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CHAPTER I 

INTRODUCTION 

Stannic Oxide (Sno 2), is one of a number of oxides and fluorides 

having the bipyramidal ditetragonal crystal structure commonly referred 

to as the rutile structure. The lattice dimensions as given by 

\ 

Wyckoff ( 1) , are a= 4.721 and c = 3.16 i. This substance occurs 

naturally as the mineral cassiterite and is chemically stable. The 

process of growing synthetic crystals of stannic oxide has proven some-

what elusive until recently (2). As a result, the majority of the 

experimental work cj.one with this substance has involved the use of 

crystals that have been cut from samples of Bolivian cassiterite. The 

properties of these samples have been reviewed quite extensively by 

Kohnke (3) and the results have been analyzed in an attempt to construct 

a workable model of the conduction mechanism which may be compared with 

that postulated for the prototype compound Ti0 2 . 

A full-scale symmetry analysis illustrating the interplay between 

crystallographic structure, wave vector groups and possible electronic 

wave functions is necessary if any of the theoretical methods thus far 

developed (4) are to be applied in construction of curves showing the 

configuration of the electron energy bands in momentum space. Such 

analyses have already been applied to several other crystal systems 

(5-11). 

1 
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It is the purpose of this work to employ a similar treatment for 

crystals which .display the rutile structure .. For illustrative purposes 

free•electron energy ba,nds and wave functions have been constructed as 

the first approximation to the possible energy band configuration 

actually present in this system. 



CHAPTER II 

MATHEMATICAL PRELIMINARIES 

In order to begin an analysis of the symmetry properties associ-

ated with any crystallographic system it is necessary to use a 

mathematical approach in which the theory of groups and their class 

structure plays an integral role, For a purely mathematical analysis 

1 17 
of the space groups n4h to n4h the reader is referred to the papers by 

Olbrychski (12) and Sek (13). These two papers present a comprehensive 

treatment of the generalized mathematical properties of the seventeen 

space groups in the tetragonal system. Although it is possible to use 

the method outlined in the papers to obtain the group properties of the 

particular structure in question, an alternative approach, used exten-

sively by Jones (14), was chosen. Differences between the methods will 

be made evident later. 

As mentioned, the symmetry properties of the space group under 

consideration may best be handled by utilizing the general mathematical 

theory of groups. Thus, several definitions and theorems from which 

all of these properties may be extracted must necessarily be stated. 

The majority of the definitions that shall be stated may be found in 

any book which treats the theory of groups and their representations. 

Since the language used in discussing groups and group properties varies 

from one book to the next, the following treatment shall use the defi-

nitions and notation of Mariot. (15). 

3 
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The first definition of any importance embodies the idea of an 

ensemble of mathematical objects. An ensemble is a finite or infinite 

collection of arbitrary mathematical objects. These objects are called 

the elements of the ensemble. Given any ensemble, a law of combination 

of two arbitrary elements x and y is a rule which determines a third 

element z of the ensemble. We write 

z = x·y 

and, in general, .x•y j y·x. 

A group G is then an ensemble whose law of combination satisfies 

the following. three conditions; 

(1) the law is associative 

(Cj, Ck' and c1 being members of G) 

(2) the law requires a ~ element E such that 

-1 
(3) every element C. has an inverse (C.) such that 

i i 

-1 -1 
C.·(C.) = (C.) ·C. = E. 

i i i i 

_As an example of how this definition may be applied, consider the 

ensemble of all integers. If the law of combination is defined to be 

ordinary addition then it is easily seen that this set (or ensemble) 

constitutes a group. However, if the law of combination is taken to 

be multiplication, the three· ~estrictions on the law of combination 

will not all be satisfied. The first two conditions will be satisfied. 

However, the third condition cannot be satisfied unless the ensemble 

contains rational numbers from zero to one. Since the ensemble does 

not contain these elements, it cannot constitute a mathematical group. 
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If the system is finite in extent, the number of elements in the 

system is called the order of the group. If the law of combination is 

also commutative the group is said to be commutative or abelian. If 

A, B' and X are three members of a group G, B is said to be conjugate 

to A, or B is the transform of A with respect to X if -1 B = X ,A,X. The . 
fundamenta 1 definition is that all elements of the form X-lA X, X being 

any element of G, constitute the class of A. It should be noted at 

this point that the class concept is non-trivial only if the group is 

non-a be lian. 

Given a group G, a subgroup His a part of G obeying the following: 

(a) If X and Y are members of H, then X·Y is also a member 

of H. 

(b) The subgroup obeys all the laws of combination defining 

a group. 

Notice here that the unit element of H must be that of G, 

Let (H) = (E, H1 ,H2 , ... ) be a subgroup of G and consider an element 

x:tG. Forming the ensembles: 

.X• (H) X,.X·H1 , X•H . 2 ••••• (2 .1) 

(H)•X = X, H1 ·X, H2 ,x ..... (2.2) 

If Xis itself a member of H, the property X·(H) = (H)·X is trivial, 

but if X does not belong to H, the ensemble of elements X·(H) is called 

the right coset of G associated with H. Similarly, the ensemble (H)·X 

is the left coset associated with H. 

At this point a theorem shall be stated without proof. The proof 

of this and any following theorems stated can be found in any text 

that treats this subject. 

.. 
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Theorem _l: 

The subgroup Hand the coset X•(H) do not have a common element, 

.This theorem shall be used later and has peen stated at this 

point merely for convenience, 

The next topic of interest is that of the invariant subgroup. A 

subgroup H .of a group G is called an invariant subgroup if .. 

-1 X ·(H)·X = (H) for every X in G .. Evidently, this is merely a formal 

statement of the fact that for this case the right and left cosets are 

equal. 

Theorem 2: 

The ensemble (H), X·(H), y·(H) , .... is a supergroup of which 

the unit element is (H). 

Although this system is called the supergroup by Mariot, many 

authors refer to this ensemble as the factor group. The concept of a 

factor group shall be used extensively in the later work. 

Notice that the general group properties that have thus far been 

outlined are independent of the type of elements contained in the group. 

A crystallographic group is merely a collection of operations that 

constitute an ensemble satisfying the group properties. In such an 

ensemble the elements are rotations, reflections, and translations. 

A particular group may be analyzed using several different tech-

niques. One of the most widely applied techniques used in crystallog-

raphy is dependent upon the theory of mathematical representations of 

a group. Before stating the two theorems necessary to extract the 

representations it is necessary to emphasize the importance of the 

concept of a class. It is this concept which plays the dominant role 

in the theory. _As mentioned by Jones (14), the work involved in 
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determining classes may be greatly reduced by noting that if the opera

tions of the group are written in matrix form, the matrices correspond

ing to a given class all have the same trace. This follows from the 

definition of a class and the fact that a similarity transformation 

does not change the trace of a matrix .. For further details of the work 

involved the reader is referred to Jones (pp 76-90). 

Briefly, the idea of representation theory involves obtaining 

matrix representations for all group elements, reducing the set of 

matrices to diagonal form, and considering the traces of the matrices 

in this form, 

The determination of the types of symmetry displayed by wave 

functions which represent allowed electronic states in crystals can 

best be accomplished by a systematic approach. The first step involves 

the construction of the regular representation of the crystallographic 

group. The fact that any group may be represented as a group of regular 

permutations is very important and, when coupled with the fact that 

every regular permutation can be represented as a gxg matrix, becomes 

the foundation of the work that follows. The representation of the 

group by these permutation matrices is. known as the regular representa

tion. Some of its properties can be seen at once. First, each matrix 

is of degree g (group order), Secondly, since there can be no diagonal 

element for any operation except the identity, it follows that: 

Tr A - 0 {A I= E J 
Tr A g {A = E} 

(2.3) 

Since in general the operations of the group do not all commute with 

each other, it is not possible to find a transformation matrix which 

will bring all matrices of the regular representation simultaneously 



into diagonal form, However, it is possible to find a transformation 

which will bring all matrices of the group into a form such as that 

shown below; 

X 

0 
0 

)< X X 

X X X 

:>< X X 

Such a matrix consists of single elements or sub-matrices of degree 

two or three along the diagonal. For general groups the sub-matrices 

8 

may be. of higher degree but for any crystallographic group none appears 

with more than.three rows and.columns. 

When the regular group matrices have been transformed so as to 

make the sub-matrices as small as possible, the representation is said 

to be completely reduced and the sub-matrices themselves determine what 

are known as irreducible representations. The traces of the matrices 

of an irreducible representation are called characters. A character is 

denoted by a :s.ymbol.X~u) where u denotes the irreducible representation 
l. 

and the subscript i denotes the class of the operation to which the 

matrix refers. As previously mentioned, all matrices of a given.class 

have the same character .. Although. it is sometimes necessary to obtain 

the complete matrices of the irreducible representations in order to 
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solve the wave mechanical problem, in practice it is found that a 

knowledge of the characters is sufficient to enable one to extract the 

symmetry types without much difficulty. 

The calculation of the character tables is dependent upon two 

theorems: 

3. The number of irreducible representations is equal to the 

number of classes. 

4, The number of equivalent matrices of an irreducible representa-

tion, in the regular representation, is equal to their degree. 

The first theorem maybe used to obtain immediately the number of wave-

functions of distinctive symmetry. The second theorem may be used to 

determine the degeneracy·of each symmetry type. 

In any irreducible representation, the matrix which represents the 

identity operation is simply the unit matrix. Consequently, the char-

acter of the identity operator for any irreducible representation is 

equal to the degree of the representation. Thus, by Theorem 4, if 

. Xiv) represents the character of the identify opera tor in the v repre

sentation, then there are just [xiv)J 2 diagonal positions occupied by 

an irreducible representation in th~ regular representation. Since the 

matrix of irreducible representations is of order gxg it follows that 

(2.4) 

where r is the number of classes. As an example consider a group where-

in g ·= 16 and r = 10. For this system the only combination of characters 

that will satisfy the condition given in equation (2.4) is 

16 = 22 + 22 +1+1+1+1+1+1+1+1 

and this yields valuable information about the character of the possible 
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wave functions that may be constructed as well as the electronic states 

that may be present in a system defined by such a group, It may be 

seen that there are two doubly degenerate states and eight non-degenerate 

states for this system. 

The calculation of character tables for any system is usually quite 

involved. The general procedure is to first obtain all class products, 

then use the class product coefficients to obtain elements of a gxg 

eigenvalued determinant. This determinant and its use is described in 

great detail by Jones (14). If the group order is large and the group 

does not commute, the calculation of characters using this systematic 

approach is tedious. An alternative method depending only on existing 

.character tables and general orthogonality relations has been developed. 

It is this method which shall be used throughout the following work. 

A crucial part of the alternative analysis involves the way by 

which a group may be decomposed. Suppose G is a group of order g with 

r classes and that H is a normal subgroup of G having order g/2 .. If x 

is an element of G (other than the identity) which commutes with all 

other e lernents of G and if X is not a member of H then the group G may 

be decomposed in the following fashion 

G=H+XH. (2.5) 

The group G must contain twice as many classes as H, for if C is a 

class of H, XC is another class which cannot belong to H. This follows 

from the definitions of subgroup and norma 1 subgroup. Since H is a 

normal subgroup, no operation of H can be transformed out of H. Since 

there are twice as many classes in Gas in H, there are also twice as 

many irreducible representations of G •as there are of H. Suppose now 

that the matrix (a ) is an irreducible representation of an operator 
mn 
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A in H, .Then one irreducible representation of G will be obtained by 

allowing (a ) to represent XA as well as A. This representation mn 

satisfies the basic requirement that the matrix representing the product 

of any two operations of G is equal to the product of the matrices rep-

resenting these operators. A second representation can be obtained in 

which if (a ) represents A, (-a ) represents XA. mn mn 

.If all irreducible representations of G for which A and XA have the 

same matrices are designated by r+ and those for which the matrices for 

A and.XA differ in sign by r- then the character tables of G may be 

constructed readily if that of His known. Using S to denote the char-

acter table of H, then the character table for G has the form: 

H :XH 

r+ s I s 
J -1---

r_ s I -s 
j 

Thus if the characters and classes of Hare known, those of G may be 

readily found and the character table set up innnediately without calcu-

la tion of eigenvalues and without the necessity of finding a 11 irreduc-

ible representations. This is the basic difference between the procedure 

• used herein and that outlined by Olbrychski (12). 

Before any further procedure may be outlined it is necessary to 

distinguish between the point group and the space group of a crystallo-

graphic system. The point group is defined as being that group of 

rotations and reflections which bring the crystal into coincidence with 

itself. The space group differs from the point group in that it con-

sists of the translation group and the product of this group with a 

complex of operations which may consist of r'otations, .reflections, 
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glide reflections, and screw displacements. In most systems it is 

necessary. to consider the space group although some systems such as 

the simple cubic system may be completely described using the point 

group. 

The simplest way of obtaining the properties of the point group 

is to make·use of the stereographic projections by which directions in 

space may be represented by points on a plane, In order to use the 

stereographic projection, it is first necessary to briefly discuss the 

properties of the projection and its applications. 

N 

s 

Figure 1. Construction of a Stereographic Projection [After Jones (14)] 

Let P be a.point on a sphere of unit radius whose coordinates in the 

rectangular system OL, OM,. ON, are (l,m,n) so that these are the 

direction cosines of the line OP. S represents the south pole of the 

sphere. The point P', where the line SP cuts the equatorial plane, is 

the stereographic projection of P and its coordinates in the plane 



are 

P' = [e ,,'fl,} 
p p 6 I = p 

1 
l+'fl 

'fl I = _!!!_ 
p l+Tl 

Now, let a plane at right angles to OP whose equation is 

lx + my + nz = p p<l 

13 

(2. 6) 

(2. 7) 

cut the unit sphere in a circle of which Tis one point. The coordi-

nates (e,'fl) of T', the projection of T, are given by eliminating 

(x,y,z) between (2.7) and the·equations 

(2.8) 

(2.9) 

The result is 

1 2 2 . l-P2 
( e - P-tn1) + ('fl - p:u) = (:fl-hi) 2. (2 .10) 

Hence, a circle-on the sphere is projected as a circle on the equatorial 

plane .. The center of the projected circle is not P' but rather is 

obtained using-equation (2.10) as (~n, ·p~). The rotation of a solid 

about a given direction in space can therefore be represented by a 

circular path abo4t a fixed point in the stereogram. 

If the rotation is about a diad axis in the equatorial plane, a 

point Pin the northern hemisphere is transferred to a point in the 

·southern hemisphere. A projection of this point from.S would result in 

a.point on the stereog:i:'am outside the. unit circle. This is inconvenient, 

and a simpler method is to project points in the southern hemisphere 

from N and denote these points on the stereogram by small circles in 

contrast to the dots used when the projection is from-S . 

. In addition to rotations, reflections can also be represented on 
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' 
the stereogram. A reflection in the equatorial plane is represented by 

a dot surrounded by a small circle. These are the projections from. S 

and N respectively of the two points in space related by the reflection. 

A reflection in a plane normal to the equatorial plane such as the 

plane LON is denoted by two dots or two circles on either side of the 

line in the stereogram which is the projection of this plane. Several 

pertinent stereograms are given in Chapter IV. 

A plane which is inclined to the vertical but passes through the 

origin is represented by an arc of a great circle in the stereogram. 

For more detailed information as to the use of stereograms in describ-

ing the crystallographic point group, the reader is referred to Chapter 

III of the text by Jones (14). 

In order to understand some of the language used when discussing 

various. point groups it is necessary to define the symbolism used when 

discussing such systems, Throughout this work both the Schoenflies 

and the Hermann-Mauguin notation has been used. Whenever a symbol in 

either form of notation appears, the symbol will be explained at that 

point. For genera 1 information as to the use of these twci types of 

notation, the reader is referred to Kittel (16). 

To be able to illustrate the relationships existing between two 

mathematical groups, the concept of a mathematical mapping from one 

group to another shall beemployed. The most general definition of a 

mapping from one group into another is embodied in the concept of 

homeotnorphism. A homeomorphism is a mapping of one group into another 

with certain restraints placed upon the function that accomplishes the 

mapping, i.e., the mapping function. Let A and B be two mathematical 

~roups. The function cp maps A into B if the relation 
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(2 .1) 

holds. As may be seen, this definition embodies two different operations 

(one for each ·group) and a function that illustrates an equivalence 

between these two groups in a special manner. In the above equation, 

cp(a 1)=b1eB,andQ(a 2) =b2eB. Briefly, then, one group is mapped into 

another if a 1 (the pre-image of b 1) and a 2 (the pre-image of b2) may be 

combined under the operatioh in A yielding another element, a 3 having 

an image in B which is the same element as that found by combining the 

image of a 1 and the image of a 2 using the operation in B, i.e., 

cp(a 1 ·a2) = cp(a3) = b3 = b 10b2 = cp(a 1)0~(? 2) .. If this mapping is one 

to one, the mapping is called an isomorphism. Evidently, two groups 

that are mathematically isomorphic are equivalent. As a result, if 

they have the same structure as far as the number of classes is con

cerned, the fact that they are isomorphicwill insure that the character 

systems of A ·and Bare the same. Thus, if the groups used in the 

crystal system under study may be shown to be isomorphic to point groups 

already developed in the literature (14) and may be shown to have the 

. same number of classes as the point groups with respect to which the 

isomorphism is constructed, the calculation of characters for groups 

may be circumvented simply by the construction of the isomorphism. 



CHAPTER III 

CONSTRUCTION OF THE BRILIDUIN ZONE 

A complete symmetry analysis of any crystal system has as its 

basis the group properties of the unit cell of the crystal. However, 

if information is to be gained as to the configuration of the energy 

bands, the possible electronic states, and the wave functions describ-

ing these states, it is convenient to make a mathematical mapping from 

physical space to the space of the reciprocal lattice. This can be 

done in the following fashion. 

Let ~l' ~2 , ~3 be three fixed vectors and let n1 , n2 , n3 take 

all positive or negative integral values including zero. Then the set 

of points 

(3 .1) 

maps out a translation lattice. In order to specify the vectors ~i' 

which are known as the primitive translations of the lattice, it is con-

venient to refer them to a rectangular coordinate system. The components 

of ~1.· will be written a1.·x• a. , a. and these nine quantities, completely 1.y l.Z 

sp~cify the lattice. 

A useful notation for the present purpose is obtained by writing the 

nine vector components as a matrix and the three integers n. as the 
l. 

components of a column vector. A lattice point is then specified by 

the symbol An, 

16 
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= An p.2) 

The usual rule for matrix multiplication then gives the rectangular 

components of. An as a column vector .. Since the sum of two lattice dis-

placements An and Am is !_(g_~, a translation lattice is completely 

specified by the matrix A. 

In crystallography the translation lattices are classified into 

fourteen different types known as Bravais lattices. This classification 

arises from the relation which exists between the translation lattice 

and the other operators of the space group. 

In order to specify the quantum states of an electron in a three-

dimensional lattice a vector k is required which is a vector in the 

space of the reciprocal lattice. A reciprocal lattice may now be 

uniquely defined for every Bravais lattice .. If!_ represents the Bravais 

lattice matrix and B the reciprocal lattice matrix, then the relation, 

AB 2TI1 (3.3) 

defines ,B in terms of A and the identity matrix. This definition is 

sometimes given without the factor 2TI which appears here. aowever, in 

the present case it simplifies the notation that follows. The three 

vectors of the matrix,[ may be obtained through a modified form of 

equation (3 .3), 

.a. • b. = 2Tio .. 
-1. -J l.J 

(3.4) 

In this relation, the a. are the primitive translations of the Bravais 
-1. 
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lattice. This set of equations completely specifies the b .. In fact: 
-J 

b -1 

£.2 

£.3 

= 

= 

= 

2n 
D 

zn 
D 

zn 
D 

§..3 X §_l (3.5) 

§_l X §_2 

where D = §..1 '(§..2 x §_3) = Det. A. The fact that equations (3.5) are the 

solutions of (3.4) can be seen at once since e._1 (for example) is at 

right angles to both §_z and ~3 and therefore, the scalar products with 

these vectors vanish. 

The lattice mapped out by the points 

(3.6) 

as 11 , 12 , 13 take all positive and negative integral values including 

zero is called the reciprocal lattice. 

The unit polyhedron in reciprocal space is defined as the region 

enclosed by planes which bisect normally the lines joining the origin 

to the nearest points of the reciprocal lattice. As the points of the 

reciprocal lattice are given by the vectors·· lB, the equation of any one 

of these planes is 

(3. 7) 

The stannic oxide, or rutile crystal structure is composed of 

inter-penetrating, primitive tetragonal cells which differ in orienta-

tion by a ninety degree rotation. Although the resulting unit cell, as 

shown in Figure 1, has a metal atom at the body-centered position, it 

is the primitive tetragonal cell which determines the Brillouin zone. 



19 

The! matrix for the primitive tetragonal cell may be written as: 

a 0 0 

A = 0 a 0 (3 .8) 

0 0 C 

-Since! is a scalar matrix, it may be inverted immediately. Thus, the 

matrix describing the reciprocal Lattice may, be written as: 

1 0 0 
a 

B = 2n 0 1 0 
a 

(3.9) 

0 0 
1 
C 

Application of the vector form of the Bragg reflection law (i.e., 

equation (3.7), results in: 

(3 .10) 

The smallest polyhedron that may be constructed using this relation is 

obtained by using the following values of l: (100); (010); (001); 

(1.00); (0'10); (001). 

Thus, the first Brillouin zone for this structure is a parallelo

piped having a cross sectional area (2TI/a) 2 aqd height 2TI/c. The 

3 2' 
volume of this cell is evidently (2TI) /a c, which is that corresponding 

to the required result given by Jones (14). _Figure 2 illustrates the 

sha.pe of the zone and has coordinates listed for points of high symmetry. 



CHAPTER .IV 

CHA~CTER TABLES AND WAVE VECTOR GROUPS 

When an electron is constrained to move within a crystal lattice 

it is subject to many forces. As a result, only very restricted values 

of electron energies are allowed. In order to determine the possible 

energy states it is necessary to solve the time independent Schroedinger 

equation. This equation is usually written in operator form as 

(4 .1) 

In this form, His the Hamiltonian operator and as such describes the 

total energy E of the electron. Using the simplest form for H, i.e., 

2 

H = ~ + V (r) (4. 2) 

with the substitutions 

(4.3) 

--+ X 
K 

the spatially dependent Schroedinger equation may be written in 

standard form as 

6~ + 2m (E - V(r))1lt = 0 
~ ~ 

(4.4). 

The solutions of this equation play an integral role in the following 
\ 

work. Bloch (17) has shown that if the potential is periodic the 

20 
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solutions of this equation have the general form given by 

iK·r 
W = e - - U(r) 

In this relation u(r) has the periodicity of the potential, i.e., the 

periodicity of the lattice. Jones (14) has shown that this form of 

solution is valid even if the potential is chosen to be some arbitrary 

constant. Thus, this type of solution may be used for every situation 

wherein the potential is either constant or periodic. 

The Brillouin zone as constructed in Chapter III has several points 

· for which the co-ordinates have been listed. At each of these points 

a wave function may be written using equation (4.5). The group of the 

wave vector for each point is then defined to be that set of space 

group operations that leaves the wavefunction invariant or transforms 

it into a wavefunction at an equivalent point. Two points in the first 

Brillouin zone are called equivalent if they differ at most by a 

reciprocal lattice vector. 

The space group symbol of the rutile structure is P4/mnm. This 

means that this· structure differs from the most symmetric tetragonal 

point group with respect to the reflections in the (100) and (010) 

planes. These true reflections are replaced by diagonal glide reflec-

tions. 

The nature of the glide operation must be considered in some 

detail in order to fully understand the properties of the space group 

at various points of high symmetry. First, it is necessary to define 

operators which denote the glides in question. These operators and 

their mathematical properties have been treated elsewhere (14), how-

ever, a general statement of the properties of such operations is a 
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necessary preliminary to the work that follows. 

If T(!:) denotes a translation through E., and K denotes a point 

group operation, the symbol KT(£) implies a displacement followed by 

the application of the point group operation in question. In general, 

the order of performance of these two operations is very important 

inasmuch as the operations KT and TK do not necessarily commute. The 

lack of commutativity is clearly illustrated in the following relation: 

· KT(,;:) = · T (KE.) K. (4.6) 

The operations KT form a group which,· is a continuous group if K and r 

are unrestricted. If£ is restricted to lattice translations, T to 

either integral multiples of the primitive vectors or rational fractions 

of these, and K is restricted to the operations of a crystallographic 

point group, then KT are the operations of the space·group. If S 

denotes a fractional vector, that is, one whose components are proper 

fractions, then a glide reflection may be written T(AS)m, where m. 

represents a mirror riflection. 

These properties may now be applied to the unit cell of the 

crystal system in question. The unit cell has been drawn in Figure 1. 

From this figure it may be ascertained that there are three reflection 

planes which are mutually perpendicular. Two of the reflection planes 

have associated with them axes which may be classified as diad axes. 

Due to the presence of the body centered molecule, the unit cell lacks 

the ninety degree rotational symmetry characteristic of the holosymmetric 

point group P4/mmm. However, the unit cell does possess a one-hundred 

and eighty degree rotational symmetry. Thus the entire point group con

sists of an identity, (E), a reflection in the bas a 1 plane (m3}, two 
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reflections in the inequivalent mirror planes (m1 and m2), two improper 

rotations associated with the diad axes (R1 and R2), a one~hundred and 

eighty degree rotation (C2), and an inversion operation (J) included to 

insure closure of the group. These eight operations may be placed on 

a stereogram,as in'Figure 4 .. At this point, it should be noted that 

these operations may be obtained immediately from the holosymmetric 

point group P4/mmm (stereogram shown in Figure 5) simply by deleting 

all operations.of this group;that correspond to the two reflection 

planes (100) and (010). 

The full space group of the crystal is obtained by multiplying 

all point group operations by the diagonal glide operation. This com

·plex of sixteen distinct operations must be described in terms of the 

factor group •. Here :Lt should be stated that the point group is of 

order eight, .commutes,, and may be made isomorphic to that of the 

.orthorhombic system. Thus the characters for this point group are well 

known and need not be calculated • 

. Since all of the point group elements play an important role in 

the following·analysis, each operation has been listed in Table· I with 

its inverse •. In the third column the substitution corresponding to the 

operation in question i,s listed. This· column .should be scrutinized 

rather closely. The set of eiubstitutions may be derived easily and 

merely indicates the manner in which the product xyz is transformed 

.. upon application of the· operation in question. .However, it is very 

important in the fo.llowing work that this set of substitutions be valid . 

. For this reason column four has been included in Table I and indicates 

the matrix representation of each operation. 

The group of the wave vector at various points of the Brillouin 
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TABLE I 

POINT GROUP ELEMENTS AND THEIR 
IRREDUCIBLE REPRESENTATIONS 

.... , .. .,. . ,. .. . . . 

E lenient Inverse Sub Matrix 

E E xyz ~ 0 0) 0 1 0 
0 0 0 

~1 .M'li yxz r-1 0) -1 0 0 
0 0 1 

M2 M2 .yxz. 

a~~ 0 1 

M3 M3. :x:yz Coo) 0 1 0 
00-1 

Rt Rl yxz r-l 1 1 O· 0 
0 0-1 

R R2 yxz (° l 0) 2 

~ ~--~· 

Cz ·C xyz (1 0 0) 2 0 .. 1 0 
0 0 l 

J J xyz (10 0) - 01-l O . 
. 0 0-1 
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z~ne may be det~rmined in a systematic way. The fi~~t step involves 

consideration or the Bloch function at that point and selecting all 

point group operations that will either leave the fudbtion invariant or 

transform it into a not.her Bloch function ·at an equivalent point. 

Consider the group of the wave ·vector at the point r. At this 

point of the · zone, the wavefunction ·is merely V where V.(r) has the same 

period as the Bravias lattice. Since the glide operations Tm and mT 

commute at this point, it will suffice to consider only the application 

of the elements (H) and Tm(H) to the wavefunction. In this notation (H) 

stands for the entire point group. Thus, the entire space group is to 

be ·· applied to the wave function at the center of the Brillouin zone. 

This set is of order sixteen due to the inclusion of the product , of the 

· diagonal glide operation with all point 'group operations. This set of 

sixteen elements wilf not form ;a group in itself because the combination 

· 1aw stated for the product of a point group operation and a . translation 

(included · in the glide) introduces some other translations that were 

hot in the original set, However, all of these translations are of 

such· a nature that when they are applied to the Bloch function they 

reproduce the function exactly. As a result of the commutativity of 

the point group elements and the commutativity of T and m, the entire 

set of order sixteen is commutative. Thus, the character table consists 

only of positive and negatives · l :'s and may be constructed quickly by 

considering that (H) iS' a normal subgroup of the space group and ·Tm 

commutes with every element in the · group. Following the argument ··given 

'in Chapter IT, ' the character table· ' is'' set up using the characters given 

for the orthorhombic point . group. ·The · results -are tabulated in Table 

II. 
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Consider next the.point of the first zone designated X. The Bloch 

function at this point is given by: 

iTTx 
*x = e -r- U(!) (4. 7) 

The only other point of the zone that is equivalent to this point is 

the one that has coordinates which are the negative of those given for 

X. Thus, the set of point group elements that belong to the group of 

the wave vector at X consists of the elements: 

Using the substitutions given in Table I, these elements operating 

on the wavefunction will either reproduce the wavefunction at X or 

at its equivalent. point. If the operation Tm .is considered, (m repre-

senting a reflection in the x=O plane) then application of this 

operation to the wavefunction at X gives another Bloch-type function 

at the point equivalent to X. Inclusion of this diagonal glide opera-

tion increases the order of the set to be studied to eight. Note.how-

ever, that the product 

JTm = JT(~~~)m = T(;;;)mJ = T(lll)TmJ 

JTm = T(lll)TmJ 

-See eqn. (4.6) 

and when,it is applied to the wavefunction at X the sign of the wave-

function is changed. As a result, it is necessary to include all 

translations that change the sign of the wavefunction in this group. 

Such translations shall be designated by Q .. However, this is not yet 

sufficient. The fact that the group must be closed requires that all 

elements of the form QTm be included. The complete set of the wave 
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vector at Xis therefore of order sixteen. The elements of this group 

and the inverse of each element are listed in Table III. 

In order to determine the classes for this set, it is necessary to 

-1 
consider all products of the form x ax where xis allowed to take on 

all values in the group and a is a fixed element. Table IV contains a 

sample calculation.for two of these classes. Table V contains the 

complete results of this calculation and as such contains all classes. 

These classes may be shown to be simply isomorphic to those obtained 

using the holosynnnetric point group P4/mmm via drawing an isomorphism 

between these two groups. The group isomorphism used for this case is 

given in Table VI. A class isomorphism follows directly. 

Due to the relation between the two groups given in Table VI, the 

set of ch,aracters obtained for the group of the wave vector at the 

point Xis the same as that obtained for the holosynnnetric point group 

P4/mnnn, This set has been re·arranged as given in Table VII and must 

now be ·scrutinized rather closely. The function which has been used 

to generate the group of substitutions of the wave vector at Xis the 

Bloch function at that point, (equation (4,7)). Once the operations of 

the wave vector group were selected, the only·properties· of the wave-

function subsequently ·used were: that U(!) s}:i.ould be ·invariant under 

a lattice transformation; that Q=T(llO) should transform the wavefunction 

into an equivalent Bloch function; and that Q2 should leave. the wave-

function invariant. The given wavefunction is not the only function 

with these properties; for example, U(!) itself satisfies the condi-

tions, Hence, amongst the representations of this group there will be 

some for which the character of Q is positive. These appear in the 

top eight rows in Table VI and they cannot refer to the wavefunction since 
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Q)"= -'\II· The only representations that belong to the wave vector at 

X have been designated by x1 and x2 and each of these ·corresponds to a 

doubly degenerate state. 

Consider a similar treatment applied to the states at Z. Since 
TTiz 

.the wavefunction at this point is given by * =e-:C-:- U(!) the set z 

of point group· operations· that either leave the· wavefunction invariant 

or transform it into a wavefunction at an equivalent point are given by 

all elements such that z is transformed into itself or its negative. 

Thus, all: of the point group elements apply to this wave vector group. 

Using an analysis exactly similar to that just discussed for the point 

at X, the factor group is composed of all of the point group elements 

multiplied by E, Tm, Q, and QTm. The set of elements and their inverses 

are listed in·Table VIII. The classes are calculated as before by con

-1 . 
sidering all possible· products of the form x a x and are given in 

Table IX, The· full group is. of order thirty-two and contains twenty 

classes. Therefore, the character table is not simply isomorphic to 

one of the character tables already worked out for the holosymmetric 

·point groups. 

Two alternattves are available if these characters are to be 

calculated .. The first of these lies in a complete analysis based upon 

the solution of secular determinants whose elements are class. product 

coefficients. Tl).e·. other alternative is to recognize that the elements 

given in Tab le k 'form a subgroup of the complete group. This subgroup 

is of order sixteen and is invariant. Multiplication of every element 

of this subgroup with the element m1 (or m2) produces the rest of the 

group. Since m1 commutes with all members of the group, it is possible 
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to use the procedure. out lined in Chapter II where in a knowledge of 

the characters of the, subgroup is sufficient to allow the immediate 

calculation of the characters for the complete group. As a result of 

this analysis, it is seen that since the subgroup is isomorphic to the 

·. point group P4/mmm, .it is possible to write the character table irnme-

diately. Using an argument very similar to that developed for the group 

of the wave vector at X it is seen that the table of characters may be 

re-arranged into a .set which apply to the· point in question (due to the 

restriction QlJ, = -lJ,) and a set that do not apply. Again, it may be 

seen that: only doubly degenerate states are allowed at this point. 

Table XI contains the characters for this group. 

Consider now states at the·point M. At this: point the wavefunction 

is given by: 

iTT(x+y) 

. U(!) (4.8). 

The·point group elements which.leave this wavefunction invariant or 

take,it intoa:wavefunction at the equivalent point consist of all 

elements which take xy into yx, xy, yx or xy. The entire point group 

(G) displays this· property. The element Tm is not a member of the wave 

vector group at M. However, the· product Tm Tm is a member of this 
X y 

group. The- product may be rewritten as: 

Tm·Tm 
X :Y 

T(Oll)m m = T(Oll)C2 X y 
(4 .9) 

where Q is a.translation:which changes the sign.of thewavefunctionand 

Q2 is the identity. Thus, the full group of the wave vector at M 
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consists of (G) and Q(G). This group is of order sixteen and is com-

mutative, As a result, there are sixteen classes in this group that 

are simply isomorphic to those·found at the center of the zone. The 

character table for this wave vector group is given as Table XII. 

At the point A the wavefunction has the form: 

i(~ + ~ + Tiz) 
a a c 

tA = e U(E_) ( 4. 10) 

Equivalent points have wavefunctions given by 

TT TT TI) i(-x + -:y - -z 
e a a c U(!) 

, TI TI TT 
i( -;x - -;y + ;z) 

e U (£) 

, TI TI TT 
-1.(-xa. + -:ya + -z) 

e c U(E_) 

The entire point group applies to this set without producing a new 

wavefunction. As was the case for the point at M, although neither 

Tm nor Tm is included in the wave vector group, their product is. 
X y 

However, for this set, the product does not introduce a translation 

and the resulting characters may be seen to be simply isomorphic with 

those obtained at the center of the zone. The character system for 

this wave vector group is given in Table XIII. 

At the point R the wavefunction is given by 

TI TT 
i(-x + -z) 

t = e a c U(E_) 
R 

(4.11). 

The set of point group elements that take this wavefunction into itself 

.or a wavefunction at an equivalent.point are: 
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Again, as at X, the wavevector group consists of this set (H) and the 

products Tm(H), Q(H) and QTm(H). Table XIV contains the appropriate 

elements and inverses, The characters are given in Table XV. 

It is also necessary to consider the points that lie on the axis 

between the high symmetrypoints discussed so far. The first such 

point has been designated as 8. Here the wavefunction is given by 

a ,Ir· : e ~A (4.12) 

The set of all elements in the space group which leave the form of this 

wavefunction invariant consists of all elements which do not change 

the sign of x. Only four elements fit into this category. They are: 

E, m3 , TmC2 , and TmJ. The characters for the system are determined by 

considering the set of substitutions generated by these elements. This 

set is shown in Table XVI along with the corresponding elements. Note 

that this set of substitutions corresponds to those provided by the 

elements E, m2 , m3 , .and R2 present in the holosymmetric point group 

P4/mmm. These elements constitute a commutative subgroup of the halo-

symmetric group. Due to the commutativity of this subgroup, its 

characters are well known. Since the wave vector group at 8 is composed 

of elements that have the same substitutions as this group, an iso-

morphism may be constructed between these two groups and their char-

acters. The characters for the group of the wave vector at the point 

8 are listed in Table XVII. 

A similar analysis applies to every axial .point. Rather than 

repeat the entire procedure for each axis, the results·of the analyses 

of wave vector groups and characters at designated general points have 
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been listed inTables XVIII through XXVI. 



TABLE·II 

CHARACTERS AT f 

cl c2 c3 c4. cs c6 c7 cs c9 ClO ell c12 c13 c14 cl5 c16 

r1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

r 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 
2 

r 1 1 -1 -1 1 ·l -1 -1 1 l -1 -1 1 1 -1 -1 
3 

r 
4 

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

r 
5 

1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

r6 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 

r7 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

rs 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 

f' 
1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

f' 
2 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 

f' 
3 

1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

f.' 
4 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

f.' 
5 

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

f.' 
6 

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

f.' 1 1 -1 -1 -1 -1 l 1 -1 -1 1 1 1 ·l -1 -1 
7 

f. I 
8 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 

E Rl R2 c2 J m2 ml m3 

Ci = TmCi-8 (i > 8) 
l.,J 
l.,J 



TABLE III 

WAVE VECTOR GROUP ELEMENTS 
· AT X 

TABLE IV 

TYPICAL CLASS CALCULATIONS 
x-lax = c a . 

Element Inverse · a = Ttn a = C 
2 

E 
.. 

'E 'l'tn 

m3 m3 ''rm 

c2 c2 QTm 

J J QTm 

Tm QTm Tm 

Tmm3 QTmm3 Tm 

TmC2 TmC2 QT m 

TmJ TmJ Q'l'm 

QTm Tm Tm 

QTmm3 Tmm3 T m 

.QTmC2 QTmC2 QT m 

QTmJ QTmJ QTm 

Q Q Tm 

. Qm3 Qm3 Tm 

QC2 QC2 QTm 

QJ QJ QTm 

In Table IV xis taken from '.table III directly 

Example is 

QTm (C2)Tm = QTmQTmC2 = Q2 (Tm) 2c2· = QC2 

TmJ (Tm)TmJ = TmJQJ = TmQJ2 ~ TmQ = QTm 

c2 

c2 

c2 

c2 

QC2 

QC2 

QC2 

QC2 

QC' 
2 

QC2 

QC2 

QC2 

c2 

c· 
2 

c2 

c2 

34 



TABLE V 

CLASSES AT X 

c3 = Tm+ QTm 

c4 = J + QJ 

c5 = TmJ + QTmJ 

c6 = m3 

c7 = Qm3 

c8 = Tmm3 + QTmm3 

c9 = c2 + QC2 

c10 = TmC 2 + QTmC2 

TABLE VI 

GROUP ISOMORPHISM USED 

Elements 
at X 

E 

Tm 

TmJ 

QTm 

QTmm3 

QTmJ 

Q 

QJ 

Elements 
in P4/mmm 

E 

J 

Rl 

cl 

JCl 

1 
m2 

Rl 
1 
-1 

cl 

JC-1 
1 

35 
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TABLE· VII 

CHARACTE~S AT X 

cl c2 C 
3 c4 cs c6 c· 

7 cs cg c10 

1 1 1 1 1 1 1 1 1 1 

1 1 1 -1 -1 1 1 1 -1 -1 

1 1 -1 1 -1 1 1 -1 1 -1 

1 1 -1 -1 1 1 1 -1 -1 1 

1 1 1 1 1 -1 -1 -1 -1 -1 

1 1 1 -1 -1 -1 -1 -1 1 1 

1 1 -1 1 -1 -1 -1 1 -1 1 

1 1 -1 -1 1 -1 -1 1 1 ..,1 

x1 2 -2 0 0 0 2 -2 0 0 0 

x2 2 -2 0 0 0 -2 2 0 0 0 

E Q m3Qm1 



Element 

E 

ml 

m2 

m3 

Rl 

Rz 

c2 

J 

Tm 

Tmm1 

Tmm2 

Tmm3 

TmR1 

TmR2 

TmC 2 

TmJ 

TABLE VIII 

ELEMENTS AND INVERSES AT Z 

Inverse Element 

E QTm 

ml QTmm1 

m2 QTmm2 

m3 QTmm3 

Rl QTmR1 

Rz QTmR2 

C 2 QTmC 2 

J QTmJ 

QTm Q 

QTmm1 Qml 

QTmm2 Qm2 

Tmm3 Qm3 

TmR.l QRl 

TmR2 QR2 

QTmC 2 QC2 

TmJ QJ 

37 

Inverse 

Tm 

Tmm1 

Tmm2 

QTmm3 

QTmR1 

QTmR2 

Tmc 2 

QTmJ 

Q 

Qml 

Qm2 

Qm3 

QRl 

QR2 

QC2 

QJ 



TABLE IX 

CLASS,ES 4T Z 

c1 = E 

c2 = R 

C3 =Tm+ QTm 

c4 = m 
3 

+ Qm 
3 

cs =·Tnnn 
3 

+ QTnun3 

C * 
c2 = c2c1 = 

6 

C7 
* = QC = Cf2 2 

CB 
* + QTmCk = c 2c 3 .= TmC 2 

* 
: 

Cg = Cf4 = J + QJ 

* clO = C C, = TmJ + QTmJ 2 5 

ell = llll n\Cl 
: 

c12 = Qml ,·= Ill1c2 

cl3 = Tnnn1 + QTnnn1 = m1C3 ·. 

c14 -- 1\ + QRl = mf4 

c1s =:' TmR1 + QTmRl. m1C5 

c16 - m' m1CE; 2 

c17 = Qm2 = m1C7 

c1s = Tnun2 T QTnnn2 = lll1C8 

cl9 = R2 + QR2 = mfg 

c20 = TmR2 + QTmR2 = PI1c10 

. *point group -~l~~~nt rather 
than a class 

38 



TABLE -X 

NORMAL SUBGROUP OF Z 

m3 

Q 

QC2 

QJ 

Qm3 

Tm 

TmC 2 

-TmJ 

Tmm3 

QTm 

QTmC2 

QTmJ 

QTmm3 

39 



TABLE XI 

CHARACTERS AT Z 

cl c2 c3 c4 cs c6 c7 cs cg c10 ell c12 cl3 c14 els c16 c17 c18 c19 c20 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 
1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1· -1 
1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 1 
1 1 1 1 ·1 -1 -1 -1 -1 -1 1 1 1 1 . 1 -1 -1 -1 -1 -1 
1 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 ._ 1 1 1 
1 1 -1 1 -1 -1 -1 1 -1 1 1 1 -1 1 -1 -1 -1 1 -1 1 
1 1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 
1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
1 1 1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 1 ..:1 -1 ·-1 1 1 
1 1 . -1 1 -1 1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 

-1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 
1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 1 1 1 -1 -1 
1 1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 -1 1 1 1 -1 1 -1 
1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 1 -1 -1 1 

Z1 2 -2 0 0 0 2 -2 0 0 0 2 -2 0 0 0 2 -2 0 0 0 
Z2 2 -2 0 0 0 -2 2 0 0 0 2 -2 0 0 0 -2 2 0 0 0 
Z3 2 -2 0 0 0 2 -2 0 0 0 -2 2 0 0 0 -2 2 0 0 0 
Z4 2 -2 0 0 0 -2 2 0 0 0 -2 2 0 0 0 2 · ... -?, o. 0 0 

E Q C2, QC2 ml Qml m2 Qm2 

t 



TABLE XII 

CHARACTERS AT M 

cl c2 c3 c4 cs c6 c7 cs c9 c10 ell c12 -CB cl4 c1s cl6 

Ml 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

M 2 1 -1 -1 ·l 1 -1 -1 1 ·l -1 -1 1 1 -1 -1 1 

M3 1 1 -1 -1 1 1 -1 -1 1 l -1 -1 1 1 -1 -1 

M4 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

M5 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

M6 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 

M7 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

MS 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 

M' 
1 

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

M' 2 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 

M' 3 1 1 -1 -1 1 1 -1 -1 -1 -l 1 1 -1 -1 1 1 

M4 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 l -1 1 

M' 5 1 1 1 l -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

M' 6 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -I -1 1 

M' 
7 

1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

Ms 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 

E ml m2 m3 Rl R2 c2 J Ci = Tm Tm ·c. -8 i > 8 
X y 1 

+"-
-' 

C 



TABLE XIII 

~CllAAA.CTEE,S AT. A 

s cz 
C ---

3 c4 cs c6 c7 CB cg c10 cu c12 c13 c14 C 15 c16 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 

1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 . -1 -1 -1 

1 -1 -1 1 1 -1 -1 1 -1 l 1 -1 -1 . l . 1 -1 

1 1 -1 -1 1 1 -1 -1 .,.1 -1 1 1 -1 -1 1 1 

1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 l -1 1 

1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

1 1 -1 -1 -1 ..,1, 1 1 -1 -1 1 1 1 -1 -1 -1 

1 -1 1 -1 -1 l· -1 1 -1 1 -1 1 1 -1 1 -1 

E Rl Rz cz J M Ml M3 Tm-Tm 2 X y 

C. =TmTmC. B when i > 8 .f:--
l. X y l. ... l\) 



TABLE XIV 

ELEMENTS AND INVERSES AT R 

Element Inverse 

E E 

m2 m2 

J J 

CZ C 2 

Tm QTm 

Tmm3 Tmm3 

TmJ QTmJ 

TmC 2 TmC 2 

QTm Tm 

QTmm3 QTmm3 

QTmJ TmJ 

QTmC2 QTmC2 

Q Q 

Qm3 Qm3 

QJ QJ 

QC2 QC2 

43 
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TABLE.XV 

. CHAMCTERS AT R 

cl c· 
2 c3 c4 cs c6 c7 c· 

8 
C , 

9 ClO 

1 1 1 1 1 1 1 1 1 1 

1 1 1 -1 -1 1 1 1 -1 -1 

1 1 -1 1 -1 1 1 -1 1 -1 

1 1 -1 -1 i 1 1 -1 -1 1 

1 1 1 1 1 -1 -1 -1 -1 -1 

1 1 1 -1 -1 -1 -1 -1 1 1 

1 1 -1 1 -1 -1 -1 1 -1 1 

1 1 -1 -1 1 -1 -1 1 1 -1 

Rl 2 -2 0 0 0 2 -2 0 0 0 

R2 2 -2 0 0 0 -2 2 0 0 0 

cl = E c6 = J 

c2 = Q c7 = QJ 

c3 = Tm.+ QTm CB = 'l'mJ.+ QTmJ 

c4 = m + Qm .3 3 c9 = C2 + QC2 

cs = Tmm3 + QTmm3 c 10 = TmC2 + QTmC2 

TABLE XVII TABLE XVI 

CHARACTERS AT I:::. SUBSTITUTIONS USED FOR THE GROUP 
AT 6 

E m3 TmJ TmC2 

61 1· 1 1 1 Element Substitution 

/J.6 1 1 -1 -1 E xyz 

1:::.3 1 -1 -1 1 m3 xyz 
-

/J.4 1 -1 1 -1 -TmC2 xyz 

-TmJ xyz 
X X x+a/2 x+a/2 
y y y+a/2 y+a/2 
z z z z 



_.Symmetry 
Point 

A. 

w·.· 

S· 

T 

u 

""'. L,. 

TABLE. XVIII 

AXIAL WAVE VECTOR, GROUPS- AND CLASSES 

Wave-Vector Location of 
Wavefunctj.on · Group Classes Characters 

2TTi~Z 

,I, C · 
v,A = e U(.E) 

e 

2TibZJ ·{!!!..·+-~ 
1 ·a . c U(!:) 

E ,m1 ,m2 ,c2 ,Tm, 
' Tmm1 ,Tmm2 ,TmC2 

E , C 2 '., TIJf:,'Tiii~ z 

· (l;(x+y) ·. ~}- E· · R 
2TT1 + 2 ,m2 . ., 2 ,l:113 

e a c U(i) -

rri{~ + !. + lli1 
e a c a··-

E ,m3~,T1~f;T~J-. 

. [!.s. + ~} 
2TT1 a 2c U(i) 

e 
B,m3,TmC2,'fmJ 

2:1,s(x+y) U{r) 
e .. Same 'as :s 

Set of substitutions· 
isomorphic to group:-with · 
classes· c1 = E, Cz ~-= Cz 

C3 = ml+rn2, C4 ~ Tmmi-Ptmniz 
-C = ·Tm+TmC 5 2 

Substitutions isomorphic 
with; E ,m1 ,~ ,c2 of 
P4/mmm point group 

These commute 

Substitutions isomorphic 
to :{]i: ,ml ;.Rl ,m3} of p4/mmtn 

:. '.. ,_ . point group 

Same as 6 wave-vector group 

Table XIX 

Table XX 

Table XXI 

· Tab le, XXII 

·Tab le XXIII 

Table XIV 

~ 
V, 



.symmetry 
Point 

V 

y 

e 

TABLE XVIII (Continued) 

Wave-Vector 
Wave function Grouj>_ 

• :(x+y) + 2{:z" J A 
n1( a . c . U(!) ~a~ as 

Tri ' 
-(x+2~y) 
a 

e U(!) Same as T 

Classes 
Location of 

Cp.a racters 

Table XXV 

Table XVI 

.P
O\ 
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TABLE.XIX TABLE XX 

CHARACTERS AT ·/\. CHARACTERS AT W 

cl c2 c3 c4 cs cl c2 c3 c4 

i\ 1 1 1 1 1 c 1 = E wl 1 1 1 1 C = E 1 
A2 1 1 1 -1 -1 C = C 

2 2 w2 1 -1 -1 1 c 2 = c 2 

/1.3 1 1 -1 1 -1 C 
3 = ml+m.2 w3 1 1 -1 -1 C 

3 
= Tm 

/1.4 1 1 -1 -1 1 c 4 = Tm+Tmc2 w4 1 -1 1 -1 c4 = TmC 2 

As 2 -2 0 0 O CS= Tmm1+Tmm2 

TABLE XXI TABLE. XXII TABLE. XXIII 

CHARACTERS AT s CHARACTERS AT T · CHARACTERS AT U 

E m2 m3 R2 E m3 Tm Tmm3 E m3 'TmC 
-.2 

TmJ 

sl 1 1 1 1 Tl 1 1 1 1 ul 1 ·1 - 1 1 

S2 1 -1 -1 1 T2 1 -1 -1 1 u2 1 -1 -1 1 

S3 1 1 -1 -1 T3 1 1 -1 -1 u3 1 1 -1 -1 

S4 1 -1 1 -1 T4 1 -1 1 -1 u4 1 -1 1 -1 

TABLE.XXIV TABLE XXV TABLE XXVI 

CHARACTERS AT I:: CHARACTERS AT V CHARACTERS AT Y 

E m 
. 2 m3 'R 

.2 cl c2 c3 c4 cs yl 1 1 1 1 

r:l 1 1 1 1 vl 1 1 1 1 1 y2 1 -1 -1 1 

r:2 1 -i -1 1 v2 1 1 1 -1 -1 y3 1 1 -1 -1 

r:3 1 1 -1 -1 v3 1 1 -1 1 -1 y4 1 -1 1 -1 

r:4 1 -1 1 -1 v 4 1 1 -1 -1 1 

vs 2 -2 0 0 0 



CHAPTER V 

FREE ELECTRON ENERGY BANDS 

In the majority of ,cas.es it . is possible to determine the energy 

band cop.figurations for any space group in ,a manner that is somewhat 

independent of the work outlined to this point. The symmetry analysis 

is used to indioate . the allowed elect~onic states that may exist with-

in a ba~d ancl to re,v.ea 1 the amount a~d type of degeneracy present. 

The principle by which compatible states are determined is 

extremely simple . . The symmetry of any electronic state along an a~is 

of the first Brillouin zone must be contained in the symmetry of the 

COIJlpatible states at the end of the ,. axis . , The rule which . is used, t;o 

determine ,the symmetry types a long ,an axis which are compatible wi.th ~ 

giv~n type .at the end of ·the axis s ,tates that the sum of the characters 

o,f ,~he compatible _r:epresentations along , the axis must ,_b~ e.qua ~ to -the. 
• I 

cha,:r~cteor .of the ., re,pr:~sentation ·at . the end point. The [results -of 'the 

symmetry analysis ,are used only for this purpose. It h the intent 

of this . chapter to illustrate how such resut-ts may , be applied to the 

designa.~:i:on of the po~si'ble electronic states in the simples!t •case, 

.i.e • . , the f ,ree .. eJ.e(?tron approxi~tio:n . .. 

As mentioned :in Chapter IV, the time-independent Schroedinger 

equation has the form given by 

0 ( 5. 1) 

48 
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If the Bloch form of wavefunction is used, i.e., 

iK·r ~K = e - - U(E) (5.2) 

direct substitution into the Schroedinger equation results in a 

differential equation that must be satisfied by the periodic function 

U(r). 

This equation has the form 

Lrn + 2 i[ · vu + ~ ~ - v <ED u = o . (5.3) 

In the free electron approximation, V(r) = O. The use of this approxi-

mation results· in a very much simplified mathematical problem for which 

a solution of equation (5.3) may be,written as: 

-ilB·r 
= e (5. 4) 

The substitution of this solution into equation (5.1) results in a 

normalized energy Ekl given by: 

2 
E = ~E = 

Kl n"' 1 
( i: 1 ) 2 + (Tl· - 1 ) 2 + (r - 1 . ) 2 (~) 2 ,_,, - 1 2 \:, 3 C (5. 5) 

In obtaining this expression, the simplifying notation 

211 
K = - (i=-- a ':,' (5. 6) 

has been used. Such treatment involves the use of a wavefunction of 

the form 

(5.7) 

In order to obtain a wavefunction and energy corresponding to apartic-

ular state, it is necessary that the coordinates of the symmetry points 
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be known •. These coordinates have been given in Figure 2 and shall now 

be used when desired. 

The first step in the treatment involves consideration of the 

· possible states from f to I:::. to X. The S,, Tl and C, coordinates of the 

, points in question are: 

The energies 

f' = (O, 0, 0) I:::. = (s., 0, O) 

and wave· functions at these. points 

Er ·= i2 + 12 + (!!/12 
1 2 C 3 

El::, = (11 s)2 + 12 + (!!/12 
2 C 3 

EX= (11 - \)2 + 1~ + <!)21; 

l1X . lzy l3z ~r = exp[-2ni{- + - + - }] a a c 

X= (\, 0, O). 

are given by 

l2Y 
a· 

13 z } J 
·c·. 

X 12Y 
~ = exp[2ni{(\-l )- -X 1 a a 

13z 
}] . 

C 

(5.8) 

(5.9) 
·• 

(5 .10) 

(5 .11) 

(5 .12) 

(5 .13) 

(5 .14) 

In order to facilitate the proper combination of exponentials necessary 

to obtain the wavefunctions in terms of circular -functions, Tables 

XXVII, XXVIII, andXXIX have been constructed. These tables are very 

similar to thos·e used in the calculation of wave vector groups in that 

they indicate how each class operation in' the compatible states trans-

forms the set {xyz}. Use of these tables·and the character tables given 

in the prevtous chapter enables one to construct allowed free~electron 

wavefunctions. 

Since the l's must be integral, it follows that theT point is 

· the point of lowest energy. This state is of type r·1 fi.e., it 
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possesses the full symmetry of the space group and the wavefunction is 

merely a constant). Starting from this point and moving along the!::.. 

axis, the energy and wavefunction are given by: 

E = !;2 
t:.. 

and 2Tiit;X 
e a 

(5.15) 

From the character table, it may be seen that this function is of the 

type t:.. 1 . At the· point X, the normalized energy is 1/4. The wave

function at this point must be obtained by using the. proper linear 

combination of the two exponentials; 

[TiiX] exp -
a 

and [ -TiiX] exp~. (5.16) 

Since all states at X are doubly degenerate, these must be combined 

into the following two functions which display the symmetry of the x1 

state. 

TIX 
( cos - · 

a ' 
TIX). sin a 

(5.17) 

When E = 1/4, 1 may also have the value (100). Thus another!::.. state 
X 

starts at this point. The energy and wavefunction of this state are 

given by 

2 
E = (1 - §) 

t:.. 
and • [2Tii(g-l)X] , 6 = exp --a- . (5.18) 

This function displays the symmetry of the t:..6 state. At the end of the 

axis, at the point f, Ef 1 and there are four possible values of 1 

which give this energy. These four values are (100), (010), (100) and 

'(010). The exponentials corresponding to these 1 values are: 

[±2TiiX] exp --a- and (5.19) 
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These must be combined to give functions with the symmetries dictated 

by the character table. Possible wavefunctions are listed below. 

Sin 2 2TTX 
Sin 

2 2TTy r -+ Type a a ·1 (5. 20) 

Cos -2TTX + Cos ~ Type r• 
a a ·1 (5. 21) 

Cos 2TTX 
- Cos 

.·~ Type r• a a 2 (5.22) 

Cos 2 .2rr'x 
- Cos 

2 2TTy Type r• 
a a 2' (5.23) 

In obtaining the synnnetries·used at the point Er= 1, it was necessary 

to investigate the symmetries of the possible A states that enter and 

leave this point. Starting at Er= 1 there are three new A bands. The 

energies of these bands and their corresponding 1 values are given below. 

1 

(010): (010) 

(100) 

E 
A 

1 + ·f!
(1 + 'I;) 2 

(5.24) 

(5.25) 

These two bands terminate at different energies. The first band termi-

nates at E = 5/4 and is doubly degenerate. The second band terminates 
X 

at E = 9/4. 
X 

The exponentials appropriate to the above 1 values are: 

1 Exponentia 1 

(100) [""2TTi (I;- l)X] exp 7 (5.26) 

(010) 
2TTi 

('ly{ + y) J (5.27) exp[-a 

(010) c2TTi (!;X - y)] (5.28) exp -- . a 
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The wavefunctions and symmetry types become: 

1 Wavefunction 

-2TTi 
* 6 

= exp[ ·- (i+l)X] 
6 

a 
(5.26) (100) 

*t.: = ex [2nitXJ 2TTy · p a cos 
6 a 

(5.30) 

(010): (010) 

* 6 
= [2nitX] 2TTy exp a sin 

1 a 
(5.31) 

At the point.E = 5/4, another 6 band starts because it is also 
X 

possible to obtain this energy using the 1 v~lues (110) and (110). The 

wavefunctions may be obtained from the four exponentials 

TT. 
exp[: (X ± 2y)] and 

! n· 
exp[.:....!. (X-± 2y)] 

a (5.32) 

and all may be combined into possible states at this point. The on1y 

symmetry type possible using these exponentials is that of the x1 state, 

and for reasons of compatibility, two possible states of the synnnetry 

x1 must exist at this point. Then, possible wavefunctions have the 

form: 

TTX 
(Cos a 

Cos ZTiy 
a 

(Sin TIX Cos ZTiy 
a a 

Cos 
TIX 

a 

S. .TIX 1n -a 

, Sin ~) 
a 

(5.33) 

Sin ~) 
a 

(5.34) 

In returning to thef·-point, the energies and wavefunctions along the 

axis are given by: 

E' 
t. l=( 100) 

= E - 1 + (1 - 1;:/ 6 -
l=( 110) 

and 

(5.35) 

2n· 
exp[-1[(1; - l)X ± y }] . 

a 
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Combination of the two exponentials yields the two wavefunctions listed 

below with the symmetries given. 

e ,2rri{:!;-l)X Cos 
2rry 

= ,i,6 a a 
6 

(5.36) 

e ~(:s-l)X Sin 
2rry 

= (i a a 
1 

(5.37) 

At the center of the zone, the energy is given by Er= 2.0. Again 

there are four possible ways of obtaining this energy, i.e., use of the 

(110), :(iio), (ilO) and (liO) values of 1. Thus, there are four r 

states at this point with wavefunctions that can be ascertained by use 

of the character systems. Possible functions of the proper types are 

listed below. 

,i,r Cos 
2rrX 

Cos 
2rry = 

' 1 a a (5.38) 

,i,r, Sin 
2TTX 

Sin 2rry = 
1 

a a (5.39) 

,i,r, Sin 
2 2rrX 

-Sin 
2 2ny = 

2 
a a (5.40) 

,jl .r Sin 
2nX 

Sin 2ny (Sin 
2 2TTX Sin 2 2rry) . = -

2 
a a a a 

(5 .41) 

The singly degenerate~ state terminates at E = 9/4. Another band 
X 

starts at this point with 1 value (200). The exponentials to be 

combined here are: 

[ 3rriX] exp-;-- and [ -3rriX ] exp --a- . (5.42) 

Evidently these may be combined to yield the wavefunctions given below 

which again display the x1 type of symmetry. 
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3TTX (Cos-. 
a 

Sin. 3TTX) .. 
a , (5.43) 

In returning to the f point, the energy along the 6 axis is given 

by (5.10) as: 

(5.44) 

while the wavefunction has the form 

,I, _ [2TTi(g-2)X] 
'6 - exp a . 

1 
(5.45) 

The energy at the center of the zone is Er= 4.0. This value may 

also be obtained using (200), (020) and (020). The analysis now is 

exactly like that used for Er= 1 wherein the possible 6 bands were 

obtained in order to determine the symm,etries of the·states at this 

point. Such procedure results in allowed wavefunctions of the form: 

Cos 
4TTX + Cos 4TTy 

*r -.-
a a 

1 
(5.46) 

Cos 
4TTX Cos ~ ·*r• = a a 2 

(5 .4 7) 

Sin 4TTX Sin 4TTy 
*r' = a a l 

(5.48) 

S:i.n 
4TTX Sin 4TTy ·[cos 4TTX 

- Cos 4TTy) 
*r - = a a a a . 2 

(5.49) 

This analysis may be carried on indefinitely merely by the repeated 

application of theprocedures outlined thus far. It is incomplete 

because all possible 1 values for the {(100)} set have not been used. 

In the past analysis all normalized energies at the center of the zone 

have been integral. This is not always the case, however, because of,the 

ale ratio. Consideration of the (001) and (OOi) set of 1 values teads 
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to different values of the energy at the r point than those used thus 

far. 
2 

Their use gives the energy at the center of the zone as Er= (a/c) • 

Also, for this set the lowest energy wavefunction, Wp, is not a. constant. 

Instead, the two exponentials 

·c~J ex~ c and [ 2TTiz] exp. -c- (5.50) 

must combine into states with symmetries dictated by the character table. 

Possible wavefunctions are: 

* 2TTz = Cos f 1 C 
1 

=Sin~ 
C 

(5.51) 

(5.52) 

Moving along the 6 axis results in an energy and wavefunctions 

given by: 

E6 = '$2 + (!./ 
C 

(5.53) 

*t. 
2TTiX~ Cos 

2TTz 
·= e 

6 
a C 

(5.54) 

*t 
2TTiXg Sin 2TTz 

·= e 
4 

a C 
(5.55) 

2 
At X the appropriate energy is 1/4 + (a/c) . The energy may be 

obtained using either the (001) and (OOi) values of 1 or by using the 

(101) and (lOi) set. Thus, ,possible wavefunctions at X must now be 

written as linear combinations of the exponentials: 

. X z 
exp.[2TTi(- + -)] 2a C 

exp [2TTi(-2X - ~)] 
a C 

(5.56) 

(5.57) 



[ 2TTi(_:! + ··!.,] exp 2a c 1 

[ -X z ] exp 2TTi(- - --) 2a C 

which may be combined into the two wavefunctions 

and 

( TIX 2Tiz 
: Cos - Cos a C 

S . TIX C .2Tiz) 
" l.n - OS 
' a C 

IV ( TTX 2TTz 8 . nx 8 . 2TTz) 
. X : Cos -a Sin -- · 1.n - 1.n --. 

C ' a C 
2 

57 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

For the 1 values (101) and (lOi), other A states begin having 

energy E6 1=(101) =-EA -
1=( 101) 

- (~/ + (1 - 1;/. 
C 

Wavefunctions describ-

ing these states are 

Vil 
2Tii(:§-l)X Cos 

2TTz 
e 

1 
a C 

(5.62) 

Vei 
2Tii(~-l)X Sin 

2rrz 
= e --

4 
a C 

(5.63) 

This band ends at Er·= 1 + {~/c) 2 . At this point there are six other possi

ble r values cons is tent with this energy, i.e., (Oli), (Oil), (011), ( 101), 

(iOI), and (Oii). The exponentials obtained using all 1 values giving 

Er= 1 + (a/c) 2 must now be combined in such a way as to yield r states 

that are· comp·atible with the incoming .and outgoing bf· states. A long the 

outgoing t'.l axis energies and wavefunctions are given by 

E = E = ·E · = E 
8 1=(011) 8 (Oli) 8 (Oil) 8 (OH) 

2TI iX:S 
a Cos 2Tiy 

a 
2Tiz 

Cos 
C 

(5.64) 

(5.65) 
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2TiiXJ; 

~ 
a S. · 2try S. 2Tiz (5.66) . = e in 1n --

&4 a C 

2TiiX.S 

* .6 

a Cos 2Tiy Sin 2Tiz (5.67) = e 
3 

a C 

2TiiX:s 

~.6 
.. a· 

Sin 2Tiy Cos 
2Tiz (5.68) = e 

6 
a C 

(5.69) 

. 2Tii(:f;+l)X 

~ .6 
a ·- 2Tiz = e Cos -

1 
C 

(5.70) 

2Tii ( !;+l)X 

* 
a 

Sin 
2Tiz = e 

.62 C 
(5.71) 

Using the symmetries of these states and the corresponding r states, 

eight wavefut1ctions may be constructed at the center of the zone and 

several representative possibilities are listed below. 

*r 1 

= (Gos ZTIX + Cos ZTiy} Cos 2TIZ 
a a c 

[Sin2 ZTIX + Sin2 2ny} Cos~ 
a a c 

= t'Sin2 2nX + Sin2 2Tiy} [Cos 2TIX _ Cos 2ny} Cos2 2Tiz 
a a a a c 

(5.72) 

(5.73) 

(5.74) 

In analogy with the previous treatment, this discussion may be carried 

out indefinitely. The results of the tota 1 analysis are shown in Figure 

6. 
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In order to fully exploit the application of the free electron 

approximation to this structure, it is necessary to consider the elec-

tronic states present along all synunetry axes. For this reason, the 

.· past analysis should be repeated for other synunetry axes. 

Consider as an additional illustration the axis from f to A to z. 

In order to facilitate the classification of electronic states along 

this axis, Tables XXX and XXXI have been constructed. The energies and 

wavefunctions are obtained as before and are tabulated below: 

E = 12 + 12 + (!.) 2 ( 1 -~) 2 
Z 1 2 C 3 

· l1X l2y l3z 
-2TTi(- + - + -) a a c Vp ·= e 

1 X 1 y • 
-2rri(~1~ + -~2~ + (1 -G)!.} 

a a 3 c 

(5.75) 

(5.76) 

(5. 77) 

(5.78) 

(5.79) 

(5 .80) 

As .in the· previous case, the lowest energy occurs at the center of the 

zone, corresponds to 1=(000), and is zero. The wavefunction is constant 

and the state is of the type r 1. Using this value of 1, the energy 

along the A axis has the form 

· El\. = (~) 2 '(} (5 .81) 

and the wavefunction is given by equation (5.79) as: 

,1, _ [2rriC,z] 
."l;A - exp c . . (5.82) 
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This state is one which displays the Ai symmetry and is compatible with 

the r 1 state at the center of the zone. 

As the top of the zone is approached, the energy has the magnitude 

1/4(~/c) 2 and may be obtlined by using the (001) value of 1 as well as 

the (000) value. Since the states at the Z point are doubly degenerate, 

the two exponentials given by equation (5.79) may be combined into the 

wave functions 

~z 
1 

[cos rrz 
C 

S . TIZ} 
· in -
' C 

(5.83) 

Because t~o values of 1 give the same energy here, another 'fl. band 

begins. The new energy and wavefunction for this band are 

E1\ = (1 - s) 2 (~) 2 
(001) C 

(5.84) 

(5.85) 

At the center of the zone, the energy obtained using (001) is the same 

as that obtained for (001) and has the value 

Ef . 
(001) 

= E 
r (001) 

(5.86) 

Combinations of the exponentials resulting from the use of these 1 

values· allows.,the · two possible wavefunctions 

*r· Cos 
2rrz = ---

1 C 
(5.87) 

and 

*:r I 
Sin 

.2rrz 
= 

6 
C 

(5.88) 



61 

This value (OOi) gives rise to another ./\. band at this point 

described by the energy and wavefunction 

E = (1 + ,.)2(~)2 . i ~ C 
(OOi) 

(5.89) 

* = exp[2Tii(C+l) z] 
,/\.2 C 

(5.90) 

·Energy and wavefunctions obtained at the other end point, i.e. at Z, 

are listed below. 

E 
z (OOi) 

= E z (002) 

*z 1 

' 
(Cos 3inz 

C 
Sin 3nz) 

C 

Again as in the past treatment, a whole new series of bands 

(5 .91) 

(5.92) 

originates at Er = 1. This energy may be obtained by the use of either 

of the four 1 values (100), (iOO), (010) or (OiO). Wavefunctions which 

are appropriate have been obtained in the usual manner and are listed 

below. 

Campa t ib le 

*r 1 

*P' 
1 

*r; 
2 

*r 2 

S . 2. 2nX =. in 
.a 

= Cos 2nX 
a 

Cos 
.2nX 

= 
a 

Cos 
2 ·2nx 

= 
a 

+ Sin2 2ny 
a 

+ Cos 
2ny 

a 

- Cos 2ny 
a 

-·Cos 
2 2ny 

a 

"A states may be represented by 

(5.93) 

(5.94) 

(5.95) 

(5.96) 
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·EA ;= ~4 = E = E = l + (~)2-,2 (5.97) 
(100) (iOO) A (010) I\ (OiO) C 

c2n!~] 
ti\. 

2TTX 
Cos 2TTy 

(5.98) = exp Cos 
1 a a 

'V,I\. = c-2TTLCz] (Cos 
2TTX - Cos 2TTy) (5.99) exp 

3 
C a a 

'111\. exp(12TTi'zJ (Cos 2TTX + C 2TTy 
(5.100) -- OS a ) 

'2 C a 

'1r it ·-2TTi'z (Cos 
2 2TTX 

- Cos 
2 2TTy) • (5 .101) = exp[ : ] 

4 
C a a 

This four-fold degenerate~ band terminates at the Z .point with an 

energy of 1 + 1/4(a/c) 2 . For illustration, possible wavefunctions for 

two of the four doubly degenerate electronic states are 

'1rz Cos ~ [Cos 
2TTX 

Cos 
2TTy Sin 2TTX S, 2TTy} 

·1 
C a .a a . in a (5.102) 

'1rz 
S, -TTZ [Cos 

2TTX 
Cos 2TTy Sin 

2nX S' 2TTy} in - - . in 
C a a a a 

1 
(5 .103) 

Results of the total analysis are given in Figure 7. The general 

trend should now be evident. Treatment of the simplest 1 values yields 

the first few bands whereas the inclusion of all possible 1 values 

merely shifts the energy band scheme upward and in fact yields no new 

information. Thus, in the following tables and figures, only the first 

few bands are considered. The tables contain 1 values and corresponding 

energies along the other symmetry axes. The shape of the free electron 

bands is also conveniently illustrated by using the information in the 

tables to plot electron energies over selected plane circuits in 
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k-space. Results of this kind have been utilized in obtaining Figures 

8-12. 
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TABLE XXVII 

GLASSES AND SUBSTITUTIONS AT f 

Class X y z 

cl = E X y z 

c2 = R 1 
-Y -x -z 

c3 = R 
2 

y X -z 

c4 = C 
2 

-X -Y +z 

cs = J -X -Y -z 

c6 = m2 +Y +x +z 

c7 = ml -Y -x +z 

cs ""m3 +x +Y -z 

c9 = Tm -X + a/2 Y + a/2 Z + C/2 

c10 = TmR 
1 

-Y + a/2 X + a/2 -Z + C/2 

ell = TmR 
2 Y + a/2 -X + a, /2 -z + C/2 

c12 = TmC 
2 

X + a/2 -Y + a /2 +z + C/2 

cl3 = TmJ X + a/2 -Y + a/2 -z + C/2 

c14 = Trrun 2 +Y +a/2 -X + a/2 +z + C/2 

els = Trrun 
1 

-Y + a/2 +x + a/2 +Z + C/2 

c16 = Trrun 
3 

-X + a/2 Y + a/2 -Z + C/2 
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TABLE XXVIII 

CLASSES AND SUBSTITUTIONS AT 6 

Class X y z 

cl =E X y z 

c2 = m 
3 

X y -z 

c3 = TmJ X + a/2 -Y + a/2 z + C/2 

c4 = TmC 
2 

X + a/2 -Y + a/2 z + C/2 

TABLE XXIX 

CLASSES AND SUBSTITUTIONS AT X 

Class X y z 

c1 = E X y z 

c2 = Q X + a y + a z + C 

c9 = m3 X y -z 

ClO = Qm3 X + a y + a -Z + C 



TABLE·XXX 

CLASSES AND SUBSTITUTIONS AT I\. 

Class .x y z 

c 1 = 'E .X y z 

c2 = c2 -X -Y z 

c3 =ml+ m2 Y or -Y . X or -x z 

.c4 .= Tmm1 + Tmm2 Y + a/2 or X + a/2 z + C/2 

-Y + a/2 

c 5 = Tm+ TmC 2 -X + a/2 or -Y + a/2 or Z + C/2 

+x + a/2 Y + a/2 

TABLE.XX.XI 

.CLASSES AND SUBSTITUTIO~S AT Z 

_Class X y z 

cl -='E .x y z 

c2 = Q X + a y + a Z + C 

c6 = C 
2 

-X -Y z 

c7 = QC 
2 

-X + a -Y + a Z + C 

ell = m 
1 

-Y -x z 

.c12 = QM ,1 -Y + a -.x + a z +c 

c16 = m 2 
y .X z 

cl7 = QM 
2 

y + a X + a Z + C 
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TABLE XXXII 

SOME ENERGIES AND 1 VALUES AWNG THE AXIS Z-U-R 

1 E E ER z u 

(111213) 12+12+(1 -k)2(~)2 
1 2 3 2 C 

<1 1-s) 2+1~+<13J\f 0 -k)2+12+ 
1 "2 2 

(~/ c~/(1 -\/ 
C C 3 

(000), (001) 1 (a) 2 "4; s2+t<~)2 
C 

~+t(~)2 
C 

(100), (101) l+t(~/ t<~)2+0-s)2 a 2 
t+t(-) 

C ·C C 

(loo) l ( io1) 

~1+1(;) 21 t<;) 2+<i+s/ <f>2+t(;)2 

(Oll), (Oil) 
l+i;2+t(~/ 1+1-+1-(~/ 

(010), (OiO) 4 4 C 

TABLE XXXIII 

SOME ENERGIES AND 1 VALUES ALONG THE AXIS R-W-X 

1 E E ER X w 

(11 1213) (1 -k)2+12+(~)212 
1 2 2 C 3 

(1 -k/+12+ 
1 2 2 

(1 -k/+i2+ 
1 2 2 

(1 -C/(~/ 
3 C 

(1 -k/(~)2 
3 2 C 

(000) (100) t t+C2 (~) 2 a 2 
t+t(-) 

c. . . C . 

\+(;)2 t+<~) 2 o-·o 2 a 2 
(001), ( 101) t+t(-) 

C C 

(OOi), ( lOi) t+(;)2 t+<;>2 o+,>2 t+<i? 2 <;>2 

( 102), (002) t+4(~>2 
C 

t+(z)2(2-,)2 t+<f>2cz>2 
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.TABLE. XXXIV 

.. SOME ENERGIES AND 1 VALUES ALONG THE AXIS r-I:-M 

1 Er E 
~ EM 

(11121) 12+12+(5!.)212 
1 2 C 3 o1-s)2+02 .. sl (11 -%/+( 12 -%) 2 

+12 (§!.)2 
3 C 

+1\s!.) 2 
3 C 

(000) 0 2 !;2 k 2 

(100) ,(010) 1 (1-.!;) 2+!;2 % 

(100) , ( 110) 2 2 (1-1;>2 % 

(iIO), (ilO) 2 !;2+( 1+1;/ t+(f)2 

(lio) 2 2(1+!;)2 2(1)2 
2 

( 100) , (O io) 1 < i+s>2+s2 (1)2+t 
2 

(220) 8 2(2-1;) 2 2(1)2 
2 

(200) , (02'0) 4 c2-s) 2+1;2 (1)2+\ 
2 

TABLE XXXV 

SOME. ENERGIES AND 1 VALUES ALONG THE AXIS M-V-A 

1 EM EV EA 

011213) o ~%>2+o -%>2- (1 -%)2+(1 -%)2 2 2 
( 11 -%) +( 12 -%) 1 2 1 2 

+12(~)2 
3 C 

+<s!.r<1-,) 2 
C 3 

+( 13 -.\) 2 <;) 2 

(OOb) , ( 110) .k %+1} (§!.) 2 %+~(§!.) 2 
(010) , ( 100) 2 

C C 

(001), (101) %+(;)2 \+(§!.) 2 ( 1-0 2 %+t<;)2 (011), (111) C 

(001) '(101). ·. · a 2 
\+(s!.) 2 C 1-loC) 2 %+(f)2(;)2 

(011), (111) 
. \+(-,-). 

C C 

(Ob2), (102) %+4(§!.) 2 t+(§!.) 2 (2 -.G) 2 %+<t)2 <z)2 (012), (112) C C 
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TABLE -XXXVI 

SOME ENERGIES AND 1 VALUES ALONG THE .AXIS Z-S-,A 

1 _Ez ES EA 

(11 1213) 12+12+(1 -k)2(!.)2 
1 2 3 2 C 

c 11-s) 2+c 12-0 2 ( 1 -~>2 +(l -\) 2 
1 2 

+o -k) 2 c!./ 
3 2 C 

+(l -\) 2 (!.) 2 
3 C 

(000), (001) tc!./ 
C 

2!;2+t(!.) 2 
C 

\+t(!)2 

(111),(110) 2+t(!.) 2 2 < 1-1;/+tc!./ 
\+t<!)2 ( 100), (010) 

C C 

(101) , (Of.1.1) Ht(!.) 2 s 2+0-s) 2+tc!./ 
C C 

(iOO) ,(OiO) 
Ht(!./ ~2_+(1 +!;) 2 ~\(~) 2 (1)2+\+t(!.)2 

(iOl), (Oil) C 2 C 

(lii),(iiO) 
2+\(!.) 2 

( 1 +I;) 2+t(!) 2 (2..) 2+(1) 2+1-(!.) 2 

(111) '(110) 
2 2 Z. C 

(111),(110) 
C 

0 +s2)+1;2+tc!) 2 1-+cl/+1 c!.) 2 
Z. 2 'Z; C "''' 

TABLE XXXVII 

. SOME ENERGIES AND 1 VALUES ALOJ:i!G THE AXI,S X-Y-M 

1 EX Ey E 
M 

(111213) o -k) 2+12+c!./1 
2 2 2 2 

(1 -\) +(1 -I;) (1 -\) +(1 -\) 
1 2 2 C 3 1 . 2 1 · 2 

+(!.) 212 
C 3 

+12 c!./ 
3 C ' 

(000) ,(100) \ \+s2 ~ 

(010), ( 110) 5/4 t+o-s/ k 2 

(010), (110) 5/4 \+( 1+1;/ lz;+9 /4-=10/4 

(100) , (200) 9/4 9 /4+1;2 10/4 

(llO), (210) 137li'. 9/4(1-1;) 2 10/4 

( 120) , ( 120) 17/4 }z;+(2 -,I;) 2 
10/4 



1 

011213) 

(000), (101) 
(100), (001) 

(010), (Oll) 
( llO) , (lll) 

(Oio), (Oil) 
(liO) ,(lil) 

1 

(11 1213) 

·,( 100), (010) 
( iOO) , (Oio) 

(!01), (Op) 
( 101), (011) 

(101), (Oli) 
( ioi), (Oii) 

(!02), (01~) 
( 102), (012) 
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TABLE XXXVIII 

SOME ENERGIES AND 1 VALUES ALONG THE AXIS A-T.;,R 

ER ET EA 

(1 -%/+12+(l!./ 
1 2 C · 

:o1-~)2+<12-s)2 (ll -~/+c 12-~/ 

2 
+(~) 2 ( 13 -~) 2 +(~) 2 ( 13 -~) 2 ( 1 -~) 

3 

a 2 t+s:2 +t cl!.) 2 1+1-cl!.) 2 1-+1-(-) 
4 4 C C 2 4 C 

1 a 2 
t+o-s/+t<l!./ 

a 2 'i;+l+:t(-) ~+\(;) 
C C 

t+l+\(~)2 
C 

t+< 1 +s) 2+t<~) 2 
C 

c1)2+t+tc~)2 
2 C 

TABLE XXXIX 

SOME ENERGI~S AND 1 VALUES OF DEGENERATE STATES 
ALONG THE AXIS f-1\-Z 

Ef El\ Ez 

. 12+12+(l!.)2i2 
1 2 C 3 

12+12+(~)2(1 -C)2 
1 2 C 3 

12+12+(1 _1,/ 
1 2 3 2 

cl!./ 
C 

1 1+(~)2C2 l+\(~)2 
C C 

l+(!./ 
C 

i+c1 / o-cf 
C 

l+t<!) 2 

1+(~)2 
C 

l+(1)2(l+C)2 
C 

1+(1)2 (~)2 
2 C 

1+4(a) 2 
C 

1+(2-C) 2 c~/ 
C 

1+cf)2<!)2 
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o Oxygen atoms 
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Unit Cell of the Space Group n4h. 
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.A.= (op,S) 

z:;: ( o, o, f) 
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M:: (Tr ir o) c.... l Ct_. I 

W. 
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R-= (\,6i l) 
s = (F1~1 l) 
T=ff J1 {) 
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X = (f 10r0) 
'IA/ :: ('%_ l OJ ~) 

. Y= ti) f) o) 

· · Figure 3. Fir'st Brillouin Zone for the 
Primitive Tetragonal System. 
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Point Grau Element Substitution 
XYZ. 

M yxz · 
M 
.R 

J 

Figure 4, . Stereogram for; the Ru tile Structure, 
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Element Substitution Cle1sses 

E xyz 
m, i ·' . yz 

c, yxi 
m, I yxz 

'. 

C2 xyz ·. . . ·• o• 
. 05 =R.i +"2 

m2 xyz 
c-' yxz 

·' I 

m' a yxz 
ma xyf 
R, >tyf 

.. -

Jc~t . I yxz 
R' .. I yi! 

' 
J. xyJ 

;. 

R2 xy% i 

JC, 
-

jxz 
_·R2 )'XZ 

Figure 5. Stereograni for the Holosymmetric Point 
Group P4/mnun. · · 
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Figure 6. Free Electron Energy Band Configuration 

Along the Axis f-6-X. 
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Figure 7. Free Electron Energy Band Configuration 

Along the Axis f-A-Z. 
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Figure 8. Free Electron Band Structure Around the Circuit 
r -X-R--Z .,.r. 
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~-------,----~--,.~:.__..,_:.__~..,_-,--¥,:.__~..,_-------..,_---·.\:-t 

Q 
rtj. 0. - o·· 

Figure 9. Free Electron Band Structure Around the Circuit 
r"""M-A-z-r. 
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Q 
C\I 

Q 
l'O 

-w 
0 0 .. -

Figure 10. Free Electron Band Structure Around the Circuit 
X-R-A-M-X. 



q 
C\I 

-4J 

0 . 

Figure 11. Free Electron Band Structure Around the Circuit f-M-X-f. 
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0 
rri 
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Figure 12. Free Electron Band Structure Around the Circuit Z-A-R-Z. 



CHAPTER VI 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY 

The system of characters developed 'in Chapter IV maybe used for 

every substance which displays the rutile structure; however, the 

results of the analysis have been applied only to the most rudimentary 

model in this report. Such treatment is not only illustrative but 

constitutes a valuable first step in determining compatible electronic 

states within any band and may be extended in the manner given by 

Nutkins (18) to obtain a qualitative idea as to the free electron 

density of the states. However, the free electron approximation is 

not of significant value in itself because the effect of the periodic 

potential has been neglected. 

A comprehensive review of the various theoretical methods avail

able for the calculation of the energy band configurations from first 

principles has been given by Pincherele (4). Each of these methods 

involves the solution of the Schroedinger equation with a nonzero 

potential. As might be expected, the inclusion of a potential in the 

Schroedinger equation results in a very complex mathematical problem 

that may be solved only by the incorporation of various approximations 

concerning its nature and that of the wave£unctions. The choice-of a 

''proper potential" is very difficult and requires a great <lea l· of 

knowledge regarding the nature of the chemical bond, the magnitude of 

the exchange .forces and the effect of spin-orbit coupling. As· a 
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result, a purely theoretical calculation has little value unless it may 

be correlated with experimental evidence concerning the band structure. 

Logical extensions of the work performed thus far must be two-fold. 

Priority should be given to acquiring specific experimental data yield

ing information concerning the band structure. With such in hand, any 

of the more sophisticated theoretical approaches given in the liter

·ature may be applied. 
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