coherence increases at a faster rate than cross-correlation . 
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Chapter .t: Conclu~ion 

Interferometry, or ambient noise cross-correlation, is an effectiYe and 

increasingly popular way in exploration geophysics to estimate surface wa,·es . Seismic 

interferometry uses cross-correlation and stacking of ambient "noise" seismic data to 

approximate Green ' s function , or lag time, between two recei vers . Interferometry has 

been around for decades but progress in the field has only recentl y exploded. 

The goa l of thi s thesis was to find the cost of obtaining the clearest 

interferogram. There are two sub-goals in this problem: obtain the clearest 

interferogram and determine the cost of doing so. l hypothesized that this wou ld come 

from using cross-coherence, having a generall y longer inten·al length , and norn1ali zing 

with running absolute mean nonnalization. The processes that make the most 

difference are the choice of inten-al length and normalization method . An interva l 

length of 5 minutes will provide an adequate result but an interval length of 30 minutes 

wi ll provide the best result . Running absolute mean normalization and length-to- I 

normalization prO\·ide similar results that are both clearer than interferograms produced 

from one-bit nonnalization . This study did not find a significant difference between 

cross-coherence and cross-correlation, but cross-coherence is preferred because of the 

addit ion of power pectral normalization with only a sli ght increase in computational 

cost. 

Data management is always a key factor in determining interferometric inputs . 

Correlation in the frequency domain is ideal because computation time increase 

linearly with the number of time samples. In fact , the computation time of all processes 
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increases linearl y with the number of time samples. E\·en though the increase is linear, 

interferomet1y sti ll requires mass ive amounts of computational power. The hardware 

choices made when finding an interferometric result is almost as important as the 

al gorithm. GPUs perform more efficiently than CPUs for correlation, and CPUs 

perform faster when more complex algorithms are in vo lved, such as running absolute 

mean normalization . Data storage and transfer can also influence the speed of the 

interferometric computation just as much as the choice of computational processor. Al I 

of these variables must be considered when performing interferometry. In the future , 

we may find that interferomet1y ' s usefulness is limited in exploration geophysics , but it 

has come a long way and I belie,·e it has a long way to go . 

30 20 Length-to- I Cros -

coherence 

30 All (-5 000) Rm1n111g-absolute- Cross-

mean coherence 

Table 2. A comparison of the adequate and best choices of inputs into the 

interferometric workflow to obtain the most di stinct surface waves . 

65 

220 

920 



Chapter 5: Further\\ ork 

There a few steps that would improve the results from interferometry. Some of 

the e steps are related to the workf1ow and some are hardware improvements . 

1 have done the primary work to imprO\·e the workflow, but there are still a few 

things that can be done to improve it. The first and most obvious next step would be to 

continue the workflow and compute all inter-receiver signals. Secondly, 1 suggest 

building a normalization algorithm that detects the frequency range of anomalous 

e\·ents and build weights using the running-absolute-mean normalization method. 

Then combine these weights with the weights from other events, and apply the 

combination of these weights to the raw data . Currently, the method of normalization 

lacks the adapti\·e flexibility associated with a variety of events. Building this new 

normalization algorithm allows for normalization of e\·ents and doesn ' t affect other 

data. 

Improvements in hardware can easily solve many time management problems, 

but the latest hardware is not always available . My first suggestion is to compute 

interferograms on a computer with much more computing power. This will require a 

computer with a greater number of processing cores and CUDA cores . My second 

ugge tion is to find a faster data transfer method than a USB 3.0 port and cable. A 

olution to this may be the addition of an SSD and the use of a different programming 

platform. 
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lam program 

. F 

tic; 

number_of_cores = 6 ; 
matlabpool ( ' number of cores) ; 

disp ( '" "' ) ; 
disp ( ' 
disp(number_of_cores) ; 
toe; 

clear 

[header numbers , header text]=xlsread( ' 
load ( ' ' ) ; 

receiver_point_column = 9 ; 
receiver line column = 8 ; 

... ' ) ; 

• r ' ) ; 

inline rows = (1157] ; 
xline_rows = (5118] ; 
reference row location vecto r 
inli e_ro~s . xline rows) ; 

find reference rows(header numbers , 

all_reference_trace = length(re erence row location vecto r) ; 
leng h from reference receiver point = 59 ; 
number=of inlines = 37 -

o•erlapping ~indows vector (4] ; 
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for mulci_coun er = l : lengch(overlapping_windows_vector) 

overlapping_windows = overlapping_ windows_ veccor(multi_counter) ; 

minute length = 60000 ; 
interv~l length minutes = 30 ; 
interval-length- minute length * interval_length_mi nutes ; 

.r 

old sample rate 0 . 001 ; 
new sample- multiplier = 4 ; 
new-sample- rate = old sample rate * new sample_mult i pli e r ; 
interval length time ~ 
new_sample_rate~new_sample_rate : interval_length / 1000 ; 

norm_length 125 ; 

r. 

aec length = 0 . 5 ; 
flow = O/new sample multiplier ; 
fhigh 80/new_sample_multiplier ; 
nfilt 100 ; 

phase = 1 ; 
fl [4)/new sample multiplier ; 
f2 [SJ / new-sample-multiplier ; 
f3 [9]/new-sample-multiplier ; 
f4 [12)/new_sample_multiplier ; 

lpl = 20 ; 
lp2 = 30 ; 
ampl = 1; 

amp2 = 60 ; 
sample race 1/new_ sample_ rate ; 

freq_ranges length(fl) ; 

for reference race counter= l : all reference trace 

number of files column = 7 ; 
i 
header_numbers(reference row locacion vector(reference trace cou 
ncer) , number of_files column)< 3000 

c..on inue ; 
e d 
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reference receiver point = 
header numbers(reference row_locat1on vecLor(reference race counter) , 

receiver poin column) ; 
reference receiver line = 

header numbers(reference_row_location_ vector(reference_ trace_ counter) , 

receiver_line column) ; 

number of inlines counter = number_of inlines : l : number_of inlines ; 

receiver_vector = zeros(size(number_ of inlines counter)) ; 
f o r receiver length count e r = l : length(number of inlines counter) 

receiver=vector(receiver length counter) ~ 
reference receiver line + 

- -
(number_of_inlines_counter(receiver_ length_counter)*4) ; 

end 

receiver vector (1161 , 1157 , 1153) ; 

all receivers length(receiver_ vector) ; 

reference row location = 
reference row_location_ vector(reference trace counter) ; 

[reference_trace , reference trace header , reference records) = 
retrieve_reference_trace(reference_ row_ location , header numbers , 
eader_text , ' ') ; 

disp (' 
toe ; 

o r receiver counter 
0 1 freq=counter 

receiver line 

row = 

-. r 1 

r c 

l : all_ receivers 
l : freq_ranges 

.. r u 

receiver vector(receiver counter) ; 

') ; 

find(header_numbers( :, receiver line column) ==receiver lin 
) ; - -
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recei er_points Sll8; 

r.race locar.ions 
zeros(length_from_reference_receiver_point*2 + 1 , 9) ; 

loop number = l ; 
average_number_of_values 0 ; 

correlated traces xcohere notwhite = zeros(((2 * 
in erval engt.h) . 7new sample mul iplier) - 1 , 
length from reference-receiver point*2 + 1) ; 
correlated_traces xcohere_notwhite = 
single(correlated_traces_xcohere_notwhite) ; 
avg power spec= zeros( ((2 * 
interval length) . / new sample multiplier) - 1 , 1) ; 
avg power spec= single(avg power spec) ; 
timing= zeros(length(rece1~er po1nts) , 6) ; 

r , 

for counter l : length(receiver_points) 

retrieve tic = tic ; 

rece1ver_po1nt row = 
find(header numbers(row , receiver_po1nt column) 
receiver_poin s(counter)) ; 

if isempty(rece1ver_po1nt row) 
cont.inue ; 

end 

row location row(rece1ver_po1nt row(l)) ; 

[secondary trace , secondary_trace_header , 
secondary_records , receiver point] = 
retrieve secondary trace(row location , reference row 
location~header_nulnbers , header ext , ' - ' ) ; -

disp ( ' 
timing(counter , l) 

' ); 

toc(retrieve ic) ; 

secondary trace header = 
eel 2mat(secondary_trace header( :, 2)) ; 

[time 1 , time 2) =time sort(reference trace_header , 
secondary race header , reference records , 
secondary=records) ; 
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( ime_l == 0 ) I I (t:ime '.: 0 ) 
disp ( ' 

' ) ; 

con inue ; 
end 

disp( ' • . ' ) ; 

• r 

crop ic = tic ; 
reference trace = single(reference trace) ; 
secondary_ race= single(secondary_ trace) ; 
[reference crop , secondary crop , error] = 

data crop(reference_ trace , refe rence trace header , 
seco dary_ race , seconda r y_trace_ header , time 1 , 
time_2 , r e f erence records , s e condary_ records , 
interval_ length) ; 

reference_ crop_ traces 
secondary crop traces 

if e r ror 0 

end 

disp ( ' ~ 

return ; 

clear 

disp ( ' . ' ) ; 

length(re f erence_crop(l , : ) ) ; 
length(secondary crop(l , : ) ) ; 

• l ' ) ; 

timing(counte r , 2) = toc(crop_ tic) ; 

reference_ crop = 
reduce_ samples( r eference_ crop , new_sample_multiplier 

secondary crop = 
reduce_samples(secondary_crop , new_sample_multiplier 

disp ( ' 

reference_ crop 
secondary_ crop 

. ' ) ; 

detrend(reference crop) ; 
detrend(secondary=crop) ; 
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disp (' . ' ); 

reference crop= filter(Hd , reference crop); 
filter_tic = tic ; -
secondary_crop = filter(Hd , secondary_crop) ; 
disp ( ' ' ) ; 
timing(counter , 3) = toc(filter tic) ; 

1' 

norm tic = tic ; 

) ; 

r , r 

r. 1r ) ; 

r r.: 1:r r r -

reference crop = 
running_abs_mean normalization edit(reference crop , 
orm_length) ; 

secondary_crop = 
running abs_mean normalization edit(secondary crop , 
orm_length); 

disp ( ' 
toc(norm_tic) ; 
timi g(counter , 5) 

white tic tic ; 

. ' ) ; 

toc(norm_tic) ; 

f •I ; 
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reference_crop 
secondary_crop 

whi en ra c es_short(reference crop) ; 
wh iten traces short(secondary_crop) ; 

iming(counter , 6) toe (white ic) ; 

disp( ' . ' ) 
toc(white tic) ; 

xcohere tic = tic ; 
lag time xcohere = single(zeros(((2 * 

inLerval_leng h) . / new_sample_multiplier) - 1 , 1)) ; 
reference_ crop single(reference_ crop) ; 
secondary_crop = single(secondary_crop) ; 

for xcorr_counter = l : overlapping_windows 

end 

reference hold = 
single(overlap_time_windows(reference_ crop , 
overlapping_windows , xcorr counter)) ; 

secondary hold = 
single(overlap_time_windows(secondary crop , 
overlapping_ windows , xcorr counter)) ; 

lag_time xcohere_hold = 
cross_cohere fft gpu L2mean(secondary hold , 
reference hold) ; 

lag time xcohere = lag time_xcohere + 
single(lag_time xcohere hold) ; 

clear 
clear l' 

clear 
clear 

' ; 

disp (' 
timing(counter , 4) 

' ) ; 

toc(xcohere tic) ; 

correla ed traces xcohere notwhite( :, loop number)= 
lag time-xcoher~ ; - -

disp_tex sprintf ( ' 
' , reference receiver line , 

reference_ receiver_point) ; 
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disp(disp_text) ; 
disp text= sprin f( ' 

~ , recei ver_line) ; 
disp(disp text); 
disp_tex -= sprintf ( ' 

' , councer , leng h(receiver points)) ; 
disp(disp_cext) ; 
number of computed values= (time ~-time_l) / 1000 ; 

disp_text-= sprintf( ' 
number_ o f computed values) ; 

disp(disp text) ; 
average number o f values = average number of va ues + 

number_of computed values/leng h(receiver_points) ; 

trace locations(loop number , l) receiver line ; 
trace= locations(loop-number , 2) receiver poinc ; 
actual x column = 13 ; 
actual_y_column = 14 ; 
trace locations(loop number , 3) 

header numbers(row=location , actual x column) ; 

trace_locations(loop number , 4) = 
header numbers(row location , actual_y_column) ; 

trace_ locations(loop_number , 5) 
reference_crop_traces ; 

trace locations(loop_number , 6 ) 
average number of_ values ; 

trace locations(loop_ number , 7) 
abs(header_numbers(reference row location , actual x 
olumn) -
header numbers(reference row location , actual_x_co lu 
n)) ; 

trace_locations(loop_number , 8) = 
abs(header_numbers(reference row_location , actual_y_ 
olumn) -
header numbers(reference_row_location , actual_y_colu 
n)) ; 

trace locations(loop_number , 9) = 
((trace_loca ions(loop_number , 7)A2) + 
(trace locations(loop number , 8 ) A2) ) A( . 5) ; 

loop number= loop_numbe r + l ; 

save file 

.r. 

sprintf( ' 
' , new_sample_multiplier 

reference receiver line , 
reference=receiver=point , receiver_line) ; 
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end 
e nd 

e nd 
end 

disp ( ' m 

I imt• Sort 

end 

save info= sprintf( ' 
new_sample multiplier , 

eference receiver line , reference recei ·er_po int , 
receiver line) ; 

save(save file , 

save(save info , 

disp ( ' 

toe ; 

. ' ) 

'J; 

t- • , '1" 

' ) ; 

' ) ; 

' ) ; 

' , r 

func ion [start_time , end time) =time sort(reference trace header , 
secondary_trace_ header , reference_records , secondary records) 

header l 
header-2 

reference trace header ; 
secondary trace_header ; 

header_l_start =header 1(6 , 1) ; 
header_l_end = header 1-start + 

(header_!( , !)*reference recordsrlOOO); 
header 2 s art= header 2(6 , 1) ; 

81 



header 2 end = header 2 s a r t -
( heade~ ~( , l )· s e condar ; _reco r ds - 1000 1 ; 

end 

header 1 start > header 1 end 
s ar ime = O; 

end time 0 ; 

return ; 

if header 2 start > header 2 end 
start time = O; 

end time 0 ; 

retur n ; 
end 

r l 

if header 2 end < header 1 start 

start time = 0 ; 
elseif header 2 start <= header 1 start 

start time 
else 

start time 
end 

header start ; 

header 2 start ; 

if header 2 start > header 1 end 

end_time = O; 
else_~ header 2 end >= header end 

end ime header_l_end ; 
else 

end ime header_2_end ; 
.::nd 
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ormahn1t1011 length-to- I 

fun- ion [ norm_matrix no rm ( matrix , no r m_leng h ) 

norm matrix= zeros(size(matrix)) ; 
steps= fix(length(ma rix( :, l)) / no rm_length) ; 

for norm_ coun er= l : length(matrix(l , : )) 

end 

for norm_ counter_ hold = l : steps 
start_norm = 1 + ( (norm_counter_h o ld - 1) •norm_length ) ; 
end norm = norm c ounter hold*norm length ; 
mat~ix hold = -

gpuArray(matrix(star _norm : end_n o rm , norm_c ounter)) ; 
norm_mat r ix(start_norm : e nd_ norm , no rm_c ounter) 

gather(normc(matrix_ho ld)) ; 
end 
if steps-= length(matrix( :, l)) / norm_ leng h 

start norm = 1 + (steps • norm length) ; 
end_norm = length(matrix(l , : )) ; 
matrix ho ld = 

gpuArray(matrix(star _ norm : end_ norm , norm_ c ounter)) ; 
norm_ma rix(start_norm : end norm , norm_counter) 

gather(normc(matrix_hold)) ; 
end 

ormalization running-abliolute-nwan 

func ion [normalized trace] = 
run ing_abs_mean_no r ;alization(non normal trace , time window) 

runni g window = time window ; 
abs_tra~e = abs(non normal trace) ; 
number_o f_traces =le gth(abs trace(l , : )) ; 
leng h_of_ race= length(abs trace( :, l)) ; 
upper_limi = leng h of trac~ - running window; 
" e i gh s = zeros(lengt h_of trace , number=of traces) ; 
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running_window_ imes2_plusl :•run ing_window ~ - · 

part~- coun er= l : number o~ races 
ingle trace= abs race{ :, coun er); 
ni iai sum= sum(;i gle crace(l:running window)) ; 
c_ sub=counter = l : leng h of race -

.;;nd 
end 

i~ sub coun er <= (run~ing window - 1) 
initial sum= inicial ;um - singe race(s b_coun er -
running-window) ; - -
window to al= (ini ial_sum)/(running_window + 
sub counter) ; 

elseif sub counter ~= upper limic - 1 

else 

end 

initial sum= ini ial s~m - si gle crace(sub coun er -
running-window - l) ; - - -
window total= (initial sum)/(running window~ 
leng h=of trace - sub_coun er+ ) ; -

initial sum= ini ial sum+ single race(sub_councer -
running window) - single race(sub councer -
running window - l) ; 
window total= (initial sum)/running_window times2_plusl ; 

weights(sub_counter , counter) =window tota 

normalized_ trace non_ normal trace . /weights ; 

\\ hiten 

func ion [matrix) =whiten traces short(macrix) 

acrix single(matrix) ; 

matrix fft(matrix) ; 
keep phase= angle(matrix) ; 
matrix ma rix . /(abs(matrix)+max(mean(abs(matrix)))) ; 

ma rix 
ma rix 

abs (matrix) . "exp ( li •keep phase) ; 
abs(ifft(matrix)) ; 
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( ro -corrl'lation 

t une ion [time_lag_fft) = cro ss_corr_ffc_pc (ma rix l , ma rix : i 

side width= length(ma rix 1(1 , : )) ; 
down width= leng h(matrix-1( :, 1)) ; 
xcorr_length = (down_width*:)- 1 ; 
sum_xcorr fft zeros(xcorr lengch , l) ; 
seccions = 4; 

for coun er = l : sections 
fftstart = 1 + (side width*(counter-1) / sec i o ns) ; 
fftend = counter•sid~ wid h / sections ; 
current xcorr fft = 

ifft(fft(matrix_l( :, ffts art :f ftend) , xco rr leng h) . •con ] (f (ma 
rix 2( : , fftstart : ff end) , xcorr length))) ; 

currenc xcorr_fftshft=fftshift(currenc xcorr fft) ; 
sum xcorr fft = sum xcorr fft + 

sum( c urrenc x~orr_fftshft , 2) / side_width; 
end 

ime lag ff t sum xcorr fft ; 
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/ 

( ro -cohl n•n e 

: unc ion [time lag otal) = 
cross_cohere_fft_gpu_L2mean(ma rix l , ma rix 2) 

reset(gpuDevice) ; 

max_gpu count = SeE ; 
side_width length(matrix ( , : )) ; 
down width = length(matrix 1( :, )) ; 
xcorr leng h = (down_width.2)-1 ; 
max lines = fix(max gpu count / down width) ; 
sections = fix(side- wid-h / max lines) ; 

i f sections == 0 

matrix_ l _ gpu 
matrix_ 2_ gpu 

gpuArray(ma rix ) ; 
gpuArray(matrix_2) ; 

fft_matrix_ l fft(matrix 1 gpu , xcorr leng h) ; 
ff _matrix_ 2 fft(matri x_2_ gpu , xcorr_length) ; 
ff _matrix_ l _ scale = sqrt(sum(abs(fft_matrix_l) . A2 , 2)) ; 
fft matrix 2 scale= sqrt(sum(abs(fft matrix 2) . A2 , 2)) ; 
fft-matrix-scale = fft matrix 1 scale~rfft ma rix 2 scale ; 
fft - matrix l norm= sqrt(sum(abs(fft matrix ll . A:)i7 
fft- matr i x-2-norm = sqrt(sum(abs(fft-matrix-2) . A2)) ; 
fft-matrix-norm = (fft matrix 1 norm~•fft matrix 2 no rm) ; 
ma rix_ white = . Olr(abs(fft matrix l)+abs(fft_matrix_2)) ; 
fft matrix norm= bsxfun(@plus , matrix white , fft ma rix o rm) ; 
curre t xcorr fft = fft matrix l . *conJ(fft matrix 2) ; -
keep angle = angle(current xcorr fft) ; - -
current xcorr fft abs(current_xcorr ff ) . / abs(fft_ma r1x o rm) ; 

current xcorr fft 
current xcorr fft 

current xcorr fft . ·exp(li'keep_angle) ; 
ifft(current xcorr fft) ; 

current xcorr fftshft =fftshift(current xcorr fft) ; 
ime_lag ff sum(current xcorr fftshft , 2) / side ~id h ; 
ime_lag=ff gather(time-lag fft) ; -
ime_lag o al abs(time lag fft) ; 
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/ 

ime_lag_to al= :eros(xcorr _ength , l); 
incremen fix(side_wid h / sections); 

f o r counter= l : sections 
ffts art ~ incremen •(cou er-); 
f:tend = coun er · increme t ; 
matrix hold= matrix _(: , :fts ar : fftend) ; 
matrix_:_hold = matrix-:(· , f:tstart : ff end) ; 
matrix=l=gpu gpuArray(matrix 1 hold); 
matrix_2_gpu gpuArray(matrix_:_hold) ; 

ff _mat rix 1 fft(matrix l gpu , xcorr length) ; 
fft_ma rix_: ff {ma rix=2=gpu , xcorr=length) ; 
fft_ma rix_l_norm = sqr {sum{abs(ff matrix l) . ~ :)) ; 

fft matrix 2 norm= sqr (sum(abs(ff -matrix-:) . 2)) ; 
ff -matrix-1-scale = sqrt{sum(abs{ff- matri~ l) . : , :)) ; 
fft-ma rix_:_scale = sqrt{sum{abs{:f -ma rix-:) . 2,2) ) ; 
fft=matrix=scale = fft_ma rix_l_scale~·fft_ma rix_:_scale ; 
fft_matrix_norm = {fft ma rix l norm . •f: ma rix : norm) ; 
matrix white= . 01* (abs{fft ma rix l)~abs(ff matrix:)) ; 
fft matrix_norm = bsxfun(@plus , matrix_white , fft_matrix_norm) ; 
curren xcorr ff =ff ma rix ! . · c onj (fft ma rix :) ; 
keep_angle = angle(current_xcorr_ff ) ; -
cu rrent xcorr f ft = 

abs(current xcorr fft) . /abs{fft ma rix_norm) ; 

end 

curren xcorr f ft 
current xcorr f ft 

curren _xcorr_fft.•exp( i~keep_angle) ; 

ifft(current xcorr f:t) ; 

curre t xcorr fftshft=fftshif (current xcorr fft) ; 
time lag fft ~ sum(current xcorr f sh , :) / side_wid h ; 

ime lag-fft = gather(time lag ff ) ; 
time lag-total time lag_-otal + ime lag f:t ; 

f ts art = (sections * incremen ) + 
fftend = side width ; 
matrix 1 hold= matrix l( :, fftstart : fftend) ; 
matrix-2-hold = matrix- 2( :, ff start : :f end) ; 
matrix-1-gpu gpuArray(matrix_l_hold) ; 
matrix=:=gpu gpuArray{matrix_:_hold) ; 

fft ma rix l fft(matrix 1 gpu , xcorr_length) ; 
ft_ma rix: fft(matrix-2-gpu , xcorr_length); 

ff matrix 1 orm = sqr (sum(abs(ff _matrix_l) . A:)) ; 
f t=matrix-2-norm = sqrt(sum(abs(fft_matrix_2). A:)) ; 
fft_ma rix-1-scale = sqrt(sum{abs(fft_matrix_) . ~ : , :)) ; 

f _ma rix: scale= sqr (sum(abs(fft_ma rix_:) . A: , :)) ; 
ff _ma rix=scale fft_ma rix_l scale . 'fft a rix_:_scale ; 

87 



ff _ma r1z_norm = (~f::._ma rix ! nor . · f_;: .. a::.rix : :oorm); 
macrix ~hice = . O! · (abs If ;:~.acr1x_ )-ats1ff;:~ a~r~x_:) ); 
ff _macr1x_norm = bsxfu:;( p:us , ma::.r x_~~l::.e ,:f c_ma::.rix norm); 
curren _xcorr_ff = fft_macrlx_~. · co .. j (ff::._ma;:rix_:); 
keep_angle = angle(curre;;t:_xcorr_ff;:); 
curren xcorr ff 

abs(curren xcorr ff ) . /abs(fft_macrix_r.orm); 

end 

curren xcorr ff;: 
current. xcorr ff 

curren xcorr f t:. · ezp(:1 · Y.eep_angle); 
ifft:(cu~rent: xcorr ff;:); 

current: xcorr fft:shf =fft:shif (curre xcorr ff;:); 
time la~ ff sum(curren _xcorr_ff shfc , :)/side_~id::.h ; 
time-lag-fft = ga her(t.ime lag fft) ; 
t.ime=lag= otal t:1me lag -o al ~ ime lag_fft. , 

time lag co al =abs(time_lag_ o al); 
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