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CHAPTER I 

INTRODUCTION 

The bacterial cell wall is the rigid, water-insoluble structure 

which shape~ and protects the organism. Although the cell walls of 

gram-negative bacteria represent approximately 15-20% of the dry weight 

of the whole cell, chemical analyses indicate that it is chemically 

more complex than the walls of gram-positive bacteria (Salton, 1953, 

1960). Walls f~om gram-positive organisms contain more hexosamine and 

considerably less total lipid than the walls of gram-negative organisms. 

A significant difference is also noted in the amino acid content of the 

two types of organisms. Walls of gram-positive organisms contain hexos

amine, alanine, glutamic acid, lysine, and diaminopimelic acid (Work, 

1957). Many of the gram-positive bacteria also contain polymers of ri

bitol phosphate, glycerol phosphate, or ribitol teichoic acids. The 

teichoic acids are polymers of ribitol phosphate which usually contain 

a sugar moiety to which alanine is linked as an ester (Armstrong, 

Baddiley, and Buchanan, 1961). Walls of gram-negative organisms have a 

full complement of amino acids including aromatic and sulfur containing 

amino acids (Work, 1961). Both types of organisms contain N-acetyl

glucosamine and N-acetylmuramic acid (Strange and Dark, 1956). 

Kellenberger and Ryter (1958) were able to clearly show that 

Escherichia ~ possessed a multi-layered cell wa,11. The wall appear

ed to consist of three layers, two of which were electron dense and 
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one which was electron transparent. Each layer was approximately 20-30 A 

in thickness. Weide!, Frank, and Martin (1960} r.eported that many of the 

gram-negative organisms appear to have multi-layered walls, An outer 

layer can be separated as a pliable lipoprotein coat (phenol-soluble). 

Just under the outer layer lies the lipopolysaccharide layer (less sol-

uhle in phenoll and it ts thought to house cellular antigens. The inner-

most layer is termed the mucopeptide (rigid and insoluble in pnenol). 

The mucopeptide is made up of polymers of N-acetylglucosamfoe and N-

acetylmurami.c acid connected by alternating ,.BU-~ 4) and J3(1-) 6 or 1~ 

3} linkages with a pentapeptide attached to the muramic acid. The muco-

peptide polymer comprises at least 4% of the cell wall by dry weight with 

the remainder of the gram-negative cell wall compr.i'sed of lipi:ds (l-20%), 

protein (6.0-80%}, and sugar polymers (Salton, .19611. The mucopeptide 

forms the r.tgid backbone component with covalently bonded amn,o acids 

and amino sugars. The outer cell wall components appear to be attached 

to the mucopeptide by weaker linkages (hydrogen-bonding). 

In a study using Aerobacter cloacae cell walls to determine the com-

position of purifi ed mucopeptide (lysozyme substrate), Schacher, Bayley, 

and Watson (1962) reported molar ratios of glucosamine, muramic acid, 

alanine, glutamic acid, and diaminopimelic acid (DAP) of 2:2:3:2:2 re-

spectively. It was postulated that two types of peptides existed: one 

containing two moles of alanine along with glucose and DAP, and one con-

taining only a single alanine residue plus glucose and DAP. 

Evidence for the direct action of lysozyme on the cell wall was 

first reported by Weibull (1953) who observed f ormation of spherical 

protoplasts, appreciably devoid of cell wall, f ollowing treatment of 

Bacillus megateri um with lysozyme in sucrose media. Further, Grula and 



Hartsell (1954) and Salton (1956) observed that isolated cell wall sus

pensions were readily degraded by lysozymeG Colobert and Dirheimer 

(1960) isolated a chromatographically pure hexosamine-muramic acid pep

tide polymer from Micrococcus lysodeikticus that was rapidly depoly

merized by lysozyme. 

The use of synthetic substrates for lysozyme by Hamaguchi et al. 

(1960) revealed that lysozyme only acts on polymers of N-acetyl deri

vatives of glucosamine and not on deacetylated polymers. 

The correlation of lysozyme action and the appearance of reducing 

sugar was confirmed by Epstein and Chain (1940). Lysozyme appears to 

catalyse depolymerization before liberation of reducing groups. 

Lysozyme action is characterized by display of the following: (a) 

rupture of J(l-~ 4) hexosamine linkages, (b) turbidity reduction of in

soluble cell wall structure (or lysis where the wall is~ situ), and 

(c) liberation of reducing groups. 

Isolation of the lysozyme substrate was described by Salton and 

Ghuysen (1960) and by Perkins (1960). Purified di- and tetra- sacch

aride from the dialysable fraction of M. lysodeikticus cell walls were 

released following the action of lysozyme and Streptomyces r 1 peptidase. 

Lysozyme cleaved the p(l-~ 4) linkage between the N-acetylglucosamine 

and the N-acetylmuramic acid resulting in depolymerization of the muco

peptide complex. When lysozyme acts on whole cells in hypotonic media, 

lysis of the cell results. 

Lysozyme, because of its high isoelectric point, complexes readily 

with acid groups on the cell surface. The presence of salts appear nec

essary .to prevent neutrali zation of s urf ace charge by lysozyme which 

tends to cause agglutination of cell material. 

3 
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Several investigators have reported the release of cell wall com

ponents following lysozyme digestion of gr.am-negative organisms (Weidel 

et al., ]960; Primosigh et al., 1961; Schocher et al., 1962; Lark, 

Bradley, and Lark, 1963). The components normally released from isolated 

mucopeptide are: alanine, glutamic acid, diaminopimelic acid or lysine, 

mu,ramic acid, and glucosamine. 

While most gram-positive bacteria are sensitive to the lytic action 

of lysozyme, the majority of the gram-negative cells are unaffected by 

this enzyme. 

Lysozyme lysis of gram-negative and gram-'positive bacteria involves 

tne same substPate, th"e. d,i::fference . being tne infe:r>ior locatton of tfie sub

strate in th:e gz,am-negat:tve cell wall. It i :s conceivable that agents 

wh:i:ch: sensitize gram.negative bacteria to the action of lysozyme l'iave the 

ability to create "holes" in the outer lipoprotein layer, thus exposing 

the lysozyme substrate. 

M'andelstam (1962) isolated and characterized a lysozyme-soluble 

mucopeptide fraction from Escherichia coli cell walls. Separation of 

mucopeptide from protein was accomplished by ethanol-ether (3/1 v/v) ex

traction. Analysis of the solub.le fragments from walls of ~· coli follow

ing treatments of lysozyme revealed mucopeptide material containing di

aminopimelic acid, rnuramic acid, glucosamine, alanine, and glutamic acid. 

Thi's observation is consistent with that of Weidel et al. (1960). The 

material accounted for approximately 75-80% of the theoretical dry weight 

of the wall. The same technique of mucopeptide isolation was attempted 

on gram-positive bacterial walls, in which case almost identical com

ponents were obtained. Further, the mucopeptides isolated from five 

strains of E.coli had compositions that were virtually identical to 
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tfiat found in the mucopeptide of Staphylococcus aureus 524. Also, four 

other strains of micrococci gave similar results. The prepared muco-

peptide was examined for sensit.i:vity to lysozyme. An inhibitor of lyso-

zyme action appeared to :be present which w~s possibly introduced during 

preparation. Increased concentration of lysozyme was found to overcome the 

inhibition. The author concluded that cell walls of E.coli contained 

mucopept.tde as an integral structure (not separated sub-units) and that 

its sensitivity to lysozyme resembled that of gram-positive bacteria. 

Gram-positive cell walls usually contain either diaminopimelic acid or 

lysine, whereas the coli'form mucopeptide contains both. The ratio of 

lysine with respect to diaminopimelic acid increased at each successive 

stage of purification. 

Differences in lysozyme susceptibility cannot yet be ascribed to 

any given chemical component. No generalized explanation has yet been 

offered to account for differences between those species which show var-

ied sensitivity to lysozyme. 

Resistance is not due to the absence of lysozyme substrate in gram-

negative bacterial cell walls, since a lysozyme-sensitive fraction has 

been obtained from the cell walls of Salmonella typhosa (Colobert and 

Creach, 1960), Aerobacter cloacae (Schacher et al., 1962), and E_. coli 

(Mandelstam, 1961; Primosigh et al., 1961), and others (Mandelstam, 1962). 

A mechanism explaining the lysozyme-resistance of gram-negative organisms 

is even more difficult due to the more complex chemical composition of 

the cell wall. 

Brumfitt, Wardlaw, and Park (1958), using a mutant strain of M. 

lysodeikticus resistant to lysozyme up to 4000 ,µg/ml, observed a higher 

ratio of 0-acetyl groups attached to the muramic acid. It was further 
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observed that chemical manipulation of the O~cetyl content correspond

ingly altered the sensitivity to lysozyme. It was concluded that the 

relative propoI'tion of 0-acetyl groups had a di.l"ect effect upon the sus

ceptibility to lysozyme. Salton and Pavlik (19601 suggested that lyso

zyme sensi:tivity is dependent upon the existing diffet'ences in the mode 

of linkage of the acetyla.mino gt'oups to one another, inferring that 

sensitivity of any species depends upon th~ available n~~r of specific 

b~nds sensitive to lysozyme. 

Bi:osyntheti.c alteration of lysozyme sensitivity has been accom

plished by several invest_igatot1s, Smith' et al. (19.62T 1"epo!9ted that 

cells-· of Stt'eptecoccus faecalis grown in the priesenc::e of hydt"oxylysine 

were more resistant to rupture by sonic oscillation and to lysis by lyso

zyme or penicillin than were control cells. Salton (l953I repol"ted cell 

walls of lysozyme-resistant ~. faec::ali's differed ft"om M. lysodeikticus 

and B. subtilis in rhamnose content. Later, Abrams (1958) reported that 

purified cell walls of susceptible cells of~- faecalis did contain 

rhamnose, but no obvious correlation could be established between 0-

acetyl content of typical gram-positive and gram-negative organisms and 

their resistance to lysozyme. 

Current research indicates that lysozyme-resistance in gram-neg

ative cells may possibly be due to the presence of the external lyso

zyme-impermeable layer of lipid, protein, and/or lipoprotein which could 

serve to mask the enzyme substrate in the cell wall. Several investi

gators have reported evidence that certain treatments enhance or potenti

ate the action of lysozyme on the gram-negative bacteria. Grula and 

Hartsell (1954), Becker and Hartsell (1954), Noller and Hartsell (1961b), 

Kohn (1960), and Repaske (1958) have reported that certain treatments 

of the gram-negative cell wall such as low pH, heat, solvents, poly-
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basic antibiotics, freezing and thawing. or EDTA (versene) are capable of 

enhancing lysozyme action on whole cells. In 1923, Nakamura observed a 

lysozyme- potentiating .treatment in which suspensions of gram-negative 

cells, if incubated in 0.0033 N HCl plus lysozyme, cleared following ad

di'tion of alkali to a pH greater than neutrality. The bacteria could 

be made alkali-sensitive by pre-exposure to acid and lysozyme, but not 

as alkalt-sensitive when exposed to either alone. The mechanism has 

sinqe been clarified by Grula and Hartsell (1957b) by demonstrating that 

alkaline clearing of acid-lysozyme treated cells resulted from swelling 

and hydration of residual structures of partially degraded cells. Re

acidification of the test suspensions caused shrinkage of these "ghosts" 

and a return of turbidity to the suspensions. It was concluded that pH 

3.5 pre-treatment released substrate from a "bound state" and permitted 

lysozyme digestion. 

Becker and Hartsell (1954, 1955) reported that lysozyme sensitivi

ty of gram-negative bacteria may also be increased by heat pre-treatment 

of cells at 70 C for 15 minutes. Heat pre-treatment alone does not per

mit marked sensitization to lysozyme, but cell lysis greater than 90% 

is observed when lysozyme and trypsin act in combination. The conclusion 

here presumes that heat treatment allows unfolding either by melting or 

disaggregation of the protein components sufficiently to allow tryptic 

digestion. The tryptic action attacks the protein, and conceivably un

covers the lysozyme substrate. 

Noller and Hartsell (1961b) made an extensive study to relate the 

function of lysozyme-potentiating action of selected pre- and co-treat

ments including heat, acid, butanol, circulin, and EDTA using members 

of the Enterobacteriaceae. Agents of known lipoprotein-dissociating 
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properties were shown to elicit marked effectso Ethyl acetate and!!_

butanol appeared to cause similar lysis patterns in the presence of lyso

zyme, trypsin, or lysozyme plus trypsin at pH 7 compared to those using 

heated cells " The action of both n-butanol and ethyl acetate conceivably 

dissociate much of the l i poprotein permitting trypsin digestion and sub

sequent unmasking of the lysozyme substrate. 

Increased sensit i vity of gram-negative bacterial cells to lysozyme 

was observed by Warren, Gray, and Yurchenco (1957) following exposure 

of cells to polymyxin. Noller and Hartsell (1961b) observed rapid lysis 

if lysozyme and polymyxin were added simultaneously. Newton (1956) has 

shown that polymyxin possesses specific affinity for the cell wall and 

cell membraneo Polymyxin-sensitive bacteria appear to have more phos

pholipid than polymyxin-resistant bacteria. The action of polymyxin in 

potentiating lysozyme action seems best explained by its action as a 

strong cationic surfactant which disorganizes the substrate-protecting 

lipoprotein (Noller and Hartsell, 1961b; Goldberg, 1959). Clearing of 

whole cell suspensions follows lysozyme-polymyxin action due to loss of 

cytoplasm through the disorganized wall and plasma membrane. 

Sensitization of gram-negative bacteria to lysozyme has been demon

strated using ethylenediaminetetraacetic acid (EDTA) in pH 8.0 tris 

(hydroxymethyl) aminomethane buffer (Repaske, 1958). Repaske concluded 

that EDTA functions as a chelating agent by splitting coordinate bonds 

between metals and sulfhydryl groups at the cell surface which normally 

block enzyme- substrate formation. In a comparison of EDTA action with 

that of synthetic detergents, Colobert (1958) reported that EDTA appear

ed to function more as a lipid-dissociant rather than as a chelating 

agent in potentiating lysozyme action. The function of versene as a 
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chelating agent is supported by the finding that exposure of Dowex 50 

(H+)-treated Azotobacter cells to a variety of divalent metals in the pre-

sence of lysozyme and tris buffer did not cause their lysis. Versene, 

when added to t he reaction mixture, caused complete lysis (Repaske, 1960). 

It is proposed that versene complexes with the metals causing exposure of 

lysozyme substrate. ++ Grula and Hartsell (1957b) also reported Zn in-

hibition in their lytic systems. 

Salton and Shafa (1958) observed dts_aggregation of isolated S. 

gallinarum cell walls using sodium dodecyl sulfat e. The action of sodium 

dodecyl sulfate appeared to be a combination of protein denaturation and 

disaggregation of the oriented lipoprotein complex in the cell wall. 

Addition of phospholip:id to the reaction mixture protected the cell walls 

from the germicidal action of cationic and anionic detergents . Protein 

denaturation was evidenced by the liberation of sulfhydryl groups into 

the supel'Ylatant materi al. It was concluded that the muco-complex does 

not form a continuous layer of wall material, but rather a reinforcing 

network extending across a multi- layered wall. The later conclusion is 

compatible wi th the hypothesis of Weidel et al . (1960), who proposed that 

the cell wall of gram- negative bacteria is made of three distinct layers. 

Certain treatments of the gram- negatiV,e cell such as low pH, heat, 

solvents, polybasic antibiotics, freezing and thawing, and EDTA are cap-

able of potentiating concurrent or s ubsequent lysozyme action resulting 

in lysis of the cell. While it is presently presumed that these treat-

ments dissociate the lysozyme-protecting components of the cell wall 

(lipoprotei n), the exact nature of their potentiating ef fects remains 

unknown . 
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The primary aim of this study was to compare the effects of selected 

lysozyrne-potentiating treatments on whole cells and cell wall material of 

E. coli. This was carried out by determining the composition and amount 

of material released from isolated f• coli wall material following sel-

ected lysozyme-potentiating treatments. Study of isolated cell wall mat-

erial, rather than whole cells limits the effects of lysozyme-potentiat-

ing treatments to the wall proper. Thus, chemical analyses of materials 

released from the wall will not be. obscured by protoplast components 

other than the protoplast membrane. 

Much of the stimulus for this study was provided by the fact that 

little is known about the mode of action of these lysozyme-potentiating 

cell treatments. Do they actually "strip off" wall components from the 

cell or is there merely· dissociation of the wall components to permit 

lysozyme to reach its substrate without actual disaggregation of the 

wall? This study was conducted to answer these questions by determin-

ing the nature of the components released, if any, during treatment of 

isolated cell wall material with the indicated lysozyme-potentiating 

treatments o This study anticipated insight into the understanding of. 

the nature of the various components that comprise the gram-negative 

cell wall, and the mechanism of lysozyme resistance. 



CHAPTER II 

MATERIALS AND METHODS 

Organism 

Selection and maintenance~ 

Escherichia coli (ATCC 87391 .. was selected as test culture on tbe -------
basis of typical biochemical chaI'acteristics and of wh-ole cell lytic 

response to lysozyme•potentiating systems. Master stock cultu:t1es were 

maintained a.s refrigerated (4 Cl. stab cultures in nutrtent agaI' over-

layered wit!. 3 ml of stet>i'l.e mine?'al oil after incubati:on 1 Worldng 

stock cultures were transferred monthly on nutrient agar slants contain-

ing 0.2% dextrose and stored at 4 C. Master stock cultures under oil 

were not disturbed unless lytic or biochemical characteristics changed 

in the working stock cultures as a result of repeated transfer. In such 

cases, new working stock cultures were prepared from the oiled cultures. 

Oiled cultures have maintained their original lytic and biochemical 

characteristics for 2-1/2 years. All cultures were incubated at 37 C. 

PreEaration of whole cells for lrtic testin~. 
.} 

Whole cells for lytic testing were grown on nutrient agar slants 

for 24 hours. Cell growth was suspended in sterile saline and used as 

spread inocullllll for 10-12 petri dishes containing nutrient agar plus 

0.2% dextrose. Following incubation for 18 hours, the cells were har-

-11-



vested and washed twice with di'st.Uled water. Cell suspensions were 

standardized prior to use by diluting with water so that an addition 

of 0.5 ml of the suspension to 4.5 ml of the lytic system would give 

an initial optical density i:n the vi:cinity of o_. 5. Washed cells were 

stored at 4 C and used on the same day that they were prepared. 

Preparation of cell wall material. 

12 

FoI' preparation of large quantities of cells, tne test organism was 

grown in 10 liter quantities of nutrient broth plus 0.2% dextrose at 37 

C for 18 hoU?' using forced aeration. Anti-foam A (aerosol sprayl was ad

ded prior to stex-ili'zati:on to control foaming. Cells were harvested using 

a Sl'taftples centrifuge at appx,oximately 45,000 rpm, resuspended i'n 0.0'67 M 

phosphate buffer (pH 7 >-, and standardized for rupture. 

Cell rupture was accomplished by using a 10 K. C. Raytheon Sonic 

oscillator on 75 ml aliquots of cell suspension for 11 min. Breed counts 

revealed that approximately 90% rupture was achieved when initial cell 

concentration was in the range of 2-4 x 109 cells/ml (optical density of 

approximately 0.4-0.8). Higher or lower concentrations decreased rupture 

efficiency. Cell wall material was purified by the differential centri

fugation method of Schocher et al. (1962), lyophilized, and stored in a 

vacuum desiccator. 

Lysozyme-Sensitivity of Escherichia coli Whole Cells 

Lysozyme-potentiating treatments. 

General. Lysozyme potentiation was determined by measuring the 
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lytic effect at 45 C of lysozyme1, or a combination of lysozyme and try-

psin on cells with and without the treatments indicated in the following 

paragraphs. 

All water for preparation of reagents, enzymes, lytic systems, and 

for analyses was glass-distilled from single-distilled tap water. Enzyme 

solutions were stored at 4 C and prepared fresh at least monthly. 

Lytic reactions were generally carried out at 45 C in 14 mm Pyrex 

culture tubes standardized for spectrophotometric use. Lysis was deter-

mi:ned by measuring the decrease in optical density of the test suspension 

during exposure of the cells to t~e test systems .. Optical density was 

measured with a l<l.ett-Summerson (Model 800-3) colorimeter at a nominal 

wave-length of 600 mp, Tb~ tunes were read for turibidi:ty change at time 

intervals of O, s, 15, 30, and 6.0 minutes. 

The terms pre ... treatment and co-tN?atment wi:11 be used extensively 

tfuioughout the text. They are defined l'espectively as, exposure of cells 

or cell walls to conditions such as heat, low pK, etc., prior to the ad-

di'tion of lytic reagents and as exposure of cells or cell walls to these 

var.i:ous conditions simultaneously with lytic reagents. 

Heat pre-treatment. Standardized cells were heated for 15 min at 

70 C and then cooled to 45 Cina water bath. One-half ml volumes of 

heated cells were added to the lytic systems contained in 4.5 ml phos-

phate buffer (pH 7) pre-warmed to 45 C. Final concentrations of enzymes, 

whether alone or in combination, were 20 1ug/ml lysozyme and 10 pg/ml try-

1The term lysozyme will Be used as the trivial name for N-acetyl
muramide glycanohydrolase (Joll~s et al., 1963). While the term murami
dase has been suggested as the preferred trivial name, the term lysozyme 
has adequate precedence to merit its continued use. 
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psin. Final buffer concentration was 0.0067 M. Controls using :buffer 

alone were included. 

Butanol co-treatment. Unheated standardized cells were exposed to 

lysozyme, trypsin, or lysozyme and trypsin as indtcated above except that 

5.%. v/v n-butanol was added to each lytic system. Controls of n-:butanol in 

Buffer without enzymes were also included. 

Polymyxi'n co..-tx:ieatinent. Th~ p:rocedll?'e used was the same as for but

anol co ... treatment except tltat outanol was replaced By 70 U/ml polymyxin 

Versene co-ty;,eatment. Unheated standar,dized cells wel?e used. Lyso

zyme and trypsin Pemai'ned as· the lyti'O agents, l)'ut wel'e prepared in 

0.0.34 M tris buffeP [tr.ts (l'tydl'\oxymet?iylI ami'nometh.ane]. pt! 8. Versene 

(dtsodi:um eth-y1ene<i.iatl'lilletetraacetateY ... at a level of 133 pg/ml, was used 

a.S' the lysozyme....,potenti:ating oo..J.yti'a agent. . ' . . 

~odi:f i:ed Na~upa treatment.. To detemine the e.f fects of aci'd co~ 

treatment, cells were incubated in water adjusted to pH 3.5 using 0.01 N 

HCl. In addition to a tube containing lysozyme (20 pg/ml), a control tube 

(absence of lysozyme) was also included. Optical density was recorded 

initially and after incubation for varying intervals up to and including 

60 minutes at 45 C. After each incubation interval, 0.1 N alkali (NaOH) 

was added to each tube to give a final pH of 10.5 and the optical density 

again noted after 5 minutes. 

Effect of electrolytes on lysis. 

In a preliminary study, it was found that paper chromatographic 

analyses of dried supernatant samples containing residual salts of the 

0.0067 M phosphate buffer (100 ml systems) prevented amino acid reso-

lution. Experiments were conducted to determine whether salts could 
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be reduced or eliminated from the reaction mixture. At the same time the 

general need for the presence of an electrolyte was also investigated. 

For this study, water, 0. 015 M NaCl, and 0.0067 M ammonium acetate (pH 7) 

were substituted for phosphate buffer. All sy~tems except water were of 

the same ionic strength (0.015). The lysozyme-potent:i:ating components 

of the LTB system were used as the oasis for comparison. Preparation of 

t'fie test systems was the same as indicated for whole cell lyti'c studies. 

Tfie resulting lyti'c patterns were used to determine the necessity for 

electrolytes.. All systems were incubated for 1 hour at .45 C wit.h the ex-

tent of lysis being determined turl:lidimetrically. 

Effect_ of lyoFhili:zation on cell lysis. 

An experiment was conducted to determine whethell o:r- not lyopfiil-

i'zation would <\l tel' the lysozyme sensi"tivity of whole cells. A sus-

pension of lyophilized and n.on-lyophilized whole cells was standardized 

for testing tJsing the same procedure as outlined for whole cell lytic 

studies. The potentiating treatments of heat, butanol, polymyxin, and 
I 

versene were used as the basis for comparison of lyophilized versus non-

lyophilized cells. 

Lysozyrne-Sensitivity of Isolated Cell Wall Material 

Turbidimetri c analysis. 

Turbidirnetric analyses were conducted using isolated cell wall 

material in an attempt to detern,iine whether or not the lysozyme-poten-

tiating treatments for whole cells caused similar clearing of cell wall 

suspensions. Except for the use of cell wall material in the place of 

whole cells, all treatments and lytic systems were identical to those 

used for whole cell experiments. 
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Analyses for release of cell wall components. 

Experiments were conducted to detel'!lline the type and amount of com-

ponents released from cell wall material following lysozyme-potentiatmg 

treatments.. One.,.,h:uncit'ed ml systems ccmtain.ing SQ mg samples of cell wall 

material pI'e-heated for' lS min at 70 C were exposed to lysozyme, tt"Y'Psin, 

and lysozyme plus trypsin in the presence and a:O'sence of n...butanol, poly--
myxin, or ver'sene at 45 C for l hour- All reagent concentrations we1"e 

the same as used for turbidimetric analysis. The effect of aeid cc, .... 

tl:'eatment was detel'I!lined by use of Naka,nun~a tI'eatment as shown in rtgu!"e 

P'ollowing the 1 hou?' incubation, all systems were centl"ifuged at 

18,000 x G to remove wall res-idues and the superoatant liquid was anal ... 

yzed as indicated in Figure 2. 

Amino acid chr<;>matograehy .. One-'ft,md:red mg of cell wall matel1'nl 

was suspended in 2 ml of distilled wate,::, and divided into twc, 1 ml ali

quots. One of the aliquots was hydrolysed in 6 N RCl at 100 e fol' 18 

hours. The hydrolysate was dried at 80 Cina dry air oven and resus-

pended to a voll.DTle of l ml. The second aliquot was left untreated. Ten 

microliter aliquots from both the hydrolysed and unhydrolysed samples . 
were spotted onto separate Whatman #1 chromatographic papers and irri-

gated in two dimensions using the Redfield (1953) solvent system (meth-

anol/water/pyridine, 80/20/4, v/v, in the first dimension; tertiary 

butanol/methylethyl ketone/water/diethylamine, 40/40/20/4, v/v in the 

second dimension). The chromatograms were developed by spraying with 

0.5% ninhydrin in acetone followed by heating in a dry air oven at 100 

C for 5 min. The unhydrolysed chromatograms were examined for evidence 

of isolated ninhydrin positive spots corresponding to free amino acids 
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present in hydrolysed samples. The same procedure was followed for 

analysis of the supernatant fluid for amino aci:ds released following 

the action of each of the selected lysozyme-potentiating treatments. 

18 

Total amino acids. Total amino acids were determined by a modified 

Moore and Stein procedure for quantitative amino aci.d analysis (Spies, 

1957) using 0.1 ml aliquots from the same samples employed in the chrom

atographic analysis for amino acids. 

A comparison was also made between hydrolysed and unhydrolysed 

samples to aid in understanding the nature (i.e. free amino acids or 

peptides) of the wall components released during a particular pre- or 

co-lytic treatment. 

Total reducing sugars. Reducing sugars released following each of 

the lysozyme-potentiating treatments were detected using the anthrone 

test described by Gaudy, Komolrit, and Bhatla (1963). Each of the un

hydrolysed samples prepared for the qualitative amino acid determination 

(paper chromatographic analysis) was diluted 1-5 in distilled water. 

Nine ml of anthrone reagent (0.2% anthrone in 95% sulfuric acid) was 

added to 1 ml aliquots of the respective diluted supernatant samples . 

The uni ts of measure for reducing sugars (reducing equivalents) were 

expressed as milligrams of glucose with glucose used as the control. 

Determination of reducing sugars was not conducted on the hydrolysed sam

ples (6 N HCl, 100 C, 18 hr) since a pilot study revealed that the reduc

i ng capaci ty of each of the samples had been completely destroyed by the 

indicated hydrolytic treatment. 

Extractable lipids. One-hundred mg samples of cell wall material 

were treat ed wi th lysozyme- potenti at i ng agents for 1 hour at 45 C. Each 

reaction system was centrifuged at 18,000 x G for 20 min to remove the 
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cell-wall I'esidue, The I'esulting supernatant fluid was taken to dI'yness, 

I'esuspended in 1 ml of distilled water, transferred to small aluminum

foil boats, and evaporated to dI'yness. The dried samples in the boats 

were placed into extraction thimbles and extracted with chloI'oform

methanol (4/l, v/v.)_ for 4 hours. The thimbles plus samples were then 

dried and weight loss due to extraction was calculated. Controls per

mitted calculation of total chloroform-methanol extractable material 

pI'esent in untreated cell wall material. 



CHAPTER III 

RESULTS 

Lysozyme-Sensitivity of Escherichia coli Whole Cells 

Lysozyme-potentiating treatments. 

General. The lytic response of the selected test culture, 

Escherichia ~ (ATCC 8739), approximated that of f• ~ 19 used by 

Noller and Hartsell (196la,b). The effects of the first four lysozyme

potentiating treatments listed below are shown in Fig. 3 ( broken lines , 

in Figs. 3, 5., 6, and 8 represent unpotentiated cell l!'esponse). 

Heat pre- treatment. The, action of lysozyme on heat pre-treated 

cells ( 70 C for 15 min, Fj.g. 3A) caused somewhat more lysis than its 

action on unheated who.le cells (Fig. 3B,C,D). Becker and Hartsell (1955) 

have observed electron dense areas in the cytoplasm of heat-treated cells 

(70 C for 15 min) and proposed that it was coagulated protein. The ac

tion of heat treatment, as supported by these studies, is in agreement 

with Becker and Hartsell ( 1955), Noller and Hartsell ( 196la,b) in that 

the effect of heat is to denature the constit.uent protein and concur

rently melt the lipoidal components in both the cell wall and cell mem

brane. The effect of trypsin on heat-treated whole cells in these stu

dies was not as extensive as that reported for~· coli 19 by Noller and 

Hartsell (l96la,b)o The greater trypsin response observed by Noller and 

Hartsell may be related to differences in enzyme concentration ( 20 pg/ml 

trypsin, 10 pg/ml lysozyme) compared to that used in this study, wherein 

-20-
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the enzyme levels were respectively reversed. The enzyme level indicated 

for heat treatment was maintained to allow a comparison with the other 

lysozyme-potentiating treatments used in this study. 

Butanol co-·tI'eatment •. Ex.posure of cells to 5% v/v !!_-butanol at pH 7 

(Fig. 3B) appears to have a comparable effect to that of heat pz,e-treat

ment (Fig. 3A, Control). The limited action of lysozyme obsez,ved on un-

tr~ated control cells has been attributed to the masking effect of lipo-

protein which prevents access of lysozyme to its substrate. Butanol co-

treatment of cells potentiat.ed tfie action of lysozyme (Fig. 3B) with a 

greater !ytic response th.an obser>ved when lysozyme was allowed to act in 

combination with butanol and trypsin. Trypsin was also observed to be 

relatively inactive·in lysing· whole cells unJ,.ess they are sensitized by 

some treatment or agent. Butane! conceivably has as its action that of 

disrupting tertiary and secondary structural bonds of protein with con-

current lipid dissociation such to facilitate lysozyme action. Optimal 

lysis for this system was observed when lysozyme-trypsin-butanol (LTB) 

acted in combination causing appz,oximately 83% lysis. 

Polyrnyxin co-treatment. A lytic response similar to that caused by 

butanol co-treatment of whole cells i~ observed when polymyxin is sub-

stituted for butanol (Fig. 3C)o Polymyxin potentiated th.e action of 

lysozyme and, to a lesser extent, the action of trypsin. The amount of 

lysis resulting from lysozyme-polymyxin action compared to that of lyso-

zyme-trypsin-polymyxin (LTP) suggests that trypsin has a limited effect 
... ,.,. ~-: . 

in.the triple system. At a concentration of 70 U/ml (9.6 pg/ml), poly-

myxin appears also to unmask the ly$Qzyme substrate by lipoprotein dis

sociation. Newton (1956) observed a strong affinity of polymyxin for 

both gram-negative cell walls and cell membranes. This antibiotic acts 
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as a strong cationfo surfactant causing disorganization of plasma-mem-

brane protein and/or lipids pius cell wall lipoprotein. 

Versene co-treatmento Treatment of E.coli cells with versene and -
lysozyme in tris buffer (pH 8) caused about 60% lysis which was equal 

to that caused by the combined treatments of lysozyme-trypsin-versene 

(LTV}.. The effect of trypsin in this system again appears negligible. 

M:odif i:ed Nakamura treatment Q Escherichia ~ whole cells were in-

cliliated at pH 3 .. 5 at 45 C for l hour to determine the effect of ·low pH 

alone and in combtn.ation with lysozyme on the lysi:s of whole cell suspen-

sions (Fig .. 4):.... J\ddtt:ion of alkali to a pH of 10a5 caused rapid lys.is 

of both aei:d and aci"d-lysoz.yme co-tl;'eated whole cells, with greater lysis 

observed in the ac~d .... lysozyrne co:--trieated systemso Following 5 minutes 

of aci:d co..,,tr,eatment, whole cells are si:gn.i:ficantly sensitized to alkaline 

lysis in. the presence or absence of lysozyme. Also, whole-cell su.spen-

sions incubate.d under acid conditions increased i'n turbidity. This ap-

pears comparable .. to tb.e increased light scattering properties of partially . ~ .. 

denatured heat pre-treated cells. Low pH induces cellular fragility by 

breaking hydrogen bonds by hydrolysis to an extent sufficient to unmask 

the mucopeptide and allow lysozyme action. 

Effect of electrolytes on lysis. 

Systems in which distilled water was substituted for 0.0067 M phos-

phate buffer gave restricted lytic activity for each of the potentiating 

components of the lysozyme-trypsin-butanol system-s(Fig. 5). The limited 

lysis resultS:ng from lysozyme-trypsin-butanol a.cti:on in water demon-

stx-ates that an electrolyte is required for optimal e'ffect of the lytic 

agents. Such a charge-stabilizing medium is conceivably required to 

prevent subsequent clumping of the bacterial cells. Lysozyme-trypsin-
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151:ltanol in systems contain~ o-. €115~ M MaCU gave a s.imJlar lyttc r>esponse 

compat'ed to a re-aoti:on menstruum contain.i:ng ammont1;1m acetate. Butanol 

p-otentiated the action of b-oth lysozyme- and trypsin regardles:s- of tlie 

presence· of electt'olytes altno_ugh the NaCl, ammonium acetate,· and pnos

p-hate ... l:iuffe-red med.i'a allowed_ greatest expl!less.i:on of the. lys-ozyme poten

tiating Gompon~t$Q 

t:ffeot of 1:yo;eh:i'l.i;·zat!:on on lysi:s .• 

Lye:p,h:tli:zat.i'On of wfi-ole, cells Cl'i'go 6 and 71 in all cases, sensi

ti:zed th--e ce.;1.1.s te the aeti'on of b:otn lysozyme. and teypstn. This obser

vation was evtdent regardless of the potentiating treatment employed. 

Since lyophi'lization of whole cells altered the cellular lytic character

i'sti'os9 i't i's probable that a similar response will be observed with 

lyophili'zed cell wall material. Trypsin activity was noticeably enhanced 

(probably the. result of lyophilization) when acting in combination with 

lysozyme and versene. This is in contrast to trypsin actio~ on unlyoph

ili:zed whole cells (Figo 3D). Lysozyme, potentiated by versene, was 

equally as active on unlyophilized whole cells as was the lysozyme-try

psin=versene system. As shown in Fig. 7, lyophilization also signifi

cantly increased the effect of alka_li on acid-lysozyme co-treated cells. 

Lysozyme-Sensiti:vit;y of Isolated Cell Wall Material 

Turbiqimetric analysis. 

A convenient evaluation of the lysozyme-potentiating treatments on 

isolated cell wall material was conducted by turbidimetric analyses 

(Fi:g. BL The most obvious difference in the effect of the selected. 

lysozyme-potentiating agents acting on whole cells and on cell wall 
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matertal was the increased susceptibili:ty ·of wall material to trypsin 

digestiono Increased sensitivity of wall material to trypsin action 

30 

was expected, since both lysozyme and trypsin actio~ is enhanced follow-. 

ing lyophilization of whole cells. The effect of lyophilization plus 

the action of intracellular-catanolic enzymes released during cell wall 

· prepa?'ati:on (probably minimal since preparation was conducted at 4 C) 

is likely to affect enzymatic sensitivity of wall material. The action 

of lysozyme on wall material was similar to that observed using whole 

cells. A final optical density of 0.13-0.15 (75% clearing) was common 

for most of the combined lysozyme-sensitizing systems (heat-LT, LTB, 

tTP, and LTVl. This common clearing plateau is in part explained by the 

fact tliat underi optimal conditi:ons, only 40-50% of the wall material is 

solubtl.tzed; the remain~ng 50.% :maintains light scattez,i;ng pz,operties. 

Additional clearing by lysozyme action beyond a certain point would not 

be anticipated, since the mucopeptide represents approximately 4% of the 

dry weight of the cell wallo 

Acid-treated and acid-lysozyme co-treated wall material (Fig. 9) 

was extremely sensitive to alkali clearing, but to a lesser extent than 

lyophilized whole cells (Fig. 7). An incubation period of 4 min for 

either acid or acid-lysozyme co-treatment is adequate to sensitize the 

wall materi"al to alkali clearing. The control wall material (absence 

of lysozyme) displayed a characteristic increase in optical density with 

time. Acid-lysozyme pre-treated wall material, unmasked the lysozyme 

substl"ate. to allow some clearing without alkali addition as indicated 

by a decrease in turbidity. The increase in suspe~sion turbidity during 

acid co-treatment, like that of heat or butanol pre- or co-treatment, 

may be correlated with protein denaturation. 
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Analyses for release of cell wall components,. 

Sa.lllples· of supematan.t fluid from each of the lysozyme.-potenti:ating 

systems were analysed for the presence and amount of amino aci:ds 9 the 

amount of total :1;1edu9ing sugars 9. and the. amount of total cnloroform-meth

anel~xti:iacta!tle J,i:.pid mate?Ji:al,.. A correlation. between tr>eatments and 

their pro~ab--J.e m()de: of action. will be pre·sented • 

.Amilll.l) aci'tt clwctmatographyo Two""4imens"i'on~l pape·?' ch!lomatograpB.ic 

analysts of unhyd:i:;,el:ysed i'solated wall mate:r?i:al (not expesed to lysozyme

potenti:at.t,:ng t:rieatm~1;1:tsl rievealed an unresolved mass c:>f ninn:ydrin posi' .... 

ti'Ve mat;er.t:al wi::tit J?e.spe:cttve. Rf value~· ef o ~ 4 a,nd o:~ 2.q Wi:th.in the n.in

h-yd:t?i:n."'!'positi:ve, aP~a, ~C.D i:n4tv.i:d't;!.al a.m.ino aei;¢J.s could be i:<3.entifi'e·d., 

Tlu::&· s:~se:sts,.tl'tat to.~ e1!'ll~· f!llf tl):e relea~ed ma'te'-"i:al was (11! peptide na

t1Jll'e" · H.:owe,,ve:ri 9 tl'te l'!y('}p0lyije(j samples yielded fou!l:lteen of tl'ie· s·i:xteen 

amue ~aids: !t?~poi,ted fet,, :e: .. cq.lt by Salton (l9601q Tb:ey are as, follows: ................. 
alan.tn.e, al"gi:nine, aspartic acid, lysine, glycine 9 glutamic acid• pro-

lirt~ 9 hydroxyproline 9 serine, tyrosine, valine, methionine, leucine, 

isoleucine, and possibly tbreonineo Histidine and phenylalanine were 

not obse·rved. 

Preliminary studies using paper chromatography for amino acid anal= 

ysis of supernatant material following selected pre- and co-treatments 

were unsatisfactory due to the high concentration of salt present in the 

supernatant samplesa The residual salts from those reaction media con= 
j .. 

taining Oo 0067 M phosphate buffer ca.used distorted migration of the nin-

hyd!'in-positive material from both the hydrolysed and the unhydrolysed 

supernatant samples. This diffi'culty was in part overcome by substi= 

tuting a reaction medium containing 0.0067 M ammonium acetate instead 

of 000067 M phosphateo Since the whole cell lytic response using the 
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ammonium acetate. menstruum (pH 7} reported earlier (Fig. SC) indicated 

that the lysozyrne ... potent.i:ating treatments were still functional, volatile 

electrolyte substitution seemed to be a good remedy for the prot>lem of 

residual salts (phosphates}. Attempts to quant:i:tate the total amino acid 

mateI'i.al released following each of the lysis-induc~ng .agents. by paper 

chromatography were unsucces·sful. Diff.tculty using paper'cbromatogl"aphy ; . . 

was also encountered in determining the effect(sl of the different treat-

ments on tBe re.lease of part:tcular am.trio acids. Specific amino acid roe-

lease could not he correlated with any one treatment. Th.ts was a common 

chariacter.tsttc of both hydrolysed and unhydrolysed samples, tl':io:ugh most 

p.rorlounced usuig th.e unhydrol:ysed sample mater.tal. 

The hydI'olysates of the cont:ttol supeniatant samples from cell wall 

mat~i:al suspended in ammon.tum. acetate I'evealed fow un$..'deflt.j:f.table amtno 

actd s.pots. Six sei,ar-ate spots We?'le obse!."ved from the system containing 

lysozyme, while trypsin acting singly gave twelve separate spots of 

medium-to-heavy intensity. Fourteen individual spots were observed with 

the lysozyme-trypsin (LT) and lysozyme-trypsin-butanol (LTB) system. T.he 

sup,rnatant LT and LTB samples gave the same number of spots (of equal 

intensity) as were observed using the corresponding sedimented wall re-

sidues. This indicated that approximately 50% of the cell wall material 

was solubilized by these treatments. 

Paper chromatography of hydrolysed samples was more revealing due 

t~ good resolution of individual amino acids. However, chromatography 

of :both hyd?loly.sed and unhydrolysed samples was relatively ineffective 

m dete:rmining the amount of ntnhydrin-positive mat~.i:al !'eleased attri-

butable to a particular treatment. As was ~tic.tpated, those systems con-

taini'ng triypsin we!'e most effective in the release of protein material. 
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The chromatograms. of hydrolysates from lysozyme-trypsin, lysozyme-trypsin-

b1:1tanoi, and lysozyme-,.trypa:i.'n .... pelymyxi?l su~ernatant samples also ind.teated 

spots of equal intensity qompared to their respective sedimented wall-

resi'due samples. A dtffe::i:-ence in the intensity of the ninhydrin-positive 

spots from material released by each of the various treatments was the 

only noticeable effect that can be related to specific treatments. Paper 

chromatographic analysis was not conducted on supernatant samples follow-

ing Nakamura_treatm~nt. 

Total amino.acids. The unhydrolysed control samples of each of the 

pre- and co-lytic treatments (Tables I, II, and III) were similar (3-5-

JlM expressed as i'eucine). The action of lysozyme plus trypsin on heat. 

pre-treated cell wall material (Table I) J?esulted .. in greater release of 

wall protein than the additive effects of the e~zymes acting singly. 

The action of lysozyme on cell wall material was less effective than 

trypsin in releasing protein (hydrolysed and unhydrolysed samples). 

In systems containing unheated cell walls (Tables II and III), 

trypsin caused a significant release of protein material. This obser-

vation correlates with the action of trypsin on wall material determined 

by turbidimetric analyses (Fig. 8). Synergistic amino acid release by 

systems containing lysozyme and trypsin where cells were butanol or poly-

myxin co-treated (Table II) is p:t"obably due to release of additional pro-

tein material following digestion of the mucopeptide by lysozyme. 

The synergistic response was not observed in the lysozyme-trypsin-

versene (LTV) system (Table III~. Versene had a limited effect upon re

lease of protein. material from cel:t walls (probably due to the physical 
. ' - . 

state of the wall itself). The combined effects of LTV appear more 

attributable to the action of the lysozyme and trypsin than to that of 



TABLE I 

Release of A.mine Acids and Reducing Sugars From Heat 
Pre.Treated Cell Walls by I,ysozyme, Trypsin, 

Treatment 

s:o Mg Sample 
o: .. oa6.7M P04, pH: 7 

Cont:riol 
.. 

Lysozyme (20 µg/ml) 

T?'}'psin (10 µg/ml) 

Lysozyme + Trypsin 

and Lysozyme Plus Trypsin 

Total 
Amino Acids* 

(as µM Leucinel 

(3) 

10 

(16) 

Total 
Reducing Sugars* 
(as Mg· Glucose). 
Unbyd1'90lysed 

(1.8) 

1.2 

13 78 0.4 

17 [L+T=l3]** 96 [L+T=88] 1.6 

* Corrected for control values shown in parentheses. 
** Values in brackets represent the additive effect _9f individual 

components. 
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TABLE l? 

Releas-e of Amino Acids and Reducing Sugars: From Unheated C!!ll 
Walls by Lyso~yme and/or Tcypsin in the Presence of 

!!.-Butanol or Polym~_tn .. 

Total 
Amino.Acids* 

(as µM Leucine l 

Total 
Reducing SUgars* 
(as: Mg Glucose} Sll Mg ScJ1D~le 

O'.Q067M P049 pH 7 . Unhyd!'oly:sed Itydrolysed Unl'iydl'olysed 

Control (5) (22) (1.21 

tysozyme C2a µg/mlI 1 34 1.0 

Trypsin (10 µg/inl l 11 64, 0.8 

Lysozyme + Trypsin 16 [L+T=l2]** az [L+T=98] 1.8 

ri-Butanol - (5% v/vl 0 2 0 

Polymyx.i:n (70. U/mll 0 6 0.4 

Lysozyme + Butanol 11 [L+B=l] 34 [LtB=36] 0.9 

Lysozym~ + Polymyxin 6 [L+P=l] 40 [L+P=40] o.s 

Trypsfn + BµtanQl 10 [T+B=ll} 128 [T+B=64J o.s 

Trypsin+ Polym~in 12 [T+P=ll] 64 [T+P=70] 1.2 

Lysozyme + Trypsin 20 [L+T+B=l2l 122 [L+T+B=lOO] 1.2 
+ Butanol 

Lysozyme + Trypsin 17 [L+T+P=l2) 110 tL+T+P=l04] 1.3 
+ Polymyxin 

* ·Corrected for control values shown in· parentheses. 
** Valu,es in ?tra~kets represent the additive effect of individual 

components. 
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TABLE III 

&ffeet of Versene Alone or in Combinatton With Lysozyme 
and/o:t' ?Fypsi:n on Unheated Cell Walls .in Tris Buffer 

Tl'eatment 

SO Mg Sample 
o.q~:, M 'rl'~,. pll 8 

Lysozyme (20 µg/mll 

byps'i'n (lo: _µglml} 

Lysozyme· + byps~ 

·Ve,rsene- (.l;3 3 ._µg,Arnl l 

Lysozyme + Versene 

Trypsin+ Versene 

Lysozyme + TI>ypsin 
+ Versene 

Total 
Amino Acids* .• 

(as tlM Leucinel 
Un.hydrolysed Hydrolysed 

(5) (28) 

2 12 

4 5-8 

16 76 [L+T=70]** 

1 8 

1 16 [L+V=28] 

6 4.6 IT+V=66] 

l.9 76 [L+T+V=78] 

· '* Corrected for control values shown in parentheses. 

Total 
Reducing·· Sugars* 
(as Mg·GlucoseJ 
Un-hydrolysed 

o.o 

0.2 

o.s 

o.o 

o.o. 

0 •. 2 

0.3 

(3.0) 

** Values in brackets represent the additive effect·of individual 
c;omponents. 

TABLE IV 

·_ R.elea.se of Amino Acids and Reducing Sugars Following 
Modi'fied. Nakamura Trea~ent ·of Cell Walls 

Tl"eatment 

50 Mg Sample 
Nakamura Treatment 

Acid Only (pH 3.5) 

Total 
Amino Acids 

(as µM Leucine) 
Uphydrolysed Hydrolysed 

4 4. 

Acfd4 AlkaU (pH 10.5} 2 10 

Aci:d + Lysozyme 3 17 
(20 µg/ml) 

Acid+ Lysozyme--,),- 3 17 
Al.Ralf (pH 10·.s1 

Total 
Reducing Sugaps 
(as Mg Glucose} 
Unhydrolysed 

1.0 

0.7 

o.9 

1.5 



38 

the versene. This observation tends to supp:ort the chelation mechanism 

of action of versene (Repaske, 1958) since little activity would be ex-

pected usin.g pre-ruptured cells. 
. ! 

Analysis of the hydrolysed amino acid components released from wall 

matez:ial gave values approximately five times larger; th~ those recorded 

for unhydrolysed material. This indicates that the action of the various 

pre- and co-treatments solubilize fragments o~ the walls rather than 

causing :r>elease of :i..ndi vi dual amino acids. Trypsin-butanol co-treatment 

of wall material (Table II) had a pronounced effect on -release of protein 

material (hydrolysed sample). Since the bulk of the amino acids in the 
'' 

wall are components of the lipoprotein, it is conceivable that the lipo-

pr>otei:n is the source of amino acids released by trypsin. Yet, it is 

difficult to explain why the trypsin-butanol activity exceeded that of 

the LTB system. 

The addition of alkali to acid co-treated wall material appears 

capable of initiating protein release equal to acid-lysozyme wall pre-

treatment (hydrolysed sample, Table IV). The protein material of the 

cell wall in the presence of acid is conceivably denature.a to an extent 

which 'allows easy access of the mucopept1de to lypozyme. The action of 

trypsin on acid· co-treated wall material was not evaluated. 
' ·,. 

Total reducing sugars. The action of lysozyme on heat pre-treated 

wall material was observed to cause a significant release of reducing 

sugars, with lysozyme plµs trypsin giving a value equal to the action 

of lysozyme and tryp.sin acting singly (Table I). Both polymyxin and 

butanol failed to assist lysozyme in causing the release of reducing 

sugars from unheated wall material. With the exception of the trypsin-

polymyxin (T+P, Table II) system and systems in tris buffer, those sys-



terns contaihing lysozyme gave. optimal release of reducing sugars (Table 

I-!Vl. Th.ts observation was_ predictable in that the action of trypsi:n 
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i's restricted to proteinaceous material. However 9 trypsin may digest 

protein very near the sensi"tiv:e mucopeptide bonds such that phys.teal 

hydrolysis may release some reducing groups .. The action of versene in 

potenti"ating enzymatic release of reducing sugar appears rather limited. 

The values recorded .for reducing-sugars released in the tr.is buffered 

system (pH 81 correlates poorly with the observations made using turbidi

metric analyses (Fig. 8Dl. However, control values for reducing sugars 

.i:n tris systems (Table U:Il are higher tnan for phosphate-buffered systems 

(Table ! and r:I l. 

Extractable lipids. The results obtained from these studies are in 

strong suppo?'t of t:fie i:dea that lipoprotein serves to mask the lysozyme 

sul>i,rtrate. A prelinli:nary determmation of cell wall lipid revealed that 

18% of the d?'y weight of the wall is extractable using methanol-chloro

form (1/4, V /v }.. 

To determine the presence of protein released by e~tract.ion, ex

tracted lipid material was hydrolysed (6 N HCl, 100 C, 18 hr), and anal

ysed by paper chromatography~ The same fourteen amino acids were found 

as were obtained from cell wall hydrolysates. The effect of each of the 

components of the lysozyme-trypsin-butanol system on extractable lipid 

from the supernatant material released from walls is presented in Table 

V •. 

Butanol has the effect of releasing material containing 8% lipid 

whrcn accounts for 0.8% of the total dry weight of tbe wall. This in

dicates that butanol action does not "leach away" a major portion of 

lipid materi'al, but rather causes "holes" or "'disorganlzes" the lipo-



TABLE V 

Release of Extractable Lipids From Unheated 
Cell Walls by Lysozyme and/or Trypsin 

Treatment 

100 Mg Sample 
Oo9067M P04 , pH 7 

Control 

n-Butanol 

Lysozy-me (20 µg/ml) 

Trypsin ( 10 µg/ml) 

Lysozyme + Trypsin 

Lysozyme + Butanol 

Trypsin+ Butanol 

Lysozyme + Trypsin 
+ Butanol 

in the Presence of n-Butanol 

Weight of 
Released 

Wall 
Material;'c 

mg 

9.8 

.18.2 

44.9 

41.6 

22.,2 

19. 8 

42. 8 

Extractable Lipid From 
Total Wall Material 

Released 
Weight** Percent 

(2.1) % 

0.8 8 

2.3 13 

6.5 14 

4.4 11 

6.0 27 

5. 7 29 

6. 7 15 

* Control corrected for buffer and released wall material; other 
values corrected for control values plus any other non-volatile 
components of the treatment system. 

** Corrected for control values in parthenses. Since 100 mg samples 
of wall material were treated, these values also represent per
cent of the lipid in untreated walls that was released by the 
treatments. 
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protein layel:' to allow penetl:'ation of lysozym.e to the vicinity of the 

mucopeptide~ The action of lysozyme. released 18.,2 _mg of wall matet>i'al 

of which 13% was lipid-extractable. 
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Lysozyme ... butanol t:i'eatment reJ.eased mateJ:1.i.al containing 27% extract-

able lipid .. This higb:value is best explained by th.e fact that butanol 

a,llows the penetrati'On of lysozyme with subsequent cleavage of the muco-

peptide., 't'bi:s ful;'ther, di:"sorgan.tzation of th.e wall by lysozyme pennits 

additional :butanol leac:hi:'og of the lipid materi:al with::in the walls~ 

Th-e com?dned ac:rtton of lysoz:yme and trypsin soluJ:>il.tzed 41.. s· mg 

of wall matex,i,al of whi:cl'l: only 11% was· extractable lipid. The comb:i:ned. 

t;t'ea~ment CL'l'Itt s01'1#bi1!zed approx.imately 43\ of the eell wall material 

Gf w,b.ieh ~nly 15%. was, l.tpi:d...extl"'actable. This value of 15% approximates 

th:e total extractable lipid of untreated wallo Also, the amount of total 

material released by each treatment closely correlates with the turbidi-

metric data obtained-for'the respective treatments on unheated wallso 

Comparative Effects of the Lysozyme-Trypsi:n-Butanol 
Systems on Isolated Cell Wall Material 

Of the components of the lysozyme-trypsin-butanol system acting 

singly, the effect of trypsin was most pronounced in its ability to re-

lease wall material (40-50% of initial wall material}. These total 

soli:ds released included extractable lipids, protein (as amino ac.tds 

follow~ng hydrolysis), and reducing sugarso Lysozyme was instrumental 

in solubilizing approxi'mately 18% of the total wall.material accompanied 

by release of lipid, amino acids, and a relatively high amount of re-

ducing sugaro Butanol alone caused release of only a small amount of 

li'pid, neg_li:gible amounts of reducing sugars and _amino acids, and cau-

sed only slight reduction tn turbidity of the test suspensions. 
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Lysozyrne and trypsin .in combination had a pronounced effect on re-

lease of, total wall material ( 40%) which: correlates directly with a large 
j 

decrease in turbidity of wall suspension!s. Moderate amounts of extract-

able lipids, total amino acids, and large amounts of reducing sugar were 

found in the I'eleased wall material. 

Trypsin combined with butanol relea.sed lc1:rge amounts of extractable 

-lipid, some amino aci1ds • and moderate amounts of reducing s_ugars. The 

low amo®t of total wall material released does not conform to the trend 

set by. the other t?'y'psin-containi:ng treatments of the lysozyme .. trypsin-

butanol system. 

When the thJ?ee . comp~ents of the ly,sozyroe-tcypsin-butanol system 

act t_ogethe:r, optim,l !ttelaase of all pl"evioU$ly mentioned .wall compcm .... 

ents occu2'Si. The amount of amino acids cmd reducing sugars released com ... 

paJ:11$s favorably ~o that obse~ve4 usipg the lysozyme-t\t'Ypsin-polymyxin 

system. 

The increased sensitivity of cell wall material to trypsin c,_ften 

o:vershadows the effect of other components present in the combined sys-

terns (lysozyme and/or butanol). Systems containing t:cyps~n were char-

acterized by large amounts of released total wall material and amino 

acids, high percent clearing of the test suspensions, but low release of 

reducing sugar and extractable lipid. 

Those systems coptaining lysozyme were often mable to elicit re-

lease of additional material over that released by trypsin, except in 

the case of reducing sugars. 

The action of butanol as a lysozyrne-potentiating treatment is not 

expressed as dramatically usi~g isolated wall material as when usi:ng 

whole cells. 
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Althou,gh s1:ight differences in effect were observed among the various 

treatments employed, the proposed· mode of action of the in.dicated agents 

(components of the LTB system) on whole cells appears applicable to iso

lated cell wall mate~ial. 



CHAPTE~ ?V 

DISCUSSION AND CONCLUSION 

One of the primary objectives of this study has been to compare 

the effects of selected lysozyme-potentiatfng treatments on whole cells 

and tsolated cell wall material of Escherichia coli. Prior to these 

investigatiens, fragmentary info:rmation was available regarding tne 

na.turie and amount of material l"eleased following selected lysozyme

poten:ti:at.tng t??eatments. For this 1;1eason, varieus analyses of the 

niate,:,ial l?eleased fl:\om ~lls were conducted to; (l l render possible 

ins.igh't into the mecchani:sm of acti:on of each tl'eatment, and C2r offer 

an ~planatlon·for the general resistance of the enteric bacilli to 

the action of lysozyme. 

Treatments used in this study were largely refined by Becker and 

Hartsell (1955), Noller (1961), and Noller and Hartsell (196la,b)., The 

observed effects of the selected lysozyme-potentiating treatments on 

Eo ~ (ATCC 8739) whole cells were similar to those observed by Noller 

and Hartsell (196la,b) using E.coli strain 19. Whole cells were again 

observed to be refractory to the .lytic action of lysozyme and/or tryp;.. 

sin unless conditioned for lysis by certain pre- or co-lytic treatments. 

Each of the treatments for gram-negative cells (acid co-treatment 

at pH 3.5 for 1 hour; heat pre-treatment at 70 C for 15 minutes; co

treatment with 5% !!_-butanol; co-treatment with 70·U/ml polymyxin; and 

co-treatment by 133 pg/ml versene in tris buffer, pH 8) was capable of 

-44-
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potenti:ating t:he acti.on of both lysozyme and trypsin (apparently :by 

causing dissociation of the, protein and/or l:i:poprotein layeP}., Optimal 

lysis with all systems resulted when each of the pre- or co ... treatments 

was used i:n combination with lysozyme and trypsin <i When lysozyme and i 

trypsin acted i.n aombination with. the p!le- or ce ... lyt.i::c t,:,eatments men-

ti:oned, the lytic res.pense of whole cells is greate.1" tltan the add~i:ve 

ef!eet of lysozyme; or 1::t'yPs:in agt.ing s~gly · (syne.rgtsmL 

A clos:e evaluati:on of the lytic ?"esponse, . and eape.ci::a1ly -of the , 

of tb;e: .agent& aot~ in eoml':tillati:on~ Th:e acttc,n of heat, butanol, or 

p<!>l1"t~in upon tb)!; p·x>ot~in or l.tpeprc:;,tei:n layex,,. Qal;ls,e& 1.i.l>.td d.i~~i:,gan ... 

i'za.t.un1 ~f'fi:.e.i.ent tQ ~txise tiie. ~l'ot~in tl\1> tit~ aati:on Qf 'try!)s.m 

CS-alton an.,4 ~e,, l9:5li B:e~t~ and Uartsell. 19:!iS:; twll• and ltal't• 

se-11., 19:ola,ltt ~sin. 4ite.st.i:on of priot~in an4 th'e' e0ati:nued effect 

et h'lltan$l or polym~in e;vent1:1ally· di'so.~gaaue: tb,e· li]>opFotein layer 

to un~ask the lysozyme substrate. Following lysozyme action, ensuing 

lys.ts of the fragile cell occurs: due to osmotic .imbalance. 

After firmly establishing the lytic chaI"actel"istics of the whole 

cells 9 studies were made to determine the effect of the same potent-

iating agents on isolated cell wall rnaterialo Isolated cell wall mat-

erial of the. test organism provided a convenient means of studying the 

localized effects of the selected lysozyme-potentiating tre·atments. 

Much of the wall preparation maintained typical rod-like morphology 

characteristic of whole cells (determined by phase microscopy}, though 
,\_ 

fragmentation of the prepared wall was not uncommon. Should further 

studies be conducted using isolated wall material, examination of the 
I 

pI"eparation by electron microscopy is recommended to determine the 
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adequacy of the preparation (as nearly intact as possible and devoid of 

attached protoplast membrane). However~ it is doubtful that current tech-

niques of cell wall prepa;r,ation will yield such mateI'ial from gram-negative 

cells. 

Turbidimet:dc qp.aly~.$.s of isolated cell wall material provided a 

convenient method of comparing the effects of the selected lysozyme-pot-

entiating treatments on lyophilized and non-lyophilized whole cells and 

cell wall material. Isolated cell wall suspensions generally gave a 

lower final percent clearing than lyophilized whole cells. Isolated 

wall material was observed to have an increased sensi ti vi ty to trypsin. 

To account for this increased sensitivity of wall material to trypsin, 

consideration should be given to the fact that protein constitutes the 

bulk of the gram-negative cell wall ( approximately, 60-80% of the dry 

weight of cell wall). Cell wall sensitivity to enzymes is probably due 

to denaturation of the cons ti tuti ve protein or lipoprotein during the 
. ~ 

brief period of rupture, exposure to released catabolic enzymes, and 

additional physical harassment during further preparation {lyophili-

zation, etc. L 

The observed plateau of 0.13-0.15 optical density {73% clearing) 

using_ wall material is a pommon characteristic of the combined treat-

men ts and probably represents the presence of "limit material" poss-

essing light scattering properties. This limit material accounts for 

approximately 50-60% of the wall material with the remaining portion 

being solubilized as revealed by paper chromatographic analysis of 

hydrolysed supernatant samples. 

Prasad and Litwack {1963) cautioned against interpretation of 

lysis by turbidimetric measurements on the basis that ,lysis curves 
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using whol.e eells show far g~eater clearing th.an with. cell walls. 

B:r>umfitt (19591 has also shown that the :r>ate of 1ysis of whole cells 

of !!• lysodeikt.icus is nearly twice as rapid as that of cell wall mat

erial. The apparent difference in the action of lysozyme on whole cells 

an.d cell wal.l,. mater.ta! .i::s d~eetly related to the alttl:ity of whole cells 

to produce a greater turbi:dilnetric change: when tn.ey collapse and under-

go solubi:lizat.ton. A considerati'on of equal imporitance i's· the fact 

trtat la!'gel:' amounts of cell wall material a~e. necessax:oy to give an op

tical dens.tty of Q. 5 compared to the amount of whole c~lls- t~ give tlie 

~ame- opt.teal density value. 

The :c-esults obtained by analyses, of the components: released follow-

~ :,elected l:ysozyme•potent:tat~ t!"e;atments cl:1:Jgl!lent tlios:e el)-ser-ved. 

us..i'ng t~J):i.°'liimetP.i:o anal:ysi"s. A rea.sonal)"J.y close ee>t'Pelatton was found . . . ~ . 

te exi:s.t b"etwe.en 1:'elease of eell wall components and tt.1rbidimetric clear-

ing. Systems con~aini.ng · lysozyme are characterized. by release of red.-
•• I 

ucing sugar while those containing .trypsin are characterized by tJ;ie re-

lease of ninhydrin-positive material (paper.chromatography and total 

amino aci"d determinations). I"n those systems in which a synergistic 

response is noted using t,urbi"dimetry, a related synergistic response 

also exi'sts for the release of ninhydrin-positive material. However, 

supernatant samp_les analysed for either reducing sugars or extractable 

lipids failed to elicit the synergistic :r:>esponse. 

Ch:r>pmatographic analysis of the proteiI?, material released into 

the supernatant fluid was effectively improved by substituting 0.0067 

M ammonimn acetate for phosphate buffer in the reaction media; however, 

release of specific amino acids could not be co:r>related with a parti-

cular treatment. 
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Since intensity differences of ninhydrin-positi ve material were the 

only noticeable effect relatable to specific treatments, it is suggested 

that mol:'e sophisticated methods of chromat_ographic analysis be employed 

to more ac.curately determine which amino acids are released by a given 

t.reatment. For a more accurate method of determining the effects of 

ly\Sozyme action on wall material plus the effects of the potentiatil1g 

t:rieatment employed, it is sugges1::ed that analyses be made to determine 

the release of hexosamines by the method outlined by Salton and Ghuysen 

(1960). 

The mode of action of ~-but.anol as a lysozyme-potentiating agent 

is more evi.dent when consideration is given to the thermodynamic prop

erties of alcohols in water solutions containing lipoidal material in 

the presence of inorganic salts. An exothermic reaction is believed 

to occur causing an increase in molecular bombardment of the n-butanol 

molecules such that the hydrocarbon moiety of the molecule is forced 

into contact with the cell wall lipid material of like composition 

(polar aggregation) to caµse increased hydration at the periphery of 

the lipoprotein layer (Knight, 1964). This increased hydration is 

sufficient to "leach away" areas in the lipoprotf:lin layer allowing 

penetration ·df lysozyme and concurrent potentiation of trypsin actio:q~: 

Reaction systems containing !l-butanol at 45 C conceivably are capable 

of destroying native lipophilic, hydrophilic, and hydrogen bonds. 

Since protein material was found to be released by chloroform

methanol extraction, it is conceivable that protein, is interlaced with 

the lipid material and attached by relatively weak linkages. As in

dicated, trypsin and butanol had a pronounced effect on lipid release 

because of its localized effect on the peripheral lipoprotein coat. 
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Further, any lipoidal or prioteinaceous material inferior to the external 

lipoprotein layer would also be susceptible to both trypsin and butanol. 

The addition of lysozyme to the ti-ypsin-butanol systems caused an in

creased release of wall material due to cleavage of the mucopeptide; 

but in doing so, the percent extractable lipid was decreased. This is 

observed when one compares the 15% extractable .lipid r>esul ting from the 

lysozyme-trypsi.n-butanol systems to the 29% lipid material released by 

tlle trypsin-butanol system (Table V). M01,<;; critical analyses should be 

made on the released lipids. Such lipid deteriminations should be ex

tended to include t:b.e other lysez:yme .... potentiati_ng treatments studied. 

The tnterested investigator is encouraged to determine the effects 

of polymyxin on. lipid rielease and to evaluate its q];>ility to disorgan

ize the cell wall phospholipids in combination wt.th lysozyme and/or 

trypsin. 

This study failed to answer the question regarding the role of 

versene as a lysozyme-potentiating agent (l.e. whether versene fun

ctions as a chelating agent or as a lipoprotein-dissociating agent). 

Since versene action on isolated wall material did potentiate lysozyme 

and/or trypsin action (as did butanol or polymyxin) 11 the lipid-dis

sociating properties of versene may still be as important as those of 

chelation. 

Variations of lysozyme sensitivity among different species of 

gram-negative organisms is assumed to be due to variation in peripheral 

deposit of lipoprotein material in the outer layer which is the result 

of the metabolic patterns of the particular organism. 

This is insufficient evidence to be certain of the precise stru

cture and arrangement of gram-negative cell walls, but it seems prob-



able that the amino sugars are joined together fol'llling polysacchal'ide 

chains which aJ:1e linked together by peptides attached to the carboxyl 

groups of the muramic acid. 

A possible macromolecular arrangement of the mucopeptides in the 

50 

wall (Roge:r:is, 1963) is as sheets of polysaccharide fibers linked toget-

her by peptides attached to the carboxyl groups of muramic acid. Such 

an arrangement would have the advantage of great strength and rigidity 

combined with an open mesh-worok structure through which.molecules could 

move with relative ease. The minimum intervals between the peptide 

chains, assuming a crioss-lin~age of the type proposed by Ghuysen and 

Salton (19601 to occur on eveI'y mut1amic acid x,e.si:due, would be the len• 
0 

gth of a d.i:-sacchari"de unit (15 .... 20 AL Mucopeptides are considered t-0 

be the principle structure of mechanical support in both gram-positive 

and gram-negative microorganisms. While the mucopeptide forms the major 

portion of the cell wall of gram~positive organisms and attached protein 

plays a secondary structUI'al role, in the gram-negative organisms, pro-

tein assumes a more important structural role. The lipoidal material is 

conceived to be attached to polymers of glucosamine phosphate in which 

all the available amino and hydroxy g~oups are esterified by long chain 

fatty acids lying normal to the wall itself. 

The results of this study,plus those cited in the text, gives 

assurance that any combination of treatments which have as their action 

the capacity of digesting or hydrolysing the three major components of 

the wall (i.e. lipid, protein,. mucopeptide) has the capacity of causing 

rupture of intact bacterial cells. 

Until techniques are developed that are capable of isolating the 

various wall components without changing their structure and/or com-
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position from that which exists in situ, the actual architecture of the 

cell wall and the structural function of the wall components will remain 

in question. 

These riesul.ts s_uggest that when conditions for lysis exist [as out

lined by Becker and Harts~ll (1955) and Noller and Hartsell (196la,b)], 

lysozyme in combination with the selected pre- and co-lytic treatments 

causes comple.te or partial removal of the periphe:r.al wall material of 

gram,..negat:i:.ve whole cells. Lysozyme hydrolyses the inner mucopeptide 

and the weakened cell loses cytoplasmic contents. 



SUMMARY 

The effects of selected lysozyme-potentiati:ng agents were studied 

using Escherichia ~ (ATCC 8739). A correlation was established be

tween the ability of these agents to lyse whole cells and to solubilize 

i'solated cell wall material. Analyses of the material released by the 

treatments provided a means of determining their mode of action and 

permitted further speculation on the compositi.on of the gram-negative 

cell wall .. 

J'liat lysozyme has .Ui;tle or no effect upon the lytic sensitivity 

of untreated whole cells has been supported. Optimal lysis of w:hole 

cells due to lysozyme action demands the presence of ions, and it is 

preferable that they possess buff,ering capacity to prevent change in 

the reaction of the menstruum during cellular rupture. 

Isolated cell wall material ·was found to be extremely s,ensitive 

to the action of trypsin which suggests that constituent cell wall 

protein was partially denatured during wall preparation. 

Versene had little or no effect upon potentiating lysozyme or 

trypsin action on cell wall material. Additional experimentation on 

this phase is suggested to further establish the role of versene as 

a lysozyme-potentiating treatment. For a more precise means of follow

ing lysozyme action, analyses for the release of hexosamines following 

each lysozyme-potentiating treatment are suggested. 

Electron microscopy should be employed to examine the cell wail 

-52-
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preparation to determine its purity. Further study aiding in the under

standing of this problem i's encouraged in the area of determining the 

enzyme sensitivity of cell wall material pri:Ol." to lyophili:zation to 

evaluate the effect of rupture and lyophi.li:zation during the pr,eparat...i 

ion of wall material. 
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APPENDIX 

Materials and Sources 

Antifoam A (a,erosol spray), Dow Corning Corporation 

Ammonium Acetate, Fisher Certified Reagent 

Anthrone, Fisher Certified Reagent 

~-Butanol, Fisher Ce.rtified Reagent 

!-Butanol, Fisher Certified Reagent 

Chlorofo3:m, Fisher Certified Reagent 

Citric Acid, Fisher Certified Reagent 

Diethylamine, Eastman Organic Chemicals 

Disodium Ethylenediaminetetraacetate, Fisher Certified Reagent 

Dextrose, Fisher ,Certified Reagent 

Hydrochloric Acid, Baker Analysed Reagent 

Lysozyme ( twice crystallized and lyophilized) 9 Worthington Biochemical 
Corporation 

Methyl Cellosol ve, Fisher Certified Reagent 

Methyl Ethyl Ketone (2-butanone), Matheson Coleman & Bell 

Methanol, Fisher Certified Reagent 

Mineral Oil, E. R. Squibb & Sons 

Ninhydrin (triketohydrindene hydrate), Fisher Certified Reagent 

Nutrient Agar, Difeo Laboratories 

Nutrient Broth, Difeo Laboratories 

Polymyxin B-so4 ( 7400 U/ml), Burroi+ghs Wellcome & Company 

Potassiurp Phosphate (mono~asic crystal), Baker Analysed Reagent 
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APPENDIX (CONTINUED) 

Propanol, Fisher Certified Rea.gent 

Pyridine, Fisher Certified Reagent 

Sodium Hydroxide, Baker Analysed Reagent 

Sodium Phosphate ( dibasic dodecahydrate crystal) 9 Baker Analysed Reagent 

Stannous Chloride, Mallinckriodt Chemical Works 

Sulfuric Acid, Baker Analysed Reagent 

Tris (hydroxymethyl) aminomethane, Eastman Organic Chemicals 

Trypsin (twice crystallized and lyophilized), Worthington Biochemical 
Corporation-. 
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