APPLICATION OF THE FREE ELECTRON APPROXIMATION,

14

TO THE STRUCTURAL SPACE GR,OUP'D4h

By
'BILL P. Q;ARK
Bachelor of. Science
Oklahoma State  University
Stillwater, Oklahoma

1961

~8ubmitted to the faculty of the Graduate School of
the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
MASTER OF . SCIENCE
‘May, 1964



'

" GHLAHOMA
STATE UN VERSS
LIBRARY

JAN 8 195

.
:

APPLICATION OF THE FREE ELECTRON APPROXIMATION

14

TO THE STRUCTURAL SPACE GROUP D4h

Thesis Approved:

Thegis Adviser

o 7 ” S

YT

=y
M‘/X"'a?f/”? —

Dg5§/6f the Graduaﬁ@ é%hool

570166



ACKNOWLEDGMENT

'The-autﬂSr Qishes Eo take fhis oppoftunity to e#press his gratitu&e
to Dr. E.nE.AKoﬁnke for sﬁggesting ;hevproblem and for his~§a1uéb1ev
guidance thfoughout the execution of tHis work, to thé‘Physics ﬁeﬁaft—
ment of Oklahoma Stéte»Uni§ersify for théir'financial support viébaﬁ
.assistantship, qnd to the Office.of'Naval'Research‘for sponsofiné-p;ft
of the finaﬁciai aidrobtained'auring the past two sumﬁers.

A particular note ofvthaﬁks i; due to Dr. H.denes ovamparial
quigge of LoﬁdonuUﬁiVeréity.‘ Dr. Jones visited Oklahqma.Statg
Un{Versity.for six ﬁonths under the auspecies of the National .Science
Foundation’s~ﬁi§;ingui§hed Visiting Scientist P;ogram. Duriﬁg his
Yisit he offered i;yaluable suggesﬁiéné and %an& stimuléﬁiég disquséions
as to ‘the eiécution_of work.perfd¥med ﬁerein, as weli ;s tﬁe possible

interpretation of the results; obtained.

iii



TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION . + &+ + v v v e e e e e e e e e e e e e o1
II. MATHEMATICAL PRELIMINARIES . . . . . . . . . . . . . . . . 3
Group Properties. . . . . . . . . . . . . . . . . .0 4
Stereographic Projection. . . . . « o ¢ ¢ o o o .. .12

Isomorphism . « o « ¢ o o & v « o 4 + & 5.6 & o «.o o 14

III. CONSTRUCTION OF THE BRILLOUIN ZONE . o . « « « = + « . . . 16
The Physical Space Lattice. .. . . o &« o « o «. v = . . 16

The Reciprocal Space Lattice. . . . . . . . . . . . . 17

The Brillouin Zone and Its Construction.. . . . . ... 18

IV. CHARACTER TABLES AND WAVE VECTOR GROUPS. . . . . ... . . . 20

The POint GTOUP - « « o « « « o o v v o o o o v o 0 o 22
Wave Vector Group at.I'. . . . . . . . v ¢« « o o 2 & . 25

The Wave Vector Group at X. .« e .. 26
The Wave Vector Group at Z. . e e e . 28
The Wave Vector Group at M. + « + & o s s o o w.u. . 29
The Wave Vector Group at A. « + <.+ 30
The Wave Vector Group at R. . 30

The Wave Vector Group at A. . . . . . . . ... .. . ... 31
Axial Wave Vector Groups and Character Systems. ... . 33

V. FREE ELECTRON ENERGY BANDS . . . . . . « . « . + . . .. .48
VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER.STUDY. . . . ... .82

REFERENCES . . . . ... . . . « . v v « v v v v o . . . . .85

iv



LIST OF TABLES

Table Page

‘L. Point Group Elements and Their Irreducible
Representations . . « . .+ ¢« ¢« « o 0 o 0 e e e e e 24

‘II. Characters at I' . . . . . . ..« . . o .00 33
III. Wave Vector Group Elements at X ... . +. v & o o 4.0 ... . 34
IV. Typical Class Calculations X-laX.= Co v v v oin a o 34

V. Classes at X. « v v v ¢ viv v v v ein o e e e 35
Vi. Group ILsomorphism Used. . . . . . . ... e e e e 35
VILI. Characters at X.u v o ¢ o.n o o o & sos 4 s o 0. a0 .o 36
VIII. Elements and Inverses at Z. . , + ¢ + o o o o o & o o & 37
IX. Classes 8t Z.. v v o v v & o s o o & v o o o0 0 e e 4 38

X. Normal.Subgroup of Z. . « + s «- 0 v v ¢« ¢ o &+ « + + o+« 39
XI. Characters at Z. . . . .« ..« v o v v 0 0w e e e 40
XITI. Characters at M. «. v v ¢« v o v o 6 v o s .o o o o o+ 4l
XIII. Characters at A. . + « v « v v v o o o o o o o o o o o+ 42
X1V, Elements and Inverses at R.. + + + « « v v o o o o oo o 43
XV. Characters 8t R. v o o o o o o 0 s o s o s o s o v o » o L&
XVI. Substitution Used for the Group at & . . . . . . . « « . 44
XVII. Characters 8t A. « v v « v o v o & sv s o o o0 o o g0 o+ b&
XVIII. Axial Wave Vector Groups and Classes . . « « + + « « » « 45
XIX. Characters at A. . ..o « o v v v v eie e 0 e e W 47
XX. Characters at W. « v & oo v v o 0 o o v o o o oen o .. 47

XXI. Characters at S. . + ¢ o &+ 5. e o o o o o a o o o« o 0.0 « 47



Table

XXII.

XXITII.

XXIV.

" XXV,

XXVTI.

XXVII.

XXVIII.

XXIX.

" XXX.

XXXI.

XXXII.

XXXTII.

XXXIV.

XXXV.

XXXVI.

XXXVIT.

XXXVIII.

XXXIX.

LIST OF TABLES

Characters at

Characters at

Characters at

Characters at

T.

U.

z.

V.

Characters at Y.

.Classes and

Substitutions at I .

Classes and Substitutions at A .

Classes and Substitutions at X .

Classes and Substitutions at A

Classes and Substitutions at Z .

Some.

Some

Some:

Some

Some"

Some

Some

Some

Energies and 1 Values Along

Energies
Energies
Energies
Energies
Energies
Energies

Energies

and

and

and

-and

and

and

and

1 Values Along
1 Values Along
1 Values Along
1 Values Along
1 Values Along
1 Values Along

1 Values Along

vi

the

the

the

the

the

the

the

the.

(Continued)

Axis

Axis

Axis

Axis

Axis

Axis

Axis

Axis

R-W-X.

T-2-M.

M-V-A.
Z-S-A.
X-Y-M.
A-T-R.

r-A-z.

- Page
47
47
47
47
47
64
65
65
66
66
67
67
68
68
69
69
70

70



LIST OF FIGURES

Figure
1. The Stereographic Projection . . . . . . . . .

2. Unit Cell of the Space GroUp:Diﬁ

3. First Brillouin Zone for the Primdtive Tetragonal System .

4. Stereogram for the Rutile Structure.
5. Stereogram for the Holosymmetric Point Group P4 /mmm.

6. Free Electron Energy Band Configuration Along the
Axis T-A-X . . . . . . . ... . .

7. ¥Free Electron Energy Band Configuration Along the
Axis T=A-Z e e : .

8. Free Electron Band Structure Around the Circuit
-X-R-z-I'. . . . .

9. Free Electron Band Structure Around the Circuit
I'-M-A-Z-T.

10. Free Electron Band Structure Around the Circuit
X-R~-A-M-X. .

11. Free Electron Band Structure Around the Circuit
r-M-x-T.

12. Free Electron Band Structure Around the Circuit
Z-A-R-Z.. .. . e e e

vii

Page
12
71

72

73

74

75

76

77

78

79

80

81



CHAPTER - I
INTRODUCTION

' Stannic Oxide (SnOz), is one of a number of oxides and fluorides
having the bipyramidal ditetragénal crystal structure commonly referred
té as the rutile structure. The lattice dimensions as given by
‘Wyckoff (l):bare a = 4.72'K and ¢ = 3.16 &. This substance occurs
naturally as the mineral cassiterite and is chemically stable. The
process of growing synthetic crystals of stannic oxide has proven some -
what elusive until recently (2). As a result, the majority of the
experimental work done with this substance has involved the use of
crystals that have been cut from samples of Bolivian cassiterite. The
properties of these samples have been reviewed quite extensively by
Kohnke (3) and the results have been analyzed in an attempt to coenstruct
a workable model of the conduction mechanism which may be compared with
that postu%ated for the prototype compound TiO2°

AAfull-scale symmetry analysis illustrating the interplay between
crystallographic structuré, wave vector groups and possible electronic
wave functions is necessary if any of the theoretical methods’thﬁs far
developed (4) are to be applied in construction of curves showing the
configuration of the electron energy bands in momentum space. Such
~analyses have already been applied to several other crystal systems

(5-11).



It is the purpose of this work to employ a similar treatment for
crystals which display the rutile structure. .For illustrative purposes
free~electron energy bands and wave functions have been constructed as
the first approximation to the possible energy band configuration

actually present in this system.



CHAPTER II
MATHEMATICAL PRELIMINARIES

In order to begin an analysis of the symmetry properties associ-
ated with any crystallographic system it is necessary to use a
mathematical approach in which the theory of groups and their class
structure plays an integral role. For a purely mathematical analysis
of the space groups Dih to Diﬁ the reader is referred to the papers by
Olbrychski (12) and Sek (13). These two papers present a comprehensive
treatment of the generalized mathematical properties of the seventeen
space groups in the tetragonal system. Although it is possible to use
the method outlined in the papers to obtain the group properties of the
particular structure in question, an alternative approach, used exten-
sively by Jomnes (l4), was chosen. Differences between the methods will
be made evident later.

As mentioned, the symmetry properties of the space group under
consideration may best be handled by utilizing the general mathematical
theory of groups. Thus, several definitions and theorems from which
all of these properties may be extracted must necessarily be stated.
The majority of the definitions that shall be stated may be found in
any book which treats the theory of groups and their representations.
Since the language used in discussing groups and group properties varies
from one book to the next, the following treatment shall use the defi-

nitions and notation of Mariot. (15).
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The first definition of any importance embodies the idea of an
ensemble of mathematical objects. An ensemble is a finite or infinite
collection of arbitrary mathematical objects. These objects are called
the elements of the ensemble. Given any ensemble, a law of combination
of two arbitrary elements x and y is a rule which determines a third

element z of the ensemble. We write
Z = X'y

and, in general, x-y ¥ y°x.

A group G is then an ensemble whose law of combination satisfies
the following: three conditions:

(1) the law is associative

cj-(ck-cl) = (cj-ck)~c1

being members of G)

(Cj, Ck’ and-C1

(2) the law requires a unit element E such that

Eka = Ck'E = Ck
(3) every element Ci has an inverse (Ci)-l such that

-1 _ -1, _
Ci-(Ci) = (Ci) Ci E.

As an example of how this definition may be applied, consider the
ensemble of all integers. . If the law of combination is defined to be
ordinary addition then it is easily seen that this set (or ensemble)
constitutes a group. .However, if the law of combination is taken to
be multiplication, the three restrictions on the law of combination
will not all be satisfied. The first two conditions will be satisfied.
However, the third condition cannot be satisfied unless the ensemble
contains rational numbers from zero to one. Since the ensemble does

not contain these elements, it cannot constitute a mathematical group.



If the system is finite in extent, the number of elements in the
system is called the order of the group. If the law of comb;pation is
also commutative the group is said to be commutative or abelian. If
A, B, and X are three members of a group G, B is said to be conjugate
to A, or B is the transform of A with respect to X if B = X~}A-X, The
;fundamental definition is that all elements of the form-X-lA X, X being
any element of G, constitute the class of A. It should be noted at
this point that the class concept is non-trivial only if the group is
non-abelian.

Given a group G, a subgroup H is a part of G obeying the following:

(a) If X and Y are members of H, then X-Y is also a member
of H.

(b) The subgroup obeys all the laws of combination defining
a group.

Notice here that the unit element of H must be that of G.

Let (H) = (E, Hl’HZ"°') be a subgroup of G and consider an element
x€G. Forming the ensembles:
X-(H) =X, XHj, X-H, (2.1)
(H) X .= X, H -X, Hy-Ko..o. (2.2)

If X is itself a member of H, the property X-(H) = (H):X is trivial,
but if X does not belong to H, the ensemble of elements X-(H) is called
the right coset of G associated with H. Similarly, the ensemble (H)-X
is the left coset associated with H.

At this point a theorem shall be stated without proof. The proof
of this and any following theorems stated can be found in any text

that treats this subject.



Theorem :1:

The subgroup H and the coset X<(H) do not have a common element .
.This theorem shall be used later and has been stated at this
point merely for convenience.

The next topic of interest is that of the invariant subgroup. A
subgroup H .of a group G is called an invariant subgroup if .

X-l-(H)°X = (H) for evefy X in G. _Evidently, this is merely a formal
statement of the fact that for this case the right and left cosets are
equal.

Theorem 2:

The ensemble (H), X*(H), Y- (H),.... is a supergroup of which
the unit element is (H).

Although this system is called the supergroup by Mariot, many
authors refer to this ensemble as the factor group. The concept of a
factor group shall be used extensively in the later work.

Notice that the general group properties that have thus far been
outlined are independent of the type of elements contained in the group.
A crystallographic group is merely a collection of operations that
constitute an ensemble satisfying the group properties. In such an
ensemble theveleﬁents are rotations, reflections, and translations.

A particular group may be analyzed using several different tech-
niques. One of the most widely applied téchniques used in crystallog-
raphy is dependent upon the theory of mathematical representations of
a group. Before stating the two theorems necessary to extract the
representations it is necessary to emphasize the importance of the
concept of a class. It is this concept which plays the dominant role

in the theory. As mentioned by Jones (14), the work involved in



determining classes may be greatly reduced by noting that if the opera-
tions of the group are written in matrix form, the matrices correspond-
ing to.a given class all have the same trace. This follows from the
definition of a class and the fact that a similarity transformation
does not change the trace of a matrix. .For further details of the work
involved the reader is referred to Jones (pp 76-90).

.Briefly, the idea of representation theory involves obtaining
matrix representations for all group elements, reducing the set of
matrices to diagonal form, and considering the traces of the matrices
in this form.

The determination of the types of symmetry displayed by wave
functions which represent allowed electronic states in crystals can
best be accomplished by a systematic approach. The first step involves
the construction of the regular representation of the crystallographic
group. The fact that any group may be represented as a group of regular
- permutations is very important and, when coupled with the fact that
every regular permutation can be represented as é gxg matrix, becomes
the foundation of the wofk that follows. The representation of the
group by these permutation matrices is known as the regular representa-
tion. Some of its properties can be seen at once. .First, each matrix
is of degree g (group order).  Secondly, since there can be no diagonal
element for any operatioﬁ except the identity, it folleows that:

o {a #E}
g (o = E}

Since .in general the operations of the group do not all commute with

Tr A

(2.3)
Tr A-

each other, it is not possible to find a transformation matrix which

will bring all matrices of the regular representation simultaneously



into diagonal form. However, it is possible to find a transformation
which will bring all matrices of the group into a form such as that

shown below;

.z

X
paS
X
* X
XX
X x
X X %
X X X
X X X
X X x
X XX
Xox X

Such a matrix consists of single elements or sub-matrices of degree

two or three -along the diagonal. For general groups the sub-matrices
may be of higher degree but for any crystallographic group none appears
with more than three rows and. columns.

When the regular group matrices have been transformed so as to
make the sub-matriées as small as possible, the representation is said
to be completely reduced and the sub-matrices themselves determine what
are known as irreducible representations. The traces of the matrices

of an irreducible representation are called characters. A character is

denoted by a symbol,xgU> where V denotes the irreducible representation
and the subscript i denotes the class of the operation to which the

matrix refers. As previously mentioned, all matrices of a given class
have the same character. Although it is sometimes necessary to obtain

the complete matrices of the irreducible representations in order to



solve the wave mechanical problem, in practice it is found that a
knowledge of the characters is sufficient to enable one to extract the
symmetry types without much difficulty.

.The calculation éf the character tables is dependent upon two
theorems:

3. The number of irreducible representations is equal to the

-number of classes.
4. The number of equivalent matrices of an irreducible representa-
tion, in the regular representation, is equal to their degree.
The first theorem may be used to obtain immediately the number of wave-
functions of distinctive symmetry. The second theorem may be used to
determine the degeneracy of each symmetry type.

In any irreducible representation, the matrix which represents the
identity operation is simply the unit matrix. - Consequently, the char-
acter. of the identity operator for any irreducible representation is
equal to the degree 0f the representation. Thus, by Theorem 4, if
.xév) represents the character of the identify operator in the V repre-
sentation, then there are just [xév)]z diagonal positions occupied by
an irreducible representation in th@ regular representation. Since the

matrix of irreducible representations is of order gxg it follows that

2

6 v @y L,

where r is the number of classes. As an example consider a group where-
in g-= 16 and r = 10. .For this system the only combination of characters

that will satisfy the condition given in equation (2.4) is

16 = 22 + 22 +1+1+1+1+1+1+1+1

and this yields valuable information about the character of the possible
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wave functions that may be constructed as well as the electronic states

that may be present in a system defined by such a group. It may be
seen that there are two doubly degenerate states and eight non-degenerate
states for this system.

The calculation.of character tables for any system is usually quite
involved. The general procedure is to first obtain all class products,
.then use the class product coefficients to obtain elements of a gxg
eigenvalued determinant. This determinant and its use is described in
great detail by Jones (14). If the group order is large and the group
.does not commute, the calculation of characters using this systematic
approach is tedious. An alternative method depending only on existing
.character tables-and general orthogonality relations has been developed.
It is this method which shall be used throughout the following work.

A -crucial part of the-alternative analysis involves the way by
which a group may be decomposed.  Suppose G is a group of order g with
r classes and that H is a normal subgroup of G having order g/2. If x
is an element of G (other than the identity) which commutes with all
other elements of G -and if X is not a member of H then the group G may

be decomposed in the following fashion

G.=H + Xd. (2.5)
The group G must contain twice as many classes -as H, for if C is a
class of H, XC is another class which cannot belong to H. This follows
from the definitions of subgroup and noermal subgroup. Since H is a
normal subgroup, no operaﬁion of H can be transformed out df H. Since
there are twice as many classes in G as in H, there are-also twice as
many irreducible representations of G:as there are of H. Suppose now

that the matrix (amn) is an irreducible representation of an operator
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A in H. Then one irreducible representation of G will be obtained by
allowing (amn) to represent XA as well as 'A. This representation
satisfies the basic requirement that the matrix representing the product
of any two operations of G is equal to the product of the matrices rep-
resenting these operators. A second representation can be obtained in
which if (amn) represents A, (-amn) represents XA.

.If all irreducible representations of G for which-A and XA have the
same matrices are designated by r+ and those for which the matrices for
A and XA differ in sign by r- then the character tables of G may be
constructed readily if that of H is known. Using S to denote the char-

acter table of H, then the character table for G has the form:

H XH
¥

r4 S l S
3

r. s |-s

Thus if the characters and classes of H are known, those of G may be
readily found and the character table set up immediately without calcu-
lation of eigenvalues and without the necessity of finding‘all irreduc-
ible representations. This is the basic difference between the procedure
- used herein and that outlined by Olbrychski (12).

Before any further procedure may be outlined it 1s necessary to
distinguish between thé point‘group and the space group of a crystallo-
graphic system. The point group is defined as being that group of
rotations and reflections which bring the crystal into coincidence with
itself. The space group differs from the point group in that it con-
sists of the translation group and the product of this group with a

complex of operations which may consist of rotations, reflections,
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glide reflections, and screw displacements, In most systems it is
necessary to consider the space group although some systems such as
the simple cubic system may be completely described using the point
group.

The simplest way of obtaining the properties of the point group
is to make use of the stereographic projections by which directions in
space may be represented by points on a plane, 1In order to use the
stereographic projection, it is first necessary to briefly discuss the
properties of the projection and its applications.

g

N

S

Figure 1. Construction of a:Stereographic Projection [After Jones (14)]

Let P be a.point on a sphere of unit radius whose coordinates in the
rectangular system OL, OM, ON, are (l,m,n) so that these are the
direction cosines of the line OP. S represents the south pole of the
sphere., The point P', where the line SP cuts the equatorial plane, is

the stereographic projection of P and its coordinates in the plane
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are

Pp' = {e ,, e , = —— ' 2.6
Now, let a plane at right angles to OP whose equation is

Ix +my + nz = p p<1 (2.7)

cut the unit sphere in a circle of which T is one point. The coordi-
nates (€,N) of T', the projection of T, are given by eliminating
(x,v,z) between (2.7) and the equations

2 2 2

x +y +27 =1 (2.8)
=X . n=- X
T T N T TR (2.9)
The result is
1.2 m |2 . 1-P2

(¢~ 5" + (V-5 = g7 (2.10)

Hence, a circle on the sphere is projected as a circle on the equatorial

.plane. The center of the projected circle is not-Pf but rather is

_I
> P4n’”

obtained‘using-equation (2.10) as (Ei; The rotation of a solid
about a given direction in space can therefore be represented by a
circular path about a fixed point in the stetreogram.

If the rotation.is.about a diad axis in the equatorial plane, a
.point P in the northern hemisphere is transferred to a point in the
southern hemisphére. A -projection of this point from.S would result in
a.point on the stereogram outside the unit circle. This is inconvenient,
and a simpler method is to project points in the southern hemisphere
from N and denote these points on the stereogram by small circles in

contrast to the dots used when the projection is from.S.

In addition to rotations, reflections can also be represented on
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the stereogram. A reflection in the equatorial plane is represented by
a dot surrounded by a sméll circle. These are the projections from- S
and N respectively of the two points in space related by the reflection.
A reflection in a plane normal to the equatorial plane such.as the

plane  ION is denoted b& two.dots or two:circles on either side of the
line in the stereogram which is the projection of this plane. Several
pertinent stereograms are given .in Chapter IV.

A plane which is inclined to the vertical but passes through the
origin is represented by an arc of a great circle in the stereogram.
For more detailed information as to the use of stereograms in describ-
‘ing the crystallographic point group, the reader is referred to Chapter
IT1I of the text by Jones (14).

In order to understand some of the language used when discussing
various point groups it is necessary to define the symbolism-used when
discussing-suéﬁ systems. Throughout this work both the Schoenflies
and the Hermann-Mauguin ﬁotation has been used. Whenever a symbol in
’either form of notation.appears, the symbol will be explained at that
" point. For general information as to the use of these two' types of
notation, the reader is referred to Kittel (16).

To be able to illustrate the relationships existing between two
mathematical groups, the concept of a mathematical mapping from one
group to another shall be employed. The most general definition of a
mapping from one group into another is embodied in the concept of
homeomorphism. A homeomorphism is a mapping of one group into another
with certain restraints placed upon the function that accomplishes the
mapping, i.e., the mapping function. Let A and B be two mathematical

groups. The function ¢ maps A into B if the relation
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@(al'az)'= @(al) @,@(az) | 2.1

holds. As may be seen, this definition embodies two different operations
(one for each group) and a function that illustrates an equivalence
between these two groups in a special manner. .In the above equation,
@(a1)=‘b1€B~and G(a2) = b2€B. Briefly, then, one group is mapped into
another if ay (the pre-image of bl) and a, (the pre-image of b2) may be

combined under the operatioh in A yielding another element, a, having

3

an image in B which is the same element as that found by combining the

image of a, and the image of a, using the operation in B, i.e.,

1 2

@(al-az) = ¢(33) = b3 = b1®b2 = @(al)@w(az). .If this mapping is one

to one, the mapping isvcalled an isomorphism. Evidently, two groups
that are mathematically isomorphic are equivalent. As a result, if

they have the same structure as far as the number of classes is con-
cerned, the fact that they are isomorphic will insure that the character
systems of A -and B are the same. Thus, if the groups-used in the
crystal system under study may be shown to be isomorphic to point groups
already developed in the literature (1l4) and may be shown to have the
same number of classes as the point groups with respect to which the
isomorphism is constructed, the calculation of characters for groups

may be circumvented simply by the construction of the isomorphism.



CHAPTER IIX
CONSTRUCTION OF THE BRILLOUIN ZONE

A complete symmetry analysis of any crystal system has as its
basis the group properties of the unit cell of the crystal. However,
if information is to be gained as to the configuration of the energy
bands, the possible electronic states, and the wave functions describ=
ing these states, it is convenient to make a mathematical mapping from
physical space to the space of the reciprocal lattice. This can be
done in the following fashion.

n, take

a, be three fixed vectors and let n Ny, D4

Let 2y, 2y, a4 1’

all positive or negative integral values including zero. Then the set

of points

na) *nja, *nja, (3-1)

maps out a translation lattice. .In order to specify the vectors a;s
which are known as the primitive translations of the lattice, it 1s con-
venient to refer them to a rectangular coordinate system. The components
of a, will be written a. , a, , a. and these nine quantities, completely
et ix iy iz

specify the lattice.

A useful notation for the present purpose is obtained by writing the
nine vector components as a matrix and the three integers n, as the

components of a column vector. A lattice point is then specified by

the symbol An,

16
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[0
[0
[0
=}

1x 2x 3x 1
a1y 32y 39, ny | = 4o (3.2)
alz aZZ aBZ n3

The usual rule for matrix multiplication then gives the rectangular
components of An as a column vector. Since the sum of two lattice dis-
placements An and Am is A(ntm), a translation lattice is completely
specified by the matrix A.

In crystallography the translation lattices are classified into
fourteen different types known as Bravais lattices. This classification
arises from the relation which exists between the translation lattice
and the other operators of the space group.

In order to specify the quantum states of an electron in a three-
dimensional lattice a vector k is required which is a vector in the
space of the reciprocal lattice. A reciproéal lattice may now be
uniquely defined for every Bravais lattice. If A represents the Bravais

lattice matrix and B the reciprocal lattice matrix, then the relation,

AB = 2111 (3.3)

defines B in terms of A and the identity matrix. This definition is
sometimes given without the factor 2l which appears here. However, in
the present case it simplifies the notation that follows. The three
vectors of the matrix B may be obtained through a modified form of

equation (3.3),

'é‘iﬂhj = 2H5ij ‘ ' (3.4)

In this relation, the a, are the primitive translations of the Bravais
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lattice. This set of equations completely specifies therhj. In fact:

b, = 28
215D & *a,
b, = 2 a, x.a (3.5)

where D ='§1.(§Q x.§3) = Det. A. The fact that equations (3.5) are the
solutions of (3.4) can be seen at once since El (for example) is at
right angles to both a, and a5 and therefore, the scalar products with

these vectors vanish.

The lattice mapped out by the points

1,b, + L,b, + 13b, (3.6)

as 11, 12, 13 take all positive and negative integral values including
zero is called the reciprocal lattice.

The unit pplyhedron in reciprocal space is defined as the region
enclosed by planes which bisect normally the lines joining the origin
.to the nearest points of the reciprocal lattice. As the points of the

reciprocal lattice are given by the vectors 1B, the equation of any one

of these planes is

K18 = [1m)". 3.7)
The stannic oxide, or rutile crystal structure is composed of
inter-penetrating, primitive tetragonal cells which differ in orienta-
tion by a ninety degree rotation. Although the resulting unit cell, as

shown in-Figure 1, has a metal atom at the body-centered position, it

is the primitive tetragonal cell which determines the Brillouin zone.
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The A matrix for the primitive tetragonal cell may be written as:

a 0 0
A = 0 a 0 (3.8)
0 0 c

-Since A is a scalar matrix, it may be inverted immediately. Thus, the

matrix describing the reciprocal lattice may be written as:

O W
(@]

20

=3
1

(3.9)

o D= O

o~ o

Application of the vector form of the Bragg reflection law (i.e.,

equation (3.7), results in:

2

-2 2
1 1 1 1 1 1
K tg + K F% +K(4%=ﬂ p% +(2 4—(3 (3.10)
x\a vta z\c a a c

The smallest polyhedron that may be constructed using this relation is
obtained by using the following values of 1: (100); (010); (001);
(100); (0I0); (001).

‘Thus, the first Brillouin zone for this structure is a parallelo-
-piped having a cross sectional area (ZH/a)2 and height 2Ill/c. The
volume of this cell is evidently (ZH)B/aZé, which is that corresponding
to the required result given by Jones (14). .Figure 2 illustrates the

shape of the zone and has coordinates listed for points of high symmetry.



CHAPTER .1V
CHARACTER .TABLES AND WAVE VECTOR GROUPS

When an electron is constrained to move within a crystal lattice
it is subject to many forces. As a resﬁlt, only very restricted values
of electron energies are allowed. .In order to determine the possible
‘energy states it is necessary to solve the time independent Schroedinger

equation. This equation is usually written in operator form as

HY = Ey | 4.1)

In this form, H is the Hamiltonian operator and as such describes the

~total energy E of the electron. Using the simplest form for H, i.e.,

2
=R—+
H o V(r) (4.2)
with the substitutiohs
. & o)
'Pk i BXK |
(4.3)
* T %
the spatially dependent Schroedinger equation may be written in
standard form as
2 :
By + E% (E - V(r))y =0 (4.4).

The solutions of this equation play an integral role in the following

work. Bloch (17) has shown that if the potential is periodic the

20
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solutions of this equation have the general form given by

b= eIy (4.5).

In this relation U(r) has the periodicity of the potential, i.e., the
periodicity of the lattice. Jones (14) hag shown that this form of
solution is valid even if the fotential is chosen to be some arbitrary
constant. Thus, this type of solution may be used for every situation
wherein the potential is either constant or periodic.

The Brillouin zone as constructed in Chapter III has several points
‘for which the co-ordinates have been listed. At each. of these points
a wave function may be written using-equation (4.5). The group of the
wave vector for each point is then defined to be that'se; of space
‘group. operations that leaves the wavefunction‘invariant or transforms
it into a :wavefunction at an equivalent point. Two points in the first
‘Brillouin zoné a?e calléd equivalent if they differ at most.bya
reciprocal. lattice vector. B

The space group symbol of the rutile structure is P4/mnm. This
means that this structure differs from the most symmetric tetragonal
point group with respect to the reflections in the (100) and (010)
planes. These true reflections are replaced by diagonal glide reflec~
-tions.

The nature of the glide operation must be considered in.some
detail in order to fully understand the properties of the space group
at various points of high symmetry. .First, it is‘necessary to define
operators which denote the glides in question. .These  operators and
their mathematical properties have been treated elsewhere (14), how-

ever, a general statement of the properties of such. operations is a
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necessary. preliminary to the work that follows.

If T(r) denotes a translation through r, and K denotes a point
group operation, the symbol KT(r) implies a displacement followed by
the application of the point group operation in questioﬁ. .In general,
the order of performance of these two operations is very important
inasmuch  as the operations KT and TK do not necessarily commute. The

lack -of commutativity is clearly illustrated in the following relation:
‘KT(xr) = T(Kp)K. (4.6)
1 J

The operations KT form a group which.is a continuous group if K and r
are unrestricted. .If r is restricted to lattice translations, T to
either integral multiples of the primitive veétors or rational fractions
of these, and K is restricted to the operations of a crystallographic
point group, then KT are the operations of the space group. If S
denotes a fractional vector, that is, one whose.components are proper
fractions, then a glide reflection may be written T(AS)m, where m
represents a mirror reflection.

These properties may now be applied to the unit cell of the
crystal system in quéstion. The unit cell has be;n drawn in Figure 1.
From this figure it may be ascertained that there are three reflection
planes which:are mutually perpendicular. Two of the reflection planes
have associated with them axes which may be classified as diad axes.
Due to the preseﬁce of the body centered molecule, the unit cell lacks
the ninety degree rotational symmetry characteristic of the holosymmetric
point group,P4/mﬁm. However, the unit cell does possess a one-hundred
and eighty degree rotational symmetry. Thus the entire point group con-

sists of an identity, (E), a reflection in the basal plane (m3), two
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reflections in the inequivalent mirror planes (m1 and m2), two improper
rotations associated wiFh the diad axes (Rl and RZ)’ a one-hundred and
eighty degree rotation_(Cz), and an inversion operation (J) included to
insure closure of the group. These eight operations may be placed on
.a stereogram-as in Figure 4. At this point, it should be noted that

" these operations may be obtained immediately from the holosymmetric
point group P4/mmm (stereogram shown in Figure 5) simply by deleting
all operations. of this group that correspond to the two reflection
planes (100) and (010).

" The full space group of the crystal is obtained by multiplying
all point group operations by the diagonal glide operation. This com-
plex of sixteen distinct operations must be described in-terms of the
factor group. Here it should be stated that the point group is of
.order eight, commutes, and may be made isomorphic to that of the
orthorhombic system. Thus the characters for this point group are well
known and need not be calculated.

.Since all of the point group elements play an important role in
the following:.analysis, each operation has been listed in Table I with
its inverse. .In the third column the substitution corresponding to the
operation in .question is listed. This column should be scrutinized
rather closely. The set of substitutions may be derived easily and
,merely'indicates the manner in which the product xyz is transformed
~upon-application of the operation in question. However, it is very
important in the following work that this set of substitutions be valid.
_For this reason column four has been included in Table I and indicates
the matrix representation of each operation.

The group of the wave vector at various points of the Brillouin
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TABLE I

POINT GROUP ELEMENTS AND THEIR

Matrix

Sub

IRREDUCIBLE REPRESENTATIONS
inverSé

ElemenE

Xyz

yXZ.

S o o~ © O;ﬂ. co
oo 4.0 o oo o© —o
—~00 OO OdO0o HOoOOo
e I LI N
IN tN N N

N 1% » 15y

3 1> > L

‘o — o~ o~

= =4 - (&)

™ — o~ ™~

= 4 - Q
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zone may be determined in a systematic way. The firgt step involves
consideration of the Bloch function at that point and selecting all
point group operations that will either leave the fudktion invariant or
transform it into another Bloch function at an equivalént point.
Consider the group of the wave vector at the point D} At this
point of the zone, the wavefunction is merely V where V(r) has the same
period as the Bravias lattice. Since the glide operations Tm and mT
commute at this point, it will suffice to consider only the application
of the elements (H) and Tm(H) to the wavefunction. In this notation (H)
stands for the entire point group. Thus, the entire space group is to
be applied to the wavefunction at the center of the Brillouin zone.
This set is of order sixteen due to the inclusion of the product of the
diagonal glide operation with all point ‘group operations. This set of
sixteen elements will not form'a group in itself because the combination
law stated for the product of a point group operation and a.translation
(included in the glide) introduces some other translations that were
not in the original set. However, all of these translations are of
such a nature that when they are applied to the Bloch function they
reproduce the function exactly. As a result of the commutativity of
the point group elements and the commutativity of T and m, the entire
set of order sixteen is commutative. Thus, the character table consists
only of positive and negatives 1's and may be constructed quickly by
considering that (H) is a normal subgroup of the space group and Tm
commutes with every element in the group. Following the argument given
in Chapter II, the character table‘is’ set up using the characters given
for the orthothombic point group. 'The results are tabulated in Table

II.
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Consider next the point of the first zone designated X. The Bloch
function at this point is given by:

iTx

by = e T U(r) (4.7)

The only other point of the zone that is equivalent to this: point is
the one that has coordinates which are the negative of those given for
X. Thus, the set of point group elements that belong to the group of

the wave vector at X consists of the elements:

E, m3,.J, C2.
Using the substitutions given in Table I, these elements operating

on the wavefunction will eithér reproduce the wavefunction at X or

at its equivalent. point. If the operation Tm is considered, (m repre-

senting a reflection in the x=0 plane) then application of this

operation to the wavefunction at X gives another Bloch-type function

at the point equivalent to X. Inclusion of this diagbnal glide opera-

tion increases the ordetr of the set to be studied to eight. Note how-

ever, that the product

JIm = JT(33%)m = T(355)mI = T(111)TmJ

-See eqn. (4.6)

and when:it is applied to the wavefunction at X the sign of the wave-
function is changed. As a result, it is necessary to include all
translations that change the sign of the wavefunction in this group.
Such translations shall be designated by Q. .However, this is not yet
sufficient. The fact that the group must be closed requires thét all

elements of the form QTm be included. The complete set of the wave
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vector at X is therefore of order sixteen. The elements of this group
and the inverse of each element are listed in Table III.

In order to determine the classes for this set, it is necessary to
consider all products of the form x_la x where x is allowed to take on
all values in the group and a is a fixed element. Table IV contains a
sample calculation for two of these classes. Table V contains the
complete results of this calculation and as such contains all classes.
These classes may be shown to be simply isomorphic to those obtained
using the holosymmetric point group P4/mmm via drawing an isomorphism
between these two groups. The group isomorphism used for this case is
given in Table VI. A class isomorphism follows directly.

Due to the relation between the two groups given in Table VI, the
set of characters obtained for the group of the wave vector at the
point X is the same as that,obtaiﬁed for the holosymmetric point group
P4/mmm. This set has been rearranged as given in Table VII and must
now be 'scrutinized rather closely. The function which has been used
to generate the group of substitutions of the wave vector at X is the
Bloch function at that point, (equation (4.7)). Once the operations df
the wave vector group were selected, the only properties of the wave=-
function subsequently used were: that U(r) should be invariant under
a lattice transformation; that Q=T(110) should transforﬁ the wavefunction
into an equivalent Bloch function; and that Q2 should leave the wave-
function invariant. The given wavefunction is not the only function
with these properties; for exampie, U(r) itself satisfies the condi-
tions. Hence, amongst the representations of this group there will be
some for which the character of Q is positive. These appear in the

top eight rows in Table VI and they cannot refer to the wavefunction .since
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QY/= V. The only representations that belong to the wave vector at
X have been designated by X1 and-X2 and each of these corresponds to a
doubly degenerate state.
Consider a similar treatment applied to the states at Z. Since
‘ Tiz
the wavefunction at this:point is given by wz =e ©. U(r) the set

of point group operations- that either leave the wavefunction invariant
" or transform it into a wavefunction at an equivalent point are given by
all elements such that z is transformed into itself or its negative.
Thus, all of the: point gréup elements apply to this wave vector group.
,Usigg an -analysis exactly similar to that just discussed for the point
at X, the factor group is composed of all of the point group elements
multiplied by E, Tm, Q, and QTm. The set of elements and their inverses
are listed in:.Table VIII. The classes are calculated as before by con-
sidering all. possible products-of the form x_la x and are given .in
Table IX. The full group is of order thirty-two and contains twenty
classes. Therefore, the character table is not simpiy isomorphic to
one of the character tables already worked out for the holosymmetric
- point groups. |

Two alternatives are available if these characters are to be
‘calculated. The first of these lies in a complete analysis based upon
the solution of secular determinants whose elements are class. product
coefficients. The:other alternative is to recognize that the elements
given in Table X form a subgroup of the complete group. This subgroup
is. of order sixteen and is invariant. Multiplicatidn of every element
- of this subgroup with the -element m, (or mz)‘produces the rest of the

group. Since my commutes with all members of the group, it is possible
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to use the procedure outlined in Chapter II wherein a knowledge of
the characters of the subgroup is sufficient to allow the immediate
calculation of the characters for the complete group. As a result of
this analysis, it is seen that since the subgroup is isomorphic to the
- point group P4/mmm, it is possible to write the character table imme-
diately. .Using an argument very similar to that developed for the group
of the wave vector at X it is seen that the table of characters may be
re-arranged into a set which apply to the point in question (due to the
restriction Q¥ = -¥) and a set that do not apply. Again, it may be
seen that only doubly degenerate states are allowed at this point.
Table XI contains. the characters for this group.

Consider now states at the: point M. At this: point the wavefunction

-is given by:
in(xty) o
= e : U(E) (4-8) .

The point group elements whiéh leave this wavefunction. invariant or
take it into a:wavefunction at the equivalent point consist of all
elements which take xy into yx, xy,l§§ or xy. The entire point group
(G) displays this property. The element Tm is not a member of the wave
vector group at M. However, the product meTmy is a mémber of this

group. The: product may be rewritten as:

kaTmy T(Oll)mxmy T(Oll)C2 = QC2

(4.9)

T@mix T(lOl)mymx T(lOl)C2 = QC2

where Q is a translation: which changes the sign.of the wavefunctioen and
Q2 is the identity. Thus, the: full group of the wave vector at M

.



consists of (G) and Q(G). This group is of order sixteen and is com-
mutative. As a-result, there are sixteen classes in this group that

are simply isomorphic to those found at the center of the zone. The

character table for this wave vector group is given as Table XII.

At the point A the wavefunction has the form:

T . T =1
i(=x + =y + =2)
=e 7w (4.10)

Equivalent points have wavefunctions given by

T T T
P
i(Gx + 3y - 22)

e U(r) : ’

T
i(-;—rx - ;’y + ‘(—:Z)
e U(r)

e T (D
The entire: point group applies to this set without producing a new
wavefunction. As was the case for the-point at M, although neither
,me nor Tmy is' included in the wave vector group, their product is.
‘However, for this set, the product does not introduce a translation
and the resulting characters may be seen to be simply isomorphic with
those obtained at the center of the zone. The cﬁaracter system for

this wave vector group is given in Table XIII.

At the point R the wavefunction.is given by

i o
i(;x + —z)

c

wR.= e U(r) (4.11).
The set of point group elements that take this wavefunction into itself
or a wavefunction at an equivalent point are:

E, m3,,J, C2.
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Again, as at X, the wavevector group consists of this set (H) and the
~products Tm(H), Q(H) and QTm(H). Table XIV contains the appropriate
elements and inverses. The characters are given in Table XV.

It is also necessary to consider the points that lie on the axis
between the high symmetry points discussed so far. The first such
-point has been designated as A. Here the wavefunction is given by

bp=e?  U(n 05 (4.12)

The set of all elements in the space group which leave the form of this
wavefunction invariant consists of all elements which do not change
the sign of x. Only four elements fit into this category. They are:
E, mg, TmC2, and TmJ. The characters for the system are determined by
considering the set of substitutions generated by these elements. This
set is shown in Table XVI along with the corresponding elements. Note
that this set of substitutions corresponds to those provided by the
elements E, m, , m3,_and R2vpresent in the holosymmetric:.point group
P4/mmm. These elements constitute a commutative subgroup of the holo-
symmetric group. Due to the commutativity of this subgroup, its
characters are -well known. Since the wave vector group at A is composed
of élements that have the same substitutions as this group, an iso-
morphism may be constructed between these two groups and their char-
acters. The characters for the group of the wave vector 'at the point
A are listed in Table XVII.

A similar analysis applies to every axial point. Rather than
repeat the entire procedure for each axis, the results of the analyses

of wave vector groups and characters at designated general points have



been listed in-Tables XVIII through XXVI.
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TABLE - II

CHARACTERS AT T

N = - A o A A A A A N A o~ = -

— N NG N O N Vel eNeN ST =N =D = =00
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‘TABLE III TABLE 1V

WAVE VECTOR GROUP ELEMENTS TYPICAL CLASS CALCULATIONS
AT X x-lax = C, -
Element , ~ Inverse ‘a = Tm a = C2
E E Tm C2
my my - Tm ©,
c, c, QTm c,
J J QTm c,
Tm - QTm’ | Tm Qc,
Trm, QTm@3 Tm Qc,
TaC, TmC, Qr_ Qc,
TmJ - TmJ ‘QTm QC2
QTm Tm Tm QCé
QTrm, Trm, T_ Qc,
QTmC, QT@¢2 QT - qc,
QTmJ QTmJ QTm qc,
::Q Q Tm .C2
‘Qm3 Qm3 Tm Cé
ac, a, otn c,
QJ QJ QTm ' c,

In Table IV x is taken from Table III directly -
"Example is '
QTm (C,)Tm = QImQTmC, = Qz(Tm)?Ci = QC

2
TmJ (Tm)TmJ = TmJQJ =—quJ2 = fmQ = QTm



-TABLE V TABLE VI

CLASSES AT X GROUP ISOMORPHISM USED
.Elements ‘Elements

Cl =E at X in P4 /mmm

C, =Q E E

Cy = Tm + QTm m, J

C, =J+QJ c, m,

Cg = TmJ + QTmJ J Ry

C6 = m3 Tm C1

C, = Qm, Tmm.y Jc,

Cg = Tmm, + QTmm, ' TnC, m;

Cy = C, +QC, TmJ R;

C,o = TmC, + QTmC, QTm cil
QTmm, JCil
QTmJ R;
QTmC, mi
Q C,
Qm3 m3
QJ R,

QC2 m1




TABLE VII

CHARACTERS AT X

Cy C3 G G5 Cp G Cg Gy Cpy
1 1 1 1 1 1 1 1 1
1 1 -1 -1 1 1 1 -1 -1
1 -1 1 -1 1 1 -1 1 -1
1 -1 -1 1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1 -1
1 1 -1 -1 -1 -1 -1 1 1
1 -1 1 -1 -1 -1 1 -1 1
1 -1 -1 1 -1 -1 1 1 -1

2 0 0 0 2 -2 0o o0 o0

2 0 0 o0 -2 2 0o o0 o
Q m,Qm

36



TABLE VIII

ELEMENTS AND INVERSES AT Z

Element Inverse Element Inverse
E E QTm Tm
m1 m1 QTmm1 Tmm1
m, m, QTmm2 Tmm2
My my QTmm, QTmm,
R1 R1 QTle QTle
) ) QTmR, QTmR,
vC2 -C2 QTmC2 TmC2
J J - QTmJ QTmJ
Tm QTm Q Q
»Tmml QTmm1 : le le
Tmm2 QTmm2 sz sz
Tmmy 0 Tmmy Qmy Qmy
TR TmR QR, QR,

» TR, TmR2 v QR, QR,
TmC2 QTmC2 QC2 QC2

TmJ TmJ QJ QJ




TABLE IX

CLASSES AT Z

C, =

C =

aQ
I

C
C
=C

%
C2C4j

]

ho

wi

%

217 %
% _—
262 =

2

W
2%3.

TmC, + QTmC

2
J+QJ

]

k3

;-= +
C2C5 TmJ QTmJ
mp = mC
Qm, = m;C,y

Tmm‘1 + QTmm1 = mlC3

Ry + Q&) = mC,
ToR, + QImR, = m C,

mé = mlC6

sz = mlc7

Tmm, + QTmm, = m.C

2 2 ~178

2 179

+ QInR, = m Cyg

R, + QR, = mC

TnR,

*point group element rather
than a class

38



NORMAL .

TABLE - X

SUBGROUP OF Z

TmC
TmJ
Tmm
QTm
QTmC
QTmJ

QTmm
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TABLE XI

CHARACTERS AT Z

Z)

2

Zy 2
z3 2
z, 2

sz

Qc,

40



" TABLE XII

- CHARACTERS AT M

~ = A A 4 A ~ 4 ~d

—

=

e~
=

™
=

~
=

LN \O
= A

~

=

00 = =N

=

=

=

-
=

N = = =

-t =L =\O = [~ =00

= =2 A=A =

-8 1i>8

= Tm Tm C

Cy
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TABLE XIII

.CHARACTERS AT A

-1

Tm Tm

M,

42

when 1 > 8

= Tm Tm C,
Xy i-8

C.
i



TABLE XIV

ELEMENTS AND INVERSES AT R

Element Inverse
E E

) )

J J

C2 -C2
Tm QTm
Tmm3 Tmm3
TmJ QTmJ
TmC2 -TmC2
QTm Tm
QTmm3 QTmm3
QTmJ TmJ
QTmC2 QTmC2
Q Q

Qm3 Qm3
QJ QJ

QCZ QCZ




TABLE XV

- CHARACTERS AT R

¢, ¢ ¢ ¢ C Cc C, Cg Gy Cpp
1 1 1 1 1 1 1 1 1 1
1 1 1 -1 -1 1 1 1 -1 -1
1 1 -1 1 -1 1 1 -1 1 -1
1 1 -1 -1 1 1 1 -1 -1 1
1 1 1 1 1 -1 -1 -1 -1 -1
1 1 1 -1 -1 -1 -1 -1 1 1
1 1 -1 1 -1 -1 -1 1 -1 1
1 1 -1 -1 1 -1 -1 1 1 -1
R, 2 -2 0 0 0 2 -2 0 0 0
R, 2 -2 0 0 0 -2 2 0 0 0
C, =E Cp =J
C, =Q C, =QJ
Cy = Tm + QTm Cg = TmJ + QTmJ
C4 = m3 + Qm3 C9 = C2 + QC2
C5 = Tmm3 + QTmm3 ClO = TmC2 + QTmC2
TABLE  XVII TABLE XVI

CHARACTERS AT A

E m3 TmJ TmC2
11 1 1

1 1 -1 -1

1 -1 -1 1

1 -1 1 -1

X x xta/2 x+a/2
Ly y yta/2 F+a/2

Z

44

" SUBSTITUTIONS USED FOR THE GROUP

AT A

Element Substitution
E Xyz
my XYE
TmC2 Xyz
TmJ Xyz




TABLE . XVIII

AXTAL WAVE VECTOR- GROUPS.AND CLASSES.

Location of

Symmetry Wave-Vector
Point Wavefunction - Group Classes Characters
A 2milz E,m,,m,,C,,Tm, Set of substitutions: Table XIX
_ c > isomorphic to group:with -
11!,A e U(x) Tmml,Tmmz,TmC2 classes _~C1 =E, Cpi= C
Cy = m1+m2, C4 = Tmrrrl'f'Tmm2
-C5 =‘Tm+TmC2 -
W {TTXA_*_AZ?TQZ} 2,Tm,TmC2 Substitutions isomorphic ‘Table XX
a ¢ U(x) with:E,m ,mz,C2 of
€ P4 /mmm point group
S 2ni{§-(ﬂ)-x - E] E,m,,R, ,m These commute Table XXI
a 2c¢ 277273
e U(x)
T mi{E + 2 +,2523 3,Tm Tmm3 Substitutions isemorphic "Table: XXII
a a .- to {E By 5 Rl’m } of p4/mmm
€ . point -group
U 2n1{—§ + —} E m3 ,TmC ,TmJ Same as A wave-vector group ‘Table :XXIIT
U(x) ’
n"
i —"ﬁza (x+ty)
p3 e U(r) Same as:S . ¥ Table XIV

Sy



TABLE XVIII (Comtinued)

Symmetry Wave-Vector ‘Location of
Point Wavefunction Group Classes Characters
v mifEHD). 26z,
e a i ¢ U(x) Same as A Table XXV
i,
Y a—(x+2§y)
e U(xr) Same as T

“Table XVI

9%



TABLE XX

TABLE XIX

CHARACTERS AT W

CHARACTERS AT A

]

1 C1

1 C1 = E
-1 C2 = C2

-1

-1 C3 = Tm

-1

-1 C3 = m1+m2

1

-1

-1 C4 = TmC2

1

0 C5 = Tmm1+’I‘mm2

TABLE . XXII TABLE XXTIII

TABLE XXI

CHARACTERS AT U

CHARACTERS AT T

CHARACTERS AT S

TmJ

’ngz

My

Tm Tmm3

M3

TABLE XXVI

TABLE XXV

TABLE - XXIV

CHARACTERS AT Y

CHARACTERS AT V

CHARACTERS AT %




CHAPTER V
FREE ELECTRON ENERGY BANDS

In the majority of .cases it is possible to determine the energy
band configurations for any space group in a manner that is somewhat
independent of the work outlined to this point. The symmetry analysis
is used to indicate the allowed electronic states that may exist with-
in a band and to reveal the amount and type of degeneracy present.

The principle by which compatible states are determined is
extremely simple. The symmetry of any electronic state along an axis
of the first Brillouin zone must be contained in the symmetry of the
compatible states at the end of the axis.. The rule which is used to
determine the symmetry types along an axis which are compatible with a
given type at the end of the axis states that the sum of the characters
of the compatible representations along the axis must be equal to the
character of the representation-at the end point. The wesults of the
symmetry analysis are used only for this purpose. It is the intent
of this chapter to illustrate how such results may be applied to the
designation of the possible electronic states in the simples't case,
i.e., the free electron approximation.

As mentioned i; Chapter IV, the time-independent Schroedinger

equation has the form given by

AV +%‘-} {E . v..(f)}qu =0 (5.1)

48
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If the Bloch form of wavefunction is used, i.e.,

b = e = Zuco (5.2)

direct substitution into the Schroedinger equation results in a
differential equation that must be satisfied by the periodic function
U(r) >

This equation has the form

o . 2
5U + 21K YU + 57 [E -V(E)j U = 0. (5.3)

In the free electron approximation, V(r)= 0. The use of this approxi-
mation results in a very much simplified mathematical problem for which

a solution of equation (5.3) may be written as:

U () = RE (5.4)

The substitution of this solution into equation (5.1) results in a

normalized energy Ekl given by:

2 ‘ L
Erq =-2—%§— El: & - 11)2 + (N - 12)2 + (@ - 13)2(%)'2 (5.5)

"In obtaining this expression, the simplifying notatien

2n a :
k=7 EC, % 20 (5.6)

has been used. Such treatment involves the use of a wavefunction of

the form

Vgy = exptzmug:-ll)'f + ('q;,-lz)z- + (g;-13)§}. (5.7)

In order to obtain a wavefunction and energy corresponding to a.partic-

ular state, it is necessary that the coordinates of the symmetry points
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be known. .These coorainates have ‘been given in Figure 2 and shall now
be used when desired.

The first step in the treatment involves consideration of the
-possible states from [ to & to X. The &, T and { coordinates of the

~points in question are:
I = (0, 0, 0) A= (E, 0, 0) X = (%, 0, 0). (5.8)

The energies and wave functions at these. points are given by

2 2 a, 2.2

Bro=1, + 1, + O] , (5.9)
B, = (1 - 2+ 12+ (B (5.10)
B, = (1, -9+ 15+ D) | (5.11)
llf‘._.,: exp[-Zﬂi[liX +,1:§y + 122 1] (5.12)
v, = expl2mi{(E-1)% - Laz_y_ - 1—2:}] (5.13)
by = exp[2ﬂi{(%-11)§ - lﬁl - 1—25 1. (5.14)

In order to facilitate the proper combination of exponentials necessary
to obtain the wavefunctions in terms of circular functions, Tables
XXVI1, XXVIII, and XXIX have been constructed. These tables are very
similar to those used in the calculation of wave vector groups in that
they indicate how each class operation-in the compatible states trans-
forms the set {xyz}. ‘Usé'pf these tables and the character tables given
in the previous chapter enablés-one to construct allowed free«electron
wavefunctions.

Since the 1's must be integral, it follows that-the'r“p;int is

the point of lowest energy. This state is of type Dl (i.e., it
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possesses the full symmetry of the space group and the wavefunction is
merely a constant). Starting from this point and moving along the 4

axis, the energy and wavefunction are given by:

F =2 and by = eZ“;'X (5.15)

From the character table, it may be seen that this function is of the

type A At the point X, the normalized energy is 1/4. The wave-

1
function at this point must be obtained by using the proper linear

combination of the two exponentials;

miX

-17iX
a .

and expl (5.16)

exp[

Since all states at X are doubly degenerate, these must be combined

into the following two functions which display the symmetry of the Xl

state.

X . TX
(cos 5 5> sin 2 ). (5.17)

When Ex = 1/4, 1 may also have the value (100). Thus another A state
starts at this point. The energy and wavefunction of this state are

given by

EA = (1 - §)2 and = exp[ggi(g-l)xj. (5.18)

¢A
This function displays the symmetry of the A6 state. At the end of the

axis, at the point I', E, = 1 and there are four possible values of 1

r
which give this energy. These four values are (100), (010), (100) and

(010). The exponentials corresponding to these 1 values are:

exp[igE%K] and exp[iggfzj. (5.19)
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These must be combined to give functions with the symmetries dictated

by the character table. Possible wavefunctions are listed below.

Sin2'g§§ + Sin2 ZEX Type El (5.20)
Cos"ggz + Cos ggl Type Fi (5.21)
Cos ggg - Cos ZEX Type Fé (5.22)
Cosz'-z-gi)E --Cos2 ZEX T ype ré. (5.23)

In obtaining the symmetries used at the point ET = 1, it was necessary
to investigate the symmetries of the possible A states that enter and
leave this point. Starting at EF = 1 there are three new A bands. The

energies of these bands and their corresponding 1 values are given below.

1 E

A
(010) : (010) 14 €2 (5.24)
(100) (1 + 6> (5.25)

These two bands terminate at different energies. The first band termi-
nates at EX = 5/4 and is doubly degenerate. The second band terminates
at E_ = 9/4.

X

The exponentials appropriate to the above 1 values are:

1 Exponential
(100) exp[’ggi(g'l)xj (5.26)
(010 expl2E (% + y)] (5.27)

(010) exp[ZL (2x - y)1 . (5.28)
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The wavefunctions and symmetry types become:

1 Wavefunction
(100) ¢ = expl 2L (g41)x] (5.26)
A6 a ;

by = exp[ZEERY omy (5.30)

_ 6 a CcOS a

(010) : (010)

b = exp[gﬂiégﬂsin my (5.31)

1 ‘ a

At the'pointvEX = 5/4, another A band starts because it is also
possible to obtain this energy using the 1 values (110) and (110). The

wavefunctions may be obtained from the four exponentials

exp[%} (X £ 2y)] and exptlgi (X -+ 2y)] (5.32)

and all may be combined inte possible states at this point. The only

symmetry type ‘possible using these exponentials is that of the X, state,

1

and for reasons of compatibility, two possible states of the symmetry

X1 must exist at this point. Then, possible wavefunctions have the

form:
(Cos X Cos 2ny ; Cos X . 8in Zﬂzﬁ (5.33)
a a a a
(sin X cos 351 ; $in X sin Zgz) ) (5.34)

In returning to the I point, the energies and wavefunctions along the

axis are given by:

E, =E, =1+ (1 - £ and
1=(100) 1=(110)

(5.35)

expl A - DX £ 1] .
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Combination of the two exponentials yields the two wavefunctions listed

below with the symmetries given.

o ZML(E-DX 21y ¥ (5.36)
a a A6

o M(E-DX  go2my (5.37)
a a Al

At the center of the zone, the energy is given by‘EF = 2.0. Again
there are four possible ways of obtaining this energy, i.e., use of the
(110), (110), (110) and (110) values of 1. Thus, there are four I
states at this point with wavefunctions that can be ascertained by use
of the character systems. Possible functions of the proper types are

listed below.

wF = Cos 20X Cos 2my f ' (5.38)
5 a a
fpy = sin 22 sin ny (5.39)

1 a a

w2 2K .. 2 27y

Wfé = Sin =7 -8in a (5.40)
¢ = sin 2 gin Y (gin? 2K _ gyp? 2Ty (5.41)
fz a a a a

The singly degenerate A state terminates at EX = 9/4. Another band
starts at this point with 1 value (200). The exponentials to be

combined here are:

3Mix
pat

and exp[:§§i§ J. (5.42)

exp(

Evidently these may be combined to yield the wavefunctions given below

which again display the X, type of symmetry.

1
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(Cos 30X ; Sin'gﬂgﬁ"‘ (5.43)
a a

In returning to the I’ point, the energy along the A axis is given
by (5.10) as:

_ )
E, = (2 - 8) (5.44)

while the wavefunction has the form

by = exp[gziﬁglgzgl. (5.45)

1
The energy at the center of the zone is ET = 4.0. This value may
also be obtained using (fOO), (020) and (020). The analysis now is
exactly like that used for ET = 1 wherein the possible A bands were
obtained in order to determine the symmetries of the states at this

point. Such procedure results in allowed wavefunctions of the form:

Cos X+ gos L -y (5.46)
a a 1
41X dny

Cos — =~ Cos — —.wré (5.47)

sin X gip 4IY Yo (5.48)
a a 1 R

sin 2 sin 2 {cos X . cos MY = ¢ (5.49)
a a a a 2

This analysis may be carried on indefinitely merely by the repeated
application of the procedures outlined thus far, It is incomplete
because all possible 1 values for the {(100)} set have not been used.

In the past analysis all normalized energies at the center of the zone
have been integral. This is not alw;ys the case, however, £ecause of :the

a/c ratio. Consideration of the (001) and (001) set of 1 values leads
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to different values of the energy at the I' point than those used thus
far. Their use gives the energy at the center of the zone as EF = (a/c)z.
Also, for this set the lowest energy wavefunction, wF’ is not a. constant.

Instead, the two exponentials

-2miz [z'ﬁiZ]

ex? [——Z-—] and  exp . (5.50)

must combine into states with symmetries dictated by the character table,

Possible wavefunctions are:

¥, = Cos 20z (5.51)

1 C

Yps = Sin mz (5.52)
6 C

Moving along the A axis results in an energy and wavefunctions

given by:
_ 22 a2 .
EA =g + (C) (5.53)
¢A = e Znixs Cos'zEE (5.54)
a c
6
Q;A = g M Sin Z_TTE . (5'55)
l a c

At X the appropriate energy is 1/4 + (a/c)z. The energy may be
obtained using either the (001) and (00I) values of 1 or by using the
(101) and (101) set. Thus, possible wavefunctions at X must now be

written as linear combinations of the exponentials:
X oz
exp,[2ﬂ1(§;—+ ;):] (5.56)

exp.[Zﬂi(-z-)*(a— - 5] (5.57)
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exp [Zﬁi(%é +'fﬁ] (5.58)
L.=X .z
exp [Zﬂl(E; - Eﬁ] (5.59)

which may be combined into the two wavefunctions

X 21z . X 27z
¢Xl : (Cos 2 Cos el Sin 2 Cos —zrﬁ (5.60)
and
X L. 2z | L. TX . 2Tz
wxz : (Cos " Sin il Sin » Sin —E—Q . (5.61)
For the 1 values (101) and (10I), other A states begin having
energy EA =*EA L= (%)2 + (1 —»§)2. Wavefunctions describ-
1=(101) ° 1=(101)

ing these states are

¢A = e'gzi(g-l)x’ Cos iz (5.62)
a c
1
Uy = e mi(g-DX Sin 20z ‘ (5.63)
4 a c

This band ends at Ep = 1 + Qh/c)z. At this point there are six other possi-
ble 1 values consistent with this energy, i.e., (011), (0I1), (011), (101),
(iOi), and (0II). The exponentials obtained using all 1 values giving

EF-= 1+ (a/c)2 must now be éombined in such a way as to yield " states

that are compatible with the incoming and outgoing 4 states. Along the

outgoing & axis energies and wavefunctions are given by

E = E =E

2 2
= = E =1+ & (5.64)
b a=co1y 2 (o1Dy c

b oiy & (ol

271iXE

= ° Cos 221 Cos'ggi (5.65)



2miXg
y = @ Sin 20 gip 272
A4 T a c
2miXE
¢A =e a Cos 2ny Sin'gEE
3 a c
2miXE .
] =e ° Sin 2y Cos Znz
A6 a T ¢
2
B, . =8, __ =®+a+9’
(101) (101)
2miCEHD)X
_ a v 2Tz
¢A = e Cos c
1
2mi (EH)X
b =e ° sin 222
2 , c

i
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(5.66)

- (5.67)

(5.68)

(5.69)

(5.70)

(5.71)

"Using the symmetries of these states and the corresponding [ states,

eight wavefunctions may be constructed at the center of the zone and

several representative possibilities are listed below.

I
¢F = {Gos X + Cos ZEX} Cos 2z
1 a a
b = fsin® ZX 4 sin? 2} cos 202
1 a c
¢Iy = {Sinz'ggé + Sin2 ggx}{Cos'Zgg - Cos ZEX} Cos2 20z
"2

In analogy with the previous treatment, this discussion may be
out indefinitely. The results of the total analysis are shown

6.

(5.72)

(5.73)

(5.74)

carried

in Figure
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In order to fully exploit the application of the free electron
approximation to this structure, it is necessary to consider the elec-
tronic states present along all symmetry axes. For this reason, the

-past analysis should be repeated for other symmetry axes.

Consider as an additional illustration the axis from [ to A to Z.

In order to facilitate the classification of electronic states along
- this axis, Tables XXX and XXXI have been constructed. The energies and

wavefunctions are obtained as before and are tabulated below:

_ .2 2 ay2 .2 , .
Ep = 11 + 12 + (C) 13 o (5.75)
_ 2.2 a2 2
EA = 11 + 12 + (C) (13—g) (5.76)
_ L2 2 a2 L 2
B, =1+ 1‘2 + (15D (5.77)
11X 1 1qz
ami(—= ¢ 22y 3 (5.78)
¢o=e a a c
¢
1.X 1,y .
B -
¢A = e (5.79)
1.X vy
o= ¢ 24 (1 -nE) . (5.80)
a 3 c
v, =e

"As in the previous case, the lowest energy occurs at the center of the
zone, corresponds to 1=(000), and is zero. The wavefunction is constant
and the state is of the type Fl' Using this value of 1, the energy -

along the A axis has the form

E, = g (5.81)

and the wavefunction is given by equation (5.79) as:

¥, = exp[g%éz—] . ‘ ‘ (5.82)
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This state 1s one which displays the Ai symmetry and is compatible with
the'I“'1 state at the center of the zone.

As the top of the zone is approached, the energy has the magnitude
1/ﬁ(%/¢)2 and may be obtyined by using the (001) value of 1 as well as
the (000) value. Since the states at the Z point are doubly degenerate,
the two exponentials given by equation (5.79) may be combined into the

wavefunctions

v+ {cos %5 . Sin %5} ) (5.83)
1

Because two values of 1 give the same energy here, another A band

begins. The new energy and wavefunction for this band are

E -1 -9° G° (5.84)

A (001)

by = exp[ggi(g'l)zl : (5.85)

2

At the center of the zone, the energy obtained using (00l) is the same

as that obtained for (001) and has the value

=K = (502 . (5.86)

E. . =E_ |
ooy T oool)y ©

Combinations of the exponentials resulting from the use of these 1

values allows.the two possible wavefunctions

wFi = Cos e (5.87)
and
., 2Tz
¢F' = Sin = (5.88)

6
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This value (00I) gives rise to another A band at this point

described by the energy and wavefunction

2.,a.2
E, =1+ (5.89)
A ooy ¢ ,
iy, - exp[ £ 2] (3.90)

"Energy and wavefunctions obtained at the other end point, i.e. at Z,

are listed below.

- = (332 (352
E, (00D E, 002y CY A (5.91)
b (cOs‘QEE . Sin égﬁﬁ . (5.92)
1

Again as in the past treatment, a whole new series of bands
originates at EF ='1. .This energy may be obtained by the use of either
of the four 1 values (100), (100), (010) or (0I10). Wavefunctions which

are appropriate have been obtained in the usual manner and are listed

below.

by = sin? & 4 gip? 2Y (5.93)
]_ . a a

¢F, = Cos X + Cos 2oy (5.94)
]_ a a

tpi = Cos AL SR PP A1s 4 (5.95)
2 a a

bp = Cos? EE _ gog? 2 (5.96)
2 a a

Cbmpatible A states may be represented by
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‘Ep =By =E, -5, _=1+® o
(100) “ 7 (100) (010) (010)
,j-Zﬂi;C:z
Ib;/\ = exp ¢ fcos '22& Cos 2_;_7_’[ (5.98)
l "
Yo = exp[:gﬂigzﬂ (Cos 2R oos gﬂiﬁ (5.99)
5 c a a
T exp[jgnigaj (Cos TX 4 Cos ZEX? (5.100)
¢A2 c a a
Gy = exp[:zﬁiggj (Coszigﬂé - Cos2 gEy'),. (5.101)
1'\4 c a a

This four-fold degenerate A band terminates at the Z point with an
energy of 1 + 1/4(a/c)2. For illustration, possible wavefunctions for

two of the four doubly degenerate electronic states are

¢ : Cos T2 [Cos EE (os 20Y | gip ZE gy 2TV (5.102)
Zl C a . a a a
¢ : 8in I2 {Cos Z (os EX | gin 2E gy A0V (5.103)
Z]. C a a a a

Results of the total analysis are given in Figure 7. The general
trend should now be evident. Treatment of the simplest 1 values yields
the first few bands whereas the inclusion of all possible 1 values
merely shifts the energy band scheme upward and in fact yields no new
information. Thus, in the following tables and figures, only the first
few bands are considered. The tables contain 1 values and corresponding
energies along the other symmetry axes. The shape of the free electron
bands is also conveniently illustrated by using the information in the

.tables to plot electron energies over selected plane circuits in



k-space.

8-12.

Results of this kind have been utilized in obtaining Figures
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TABLE XXVII

CLASSES AND SUBSTITUTIONS AT I

64

Class X Y Z
¢, =E X Y Z
C, =R, -Y -X -Z
C, =R, Y X -Z
¢, =¢C, -X -y +Z
€ =3 -X -Y -Z
C, = m, +Y +X +7
C7 my -Y -X +Z
Cg = my +X +y -7

9 Tm -X + a/2 Y + a/2 Z + C/2
Cp = TmRy -Y + a/2 X+ a/2 -Z + C/2
C,, = TmR, Y + a/2 X + a/2 -Z +¢/2
Cyp = TmC, X + 5/2 -Y + a/2 +Z + C/2
Clq = TmJ X + a/2 -Y + a/2 -Z +C/2
€y, = Tmm, +Y +a/2 -X + a/2 +7Z + C/2
015 = Tmm, -Y + a/2 +X + a/2 +Z + C/2
C e = Tmmg -X + a/2 Y + a/2 -Z + C/2




TABLE XXVIII

CLASSES AND.  SUBSTITUTIONS AT A

Class X Y Z
E X Y Z
m3 X 'Y -Z
TmJ X +a/2 -Y + a/2 Z +C/2
TmC2 X +a/2 -Y + a/2 Z +C/2
TABLE XXIX

CLASSES AND SUBSTITUTIONS AT X

Class X Y Z
E X Y Z
Q X + a Y + a Z +C
m X Y ~-Z

Qﬁ3 X+ a Y + a -Z + C




TABLE XXX

CLASSES AND SUBSTITUTIONS AT A

Class X Y Z
Cl =R X Y Z
.C2.= C2 -X -Y Z
C3 = my + m2 Y or -Y X or X Z
»C4\= Tmml + Tmm2 Y + a/2 or X + a/2 Z + C/2
Y + a/2
C5 = Tm + TmC2 -X + a/2 or -Y + a/2 or Z+C/2
+X +-a/2 Y+ a/2
TABLE . XXX1
. CLASSES AND SUBSTITUTIONS AT Z
Class X Y Z
C, =E X Y z
c, =Q X+ a Y +a Z +C
C6 = C2 -X -Y Z
,C7 = QC2 -X + a =Y + a Z +C
C11 = ml ~Y -X Z
2= QM1 -Y + a =X + a Z +C
C16 =m, Y X Z
C17 = QM2 Y + a X+ a Z +C

66
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TABLE XXXII

SOME ENERGIES AND 1 VALUES ALONG THE AXIS Z-U-R

1 E E 'E

z u R
2,.2 2,a,2 2,.2 ; . 2,.2
-x = - <X =2
a,2 a2, 4.2
& GORIEIEEY
(000),(001)  x(H? g2 a3’ i’
2 2 2 2
(100),(101)  1+%(%) 53 +(1-8) 5+ (9)
- - 2 2 2 2
(100) , (T01) | 23 %+(1+8) &2+
1+%(§§2 c 2 c
(011), (0i1) © 2., a2 a2
(0109, (010) e+ I+ ()
TABLE XXXIII
SOME ENERGIES AND 1 VALUES ALONG THE AXIS R-W-X
1 ' Ex .EW ER
2,2, ,a,2.2 2,.2 2,.2
-% = -k - %
2,842 _1y2 8,2
(13"(;) (c) (13 2) (C)
. 22 8,2 2
(000) (100) % 7 (3) i)
(0o1),(101)  &+(H? &% 107 (3’
- - ’ 2 oy 2 2 2
00Dy, (10D %D’ 5+3 (D) Rl
' 2 2 2 2 a2
(102),(002) %D w20 =@




TABLE. XXXIV

. SOME ENERGIES AND 1 VALUES ALONG THE AXIS [ -I-M

68

E

(012),(112)

1 En Eg Mo
2.2, ,a.2.2 2 2 2 12
2 ,a.2 2,a.2
+l3(g) +13(g)
(000) o 262 X
(100),(010) 1 (1-5)2+§2 %
(100),(110) 2 2(1—5)2 %
(110), (110) 2 g-+(1+E) (S’
(110) 2 2(1+8)° 2(%92
(100),(0i0) 1 (149 4¢° R
(220) 8 2(2-8)° 2(2)?
(200),(020) 4 (2-5)%+¢? R
TABLE XXXV
SOME .ENERGIES AND 1 VALUES ALONG THE AXIS M-V-A
1 EM EV .EA
12 2. 2 2 2, 112
(1,1,15) (1,-5) +(1,-%) A -HDHL-HD" Q-5 H1,-H)
2,a.2 ad . _r\2 irq 182,302
EHG) +@F(150) 1,93
(000) , (110) 1 1arledy2 1 a2
(001),(101) a,2 L,,8\2 2 L8, 2
SRR e
(002),(102) %+ﬁ(§02 %+(§)z(2q:)z 3.2,a,2

%+(§) )
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TABLE - XXXVI

SOME: ENERGIES AND 1 VALUES ALONG:THE AXIS Z-S-A

! By Es Ea
2,.2 2 ,a,2 2 2 2 32
2,2 2 2,a 2
103 -9 3
000y,(001)  x(DH? 267+ (32 s’
(111),(110) 245D’ 2(1-8) 2+a(d) 2 2
(100) ,(010) a2 A 2 ap EEOD
(101),(01L1) 1+5(%) g7H(1-8) 45 (D) ¢
(00000 a®? Ctranta®? i)’
(1i1),(ilo) s (149 245D G2+ +a R’
(111),(110) 2+5(=) 2. 2 . a2 3.2,,,a 2c
(111, (110) Qe SR TCO R T O TCo
TABLE XXXVII
. SOME ENERGIES AND 1 VALUES ALONG THE AXIS X-Y-M
1 ‘Ex .EY -EM
2,.,2,,a,2 2 2 2 2

(000) , (100)
(010),(110)
(010) ,(110)
(100) , (200)
(110),(210)

(120),(120)

+&%1] +13(3?
% e’ 5
5/4 1+ (1-8)° 5
5/4 Y+(14E) 2 349 /4=10/4
9/4 9 /4+E* 10/4
1375 9/4(1-8)2 10/4
17/4 3+(2-5)2 10/4
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TABLE XXXVIII

SOME . ENERGIES AND 1 VALUES ALONG THE AXIS A-T-R

(110),(111)

1 ER ET EA
11,1, a2+ G?  ania,-n’ an i’
(1,-5)° +&%a,-n° +&%a,-n?
o ooy’ 53’ ()
QI CEELIC L R
CLOLOID i’ G G ld’?

TABLE XXXIX

SOME ENERGIES AND 1 VALUES OF DEGENERATE STATES
ALONG THE AXIS I'-A-2Z

' Ep E, E,
thlaty) O 1A (507 10HyHn
&?
22%88;:28%8; 1 1+(%)2g2 1+%(%)2
Qopo &2 (140 1+3)° G
BB wet seole? edior




® Tin atoms

O Oxygen atorhs

" Figure 2i Unit Cell of the Space Group Dig. :
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F: (O,O)O)'
Az (00,8) °
. Z':(O‘O,E[)‘ S
X:(fgoy T
T

| M=(T, T 0)

o ) )
' Uz(é)o) 2.)

' Figure 3.

First Brillouin Zone for the

Primitive Tetragonal System.



| B | xyz
oM YRz
Mo | yxz
R, | yx2
Cp | %9z
J | XyZz
Mz | xyz
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‘Figure 4. Stereogram for the Rutile Structure.
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Element Substitution | Classes
E xyz__ |C=E
m Xyz :CZ:C? ,
c, y Xz C3=C,+C,
m, VX2 C,=R, +er
Co Xjz_ |Cs=R| +Rj
m, xJz___|Ce= JCy=d
c;’ yxz  |C,=JCormy
my yxz  |Cg=JC3=JCi*JC,
mj XyZ |Cg=JCq=m; +m, |
R RYZ  |Go=JCg=my+m, |
! _yxz i
Ry yxz
J Xy2
" Rp xyZ
- JC, yxZ
Ry yxZ

Figure 5. Stereogram for the Holbsymmetrié Point

Group P4 /mmm.
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Figure 6. Free Electron Energy Band Configﬁration
Along the Axis I'-A-X. '
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Figure 7. Free Electron Energy Band Configuration
Along the Axis I'-A-Z. :
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Figure 8. Free Electron Band Structure Around the Circuit
[-x«r-z-T.
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Figure 9. Free Electron Band Structure Around the Circuit
FM-A-z-T.
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'Free'Electron Band Structure Around7the Circuit

Figure 10.

X-R-A-M-X.
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Figure 11. Free Electron Band Structure Around the Circuit I'-M-X-T'.



81

oION)
QI

Free Electron Band Structure Around the Circuit Z-A-R-Z.

Figure 12.



CHAPTER VI
CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

The system of characters developed in Chapter IV may_ be used for

every substance which displays the rutile structure; however, the

|
results of the analysis have been applied only to the most rudimentary
model in this report. Such treatmenﬁ is not only illustrative but
constitutes a valuable first step in determining compatible electronic
states within any band and may be extended in the manner given by
Nutkins (18) to obtain a qualitative idea as to the free electron
density of the states. However, the free electron approximation is
not of significant value in itself because the effect of the-periodic
potential has been neglected.

A comprehensive review of the various theoretical methods avail-
able for the calculation of the energy band configurations from first
principles has been given by Pincherele (4). Each of these methods
involves the solutién of the Schroedinger equation with a nonzero
potential. As might be expected, the inclusion of a potential in the
Schroedinger equation results in a very complex mathematical problem
that may be solved only by the incorporation of various approximations
concerning its nature and that of the wavefunctions. The ¢hoice of a
"proper potential' is very difficult and requires a great deal' of
knowledge régarding the nature of the chemical bond, the magnitude of

the exchange forces and the effect of spin-orbit coupling. -As a
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result, a purely theoretical calculation has little value unless it may
be correlated with experimental evidence copcerning the band structure.

Logical extensions of the work performed thus far must be two-fold.
Priority should be given to acquiring specific experimental data yield-
ing information concerning the band structure. With such in hand, any
of the more sophisticated theoretical approaches given in the liter-

ature may be -applied.
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