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PREFACE

Plastic Analysis of Two Hinged Arches was selected as a thesis
project through discussion with Professor Louis 0. Bass of the School
of Architecture at Cklahoma State University. Because of the possibility
for a savings in time to the engineer and a savings in material it was
felt that a method of designing arches by plastic analysis would be
worth investigating.

T wish to express my appreciation to the fcllowing persons for
their help and guidance while I was working on this thesis project:

To Professor Bass, whose technical advice and suggestions were
very beneficial.

To Professor F. Cuthbert Salmon, Head of the School of Architecture,
for his help in attaining a graduate assistantship. which made my
graduate study possible,

To Professor S. Bart Childs of the School of Civil Engineering,
whose generous contribution of his time and ability was an invaluable
help with the computer programing.

To Miss Ann Caskey, who did an excellent typing Jjob.
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CHAPTER T
INTRODUCTION

Plastic analysis éf steel structures has been primarily limited to
continuous beams, frames, and bents composed of straight members. This
thesis by a theoretical approach applies the vrinciples of plastic anal-
ysis tO‘staticéily indeterminate arches. Analysis was limited to two
hinged circular arches of constant cross section, for dead load,.full
live load, drift or snow load, point load, and wind load conditions.
Computations using symmetrical loads were made for several arches of

different rise to span ratios to check the equations.

The general structure is shown in Figure 1.

Figure 1



Because of its speed and accuraéy, a digital computer was used to
make the calculations for the arch analysis, Initially an IBM 1620
Computer was used; but the final program was written for the IBM 1410
Computer.

The hecessary equations for vertical reactions and horizontal
reactions were derived as shown in Appendix A. Then all the equations
required to analyze an arch were converted into‘Fortran computer language.
The computer program is discussed in Chapter II.

The computer program is written so that the span and rise of the
arch and the values of any loads to be considered are the only data that
‘must be determined in advance. The computer will then compute all
required geometry, reactions and moments.

1. Load conditions. Dead load, live load, drift load, point load,

and wind load are the five load-conditions considered. It is recognized
by most building codes that it would be practically impossible to have
the maximum value of all five loads acting simultaneously. Therefore,
various combinations of loads are allowed by.differenf codes. The
individual designer will have to determine the proper load values in
advance according to local codes or practice.

Another factor which must be considered in plastic design of steel
structures is cyclic or repeated loading. Plastic design is not allowed
when an excessive number of cycles or repetitions of a critical load are
expected.l The individual designer must therefore predict the number of
repetitions of a critical load cycle that may be expected during the life

of the structure and accordingly decide if plastic design is allowable.

Lambert Tall et al., Structural Steel Design (New York, 196k4),
p. 167.



The number of repetitions considered excessive varies among codes and

also according to the type structure.

2. Determination of Plastic Moments. In plastic design it is

assumed that a sufficient nunber of plastic hinges are allowed to
develop to form a collapse condition. The necessary plastic hinges to
form a collapse condition or mechanism with a two hinged circular arch

are shown in Figures 2 and 3.

Figure 2

A minimum of four hinges must be present to have a collapse mecha-
nism. In the case of the two hinged arch under consideration, a minimum
of two plastic hinges must be developed. The two plastic hinges must
form at points of maximum moment and opposite sign. Thus in the case of
a symmetrical load on the structure it is theoretically possible that
five hinges may be necessary before a collapse mechanism is obtained.
Two plastic hinges could form simultaneously at the points of maximum
negative moment before allowing a plastic hinge to develop at the point
of maximum positive moment. (In this case the first peak will be in
the negative range.)

Table I shows assumptions made relative to the locations of the



Figure 3
plastic hinges formed under the different loading conditions. These
locations are predicted on the basis of data obtained from elastic

analysis of arches by Bradley (2) and refer to loads applied individually.

TABLE I
Location of s
Load lst Plastic Hinge 2nd Plastic Hinge
Point Load At Point of Load Near 1/4 point of
side opposite load
Live Load Near ends of arch At mid-point of arch

2 to 3/20 up from
spring line

Dead Load Same as full uniform
live load

Drift Load Near 1/4 point of side Near l/h point of
opposite load side under load

Note: 1/h points and mid-point reference entire arch length and are
measured along the arch axis.

The Maximum moment value (either positive or negative) and its

location is determined by elastic analysis. This location is then



assumed to be the point where the first plastic hinge will form. It is
also assumed that the plastic moment value will lie between the maximum
elastic moment and the largest moment of opposite sign.

The following assumptions are made as a basis for allowing the
distribution of the moments in such a way that a collapse mechanism
would be obtained. Assume a section is selected for the arch that is
slightly smaller than that required to resist the maximum elastic moment.
Now when the»maximum plastic moment value for this section is reached at
some point, no further moment resistance is possible at this point.

Also note that this will occur prior to application of the full load. As
the remainder of the load is applied, theoreticali& a plastic hinge will
develop at this point causing an increase in stress in another portion of
the arch. When the load is sufficient a second plastic hinge will eventu-
ally form creating a collapse mechanism. This is similar to the way a
collapse mechanism is formed in a frame.

The usual approach to plastic design is to increase the load by
the load factor of the section and use the increased load to determine
the plastic moment values for the collapse mechanism of the structure
being consideredL

The approach used here is to determine a plastic moment value based
on the actual load values and then multiply these moment values Dby the
load factor of the section, using this final moment as the basis for
design.

After the first plastic hinge is allowed to develop an arch condi-
tion similar to the one shown in Figure ll-a would be developed and new
reactions must be determined. Note that in no way are any of the loads

altered 4in any form. As in elastic analysis the vertical reactions may



be determined by summing moments about the end points. Since no loads
were altered it is obvious that the vertical reactions remain unchanged,

The arch is now broken into two free body diagrams as shown in
Figure 1ll-b. bThe moment that exists at the point of the hinge after
the hinge has developed will be thevplastic moment value, Now moments
are summed about the point of the plastic hinge using the plastic moment
and new values are found for the horizontal reactions. 7Under these condi-
tions all reactions are computed from equations of statics.

Using the new values for horizontal reactions, it i1s now possible
to compute a new set of moment values across the arch.

The first plastic hinge will remain at the location of the maximum
elastic moment. The second plastic hinge will form near the point of
the largest elastic moment of opposite sign. When the arch is divided
into a small number of segments the second hingé will probably be located
at this same point.

3. ©Shear and Thrust. Shear and Thrust should be considered in the

design'of all arches, but it is more important in some cases. As the
rise to span ratioc becomes smaller, shear and thrust become more critical.
Shear and thrust values at each point on an arch are determined by
resolving the reactions into the proper components.

Tall (5) has a discussion of the reguirements in plastic analysis
for selecting a section based on combined stresses.

The reactions have to be adjusted appropriately according to the
load under consideration. All loads, except wind, act in a vertical
direction only and thus only the vertical reaction is affected. Wind
load however acts perpendicular to the arch axis and affects both the

horizontgl and the vertical reactions, when resolving them into shear



and thrust components.
Figure 4 shows generally how shear and thrust values are computed.
The specific equations for sheagr and thrust for each load condition are

shown later.

| ! T
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Figure 4
v, = (v - F(L)) sin p
v, = (v -F(L)) cos p
HS = H cos p
Ht = H sin p

Shear = V_ - H
s !

Thrust = Vt + H%

The following figures show the loading conditions that are consi-

dered in this thesié and give the equations necessary to analyze an arch

load.
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Dead Load
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Live Load

Special Geometry
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d. Shear and Thrust

S = Vl sin p - H cos p
S = [Vl - wdr(x -8)} sin p - H cos p
T = Vl cos p + H sin p
T=[v, - wdr(x -8)) cos p + H sin p
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Figure 9
Point Load

a. Special Geometry
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6 = tan % db=8 -0
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Figure 10
Wind Load
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HK, = H + wlR (sin p - sin a)

HK, = HK, - wR (sin p - sin 91)

HK3 = HK, + ng (sin p - sin 92)

S= VKl sin p —H.Kl cos p (@ < p < 91)
S,= VK, sin p - HK, cos p (6l <p< 92)
S=VK3sinp~HK3cosp (62<pSB)
T = VK, cos p + HK sin p (0 <p grel)
T = VK2 cos p + HK2 sin p (61 <p s 62)
T = VK3 cos p + HKy sin p (92 <p<B)

Free Body Diagrams

— 1t

Figure 1ll-a

Figure 11-b
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Known: » Find: H for WD, WP, WL, WDR, WW

VL
VR
XH
YH
fPMZ

s

For geometry not shown here refer to original geometry, Figure 5.

The PM used in the following eguations for H, would be the PM due
to the individual load, Because the PM found by the computer is for
combined loading, the program considers the effects of PM on tﬁe H
values in one equation, (BMH = PM Y(I)/YH). The individual equations
for H as written in the program will differ from those shown in this
section because PM is removed from the equations in the program.
Dead Load

- N

(V) ) - B - ()R (o - ol K,

H = 4
1 Yh
Live Load
2
(v ) (=)
(Vl)(xh) - PM - 5
By = T
h
Drift Load
on Right Side
(v)(x ) - PM
1 h
= <
i T (x, <8)
2
. (w, Y(x_. - 8)
ar h
o (V) (=) - PM - 5
- >
3 T, (x, >8)
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on Left Side

(V) (x.) - BM - (v, )(S)(x, - 2)
B, = 1" h’ r dr h ~27 (x, >5)
(v, ) ()
(V) (x,) - PM - —-i‘—r—e——h—
Hy = T (x, <8)

The manner in which drift load is applied on the left side by the
computer makes the equations shown here for drift load on the left side
unnecessary in the cdmputer program.

Point Load

i, = ) (4 >

Hy = Y

- Wind Load

1'h 1
= <
B T (p *91)
h
p -6
2w2 R2 sin2 5 1
= - < <
Hw2 le Yh (61 e ‘*62)
p -6
2w R2 sin 2
H_=H _ +—2 2
w3 w2 T, (6, <p <B)



CHAPTER II
COMPUTER " PROGRAM

To analyze a given arch with this program, data cards must be
prepared with values for the span, rise, loads, number and location of
.point loads, and the degree of accuracy desired in the plastic moments.
The computer will determine all other necessary information, Note that
the program is written for a maximum of twenty point loads and that three
wind load values are required. The wind load equations are based on the
A.S.C.E. recommendations for wind loads on curved roofs (6).

In determining the plastic moments and the shear and thrust values,
the computer follows the same general line of reasoning as is discussed
in Chapter I,

First reactions are determined for the elastic case and a set of
elastic bending moments are computed. The maximum moment is found and
this point is recorded as the location of the first plastic hinge.

A trial plastic moment value is then selected by the machine and
a new set of reactions are calculated using the plastic moment value
at the point of the plastié hinge. Then a new set of moment values are
computed across the arch. The trial plastic moment values are selected
by avéraging the latest plastic moment with the current largest moment
of opposite sign. New plastic moment‘values will be seleéted and
checked in this manner until two maximum moments of equal value and

opposite sign have been found. The program is written to compute these

19
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two values to within the accuracy specified on the data card.

The location of the second plastic hinge and the two plastic moment
values are now recorded.

Next the shear and thrust values are computed.

The results are recorded in a tabulated form. The x and y co-
ordinates of the segments are recorded first, followed by the elastic
moment values, and finally the shear, thrust, and plastic moment values.

Tables showing the wind load factors that should be used, if the
A.S.C.E. recommendations are followed, are given in Appendix B.

A flow diagram and a listing of the actual computer program as

written in Fortran IV are shown in Appendix C.



CHAPTER TIIT
EXAMPLE PROBLEM

An example arch was designed for the following conditions:
Spacing . 16' - O on center

Span 100" - 0O

Rise ‘é5‘ -0

Rigid metal deck roofing fastened to arches so as to provide

lateral support.

Arches are two hinged with a constant circular radius.

Loading:
Dead Load - 250 1bs./ft.
Live Load - 400 lbs./ft.
Drift Load - 400 1bs./ft.
Wind Load = 320 1bs./ft.

Point Loads - 1000 lbs. at 35' - 0O
1000 1lbs. at 7' -0
1
Combinations of Loads

W, + W ) + P

d

W, + W + P

dr)
+ l/2w +w,) + P

o

o)

0.75(wy + Wy, + w.) + P

o)

(

(
0.75(w

(

(

0.75(wy + wy + l/3w + P

lLothers, John E., Advanced Design in Structural Steel (Englewood
Cliffs, 1960) p. 200.
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The load values that were punched in the cards are shown on pages
2k - 26 with the results that were determined for each load condition.
The critical load condition was found to be (Wd + Wdr) + P and the
complete set of results is shown for this condition.

Design of sections based on plastic and elastic design are shown for
comparison of the two methods. A load féctbr of '1.80 was assumed for the

design of an arch by plastic analysis.

The computer results were used as follows in selecting arch sections:
Plastic Design:
Load Factor (IF) = 1.80

Plastic Bending Moment (M%) = 71.38 Kip - ft.

M= M ox IF = 71.38 x 1.80
- = 128.48 Kip - ft.
. _ Mx 12 in./ft. | 128.48 x 12
req'd 36 K si 36
- 42.82 ind L

Select a 16 B 26 Section

Elastic Design: .

N
Maximum Elastic Moment (M) = 77.06 K(;% - ft.

5 _ Mx 12 in,/ft. _ 77.06 x 12
req'd ~ 24 K si N ok
= 38.53 inS

Select a 14t WF 3Q Section
The two sections selected show that a lighter section can be obtained

from plastic design. The analysis shown is obviously not complete, since



an actual "design must consider the distance between lateral bracing,
width-thickness ratios of compression elements, and other requirements

of the code.

23
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THE HINGE IS AT 4 XH = 16.99 YH = 15.57
THE HINGE IS AT 13 XH = 67.16 YH = 22.59
THE FIRST PIASTIC MOMENT IS -71.22
THE SECOND PLIASTIC MOMENT IS 71.38
POSTTION . SHEAR THRUST BENDING MOMENT
0 -6.55 30.39 .00
1 -4 .68 29.80 -32.46
2 -2.96 29,12 5h.55
3 -1.41 28.40 -67.17
L -.00 7.6k ~71.22
5 1.25 26.87 -67.53
6 2.38 26.12 -56.90
7 3.ko 25.39 -40,06
8 3.33 : 2L .51 -21.11
9 L, 14 23,96 .59
10 . 4,89 23,47 26.8W
11 3.30 23.27 50.61
12 1.76 23.55 65.26
13 .37 24,30 71.38
14 -.76 25.49 70.11
15 2,49 27.49 60.13
16 -2.88 29, 4L Ll 35
17 -2.81 31.61 27.6
18 -2.25 33.91 12.6k
19 -1.17 36.26 2.2
20 43 38.55 .00
" END REACTIONS
LEFT END RIGHT END
VERTICAL 20.38 VERTICAL 30.58

HORIZONTAL 23.47 HORIZONTAL  23.47
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CHAFTER IV
SUMMARY AND CONCLUSIONS

One of the biggest advantages of plastic design of steel frames is
that it renders a statically indeterminate structure statically deter-
minate in most cases. This is a result of being able to accurately
predict the locations of the plastic hinges that will form a collapse
mechanism. A savings in the weight of steel 1s also an advantage
normally found in plastic design.

The method of plastic design for two hinged circular arches as
presented here does not have the advantage of changing the arch to a
statically determinate structure. However, a savings in steel can be
realized with this method, because a smaller section 1s obtained for
a given arch condition, when the section is picked based on plastig%
design principles.

Use of a computer to perform the calculations aids tremendously
in the plastic design of a two hinged circular arch as presented here.
To perform the necessary calculations by hand would consume an unreas-
onable amount of time, as is the case with almost any arch structure.

The computer program presented can be adapted, with minor changes
when necessary, to nearly any condition for a two hinged arch with the
end points supported at equal elevations.

1. Suggestions for Future Study. Because this thesis work is

entirely theoretical, actual testing is needed to verify if this type

27
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of structure will perform under load as predicted here,

If through testing and further theoretical work a correlation can
be found between the rise to span ratio, the load condition, and the
points where the plastic hinges form, then a big advantage could be
obtained with plastic design by making a two hinged arch statically
determinate. To render one of these arches statically determinate would
simplify the design of an arch as well as reduce the amount of time
consumed in design. If the locations of the plastic hinges could be
predicted accurately in advance, the plastic design of an arch would
be similar to plastic design of a steel frame composed of straight

members.
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APPENDIX A
DERIVATIONS

A two hinged circular arch is statically indeterminate to the
first degree. The vertical reactions (V) are easily found by statics,
by summing moments about the hinged ends of the arch. But the hori-
zontal reactions (H) cannot be found by statics and‘were found based
on the principal of virtual work. When the vertical and horizontal
reactions have been evaluated the bending moments, shears and thrusts
may be determined by statics.

For two hinged circular arches with rise to span ratios of 1/8
or greater, no significant error is introduced when axial shortening
or normal force is ignored in the derivation of the equations for H.
An error of approximately 2 per cent is created when the rise to span
ratio is 1/8. For any rise to span ratio of less than 1/8 normal
force should be considered.l

Onlf the derivations of the wind load equations are shown.
Equations for the other loads were derived and shown by Bradley (2).
Bradley's derivations use a slightly different nomenclature and the
equations appear different in final form, but the basic principles

are the same.

lJohn I. Parcel and Robert B. B. Moorman, Analysis of Statically
Indeterminate Structures. (New York. 1955) p. 46k,
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Derivation of the horizontal reactions is based on the following
conditions and/or assumptions:

1. The Arch is of constant cross section and homogeneous material

(E I is a constant) and a constant circular radius.

2. The end conditions are such that the arch will act as though

it is hinged at both ends.

3. The material of the arch conforms to Hooke's Law, étating

that stress is proportional to strain, and that all deformation

and stress is within the elastic limit. |

4., Effects of temperature change, displacement of supports,

and change in length of the center line of the arch due to

longitudinal compression are neglected.

5. The radius of curvature of the arch is large in comparison

to the depth of the cross section of the member.

Wind Direction

L

Figure 12 a
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APPENDIX B
WIND LOAD FACTCRS

Tabtles 2 and 3 give the wind load factors for some rise to span
ratios of an arch. Some factors given by the A.S.C.E. must be modified
to satisfy the wind load equations as written for the computer. A check
of the derivation of the wind load equations will explain why this is
necessary. The A.S.C.E. factors for the windward i/h (W1) of a roof need
not be adjusted. The factors for the central 1/2 (W2) are determined by
suming the absolute values for the windward l/h and the central 1/2.
The factor for the leeward 1/4 (W3) is determined by subtracting the
leeward 1/4 factor from the A.S.C.E. factor for the central 1/2. The
factors are applied to the wind load value and the values found are
punched in the data card as positive values. The program accounts for
part of the wind load being a suction or negative force.

There is an exception for certain rise to span ratios or arches
supperted above ground level, where a suction force is created across
the entire arch, In this case a negative value for Wl must be punched
in the data card. The factor for W1 is now subtracted from the factor
for W2. W2 is still used as a positive value. The factor for W3 is
subtracted from the factor for W1 and this factor is also punched in

the data card as a positive‘value.

L2



TABLE II

WIND LOAD FACTORS

For Arches Supported at Ground Level

43

Rise/span Windward 1/4 Central 1/2 Leeward 1/4
1/2 (0;500) 0.700 17900(-1.200) 0.700(-0.500)
1/3 (0.333) - 0.450 1.480(-1.030) '0.530(-0.500)
1/& (0.250) 0340 1.290(-0.950) 0.450(-0.500)
1/5 (0.200) 1 0.280 1.180(-0.900) ,o.uoo(-o;5oo)
1/6 (0.166) 0.230 1.096(-0.866) 0.366(-0.500)
1/7 (0.143) 0.190 1.033(-0.8&3) 0.343(-0.500)
1/8 (0,125) 0.170 0.995(-0.825) 0.325(-0.500)

TABLE III

WIND LOAD FACTORS

For Arches Supported above Ground Level
Rise/span Windward 1/ Central 1/2 Leeward 1/4
1/2 {0.500) 0.700 1.900(-1.200) 0.700(-0.500)
1/3 (0.333) 0.250 1.280(-1.030) 0.530(-0.500)
1/& (0.250) 0.000 o.9§o(-o.950) 0.450(-0.500)
1/5 (0.200) -0.900 0.000(-0.900) 0.400(-~0.500)
1/6 (0.166) -0.866 0.000(-0.866) ©0.366(-0.500)
1/7 (0.143) -0.843 0.000(-0.843) 0.343(-0.500)
1/8 (0.125) -0.825 0.000(-0.825) 0 500)

are the factors that should be used with this computer program. :The

.325(-0.

If the A.S.C.E. recommendations for wind load are followed fthese

A,8.C.E, factors are shown in parentheses.



APPENDIX C
COMPUTER “PROGRAM

To utilize the computer program it is essential that the correct
number of data.cards be prepared according to a rigid set of rules.
Sample data cards are shown in Figure 1k.

The first card must contain a number punched in column six which
specifies the number of sets of data to be considered.

The next data card will contain the information denoted in
statement number one of the program.

ISW, ¥, must always contain the digit 1 with the first set of
data éo that the geometry of the structurekwill be computed. If it
is not mecessary to compute new geometry for the next set of data a
2 is punched in this position. ISW must always be either a 1 or a 2.

Span, 5-10, and rise, 11-16, ﬁalues must be punched in the proper
units, usually in feet.

WD, 17-22, WL, 23-28, and WDR, 29-34, are where the values for dead
load, live load, and drift load respectively are to be punched. The
program equations are written for the drift load applied on the right
half of the arch. A drift load may be applied on the left side by
adding the drift load value to the live load value and then using a

negative value for drift load.

*The numbers after the symbols indicate the card columns within
which the values must be punched.

Ly
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NP, 40, indicates ﬁhe number of points loads that will be considered
with this set of data. The number of point loads may vary from zero to
twenty.

W1, 41-46, w2, 47-52, and W3, 53-58, are the three values that are
necessary“fof a wind load. (See Appendix B)

M, 64, must always contain either a l>or a 2. Normally M will
contain a1 and will have no effect on the program. If a 2 is used
values will be determined from which influence lines may be plotted.

ACC, 65-T70, designates the accuracy to which the plastic moments
will fe computed. The accuracy is one part in the number specified.

If ACC is set equal to 50.00, the accuracy requested is 1 part in 50.00
or 2 per cent,

The data card just discussed will be followed by a data card for
each point load to be considered. Each card will contain the point
load value, WP, 1-10, and the distance from the left end, A, 10-20,

The cards must be placed in order beginning with the point lcad on
the left.

Figure 13 shows a flow diagramkof the computer program, which
will help in following the program procedure. |

The last part of the appendix is a listiﬁg of the actual computer

program as written in Fortran IV.



Read Input Data

90

IJKIM = 1, NUMB

Go To (2, 8) ISW

Compute Geometry

L6



Compute Elestic

Bending Moments

Sum Elastic Bending

Moments

Select Trial Plastic

Moment

Compute New Horizontal

Reactions

b

Compute Plastic

Moments

@



Select Maximum

+ PM and - PM

Check

tpM
ACC

o 2] - |I- 2] -

Compute Shear and

Thrust Values

Write x, y, and p Values;
Elastic Moment Values;
Shear, Thrust, and Plastic

Moment Values

%\_/

Figure 13
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MONS$S$ JOB 250540001THESIS

MON$S  ASGN MGOsA2

MONS$ ASGN MJBsA3

MONS S ASGN MW1sA4

MONS$S - ASGN MW2sAS5

MONS$$ ASGN MW3sA6

MONS$ MODE GO»TEST

MONS S EXEQ FORTRANSSOF3SIUsssss THESIS

TDIMENSION X(21)s Y(21)s RHQ(21}» BMTOT(21) »WP1(20)sA1(20)
DIMENSION THETA(20) '
98 FORMAT (16)

99 FORMAT (1H1) .

100 FORMAT (14+5F6e291693F6e29169F642)

101 FORMAT (/72H 1SWw SPAN RISE WD WL WDR NP wl we
1 W3 M ACC) ,

102 FORMAT (1635F64291693F6e29169F642)

103 FORMAT (2F1040)} ’

104 FORMAT (/65H POSITION BMD BML BMDR BMP BMw
18MH BMTOT)
105 FORMAT (15Xs5H [ =,14»8H WP =3F8s298H A =sFBe2)

106 FORMAT(/27X»1HX»14X»1HY+4Xs14HRHO IN DEGREES)
109 FORMAT(/10Xs1SHTHE HINGE IS AT»I355H XH=sF7e2s5H YH=sF742)
110 FORMAT{/10Xs27HTHE FIRST PLASTIC MOMENT ISsFBe2s//10Xs28HTHE SECON
1D PLASTIC MOMENT 1SsF8e2)
111 FORMAT (1X»sI8+7F842)
113 FORMAT(I153s3F1542)
READ (1,98) NUMB
REWIND 6
WRITE (6) NUMB
DO 90 IJKLM = 1,NUMB _
1 READ (15100) ISWs SPANs RISEsWDs WLs WDRsNPsWls W2s W3s Ms ACC

YH = 040
PM = YH
I1CGT = 1
H2 =040
H3 = 04,0
H4 = 060
HW = 040
VL2 = 040
VL3 = 040
VL4 = 0.0
VLW = 040
GO TO (298)y ISW
2 S1 = SPAN®*0,5
S2 = S1#S1°
S3 = S52%s51
R1 = (RISE*RISE+52)/(ZoO*RISE)
R2 = R1#%*R1
El.= Rl - RISE .
E2 = E1*El '

AHPH = ATAN(S1/ElY
PHI=2+0%AHPH

X(1) = 040

Y{l}) = 0,0

50
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, ALFA = 145707963~ AHPH
! THTA1sALFA+0+5%AHPH

THTA2=THTAl+AHPH
DRHO = 04 1%AHPH
RHQ(1) = ALFA
DO 5 1 =221
I1 =1 -1
RHQ{I) = RHQ(I1) + DRHO
RHO = RHQ(1)}
X(I) = S1 -~ R1#COS(RHO)

5 Y{(1) = R1*#SIN(RHO) - E1

“*WRITE(3+99)
WRITE(34106)
DO 6 1 = 1921
11 = -1
RHDEG = 57429578%RHQ(1I)

6 WRITE(35113)11eX(I)sY(I)sRHDEG

8 VL1=R1*%WD*PHI*045 .
WRITE (3,99)
WRITE (3,101) -
WRITE(39102) ISWs SPANs RISEsWDs WLs WDRsNPeWls W2y W3,
ADEM = 2, 0%AHPH #*(R2¥0e¢5+E2)~3,0%E1#%#51
ANUM=PHI# (=94 O%E2+52~2e 0% S1*¥E1%#PHI ) +18,0%E1#S1
H1=WD¥*R1#Cs 25%ANUM/ADEM
IF (WLeEQeOsO) GO TO 9
VL2 = WL#¥S1
ANUM = 103333333*$3+El*200*AHPH*(R2*0-5 52)=-E2%S5]
H2 = WL*ANUM*0e5/ADEM

9 IF (WDReEQe0s0) GO TO 10

VL3 = WDR#51#0,25
ANUM = 8e0%53=3,0%E1#2 e OXAHPH®(S2~E2) =64 0%*E2%S]
H3 = WDR¥ANUM/(24+0%ADEM)
10 IF (NP 4EQe 0) GO TO 11
READ (14103) (WP1(I)sAl(])sI=1sNP)
WRITE (39105)(l’WPl(I)DAl(I)’I“l’NP)
VL4 = 0.0
H4 = 040
DO 20 I=1sNP
WP = WPl(])
A = AL(D)
C = Sl-A
- B = C+S1 :
D = SQRT (R2 -~ C#*(C)
THETA (1) = ATAN(C/D)
F =D - E1 . )
GAMMA = THETA(I) + AHPH
THETA(I) = 145707963 - THETA(I)
ANUM = O 5%#B#(2,0%S5]1~E1%#2,0%AHPH)~B#C~ F*F/2.0+EI*C*GAMMA
H4 = WP®*ANUM/ADEM + Hé&
20 VL& = WP%*B/SPAN + VL4
11 IF (W34EQeQa 0) GO TO 12
VW1=wWl#®5]1 -
VWZ—(2.0*“2*R2*51N(0-375*PH1)*SIN(00375*PHI))/SPAN
VW3={2s0% W3 %R2¥SIN(0e125%PHI ) #SIN(Qe125%PHT) )/ SPAN

Mo

ACC

51



12

29

30

41

42

£ Bro i
£ 0wV

40

VWL=VWl~- vw2+vw3

ANUM=2,0#53~ 2.0*R2*51~E1*52*PH1+1o5*E1*R2*PHI-E2*SI
HW1=W1*ANUM/ADEM

ARJ = 0e375#PHI

ARG = THTA1l

COEF1l = 0475

COEF = 04375

ANUM1={SIN(ARJ)#%2) % (SPAN~ El*PHI)-Sl+COEF1*E1*PHl-Rl*COS(ARG)
ANUM2=-(O.S*EI*SI*SIN(ARG))/R1+COEF*R1*PHI*51N(ARG)
ANUM3==(0.5%E2%COS(ARG) ) /R1 :
ANUM=ANUM1+ANUM2+ANUM3

HW2=W2#R2Z*ANUM/ADEM

ARJ = 0e125%#PHI

ARG = THTA2 |

COEF1 = 0425

COEF = 0,125

ANUM1=(SIN(ARJ)#%2 )% (SPAN-E1#PH]I ) -S1+COEF1#E1#pPH]~ Rl*COS(ARG)
ANUM2=-(0.5*E1*51*51N(ARG))/R1+COEF*R1*PHI*SIN(ARG)
ANUM3=~{0.5%#E2#COS(ARG) ) /R1

ANUM=ANUM1+ANUM2+ANUM3

HW3=W3#R2*ANUM/ADEM

HW=HW1l~HW2+HW3

BMD = 040

BML = BMD

BMP = BMD

BMW = BMD

BMDR = BMD
BMH = BMD
11 = 0

1 =1 ‘

BMTOT(1) =040

WRITE (34104}

WRITE(35111)11+8MDy BMLs BMDRs BMPs BMWe BMH » BMTOT(I)
DO 50 1=2921

11 = I-1

GLE = RHQ(I)
IF(WD+EQe0e0) GO TO 41
XBAR=~R1%¥COS(GLE)+Y(1)/(GLE=ALFA) -
BMD=VL1#X(1)-H1%Y([)-WD*R1#(GLE~ALFA)#*XBAR
IF (WLeEQs«0o0) GO TO 42
BML = VL2¥X(1)=H2#Y (1) -WL*X([)*X (1) %045
IF (NP<EQe 0) GO TO 43
BMP = VL4*X(1) = H4*Y(I)
DO 25 JJ=1sNP
IF (GLEeLEe THETA(JJ))GO TO 43
A= AL(JJI)
WP = WP1(JJ)
BMP = BMP-WP#*(X(I)=A)
IF (WDR +EQe 0e0) GO TO 39
BMDR = VL3¥*X(I) = H3#Y(I)
IF (514GEeX(I)) GO TO 39
BMDR = BMDR~WDR#*(X(I)=S1)*(X(I1)1~51)#045
IF (W3.EQe040) GO TO 46
BMWL = VWI#X(1)=HW #Y(1)=~240%W1%R2#SIN(Oe5# (GLE-ALFA))#%2
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45
46

47

49
50

51

55
60

63
64

66

67

65
70
71
73

74
75

76
117

84
79

BMW2=VW2#X (1)
BMW3=VW3#X (1)
IF (GLEeLT+THTAl) GO TO 45 ,
BMW2=BMW2-2¢ 0¥ W2¥R2#SIN(0e5#* (GLE=THTAL) ) #SIN(Qe5# (GLE=THTAL))
IF (GLEeLT+THTA2) GO TO 45 .
BMW3 = BMW3-240#W3#R2#SIN(0e5% (GLE-THTAZ) ) ¥#2
BMW=BMW1-BMW2+BMW3 . B
IF (PMeEQe040) GO TO 47 E
BMH = PM®Y(1)/YH
BMTOT(I) = BMD+BML+BMP+BMW+BMDR+BMH
GO TO (49+50+50)91CGT
WRITE(35111)11sBMD, BMLs BMDRs BMPs BMWs BMH s BMTOT(I)
CONTINUE . .
GO TO (51s1)eM
CHECK = BMTOT(1)
DO 60 1=2+20 .
IF (PM*BMTOT(I) «GTe 0e0) GO TO 60
IF(ABS{CHECK) o GT«ABSEBMTOT(1)))GO TO 60
CHECK = BMTOT(I)
1 =1
CONTINUE
GO TO (63s6564)s1CGT
PM = CHECK
1CGT = ICGT + 1
RH = RHQ(IJ)

XH = X(IJ)

YH = Y(IJ)

GO TO (66966967967 )»1CGT
YH1 = YH

XH1 = XH

RH1 = RH

1J =10 -1~

WRITE (35109) I1Js XH» YH

"GO TO (1971s1485)41CGT

IABC = ACC*CHECK/PM + ACC

IF (IABC +EQe O) ICGT = 3

PM = (PM-CHECK)*045

GO TO 30 ‘ ‘ '

IF (WD «EQes OQsU) GO TO 73

XBAR = ~R1#COS(RH) + YH/(RH-ALFA)

Hl=(VL1#XH-WD*R1%(RH-ALFA)*XBAR)/YH

IF (WL «EQe 0e0) GO TO 75

H2 = (V0L2#XH~ WL*XH®#XH/240)/YH
IF (WDR «EQe 040 )} GO TO 77
IF(XHeGTsS1) GO TO 76

H3=VL3#XH/YH

GO TO 77 ‘

H3 = (VL3 *XH- WDR* (XH=S1)#*(XH~S1)/2+0)/YH
IF (NP+EQeQO) GO TO 79

H4 = VL4¥XH/YH ' »

DO 84 KK = 1sNP

IF (RHeLESTHETA(KK)) GO TO 79

H4 = H4 - WPLIKK)*{XH - A1(KK))/YH
IF (W3+EQe040) GO TO 30
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HW= (VWL EXH=2s O¥W1#R2#SIN(OeS#* (RH~ALFA))#%2) /YH

IF (RHeLE«THTAl) - GO TO 30

HWaHW+ (20 O¥W2#R2¥SIN(QeS* (RH=THTAL) ) #SIN(OeS5#*(RH=-THTALl)})/YH

IF (RHeLE«THTA2) GO TO 30

HWsHW~- (2-0*“3*R2*SIN(005*(RH-THTA2))*SIN(005*(RH-THTA2)))/YH

, G0 TO 30

-85 WRITE (3,110) PM. CHECK
"WRITE (6) XsYsRHQsTHETAsTHTALsTHTAZ29VL1oVL2sVL3 sVWLIPMeXH1»YH1lsVL4
WRITE (6) ALFAsH19H2sH3sH4 sHWsRHsBMTOT 951 RloHDoNLoWl’N20W3voPHI

90 WRITE (6) WDRyAHPHALl»WP1 NP

CALL EXIT . - . )
END ‘ . N
MONSS EXEQ LINKLOAD o
PHASEPROGRAM
CALL THESIS
MONSS EXEQ PROGRAMyMJB
5 . v . ;
1100000 25400 0425 0440 0e0 1 0+0 0.0 0e¢0 1 50600
1400 75400 ' ' . '
2100400 25400 - 0425 O0e0 0440 1 0e0 0«0 0«0 1 50600
1.00 75400 .
2100600 25400 06419 0415 040 . 1 0608 0429 0010 1 5000
100 75400 : :
2100400 25400 0.19 O0e0 0e30 1 0008 0629 0010 1 50.00
: 1,00 7500 .
2100400 25400 06419 0430 040 1 0603 0610 0404 1 50600
1.00 75400 :
MON$$ JOB 250540001THESIS
MON$S3 ASGN MGOs»A2
MONS $ ASGN ‘MJByA3
MON$ S ‘ASGN MW1lsA4
MONS$$ ASGN MW2sA5
MONS S ASGN MW3yA6
MONSS$ MODE GOsTEST
MONS$ EXEQ FORTRANsSOFsSIUsss9ssTHESIS

DIMENSION THETA(20) .
DIMENSION X(21)s Y(21)s RHQ(21)s BMTOT(21) »WP1l(20)sA1(20)
99 FORMAT (1H1)
112 FORMAT(7Xs8HPOSITION»10Xs5HSHEAR»9X s6HTHRUST 94X 9 14HBENDING MOMENT)
113 FORMAT(11533F1542)
115 FORMAT(/10X913HEND REACTIONSs/10X+8BHLEFT END3s12X99HRIGHT END)
116 FORMAT(10X910HVERTICAL »FB8e293X910HVERTICAL +F842)
117 FORMAT(10X»10HHORTZONTAL 9F8e293X+1CHHORIZONTALsFB842)
REWIND . 6"
READ (6) NUMB
DO 202 KKK = 1l» NUMB
READ (6) XsYsRHQsTHETASTHTALsTHTA29VLIsVL29VL3 sVWLIPMeXH1sYH1sVL4
READ (6) ALFAsH19H29H3sH4GsHWoRHIBMTOT9S1oR1oWD WL sW1loW29W3sAsPHI
READ (6) WDRsAHPHsAlsWP1 NP
WRITE (3+99)
WRITE (39112}
HP = -PM/YH1
VSl = 0.0



118

119

‘120

129

vVs2 = 0;0
VS3 = 0.0
VS4 = 0.0
VSW = 040
HS1 = 040
HS2 = 040
HS3 = 040
HS4 = 0.0
HSW = 040
HPS = 0e0
VTl = 0.0
VT2 = 0.0
VT3 = 0.0
VT4 = 060
VIW = 0.0
HT1 = 040
HT2 = 0.0
HT3 = 040
HT4 = 040
HTW = 0.0
HPT = 0.0
HCON = 040
VCON = 040

SHEAR = 0.0

THRST = 0«0

DO 200 I = 1s21

GLE = RHQ(I)

IF (WDeEQeOs0) GO TO 118

HS1 = H1#COS(GLE)

VSl = (VL1~-R1*WD*(GLE-ALFA))#SIN(GLE)
HT1 = H1#SIN(GLE)

VTl = (VL1~-R1*WD*(GLE-ALFA})*#COS{(GLE)
IF (WLeEQeDeO) GO TO 119

HS2 = HZ2*COS(GLE)

VS2 = (VLZ-WL%X(1))®*SIN(GLE)

HT2 = H2#SIN(GLE)

VT2 = (VLZ2-WL*X(1))*COS(GLE)

IF (WDR«EQs0e0) GO TO 129

HS3 = H3#COS(GLE)

VS3 = VL3%#SIN(GLE)

ACON = ALFA + AHPH
IF{GLE«LE«ACONIGO TO 120

VS3 = VS3-(WDR¥(X(I)-S1))*SIN(GLE)
HT3 = H3%*SIN(GLE)

VT3 = VL3*%COS(GLE)
IF(GLE+LE+ACONIGO TO 129

VT3 = VI3-(WDR*(X(1)=51))*COS{GLE)
IF (NP+EQe. 0) GO TO 149

HS4 = H4*COS(GLE)
VS4 = VL4*SIN(GLE)
HT4 = H4*SIN(GLE)
VT4 = VL4*COSIGLE)

DO 148 JKL = 1NP
WP = WP1l(JKL)
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148
149

150

160

161

200

202

IF(GLEsLEsTHETA(JKL)1GO TO 149
V54 = VS4-WP*SIN(GLE)

VT4 = VT4-WP#COS(GLE)

IF (W3.EQeD40) GO TO 161

HCON = HW+W1*R1*(SIN(GLE}=SIN(ALFA))
VCON = VWL~W1%*R1*(COS(ALFA)-COS(GLE))
“ IF (GLEeLE«THTAl) GO TO 160

HCON = HCON-W2*R1*(SIN(GLE)=SIN(THTALl))
VCON = VCON + W2¥R1#(COS(THTA1) =COS(GLE) )
IF (GLE.LE«THTAZ2) GO TO 160

HCON = HCON+W3*R1#(SIN(GLE)=SIN(THTAZ2))
VCON = VCON-W3*R1*(COS(THTA2)—COS(GLE))
HSW = HCON*COS(GLE)

VSW = VCON*SINIGLE)

HTW = HCON®*SIN(GLE)

VIW = VCON*COS(GLE)

HPS = HP#COS(GLE)

HPT = HP*SIN(GLE)

SHEAR = VSI+VS2+VS3+VS4+VSW~HS1-HS2~HS3~HS4~HSW~HP$
THRST = VTL+VT2+VT3+VT4+VIWHHTI+HT2+HT3+HT4+HTWHHPT
I1 s 1«1

WRITE (35113) I11sSHEARsTHRST,BMTOT(I)
VL = VL1+V0L2+VL3+VL4+VWL

ML = Hl+HZ2+H3+H4+HW+HP

VR = ~SHEAR#SIN(ALFA)}+THRST#COS(ALFA)
HR = SHEAR#COS(ALFA)+THRST#SIN(ALFA)
WRITE(34115)

WRITE(3+116)VLsVR .

WRITE{3+117)HLsHR

CALL EXIT

END :
MONSS EXEQ LINKLOAD

PHASEPROGRAM

CALL THESIS .
MONS$ EXEQ PROGRAMsMJB
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