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PREFACE 

In this study a closed formula for deformation energies of heavy 

nuclei has been used to find the potential well in which a nucleus 

vibrates. This knowledge has permitted a calculation of mass parameters 

a.nd moments of inertia for even-even nuclei using experimental data from 

vibrational rather than rotational exc~ted states. The results obtained 

did not correlate well with results previously calculated from rotational 

level data. This has been attributed to the simple collective model that 

was used, and it is hoped that with a more sophisticated model the po

tential energy curves found will be useful in fathoming the extremely 

complicated level structure of heavy nuclei. 

I would like to thank Dr. Hermann G. Kuemmel for his suggestion of 

the problem and his guidance during the course of my work. 
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CHAPrER I 

INTRODUCTION 

Nuclear Models 

In medium and heavy nuclei the problem of describing the inter-

actions of the various nucleons with one another is so involved that a.n 

exact description cannot be made. The job for the nuclear physicist, 

therefore, becomes one of ma.king a ma.thematically solvable model of the 

nucleus which fits all the empirical data. 

Many different models have been proposed (l): each of which 

describes some, but not all, of the experimental evidence. Behind each 

model lie certain simplifying assumptions about the nucleus; these 

assumptions basically fit into two categories. The first is that 

individual nucleons move almost independently in a common nuclear po-

tential. Models based on this type of assumption are known as inde-

pendent particle models, and an example is the shell model (2). The 

second group of models are known as strong interaction.models. These 

models are based on the assumption ttui.t all of the nucleons are strongly 

coupled to each other. A well-known model of this type is the liquid 

drop model (3). In the past several years, a unified nuclear model has 

been proposed which·would take into account both individual and col-
·., 

lective motion of the nucleons (4, 5). 

The liquid drop model is a comparatively simple model, and some 

l 
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results obtained with it give the basic trends of certain experimental 

evidence. However, upon closer examination of the correlation between 

experiment and liquid drop theory, it is found that maximum discrepancies 

occur at certain ma.gic numbers. These'magic numbers are quite important 

in that some nuclear properties are found by experiment to be dis

continuous at these numbers. These discontinuities probably cannot 

be explained by strong interaction models. The shell model, on the other 

hand, treats the nucleus as having a shell structure and correctly pre

dicts the magic numbers as occurring at 2, 8, 14, 20, 28, 50, 82, 126, 

and 184. Because of this shell structure, nuclei with a neutron or 

proton number far away from these magic numbers behave quite differently 

from nuclei with neutron or proton number near closed shells. 

A New Mass Formula 

The mass M of a nucleus containing Z protons and N neutrons is given 

by 

M = ZMp+NMxi-B 

Where Mp is the mass of a proton, Mn is the mass of a neutron and Bis 

the binding energy of the nucleus. The binding energy is made up of many 

te'rms which attempt to describe the interactions of the nucleons in the 

nucleus. The most well .. known f omula for heavy masses (A/ 40) which 

agrees with experimental evidence and is simple in form is known as the 

semi-empirical mass formula. It was first formulated by Wei2sacker (3). 

A discussion of modern versions of this mass formula can be found in most 

standard nuclear physics texts. For example, see Evans (6). 

The semi-empirical mass formula is based upon the liquid drop model 

of the nucleus. Consequently, it does not agree with experimental 
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evidence near closed shells of the nucleus. A better fit to experiment 

can be obtained if additional parameters which take into account the 

shell structure are incorporated into the mass formula. This has been 

done by Kuemmel, et. al •. (7), and the agreement with experiment has 

been found to be very much improved. 

One of the terms in this new mass formula has to do with the 

binding energy brought about by the deformation of the nucleus around 

a spherical shape. Since this deformation energy is a function of o(, 

the deformation parameter, the potential well of the deformation energy 

can be plotted. If a nucleus is thought of as oscillating inside this 

potential well, experimentally known energy levels can then be used to 

determine various parameters of the nucleus. 



ClIAPI'ER II 

DEFORMATION ENERGIES OF HEAVY NUCLEI 

Deformation Energy Term in the New Mass Formula 

In the new mass forxnula. of Kuemmel, !!• al. (7), the binding energy 

brought about by a deformation o( is given to second order by: 

/\ 

-~ ··~k 

In this formula the subscripts 1 and k refer to the last number in the 

(1) 

shell being filled, and the superscripts N and Z refer to neutrons or 
N 

protons respectively. For example? 126 refers to the parameter ? for 

N -JN Z _,fl, nuclei with 82<N~l26. The parameters o<0 , ~ i' 1 , "l..k, ::rk, u6 , and Uc 

are all found by determining which values for them would give the best 

fit to experimental mass values. This is done using the complete mass 

formula in which the deformation energy is only one of many energy terms. 

The values for these parameters are listed in Table I. 

I\ /\ The symbols n1, ni, zk, and zk represent the number of neutrons in 

the 1th shell, the number of neutron holes in the 1th shell, the number 

of protons in the kth shell, and the number of proton holes in the kth 

shell. As usual, A and Z stand for the mass number and atomic number of the 

nucleus in question. 

4 



N 
~ 126 

TABLE I 

VALUES OF PARAMETERS USED IN DEFORMATION ENERGY TERM 
OF NEW MASS FORMULA 

• 60.00 kev t ;2 = 30.00 kev us : 1.951 X 104 

u = 753.3 kev 
C 

5 

kev 

'j N 
· 126 = -1.000 kev 1:2 = 30.00 kev ~ = 1. 500 for 82 < N <'.126 

For a given nucleus, if we let c equal the second bracket in equation 

(1) and set b = A2/3 r-2u - u z2 7, our equation takes on the much - L• S C --
5: A 

simpler form: 

(2) 

For a given nucleus, the largest value of D(cl) will give the largest 

value of the binding energy and hence the smallest mass. The nucleus will 

be most stable when this occurs. The value of o<. giving the minimum. mass 

value will be designated °'bi.in; it can be found in the usual way by setting 

(dD(o()/Jo()o(. .; = O. 
min 

Using this value for o< 1 , we can find D(~ 1 ) , the mn mn 

value of the deformation energy when the nucleus is most stable. 

A plot of D(o(.) vs.o( can then be made for a given nucleus by calcu

lating the values of c and band using equation (2). Several such plots 

a.re shown in Figs. 1 and 2 for even-even nuclei. (An even-even nucleus 

is one with an even number of both protons and neutrons.) It is seen that 

the potential aurve thus plotted acts very much like an harmonic oseil-

la.tor near o<min. Note that the potential well is deeper the further a.way 

the nucleus is from a closed shell .• 
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Harmonic Oscillator Approximation 

If we take a Taylor series expansion of D(o() aroundo< i we get mn 

D(c() = D(o< ) -+ (°" - o( )D' ~ ) + (o<. - °)nin)2 D" (o< ) 
min min ~min 2 l min 

(o<. - o( )3 + inin D, ' '(°\n1n) + • • • ' 
(3) 

where a superscript prime inQicates that a derivative has been taken with 

respect to c{. D(°)n.1n) can be arbitrarily set equa.l to zero, and D1 at 

(~in) equals zero. If we neglect all terms of the order of (co< - ~in)3 

or higher, we get the harmonic oscillator approximation 

D(~) = D' ' (°)nin) • 

The derivation of D 1 1 ~min) is as follows. From equation (2), 

D1
~) is found to be 

(4) 

D' (<J() = c o< e-(o</~) 2 - 20<b (5) 
o< 2 

0 

Setting this equal to zero gives us 

o( !i.., : "<! 1n [ :; •• ) .,J 
Differe:ntiating equation (5) once more gives 

and 

D t 1 (?() _ O 

- o<,2 
0 

D 11 (o< ) = - 4 (b) ln[ c J 
min go<.; (b) 

- 2b 

If we think of the nucleus as vibrating in a,potential well V(d\) (see 

Figs. 1 and 2), we can associate a spring constant k with the harmonic 

(6) 

(7) 

(8) 
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oscillator approximation. The potential energy V then becomes 

V = }k (°" -~in)2 , (9) 

where 

k = -D"(...l ) (10) - min 

It will be shown in Chapter III that the change of variable 

( "'- -~) = ( ~ ~ is desirable. This gives 

V = t (t; k}8 2 • ffe./ 2 (11) 

where 

(12) 

Additional Expansion Terms 

For relatively large values of o< - ~n it is not possible to neglect 

the higher order terms in equation (3). Therefore, we will investigate 

the cubic and quartic terms •. To do this·, we have to calculate D1
' '('in.in) 

and D1
' ''(°'-min). Differentiia.ting equation (7) gives 

D" ' ~) = -2 71i" o< e -(o</o<o)2 f- e(~";n . (13) 
' °" 0 

and, using equation (6), we get 

D' ' ' (~in) .. -4 ~) fl C J} ~2b 0 

"p -21n 2:/(~)J (14) 

Differentiating equation (13) gives 

n""(o<) • ~ e-(-</o<o>2 [..i.~J + 12~r-3J (15) 

and, using equation (6), we get 
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n' I I I (~in) = -4 hl (t [~~ (b)1 o( 2 
0 

-12 1n [ .~ J + 3 } • 
2o<o (b) . -

(16) 

If we set 

k' = -! D' "(~in) (17) 

and 

k I I = 1 
- 2i n""(o< ) min ' 

(18) 

we get 

V = ! k (~- i.1n)2 -rk' (o< - ~in)3 +k' '(o( - ~in)4 ; (19) 

and once again setting o( - -<min = J'f; ~ , we obtain 

V = ! ko82 ..,.. ko '~ 3 ..,. ko' ~ 4 (20) 

where 

kl I (21) 

In order to get an idea of the magnitude of the numbers involved, 
. 1 II 

Table II gives the values of b, e, °biin' k0 , k0 , and k0 . for several 

even-even nuclei. 

Figures 3 and 4 show examples of the potential curve, the harmonic 

oscillator approximation, and the curve when the cubic and quartic terms 

are used in the expansion. We see that the harmonic oscillator approxi-

:ma.tion is a pretty good one in the range spanned by the first two energy 

levels. These energy levels will be discussed in Chapter III. 
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TABLE II 

I II 
VALUES OF b, c, °'min' k0 , k0 , and k0 

FOR SOME HEAVY EVEN-EVEN NUC-IEI 

o( b C ko kb, k" min 0 

Nucleus X 104 kev x 104 kev x 105 kev Ix. 105 kev X 105 ke'li. 

8XDs6 .161 10.9 1.59 2.01 .90 -7.07 

8mea .. ,.: ~ ,' .173 ll.2 l.90 2.36 .51 -7.71 

Gdgg .177 10.7 l.92 2.35 .3~ -7.45 

S~o .180 ll.4 2.16 2.61 .18 -7.98 

Gd90 .183 10.9 2.18 2.59 .02 -7.67 

Gd.92 .187 ll.2 2.39 2.,76 -.18 -7.84 

Er98 .195 10.8 2.64 2.91 -.59 -10.0 
I 

Hf106 .187 10.8 2.29 2.67 -.15 -7 .60 

Osll2 .168 10.4 l.65 2.08 .64 _-7.05 

Pt116 .143 10.3 1.16. l.50 l.30 -5.60 
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CHAPl'ER III 

MASS PARAMETERS OF DEFORMED HEAVY EVEN-EVEN NUCLEI 

Theory of Rotational and Vibrational Excited States 

It is a well known fact that in nuclei, neutrons tend to pair up 

with neutrons and protons tend to pair up with protons. Hence, if a 

nucleus has a.n odd number of protons or neutrons or both, the individual 

motion of the unpaired nucleons is very important. However, in even-

even nuclei, single particle motion is of much less importance; and in 

the strong interaction approximation the excited states of such nuclei 

are thought of as coming about entirely because of the rotation or 

vibration of the nucleus as a whole. Using such a model, it has been 

found that the important features, though not the details, of excited 

states of even-even nuclei can be explained (8). A brief discussion of 

the collective modes of excitation for even-even nuclei will now be 

given. 

Heavy even-even nuclei near closed neutron shells are regarded as 

spherical whereas those far from magic numbers are deformed into prolate 

spheroids (cigar-shaped objects). The proton shells are approximately in 

phase with the neutron shells for heavy nuclei. (F l 166 . or examp e, 68Er 98 is 

far away from both a proton and a neutron magic 208 number while 82Pb126 has 

both a proton and a neutron magic number.) Irrotational flow is assumed 

within the nucleus, so for spherical nuclei the only possible exciting 

14 
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collective mode is vibrational in nature. The spin-parity sequence of the 

+ + :+ + ,:+ first few levels is O, 2, and then a triplet level with O, 2, and~ • 

These levels are equally spaced. In deformed nuclei there are both ro-

tational and vibrational modes of excitation. The rotational spin-parity 

sequence begins with the o-+ ground state and the succeeding levels are 

2+, 4+, 6+, a+, ••• The spacing between the levels increases linearly 

as the spin I increases. There are several possible vibrational modes 

for deformed nuclei, but the two most important are vibrations along the 

major axis with cylindrical symmetry maintained and vibrations which 

destroy the cylindrical symmetry but do not change the length of the 

major axis. The former type are classified as ~- vibrations, the latter 

as ¥-vibrations. Schematic drawings of the lowest collective excitations 

for spherical and deformed nuclei are shown in Fig. 5. For each vi-

brational mode there are several rotational excited states. The first 

~:..vibrational mode has a rotational band characterized by spins and 

parities of rY", 2+, 4+-, • • • The first 1-vibrational mode has a ro

~ + ,.+ tationa+ band with 2 , 3 , ~ , • • • as the corresponding spins and 

parities. Each level in a deformed nucleus can be thought of as cor-

responding to a level in a spherical nucleus. The first few theoretical 

levels in each type of nucleus are shown in Fig. 6. Some of the re-

lated levels are connected by dashed lines. 

If the nucleus is thought of as oscillating in the potential well 

due to the deformation energy term in the new mass formula, a corres-

· · pondenee can be made betwe·en vibrational levels in this well and 

~-vibrational levels in deformed nuclei. This has been done for the 

first energy level. in the potential well. 'l'he first fl-vibrational level 

eorrespon4s to this, and it is easily found using experimental data 
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X X 

(a) Vibrational modes of 
a spherical nucleus. 
Nucleus vibrates about 
spherical shape. 

(b) Rotational modes of a 
deformed nucleus. Nucleus 
has cylindrical symmetry 
and rotation is about 
x-axis. 

X 

, before vibration----...,,......,."' 
'\ 

y 

(c) ,S-vibrational modes of a deformed nucleus. Nucleus vibrates 
a.bout a prolate spheroid shape but retains cylindrical 
symmetry. 

X 
X 

before vibration 
y ..,.._-tt---t--t+-

osc illa.tlon..............: 

y 

(d) ~vibrational modes of a deformed nucleus. Nucleus vibrates 
about cylindrical symmetrY, but length of major axis is 
unchanged. 

Fig. 5: Schematic representation of, lowest collective 
excitations in spherical and deformed nuclei. 
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o+ - ------

Levels in a 
spherical nucleus. 
All levels are 
vibrational. 

Rotational 
levels 

t'-vibrational p-vibrat ional 
levels levels 

Levels in a deformed nucleus. 

Fig. 6: Rotational and vibrational levels in spherical 
and deformed nuclei. (Dashed lines identify some 
of the lower levels in a deformed nucleus with 
corresponding levels in a spherical nucleus.) 



because, as ea.n be seen from Fig. 6, it is the first excited state 

with spin-parity o+. 

Tabulation of Experimental Data for First Excited o+ Level 

18 

Excited o+ levels have been found in many heavy even-even nuclei. 

In some nuclei two or more such levels have been found, but we are 

interested only in the lowest one. A tabulation of the energies cor-

responding to these levels and the sources from which the data were 

obtained is found in Table III for some nuclei with 82 <Nf 126. 

Mass Para.meters of Heavy Even-Even Nuclei 

If the nucleus is treated as a deformed liquid drop, its excitation 

energy comes about because of vibrations and rotations. The total 

classical hamiltonia.n is then 

Hclassical = Trotational + Tvibrational + V • (22) 

If the nuclear motion is described as being only oscillation within the 

potential well caused by the deformation energy term in the mass formula, 

the hamiltonian reduces to 

• (23) 

According to Bohr (4), V is given by 

V = tkc/2 (24) 

where 19 is a deformation para.meter related to o( - -<mtn (to first order) 

by the equation 

,4 • (1fl1 ( o( - o(IIWl) • (25) 

Tv:Lb is given by Bohr (4) as 

Tvib = f B (,d 2+ ~2 ti-2) , (26) 

,·. 
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TABLE III 

ENERGIES OF FIRST EXCITED o+ LEVELS IN SOME 
HEAVY EVEN-EVEN NUCLEI 

Nucleus 

snd-5o 
62 08 

. 152 
64Gd88 

152 
628m90 

154 
64Gd90 

156 
64Gd92 

E 166 
68 r98 

178 
72Hf106 

188 
76°6112 

Energy of First 
Excited o+-Level 

(kev) 

1120 

740 

615 

685 

681 

1010 

1460 

1197 

1087 

1267 

* N.P. = Nuclear Physics. 

Source 

Kenefick, R.A. 8c R. K .•. Sheline. 
Phys. Rev., Vol. 133, ( 1964), 
P• B25, 

Lutsenko, N.P., Vol. 47, (1963), 
p. 42 • 

N.D.S.** 

N.D.S.*'* 

Lutsenko, N.P.1 Vol. 47, (1963), 
p. 42. 

Thosar, et. al., N.P.*Vol. 41, 
(1963);-p. 386 

N.D.S.** 

Verheul, et. al,, N.P,1 Vol. 42, 
( 1963), p, 551. 

Marklund, et. al., N .P. ,* 
Vol. 15,-rl9b0), P• 533, 

N.D.S.** 

*'*N.D.S. = Nuclear Data Sheets, National Academy of Sciences, 
National Research Council, Washington, D.C. 
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where '6 is a shape parameter which describes the deviation from rotational 
.,, 

symmetry. We are concerned only with ft vibrations; this means that ro

tational symmetry is maintained and "'1= o. This gives us 

; (27) 

• • and ~ see that ¥ and ~ are canonically conjugate variables since Bf> = 
oL . 
,p where L =~b'"V. The quantum mechanical form of the harmonic oscil-

lator hamiltonian corresponding to this is 

where p and q obey the commutation relation 

LP, L7 = "!i/i 

If we take q = f>, then 

p = ~ .a.. 
i iJP 

. , 

• 

and our quantum mechanical hamiltonian becomes 

H_ =-} ~ ... 
--q. m. B ~2 +! •of • 

(28) 

(29) 

(30) 

(31) 

This is the standard quantum mechanical harmonic oscillator hamiltonia.n. 

We will call B the mass parameter since it takes on the role of the mass 

in the harmonic oscillator solution. 

Schroedinger's equation using Hq. m. is 

(32) 

The solution to this, using. equation (31), can be found in basic texts on 

Quantum mechanics, e.g. reference (9). The solution yields the wave 

functions 'Yn and the energies. The energies are given by 

En = .ef (';)! (n + !) n = integer • (33) 
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The first excited o4- level in our model is the difference between the 

E0 and the E1 energy levels. Hence 

EC)> •El• J!o = i~~)' · t~~l di ~)* • 

Since we know k0 from our deformation energy expression, we can find B 

or Bf/!2 using equation (34). We get 

• (35) 

Table IV shows some·values for the mass parameter B/.JfJ.2 calculated from 

equation (35) for some deformed heavy even-even nuclei. 

'!'ABIE IV 

VALUES OF !_ = ~ FOR SOME HEAVY EVEN-EVEN NUCLEI 
· "2 E 2 . o+ 

Nucleus ko (x105 kev) Eo+ (kev) B 
\k;v) j{2 . 

8Dlf36 2.00 1120 • 160 

smaa 2.35 740 .430 

Gdaa 2.35 615 .622 

s~ 2.60 685 .554 

Gd90 2.59 681 .558 

Gd92 2.76 1010 .270 

Er98 2.91 1460 .136 

llf106 2.66 1197 .185 

Osll2 2.08 1087 .176 

ptll6 1.50 1267 .094 
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Perturbation Corrections 

If, instead of a harmonic oscillator potential, we use one which 

includes higher terms (equation 20), our ha.miltonian becomes 

H = H0 + H' , (36) 

.where 

= - J6.2 ..a: Ho ~ 2 = ~/J. 
, (37) 

and 

t 3 II 4 
H' = k0 /d + k0 ,d • (38) 

In the region in which we are interested, H' is small compared to the 

second term in H0 • This can be seen by looking at Figs. 3 and 4. Be

cause of this, we .can use standard time independent perturbation theory 

to find the change which this would bring about in E0+ ( =E1 -E0 ) • Since. 

the perturbation terms make the well more shallow, the energy Eo+ is 

lowered by a small amount ..1E0+ • Since we want E0+ found by experiment 

to equal our E0+ found using the perturbing terms, the value used in the 

harmonic oscillator approximation should be slightly higher than Eo+ found 

experimentally. We raise E0+ used in the harmonic oscillator approxi

mation by multiplying it by the factor Eo+(exp) / £°E0+(exp) -AE0+ (exp)J. 

These relationships are shown schematically in Fig. 7. Eo+(corrected) 

then becomes 

_ ~ E0+(exp) ) E0+(cor) - E0+(exp) ( ) . ( ) 
Eo+ exp - LlEo+ exp 

and our corrected value for B/JfJ.2 is 

B(cor) ;2 = ko 
Eo+2(cor) 

We now proceed with calculating AE0+(exp). 

(39) 

(40) 



Fig. 7: 

exact 
curve 

AE0+(exp) 

l 

exact 

harmonic oscillator 
/approximation 

harmonic oscillator 
approximation 

r-----

T 
E0-t (exp) used in l fin.ding 

B /.ri.2 

T 
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E0+ that should be l used to find 
B/n2 (cor.) 

Relation of Eo+ measured experimentally to the E0-t 
which should be used to calculate B/.:ri.2 in the 
harmonic oscillator approximation. 
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Perturbation theory is discussed in most basic texts on quantum 

mechanics (9), and the first order energy correction is given by 

oQ 

LlEn = j lf': H1 Y'n d~ 
-oO 

where~ is found as part of the solution to equation (32) using the 

bamiltonian H0 , and ~ is the comple~ conjugate of 'Pn• Since all of 

our Y'n are real ( 'f! = 'f n) and H' Y'n =. V'nH', we have 

• 

The Y:i are given by the formula 

, 

The first few ~ are 
I 

~ = (~) t e-~,82 

'Pi = ~;/. -w2 /3 

(tl 2 

~. = e-iap (2a~2 - l) 

l/'3 = (;.,f' e -~,8 2 (2a3/2 / 3 - 3at/) 

'1'4 = (;frlf t: 0 -b.al I ( 4a2,J' - 12./ + 3) 

(41) 

(42) 

(43) 

(44) 

We see that the~ are either even or odd functions, depending on whether 

n is even or odd; therefore, 'f'! is always an even function. H' is given 

by equation (38), and it is seen that it is made up of an odd function 

plus.an even one. The integral of equation (42) can be written 



oO 

A En = ko' ( l.pn 2 /3 3 dfi --Since the first integrand is odd, 

first order, of' 

L\En (l) : k~ J 'fn 2 ~ 4 d_fi 
-(I:) 
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00 'j 1b2 4 + k~ Tn I' dl5 (45) 

the first integral is zero, and to 

• (46) 

The first order approximation does not take into account the (!>3 term 

which is in general more important than the ~ term. So we need the 

second order correction in order to see what contribution the f:'3 term will 

make to c1En,. The second order contribution is 

-a 
~. 
k = 0 

k In 
1_0: ll' '/1,; d/ 12 

E - Ek n 

If we again break H' up into two parts, we get 

• (47) 

(48) 

In these integrals, if n + k is even, the first integral is zero, whereas 

if n + k is odd, the second integral is zero • , This occurs because of the 

even-odd properties of the resulting integrands. 

Since we are interested in .t1E0+ ( =AE1 - L1E0), we will now compute 

AE1 and AEo. It woulu 'be very laborious to compute more. than a· few of 

the terms in the summation of equation (47). Therefore, we will stop 

after the first four terms. This induces an error into our calculation, 

but it is about the s~ order of magnitude as neglecting the /5 and 

other higher order terms in our expansion of. V. Our expressions for LlE1 

and LlE0 are 

+ (49) 
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oe f-1-bi ~ H'd,8'2 
4E1 : k'if\2 f,4dfo + k : 0- . E1 - Ek (50) 

-oG k ; l 
.() 

So~ of the values of the integrals Ijk :}1 Y'kli'~ involved a.re given 

in equation (51). 

Ioo = 3 k" Ill: 15 k" 0 0 - 2 -
4 4 2 a a 

3 (2)' k' 3 (2)' k' 0 0 
IOl: - .. 

a3/2 IlO =· -
a3/2 4 4 

3 k" 3ko Io2: 0 Il2 = (51) !72 ~ a3/2 2 a 

Io3 = 3 k' 
I13 = C5t k" 

0 0 

• 3-l 3/2 a 
2 a 

a . 

l k" 1 k' 
Io4 = 62 0 I14 = 2•32° 0 

a 2 a,3/2 

The expressions for AE1 and L1E0 using equation (51) and a = k.0 /E0+ are 

15 E 2 9 
2 9k' 2 2 

L1E1 • 4 k" o+ + k'2 Eo+ - 0 ~ 0 ~ 8 0 
k 3 ko k 3 

0 0 

- 75 k;2 E~ 4 ~ 2Ecf 
4 4 k 3 ko 0 

(52) 

3. 
2 

9 k'2 E 2 - 9 k"2 E 3 
L\Eo - k" Eor o o+ o o+ 

4 0 01 8 - 4 ko k0 3 4 ko 
(53) 

l k'2 
2 

3 k"2 3 Eo+ Eo+ - 0 
k 3 - ·O k4 4 2 0 0 

and E0+ is eha:nged by an am.o\lnt 
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(54) 

Since k~. :Ls negative (see Table II), l1E1 - .AE0 is negative, which means 

that E0+ is lowered. Using equations (54), (39), and (40), we can 

calculate better values of B/.lfl.2 • Some of these values are given in Table 

V. In Chapter IV, when we refer to B /J6.2, we will be referring to the new · 

values given in Table V. 

TABLE.V 

VALUES FOR B /JfJ.2 USING En+ INCLUDING PERTURBING TERMS 
FOR SOME HEAVY EVD-EVEI NUCLEI · 

B/i>.2 ( 1 ) 2 B/~2 (..1....) using 
. kev AE0,1. (e~), ~ Eo+(exp) ) pertu~~ing te~ 

.Nucleus from Table IV .. · · (kev Eo+(expr,iE0+(exp~ 

Sms6 .160 87 1.17 .136 

' 8maa .430 25 1.07 .402 

Gdaa .622 16 1.05 .591 

S~o .554 17 1.05 .528 

Gd90 .558 17 1.05 .532 

Gd92 .270 33 1.07 .254 

Er98 .136 86 1.13 .121 

Hf106 .185. 49 1.10 .169 

Osll2 .176 69 1.14 .154 

pt116 .094 230 1.49 .063 



CHAPl'ER IV 

HYDRODYNAMICAL PROPERrIES 

Mass Parameters 

The classical value of the mass parameter B for an incompressible 

nucleus of constant density is given by Bohr and Mottelson (5) to be 

• (55) 

Irrotational flow was assumed to get this formula. In the formula,A 

is the order of deformation and equals two for our model, A is the mass 

number, Mis the mass of one nucleon, and R0 = l.4 x 10-13 x Al/3 cm. To 

compare with our calculated mass parameter, we need B/{12. This is given 

by 

B l l 
2 : 2'!'2 

,ll 'Il 2 
• 

The constants involved are the following: 

-fl = .6582 x 10-l5 ev-see 

Ro = 1.4 x 10-13 x A1/3 cm 

Mc2 = 9.38 x 108 ev 

c2 = 9.00 x 1020 cm/see 

This reduces equation (56) to 

Table VI compares Bj.ri2 computed classically with the values found in 

28 

(56) 

(57) 

(58) 
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Table V. Of course, the .classical description is a very crude one since 

it does not take into accout shell effects or individual motions of the 

nucleons. We see from Table VI that our mass parameters calculated 

using experimental o+ levels and the deformation potential well are from 

2 to 25 times larger than the classical mass parameters. 

TABLE VI 

COMPARISON OF CLASSICAL MASS PARAMETERS WITH THOSE FOUND IN 
TABLE V FOR SOME HEAVY EVEN-EVEN NUCLEI 

p, flf,.2 (1/kev) 
Computed B /.fJ.2 (1/kev) B from Table V 

Nucleus Classically From . Table V B Classical 

Sm86 .• 0232 .136 6 

smss .0238 .402 17 

Gd88 .0244 .591 24 

Sm90 .0244 .528 22 

Gd90 .0249 .532 21 

Gd92 .0252 .254 10 

Er98 .0283 .121 4 

Hf106 .0317 .169 5 

Osll2 .0348 .154 4 

ptll6 .0366 .063 2 

According to Bohr and Mottelson (5), the moment of inertia of the 

nucleus is given by 

(59) 
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where p is the equilibrium deformation, that is, the deformation which 

corresponds to °'min in Table II. The f9min have been previo\:1sly computed 

from rotational spectra li>y Elbeck, !i• !!.• (10). The values which they . 

found are compared with those found in the present work in Table VII. 

Next using our mass paramet.ers, we can find I. These have also been 

found using only rotational spectra by Marklund, et. !!• (11). In 

Table VII a comparison is made between the moments of inertia found by 

the two methods. 

TABLE VII 

COMPARISON OF EQUILIBRIUM. DEFORMATIONS AND MOMENTS OF INERTIA 
FROM ROTATIO!lA+, SPECTRA WITH THOSE FOUND IN THE PBESE:NT 

WORK FOR SOME HEAVY EVD-EVEN NUCLEI 

Jit = -tf 2 ( ~) ~ 
(k!v) Ji I ~ kev I 

~in min 
Nucleus lm1n From (10) Using Present Work From (ll) 

sma6 ,256 112.1 

Bmaa .274 .184 32.5 

Gd88 .280 21.6 

s~ .286 .290 23.2 126.8 

Gd90 .291 .280 22.3 128.1 

Gd92 .297 .320 44.6 89.0 

Er98 .309 .323 88.6 81.0 

Hfl06 .296 67.8 93.6 

Osll2 .266 91.3 160.0 

Ptll6 .227 303.4 
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Conclusions 

Before drawing any conclusions, a review of the basic method employed 

will be ma.de in which the various assumptions will be pointed out. We 

began by taking the deformation energy term in the new mass formula and 

applying it to cases in which the nucleus vibrated around an eiuilibrium 

deformation. When we did this, we assumed that single particle inter-

actions could be neglected and that cylindrical symmetry was maintained 

during the.se vibrations. We would expect tti.e single particle interactions 

to be most important near closed shells, so in this region a good 

agreement with other data should not be expected. We next assumed that 

the lowest JI-vibrational mode came about by oscillating in the potential 

well caused by the deformation energy curve. When this was done, we 

neglected all rotational-vibrational and J-vibrational -f:. vibrational 

interactions. Our last assumption was that the classical hydrodynamical 

expression for the moment of inertia. was valid. Moments of inertia from 

our model were found using only ,8-vibrational states. They were then 

compared with moments of inertia found from rotational spectra. Our 

expression for the deformation energy term enabled us to calculate for 

the first time a. potential, well in which the nucleus vibrated. This. in 
I ' 

turn made it possible for us to calculate for the first time, moments of 

inertia using ,d-vibrations. 

As seen from Table VII, for several nuclei our values for /inin 

obtained from the mass formula are in good agre~ment with those found 

from rotational spectra. However, even for these nuclei the moments of 

inertia. do not compare favorably (e.g. Hf 106). For the isotopes with 

N = 90 or,less this disagreement can be justified by saying that these 
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· are too near elosed shells to be analyzed like strongly deformed nuclei. 

For the strongly deformed Er98 we get a much better agreement, but even 

strongly deformed Hf106 is not il.l good agreement. Since there is such 

poor correlation, either our method of finding Bis not valid, or the 

hydrodynamical expression for I is incorrect. Of course, to some extent, 

both involve assumptions which neglect potentially important factors. 

To study more precisely moments of inertia and other nuclear 

properties using our method, the following refinements need to be made. 

In our method of finding B we assumed that the first excited o+ level 

was a purely !-vibrational mode u:naffected by (-vibrations, rotations, 

or single particle interactions. Sheline (8) bas indicated that the 

single particle interactions have a significant effect on the vi

brational levels. The present study indicates that this is an accurate 

description of the true situation. Secondly, the simple moment of 

inertia formula obtained from the hydrodynamical model will need to be 

refined. It has already been shown (11) that if the simple formula for 

rotational excited states, namely 

. Eexeited = Eo + El I(I + l) + Ea I 2(I-r 1)2 
1 (60) 

is used, the E2 term. is 2 to 4 times smaller than that calculated 

theoretically using the hydrodynamical model. A detailed study of E2 

from rotational states would give an intiication as to how the simple 

hydrodynamical expression for moments of inertia should be modified. Of 

course, these considerations complicate our simple method immensely. How

ever, to get accurate results, they must be taken into account. 
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