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Abstract

The extraction of Earth responses from seismic data without an active source has
received more attention in the past decade than ever before. This growth in popularity
is primarily due to the increased availability of computing capabilities required to
process such data. Interferometry is the most common method of processing passive
ambient data. Different methods of interferometric computation are compared in this
study and a workflow for the interferogram with the most clarity is presented. Methods
of normalization include running absolute mean, sign bit, and an automatic gain control
(AGC) based on root mean squared (RMS) average. Interval lengths from 1 minute to
120 minutes are compared, and the differences between cross-correlation and cross-
coherence are examined. The final workflow uses running absolute mean
normalization, cross-coherence. and a 30 minute interval length. Interferometry often
deals with large amounts of data, greater than 17 terabytes in this case. Additionally,
Central Processing Units (CPUs) and Graphical Processing Units (GPUs) are both used
on each step of the workflow to find the most efficient hardware for each process. I
analyzed the time cost associated with steps in interferometric computation and found
CPUs operate faster on complicated normalizations and GPUs operate faster on simple
normalizations and correlations. The workflow does not change based on these

findings.
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Introduction

Modern exploration geophysics requires more efficient and effective ways to
extract meaningful data from measurements. The main tool exploration geophysicists
use today are elastic vibrations in the Earth. The sources of these vibrations fall into
two distinct categories: active sources and passive sources. Active sources include any
vibrations that are intentionally created such as dynamite buried underground and large
vibroseis trucks. Passive sources include vibrations that are not intentionally created
such as earthquakes, highway vibrations, or anything else that might unintentionally
cause the Earth to move. Geophones along with accelerometers are used to record the
Earth’s seismic response. A few decades ago, data collected from geophones were
incredibly limited because computer storage had not reached the level needed to hold
large seismic datasets. The amount of storage required to house today’s seismic data
sets can be more than 20 Tb for a single survey. Today’s data storage is adequate for
these surveys, but simple processing computations have suddenly become monumental
challenges. The problem has spread to other areas like processing speed and data
transfer rates. These computational steps must be controlled in a way to minimize the
time to extract useful information. Interferometry makes use of a computationally
inexpensive and mathematical simple operator: cross-correlation. I use interferometry
to test data management methods on a 17 Tb passive seismic data set.

Interferometry, or ambient noise cross-correlation, is an effective and
increasingly popular way in exploration geophysics to extract surface waves. The

extraction of surface waves has applications including removal of surface waves from



active exploration seismic data and near surface shear wave velocity estimates. Seismic
interferometry uses correlation and stacking on passive seismic data to approximate the
Green’s function, or lag time, between two receivers. Interferometry assumes that the
signal received from the passive seismic data consist of Earth responses that are
indistinguishable from real noise. By cross-correlating and stacking all traces, or data
received from a set position on the Earth, with a single trace over a large amount of time
(days). the real noise is suppressed and meaningful signals that originally appeared as
noise are enhanced. The resulting “interferogram,” or image produced from
interferometry. looks as if one receiver had been a source recorded at all other receivers.
The receiver that looks like a source is called a “virtual source.” Deconvolution is used
in other types of interferometry, but the source is meant to be suppressed in those
applications (Vasconcelos and Snieder, 2008). This study. however, does not want to
suppress the source. Once the interferogram is created, it can be analyzed to discover
new information. Lin et al. (2013) used interferograms to create a near surface velocity
model. Until recently, only surface waves have been found, but Nakata et al. (2015)
and Lin et al. (2013) found and extracted body waves from an interferogram. Grechka
etal. (2012) uses geometry and data already present in microseismic surveys to find
anisotropic parameters. My goal will be to produce the clearest possible interferogram
and find the computational cost of creating that interferogram. All applications of
interferometry. such as creating near surface shear velocity estimates and estimating
anisotropic parameters, rely on the user’s ability to distinguish surface waves from
noise. Producing the interferogram with the most distinct waves will make the

applications of interferometry even more accurate. I hypothesize the interferogram with

(3]



the most distinguishable surface waves will become apparent by correlating with cross-
coherence, normalizing with running-absolute-mean normalization, and using a longer
interval length. A graphics processing unit (GPU) will be most useful in computing
correlation and a central processing unit (CPU) will be most effective on running-
absolute-mean normalization, but both will be limited due to hardware constraints.

Chapter | is a review of the regional geology of the Fort Worth Basin and Bend
Arch areas.

Chapter 2 describes passive interferometry and how useful information can be
derived from oscillations provided by unknown sources. This chapter is divided into
two sections: data conditioning and application of the interferometric equations.

Chapter 3 analyzes computational methods and how to deal with a large dataset.
This chapter is split into three sections: computational analysis of data conditioning,
computational analysis of the application of interferometric equations, and hardware
analysis. The computational analysis section focuses on the elements that are the most
computationally rigorous — normalization and correlation for data conditioning and the
application of interferometric equations, respectively.

Chapter 4 concludes the study and reviews the outcomes of Chapter 2 and
Chapter 3.

Chapter 5 gives suggestions of work that could be done in the future related to

interferometry and data management.



Viotivation

The goal of this study is to identify the best process of interferometric
computation to improve the separation of signal from noise in an interferogram. All
applications of interferometry require the identification and extraction of signals from
an interferogram. All of the extraction techniques depend on the ratio of the amplitude
of the signal to the amplitude of the noise. Consequently, accurately identifying surface
and body waves from interferograms contributes significantly to the extraction of
information useful to exploration geophysics such as near surface shear velocity
models, reflection imaging. and anisotropic parameter estimation. I will make the
applications of interferometry more accurate by creating the workflow to achieve the
most distinct waves. Some studies that analyze the applications of interferometry are
presented here.

Lin et al. (2013) applied interferometry to a data set from Long Beach, CA,
constructing a near surface shear wave velocity model up to 600 m. Lin et al. (2013)
started by using interferometry on the dense receiver array to record higher frequency.
0.5 — 4 Hz, Rayleigh waves. Eikonal tomography was then used to compute phase
velocity. Next, the surface wave phase velocity was inverted to find shear velocity for
that area. The spacing between the receivers was small enough to find the higher mode
surface waves or body waves.

Lin et al. (2012) and Nakata et al. (2015) used interferometry to distinguish
surface wave and body wave signals in frequencies less than 15 Hz. The waves are
identified by their velocities and dominate amplitudes in lower frequency bands. Both

studies follow a workflow that is similar to the one used by Lin et al. (2013) to compute



the interferogram. The primary difference is that Nakata et al. (2015) used a slightly
different version of correlation called “cross-coherence.” While both studies see clear
body waves, Nakata et al. (2015) uses correlation, selection filters. and noise
suppression filters to further isolate body waves and creates a near surface p-wave
velocity estimate.

Grechka et al. (2012) shows how interferometry can have a large impact on
microseismic surveys using geophones placed inside of a well as opposed to on the
Earth’s surface. As microseismic data becomes more common, more geophones are
used to record signals from hydraulic fracturing. Microseismic events are located from
these signals and the majority of the seismic signal is not used. Grechka et al. (2012)
shows how with a little computing power, this noise can be turned into something
useful. Grechka et al. (2012) was able to directly measure shear velocity in the
horizontal and vertical part of a well and demonstrates how interferometric methods
could gather vertical-seismic-profile-like data. The workflow that Grechka et al. (2012)
uses is almost identical to the workflow used in this study. Unfortunately, this study
does not have any downhole seismic data, but the Data Management section of this
study touches on some of the computational difficulties.

All of these interferometric applications rely on how well surface and body
waves can be extracted, and almost all of the methods rely on a signal to noise ratio
(SNR) greater than 10 (Halliday et al., 2010). With this study, I will compare different
methods of interferometry and the variables that go into those methods to obtain the

interferogram with the most clarity.
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Chapter 1: Geologic Background

roperties

For this study, seismic data were provided by Tamecat, LLC and acquired by
NodalSeismic, LLC. NodalSeismic, LLC was acquiring seismic during a vibroseis
exploration survey on the Bend Arch in North Texas and let their geophones acquire
additional seismic data for varying lengths. The geophones gathered data for
approximately 10 days while the active source exploration seismic survey was being
completed. The survey was a mobile survey capturing the vertical component of the
Earth’s responses and contains more than 5,000 trace locations. The sampling interval

is 1 millisecond (ms). The survey’s data size is approximately 17 terabytes (TB).

The survey used in this study is located in North Texas on the Bend Arch at the
northwest section of the Barnett Shale in the same petroleum system as the Fort Worth
Basin as seen in Figure 1. The area is adjacent to the Fort Worth Basin, where oil and
gas have been found since the Civil War and has been producing since the early 1900s
(Pollastro, 2007).  This area, formed by the Ouachita Thrust Belt, is home to the
Barnett Shale source rock. Until 1998, conventional wells were producing oil and gas

from Ordovician and Permian age formations. but as of 2000, however, the



Mississippian Barnett Shale has become the largest producer of gas in the area due to
unconventional drilling and production methods (Pollastro et al., 2007).

The oval shaped Fort Worth Basin elongates north and south and is one of many
basins formed by the Ouachita Thrust Belt (Walper. 1982). The Fort Worth Basin’s
northern end is characterized by the Red River and Muenster arches while its west
boundary includes the Bend and Concho arch (Pollastro, 2007). Figure 2 shows the
general location of the o1l and gas reservoirs relative to major structural formations.

The seismic survey in this study was conducted to the west of the Bend arch. Pollastro
et al. (2007) also finds common structures in the Fort Worth Basin include major and
minor faults. local folds, fractures, and thrust-fold structures.

The uppermost part of the Bend Arch is dominated by inter-bedded limestone
and shale. The Flippen Limestone is at the surface in this area as seen in Figure 3. The
limestone is interbedded with layers of shale and thins to the east. Additionally, beds of
black shale and dark limestone become more common towards the east of the Bend
Arch (Galloway et al., 1973). Agnich (1949) finds that the seismic velocities for
limestone deposits in west central Texas can range from 8,000 to 16,000 feet per
second, or 2.4 to 4.9 kilometers per second. These velocities are consistent with the
velocities found later in this study.

Prior to the discovery of oil and gas in the area, the history of the Bend Arch and
Fort Worth Basin area was key to determining if the timing was correct for hydrocarbon
maturity. This plays an important role in determining economic areas for field

development.



This Precambrian interval is overlain by a section called the Ellenburger that
extends from the Cambrian to Mississippian times. Precambrian granite and diorite is
found beneath the sedimentary section of the Fort Worth Basin and Bend Arch. This
section has not produced hydrocarbons (Pollastro et al., 2003). Carbonates were then
deposited on top of the Precambrian rock over an area extending across the modern
state of Texas. Sea level dropped towards the end of the deposition of the Ellenburger
which caused the development of karst features throughout the basin (Pollastro et al.,
2003).

The Silurian and Devonian rocks were eroded away and the Barnett Shale was
deposited during the Mississippian age. Structurally, the Bend Arch and Fort Worth
Basin were formed during the late Mississippian to early Pennsylvanian periods when
the Ouachita structural belt thrust onto the North American margin (Pollastro et al.,
2003). The Bend Arch was a regional structural high as seen in Figure 4. This minor
uplift created erosional surfaces. Clastic rocks with origins from the Ouachita thrust
sheets began depositing during this Pennsylvanian stratigraphic section. Rocks consist
of mostly sandstones and conglomerates from the Middle and Late Pennsylvanian Age
with limestone beds becoming less frequent. Most conventional oil and gas were found
in the Pennsylvanian age rock., but oil and gas has also been found from Wolfcampian
age sandstones on the Bend Arch (Pollastro et al., 2003). The generalized stratigraphic
section in Figure 5 shows the producing areas. The converging plates during this time
not only caused the Fort Worth basin to form, but other similar basins including the

Black Warrior, Arkoma, Val Verde, and Marfa Basins (Pollastro et al., 2003).
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Chapter 2: Passive Source Interferometry

Passive seismic data consists of the natural vibrations in the Earth. Passive
sources range from small amplitude highway noise to large amplitude earthquakes.
Interferometry uses passive seismic data to derive the Earth’s true responses. By using
the method proposed by Curtis et al. (2006), the passive seismic data are cross
correlated and stacked until the actual noise is suppressed and a signal is seen.

“Correlation” measures how well two signals relate to one another. “Stacking™
is the process of averaging signals occurring in the same location. Cross correlation, a
type of correlation, provides a trace that correlates higher when equivalent signals are
present. A signal may be identified when traces with low SNR are cross-correlated
even though the signal is not seen in either of the input traces. When many traces with
alow SNR are stacked at the same location, the identification of a signal is even more
likely.

This idea of cross correlating and stacking seems simple enough. but not very
intuitive. Consider the “simple thought experiment” proposed by Curtis et al. (2006) in
Figure 6. Imagine if two receivers and a reflector are placed randomly and vertically
between two impulsive sources as in the left image in Figure 6. The center-left image
shows each receiver for each source individually. Source 1 R1 shows a large amplitude
initially followed by a second, smaller amplitude. These represent the direct and
reflected waves respectively. Source 1 R2 similarly shows a large amplitude followed
by a smaller amplitude for the same reasons. The two amplitudes are closer together

because R2 is closer to the reflector. Source 2 shows small amplitudes for R1 and R2



because it is showing the transmitted wave through the reflector. The center-right
image shows the result of the cross-correlation between the traces for each source. The
two traces are then stacked, as shown in the right image of Figure 7. to produce what is
called an “interferogram.” The stacked image is mirrored on a value of zero which
represents “zero” time. Zero time represents the middle of the cross-correlation result.
Below zero time is positive time and, by convention, is referred to as the “causal”
portion of the cross-correlation. Above zero time is negative time and is referred to as
the “acausal” portion of the cross-correlation. The causal portion represents the
comparison of a signal travelling from R1 to R2 while the acausal portion represents the
signal travelling in the opposite direction.

For two signals, an interferogram shows how well the two signals relate. If the
interferogram is analyzed from the perspective of R1. the interferogram shows an image
that you would see if R1 was the source and R2 was a receiver. By performing cross-
correlation and stacking of multiple receivers with one specific receiver. one is able to
create an image that looks as if the chosen receiver is a source. This is shown in Figure
7. The receiver that is a source is called a “virtual source.”

A reflector and two receivers in the middle of a medium surrounded by evenly
distributed sources will never occur naturally. Claerbout (1968) shows that the
reflection coefficients can be retrieved if that situation occurred naturally. The situation
where many receivers are “sort of” surrounded by non-uniform sources on top of, or in,
a multilayered medium is much more likely. The signals need to be conditioned to fit

the assumptions made in Figure 6.
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The first assumption is that the receiver must be completely and evenly
surrounded by the signal that it is measuring. This is difficult to do because often
signals are discrete, vary in amplitude, and include the vibroseis sweep used in this
study for conventional exploration geophysics. The vibroseis sweep does not have an
equal amplitude in all areas and has a distinct direction of wave propagation. An
artificial way to create an evenly distributed signal that seems random would be to
normalize the signal in a way that made each signal indistinguishable from each other.
The signal would still be there, but the normalization would lessen the effect of it.
Another method would be to just remove the part of the trace that contained the known
signal. Many methods have been attempted to imitate an evenly distributed signal.
These methods will be discussed in Normalization.

The second major assumption is that the signals that are received are produced
partly by direct arrivals and reflections in the Earth. In other words, the signals are
coming from waves bouncing off reflectors and not from noise from instrument sources
and random signals. The stacking process should minimize the role of the instrument
sources and random signals, but there needs to be a satisfactory amount of real Earth
sources. For this study, this means that there needs to be enough traces to be stacked
and a long enough trace such that the number of sources occurring in each trace is
maximized. These methods will be discussed in Determining interval length, T

Even with these constraints, Lin et al. (2013), Snieder (2004), Bensen et al.
(2007). Halliday et al. (2008). Nakata et al. (2015), Grechka and Zhao (2013), and
others have shown that the opportunities for ambient noise cross-correlation are

growing every day. This section will describe the theory behind interferometry and



how data can be conditioned to represent a uniform and even signal to extract surface
waves. The study generally follows the workflow set by Bensen et al. (2007), Lin et al.

(2013), and Nakata et al. (2015).

The workflow created for the study is shown in Figure 8. This workflow
was created from an analysis of workflows developed by Bensen et al. (2007), Sneider
(2004). Nakata et al. (2011), and Halliday et al. (2008). Before the interferometric
equation can be applied the data must be conditioned to fit the assumptions made in the
previous sections. The whole process can be broken down into two parts: data
conditioning and computation. In data conditioning, the processes include: reference
trace selection, band-pass filtering. normalization, and spectral whitening. Computation

is just the application of the inteferometric equations which is dominated by correlation.

A “reference trace” in this study refers to the trace that is cross-correlated with
all other traces so that the location of the “reference trace™ becomes the location of the

virtual source. This can be done for all trace locations. As shown by Lin et al. (2013).
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a study that uses the maximum number of trace locations has the smallest amount of
error. Usually studies are limited by computing power. Optimization of processes for
computing will be discussed in Data Management. Figure 9 shows line 34 in line with
the reference trace at trace 60. All wiggle plots were created using SeisLab 3.0, a
MATLAB Toolbox available on MATLAB CENTRAL’s File Exchange library. The
blue cones enclose the surface waves. This reference trace was chosen because it is the
middle of the survey shown in Figure 10 by the blue star. Figure 11 shows the cross-

line at line 55.

A secondary goal of this study was to find the most efficient way of computing
the interferogram. In most exploration case, the data loading time expense is small. In
interferometry it can be quite large.

In this study, each geophone held the Earth’s response at a location in a singular
direction for about 10 days. These geophones were spaced approximately 165 ft in the
north-south direction and generally 660 ft in the east-west direction. There are
exceptions to this. Figure 10 shows the actual spacing of the survey. The files holding
the signals were each a little over 3 gigabytes (GB). For reference, each file was greater
in size than the stacked seismic volume collected from the vibroseis sweep by a factor
of 2. The total size of the passive seismic volume is 17.3 TB. The data was stored on
an external hard drive, 20 TB RAIDBank5 by MircroNet, and was transferred by a

cable with a USB 3.0 port. The transfer speed varied but averaged around 60
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megabytes (MB) per second which is about 4 times as fast as a USB 2.0 connection.
Figure 12 shows the length of time required to transfer one ten day trace to MATLAB.
The time is measured for 150 ten day traces.

Additionally, the signals that are to be cross-correlated need to occur at the same
moment in time. The signals do not start at the same time in their raw form, so they
must be cropped. This specific data set had a few more issues than surveys procured for
academic purposes because its main purpose was oil and gas exploration. Because of
this. the survey was done with a mobile vibroseis sweep. A common way to complete a
vibroseis sweep is to have a group of geophones that move across the area being
surveyed. In this survey, the center geophones were kept static while groups were
moved around the center. The traces needed to be sorted in to groups that occurred at

the same time. After this is done, the signals can be cut into interval length sections.

The effect of resampling will be discussed in the Data Management section.,
but it is generally used for computational efficiency. The goal of a study determines the
extent of resampling. For example, increasing the sampling interval from 1 ms to 5 ms
may not significantly affect a study that looks to extract surface waves because surface
waves exist at frequencies lower than 50 Hz, and the Nyquist frequency is 500 Hz and
100 Hz for I ms and 5 ms, respectively. Nakata et al. (2015) increases his sampling
interval from 2 ms to 30 ms because they are analyzing waves below 15 Hz. Schuster et

al. (2004) has found that a wave needs to have propagated at least 2 — 3 periods before
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the wave can be identified. Consequently, the sampling interval needs to be small
enough to accommodate at least 2 — 3 periods of the wave the study is trying to observe.
The standard sampling interval for this study is increased from 1 ms to 4 ms.
The sampling intervals that were tested were 1 ms, 4 ms, and 20 ms with Nyquist
frequencies of 500 Hz, 125 Hz, and 25 Hz respectively. The total number of data points

used in interferometric computation decreases with increasing sampling interval.

Band-pass filtering is an important step because it helps isolate the surface
waves. Surface waves are identified in interferometry because they have a high SNR
and occur in a well-defined frequency range. According to Halliday et al. (2010)
surface waves are dominant in the 0 — 30 Hz frequency band. The study done by
Halliday et al. (2010) used active seismic data which has a higher frequency range than
passive source seismic data. This higher frequency range allows for high mode surface
waves to be observed.

In this study, a 1-30 Hz band-pass filter (0-1-20-30 Hz Ormsby filter) was
applied to the passive seismic data and tested against broadband data. This choice of
frequency range was made to fully cover the possible surface wave modes coming from

the unknown sources. All images are broadband unless specified otherwise.



Time domain normalization is the most important step in creating a signal that
replicates noise. Figure 13 shows the raw seismic windows for ten 20s intervals that are
representative of the data at any receiver. Figure 14 shows the effect of different
normalization methods on a noise burst in the second window of Figure 13. The
assumption that the receiver must be evenly surrounded by equal sources must be
satisfied. Ifthis is not satisfied, then large amplitude events will dominate the result.
This causes the interferogram to have large, non-physical spurious events that make the
surface waves difficult to identify, as seen in Figure 15. Surfaces are more easily
identified in 15¢ and 15d as shown by the highlighted area. The negative effect of
normalization is that the amplitude data from the extracted surface waves is lost
completely. There are many different approaches to normalization and Bensen et al.
(2007) describes a few that he has found to be affective for interferometry.

Bensen et al. (2007) considers five methods to normalize a signal: one-bit,
clipping based on RMS amplitude, event detection and removal. running absolute mean,
and “water-level” normalization. These methods cover the whole spectrum of severity
of normalization. One-bit normalization is the most extreme out of the five because it
destroys any amplitude data that might have existed. Running absolute mean
normalization gives the user the option to vary the data in a large or small way.
Running absolute mean normalization becomes one-bit normalization in its strongest
case and doesn’t change the data in its weakest case. The one-bit and running absolute
mean normalization seem to provide the most meaningful data (Bensen et al.. 2007).

One-bit. also referred to as sign bit. normalization assigns a | to positive

amplitudes and a -1 to negative amplitudes as seen in Equation 1,



1 lf ul- >0
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where u; represents a specific value in a trace and v; represents the weighted value with
index j. Changing the amplitude in such a radical way keeps only a sliver of amplitude
information, but satisfies the first assumption discussed at the top of page 16. One-bit
normalization turns the uneven signal into a signal with even amplitudes throughout the
signal. The one-bit normalization method also takes the least amount of computational
power. Other methods require the computation of a value to weight the original signal
by while one-bit normalization just has to determine the sign of the value. One-bit
normalization is the normalization of choice for quick looks at data and data sets with
large amounts of data.

The running absolute mean method computes an average of the absolute value
of the trace in a certain window and weights each point that the window is centered on.
The weight is shown by Bensen et al. (2007) in Equation 2,

L y+N
uj = =_n 1 %isnl, (2
/rumling absolute mean 2N+1 <= N | j+n| )

where N is the window size. The window is important because it determines how much
amplitude information is kept. A window of length 1 (N = 0) will give the one-bit
normalization answer while an infinite window will give an unaltered trace. A window
that is equivalent to half of the maximum period being studied is suggested by Bensen
etal. (2007). In this study. the normalization window is 0.5s centered on the value

being normalized. Running absolute mean normalization is the most computationally

intensive.

1]
(9]



The last normalization is an automatic gain control (AGC) based on RMS
average. This study will term this type of normalization “length-to-1." This process
weights all values in a set window so that the length of the values within the window 1s

equal to one as seen in Equation 3

1
p _ 1 _y+N 2.
ullengrh—ra—l i [ZN-H ERE-v )] kS

The window used in this study is also 0.5s. Like running absolute mean normalization,
length-to-1 normalization will become one-bit normalization with a window of 1
(Bensen et al., 2007). This method takes up more time than one-bit normalization but
produces a clearer image. Length-to-1 normalization is more time efficient than
running absolute mean normalization and produces a similar image.

Figure 14 shows comparisons of length-to-1, one-bit, and running absolute mean
normalization. For running absolute mean and length-to-1 normalization. the data are

dived by the weights as seen in Equation 4
u,-

Yinormalization
where v; is the weighted data. Figure 15 shows the interferogram for one inline for
different normalization methods. The problem with one-bit normalization is that it
would require a massive amount of correlated traces to stack to produce a clear image.
There are two methods of increasing the amount of correlated traces: decreasing interval
length and longer recorded signals. Decreasing interval length leads to problems that

will be discussed in Determining interval length, T and the recorded signal length is

set for this study.

(89}
(5]



Whitening is a step that is used to further enforce the assumption that data must
be evenly surrounded by homogenous sources for the interferometric equation to apply.
Bensen et al. (2007) refers to this step as whitening, but other studies might describe it
as energy normalization. “Whitening” refers to the background frequency spectrum of
the Earth. The Earth’s background frequency is assumed to be without any distinct
peaks. Therefore, if a signal is recorded and has distinct frequencies, then it must not be
completely from the Earth. Whitening is done to make the frequency bandwidth of the
data have an even amplitude distribution. This study follows Bensen's et al. (2007) to
multiply by the inverse of the smoothed frequency spectrum of a trace. The whitening
step is also often “built-in” to the interferometric equations as will be discussed in
Correlation.

The spectrum of a trace shown in Figure 16 is representative of the spectrum of
the entire data set. Noticeable spikes in the spectrum occur at every 25 Hz interval.
Manual examination of the time domain data did not reveal any periodic spikes or tape
ecryption errors. Therefore, I hypothesize that there is an ambient periodic source with

multiple harmonics.

Application of the interferometric equation is the next step in extracting the

Green'’s function. After the cross-correlations are completed for one 10-day trace, the
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correlations are stacked. The correlations consist of a two-sided time series
representing positive and negative correlation lag times both beginning at the middle
value of the correlogram. After stacking, the signal representing the Rayleigh wave
emerges.

The signals received from the sources in interferometry are not always
transmitted directly from the original source. The recorded signal is often a
combination of signals from multiple that have been scattered by anything that would
reflect the wave. A collection of multiple scattered waves is called a “coda wave.”
Additionally, it is likely that these coda waves are scattered multiple times before being
recorded and have a small amplitude as a result. The goal of applying interferometric
equations is to constructively add the information contained in each of these waves over

a large amount of coda waves.

Consider two receivers that are located in a medium and separated by a distance,
R. In the medium, there are also sources that emit a signal, S,,(t), where n is the index
of each source. These sources include coda waves (Snieder, 2006). We assume that the
velocity of the source signal does not change with time. The signal recorded by the first
receiver is labeled u(xy, t) and the signal recorded by the second receiver is u(xg, t).
The location of each receiver is represented by x;. Receiver at location 4, X, is used in
this example. and the source location is represented by x. |S,(w)|? is the average

power spectrum in the frequency domain. The time derivative of the cross-correlation
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of u(x,, t) with u(xp, t) is equal to the causal and acausal parts of the Green’s function
between the two receivers (Snieder, 2004):

Gup(a, 205, T) + Gap (x4 %5, =T) = % [Dag (x4, x5, T), Cap (x4, x5, T)] (5)
Gap(xa, x5, T) corresponds to the causal Green’s function between receivers A and B
for a time interval of length T, or interval length. The right-hand side of Equation 5 is

the time derivative of the result of the cross-correlation and stack, Dyg(t)

1

IS(@)? L uxp, tn) * w(xa, tm) (6)

Dyp(xa, %5, T) =
The length of the full recording is t. The recording is then split into equally sized
sections to be correlated of length T. The number of correlated sections is m, and t,,, is
a specific interval of the recording, ¢, corresponding to index m. If the recording time
starts at t = 0, then t,, is the time interval from 0 to T seconds. The record length for
any index m is represented by t,,, = (m — 1)T to mT seconds within length t.

Nakata et al. (2011) proposed “power normalized cross-correlation” called

“cross-coherence”

U(xp,wm)U" (Xa,9m) (7)
x 4,0m) | +e<|U (xp,0m)|IU(xg,0m) 1>

Cap (x4, %5, 0) = X [UGegomIUC
where C 5 is the cross-coherence between receivers at x4 and xp in the frequency
domain; w,y, is the frequency of a specific interval length corresponding to t,,,; U is the
Fourier transform of signal u; U~ is the complex conjugate of U: < -+ > denotes the
ensemble average: and €is a regularization parameter. Nakata et al. (2011, 2013) finds
that ¢ = 0.01 is the “smallest value needed to overcome the potential instability of

[C4g] introduced by division™ in Equation 7.



Figure 9 and Figure 17 show cross-coherence and cross-correlation respectively
for the same line of traces. Nakata et al. (2011, 2015) both find cross-coherence to
show the clearest surface waves. This study finds that for this area, cross-coherence and
cross-correlation are very similar and indistinguishable.

The seismic data for a ten day recording is split up into sections of a pre-
determined length. This length is called the “interval length.” Each of these interval
lengths of data are then cross-correlated with data from another recording and stacked
m times. The interval length can be different for each study. but it determines how
much data the recording represents. A longer interval length results in an estimate of
the Green’s function that contains more frequency information and a more similar
number of natural sources per interval length. A shorter interval length results in an
estimate that has a larger amount of stacking, m, but more variability in the amount of
sources per interval length. Equations 6 and 7 consist of normal terms and cross-terms
(Snieder, 2006). The normal terms are real arrivals and reflections measured by the
signal while the cross-terms are not real and can result in a noisy image. Snieder (2004)

finds that for an average over the number of sources is taken, the ratio of cross-terms to
nT

normal terms decreases by a factor / _where n is the number of natural sources and T

is the interval length.

The difference between cross-correlation and cross-coherence is one of spectral

normalization. Whitening consists of dividing by the square root of the average of a
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power spectrum in the frequency domain (Oppenheim and Verghese, 2010). This is the
term, |S(w)|?, in Equation 6 and the denominator term, |U (xg, wn)|1U (x4, @)1

in Equation 7. In exploration seismic, this can be thought of as the difference between
“post-stack” and “pre-stack” spectral whitening. For two receivers, any given length of
time will contain different sources. Dividing by the source power spectrum normalizes
the variability in source distribution when the sources are unknown. Dividing by the
average power spectrum of your virtual source can approximate the division by the real
source average power spectrum in cross-correlation, |S(w)|?. Snieder (2004) shows
that if an interval length is used such that the number of sources per trace is
approximately equal, then the normalized average power spectrum is 1. According to
Snieder et al. (2009), many studies do not divide by the average power spectrum
because the average power spectrum is not known. While removal of this division can
lead to ringing, this study does not divide by the average power spectrum for cross-

correlation.

As the interval length, T, increases, the signal to noise ratio also increases. The
SNR of the surface waves is important because it determines how well the surface
waves can be identified. Figure 18 illustrates how increasing the interval length affects
the signal to noise ratio. The standard interferogram is shown in Figure 9 and has an
interval length of 30 minutes.

Figure 18 shows that the interferogram is clearer as the interval length is

increased. For an interval length of 1 minute, surface waves can be identified visually
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from trace -30 to trace 15. For an interval length of 5. 30, and 120, surface waves can
be identified from trace -50 to trace 30. The clarity of the interferogram increases
slightly from an interval length of S minutes to an interval length of 120 minutes. The
blue arrow in Figure 18 indicates an area on the 120 minute interval length
interferogram where a surface wave can be identified. but identification on the 5 minute
interval length interferogram is questionable. The increase in clarity from 30 minutes to
120 minutes is nonexistent. I find that the 120 minute interval length interferogram is
not significantly clearer than the 30 minute interferogram because there are not enough
stacked traces for a stable result. A larger interval length generally produces a clearer
image, but there must be enough traces to stack to adequately reduce random noise.
The number of traces from an interval length of 30 minutes to 120 minutes is reduced
by a factor of 4 for a set total time.

I chose an interval length of 30 minutes, half of the interval length chosen in the
Long Beach study done by Lin et al. (2012) and equivalent to the interval chosen by
Nakata et al. (2015). This length of time is long enough for the number of sources n

each length to be approximately equal. Each recorded signal is split into blocks of

1.800.000 values before it is cross-correlated.

1000 samples 60 seconds 30 minutes
x
second minute interval length

number of values =

= 1,800,000 values
The large interval length of 30 minutes was chosen to reduce the number of cross-terms
in the surface wave data (Snieder, 2004). These cross-terms are non-physical quantities

that cause the interferogram to look noisy. They can contaminate the result and reduce



the SNR. To further reduce the contamination caused by an uneven source distribution,

the symmetric-component correlation can be calculated.

Once stacked, the causal and acausal components are averaged to retrieve the
“symmetric-component” cross-correlations (Lin et al., 2008). This is a method of
suppressing the error due to a non-even source distribution (Lin et al., 2008). Analysis
can be done on the raw interferogram before stacking to reveal the direction that the
waves were propagating. Different sides of the cross-correlation result represent

different directions of wave propagation.

Ultimately. the best result is determined by the image that gives clear surface
waves for the longest distance from the virtual source. I have found that using a smaller
sampling interval, a larger interval length, running absolute mean normalization, and
cross-coherence produces the result that has the most distinguishable surface waves.
Specifically in this study I used, a 4 ms sampling interval, 30 minute interval length,
running absolute mean normalization with a 0.5 s window of normalization. and cross-
coherence. Figure 20 shows different surface wave modes that have appeared using the
previously stated constraints. Figure 21 shows a 2 — 4 Hz surface wave propagating
through a volume at different times. Figure 22 shows a north to south line intersecting

the volume in Figure 21 at a location offset from the virtual source.
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I created Figure 20 finding interferometric gathers. or cross-section of seismic
traces, and summing them. The traces are summed based on the distance of the trace
from the virtual source in the gather. Figure 20 can’t be used for geologic interpretation
applications, but it does present a clear image of the surface and body waves. In
addition to the strong surface wave amplitudes shown by the blue arrow, there are other
wave modes present. Again, an interferogram is mirrored across t = 0's. At first
glance, one sees the three distinct modes exhibiting different velocities. There is also a
high velocity wave that is too fast to be a surface wave shown by the green arrow in
Figure 20. I interpret this to be a “diving” body wave as described by Nakata et al.
(2015). The body wave could not be seen in a single gather like in Figure 9, but it is
visible when gathers are stacked. The diving wave is evidence that body waves are
present in the interferogram.

Interferograms can also be analyzed to determine the direction of the majority of
the sources. If the source distribution were even from all directions, then the
interferogram would look symmetric. In Figure 9. this is not the case. The surface
waves in the lower left quadrant have stronger amplitudes than the other quadrants. The
amplitudes in the upper right quadrant are also stronger than the amplitude in the lower
right quadrant. The difference in amplitude occurs because most of the sources are
coming in from the direction corresponding to the left: south. When traces are
correlated, the secondary trace is cross-correlated with the reference trace.

Additionally. the causal portion, or bottom portion. of the interferogram represents the
wave heading from the secondary trace to the reference trace for the left side of the

interferogram. The greater number of sources from the south causes the amplitudes to



be large in the lower left portion of the interferogram. When the secondary trace is on
the right-hand side of the reference trace, the reference trace is more southerly than the
secondary trace. One then correlates the secondary trace with reference trace and the
stronger amplitudes appear in the acausal, or upper. portion of the interferogram.
Evidence of body waves is also seen due to the stronger amplitudes in the upper right
and lower left quadrants. I therefore conclude that there are more sources coming from
the south. The origin of these sources is most likely from the highway that cuts through

a corner of the survey and the machinery from a small industrial area that is also on the

southern boundary of the survey.
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Figure 6. Thought experiment proposed by Curtis et al. (2006) to describe

interferometry.
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Figure 7. The source on the left is detected by receivers (triangles) A and B at different

times, T gand Tg. The correlated trace on the right is the difference in travel time

between receiver A and receiver B mirrored around T=0. (Schuster et al., 2004)
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Figure 8. The workflow to perform interferometry. The section including “Set up,”
“Data conditioning,” and “Computation” computes the interferogram. The section titled

“Data extraction” is the analysis of the interferogram.
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Figure 9. Cross-coherence of all traces along line 34 with trace 60 corresponding to the
blue star. Using baseline parameters of 4 ms sampling interval, 30 minute interval
length, pre-correlation whitening, and bandpass filtering from 0 — 60 Hz (a) without and
(b) with interpretation of group velocity of coherent events. (c) Spectrum of a

representative correlated trace. Each trace is scaled by the maximum value in each

trace.
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Figure 10. Map view of the survey. Average spacing between receiver lines is 660 ft
with a receiver group interval of 165 ft. Line 34 is indicated with an arrow. Trace 55

used in Figure 9 is indicated by a star.
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Figure 11. Cross-line 60 filtered from 1 — 30 Hz. The surface wave has hyperbolic
move-out since the cross-line is offset from the virtual source on cross-line 55. Trace
separation is 660ft. The blue line indicates picked surface wave arrivals in the causal
portion of the interferogram. The equation describes the move-out associated with the

picked points.
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Figure 12. Transfer rate over a USB 3.0 cable from RAIDBankS5 external hard drive.

The values are in number of values transferred per second.
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Figure 13. Representative 20s data windows at a given receiver. Noise bursts (yellow)

comprise the signal. No filtering, normalization, or whitening was performed.
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Figure 14. Comparison of the effects of normalization for a zoomed section between 18

and 21 s of windows highlighted in Figure 13.
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Figure 15. Results of cross-coherence using alternative normalization methods (a) no
normalization, (b) sign bit, (¢) 0.5s running window absolute mean, and (d) 0.5s
automatic gain control (AGC) based on RMS average prior to correlation. All traces
are filtered from 1 — 60 Hz. Highlighted areas indicate a surface wave arrival that can

be identified in the running absolute mean and absolute value AGC normalization, but

not in the un-normalized or sign bit images.
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Figure 16. Spectrum of a representative trace (900,000 samples with At = 1 ms): (a)
unfiltered original data, (b) after suppression of spikes due to an unknown noise source,
(c) after application of a (0-0-60-120 Hz) band pass filter, and (d) after spectral

balancing using Equation 7 and a value of € = 0.03.
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Figure 17. Cross-correlation of all traces in line 0 with trace 60 line 0. The inputs are a
4 ms sampling interval, 30 minute interval length, pre-correlation whitening, running
absolute mean normalization, and filtering from 0 — 60 Hz. The corresponding

frequency spectrum is shown. Each trace is normalized by the maximum value of each

trace.
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Figure 18. Cross-coherence results for interval lengths of (a) 1, (b) 5, (c) 30, and (d)

120 minutes. Data have been filtered from 0 — 60 Hz. Each trace has been normalized
by the maximum value in each respective trace except for the interferogram with an

interval length of 1 minute, which is scaled by a single value.
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Figure 19. (a) The symmetric correlation of Figure 9 where causal and anti-causal
components are averaged to improve the signal to noise ratio. Each trace is scaled by a
single value. (b) The spectrum of the ground roll (highlighted in green) and (c)

ambient noise (highlighted in red).
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Figure 20. Stack of correlated gathers corresponding to lines 28 — 39 forming a super
gather that smears the geology but suppresses random noise (a) without and (b) with

interpretation. The arrows in (a) point to events with velocities shown in (b).
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— & Virtual source
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Figure 21. Time slices through the 2-4 Hz filtered component of the data at t = 0.04,
0.30, 0.80, and 1.20 s. The surface wave from the virtual source, green star, expands
with time and reaches the edges of the survey at about t =1.20's. Seismic data have
been linearly interpolated in the E-W direction to match the resolution in the N-S

direction. Data above 4 Hz are spatially aliased in the E-W direction and give poor

images.
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Figure 22. Line A-A’ filtered between 2-4 Hz as seen in Figure 21 at 0.30 seconds.
The 0.30 s line is marked and shows that the surface wave can be seen for about 30
traces. This corresponds to the length of the surface wave in Figure 21 at 0.30 seconds.

The yellow lines indicate the start of the surface waves, generally.
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Chapter 3: Data Management

ymputation analvsis

Interferometry turns supposed noise into information. Computing a full
interferometric estimation seems to require incredible computing power for a large data
set. In this section, I will describe just how much computing power is needed. This
will be done using Big O analysis.

The O in Big O notation is not a zero but a capital letter. The symbol is also
called Landau’s symbol after a German theoretical mathematician, Edmund Landau
(Lundqvist, 2003). The O is a reference to the order of the complexity of the algorithm
being studied (Lundqvist, 2003). Big O analysis describes the complexity of a
computation as it approaches infinity. A decade ago, the 17.3 TBs, or
17.300,000,000,000 bytes, of data that this study examines would have been a term used
interchangeably with infinity, but modern surveys would just say that the data set is
“large.” Big O analysis counts how many times a program “touches,” or operates on,
this data. For example, given random integers, n and m,
n+m=x (8)
results in a Big O count of 1. If N was a vector of 100 terms and m was an integer,
Nm =X )
results in a Big O count of N where X represents the respective terms of the product of
each value in N with m. N happens to be 100 in this case. The Big O count is 100

because each of the 100 terms in N is multiplied by the integer, m. Luckily, Big O
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analysis is characterized by a notation that does not require each “touch™ to be
documented. Big O analysis seeks to pinpoint the operation that affects the data set the
most. It does not take into account each detail. Parker Phinney, founder of Interview
Cake, describes Big O math as “awesome, not-boring kind of math where you get to
wave your hands through the details and just focus on what’s hasically happening.” Big
O notation determines what the biggest factor in a computation is, “basically.” The Big

O notation to describe

fn)=n+1 (10)
is O(n), or
f(n) =0(n) (1)

where n represents the number of values in a set of data. The 1 is dropped because as n
becomes arbitrarily large, the value 1 becomes inconsequential. For
fn)=n*+n+1 (12)
the Big O notation is O(n®), or

f(n) =0n?). (13)
The n and 1 are dropped for the same reasons. As n becomes arbitrarily large, n®
develops so much more quickly than n or 1 that the values become computationally
inconsequential. Lundqvist (2003) has listed some of the orders of Big O notation in
Table 1 in order of complexity. Notice that Big O analysis measures complexity in
relative terms. Again Parker Phinney, personal tutor to many engineers in coding,
describes this as “... [expressing] the runtime in terms of — brace yourself — how

quickly [complexity] grows relative to the mnput, as the input gets arbitrarily large.”
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Until now. researchers have only used Big O analysis to describe the efficiency
of computation time. Big O analysis can also be used to characterize other efficiencies

including memory usage, disk usage. and network usage.

Notation Name
0O(1) Constant
O(log(n)) Logarithmic
O((log(n))) Polylogarithmic
O(n) Linear
0(n?) Quadratic
O(n%) Polynomial
O(c™) Exponential

Table 1. Names given to different stages of computational complexity in Big O

analysis

Interferometry is mainly based on how well correlations can be computed. This
study looks at two methods of correlation: cross-correlation and cross-coherence. These

correlations are computationally similar. The cross-correlation Equation 6 simplifies to
Equation 14 for one interval length.

b g
DAB(XA‘xBrlm) a mu(xl?' tm) *u(XA'tm) (3]
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The length of u(xp, t,,,) is one interval length. t. In the discrete time domain cross-
correlation is defined by

(f*g@) () = Zm f(Dg(T +1) (15)
for f(t) and g(t) are interval length vectors in the time domain and g(7 +t) is an
interval length vector that is shifted over f for all time represented by f. Each point in
f is multiplied by all points in g and then summed. An analysis of the operations leads
to an equation of

nxn+n=n?+n=0(n? (16)
for n representing the number of each discrete value in one interval length. The cross-
correlation equation in the frequency domain is defined by

(f *9)(t) = FF ()G (w)]. (17
The cross-correlation in the time domain 1s the product of the complex conjugate of one
function with the other in the frequency domain. Each function is Fourier transformed,
multiplied together, and the result is Fourier transformed back to the time domain.
Analysis of the operations for one interval length leads to an equation of
n+n+n=3n=0(n) (18)
for n representing interval length. The equation for cross-correlation in the frequency
domain is often used because its number of computations is O(n) rather than its time
counterpart O(n?). The operations analysis equation for Equation 6 is
m+m+m+m+k=4m+2n+1=00n), (19)

wherek =n+n+1landm=rrn



where 7 is the number of interval length traces, the fourth m term is the multiplication

of—l—; and k is the average RMS amplitude of all the points in the virtual source.
[S(w)[?” =

Again, the equation for cross-coherence is

ral] U(xp,wm)U" (xa,0m) 5
Can(a Xp8) = Eom [ o ST Gep o1+ €<l e om) UGl ©)

and the operations equation 1s
m4+m+m+m+k+k+1=4m+4n+3=00m). (20)

The fourth m term in this instance refers to the division by the denominator and k refers
to the average RMS amplitude of each of the terms in the denominator. An extra 1 is
added for the scalar multiplication of €. Both correlation methods vary linearly, O(n),
with the number of input values.

The cost of computation time varies linearly with the number of values as a
result of the equations described previously. This is expected because the two equations
differ by only a sum in the denominator of cross-coherence. The cost of computation
dramatically decreases when correlation is computed in the frequency domain.

Figure 25 shows the increase in time with increased input values for cross-coherence.
The increase in time is due to the difference in Equation 19 and Equation 20. This
computational difference is the division by the denominator in Equation 7.

The computational efficiency of correlation is necessary to compute an
interferogram in a reasonable amount of time. The correlation is computed in the
frequency domain because correlation increase in time is quadratic and the correlation
increase in frequency is linear, as shown in Equation 16 and Equation 18. The

difference in correlation methods by Big O standards is negligible as shown by

9]
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Equation 19 and Equation 20. The quality gained from using cross-coherence is worth

the computational time that is used.

Normalizing a data set in the time domain with a large amount of values can
also be computationally intensive. In this study I test 3 different types of normalization:
one-bit, running-absolute-mean, and length-to-1.

One-bit normalization is the least computationally intensive because it only
requires a few steps to compute. The first step is to determine whether a value is
positive, negative, or zero. This can take a maximum of three “touches” per value by
asking the following questions. Is the value positive? Is the value negative? Is the value
zero? The second step would be to replace the value with its corresponding one-bit
value, 1, -1, or 0. This represents one interaction. The largest computation equation is
m+m+m+m=4m=0(m) 21)
where m is the number of input values (m = rn). One-bit normalization also varies
linearly with the number of input values. Figure 23 and 24 show the increase in time
with the number of input values for one-bit normalization. As expected. normalization
time increases linearly with an increasing number of input values.

Running-absolute-mean is the most computationally intensive out of all the
normalizations. Running-absolute-mean normalization divides each value by the local
RMS amplitude. The “local” RMS amplitude refers to the RMS amplitude in a user

defined window. The operations equation is given by

N
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m+w(m+m) = 2w+ 1)m = O(m) (22)
Where the first m is the division of all values by the local RMS amplitude. w is the
length of the local window, and (m + m) represents the RMS amplitude of all values.
Even though this is an O(m) type of equation, w can be large depending on how much
amplitude information the user wants to retain. Figure 23 and Figure 24 show the
increase in time with the number of input values for running-absolute-mean
normalization. This increase is also linear. However, the effects of w can clearly be
seen in Figure 23. The running-absolute-mean normalization time is orders of
magnitude greater than one-bit and length-to-1 normalization. I would suggest using
length-to-1 normalization because it provides a similar quality image but does not
require such a long normalization period.

Length-to-1 normalization is less computationally intensive than running-
absolute-mean normalization but takes more time to compute than one-bit
normalization. Length-to-1 normalization weights the values in a user defined window
such that the square root of the square of each value in that window is equal to 1. Each
value in the window is weighted accordingly. The operations equation is given by
m+ (m+m) =3m =O0(m) (23)
Where the first m represents the division by the weight and (m + m) represents the
computation of the RMS amplitude of all values. Again, linearity can be seen in Figure
23 and Figure 24 and efficiency compared to running-absolute-mean normalization can
be clearly seen in Figure 24.

Normalization can be as computationally intensive as correlation, so great care

must be taken when setting up the interferometric workflow. Running-absolute-mean



normalization may give the best result, but it is marginally better than the length-to-1
method. It also has a computational cost that one might not be willing to pay depending
on his or her available resources. One-bit normalization is the fastest method. but
produces the worst results. In the future, it may be worthwhile to try one-bit
normalization on a data set that has a total length of greater than 10 days, the length of
this survey, with an interval length of 30 minutes, the interval length in this survey. I
prefer one-bit normalization because it completely takes care of the assumption of an
evenly distributed signal, but I think there 1s not enough data to produce an image
similar to the images produced by length-to-1 or running absolute mean normalization.
Increasing the total length of the data to over 10 days might allow enough data for one-

bit normalization to be effective.

Another factor in the discussion of data management is the tools that are used
for computation. There are two popular tools that are used for computation: computer
processing units (CPU) and graphics processing units (GPU). CPUs are faster and have
more varied applications than GPUs. GPUs are slower but have orders of magnitudes
more processors. GPU processors aren’t designed for varied applications.

GPUs tend to work well when computing data that does not rely on previously
computed data. For example, if 10,000,000,000 different numbers were multiplied by
2.a GPU should be able to perform it quicker than a CPU. A disadvantage of using a

GPU is that data needs to be transferred to and from a GPU, so that time needs to be

N
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taken into consideration. A GPU works well for simple calculations, but the transfer

speed to the GPU needs to be taken into account.

CPUs tend to work well for data that builds on previously calculated data. This
is because a CPU’s clockspeed, or speed of a single processor, is much faster than a
GPU. For example, a CPU would be used over a GPU if one had a 1e10 array of
numbers, wanted to start at the first number, and then add or subtract based on the
average up to that point, then a CPU would be used. Generally, a more complicated
process would be better suited for a GPU.

Cross-correlation and running-absolute-mean normalization was run on a GPU
and CPU. Cross-correlation was chosen because the algorithm is built in a way that
favors the GPU. Running-absolute-mean’s algorithm is built in a way that would
benefit a CPU. MATLAB’s built in GPU function was used to transfer data to the GPU
and MATLAB's parallel computing functions were used to access all computing cores
on the CPUs. A NVIDIA Tesla C2075 workstation card was the GPU used for
computation. The CPU used for computation was 2 quad-core Intel Xeon E5-2643
processors. The Tesla GPU costs $ 1399.99 (NVIDIA by Amazon.com) and a single
Xeon processors costs $1249.95 (newegg.com). Figure 26 and Figure 28 are the raw
result of normalization and correlation, respectively. Figure 25 and Figure 29 are
divided by the cost of each piece of hardware to normalize the data. Since the CPU and
GPU may be of different quality, the normalization of the data is an attempt to reduce
the difference in quality.

The comparison of the CPU and GPU for normalization in Figure 27 shows a

slightly unexpected result. Normalization favors CPUs because its algorithm iterates



depending on the previous results. However, the CPU is much slower than the GPU,
but the rate of increase in computational time is much smaller. The time required for
computation for the GPU grows at 6 times the rate of the CPU. This means that for a
smaller data set, the GPU would be optimized for computation, but for a larger data set,
the CPU would be the best choice. The situation where the GPU is faster is almost not
worth discussing because the time difference between the CPU and GPU for a small
data set is still small. With current technology, the CPU is a better choice when
computing an algorithm that is more complicated.

The comparison of the CPU and GPU in Figure 29 is expected. Correlation
favors the GPU because the algorithm doesn’t depend on any computations before or
after it. As the amount of data increases, the GPU is faster than the CPU by
approximately a consistent factor of 3. For simple calculations like the fast Fourier
transforms used in correlation, the GPU would be ideal.

The computational hardware is not the only hardware involved in time
management. Memory management was a main contributor to data management but
was not studied in this analysis because of resource constraints. Additionally,
MATLAB was chosen as the platform to execute the computations, and MATLAB does
not manage its memory as well as a compiled programming language might, such as
Fortran. Even though this study does not cover memory management, here is another

thought experiment. I present a few facts:

¢ The external hard drive that stored the 17 TB of passive seismic was transferred
to my computer via a USB 3.0 connecting cable and ports (each 3 GB file

transfer takes 30 second on average)
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e MATLAB could only compute interferograms of 2 passive seismic traces at a
time with my 32 GB of RAM (the reference trace and one other trace)

e A full interferometric analysis would require the correlation of all of the passive
seismic traces to each other

e There are a little over 5000 traces

The number of inter-receiver correlations 1s 5000 x (5000 - 1) = 25,000,000. For
this study, that would require 2.5e7 transfers between the external hard drive and the
computer because MATLAB could only hold 2 passive seismic traces at a time. That is
23.8 years at 30 seconds per transfer, and 23.8 years is too long for any study. A larger
amount of RAM would significantly reduce this time. The factor increase of RAM
would decrease the computation by more than that factor squared and would be related
to the number of passive seismic traces held. For example, if RAM is increased by a
factor of 4 for this study I am able to hold 8 traces at once in MATLAB. I am able to
compute inter-receiver correlations between all traces, or 28 correlations. This
translates to a saving of 7 transfers of data per trace. Another method of time reduction
would be to use a different computational platform and a faster transfer speed. The
issue of transfer speed may be solved for by the addition of solid state drives (SSD). 1
like to think that essentially infinite computing power is available due to the
proliferation of computer processors, but when computing power grows, other variables
like RAM need to grow with it.

There are many factors to consider when managing a large dataset. GPUs and
CPUs have their own areas of computational superiority. CPUs were faster for specific

types of normalization and GPUs were faster for correlation. Lastly, variables like data
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transfer speed may not be something one immediately thinks about when deciding the
feasibility of a computation. Mapping out the flow of data is crucial to minimizing

these variable computational “hang-ups.”
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Figure 23. Time required to normalize an increasing amount of traces of the same
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Figure 24. The same data as in Figure 23, but each type of normalization time has been

normalized by the maximum value of each set of data.
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Variance of correlation computing time with increasing input values
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Figure 25. Time required to correlate an increasing amount of traces of all the same

length. Cross-coherence increases at a faster rate than cross-correlation.
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Figure 26. Time required to compute running absolute mean normalization on 600

traces of 2000 values using a GPU and CPU. The GPU’s slope increases at 3 times the

rate of the CPU.
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Figure 27. Figure 26 with data normalized by the cost of the hardware. The GPU’s

slope increases at 6 times the rate of the CPU.
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Figure 28. Time required to correlate an increasing amount of traces of all the same
length using a CPU and a GPU. The black dashed line is the division of the GPU time

by the CPU time. The GPU tends to be 7 times as fast.
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Figure 29. Figure 28 normalized by the cost of the hardware. GPU tends to be 3 times

as fast.
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Chapter 4: Conclusion

Interferometry. or ambient noise cross-correlation. is an effective and
increasingly popular way in exploration geophysics to estimate surface waves. Seismic
interferometry uses cross-correlation and stacking of ambient “noise” seismic data to
approximate Green'’s function, or lag time, between two receivers. Interferometry has
been around for decades but progress in the field has only recently exploded.

The goal of this thesis was to find the cost of obtaining the clearest
interferogram. There are two sub-goals in this problem: obtain the clearest
interferogram and determine the cost of doing so. I hypothesized that this would come
from using cross-coherence, having a generally longer interval length, and normalizing
with running absolute mean normalization. The processes that make the most
difference are the choice of interval length and normalization method. An interval
length of 5 minutes will provide an adequate result, but an interval length of 30 minutes
will provide the best result. Running absolute mean normalization and length-to-1
normalization provide similar results that are both clearer than interferograms produced
from one-bit normalization. This study did not find a significant difference between
cross-coherence and cross-correlation, but cross-coherence is preferred because of the
addition of power spectral normalization with only a slight increase in computational
cost.

Data management is always a key factor in determining interferometric inputs.
Correlation in the frequency domain is ideal because computation time increases

linearly with the number of time samples. In fact, the computation time of all processes
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increases linearly with the number of time samples. Even though the increase is linear,
interferometry still requires massive amounts of computational power. The hardware
choices made when finding an interferometric result is almost as important as the
algorithm. GPUs perform more efficiently than CPUs for correlation, and CPUs
perform faster when more complex algorithms are involved. such as running absolute
mean normalization. Data storage and transfer can also influence the speed of the
interferometric computation just as much as the choice of computational processor. All
of these variables must be considered when performing interferometry. In the future,
we may find that interferometry’s usefulness is limited in exploration geophysics, but it

has come a long way and I believe it has a long way to go.

Number of Normalization Computation

virtual sources time (s) per

Adeguate 4 30 20 Length-to-1 Cross- 220
coherence

1 30 All (~5000) Running-absolute-  Cross- 920
mean coherence

Table 2. A comparison of the adequate and best choices of inputs into the

interferometric workflow to obtain the most distinct surface waves.



Chapter 5: Further Work

There a few steps that would improve the results from interferometry. Some of
these steps are related to the workflow and some are hardware improvements.

I have done the primary work to improve the workflow., but there are still a few
things that can be done to improve it. The first and most obvious next step would be to
continue the workflow and compute all inter-receiver signals. Secondly, I suggest
building a normalization algorithm that detects the frequency range of anomalous
events and builds weights using the running-absolute-mean normalization method.
Then combine these weights with the weights from other events, and apply the
combination of these weights to the raw data. Currently, the method of normalization
lacks the adaptive flexibility associated with a variety of events. Building this new
normalization algorithm allows for normalization of events and doesn’t affect other
data.

Improvements in hardware can easily solve many time management problems,
but the latest hardware is not always available. My first suggestion is to compute
interferograms on a computer with much more computing power. This will require a
computer with a greater number of processing cores and CUDA cores. My second
suggestion 1s to find a faster data transfer method than a USB 3.0 port and cable. A
solution to this may be the addition of an SSD and the use of a different programming

platform.
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Appendix: code

Main program

Eles

number_of_cores = 6;

matlabpool ('open', number of cores);

disp('"
disp('The r of S
disp (number of_ cores);

toc;

clear all;

[header_ numbers, header_ text]=xlsread('he

Juatt)

load('Cheb2 1

receiver point_column = 9;
receiver_ line_column = 8;

inline_rows = [1157];
xline_rows = [5118];
reference_row_location vector
inline_rows, xline_ rows);

= find reference_rows (header_ numbers,

all_reference_trace = length(reference row_location_vector);
length_from reference receiver point = 59;

number_of inlines = 3;

overlapplng_w1ndows_vector =

[41;
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for multi counter = l:length(overlapping windows_vector)

overlapping windows = overlapping_windows_vector (multi_counter);

minute_length = 60000; ms is one nute
interval length minutes = 30;
interval_ length = minute_length * interval_ length_minutes;

old_sample_rate = 0.001;

new_sample multiplier = 4;

new_sample_rate = old_sample_rate * new_sample multiplier;
interval_length_time =
new_sample_rate:new_sample_rate:interval_length/lOOO;

norm_léngth = 125;

aec_length = 0.5;

flow = 0/new_sample _multiplier;
fhigh = 80/new_sample multiplier;
nfilt = 100;

phase = 1;

fl = [4]/new_sample multiplier;
f2 = [5]/new_sample multiplier;
f3 = [9]/new_sample multiplier;
f4 = [12]/new_sample multiplier;
1pl = 20;

1p2 = 30;

ampl = 1;

amp2 = 60;

sample_rate = 1/new_sample rate;

freq ranges = length(fl);
for reference trace_counter = l:all_ reference trace

number of files_column = 7;
if

header numbers (reference row_location vector (reference_trace_cou

nter),number_ of files column) < 3000
continue;
end
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reference_receiver_point =
header_: numbers(reference row_location_ vector (reference_trace_counter),
receiver_point_column);

reference_receiver_ line =
header numbers(reference row_location_ vector (reference_trace_counter),

recelver_llne_column),

number of inlines_counter = number of inlines:l:number of inlines;

receiver_ vector = zeros (size (number_of_inlines_counter));
for receiver length_counter = 1:length (number_of_inlines_counter)
receiver_ vector (receiver_length_counter) =
reference_receiver line +

(number of_inlines_counter (receiver length_counter)*4);

end
regeiver vector = (01 B A s R S A B
all _receivers = length (receiver vector);

reference_row_location =
reference_row_location_vector (reference_trace_counter); the

[reference_trace, reference_trace_header,reference_records] =
retrieve_reference_trace (reference_row_location,header_ numbers,
eader text,'E');

disp('Missior mplete: import of reference trace successful');
toc;

for receiver counter = l:all receivers
for freq counter = l:freq ranges

receiver line =

row =
flnd(header_numbers(:,receiver line column)==receiver lin
Wi C = B
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receiver_points = 5118;

trace_locations =
zeros (length from reference_receiver point*2 + 1,9);

loop number = 1;

avergge_number_of_values =807

correlated traces_xcohere_notwhite = zeros(((2 *
interval_length)./new_sample multiplier) - 1,
length_from reference receiver point*2 + 1);
correlated traces_xcohere_notwhite =

single (correlated_traces_xcohere notwhite);
avg_power_spec = zeros(((2 *

interval length)./new_sample multiplier) - 1, 1);

avg_power_spec = single (avg_power_spec);
timing = zeros (length(receiver points),6);

for counter = l:length(receiver_points)

retrieve tic = tie;

receiver point_row =
find(header_numbers(row,receiver_point_column) ==
receiver_points(counter));
if isempty(receiver_ point_row)
continue;
end

row_location = row(receiver point_row(l));
[secondary_ trace, secondary trace_header,

secondary_records, receiver_ point] =
retrieve_secondary trace(row_location,reference_row

location, header numbers,header text,'E');
disp ('Secondary trace lc ed."');
timing(counter,1l) = toc(retrieve tic);

secondary_trace_header =
cell2mat (secondary trace_header(:,2));

[time_1, time 2] = time_sort (reference_trace_header,

secondary trace_header, reference records,
secondary records);
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P

if (time_1
disp ('

continue;

crop_tic = tic;

reference trace = single (reference trace);
secondary trace = single(secondary trace);

[reference_crop, secondary_crop, error]
data crop(reference trace, reference trace header,
secondary_ trace, secondary_ trace_header, time_1,

time_ 2, reference_records, secondary_records,

interval_length);

reference crop_traces = length (reference crop(1l,
secondary crop traces = length (secondary crop(l,

if error ~= 0
disp('Error with determi
return;

end

clear seconc

disp('Crop check.');
timing(counter,2) = toc(crop_tic);

reference crop =

reduce_samples (reference_crop,new_sample multiplier

;
secondary_crop =

reduce_samples (secondary crop,new_sample multiplier

;

disp ('Resample heck.');

reference_crop = detrend(reference_crop);
secondary crop = detrend (secondary crop):

7

p')i

:))
)

;

;



reference_crop = filter (Hd, reference_crop);
filter tic = tic;

secondary crop = filter (Hd,secondary_crop);
disp('secondary trace filt L
timing(counter,3) = toc(filter tic);

referencelcropi=

running_abs_mean normalization_edit (reference_crop,

orm_length) ;
secondary_crop =

running_abs_mean_normalization_edit (secondary crop,

orm_length);

disp ('Normalize che

toc (norm_tic);
timing (counter,5) = toc(norm_tic);
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reference crop = whiten_traces_short (reference_crop);
secondary crop = whiten_ traces_short (secondary_crop);

timing (counter,é) = toc(white_tic);

disp('Whitening check.')
toc(white_tic);

Xcohere Eic = tic;

lag_time_xcohere = single(zeros(((2 *
interval_length)./new_sample_multiplier) S

reference_crop = single(reference_crop);

secondary_crop = single(secondary_crop);

for xcorr_counter = l:overlapping_ windows
reference_hold =
single (overlap time_ windows (reference_crop,
overlapping windows, xcorr_counter));
secondary_hold =
single (overlap time_ windows (secondary crop,
overlapping windows, Xxcorr_counter));
lag_time xcohere hold =
cross_cohere_ fft_gpu L2mean (secondary hold,
reference_hold) ;
lag_time_xcohere = lag_time_xcohere +
51ngle(lag tlme xcohere hold)
clear refer
clear
end

clear reference
clear secondary

disp ('cros orr check');
timing (counter,4) = toc(xcohere_tic);

correlated_traces_xcohere notwhite(:,loop number)=
lag_time_xcohere;
disp text = sprintf ('Reference T e Location:

line %d'; reference receiver llne,
reference | receiver p01nt),
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disp(disp_text);

disp text = sprintf ('
i', receiver line);

disp (disp_text):

disp.text = sprintf ('

disp (disp_text);

, counter, length(receiver_points));

number_of computed values = (time_2-time_1)/1000;

disp_text = sprintf ('

disp(disp_text);

average number of values = average number of_ values +
number_of_ computed values/length(receiver_points);

trace_locations(loop_number,l) =
trace_locations (loop number,2) =
actual x_column = 13;
actual_y column = 14;
trace_locations (loop number,3) =

, number of computed_values);

receiver line;
receiver point;

header_numbers (row_location,actual_x_column);

trace_locations (loop_number,4) =

header numbers (row_location,actual_y_column) ;

trace_locations (loop number, 5)
reference_crop_traces;

trace_locations (loop number, 6)
average_number of values;

trace_locations(loop_number,7)

abs (header numbers (reference_row_location,actual_x_

olumn) -

header_ numbers (reference_row_location,actual_x_colu

n)); relative x
trace_locations (loop_number,8) =

abs (header numbers (reference_row_location,actual_y_

olumn) -

header numbers (reference_row_location,actual_y colu

n)); elative y
trace_locations(loop_number,9) =

((trace_locations (loop_number,7)"2) +
(trace_locations (loop number,8)~2))"(.5);

loop_number= loop_number + 1;

save_file = sprintf ('

reference receiver line,

',new_sample multiplier ,

reference_receiver_point,receiver_line);
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save info = sprintf ('%d-is d!,
new sample multiplier,'
300 rl 1 wind4 white x here end inf single',r
eference_;eceiver_line, reference_receiver point,
receiver line):

file,

save (save_info, 'lc

'a number

avere

end

disp (

mat

Time Sort

function [start_time, end_time] = time_sort(reference_trace_header,
secondary_trace_header, reference records, secondary records)

header 1 = reference_trace_header;
header 2 secondary_trace_header;

header 1 start = header 1(6,1);
header_ 1 _end = header_l:start >
(header_1(1,1)*reference records*1000) ;
header_2_ start = header 2(6,1);
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header_2_end = header 2_start +
(header_z(1,l)*secondary_records*lOOO);

if header_1_start > header 1 _end
start_time = 0; EBrr
end_time
time
return;
end

0; Error: start

if header_2_start > header_2 end
start_time = 0; Error:
end time
end_time = 0;
time

return;

end

if header_2_end < header_1l_start

dary trace

start_timeA= 0;
elseif header 2 start

if header_2_start > header_1l_end
y trace occurs after

end_time = 0;

secondar

o

refe
end_time = header_1l_end;
ader 2 end <

trace

end time = header_2_end;

end
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Normalization length-to-1

function [ norm matrix ] = norml( matrix, norm_length )

norm _matrix = zeros(size (matrix));
steps = fix(length (matrix(:,1))/norm length);

for norm_counter = l:length(matrix(l,:))
for norm_counter_hold = l:steps
start_norm = 1 + ((norm_counter_hold - 1)*norm_length);
end_norm = norm_counter_hold*norm length;
matrix hold =
gpuArray (matrix (start_norm:end norm,norm_counter));
norm _matrix(start_norm:end norm,norm_counter) =
gather (normc (matrix hold));
end
if steps ~= length(matrix(:,1))/norm_length
start_norm = 1 + (steps * norm_length);
end_norm = length(matrix(1l,:));
matrix hold =
gpuArray (matrix(start_norm:end norm,norm_counter));
norm matrix(start_norm:end norm,norm counter) =
gather (normc (matrix_hold)) ;
end

Normalization running-absolute-mean

function [normalized_trace] =
running_abs_mean_normalization(non_normal_trace, time_window)

running window = time window;

abs_trace = abs(non_normal_trace);
number of traces = length(abs_trace(l,:));
length_of trace = length(abs trace(:,1));
upper_limit = length of trace - running_window;

weights = zeros(length of trace, number of traces);
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running_window_times2 plusl = 2*running window + 1;

parfor counter = l:number_of_traces
single_trace = abs_trace(:,counter);
initial_sum = sum(single_trace(l:running_window));
for sub_counter = l:length of trace
if sub_counter <= (running window + 1)
initial sum = initial_sum + single_trace (sub_counter +
running_window) ;
window_total = (initial_sum)/(running_window +
sub_counter) ;
elseif sub_counter >= upper limit + 1
initial sum = initial_ sum - single_trace (sub_counter -
running_window - 1);

window_total = (initial_sum)/(running_window +
length_of trace - sub counter + 1);
else
initial_sum = initial_ sum + single_trace (sub_counter +
running_window) - single_trace(sub_counter -
running_window - 1);
window_total = (initial_sum)/running window_times2 plusl;
end
weights (sub_counter, counter) = window_total;

end
end

normalized_trace = non_normal_trace./weights;

Whiten

function [matrix] = whiten_traces_short(matrix)
matrix = single (matrix);

matrix = fft (matrix);
keep phase = angle (matrix);
matrix = matrix./(abs (matrix)+max (mean (abs (matrix))));

= atr abps (matrix) ;

matrix = abs(matrix).*exp(li*keep phase);
matrix abs (1fft (matrix)) ;
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Cross-correlation

function [time_lag fft] = cross_corr_ fft pc(matrix 1l,matrix_2)

side_width = length(matrix_1(1,:));
down_width = length(matrix_1(:,1));

xcorr_length = (down_width*2)-1;
sum_xcorr_fft = zeros(xcorr_length,1);
sections = 4;

for counter = l:sections
fftstart = 1 + (side_width* (counter-1)/sections) ;
fftend = counter*side width/sections;
current xcorr fft =
ifft (£ft(matrix_1(:, fftstart:fftend), xcorr_length).*conj (fft (ma
rix_2(:,fftstart:fftend),xcorr_length))):
enrrent xcorr FEEshft=fftshift (enrrent Xcorr FEE));
sum_xcorr fft = sum xcorr fft +
sum (current_xcorr fftshft,2)/side_width;
end

time_lag_fft = sum_xcorr_ fft;
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Cross-coherence

function [time_lag_total] =
cross_cohere_fft_gpu_LCmean(matrix_l,matrix 2)

reset(gpﬁbevice);

max_gpu_count = 5e6;

side_width = length(matrix_1(1,:)):
down_width = length(matrix_1(:,1));

xcorr_ length = (down_width*2)-1;

max_lines = fix(max_gpu_count/down_width) ;
sections = fix(side_width/max lines);

if sections == 0

matrix 1 _gpu = gpuArray(matrix 1);

matrix 2 _gpu = gpuArray(matrix_2);

fft matrix 1 = fft(matrix_1 gpu,xcorr_length);
fft matrix 2 = fft(matrix_ 2 gpu,xcorr_length);
fft matrix 1 scale = sqrt(sum(abs(fft_matrix_1)."72,2));

o

fft_matrix 2 scale = sqrt(sum(abs(fft_matrix_2).72,2));
fft matrix scale = fft matrix 1 scale.*fft_matrix_2_scale;
fft matrix_1_norm = sqrt(sum(abs(fft_matrix_1)."
fft matrix_ 2 norm = sqgrt(sum(abs(fft_matrix_2)."
fft matrix norm = (fft_matrix 1 norm.*fft matrix_2 norm);
matrix_white = .01* (abs(fft_matrix_l)+abs(fft_matrix 2));
fft_matrix_norm = bsxfun(@plus,matrix_white, fft_matrix norm);
current_xcorr fft = fft matrix_1l.*conj (fft_matrix 2);

keep_angle = angle(current_xcorr_ fft);

current_xcorr fft = abs(current_xcorr_fft)./abs(fft_matrix norm);

2117
2));

current_xcorr_ fft = current xcorr fft.*exp(li*keep_angle);
current_xcorr fft = ifft(current_xcorr fft);

current xcorr fftshft=fftshift (current_xcorr_ f£ft);
time lag fft = sum(current_xcorr_fftshft,2)/side_width;
time lag fft = gather(time lag_ fft);

time lag total = abs(time lag_fft);
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time_lag_total = zeros (xcorr_length,1);
increment = fix(side_width/sections);

for counter = l:sections
fftstart = 1 + increment* (counter-1);
fftend = counter * increment;
matrix 1 hold = matrix_1(:,fftstart:fftend);
matrix 2 hold = matrix_2(:,fftstart:fftend);
matrix 1 gpu = gpuArray (matrix_1_hold) ;
matrix_2 gpu = gpuArray(matrix_2_hold);

fft matrix 1 = fft(matrix_1_gpu,xcorr_length);
fft_matrix 2 = fft(matrix 2 _gpu,xcorr_length);
fft_matrix_ 1 norm = sqrt(sum(abs(fft_matrix_1).”

~

2)
fft_matrix 2 norm = sqrt(sum(abs(fft_matrix_2)."2)
fft matrix 2 scale = sqrt (sum(abs (fft_matrix 2) .72
fft matrix scale = fft matrix 1 scale.*fft matrix 2_scale;
fft_matrix_norm = (fft_matrix_l_norm.*fft_matrix_ _norm) ;
matrix_white = .01*(abs(fft_matrix_1l)+abs (fft_matrix 2));
fft _matrix_norm = bsxfun(@plus,matrix white, fft matrix norm);
current_xcorr fft = fft matrix_l.*conj (£ft_matrix 2);
keep_angle = angle (current_xcorr_ fft);
gurrent xcorr f£ft =

abs (current_xcorr_fft)./abs (fft_matrix_norm);

current xcorr fft = current xcorr fft.*exp(li*keep angle);
current xcorr fft = ifft (current xcorr f£ft);

current xcorr fftshft=fftshift (current xcorr fft);
time lag fft = sum (current_xcorr_ fftshft,2)/side_width;
time_lag_fft = gather (time_lag_ fft);
time lag total = time_lag_total + time_lag_fft;
end

) o v

fftstart = (sections * increment) + 1;
fftend = side_width;

matrix 1 hold = matrix_1(:,fftstart:fftend);
matrix 2 hold = matrix 2 (:, fftstart:fftend);
matrix_l:gpu = gpuArray(matrix_1_hold);
matrix_Z_gpu = gpuArray(matrix_2_hold):

fft matrix 1 = fft(matrix_1_gpu,xcorr_length);

fft_matrix_2 = fft(matrix_ 2_gpu,xcorr_length);

fft_matrix_1 norm = sqrt(sum(abs(fft_matrix_l1).
fft matrix 2 norm = sqrt(sum(abs(fft_matrix 2).
fft matrix 1 scale = sqrt(sum(abs (fft_matrix_1).72,2));
£ft matrix 2 scale = sqrt(sum(abs (££ft_matrix_2).%2,2));:
£ft_matrix_scale = fft matrix 1 _scale.*fft matrix 2 scale;
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fft matrix_norm = (fft_matrix_l_norm.*fft matrix_2_norm);
matrix white = .01*(abs(fft_matrix_l)+abs (fft_matrix 2));
fft_matrix_norm = bsxfun(@pIus,matrix_white,fft_matrix_norm);
current_xcorr fft = fft matrix_1.*conj (fft_matrix 2);
keep_angle = angle (current_xcorr_ fft);

current_xcorr_fft =
abs (current_xcorr fft)./abs(fft_matrix_norm);

current_xcorr fft = current xcorr fft.*exp(li*keep_angle);
= ifft (current_xcorr fft);

current xcorr_ fftshft=fftshift (current_xcorr fft);

time lag fft = sum(current_xcorr_ fftshft,2)/side_width;
time_lag fft = gather(time_lag fft);

time_lag_total = time_lag_total + time_lag fft;

end
time_lag_total =abs(time_lag_total);
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